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Summary

Constrained Numerical Optimisation is a very wide and broad field of interest which
nowadays can be utilised for solving many engineering problems, where some adjust-
ment of the input values is necessary for obtaining more efficient results from the sys-
tem. A very challenging part of it is constraining the problem by relating it to mathe-
matical model which represents the real life system. In most cases such a model is a
set of differential - algebraic equations (DAEs), taking states of the system as function
arguments, for which we look for the most optimal input variables (controls). It is very
important that such a model both preserves the physical properties of the system which
occur in the real world, e.g. conservation of mass, momentum, energy and is not too
complex at the same time so it can be computed in a straightforward manner. Handling
mentioned requirements in case of production optimisation of oil reservoirs imposed
common usage of shooting methods in both academic and industrial communities for
these problems since they eliminate the presence of state variables in the optimisation
algorithm and consequently reduce the size of the problem which is very big mainly
due to spacial and time discretisation. In this thesis we focus on applying, still un-
explored by oil communities and competent to shooting methods, direct collocation
approach in order to optimise oil production under water-flooding in a natural subsur-
face oil reservoir in secondary recovery phase.

We used an Interior Point Optimiser (Ipopt), which is a software package targeted for
large scale non-linear optimisation that was set up in Visual Studio integrated develop-
ment environment (IDE) and C++ object oriented programming language (OOPL). Be-
fore tackling oil problem, we tested simultaneous method in Ipopt on a well known non-
linear problem of Van Der Pol oscillator. Then we implemented a two-phase (water-oil)
immiscible flow model for an isothermal reservoir with isotropic permeability proper-
ties based on mass conservation principle for the each phase. We discretised the model
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in space by using finite volume method (FVM) and used the two point flux approxi-
mation (TPFA) and the single point upstream (SPU) scheme for flux computation. We
discretised a new model formulation in time by using implicit scheme backward Euler
method. Next we presented that obtained reformulation preserves the mass conserva-
tion properties used for model derivation. We implemented a numerical approach with
the aim of the future usage by non-linear model predictive control (NMPC) frame-
work and smart-well technology in order to maximise the Net Present Value (NPV)
of oil production, which is a function of controllable inputs such as injection rates at
the injection wells and bottom whole pressures (BHPs) at the production wells. The
optimisation is based on interior point algorithm in the line search framework with
the BFGS quasi-Newton method that computes an approximation of the inverse of the
Hessian given the first order gradient. The Jacobian of the constraints in the sparse for-
mat is obtained analytically by utilising the open structure supported by simultaneous
method and direct access to the first order derivatives.

The results from the simultaneous method investigated in this work, present that it has
the clear and merit potential for upstream production optimisation of oil reservoirs.



Dansk Resumé

Mange fagområder anvender optimering med bibetingelser til at løse tekniske proble-
mer der involverer justering af input-parametre (kontrolvariable) for at opnå optimal
output fra systemet. Opstillingen af en matematisk model, der kan repræsentere den
virkelige opførsel af systemet, er udfordrende. I de fleste tilfælde består modellen af
et sæt af algebraiske ligninger samt differentialligninger (DAE), der relaterer tilstanden
af systemet til en række kontrolvariable. Det er meget vigtigt, at modellen bevarer den
fysiske opførsel af systemet, som forekommer i den virkelige verden, fx bevarelse af
masse, momentum, energi samtidig med at modellen ikke må være for kompliceret og
tidskrævende. Kompleksiteten kan reduceres af shooting metoder fordi de eliminerer
tilstandsvariable og reducerer antal af variable i et diskretiseret optimering problem.
En alternativ måde kunne være gennem direkte kollokation hvor alle tilstandsvariable
beholdes og hvor man gør brug af åbne strukturer i det diskretiserede problem.
I denne afhandling fokuserer vi på at anvende en direkte kollokationstilgang for at op-
timere olieproduktionen under vand-oversvømmelse i et naturligt underjordisk olie felt
i sekundær recovery fase.

Vi brugte et indre punkt Optimiser (Ipopt), som er en softwarepakke målrettet til store
non-lineær optimering, der blev oprettet i Visual Studio integreret udviklingsmiljø
(IDE) og C + + objektorienteret programmeringssprog (OOPL). Før tackle olie prob-
lem, testede vi samtidig metode i Ipopt på et velkendt lineær problem med Van Der
Pol oscillator. Så implementerede vi en to-fase (vand-olie) blandbar flow model for
en isoterm reservoir med isotrope permeabilitetsegenskaber baseret på massebevarelse
princip for hver fase. Vi har diskretiseret modellen i rummet ved hjælp af finite volume
metoden (FVM) og brugt de to point flux tilnærmelse (TPFA) og den enkelt punkt op-
strøms (SPU) skema for flux beregning. Vi har diskretiseret en ny model formulering
i tid ved at bruge implicit baglæns Euler-metoden. Næste præsenterede vi , der opnås
omformulering bevarer de massebevarelse ejendomme, der anvendes til model afled-
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ning. Vi implementerede en numerisk fremgangsmåde med henblik på den fremtidige
anvendelse af ikke-lineær model prædiktiv kontrol (NMPC) ramme og smart-brønd-
teknologi med henblik på at maksimere Net Present Value (NPV) af olieproduktio-
nen, som er en funktion af styrbare input såsom injektionsatser på injektionsbrøndene
og bundhulstryk (BHPs) på produktionsbrøndene. Optimeringen er baseret på in-
dre punkt algoritme med linjesøgning og BFGS (Broyden Fletcher Goldfarb Shanno)
quasi-Newton metode, der beregner en tilnærmelse af den inverse Hessian givet den
første ordre gradient. En analytisk jacobian af bibetingelserne i sparse format opnås
ved at udnytte den åbne struktur og understøttes af den simultane løsningsmetode og
direkte adgang til de første ordre derivater. Dette arbejdes resultater med brug af den
simultane løsningsmetode, viser at den har klart potentiale for optimering af opstrøms
produktion af oliereservoirer.
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Chapter 1

Introduction

Natural petroleum reservoirs known also as oil fields are characterised by the multi-
phase flow of water and hydrocarbons in the porous media (e.g. rocks). The presence
of each phase is dependent on the structure and pressure in the reservoir. A couple
of decades ago oil fields were very easy to find and exploit. Initially most of them
were discovered onshore however nowadays due to the need for fossil fuel energy off-
shore areas are becoming more popular then onshore ones taking oil production even to
the Arctic region. The development of a conventional oil field starts with placing and
drilling the wells into the reservoir rock. Before this is done very often one needs to
perform the optimisation in order to find the most efficient well setting with respect to
the permeability field, oil saturation and other parameters obtained from the geological
measurements. This involves the usage of commercial simulation packages such as
Eclipse [1] which analyse different production scenarios based on the well placement
which then gives a support to an experienced reservoir engineer that is responsible for
choosing the best scenario. Consequently, optimisation techniques are used in sev-
eral different stages of the oil field development even before the actual production has
started and sometimes might involve human decisions. Once the wells are drilled they
get connected to the surface facilities from which oil is transported to the refineries for
further processing; see fig. 1.1. The production stage of field development of a conven-
tional oil normally can consist of three different phases which are categorised based on
the methods applied to extract hydrocarbons from the subsurface. In the primary phase
conventional methods which utilise high initial pressure obtained from natural drive
are used. Those techniques however, leave more than 70 percent of oil in the reservoir.
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A promising decrease of these remained resources can be provided in the secondary
recovery phase, where water is injected at the injection well to sustain pressure level
and push the oil towards the production well; see fig. 1.2. In some cases a third, ter-
tiary phase can be approved by economic indicators based on the estimated reservoir
potential. The tertiary phase, known also as enhanced oil recovery includes technolo-
gies such as in situ combustion, CO2 , polymer or surfactant flooding and is targeted at
recovering oil using chemical and thermal effects that reduce the adhesion and surface
tension between oil and rocks as well as its viscosity[2]. Since injection of those sub-
stances is much more expensive than waters this phase requires complex estimations of
the economic value of reservoir resources and occurs more seldom than water-flooding
[3]. In this work we are focused on the oil production in the secondary recovery phase
with water-flooding technique supported by the smart wells. As mentioned above the
basic idea of this method is to sustain already dropped pressure level due to produced
oil in the primary phase. If the pressure level in the reservoir is higher than bubble point
pressure, secondary recovery occurs by two-phase immiscible flow, where one phase
is water and the other is oil. The word immiscible means that two phases do not form
a uniform solution but remain separated and what is more, they do not exchange mass
with each other. In case of pressure being lower than the bubble point one, oil phase is
spilt into vapour and liquid being in equilibrium state. Again there is no mass transfer
between water phase and other phases but the hydrocarbon liquid and vapour phases
exchange mass in such a manner that they stay in a thermodynamic equilibrium. In this
work we focus on the case when bubble pressure is higher than bubble point pressure
and consider two-phase immiscible flow of oil and water in the reservoir.
There are many factors contributing to the poor conventional secondary recovery meth-
ods e.g. strong surface tension, trapping oil in small pores, heterogeneity of the porous
rock structure leading to change of permeability with position in the reservoir or high
oil viscosity. Thanks to optimal control, it is possible to adjust injection valves in the
individual segments of the well (see fig. 1.3) to control the two-phase immiscible flow
in the reservoir and navigate effectively oil to the production wells, so it is swept from
the reservoir and does not remain in the porous media.

1.1 Motivation and Main Objectives

The current demand for energy and decreasing number of newly found oil fields gives
a clear motivation for exploiting already existing reservoirs to a most possible and sat-
isfactory level. Oil has played a crucial role in the development of human civilisation,
and its price, like prices of other commodities, experienced wide swings throughout
the last decades in times of shortage or oversupply. What is more, there have also been
many political, economic and cultural factors which rapidly affected the oil price and
led to its sudden growth or drop throughout the last 40 years; see fig. 1.4. Neverthe-
less, from the global perspective one can observe a distinct gradual increase of the oil
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Figure 1.1: A cross-section view of an offshore field equipped in a smart well system
driving subsea production [4]

Figure 1.2: Schematic view of horizontal smart well [5]
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Figure 1.3: A smart-well with individually controllable segments equipped in wireless
injection control valves (ICVs) [6]

prices throughout the last decades; see fig. 1.5 , and primary reasons for that are sim-
ple supply and demand, driven by the rapidly expanding countries of the developing
world, principally China and India. Even financial speculators claim that the world is
approaching a fundamental shift in energy prices that will reach a radically new level,
expecting oil price reaching even 250 dollars for barrel in the foreseeable future. All
those factors resulted in a necessity for a very efficient oil production and led to an
interest for reservoir simulation studies as well as exploration of optimisation methods,
that are used in the reservoir engineering combined with data assimilation algorithms
for improvement of the secondary recovery phase under water-flooding technique.

The optimisation of oil production, which is the main objective of this work, is stated
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as an optimal control problem in following Bolza form:

min
{u(t),x(t))}

t f
t0

t f∫
t0

J(x(t), u(t))dt (1.1.1a)

s.t. x(t0) = x0 (1.1.1b)
dg
dt

(x(t)) = f (x(t), u(t) t ∈ [t0, t f ] (1.1.1c)

u∆
min ≤

du
dt

(t) ≤ u∆
max (1.1.1d)

umin ≤ u(t) ≤ umax (1.1.1e)

Where the eq. (1.1.1a) represents the objective cost function aimed to be minimised
with respect to net present value or any other economic objective; eq. (1.1.1b) is an in-
tial condition imposed on the state variables, and eq. (1.1.1c) is a mathematical model
designating the nonlinear path constraints, which for oil problem becomes the system
of differential equations describing the flow through the porous media, the right hand
side of the eq. (1.1.1c) , g(x) are the properties conserved, x(t) are the system states,
u(t) are the manipulated variables, while the right-hand side f(x(t), u(t)) has the usual
interpretation. Equation (1.1.1d) represents the inequality movement constraints on the
control variables, and equation (1.1.1e) states the upper and lower bounds on the con-
trol variables. t is an independent variable representing time and t0 and t f are initial
and terminal times respectively. There exist different methods for solving optimal con-
trol problem and they are categorized based on the way the discretise the continuous
time problem. Basically, one can distinguish between single-shooting, simultaneous
method and a hybrid approach of those two offering a trade-off between of the traits of
the two extremes, which is called multiple shooting [7]. So far, the most of attention
from academic and industrial communities was given to the single-shooting method,
which has been tried out in many works, e.g. in [8], [9], for production optimisation
of oil reservoirs. One of the main reasons for common usage of single-shooting (or
sequential method as optimisation is executed sequentially to numerical simulation for
gradient computation) is because after reformulation it uses only manipulated variables
(controls) as optimisation variables [7], [10], which reduces the variable space in the
algorithm. Size reduction is a very attractive feature especially for reservoir simulation
problems since they have the tendency to be very big in the first place (up to millions
of variables) due to reformulating the model by discretising it in time ans space. It is
very convenient to eliminate the states from the optimisation algorithm and solve the
smaller reformulation using sequential quadratic programming (SQP). What is more,
single-shooting is used with the high order ESDIRK methods equiped in step size con-
trol and error estimation which results not only in lower number of discretisation points,
but also ensures that the model equations are integrated properly. There exist however,
some drawbacks coming along with using single shooting. First of all, as a sequential
approach single shooting needs model solution at each iteration as it progresses towards
the solution of optimisation problem between solving the model and reduced gradient
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problem. Hence, from computational point of view single shooting might be costly if
function evaluation is costly [10], e.g. if the implicit discretisation scheme has to be
applied, which is the case of production optimisation of oil reservoirs.
In this thesis we will test the simultaneous method (fig. 1.6), which has not been
explored much by academic and industrial communities for optimising upstream oil
production [11]. Simultaneous method, contrary to single-shooting, uses also the dis-
cretised future process model variables as optimisation variables. As a result, the newly
transcribed discrete nonlinear program is much larger than by single-shooting. Never-
theless, it is often the case that after direct transcription the problem is very sparse and
structured, so it is possible to define the sparsity pattern in an algorithmic manner. Of
course implementation of the sparsity pattern can be sometimes very time consuming,
but it offers a great trade-off when it comes to the reduction of the problem size and
other computational aspects. Simultaneous methods do not solve the model at each
iteration. Alternatively, as the name says for itself, a simultaneous search for a model
solution and optimal point is carried out. Hence, from computational point of view,
they can be less costly than single shooting methods. Other features supported by si-
multaneous methods are: many degrees of freedom, periodic boundary conditions and
the full advantage of an open structure after reformulation such as direct access to first
and second order derivatives. This enables to obtain derivatives directly from the prob-
lem formulation in an analytical way, whereas in case of single-shooting the first order
derivatives can not be accessed directly due to problem reduction and are computed
by other strategies such as adjoint-based methods, which are more costly than analyti-
cal derivative calculations [12]. Examples of single-shooting methods combined with
adjoint-based approaches for gradient computation for optimisation of oil production
can be found in [9, 8, 13, 12, 14] .

The simultaneous method investigated in this thesis is called direct collocation and
fully discretises the continuous optimal control problem by approximating the controls
and states as piecewise polynomial functions on finite elements by applying implicit
first order Runge Kutta method (Implicit Euler). This enables to represent the problem
as a nonlinear program (NLP). The big instance of the reformulation is then solved by
Interior Point Optimiser (Ipopt), a large scale non-linear programming software apply-
ing interior point algorithm in the line-search framework. The method directly couples
the solution of the reservoir model with the optimisation problem. This can ensure that
the differential algebraic equation (DAE) system is solved only once provided that an
infeasible path algorithm is used (Sequential Quadratic Programming or Interior Point
Method). The direct collocation method has been widely and successfully used in pro-
cess engineering also for solving downstream problems, and that is the reason why
we are motivated in this thesis for exploring its potential for optimising upstream oil
production.
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Figure 1.4: Crude Oil Price in American Dollars vs Time since 1970[15]
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Figure 1.5: Crude Oil Price in American Dollars vs Time since 1994 [16]
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Figure 1.6: Dynamic Optimisation Approaches [17]

1.2 Reservoir Management

In order to maximise reservoir performance in terms of oil recovery or another eco-
nomic objective, reservoir management process is carried out throughout the life cycle
of the reservoir, which can be in order of years to decades. An exemplary scheme
of this process is presented in the figure 1.7. In many works this scheme might be
presented in the slightly different way as the reservoir management process can be en-
riched or missing some elements depending on the management strategy e.g. in case
of open loop reservoir management system models are not updated with data from the
sensors through data assimilation algorithms, and whole optimisation is preformed of-
fline. Consequently, this element would not be in the diagram, in case of open loop
strategy. What is more, some strategies distinguish between low order and high order
system models, which are responsible for uncertainty quantification.
The top element represents the physical system constituting reservoir and well facili-
ties. The central element refers to system models, which consist of static (geological),
dynamic(reservoir flow) and well bore flow models. The reason why multiple models
are used is because each of them has some uncertain parameters which allow to deter-
mine uncertainty about the subsurface. On the right side of the figure we have sensors,
which are responsible for keeping the track of the processes that occur in the system.
Sensors can be interpreted as physical devices taking measurements of the reservoir
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Figure 1.7: Reservoir Management Process [5]

parameters, such as water or oil saturations and pressures, but they can also be con-
sidered in more abstract manner as sources of information about the system variables,
e.g. interpreted well tests, time lapse seismics. On the right-hand side of the figure one
can find optimisation algorithms, which try to minimise the objective cost based on the
set of the constraints obtained from reservoir models. Very important element of the
closed-loop reservoir management process are data assimilation algorithms, which ob-
tain the data about the real world from the sensors and then update less realistic models
with the more correct information. Data assimilation and model update is performed
more frequently than off-line reservoir optimisation as models can easily get off the
right track during simulation. As a result, most of reservoir management processes are
understood as closed loop ones, and their crucial elements are model based optimi-
sation, decision making and model updating through the data assimilation techniques.
Consequently, one can realise himself that model based optimisation, which is the main
area of focus in this work, is a very significant element of the reservoir management
process.
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1.3 Multiple Model Update and Data Assimilation

Data assimilation or computer assisted history matching is a key component of the
closed loop reservoir management. The underlying concept of it, is that the mathemat-
ical model is not realistic enough to perform the reservoir simulation of the two-phase
flow completely independently for many reasons and thus a feedback from the real
world is necessary. In general, the system boundaries can be specified accurately for
the wells and system facilities but are much more uncertain for the reservoir as its
geometry is deduced from seismics that gives limited resolution[18]. Moreover, the
parameters of the system are also only known to some certain extent; e.g. the fluid
properties can be determined with quite high precision, but the reservoir properties are
only really certain at the wells. Another reason why uncertainties of the model might
be really significant is because the subsurface is very heterogeneous and the parame-
ters relevant to flow are correlated at different length scales and over distances smaller
than inter-well spacing [18]. In order to cope with these physical limitations, multiple
subsurface models are constructed to simulate two-phase flow of different geological
realisations. In addition, since there are so many uncertainties and unscaled parame-
ters, regular measurements are performed at the top of the wells and in the facilities in
oil production process, which give an indication of the pressures and phase rates, e.g.
oil and water flow rates. These measurements had been performed monthly or quar-
terly with limited accuracy. However, recently measurement techniques have been im-
proved by installing sets of sensors that can give almost continuous information about
pressures and phase rates not only at the surface but also down-hole [19] [20]. Further-
more, other techniques have emerged, communicating about the changes in reservoir
pressure and fluid saturations in between the wells. Consequently, thanks to all these
various measurements, reservoir flooding optimisation, based on numerical simulation
models can be performed in combination with regular and frequent model updating
with the data coming from the sensors. In other words, by combining the measured
response of the advanced sensors and the simulated response of the system it is possi-
ble to judge to what extent mathematical models represent reality. With the use of data
assimilation, it is then possible to adjust the parameters of the individual grid blocks
of the numerical models such that the simulated response fits better the measured data.
As a result, simulator updated in this way will give more accurate predictions of the
future system response. One could argue, that in this manner optimisation combined
with data assimilation is a form of non-linear model predictive control with gradually
shrinking horizon, however the distinct difference is that data assimilation approach is
not aimed at following predefined trajectory as it is in NMPC but rather finding this
trajectory to start with. Following this logic, closed loop reservoir management could
be classified as a form of real time optimisation (RTO). However, due to the slow dy-
namics of oil production process and necessity of relatively low frequency of the model
updates, it can be performed off-line, contrary to typical RTO [18]. It has to be em-
phasised however, that enriching reservoir management process by data assimilation
and making it closed loop process, results in much frequent updates than conventional
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reservoir management. Very often the history matching problem itself is formulated as
an optimisation problem with an objective function determining the mismatch between
measured and simulated output data [21]. The reservoir management as a combination
of model-based optimisation and data assimilation is often referred as real-time reser-
voir management, smart reservoir management as well as closed loop management[22].
Some remarkable works of model-based optimisation of the oil production combined
with data assimilation implementing Kalman filter can be found in [23, 5, 24].

1.4 Interior Point Methods (IMPs)

This section explains the idea behind the interior point methods, which is utilised by
the optimisation tool used in this work.
Since their discovery interior point methods (IPMs) have enjoyed well-deserved in-
terest and have been subjected to intensive study and investigation which led to a de-
velopment of complete theory and a thorough understanding of their implementation
[25]. Interior point or barrier methods are targeted at large scale non-linear optimisa-
tion problems. Their recent development was mainly caused by the growing interest
of implementation of efficient optimisation algorithms and large scale non-linear pro-
gramming. This also resulted in better understanding of the convergence properties of
interior point methods and development of algorithms with desirable local and global
convergence properties. Interior point methods easily generalise from linear, through
quadratic to nonlinear programming and for all these types of problems offer efficient
algorithms[25]. The main ingredients employed by interior point methods are: back-
tracking line search, a Newton method for equality constrained minimisation and a
barrier function [26]. In addition, these methods offer an attractive alternative to active
set strategies. In most cases those methods are implemented in either trust region or
line search frameworks (algorithms) and use exact penalty merit functions to iterate to-
wards solution. The mechanism of interior-point method is presented in the figure 1.8.
As it can be seen this method always moves within the feasible set which means that
it maintains feasibility of decision variables. The only drawback of it is that it might
be the case when algorithm converges to the boundary at the limit, i.e. at the point
where algorithm terminates. One of the most popular and widely distributed imple-
mentations of interior point methods are KNITRO and Ipopt software packages. Ipopt
in particular implements primal-dual interior point algorithm with a linesearch filer,
whereas KNITRO is based on trust region framework. Both packages give comparable
results when tested for large scale optimisation problem; for the results please see[26].
Ipopt and KNITRO have also been used in the reservoir engineering community for
oil production optimisation by Suwartadi and Krogstad in [13] where interior point al-
gorithms were combined with adjoint method for gradient computation. In Suwartadi
and Krogstad[13] state constraints were removed and added as a barrier term in the
objective function. (The main difference between barrier term and penalty term is that
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Figure 1.8: Mechanism of Interior-Point Method,taken from [13]

barrier function must use strictly feasible initial guess. This results in a requirement
for control input to lie within the feasible set determined by all the constraints of the
optimisation problem.) The detailed development of a primal-dual interior point algo-
rithm with a line search filter is presented by Andreas Wächter in [26]. Furthermore, a
global convergence of this algorithm is analysed by the same author in [27]. For further
information about the algorithm as well as its applications please see [28], [29], [30]

1.5 Multiscale (On-line and Off-line) Optimisation and
Operational Aspects

From physical point of view, processes involved in oil production can be classified
into upstream and downstream ones; see fig1.9. Downstream processes refer to e.g.
pipelines and export facilities, whereas upstream processes are the ones happening in
the reservoir e.g. subsurface flows [31]. Those two types of processes differ from each
other very distinctively when it comes to their timescales [32]. In the upstream pro-
cesses the velocity of the fluid can be very slow mainly due to some physical properties
of the reservoir such as low permeability value or its size, which can be up to two
tens of kilometres. Hence, it can take up to decades to navigate oil by injecting water
towards production wells. In case of downstream parts of production, timescales are
much lower and can be in order of minutes or even seconds. In this work we focus
on optimisation of upstream production, where we model the two phase flow and run
so called reservoir simulation. The simulation is based on mathematical models gov-
erned by partial differential equations (PDEs, governing equations) and is performed
for a long time horizon, even up to decades of years. Consequently the optimisation
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Figure 1.9: Oil Field with Surface and Subsurface Facilities [31]

of upstream part of oil production is run off-line, whereas downstream part is mostly
performed on-line. One of the most challenging aspects in closed loop reservoir engi-
neering involves the combination of short-term production optimisation and long-term
reservoir management. An open question is, what is the best way of implementing
the found, optimal trajectory that was computed off-line into the daily performance of
an oil field. Technically, daily valve setting are selected such that they result in in-
stantaneous maximisation of oil production limited by constraints on the processing
capacities of gas and water co-produced with the oil. Such settings are mostly deter-
mined with heuristics operating protocols, sometimes supported with off-line model
based optimisation using sequential or quadratic programming to maximise instanta-
neous reservoir performance. What is more, a simple, frequent on-line feedback control
is used for stabilising the flow rates and pressures in the processing facilities to separate
oil, water and gas streams from the wells. It can be seen that there are a few control
and optimisation processes going in parallel at different time scales. This kind of strat-
egy involves a layer control structure where longer-term optimisation results provide
set points and constraints for the instantaneous, short term optimisation, which then
navigates and provides set points for field controllers. This modular approach, also
known as multi-scale optimisation, has been widely used in the process industry and
was proposed for reservoir management in[32] and [23].
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1.6 Linear and Non-linear Model Predictive Control

Model Predictive Control (MPC) is an advanced control strategy that relies on dynamic
models of the process for forcasting and optimisaing the system output over some fu-
ture horizon [33]. The esence of MPC is to use the current plant measurement , and
mathematical models to optimise forecasts of the future changes in the dependent vari-
ables representing the behaviour of the system. These changes are then used to keep
the dependent variables close to target, satisfying constraints on both dependent and
independent variables. Model predictive control is defined as receding horizon strategy
and is based on iterative finite horizon optimisation of a plant model. The idea behind
it, is that only the first step of the control strategy is implemented, then the plant state
is sampled again and simulation is started from the new current state. Consequently,
the prediction horizon keeps being shifted, yielding a new control and predicted state
path [34]. Since the models are not perfect and can get off the track easily, some errors
are overcome with a regular feedback and model update. Model Predictive Control
originated in 1980s in the chemical process industry but then has been broaden to very
wide area of control technology being also attractive to both downstream and upstream
processes in oil industry.
Nonlinear Model Predictive Control, or NMPC, is a variant of model predictive control
(MPC) and is characterised by non-linear models used directly in the control applica-
tion. Whereas, in case of regular model predictive control models are linear and even
if they are not, then they are linearized over a small operating range to derive Kalman
Filter or specify a model for linear MPC [35]. Non-linear Model Predictive Control re-
quires the iterative solution of optimal control problems on a finite prediction horizon.
While these problems are convex in linear MPC, in nonlinear MPC they are not convex
anymore. The numerical solution of the NMPC optimal control problems is typically
obtained by employing direct optimal control methods using Newton-type optimiza-
tion schemes, in one of the variants: direct single shooting, direct multiple shooting
methods, or direct collocation[35]. As a result, the direct collocation approach to op-
timal control problem of oil production can be utilised as numerical solution in the
Non-linear Model Predictive Control framework, with oil reservoir being treated as a
plant; fig. 1.7

Thanks to that model predictive control allows practitioners to address trade-offs that
should be considered when putting control technology into practice.

1.7 Organisation of this Thesis(Outline)

This thesis consists of 6 chapters and 4 appendices and is organised in the following
way:
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...

Figure 1.10: Model Predictive Control Mechanism [35]

• In the first chapter we explain the general concept of the reservoir management
and give some explanations to key elements of it with empahsis on the optimi-
sation algorithms. What is more, a background of this work is given as well as
motivation and main objectives of this research

• In chapter 2 we introduce the tool for large scale nonlinear optimisation Ipopt
(interior-point optimiser) by solving a simple non-linear program with its use.
Since the implementation of Ipopt is in C++ object oriented programming lan-
guage we code our exemplary program in Microsoft Visual Studio software de-
velopment kit.

• In the third chapter we introduce the continuous time Bolza’s optimal control
problem and present how to solve it by applying direct collocation method with
the interior point optimiser on an exemplary problem of Van Der Pol oscillator.

• Chapter four is devoted to the reservoir model, known also as black oil reservoir
simulator. In the very beginning, we derive the partial differential equations
constituting the continuous mathematical model of the subsurface two phase flow
and dynamic constraints on the state variables. Next we present the well models
and state transformation from water and oil concentrations to oil pressures and
water saturations.

• In chapter five we discretise our model in space by using Gauss theorem and fi-
nite volume method and come up with two dimensional model. Then the model is
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discreitsed in time by using first order implicit scheme (backward Euler method).
Finally, necessary information for navigating the optimisation algorithm in the
iteration process such as Jacobian of the constraints is retrieved from the refor-
mulation of the model.

• In the chapter six we present the numerical experiment of production optimisa-
tion and corresponding results on a particular simulation scenario.

• Chapter seven contains conclusions made throughout the work on this thesis and
suggestions for some future work that could be done in the area of simulating
two phase flow and oil production optimisation with the simultaneous method.

• Appendix A contains an article written for a journal magazine called Young
Petro. The information in the article overlaps to some extent on to what is pre-
sented in this thesis. It should be however, treated as a crucial, complementary
document that contains the essence and sums up the most important parts of this
thesis.

• Paper in appendix B is the manual about setting up Ipopt and loading it as dll
(dynamic-link library) into a Visual Studio as a precompiled 3rd party code.

• Appendix C describes how to compute first order derivatives of the properties
conserved and flux representation which construct the entries of the Jacobian
matrix.

• Appendix D is the list of conferences and scientific workshops to which results
from this project were submitted and presented in form of a poster or oral pre-
sentation.

• Appendix E is the contract, written after the case study in the field related was
done. The contract defines the workload that should be done in order to accom-
plish this project and fulfil requirements to obtain a degree of master of science.
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Chapter 2

Solving Simple Nonlinear
Problem Using Interior Point

Optimiser

In this chapter we will describe the software package that will be used for tackling oil
problem as we proceed further in our research. In order to do this, we will present a
simple, exemplary non-linear program and instruct how to solve it using the proposed
ptimisation tool. The investigated solver is called Ipopt and is a software package im-
plementing interior point line search filter methods that find a local solution of general
nonlinear program of the following form:

min
x∈Rn

f (x) (2.0.1a)

s.t. gL ≤ g(x) ≤ gU (2.0.1b)

xL ≤ x ≤ xU (2.0.1c)

where:

• f : Rn→R is the objective function.

• x ∈ Rn are the optimisation variables.

• xL ∈ (R ∪ (−∞))n are the lower bounds on optimisation variables.
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• xU ∈ (R ∪ (+∞))n are upper bounds on optimisation variables.

• g(x) is a constraint function.

• gL ∈ (R ∪ (−∞))n are lower bounds on constraints g(x)

• gU ∈ (R ∪ (+∞))n are upper bounds on constraints g(x)

Remarks:
The objective function f (x) and general constraints g(x) can be linear or non-linear and
convex or non-convex. They should be however, two times differentiable and satisfy
KKT conditions. In case of modelling constraint equality conditions, one should set
gL

i = gU
i = gi. We put a special emphasis on equations (2.0.1) since they represent

a problem format readable for an Ipopt. As a result, to solve any kind of a problem,
no matter on its format, one has to use a method which will transcribe it so that it
follows those three equations. Ipopt package is an open source one and is available at
COIN-OR initiative (www.coin-or.org). It is maintained in C++ and Fortran and can be
loaded as a precompiled dynamic link library (DLL) into many different technologies
such us Matlab, Python, C and C++. In our case, Ipopt dll distribution was configured
and loaded into Microsoft Visual Studio 2008 project. In order to get information on
obtaining the Ipopt package and setting it up in Visual Studio, please go to tutorial
about Ipopt in Visual Studio in appendix B section.

2.1 Simple Non-linear Program (NLP)

Once Ipopt is set up in Visual Studio , one can represent his own nlp and interact with
a solver through a very straightforward C++ interface. To demonstrate how to do this
we introduce a simple non-linear program of the following form:

min
x∈Rn

f (x) = −(x2 − 2)2 (2.1.1a)

s.t. 0 = x2
1 + x2 − 1 (2.1.1b)

− 1 ≤ x1 ≤ 1 (2.1.1c)

Ipopt however, needs a bit more information about the problem than its standard for-
mulation, e.g. Jacobian of the constraints or gradient of the objective. Below additional
problem information, required by Ipopt to solve it, is listed.

1. Dimensions of the Problem

• number of variables

• number of constraints
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2. Bounds of the Problem

• variable bounds

• constraint bounds

3. Initial Starting Point

• Initial values for the primal x variables

• Initial values for the multipliers

4. Problem Structure

• number of the non-zeros of the Jacobian of the constraints

• number of the non-zeros of the Hessian of the Lagrangian function

• sparsity structure of the Jacobian of the constraints

• sparsity structure of the Hessian of the Lagrangian function

5. Evaluation of Problem Functions

• Objective function f (x)

• Gradient of the objective O f (x)

• Constraint function values g(x)

• Jacobian of the constraints Og(x)T

• Hessian of the Lagrangian function σ f∇
2 f (x) +

m∑
i=1
λi∇

2gi(x)

As we can see, Ipopt needs a bit more information than straight problem specification.
At the first glance, one can think, that it is Ipopt disadvantage over some other optimi-
sation packages which are able to find the solution after specifying only the objective
function and the feasible set. Ipopt is however, designed for large scale problems and
consequently, passing all this additional information pays off as it speeds up calculation
time and saves up memory resources.
We will now retrieve from our exemplary nlp this additional information, and pass it
to Ipopt through the standardised C++ interface. While some of the data can be red
directly from problem formulation, e.g. number of variables or variable bounds, let
us concentrate on the more complex equations defined in point 5. We start with the
gradient of the objective function, which is:

∇ f (x) =

 ∂ f
∂x1
∂ f
∂x2

 (2.1.2a)

∇ f (x) =

[
0

−2 · (x2 − 2)

]
(2.1.2b)
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and the Jacobian of the constraints g(x) is:

∇g(x)T =
[

∂g
∂x1

∂g
∂x2

]
(2.1.3a)

∇g(x)T =
[
−2x1 −1

]
(2.1.3b)

and the Hessian of the Lagrangian is the following:

σ f∇
2 f (x) +

m∑
i=1
λi∇

2gi(x) =

= σ f

 ∂2 f
∂2 x1

∂2 f
∂x1∂x2

∂2 f
∂x1∂x2

∂2 f
∂2 x2

 + λ1

 ∂2g
∂2 x1

∂2g
∂x1∂x2

∂2g
∂x1∂x2

∂2g
∂2 x2

 (2.1.4)

After calculating second partial derivatives of the objective function and equality con-
straint one can get:

σ f∇
2 f (x) +

m∑
i=1

λi∇
2gi(x) = σ f

[
0 0
0 −2

]
+ λ1

[
−2 0
0 0

]
(2.1.5)

Where the first term comes from the objective function, and the second term is from the
Hessian of the constraints(λ variable in front of the Hessian term is a constraint multi-
plier). Our exemplary nlp is constrained only by one equality constraint, hence we have
only one Hessian of the constraints matrix. Our later examples will be constrained in
a more complex way which will result in more λ terms, coming from the constraints,
in the Hessian of the Lagrangian.Please note that in general the Lagrangian for the nlp

is given by: f (x) + g(x)Tλ and the Hessian of the Lagrangian is ∇2 f (x) +
m∑

i=1
λi∇

2gi(x).

Ipopt format however, introduces additional term in front of portion coming from ob-
jective function σ f so that it can ask for Hessian of the objective or the constraints
independently, whenever these are needed.
While Ipopt supports many different matrix formats, triple format was chosen for cod-
ing matrices (Hessian of the Lagrangian and Jacobian of the constraints) of this nlp.
In the triple format user should specify only non-zero entries of the matrices and their
corresponding sparsity structures. Since those non-zero structures should remain con-
stant throughout the whole solving process, user should make sure to include entries
for any element that might ever be non-zero, not only those that are non-zero at the
starting point (in other words only elements which are always zero should be omitted).
For further information about triple matrix format please see [36].

Having retrieved all the required information about our nlp, we can go forward to the
next step, which is coding the problem in C++ and passing it to Ipopt.
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Ipopt Application class,
with OptimiseTNLP 

method

Simple NLP main 
function

TNLP Class with 
Generic Ipot Interface

SimpleNLP class (specific 
problem representation)

SimpleNLP Microsoft Visual 
Studio C++ Project with 
precompiled Ipopt 3.9 
dynamic link library

Pass problem to Ipopt format to 
Ipot Application class using 

SmartPTR

Call Ipopt 
Application 

class

Figure 2.1: Simple NLP Visual Studio Project Structure

2.2 Ipopt C++ Interface

Implementation of the optimisation problem in Ipopt uses object oriented features of
C++ language and can be divided into two following stages:

• Coding the problem representation in the class inheriting from the abstract TNLP
class

• Coding the executable main function and calling Ipopt through the IpoptAppli-
cation class.

For getting familiar with the project structure in the Visual Studio 2008, please see
figure 2.1.
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2.2.1 Coding the Problem Representation

Ipopt is equipped with generic interface consisting of prototyped methods defined in
abstract TNLP class. In order to tell Ipopt about given optimisation problem, one is
required to create a class inheriting from TNLP class and implement its interface by
overriding all the abstract methods. The Ipopt-TNLP interface is presented below. As
it can be seen, all the methods have been declared as pure virtual ones by being marked
with ”= 0” notation. This means that they do not have their bodies and programer has
to define them himself in the child class(in our case SimpleNLP class). Now we will
explain the functionality of each virtual method and present its definition in the context
of the SimpleNLP implementation (SimpleNLP.cpp implementation file).

v i r t u a l bool g e t n l p i n f o ( Index& n , Index& m, Index& n n z j a c g ,
Index& n n z h l a g ,
IndexSty leEnum& i n d e x s t y l e )=0 ;

/ * * Method t o r e t u r n t h e bounds f o r my problem * /

v i r t u a l bool g e t b o u n d s i n f o ( Index n , Number* x l , Number* x u ,
Index m, Number* g l , Number* g u )=0 ;

/ * * Method t o r e t u r n t h e s t a r t i n g p o i n t f o r t h e a l g o r i t h m * /

v i r t u a l bool g e t s t a r t i n g p o i n t ( Index n , bool i n i t x , Number* x ,
bool i n i t z , Number* z L , Number* z U ,
Index m, bool i n i t l a m b d a ,
Number* lambda )=0 ;

/ * * Method t o r e t u r n t h e o b j e c t i v e v a l u e * /

v i r t u a l bool e v a l f ( Index n , c o n s t Number* x , bool new x ,
Number& o b j v a l u e )=0 ;

/ * * Method t o r e t u r n t h e g r a d i e n t o f t h e o b j e c t i v e * /

v i r t u a l bool e v a l g r a d f ( Index n , c o n s t Number* x ,
bool new x , Number* g r a d f )=0 ;

/ * * Method t o r e t u r n t h e c o n s t r a i n t r e s i d u a l s * /

v i r t u a l bool e v a l g ( Index n , c o n s t Number* x , bool new x ,
Index m, Number* g )=0 ;

/ * * Method t o r e t u r n :
* 1 ) The s t r u c t u r e o f t h e j a c o b i a n ( i f ” v a l u e s ” i s NULL)
* 2) The v a l u e s o f t h e j a c o b i a n ( i f ” v a l u e s ” i s n o t NULL)
* /

v i r t u a l bool e v a l j a c g ( Index n , c o n s t Number* x , bool new x ,
Index m, Index n e l e j a c , Index * iRow ,
Index * jCol , Number* v a l u e s )=0 ;

v i r t u a l bool e v a l h ( Index n , c o n s t Number* x , bool new x ,
Number o b j f a c t o r , Index m, c o n s t Number* lambda ,
bool new lambda , Index n e l e h e s s , Index * iRow ,
Index * jCol , Number* v a l u e s )=0 ;

/ * * S o l u t i o n Methods * /



2.2 Ipopt C++ Interface 25

/ * * T h i s method i s c a l l e d when t h e a l g o r i t h m i s c o m p l e t e so t h e TNLP can
s t o r e / w r i t e t h e s o l u t i o n * /

v i r t u a l vo id f i n a l i z e s o l u t i o n ( S o l v e r R e t u r n s t a t u s , Index n ,
c o n s t Number* x , c o n s t Number* z L ,
c o n s t Number* z U , Index m,
c o n s t Number* g ,
c o n s t Number* lambda , Number o b j v a l u e ,
c o n s t I p o p t D a t a * i p d a t a ,
I p o p t C a l c u l a t e d Q u a n t i t i e s * i p c q )=0 ;

Method get nlp info with a prototype:

bool g e t n l p i n f o ( Index& n , Index& m, Index& n n z j a c g ,
Index& n n z h l a g , IndexSty leEnum& i n d e x s t y l e )

Returns to Ipopt information about the size of the problem, so that it knows how much
memory it should allocate.

• n:(out), the dimension of the x optimisation variable

• m:(out), the dimension of the vector constraint function g(x)

• nnz jac g:(out), the number of the non-zero entries in the Jacobian matrix

• index style: (out), the indexing style for row and column entries of the matrices
in the sparse format. It can be set to C STYLE or FORTRAN STYLE, which
means start indexing from 0 or 1 respectively.

• nnz h lag:(out), the number of the non-zero entries of the Hessian of the La-
grangian matrix.

bool SimpleNLP : : g e t n l p i n f o ( Index& n , Index& m,
Index& n n z j a c g , Index& n n z h l a g ,
IndexSty leEnum& i n d e x s t y l e )

{

/ / The problem d e s c r i b e d i n MyNLP . hpp has 2 v a r i a b l e s ,
/ / x1 , & x2 ,
n = 2 ;

/ / one e q u a l i t y c o n s t r a i n t ,
m = 1 ;

/ / i n t h i s case J a c o b i a n has 2 nonzero e n t r i e s
/ / ( one f o r x1 , and one f o r x2 ) ,
n n z j a c g = 2 ;

/ / t h e h e s s i a n o f t h e Lagrang ian a l s o has two non− z e r o e n t r i e s
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/ / one i n t h e Hess ian o f t h e o b j e c t i v e f o r x2
/ / and one i n t h e Hess ian o f t h e c o n s t r a i n t s f o r x1
n n z h l a g = 2 ;

/ / We use t h e s t a n d a r d C s t y l e f o r row / c o l e n t r i e s
i n d e x s t y l e = C STYLE ;

re turn true ;
}

Method get bounds info with a prototype:

bool g e t b o u n d s i n f o ( Index n , Number* x l , Number* x u ,
Index m, Number* g l , Number* g u ) ;

Returns to the Ipopt information about the bounds on the optimisation variables and
constraints.

• n:(in), the dimension of x variables vector.

• x l:(out), array with lower bounds on x variable vector .

• x u:(out), array with upper bounds on x variable vector.

• m:(in), the dimension of the constraint function g(x) of the problem.

• g l:(out), array with lower bounds on the constraint function g(x).

• g u:(out), array with upper bounds on the constraint function g(x).

The m and n variables in the get bounds info method are passed back so that one can
check the correctness of their values by using ”assert” macro. Since variable x1 has
lower bound of -1 and upper bound of 1, we set x l[0] and x u[0] elements to -1
and 1 respectively. Variable x2 is not bounded in anyway and consequently, we set
x l[1] and x u[1] elements to numbers which are interpreted by Ipopt as positive and
negative infinities by the default. It is also possible for the user to specify which val-
ues Ipopt should understand as lack of bound. In order to do it , one should set the
nlp upper bound inf option to a given value. Then any value which is equal or greater
than nlp upper bound inf will be taken by Ipopt as no-upper bound. The same thing
can be done for nlp lower bound inf. However this time any lower or equal value will
be understood as no-lower bound. For more detailed information on setting default
values for positive and negative infinities please see [36].
Since nlp lower bound inf and nlp upper bound inf are set by default to −1019 and
1019 respectively, we also assigned these values to x l[1] and x u[1] in the get bounds info
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method. When it comes to constraints g(x) in our exemplary problem, we have only
one equality constraints, so we set bounds on this constraint to be equal and zero. That
is the way Ipopt recognises equality constraints format and as a result, does not treat it
as two inequalities.

bool SimpleNLP : : g e t b o u n d s i n f o ( Index n , Number* x l ,
Number* x u , Index m,
Number* g l , Number* g u )

{

/ / here , t h e n and m we gave IPOPT i n g e t n l p i n f o
/ / are pa s se d back t o us . I f d e s i r e d , we c o u l d a s s e r t
/ / t o make s u r e t h e y are what we t h i n k t h e y are .
a s s e r t ( n == 2 ) ;
a s s e r t (m == 1 ) ;

/ / x1 has a lower bound o f −1 and an upper bound o f 1
x l [ 0 ] = −1 .0 ;
x u [ 0 ] = 1 . 0 ;

/ / x2 has no upper or lower bound , so we s e t them t o
/ / a l a r g e n e g a t i v e and a l a r g e p o s i t i v e number .
/ / The v a l u e t h a t i s i n t e r p r e t t e d as − /+ i n f i n i t y can be
/ / s e t i n t h e o p t i o n s , b u t i t d e f a u l t s t o − /+1 e19
x l [ 1 ] = −1.0 e19 ;
x u [ 1 ] = +1.0 e19 ;

/ / we have one e q u a l i t y c o n s t r a i n t , so we s e t t h e bounds on
/ / t h i s c o n s t r a i n t t o be e q u a l ( and z e r o ) .
g l [ 0 ] = g u [ 0 ] = 0 . 0 ;

re turn true ;
}

Method get starting point with a prototype:

bool g e t s t a r t i n g p o i n t ( Index n , bool i n i t x , Number* x ,
bool i n i t z , Number* z L , Number* z U ,
Index m, bool i n i t l a m b d a ,
Number* lambda ) ;

Returns the Ipot starting point at which, the solver starts iterating.

• n:(in), the dimension of x variable vector.

• init x:(in), boolean flag saying whether initial values of the bound multipliers zL

and zU are specified or not. If it is set to true then user has to specify the intial zL

and zU .
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• z L:(out), array with initial values of lower bound multipliers.

• z U:(out), array with initial values of upper bound multipliers.

• m:(in), the dimension of the vector constraint function g(x) of the problem.

• init lambda:(in), boolean flag saying whether initial values of the constraint mul-
tipliers lambda are specified or not. If it is set to true, then user has to specify the
initial λ multipliers .

• lambda: (out), array with initial values for the constraint λ multipliers .

bool SimpleNLP : : g e t s t a r t i n g p o i n t ( Index n , bool i n i t x ,
Number* x , bool i n i t z ,
Number* z L , Number* z U ,
Index m, bool i n i t l a m b d a ,
Number* lambda )

{

/ / Here , we assume we o n l y have s t a r t i n g v a l u e s f o r x ,
/ / i f you code your own NLP , you can p r o v i d e s t a r t i n g
/ / v a l u e s f o r t h e o t h e r s i f you wish .
a s s e r t ( i n i t x == t rue ) ;
a s s e r t ( i n i t z == f a l s e ) ;
a s s e r t ( i n i t l a m b d a == f a l s e ) ;

/ / we i n i t i a l i z e x i n bounds , i n t h e upper r i g h t qu a d r a n t
x [ 0 ] = 0 . 5 ;
x [ 1 ] = 1 . 5 ;

re turn true ;
}

In the first two lines, we make again sure that we passed the right values of the num-
bers of the constraints and variables. Then we set init x flag to true and init z and
init lambda flags to false. Finally, we assign starting point for x-variable vector in the
upper right quadrant.

Method eval f with a prototype:

bool e v a l f ( Index n , c o n s t Number* x , bool new x ,
Number& o b j v a l u e )

Returns the value of the objective function at the point x.

• n:(in), the dimension of x-variable vector.
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• x:(n),array with x-variables for which objective function is evaluated.

• new x:(in), flag which is passed from Ipopt to eval f method. new x is false
if any evaluation method was previously called for the same values in x array.
This flag can be used for speeding up the implementation which calculates many
outputs at one time. Since in this problem single output is evaluated , new x is
not used.

• obj value:(out), the value of the objective function at point x.

bool SimpleNLP : : e v a l f ( Index n , c o n s t Number* x , bool new x ,
Number& o b j v a l u e )

{

/ / r e t u r n t h e v a l u e o f t h e o b j e c t i v e f u n c t i o n
Number x2 = x [ 1 ] ;
o b j v a l u e = −(x2 − 2 . 0 ) * ( x2 − 2 . 0 ) ;
re turn true ;

}

Method eval grad f with a prototype:

bool e v a l g r a d f ( Index n , c o n s t Number* x , bool new x ,
Number* g r a d f )

Returns the gradient of the cost function at point x.

• n:(in), the dimension of x-variable vector.

• x:(n),array of x-variables for which gradient of the objective function evaluated.

• new x:(in), flag which is passed from Ipopt to eval f method. new x is false
if any evaluation method was previously called for the same values in x array.
This flag can be used for speeding up the implementation which calculates many
outputs at one time. Since we evaluate single output in our problem, new x is
not used.

• grad f:(out), array with values of the gradient of the objective cost function. For
this particular problem, gradient was determined in equation (2.1.2)

The gradient array should be ordered in the same way as single variables in the x vector,
e.g. gradient with respect to x[1] should be placed in grad f[1] element.

bool MyNLP : : e v a l g r a d f ( Index n , c o n s t Number* x , bool new x ,
Number* g r a d f )

{
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/ / r e t u r n t h e g r a d i e n t o f t h e o b j e c t i v e f u n c t i o n gr ad { x } f ( x )

/ / grad { x1 } f ( x ) : x1 i s n o t i n t h e o b j e c t i v e
g r a d f [ 0 ] = 0 . 0 ;

/ / grad { x2 } f ( x ) :
Number x2 = x [ 1 ] ;
g r a d f [ 1 ] = −2.0*( x2 − 2 . 0 ) ;

re turn true ;
}

Method eval g with a prototype:

bool e v a l g ( Index n , c o n s t Number* x , bool new x , Index m,
Number* g )

Returns the array with values of the constraint function g(x) at point x.

• n:(in), the dimension of x-variable vector.

• x:(n),array of x-variables for which gradient of the objective function is evalu-
ated.

• new x:(in), flag which is passed from Ipopt to eval f method. new x is false if
any evaluation method was previously called for the same values in x array.

• m:(in), the dimension of the constraint function g(x) of the problem.

• g:(out), the array with values of the constraints function g(x).

As our exemplary problem is constrained by only one equality constraint, we express
it in terms of x-vector variable and assign it to g[0] in the body of eval g function.

bool SimpleNLP : : e v a l g ( Index n , c o n s t Number* x , bool new x ,
Index m, Number* g )

{

/ / r e t u r n t h e v a l u e o f t h e c o n s t r a i n t s : g ( x )
Number x1 = x [ 0 ] ;
Number x2 = x [ 1 ] ;

g [ 0 ] = −(x1*x1 + x2 − 1 . 0 ) ;

re turn true ;
}
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Method eval jac g with prototype

bool e v a l j a c g ( Index n , c o n s t Number* x , bool new x , Index m,
Index n e l e j a c , Index * iRow , Index * jCol ,
Number* v a l u e s )

Returns either the values at point x, or the sparsity structure of the Jacobian of the
constraints. Both values and sparsity structure refer only to the non-zero elements.

• n:(in), the dimension of x-variable vector.

• x:(n),array of x-variables for which gradient of the objective function is evalu-
ated.

• new x:(in), flag which is passed from Ipopt to eval f method. new x is false
if any evaluation method was previously called for the same values in x array.
This flag can be used for speeding up the implementation which calculates many
outputs at one time. Since we evaluate single output in our problem, new x is
not used.

• m:(in), the dimension of the vector constraint function g(x) of the problem.

• n ele jac: (in), number of non-zero elements of the Jacobian (this variable should
be equal to the dimension of irow, jcol and values arrays)

• iRow:(out), row indices of the non-zero entries in the Jacobian of the constraints.

• jCol:(out), column indices of the non-zero entries in the Jacobian of the con-
straints.

• values:(out), the values of the non-zero entries in the Jacobian of the constraints.

The function eval jac g should always be implemented according to the specific rules.
As it was mentioned before, eval jac g returns either sparsity structure or the values of
the Jacobian. The decision, which parameter is be evaluated and returned should be
done by eval jac g based on the value of values array, which is passed to the function
from Ipopt. If values array is NULL, then Ipopt expects eval jac g to return the sparsity
structure of the Jacobian stored in the iRow and jCol arrays. If values array is not
NULL, then the actual values of the Jacobian at point x should be assigned into values
array. The functionality of m, n, and new x in-parameters is the same as for previous
methods, and their usage is completely optional.

bool SimpleNLP : : e v a l j a c g ( Index n , c o n s t Number* x , bool new x ,
Index m, Index n e l e j a c , Index * iRow ,
Index * jCol , Number* v a l u e s )

{
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i f ( v a l u e s == NULL) {
/ / r e t u r n t h e s t r u c t u r e o f t h e j a c o b i a n o f t h e c o n s t r a i n t s

/ / e l e m e n t a t 1 , 1 : g rad { x1 } g { 1 } ( x )
iRow [ 0 ] = 1 ;
j C o l [ 0 ] = 1 ;

/ / e l e m e n t a t 1 , 2 : g rad { x2 } g { 1 } ( x )
iRow [ 1 ] = 1 ;
j C o l [ 1 ] = 2 ;

}

e l s e {

/ / r e t u r n t h e v a l u e s o f t h e j a c o b i a n o f t h e c o n s t r a i n t s
Number x1 = x [ 0 ] ;

/ / e l e m e n t a t 1 , 1 : g rad { x1 } g { 1 } ( x )
v a l u e s [ 0 ] = −2.0 * x1 ;

/ / e l e m e n t a t 1 , 2 : g rad { x1 } g { 1 } ( x )
v a l u e s [ 1 ] = −1 .0 ;

}

re turn true ;
}

Method finalize solution with prototype:

void f i n a l i z e s o l u t i o n ( S o l v e r R e t u r n s t a t u s , Index n ,
c o n s t Number* x , c o n s t Number* z L ,
c o n s t Number* z U , Index m,
c o n s t Number* g , c o n s t Number* lambda ,
Number o b j v a l u e ,
c o n s t I p o p t D a t a * i p d a t a ,
I p o p t C a l c u l a t e d Q u a n t i t i e s * i p c q )

• status(int), informs about the return status of the algorithm. Below we present
some possible values of this enumeration: -SUCCESS - algorithm terminated
successfully at the local minimiser, which satisfies the convergence tolerances.
-LOCAL INFEASIBILITY - algorithm converged to a point which is locally in-
feasible and whole problem might be infeasible.
-RESTORATION FAILURE - algorithm does not know how to proceed, which
very often suggests that the problem is implemented in a wrong way (C++ rep-
resentation is not consistent with actual problem).

• n:(in), the dimension of x-variable vector.
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• x:(n),array of x-variables storing final optimised values (local minimiser).

• z L:(in), the final values for the lower bound multipliers zL
∗ .

• z U:(in), the final values for the upper bound multipliers zU
∗ .

• m:(in), the dimension of the constraint function g(x) of the problem.

• g:(in), the final value of the constraint function g(x) at point x∗.

• lambda: (in), the final values of the constraint multipliers λ.

• obj value:(in), the final value of the objective function f at the point x∗

For more information about return status variable please see section 3.3.1 at [36]

void MyNLP : : f i n a l i z e s o l u t i o n ( S o l v e r R e t u r n s t a t u s , Index n ,
c o n s t Number* x , c o n s t Number* z L ,
c o n s t Number* z U , Index m,
c o n s t Number* g ,
c o n s t Number* lambda ,
Number o b j v a l u e ,
c o n s t I p o p t D a t a * i p d a t a ,
I p o p t C a l c u l a t e d Q u a n t i t i e s * i p c q )

{

/ / here i s where we would s t o r e t h e s o l u t i o n t o v a r i a b l e s ,
/ / or w r i t e t o a f i l e , e t c so we c o u l d use t h e s o l u t i o n . S i n c e
/ / t h e s o l u t i o n i s d i s p l a y e d t o t h e c o n s o l e , we c u r r e n t l y do
/ / n o t h i n g here .

}

Please note that all the parameters in finalize sulution method are ”in - ones”. It is so,
because this method is called by Ipopt at the final stage when solution has been found.
As a result, Ipopt is passing the return status and the values of the variables , the ob-
jective and the constraints, when algorithm excites. Implementation of this method is
very flexible and depends on how the user wants to present solution of the problem,
e.g. it is possible to use cout class or printf function to display the final values of the x
vector variable and constraints, or write this data into a text file with the use of ostream
class. Because the solution is already displayed in the main function, it is not necessary
to use finalize solution method in this particular example. It still ,however, has to be
implemented since this method was declared as pure virtual one in the parent class, and
it would not be possible to compile the program without its definition.
So far we have described all the pure virtual methods of the TNLP interface that user
has to implement in the child class to pass the optimisation problem to Ipopt. Last
method that we would like to focus on is eval h and its usage is completely optional.
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It is recommended however, to implement it, as eval h evaluates second derivatives,
which speeds up the operation and improves robustness of the algorithm, e.g. it can
converge faster.

Method eval h with prototype:

bool e v a l h ( Index n , c o n s t Number* x , bool new x ,
Number o b j f a c t o r , Index m, c o n s t Number* lambda ,
bool new lambda , Index n e l e h e s s , Index * iRow ,
Index * jCol , Number* v a l u e s ) ;

Returns either the sparsity structure or the values of the Hessian of the Lagrangian.

• n:(in), the dimension of x-variable vector.

• x:(n),array of x-variable vector for which values of the Hessian of the Lagrangian
are evaluated.

• new x:(in), flag which is passed from Ipopt to eval h method. new x is false
if any evaluation method was previously called for the same values in x array.
This flag can be used for speeding up the implementation which calculates many
outputs at one time. Since we evaluate single output in our problem, new x is
not used.

• obj factor:(in), factor σ in front of the term coming from objective function;
please see eq. (2.1.4)

• m:(in), the dimension of the constraint function g(x) of the problem.

• lambda:(in), array with the values of the constraint multipliers λ for which Hes-
sian of the Lagrangian should be evaluated.

• new lambda:(in),flag which is passed from Ipopt to eval h method. new lambda
is false if any evaluation method was previously called for the same values in
lambda array.

• nele hess:(in), the number of non-zero elements in the Hessian of the Lagrangian
(nele hess should be equal to the dimension of irow, jcol and values arrays).

• iRow:(out), row indices of the non-zero entries in the Hessian of the Lagrangian.

• jCol:(out), column indices of the non-zero entries in the Hessian of the La-
grangian.

• values:(out), the values of the non-zero entries in the Hessian of the Lagrangian.
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Eval h should be implemented following the same logic as eval jac g, which means
that the function has to decide whether to return the values or the sparsity structure of
the Hessian of the Lagrangian, depending on the value of values array. If values array is
equal to NULL and iRow and jCol are not NULL at the same time, then Ipopt expects
to obtain the sparsity structure of the Hessian of the Lagranian. If values array is not
NULL, then iRow and jCol are NULL and Ipopt awaits for the values of the Hessian of
the Lagrangian evaluated in terms of x, obj factor and lambda. obj factor and lambda
should be used in the same order as shown in the equation (2.1.5), which means that
when evaluating the values of the matrix, the elements coming from objective function
term should be multiplied by obj factor and elements coming from the Hessian of the
constraints should be multiplied by corresponding element of lambda array(in our case ,
there is only one constraint so all the non-zero elements of the Hessian of the constraints
m∑

i=1
λi∇

2gi(x) are multiplied by first element of lambda array - lambda[0].

For representing the sparsity structure, a sparse symmetric matrix format is used, which
basically means that only non-zero elements of the lower left corner are specified as
Hessian of the Lagrangian is symmetric. For information and examples on representing
matrices in sparse triple format please see [36].

bool MyNLP : : e v a l h ( Index n , c o n s t Number* x , bool new x ,
Number o b j f a c t o r , Index m,
c o n s t Number* lambda , bool new lambda ,
Index n e l e h e s s , Index * iRow ,
Index * jCol , Number* v a l u e s )

{

i f ( v a l u e s == NULL)
{

/ / r e t u r n t h e s t r u c t u r e . T h i s i s a s y m m e t r i c ma t r i x ,
/ / f i l l t h e lower l e f t
/ / t r i a n g l e o n l y .

/ / e l e m e n t a t 1 , 1 : grad ˆ2 { x1 , x1 } L ( x , lambda )
iRow [ 0 ] = 1 ;
j C o l [ 0 ] = 1 ;

/ / e l e m e n t a t 2 , 2 : grad ˆ2 { x2 , x2 } L ( x , lambda )
iRow [ 1 ] = 2 ;
j C o l [ 1 ] = 2 ;

/ / Note : o f f −d i a g o n a l e l e m e n t s are z e r o f o r t h i s problem
}

e l s e
{

/ / r e t u r n t h e v a l u e s

/ / e l e m e n t a t 1 , 1 : grad ˆ2 { x1 , x1 } L ( x , lambda )
v a l u e s [ 0 ] = −2.0 * lambda [ 0 ] ;
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/ / e l e m e n t a t 2 , 2 : grad ˆ2 { x2 , x2 } L ( x , lambda )
v a l u e s [ 1 ] = −2.0 * o b j f a c t o r ;

/ / Note : o f f −d i a g o n a l e l e m e n t s are z e r o
/ / f o r t h i s problem

}

re turn true ;
}

2.2.2 Coding the Executable Main Function

In the second step of solving exemplary problem, we will create main function in which
we instantiate our SimpleNLP class and store the address of the SimpleNLP object in
a smart pointer. Then we instatiate an IpoptApplication class by calling IpoptApplica-
tionFactoryMethod (SmartPtr<IpoptApplication> app = IpoptApplicationFactory();).
Using IpoptFactoryMethod is necessary for the Visual Studio implementation as it en-
ables the user to compile the program with Ipopt Windows dll. Now, we have ob-
ject of the class IpotApplication, which we can utilise by accessing its methods via
smart pointer with arrow operator (app->method). Firstly, we call Initialize() method
by typing app->Initialize(), and then after checking that initialization was performed
successfully (if (status != Solve Succeeded)), we call OptimizeTNLP(TNLP*) method
and pass address of SimpleNLP object to it (OptimizeTNLP(mynlp)). OptimizeTNLP
(TNLP*) method returns status variable, whose value we check to make sure, that Ipopt
was successful in finding solution. Final stage is displaying results on the console win-
dow. To obtain results from Ipopt, we call the following methods in IpoptApplication
class:

• IpoptApplication->Statistics()->IterationCount() - returns number of iterations
in which solution was found.

• IpoptApplication->Statistics()->FinalObjective() - returns the final value of the
objective function when local solution was found.

Of course, it is possible to obtain many other parameters from Ipopt about the solution,
e.g. bound multipliers, values of the constraints at the optimal point or final values of
the primal variables x∗, by either calling different methods in IpoptApplication class or
implementing finalize solution method.

i n t main ( i n t argv , char * a r g c [ ] )
{
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/ / Cr ea t e an i n s t a n c e o f SimpleNLP
Smar tP t r <TNLP> p t r n l p = new SimpleNLP ( ) ;

/ / Cr ea t e an i n s t a n c e o f t h e I p o p t A p p l i c a t i o n
/ / u s i n g I p o p t A p p l i c a t i o n F a c t o r y ( ) method
Smar tP t r < I p o p t A p p l i c a t i o n > app = I p o p t A p p l i c a t i o n F a c t o r y ( ) ;

/ / I n i t i a l i z e t h e I p o p t A p p l i c a t i o n and p r o c e s s t h e o p t i o n s
A p p l i c a t i o n R e t u r n S t a t u s s t a t u s ;
s t a t u s = app−> I n i t i a l i z e ( ) ;
i f ( s t a t u s != S o l v e S u c c e e d e d ) {

p r i n t f ( ” E r r o r d u r i n g i n i t i a l i z a t i o n ! ” ) ;
re turn ( i n t ) s t a t u s ;

}

s t a t u s = app−>OptimizeTNLP ( p t r n l p ) ;

i f ( s t a t u s == S o l v e S u c c e e d e d ) {
/ / R e t r i e v e some s t a t i s t i c s abou t t h e s o l v e
Index i t e r c o u n t = app−> S t a t i s t i c s ()−> I t e r a t i o n C o u n t ( ) ;
p r i n t f
( ” \n ******************************************* ” ) ;
p r i n t f
( ” \n The problem s o l v e d i n %d i t e r a t i o n s ! \ n ” , i t e r c o u n t ) ;

Number f i n a l o b j = app−> S t a t i s t i c s ()−> F i n a l O b j e c t i v e ( ) ;
p r i n t f
( ” \nThe v a l u e o f t h e o b j e c t i v e f u n c t i o n i s%e . \ n ” , f i n a l o b j ) ;

}

re turn ( i n t ) s t a t u s ;
}

2.2.3 Results and Ipopt Output

After implementing the main function, one can compile and run the program. Since
we are using Visual Studio 2008, we do not have to use make files and tell the linker
about Ipopt library as this was already set up. In order to build the project and run
the program one needs to press key f5 in the Visual Studio SDK. This command runs
the program by default and asks the user for building the project if it is out of date. If
compilation proceeded successfully, one should get the following output in the console
window after running SimpleNLP project.

******************************************************************************
Th i s program c o n t a i n s I p o p t , a l i b r a r y f o r l a r g e − s c a l e n o n l i n e a r o p t i m i z a t i o n .

I p o p t i s r e l e a s e d as open s o u r c e code unde r t h e Common P u b l i c L i c e n s e (CPL ) .
For more i n f o r m a t i o n v i s i t h t t p : / / p r o j e c t s . co in −or . org / I p o p t
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******************************************************************************

NOTE: You a r e us ing I p o p t by d e f a u l t wi th t h e MUMPS l i n e a r s o l v e r .
O the r l i n e a r s o l v e r s might be more e f f i c i e n t ( s e e I p o p t d o c u m e n t a t i o n ) .

Th i s i s I p o p t v e r s i o n 3 . 9 . 1 , r u n n i n g wi th l i n e a r s o l v e r mumps .

Number o f n o n z e r o s i n e q u a l i t y c o n s t r a i n t J a c o b i a n . . . : 2
Number o f n o n z e r o s i n i n e q u a l i t y c o n s t r a i n t J a c o b i a n . : 0
Number o f n o n z e r o s i n L a g r a n g i a n H e s s i a n . . . . . . . . . . . . . : 2

T o t a l number o f v a r i a b l e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . : 2
v a r i a b l e s wi th on ly lower bounds : 0

v a r i a b l e s wi th lower and upper bounds : 1
v a r i a b l e s wi th on ly uppe r bounds : 0

T o t a l number o f e q u a l i t y c o n s t r a i n t s . . . . . . . . . . . . . . . . . : 1
T o t a l number o f i n e q u a l i t y c o n s t r a i n t s . . . . . . . . . . . . . . . : 0

i n e q u a l i t y c o n s t r a i n t s w i th on ly lower bounds : 0
i n e q u a l i t y c o n s t r a i n t s w i th lower and upper bounds : 0

i n e q u a l i t y c o n s t r a i n t s w i th on ly uppe r bounds : 0

i t e r o b j e c t i v e i n f p r i n f d u l g (mu) | | d | | l g ( rg ) a l p h a d u a l p h a p r l s
0 −2.5000000 e−001 1 . 4 8 e+000 7 . 9 7 e−001 −1.0 0 . 0 0 e+000 − 0 . 0 0 e+000 0 . 0 0 e+000 0
1 −3.7436285 e+000 5 . 2 2 e−004 1 . 6 8 e−001 −1.0 1 . 4 3 e+000 − 1 . 0 0 e+000 1 . 0 0 e+000 f 1
2 −3.9841853 e+000 9 . 8 4 e−004 7 . 6 8 e−003 −1.7 6 . 1 2 e−002 − 1 . 0 0 e+000 1 . 0 0 e+000 f 1
3 −3.9998793 e+000 2 . 1 7 e−006 2 . 3 2 e−005 −3.8 3 . 9 3 e−003 − 1 . 0 0 e+000 1 . 0 0 e+000h 1
4 −3.9999982 e+000 1 . 9 0 e−010 1 . 6 4 e−009 −5.7 2 . 9 7 e−005 − 1 . 0 0 e+000 1 . 0 0 e+000h 1
5 −4.0000001 e+000 5 . 2 8 e−014 4 . 2 3 e−013 −8.6 4 . 6 0 e−007 − 1 . 0 0 e+000 1 . 0 0 e+000h 1

Number o f I t e r a t i o n s . . . . : 5

( s c a l e d ) ( u n s c a l e d )
O b j e c t i v e . . . . . . . . . . . . . . . : −4.0000000774945192 e+000 −4.0000000774945192 e+000
Dual i n f e a s i b i l i t y . . . . . . : 4 .2277292777725961 e−013 4.2277292777725961 e−013
C o n s t r a i n t v i o l a t i o n . . . . : 5 .2846615972157451 e−014 5.2846615972157451 e−014
Complemen ta r i t y . . . . . . . . . : 2 .5056918053500437 e−009 2.5056918053500437 e−009
O v e r a l l NLP e r r o r . . . . . . . : 2 .5056918053500437 e−009 2.5056918053500437 e−009

Number o f o b j e c t i v e f u n c t i o n e v a l u a t i o n s = 6
Number o f o b j e c t i v e g r a d i e n t e v a l u a t i o n s = 6
Number o f e q u a l i t y c o n s t r a i n t e v a l u a t i o n s = 6
Number o f i n e q u a l i t y c o n s t r a i n t e v a l u a t i o n s = 0
Number o f e q u a l i t y c o n s t r a i n t J a c o b i a n e v a l u a t i o n s = 6
Number o f i n e q u a l i t y c o n s t r a i n t J a c o b i a n e v a l u a t i o n s = 0
Number o f L a g r a n g i a n H e s s i a n e v a l u a t i o n s = 5
T o t a l CPU s e c s i n IPOPT (w / o f u n c t i o n e v a l u a t i o n s ) = 0 .358
T o t a l CPU s e c s i n NLP f u n c t i o n e v a l u a t i o n s = 0 .000

EXIT : Opt imal S o l u t i o n Found .

*******************************************
The problem s o l v e d i n 5 i t e r a t i o n s !

*** The f i n a l v a l u e o f t h e o b j e c t i v e f u n c t i o n i s −4.000000 e +000.

Most of the content of the output is automatically generated by Ipopt. At the beginning,
the user is informed against which solver the library was compiled (in the SimpleNLP
example it was MUMPS linear solver). Then, initial information about the size of the
problem ,passed from the class SimpleNLP, is displayed, e.g. number of non-zeros in
the Jacobian or number of the constraints. Then, after initialisation, Ipopt starts finding
the solution, and for every iteration it generates one line of output consisting of the
following parameters:

• iter: The current iteration count

• objective: The current value of the objective function for the searched values of
the optimisation x variables.

• inf pr: The primal infeasibility at the current point.
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• inf du: The scaled dual infeasibility at the current point.

• lg(mu): Logarithm with base of 10 of the barrier parameter mu.

• ||d||: The infinity norm (max) of the primal step.

• lg(rg): Logarithm with base of 10 of the regularisation term for the Hessian of
the Lagrangian in the augmented system.

• alpha du: Step size for the dual variables.

• alpha pr: Step size of the primal variables.

• ls: Number of backtracking line search steps.

After finishing iterating Ipopt passes to console window following parameters corre-
sponding to the obtained solution:

• Objective

• Dual infeasibility

• Complementarity

• CPU secs in Ipopt

• CPU secs in NLP function evaluation

and returns with particular exit status (EXIT: Optimal Solution Found), which means
that application left the solver. There are different values of the exit status, depending
on the result of solving optimal problem, e.g. ”Solved To Acceptable Level” or ”Fea-
sible Point Found”. Last two lines of the output are generated by our implementation
of the main function.
Alternatively it would be also possible to implement finalize solution method of the
TNLP interface, which is called automatically by Ipopt when solution is found and
receives information about the solution, so that user can output it, depending on the
preferences. Below we present alternative output of the exemplary nlp problem with
the finalize solution method implemented in a more advanced way(since first part of
the output is automatically generated by Ipopt we show only the bit produced by
finalize solution method and some printing routines in the main function after Ipopt
returned with exit status):
EXIT : Opt imal S o l u t i o n Found .

S o l u t i o n o f t h e p r i m a l v a r i a b l e s , x
x [ 0 ] = 1 .000000 e+000
x [ 1 ] = −1.937363 e−008
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S o l u t i o n o f t h e bound m u l t i p l i e r s , z L and z U
z L [ 0 ] = 1 .252846 e−009
z L [ 1 ] = 0 .000000 e+000
z U [ 0 ] = 8 .000000 e+000
z U [ 1 ] = 0 .000000 e+000

O b j e c t i v e v a l u e
f ( x * ) = −4.000000 e+000

F i n a l v a l u e o f t h e c o n s t r a i n t s :
g ( 0 ) = −5.284662 e−014

*******************************************
The problem s o l v e d i n 5 i t e r a t i o n s !

*** The f i n a l v a l u e o f t h e o b j e c t i v e f u n c t i o n i s −4.000000 e +000.

The implementation of the finalize solution method is the following:

void SimpleNLP : : f i n a l i z e s o l u t i o n ( S o l v e r R e t u r n s t a t u s , Index n ,
c o n s t Number* x , c o n s t Number* z L ,
c o n s t Number* z U , Index m,
c o n s t Number* g , c o n s t Number* lambda ,
Number o b j v a l u e , c o n s t I p o p t D a t a * i p d a t a ,
I p o p t C a l c u l a t e d Q u a n t i t i e s * i p c q )

{

/ / t h e purpose o f t h i s method i s t o manage t h e s o l u t i o n ,
/ / e . g o u t p u t i t t o t h e
/ / c o n s o l e or w r i t e i t t o a t e x t f i l e

/ / In t h i s case s o l u t i o n i s w r i t t e n t o t h e c o n s o l e
p r i n t f ( ” \n\ n S o l u t i o n o f t h e p r i m a l v a r i a b l e s , x\n ” ) ;
f o r ( Index i =0; i <n ; i ++)
{

p r i n t f ( ” x[%d ] = %e \n ” , i , x [ i ] ) ;
}

p r i n t f
( ” \n\ n S o l u t i o n o f t h e bound m u l t i p l i e r s , z L and z U \n ” ) ;
f o r ( Index i =0; i <n ; i ++)
{

p r i n t f ( ” z L[%d ] = %e \n ” , i , z L [ i ] ) ;
}

f o r ( Index i =0; i <n ; i ++)
{

p r i n t f ( ” z U[%d ] = %e \n ” , i , z U [ i ] ) ;
}

p r i n t f ( ” \n\ n O b j e c t i v e v a l u e \n ” ) ;
p r i n t f ( ” f ( x * ) = %e \n ” , o b j v a l u e ) ;
p r i n t f ( ” \ n F i n a l v a l u e o f t h e c o n s t r a i n t s : \ n ” ) ;
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f o r ( Index i =0; i <m ; i ++)
{

p r i n t f ( ” g(%d ) = %e \n ” , i , g [ i ] ) ;
}

}

In finalize solution method, we use n variable as upper limit in the for loops. This vari-
able is passed back to the method to keep the track of the size of the problem. Then, in
different for loops, we display by using printf function respectively: bound multipliers,
values of primary variables x at the point x∗, optimised value of the objective function
and finally values of the constraints at the point x∗ The information in this chapter about
how to implement simple nlp program in C++ language with Ipopt is based on [36].
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Chapter 3

Optimal Control Problem

In the chapter 2 it is shown how solve and model a simple non-linear program using
Ipopt. However, the final goal of this thesis is to optimise oil production in smart
well system, which is a problem of a different and more complex type. Basically,
oil problem is defined as optimal control and this chapter is devoted to this kind of
problems.
In the very beginning, a brief introduction to optimal control problems will be given.
Then, we will show a generic procedure of applying the simultaneous method in order
to solve this kind of problem. Finally, we will present the discussed approach on a
well-known example of non-linear Van Der Pol oscilator.

3.1 Optimal Control Problem

An optimal control problem is described by set of differential equations and objective
function, which is also called a cost function. A typical feature of this kind of problems
is that an objective function is a function of state and control variables whereas the
mentioned set of differential equations is a mathematical model that defines the paths
of the control variables to minimise the objective cost function and determines first
order dynamic constraints on the variables. A standard continuous optimal control
problem can be defined in the following way:
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min
{u(t),x(t)}

J =

t f∫
t0

g(x(t), u(t))dt (3.1.1a)

s.t. x(t0) = x0 (3.1.1b)
ẋ = f (x(t), u(t) t ∈ [t0, t f ] (3.1.1c)
c(x(t), u(t)) ≥ 0 t ∈ [t0, t f ] (3.1.1d)
xmin ≤ x(t) ≤ xmax (3.1.1e)
umin ≤ u(t) ≤ umax (3.1.1f)

where:

1. (3.1.1a) represents the cost function.

2. (3.1.1b) is an initial condition.

3. (3.1.1c) determines mathematical model of the first order dynamic constraints.

4. (3.1.1d) determines algebraic path inequality constraints.

5. (3.1.1e), (3.1.1f) determine boundary conditions of state and control variables
respectively.

6. x(t) is the state variable vector.

7. u(t) is the control variable vector.

8. t is an independent variable representing time and t0 and t f are initial and terminal
times respectively.

Please note that some of the conditions to which cost function is subjected can simply
be not active. For example, the path inequality constraints can be equal to zero. What
is more, xmin and xmax can be equal to plus and minus infinity respectively, which
means that there are no boundary conditions on state variables. The optimal control
problem specified in such a way as above can have multiple solutions. In other words,
the solution might not be unique, and in such a case, any solution (x(t),u(t),t) to the
optimal control problem is so called local minimiser.
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3.2 Numerical Methods to Solve Optimal Control Prob-
lem

In most of the cases optimal control problems are non-linear and can not be solved an-
alytically like for example some special types of optimal control problems(e.q. linear-
quadratic optimal control problems). Consequently, in order to solve these problems,
one has to apply numerical methods. In general, one distinguishes between two types
of them which are direct and indirect ones. When it comes to indirect methods they
were developed in the 1950’s with the start of usage of computers. Those methods are
based mostly on calculus variation and cannot deal with dynamic path constraints. For
the case investigated in this thesis, one of the direct methods will be applied since one
of its features is that it translates the problem to the format which can be passed to Ipot
( nlp format) for obtaining solution. Direct methods were introduced in the early 80’s
and have been developed since that time. Basically, in a direct method state, control
variables and cost function are approximated by using one of function approximation
techniques, for example piecewise constant parametrisation or polynomial approxima-
tion. Those procedures enable to discretise and translate the continuous time problem
to the finite dimensional non-linear problem . The reason why those methods are so
useful is because there already exist standard and robust algorithms for solving non-
linear programs. Please also note that the size of translated nonlinear program depends
to a significant extent on the type of the direct method for discretisation. It might occur
that the nlp might be of size of tens of thousands of variables(e.g. in case of direct
collocation, simultaneous method) but even though it is relatively easier to solve rather
than boundary-value problem. This is because nonlinear programs can be specified
as a sparse ones (containing many zero elements in the matrices which can be simply
neglected), which speeds up calculation and saves a lot of computation resources such
as memory space. In chapter 2 it was demonstrated that Ipopt asks only for non-zero
elements of the matrices). Therefore it is very important that user defines his problem
for the solver in a sparse format if it is possible of course.
Another important issue concerning translation of continuous time problem to discrete
one is selection of the approximation method, which should provide conditions under
which solutions to a series of increasingly accurate discretised problem converge to the
solutions of original continuous one. For example, in case of using a variable step-
size routine, it might be that the gradient does not converge to zero when integrating
numerically dynamic constraints of the model.
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3.3 Simultaneous Method as a Solution to an Optimal
Control Problem

Simultaneous method is classified as one of the direct methods, and its main concept is
that it fully discretises the optimal control problem. As a result, the newly transcibed
nlp is very large because the method uses both controls and states as optimisation vari-
ables after reformulation. When it comes to model equations, they are not solved at
each etarion, as it is done in case of sequential approaches, e.g. single shooting, but
a simultaneous search for both model solution and optimal point is carried out. This
reduces the number of necessary model simulations and can contribute to the lower
computation time if the model evaluation is costly. Since simultaneous method directly
couples model equations with the objective cost function and employs optimisation al-
gorithm for finding simultaneously the solution to the model and minimizer to the ob-
jective cost function, it offers a full advantage of an open structure after transcription,
such as direct access to first and second order derivatives, many degrees of freedomg
and periodic boundary conditions.

3.3.1 Retriving Information from Continuous Time Problem

Given a continuous time optimal control problem of a Bolza’s form in eq. 3.1.1, one
can transcribe it to a discrete and numerically traceable one by employing different
discretisation methods. Before doing that, however, we will introduce some important
notations for retriving information from continuous time problem which will be used
later in solving the dicrete non-linear program because of its periodic and structured
boundary conditions. Assuming that the objective cost function g used in eq. (3.1.1a)
is continuous and twicely differentiable, we introduce its gradient with respect to state
and control variables of the following form:

∇g(x, u) =

[ ∂g(x,u)
∂x

∂g(x,u)
∂u

]
(3.3.1)

and in particular:

∂g(x, u)
∂x

=


∂g(x,u)
∂x1
...

∂g(x,u)
∂xn

 (3.3.2)
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∂g(x, u)
∂u

=


∂g(x,u)
∂u1
...

∂g(x,u)
∂um

 (3.3.3)

where n and m define the sizes of the state and control variable vectors respectively.
Next we introduce the Jacobians of the left hand side of the model f(x) with respect to
states x:

∂ f
∂x

=


∂ f1
∂x1

∂ f1
∂x2

· · ·
∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · ·
∂ f2
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2

· · ·
∂ fn
∂xn

 (3.3.4)

and controls u:

∂ f
∂u

=


∂ f1
∂u1

∂ f1
∂u2

· · ·
∂ f1
∂um

∂ f2
∂u1

∂ f2
∂u2

· · ·
∂ f2
∂um

...
...

. . .
...

∂ fn
∂u1

∂ fn
∂u2

· · ·
∂ fn
∂um

 (3.3.5)

The Hessian H(g(x,u), which is a square matrix of partial second order derivatives of
the continuous g function with respect to states and controls, is defined as following:

H(g(x, u) = ∇2g(x, u) (3.3.6)

∇2g(x, u) =



∂g
∂x1∂x1

∂g
∂x1∂x2

· · ·
∂g

∂x1∂xn

∂g
∂x1∂u1

∂g
∂x1∂u2

· · ·
∂g

∂x1∂um
∂g

∂x2∂x1

∂g
∂x2∂x2

· · ·
∂g

∂x2∂xn

∂g
∂x2∂u1

∂g
∂x2∂u2

· · ·
∂g

∂x2∂um
...

...
. . .

...
...

...
. . .

...
∂g

∂xn∂x1

∂g
∂xn∂x2

· · ·
∂g

∂xn∂xn

∂g
∂xn∂u1

∂g
∂xn∂u2

· · ·
∂g

∂xn∂um
∂g

∂x1∂u1

∂g
∂u1∂x2

· · ·
∂g

∂u1∂xn

∂g
∂u1∂u1

∂g
∂u1∂u2

· · ·
∂g

∂u1∂um
∂g

∂u2∂x1

∂g
∂u2∂x2

· · ·
∂g

∂u2∂xn

∂g
∂u2∂u1

∂g
∂u2∂u2

· · ·
∂g

∂u2∂um
...

...
. . .

...
...

...
. . .

...
∂g

∂um∂x1

∂g
∂um∂x2

· · ·
∂g

∂um∂xn

∂g
∂um∂u1

∂g
∂um∂u2

· · ·
∂g

∂um∂um



(3.3.7)

We have already shown in chapter 2 that in order to robustly solve the nonlinear pro-
gram with the use of Ipopt, one needs to pass the Hessian of the Lagrangian to the
solver. This matrix is constructed out of two terms, where one is the Hessian of the
objective cost function and the other is the Hessian of the constraints. The constraint
term is obtained by summing the Hessians of every single constraint multiplied by the



48 Optimal Control Problem

correspondig lambda multiplier. The hessian of the single constraint having index i in
the f vector function is defined the following:

∇2 fi(x, u) =



∂ f j

∂x1∂x1

∂ f j

∂x1∂x2
· · ·

∂ fi
∂x1∂xn

∂ fi
∂x1∂u1

∂ fi
∂x1∂u2

· · ·
∂ fi

∂x1∂um
∂ fi

∂x2∂x1

∂ fi
∂x2∂x2

· · ·
∂ fi

∂x2∂xn

∂ fi
∂x2∂u1

∂ fi
∂x2∂u2

· · ·
∂ fi

∂x2∂um
...

...
. . .

...
...

...
. . .

...
∂ fi

∂xn∂x1

∂ fi
∂xn∂x2

· · ·
∂ fi

∂xn∂xn

∂g
∂xn∂u1

∂ fi
∂xn∂u2

· · ·
∂ fi

∂xn∂um
∂ fi

∂x1∂u1

∂ fi
∂u1∂x2

· · ·
∂g

∂u1∂xn

∂ fi
∂u1∂u1

∂ fi
∂u1∂u2

· · ·
∂ fi

∂u1∂um
∂ fi

∂u2∂x1

∂ fi
∂u2∂x2

· · ·
∂ fi

∂u2∂xn

∂ fi
∂u2∂u1

∂ fi
∂u2∂u2

· · ·
∂ fi

∂u2∂um
...

...
. . .

...
...

...
. . .

...
∂ fi

∂um∂x1

∂ fi
∂um∂x2

· · ·
∂ fi

∂um∂xn

∂ fi
∂um∂u1

∂ fi
∂um∂u2

· · ·
∂ fi

∂um∂um



(3.3.8)

3.3.2 Translating a Continuous Time Problem into a Discrete Non-
linear Program (Temporal Discretisation)

In order to translate the continuous time optimal control problem into a numerically
traceable discrete one, we divide the temporal domain [t0, t f ] into N equally distributed
control steps for the integration of the differential model equations. Every control step
will be coupled with a set of corresponding state and control variables. Since the si-
multaneous method treats both state and control variables as optimisation variables, we
introduce a new variable vector z which is obtained by mapping x and u variables on
their time steps.

z =



x0
u0
x1
u1
...

xN−1
uN−1
xN


(3.3.9)

The discretisation the differential model equations is done by empoying a first order
implicit Runge Kuta method, known also as Euler method. This approach is comonly
used for the numerical integration of ordinary differential equations and implements
the following approximation:

xt − xt−h

h
= f (xt) (3.3.10)

where:
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1. h is the value of the time step.

2. f is a right hand side of a integrated differential equation.

by multiplying both sides by the time step h, one can get the formula of the Euler
method:

xt = h f (xt) + xt−h (3.3.11)

The reason why this method is called an implicit one is because solution xt is given as
an implicit function of xt and one has to solve an equation to find xt.

By applying backward Euler method to mathematical model we discretised the dy-
namic first order constraints into residual algebraic ones. The set of residual constraints
corresponding the single time step can be defined by Rk, where k denotes the given time
step, which yields:

Rk+1(xk+1, xk, uk) = xk+1 − h f (xk+1, uk) − xk = 0 f or k = 0, 1, ...N − 1 (3.3.12)

and the initial condition constraint is:

R0(x0) = x0 − a = 0 (3.3.13)

where: a is an initial condition parameter and xk,uk are new vectors of parameters
obtained from approximation for the kth time step. These parameters are going to be
treated as optimisation variables in the transcribed non-linear program.
Quite similar procedure is performed on the objective cost function which enables to
represent the integral in the objective cost function as a sum of small portions in which
the g function is assumed to be constant. The only difference is that we use an explicit
Euler method, known also as forward method. Forward Euler method is one of the
simplest explicit Runge-Kutta methods and is given by the formula below:

y(t+h) = yt + h f (t, yt) (3.3.14)

The reason why this method is called an explicit one (contrary to the backward Euler
method, being described above), is because the new searched value is defined by terms
that are already known, e.g. yt. After applying forward Euler method to the objective
function, it is possible to represent it in the following form:

J =
∑N−1

k=0
hg(xk, uk) (3.3.15)

Now it is possible to represent the continuouos time optimal control problem defined
in eq. 3.1.1 as a discrete-time non-linear program of the following form:
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min
{uk ,xk+1}

J =

N−1∑
k=0

g(xk,uk) (3.3.16a)

s.t. R0(x0) = 0 (3.3.16b)
Rk+1(xk+1, xk, uk) = 0 k = 0, 1, .,N − 1 (3.3.16c)
umin ≤ uk ≤ umax k = 0, 1, ...,N − 1 (3.3.16d)
xmin ≤ xk ≤ xmax k = 0, 1, ...,N (3.3.16e)

Substituting (3.3.13) into (3.3.16b) and (3.3.12) into (3.3.16c), it is possible formulate
the discrete problem in the iterative way:

min
{uk ,xk+1}

J =

N−1∑
k=0

hg(xk, uk) (3.3.17a)

s.t. x0 = a (3.3.17b)
xk+1 = h f (xk+1, uk, tk+1) + xk k = 0, 1, ...,N − 1 (3.3.17c)
umin ≤ uk ≤ umax k = 0, 1, ...,N − 1 (3.3.17d)
xmin ≤ xk ≤ xmax k = 0, 1, ...,N (3.3.17e)

(3.3.17f)

3.3.3 First and Second Order Derivatives of the Discrete NLP

One can think at the first glance that modelling of the discretised non-linear program
can be difficult and very time consuming, when it comes to the size of the problem
with respect to number of variables and algebraic constraints. In general, non-linear
program obtained from direct collocation method have the tendency to be very large
since for every time step approximation the problem is enriched in new set of x and
u variables. Consequently, process of representation and implementation of this kind
of nlps should be automated, so that the code itself generates all information of the
discretised problem, whereas the user should only specify parameters strictly specific
for the given continuous problem. This approach will definitely speed up the problem
representation process and what is more, can be implemented and reused for any other
discretisation of continuous optimal control problem.
In this section we will show this kind of modular approach for defining first and second
order derivatives of the discrete nlp. This is very crucial as the solver requires a problem
of a nlp format and information which corresponds to it. Consequently, we will show
how to use and call already defined information in the section (3.3.1) for the continuous
time problem in order to construct required information of the discrete problem such as
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gradient of the discrete cost function, jacobian of the residaul constraints and hessian
of the lagrangian.
The gradient of the discrete objective cost function J with respect to z is the following

∂J(z)
∂z

=



∂J(z)
∂x0
∂J(z)
∂u0
∂J(z)
∂x1
∂J(z)
∂u1
...

∂J(z)
∂xN−1
∂J(z)
∂uN−1
∂J(z)
∂xN


=



h ∂g(x0,u0)
∂x0

h ∂g(x0,u0)
∂u0

h ∂g(x1,u1)
∂x1

h ∂g(x1,u1)
∂u1
...

h ∂g(xN−1,uN−1)
∂xN−1

h ∂g(xN−1,uN−1)
∂uN−1

0


(3.3.18)

In order to determine the jacobian of the residual constraints we introduce the vector
function R(z) which stores all residual algebraic constraints with respect to z.

R(z) =



R0(x0)
R1(x1, x0, u0)
R2(x2, x1, u1)

...
RN(xN , xN−1, uN−1)


=



x0 − a
x1 − h f (x1, u0) − x0
x2 − h f (x2, u1) − x1

...
xN − h f (xN , uN−1) − xN


(3.3.19)

Then the Jacobian of the redisudal constraints will look the following:

∂R
∂z

=


∂R0
∂x0

∂R0
∂u0

∂R0
∂x1

∂R0
∂u1

· · ·
∂R0
∂xN−1

∂R0
∂uN−1

∂R0
∂xN

∂R1
∂x0

∂R1
∂u0

∂R1
∂x1

∂R1
∂u1

· · ·
∂R1
∂xN−1

∂R1
∂uN−1

∂R1
∂xN

...
...

...
...

. . .
...

...
...

∂RN
∂x0

∂RN
∂u0

∂R1
∂x1

∂RN
∂u1

· · ·
∂RN
∂xN−1

∂RN
∂uN−1

∂RN
∂xN

 (3.3.20)

By looking at the structure of the Jacobian of the constraints one can quickly picture
himself its sparsity pattern, e.g. only the first element of the first row of the jacobian
matrix will be non-zero as initial condition residual constraint is a function of x0 only.
Sparsity is a typical feature of nonlinear problems obtained by discretising a conti-
nous time optimal control problems. Now eq. (3.4.25) can be rewritten, distinguishing
between zero and non zero elements.

∂R
∂z

=


∂R0
∂x0

0 0 0 · · · 0 0 0
∂R1
∂x0

∂R1
∂u0

∂R1
∂x1

0 · · · 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 · · ·
∂RN
∂xN−1

∂RN
∂uN−1

∂RN
∂xN

 (3.3.21)



52 Optimal Control Problem

Where the non-zero entrances can be computed by calling f and g function of the con-
tinuous problem with the corresponding x and u optimisation parameters.

∂R0

∂x0
= I (3.3.22a)

∂R1

∂x0
= −I (3.3.22b)

∂R1

∂u0
= −h

∂ f
∂u

(x1, u0) (3.3.22c)

∂R1

∂x1
= I − h

∂ f
∂x

(x1, u0) (3.3.22d)

∂RN

∂xN−1
= −I (3.3.22e)

∂RN

∂uN−1
= −h

∂ f
∂u

(xN , uN−1) (3.3.22f)

∂RN

∂xN−1
= I − h

∂ f
∂x

(xN , uN−1) (3.3.22g)

The Lagrangian of the discretised nonlinear program is defined as

φ(z) + R(z)Tλ (3.3.23)

and the Hessian of the Lagrangian in symbolic form is:

∇2I(z) +

N∑
i=0

n∑
j=1

λ2k+ j∇
2R ji (z) (3.3.24)

where i is a time step iterator, j is a signle residual constraint iterator and R ji is a single
residual constraint with index j at time step i.
The first term in eq. (3.3.24) comes from the Hessian of the discretised objective func-
tion and the second sum term comes from the Hessian of the constraints. Please note
that in order to follow Ipopt format, contributions of Hessian matrices coming from
every single algebraic constraint for every time step are individually multiplied by cor-
responding lambda multiplier and then summed up. The first term of the Hessian of
Lagrangian coming form the objective cost function is defined as following:

∇2I(z) =



h∇2g(x0, u0) 0 · · · 0 0
0 h∇2g(x1, u1) · · · 0 0
...

...
. . .

...
...

0 0 · · · h∇2g(xN−1, uN−1) 0
0 0 · · · 0 0


(3.3.25)

The hessian of the single algebraic constraint with index j for the time step i - R ji , can be
computed by calling the hessian of the f j function with the set of x and u optimisation
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parameters coupled with time step i:

∇2R ji (z) =



0 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
0 0 · · · h∇2 f j(xi, ui) · · · 0
...

...
. . .

...
. . .

...
0 0 · · · 0 0


(3.3.26)

3.4 Exemplary Optimal Control Problem of Van Der
Pol Oscillator

So far in this chapter we explained the concept of a simultaneous method and have
shown the generic approach of applying it to solve the continuous time optimal control
problem. This section will complement the discussed theory by applying the already
described approach on a particular example of optimal control called Van Der Pol Os-
cillator.

3.4.1 Problem Representation

A Van Der Pol oscillator is a non-conservative oscillator with non-linear damping,
which evolves in time according to the second order differential equation but can be
also transcribed into two-dimensional form of first order differential equations. The
problem is specified in the following Bolza form:

min
{u(t),x(t)}

J =

t f∫
t0

g(x, u)dt (3.4.1a)

s.t. x(t0) = a (3.4.1b)
ẋ = f (t, x, u) (3.4.1c)
xmin < x < xmax (3.4.1d)
umin < u < umax (3.4.1e)

where:

x =

[
x1
x2

]
(3.4.2a)

g(x, u) = x2
1 + x2

2 + u2 (3.4.2b)
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ẋ =

[
ẋ1
ẋ2

]
=

[
x2

(1 − x2
1)x2 − x1 + u

]
=

[
f1(x, u)
f2(x, u)

]
= f (x, u) (3.4.3)

which makes the Van Der Pol problem look the following:

min
{u(t),x(t)}

J =

t f∫
t0

x2
1 + x2

2 + u2dt (3.4.4a)

s.t. x1(t0) = 1 (3.4.4b)
x2(t0) = 0 (3.4.4c)
ẋ1 = x2 (3.4.4d)

ẋ2 = (1 − x2
1)x2 − x1 + u (3.4.4e)

u < umax (3.4.4f)

Please note, not all the constraint are active for this optimal control problem. For exam-
ple there are no boundary condition on state variables, as well as algebraic inequality
constraints are equal to zero.The gradient of the continuous objective cost function O
g(x,u) is the following:

∇g(x, u) =

[ ∂g(x,u)
∂x

∂g(x,u)
∂u

]
(3.4.5)

where:

∂g(x, u)
∂x

=

 ∂g(x,u)
∂x1

∂g(x,u)
∂x2

 =

[
2x1
2x2

]
(3.4.6)

∂g(x, u)
∂u

= 2u (3.4.7)

The jacobians of the left hand side function f of the model with respect to x and u
variables are the following:

∂ f (x, u)
∂x

=

 ∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

 =

[
0 1

2x1x2 − 1 1 − x2
1

]
(3.4.8)

∂ f (x, u)
∂u

=

[ ∂ f1
∂u
∂ f2
∂u

]
=

[
0
1

]
(3.4.9)

The Hessian of the continuous g function H(g(x,u) for this problem becomes:

H(g(x, u) = ∇2g(x, u) (3.4.10)
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∇2g(x, u) =


∂g

∂x1∂x1

∂g
∂x1∂x2

∂g
∂x1∂u

∂g
∂x2∂x2

∂g
∂x2∂x1

∂g
∂x2∂u

∂g
∂u∂x1

∂g
∂u∂x2

∂g
∂u∂u

 (3.4.11)

and after calculating partial derivatives one can get

∇2g(x, u) =

 2 0 0
0 2 0
0 0 2

 (3.4.12)

Since f is two-dimensional vector function, we have two terms for the Hessian of La-
grangian coming from the constraints, which are the following

∇2 f1(x, u) = 0 (3.4.13)

∇2 f2(x, u) =

 −2x2 −2x1 0
−2x1 0 0

0 0 0

 (3.4.14)

3.4.2 Temporal Discretisation of Van Der Pol Problem

After retrieving all the necessary information from the continuous problem, we are
going to discretise it by using implicit and explicit first order methods described in
section 3.3.2. The Van Der Pol mathematical model is solved numerically by using
Implicit Euler method which transcibres it to the following residual algebrac form:

Rk+1(xk+1, xk, uk) = xk+1 − h f (xk+1, uk) − xk = 0 f or k = 0, 1, ...N − 1 (3.4.15)

Since the model consists of 2 dynamic constraints on x1 and x2 state variables, ev-
ery constraint Rk is a two dimensional vector function which can be resolved into the
following matrix equation by substituting eq. (3.4.3) into eq. (3.4.15) which yields:

Rk+1(xk+1, xk, uk) =

[
x1
x2

]
k
− h

[
x2

(1 − x2
1)x2 − x1 + u

]
k
−

[
x1
x2

]
k−1

= 0 (3.4.16)

The initial condition on the states imposed by the constraint R0 is the following:

R0(x0) = x0 − a = 0 (3.4.17)

where

a =

[
1
0

]
(3.4.18)

and yields: [
x1
x2

]
0

=

[
1
0

]
(3.4.19)
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The objective cost function is discretised by explicit euler method in exactly the same
manner as it was shown in section (3.3.2). Consequently, it is possible to represent Van
Der Pol oscilaltor optimal control problem as discrete non-linear program:

min
{uk ,xk+1}

J =

N−1∑
k=0

g(xk,uk) (3.4.20a)

s.t. R0(x0) = 0 (3.4.20b)
Rk+1(xk+1, xk, uk) = 0 k = 0, 1, .,N − 1 (3.4.20c)
uk ≤ umax k = 0, 1, ...,N − 1 (3.4.20d)

3.4.3 First and Second Order Derivatives of Van Der Pol Problem

In this section we will apply the general procedure of defining first and second order
derivatices for the discrete nlp on the particular example of Van Der Pol problem. In
order to do that, we set the number of time step N equal to 3 which makes the problem
look the following:

min
{uk ,xk+1}

J =

2∑
k=0

g(xk,uk) (3.4.21a)

R0 = x0 − a = 0 (3.4.21b)
R1(x1, x0, u0) = x1 − h f (x1, u0, t1) − x0 = 0 (3.4.21c)
R2(x2, x1, u1) = x2 − h f (x2, u1, t2) − x1 = 0 (3.4.21d)
R3(x3, x2, u2) = x3 − h f (x3, u2, t3) − x2 = 0 (3.4.21e)
u0 ≤ umax (3.4.21f)
u1 ≤ umax (3.4.21g)
u2 ≤ umax (3.4.21h)

And the z vector introduced in eq. (3.3.9) for this particular problem becomes:

z =



x0
u0
x1
u1
x2
u2
x3


(3.4.22)
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The gradient of the discrete cost function with respect to z variable vector is the fol-
lowing:

∂J(z)
∂z

=



∂J(z)
∂x0
∂J(z)
∂u0
∂J(z)
∂x1
∂J(z)
∂u1
∂J(z)
∂x2
∂J(z)
∂u2
∂J(z)
∂x3


=



h ∂g(x0,u0)
∂x0

h ∂g(x0,u0)
∂u0

h ∂g(x1,u1)
∂x1

h ∂g(x1,u1)
∂u1

h ∂g(x2,u2)
∂x2

h ∂g(x2,u2)
∂u2

0


(3.4.23)

The reason why, partial derivative with respect to x3 is zero, is because this set of
variables does not appear in the objective cost function as portions of g function were
summed from k = 0 , to k = 2. Next we focus on the derivatives of the constraints. The
term R(z) introduced in eq. (3.4.24) for this instance of the problem is the becomes:

R(z) =


R0(x0)

R1(x1, x0, u0)
R2(x2, x1, u1)
R3(x3, x2, u2)

 =


x0 − a

x1 − h f (x1, u0) − x0
x2 − h f (x2, u1) − x1
x3 − h f (x3, u2) − x2

 (3.4.24)

and consequently the jacobian ∂R
∂z is the following:

∂R
∂z

=


∂R0
∂x0

∂R0
∂u0

∂R0
∂x1

∂R0
∂u1

∂R0
∂x2

∂R0
∂u2

∂R0
∂x3

∂R1
∂x0

∂R1
∂u0

∂R1
∂x1

∂R1
∂u1

∂R1
∂x2

∂R1
∂u2

∂R1
∂x3

∂R2
∂x0

∂R2
∂u0

∂R2
∂x1

∂R2
∂u1

∂R2
∂x2

∂R2
∂u2

∂R2
∂x3

∂R3
∂x0

∂R3
∂u0

∂R3
∂x1

∂R3
∂u1

∂R3
∂x2

∂R3
∂u2

∂R3
∂x3

 (3.4.25)

Next, equation (3.4.25) can be rewritten, distinguishing between zero and non zero
elements.

∂R
∂z

=


∂R0
∂x0

0 0 0 0 0 0
∂R1
∂x0

∂R1
∂u0

∂R1
∂x1

0 0 0 0
0 0 ∂R1

∂x1

∂R1
∂u1

∂R1
∂x2

0 0
0 0 0 0 ∂R3

∂x2

∂R3
∂u2

∂R3
∂x3

 (3.4.26)

The Hessian of the Lagrangian in symbolic form for the problem examined is:

∇2J(z) +

3∑
i=0

2∑
j=1

λ2k+ j∇
2R ji (z) (3.4.27)

which becomes:
∇2J(z) + λ4∇

2R21 + λ6∇
2R22 + λ8∇

2R23 (3.4.28)
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The first term of the Hessian of Lagrangian coming form the objective cost function is
the following:

∇2φ(z) =


h∇2g(x0, u0) 0 0 0

0 ∇2g(x1, u1) 0 0
0 0 ∇2g(x2, u2) 0
0 0 0 0

 (3.4.29)

and the non-zero contributions of the Hessian of the constraints are:

∇2R21 (z) =


0 0 0 0
0 −h∇2 f2(x1, u0) 0 0
0 0 0 0
0 0 0 0

 (3.4.30)

∇2R22 (z) =


0 0 0 0
0 0 0 0
0 0 −h∇2 f2(x2, u1) 0
0 0 0 0

 (3.4.31)

∇2R23 (z) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −h∇2 f2(x3, u2)

 (3.4.32)

After retrieving all necessary information from our non-linear program, it is possible
to move to the next step which is implementing the problem in C++ and passing it to
Ipopt.

3.5 Van Der Pol Oscilator Ipopt Interface

As it was mentioned before, in order to model discrete nonlinear problem in Ipopt, a
modular approach should be taken distinguishing between 2 different steps when rep-
resenting the problem. First step is to retrieve necessary information from continuous
problem such as: dynamic constraints, bounds on state and control variables, Jacobian
of the dynamic constraints and Hessian of the Lagrangian. Whereas, the second step
is to create a discrete non-linear problem based on this information. It can also be
seen that the first step is very problem-specific, while the second step is generic. As
mentioned in chapter 2, in order to model optimisation problem in Ipopt, one needs to
implement the generic interface by inheriting from TNLP class and override interface
methods in the child class, so that they return information about the specific optimisa-
tion problem. In order to be consistent with Ipopt structure, we will create an additional
class layer. This class (DiscreteNLP) will be responsible for discretisation (step 2) of
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Ipopt Application class,
with OptimiseTNLP 

method

TNLP class 
with generic 

Ipopt interface

VDPNLP class with 
specific Van Der Pol 

problem model

DNLP class 
(generic 

discretisation 
module)

Van Der Pol Microsoft Visual 
Studio C++ Project with 

precompiled Ipopt 3.9 dynamic 
link library

pass problem to 
Ipopt format to 
Ipot Application 

class using 
SmartPTR

inherit

pass information 
about continuous

Van Der Pol problem

inherit

Pass information 
about discretised 
Van Der Pol nlp

Van Der Pol main 
functioninstatiate TNLP class 

and call optimise 
TNLP method

Figure 3.1: Van Der Pol NLP class structure

the continuous time problem. The class will have its own interface that should be
implemented in the object of the child class related to the specific problem (step 1).
Obviously, all the classes should inherit from TNLP class since, only by overriding
methods in this class it is possible to pass the problem to Ipopt. It is also possible to
completely hard-code the problem directly by inheriting from TNLP class, as it was
done in the chapter 2. This approach however, would not be very efficient since nlps
obtained by direct collocation methods are very large and as a result it would be time
consuming to model this problem for a large horizon. What is more, thanks to sepa-
ration between discrete and initial problem it is possible to set up appropriate horizon,
and change the value or number of time steps without any ease and modifications of the
initial problem. The class structure of our approach is presented in the figure 3.1. An
extra attention should be paid to the VDPNLP(Van Der Pol Non-Linear Program) class
which functionality is to represent the Van Der Pol problem. This class inherits from
abstract DNLP class and consequently, has to implement all the pure virtual methods
declared in that class. By implementing these methods in the VDPNLP class, one can
retrieve information about the Van Der Pol continuous problem. The declaration of the
virtual methods in the VDPNLP class header file is the following

/ / v i r t u a l methods r e g i o n
v i r t u a l vo id g e t n l p i n f o ( Index& N, Index& m, Index& d x ,

Index& d u , Index& n n z j a c g ,
Index& n n z h l a g i n i t ,
Index& n n z h l a g ,
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Index& n n z h l a g f i n ,
TNLP : : IndexSty leEnum& i n d e x s t y l e )

v i r t u a l vo id g e t b o u n d s i n f o ( Number* &x l , Number* &x u ,
Number* &u l , Number* u u ,
Number* &g l , Number* &g u )

v i r t u a l Number e v a l f d ( Number* x , Number* u ) ;

v i r t u a l bool e v a l g r a d f x ( Number* x , Number* u ,
Number* & g r a d f x ) ;

v i r t u a l bool e v a l g r a d f u ( Number* x , Number* u ,
Number* & g r a d f u ) ;

v i r t u a l bool e v a l g i n i t d ( Number* x , Number* u ,
Number*& g ) ;

v i r t u a l bool e v a l g d ( Number* x , Number* u ,
Number*& g ) ;

v i r t u a l bool e v a l j a c g v a l u e s x ( Number*& v a l u e s , bool*& f l a g s ,
Number* x , Number* u ) ;

v i r t u a l bool e v a l j a c g v a l u e s u ( Number*& v a l u e s , bool*& f l a g s ,
Number* x , Number* u ) ;

v i r t u a l bool e v a l j a c g s ( I n t *& irow , I n t *& j c o l ) ;

v i r t u a l bool e v a l h s ( I n t *& i r o w i , I n t *& j c o l i , I n t *& i row ,
I n t *& j c o l , I n t *& i r o w f , I n t *& j c o l f ) ;

v i r t u a l bool e v a l h v ( Number* &v a l u l e s , Number* x , Number* u ,
c o n s t Number* lambda , Number o b j f a c t o r ,
I n t t s , I n t k , I n t x d , Number h ) ;

The short description of the functionality and purpose of each virtual method is given
below, so it is clear how to implement them in the child class. Please remember that
the virtual methods defined in the DNLP class are generic and can be used to represent
any continuous time problem that should be translated into discrete nlp by creating an
instance of a class derived from DNLP class. Almost all the methods resemble the
virtual ones defined in TNLP class when it comes to the format. They might require
some additional parameters storing information for discretiation (e.g. number of time
steps, value of the current time step or the step size). Consequently, if the user is able
to code the problem in an Ipopt format it should not be difficult for him to implement
the new methods.
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Method virtual void get nlp info with prototype:

g e t n l p i n f o ( Index& N, Index& m, Index& x d , Index& u d ,
Index& n n z j a c g , Index& n n z h l a g i n i t ,
Index& n n z h l a g , Index& n n z h l a g f i n ,
IndexSty leEnum& i n d e x s t y l e )

Passes to Ipopt information about the size of continuous and discrete problem

• N - number of discretisation time steps

• m - number of the constraints in the mathematical model

• x d - the dimension of the x variable vector

• u d - the dimension of the u variable vector

• nnz jac g - number of non zeros of Jacobian of the constraints with respect to x
and u variable defined in equation (3.4.6)

• nnz h lag init - number of non zeros of the Hessian of the Lagrangian for initial
condition (k = 0)

• nnz h lag - number of non zeros of the Hessian of the Lagrangian for regular

condition (0 < k < N) - σ f∇
2 f (x) +

m∑
i=1
λi∇

2gi(x)

• nnz h lag fin - number of non zeros of the Hessian of the Lagrangian for final
condition (k = N)

• index style - the way of the numbering array elements when specifying spar-
sity structures, it is possible to set it to either C STYLE- starting from 0, or
FORTRAN STYLE starting from 1.

void VDPNLP : : g e t n l p i n f o ( Index& N, Index& m, Index& d x ,
Index& d u , Index& n n z j a c g ,
Index& n n z h l a g i n i t ,
Index& n n z h l a g ,
Index& n n z h l a g f i n ,
TNLP : : IndexSty leEnum& i n d e x s t y l e )

{

N = 2 0 ;
m = 2 ;
d x = 2 ;
d u = 2 ;
n n z j a c g = 7 ;
n n z h l a g i n i t = 3 ;
n n z h l a g = 4 ;
n n z h l a g f i n = 2 ;
i n d e x s t y l e = TNLP : : C STYLE ;

}
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Method get bounds info with a prototype:

void g e t b o u n d s i n f o ( Number* &x l , Number* &x u , Number* &u l ,
Number* &u u , Number* &g l , Number* &g u ) ;

• x l - lower bounds on x variable

• x u - upper bounds on x variable

• u l - lower bounds on u variable

• u u - upper bounds on u variable

• g l - lower bounds on constraints g(x)

• g u - upper bounds on constraints g(x)

v i r t u a l vo id g e t b o u n d s i n f o ( Number* &x l , Number* &x u ,
Number* &u l , Number* u u ,
Number* &g l , Number* &g u )

{

/ / s i n c e s t a t e s are n o t bounded we s e t upper and l o w e t
/ / bounds t o p o s i t i v e and n e g a t i v e i n f i n i t i e s which are
/ / t h e d e f a u l t v a l u e s o f t h e n l p u p p e r b o u n d i n f and
/ / n l p l o w e r b o u n d i n f r e s p e c t i v e l y
x l [ 0 ] = −1.0 e19 ;
x l [ 1 ] = −1.0 e19 ;
x u [ 0 ] = +1.0 e19 ;
x u [ 1 ] = +1.0 e19 ;

/ / s e t t i n g lower and upper bounds on c o n t r o l v a r i a b l e
u l [ 0 ] = −0 .75 ;
u u [ 0 ] = + 0 . 7 5 ;

/ / because t h e two dynamic c o n s t r a i n t s are e q u a l i t y
/ / c o n s t r a i n t s we s e t upper and lower bounds e q u a l t o 0
g l [ 0 ] = 0 ;
g l [ 1 ] = 0 ;
g u [ 0 ] = 0 ;
g u [ 1 ] = 0 ;

}

Method Number eval f with a prototype:

Number e v a l f ( Number* x , Number* u )

Returns the value of the stage cost function.
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• x- x vector at the given time step

• u - u vector at the given time step

Number VDPNLP : : e v a l f ( Number* x , Number* u )
{

Number f = x [ 0 ] * x [ 0 ] + x [ 1 ] * x [ 1 ] + u [ 0 ] * u [ 0 ] ;
re turn f ;

}

Method eval grad f x with a prototype:

bool e v a l g r a d f x ( Number* x , Number* u , Number* & g r a d f x )

Evaluates the gradient of the stage cost function with respect to x variable

• x - x variable vector at given time step.

• u - u variable vector at given time step.

• grad f x - gradient of the cost function with respect to x variable vector.

bool VDPNLP : : e v a l g r a d f x ( Number* x , Number* u ,
Number* & g r a d f x )

{

/ / g r a d i e n t w i t h r e s p e c t t o x1
g r a d f x [ 0 ] = 2 * x [ 0 ] ;

/ / g r a d i e n t w i t h r e s p e c t t o x2
g r a d f x [ 1 ] = 2 * x [ 1 ] ;

re turn true ;
}

Method eval grad f u with a prototype:

bool e v a l g r a d f u ( Number* x , Number* u , Number* & g r a d f u )

Evaluates the gradient of the stage cost function with respect to u variable vector.

bool VDPNLP : : e v a l g r a d f u ( Number* x , Number* u ,
Number* & g r a d f u )

{

/ / g r a d i e n t w i t h r e s p e c t t o u
g r a d f u [ 0 ] = 2 * u [ 0 ] ;
re turn true ;

}
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Method eval g init with a prototype:

bool e v a l g i n i t ( Number* x , Number* u , Number*& g )

Evaluates the value of the constraints for the initial condition(t = 0)

• x - x variable vector at t = 0.

• u - u variable vector at t = 0.

• g - the array of the constraints g(x(t = 0), u(t = 0)) for initial condition.

bool VDPNLP : : e v a l g i n i t ( Number* x , Number* u , Number*& g )
{

/ / e v a l u a t e i n i t i a l dynamic c o n s t r a i n t s , ( t =0)
g [ 0 ] = x [ 0 ] − 1 ;
g [ 1 ] = x [ 1 ] ;

re turn true ;
}

Method eval g

bool e v a l g ( Number* x , Number* u , Number*& g )

Evaluates the value of the constraints at the point (x(t), u(t)) for t > 0

• x - x variable vector at t > 0

• u - u variable vector at t > 0

• g - the array of the constraints g(x(t),u(t)) for t > 0

bool VDPNLP : : e v a l g ( Number* x , Number* u , Number*& g )
{

/ / e v a l u a t e daynamic c o n s t r a i n t , t >0
g [ 0 ] = x [ 1 ] ;
g [ 1 ] = (1 − x [ 0 ] * x [ 0 ] ) * x [ 1 ] − x [ 0 ] + u [ 0 ] ;

re turn true ;
}

Method eval jac g values x wit a prototype:

bool e v a l j a c g v a l u e s x ( Number*& v a l u e s , bool*& f l a g s ,
Number* x , Number* u )
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Evaluates the values of the Jacobian with respect to x vector, eq. (3.3.4)

• values - array with the values of the Jacobian

• flags - array with flags determining weather the given element of a Jacobian is
zero or not

• x - x variable vector

• u - u variable vector

bool VDPNLP : : e v a l j a c g v a l u e s x ( Number*& v a l u e s , bool*& f l a g s ,
Number* x , Number* u )

{

/ / we s p e c i f y t h e v a l u e s o f t h e j a c o b i a n o f t h e c o n s t r a i n t w i t h
/ / r e s p e c t t o x , t h e z e r o e l e m e n t s are n o t t a k e n i n t o account ,
/ / however we w r i t e z e r o t o t h e s e e l e m e n t s i n o r d e r n o t t o
/ / have random v a l u e i n t h e memory b l o c k and we s e t t h e
/ / c o r r e s p o n d i n g e l e m e n t i n t h e f l a g s a r r a y t o f a l s e , so t h e
/ / d i s c r e t i s a t i o n module knows i t i s a z e r o e l e m e n t
v a l u e s [ 0 ] = 0 ;
f l a g s [ 0 ] = f a l s e ;
v a l u e s [ 1 ] = 1 ;
f l a g s [ 1 ] = t rue ;
v a l u e s [ 2 ] = − 2 * x [ 0 ] * x [ 1 ] − 1 ;
f l a g s [ 2 ] = t rue ;
v a l u e s [ 3 ] = 1 − x [ 0 ] * x [ 0 ] ;
f l a g s [ 3 ] = t rue ;
re turn true ;

}

Method eval jac g values u with a prototype:

bool e v a l j a c g v a l u e s u ( Number*& v a l u e s , bool*& f l a g s ,
Number* x , Number* u )

Evaluates the values of the Jacobian of the constraints with respect to u vector specified
in equations (3.3.5)

• values - array with the values of the Jacobian of the constraints

• flags - array with flags determining weather the given element is zero or not

• x - x variable vector

• u - u variable vector
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bool VDPNLP : : e v a l j a c g v a l u e s u ( Number*& v a l u e s , bool*& f l a g s ,
Number* x , Number* u )

{

/ / d e t e r m i n e t h e v a l u e s o f t h a j a c o b i a n o f t h e c o n s t r a i n t s w i t h
/ / r e s p e c t t o u , c od in g mechanism i s t h e same as i n e v a l j a c g
/ / v a l u e s x method
v a l u e s [ 0 ] = 0 ;
f l a g s [ 0 ] = f a l s e ;
v a l u e s [ 1 ] = 1 ;
f l a g s [ 1 ] = t rue ;
re turn true ;

}

Method eval jac g s

bool e v a l j a c g s ( I n t *& irow , I n t *& j c o l )

Determines the sparsity structure of the Jacobian of the constraints.

• irow -(out) the row indices of entries in the Jacobian of the constraints.

• jcol - (out) the column indices of entries in the Jacobian of the constraints.

bool VDPNLP : : e v a l j a c g s ( I n t *& irow , I n t *& j c o l )
{

i row [ 0 ] = 0 ;
j c o l [ 0 ] = 0 ;
i row [ 1 ] = 0 ;
j c o l [ 1 ] = 3 ;
i row [ 2 ] = 0 ;
j c o l [ 2 ] = 4 ;
i row [ 3 ] = 1 ;
j c o l [ 3 ] = 1 ;
i row [ 4 ] = 1 ;
j c o l [ 4 ] = 2 ;
i row [ 5 ] = 1 ;
j c o l [ 5 ] = 3 ;
i row [ 6 ] = 1 ;
j c o l [ 6 ] = 4 ;
re turn true ;

}

Method eval h s with a prototype:

bool e v a l h s ( I n t *& i r o w i , I n t *& j c o l i , I n t *& irow ,
I n t *& j c o l , I n t *& i r o w f , I n t *& j c o l f ) ;
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Determines the sparsity structure of the Hessian of the Lagrangian.

• irow i - (out) the row indices of the entries in the Hessian of the Lagrangian for
initial condition (k = 0)

• jcol i- (out) the column indices of the entries in the Hessian of the Lagrangian
for initial condition (k = 0)

• irow- (out) the row indices of the entries in the Hessian of Lagrangian for regular
condition

• jcol - (out) the column indices of the entries in the Hessian of the Lagrangian for
regular condition

• irow f - (out) the row indices of the entries in the Hessian of the Lagrangian for
final condition (k = N)

• jcol f - (out) the column indices of the entries in the Hessian of the Lagrangian
for final condition (k = N)

bool VDPNLP : : e v a l h s ( I n t *& i r o w i , I n t *& j c o l i , I n t *& irow ,
I n t *& j c o l , I n t *& i r o w f , I n t *& j c o l f )

{

/ / e v a l u a t e t h e s p a r s i t y s t r u c t u r e o f h e s s i a n o f l a g r a n g i a n
/ / f o r i n i t i a l c o n d i t i o n
i r o w i [ 0 ] = 0 ;
j c o l i [ 0 ] = 0 ;
i r o w i [ 1 ] = 1 ;
j c o l i [ 1 ] = 1 ;
i r o w i [ 2 ] = 2 ;
j c o l i [ 2 ] = 2 ;

/ / e v a l u a t e t h e s p a r s i t y s t r u c t u r e o f h e s s i a n o f l a g r a n g i a n
/ / f o r r e g u l a r c o n d i t i o n
i row [ 0 ] = 0 ;
j c o l [ 0 ] = 0 ;
i row [ 1 ] = 1 ;
j c o l [ 1 ] = 0 ;
i row [ 2 ] = 1 ;
j c o l [ 2 ] = 1 ;
i row [ 3 ] = 2 ;
j c o l [ 3 ] = 2 ;

/ / e v a l u a t e t h e s p a r s i t y s t r u c t u r e o f h e s s i a n o f l a g r a n g i a n
/ / f o r f i n a l c o n d i t i o n
i r o w f [ 0 ] = 0 ;
j c o l f [ 0 ] = 0 ;
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i r o w f [ 1 ] = 1 ;
j c o l f [ 1 ] = 0 ;
re turn true ;

}

Method eval h v with a prototype:

bool e v a l h v ( Number*& v a l u l e s , Number* x , Number* u ,
c o n s t Number* lambda , Number o b j f a c t o r ,
I n t k , I n t N, I n t x d , Number h )

Evaluates the values of the Hessian of the Lagrangian. Please note that the values of
this matrix are coming from both second derivatives of the stage cost function as well
as model constraints which are multiplied by corresponding lambda factors. Conse-
quently, an offset variable is introduced which enables to keep the track and call the
appropriate lambda factors for the given time step in the eval h v function. The value
of the offset variable should be equal to the product of the number of constraints (x d)
and time step (k) at which the function is called. Those two variables are passed to the
eval h v as in-parameters for the user to determine the offset.

• values - (out) the values array of the Hessian of the Lagrangian

• x - (in) x variable vector

• u - (in) u variable vector

• lambda - (in) the values for the constraint multipliers, at which the Hessian is to
be evaluated.

• obj factor - (in) factor in front of the objective term in the Hessian,

• k - (in) the time step at which the eval h v is called by discretisation module

• N - (in) the number of the time steps

• x d - (in) the dimension of the x and constraints vector

• h - (in) the value of the single time step

bool VDPNLP : : e v a l h v ( Number*& v a l u e s , Number* x , Number* u ,
c o n s t Number* lambda , Number o b j f a c t o r ,
I n t k , I n t N, I n t x d , Number h )

{

Index o f f s e t = k * x d ;
/ / e v a l u a t e v a l u e s o f h e s s i a n o f l a g r a n g i a n
/ / f o r i n i t i a l c o n d i t i o n ( k = 0)
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i f ( k = 0)
{

f o r ( Index i = 0 ; i <=2; i ++)
v a l u e s [ i ] = o b j f a c t o r * 2 * h ;

}

/ / e v a l u a t e v a l u e s o f h e s s i a n o f l a g r a n f i a n
/ / f o r f i n a l c o n d i t i o n ( k = N)
e l s e i f ( k == N)
{

v a l u e s [ 0 ] = lambda [ o f f s e t + 1] * 2 * h * x [ 1 ] ;
v a l u e s [ 1 ] = lambda [ o f f s e t + 1] * 2 * h * x [ 0 ] ;

}

/ / e v a l u a t e v a l u e s o f h e s s i a n o f l a g r a n g i a n
/ / f o r r e g u l a r c o n d i t i o n
e l s e
{

v a l u e s [ 0 ] = o b j f a c t o r * 2 * h + lambda [ o f f s e t + 1]
* 2 * h * x [ 1 ] ;
v a l u e s [ 1 ] = lambda [ o f f s e t + 1] * 2 *h * x [ 0 ] ;
v a l u e s [ 2 ] = o b j f a c t o r * 2 * h ;
v a l u e s [ 3 ] = o b j f a c t o r * 2 * h ;

}

re turn true ;
}

Having implemented all the methods in the VDPNLP class, one should now code the
main function. This procedure is exactly the same as when coding the nlp in the chapter
2. The only difference is that this time one has to instantiate VDPNLP class and pass
it to application factory by smart pointer (smart pointer should store the address of the
VDPNLP object). In order to see more details about coding the main function please
go to section 2.2.2.

3.6 Oscillator Simulation and Results

In this section the results of Van Der Pol oscillator problem are presented and discussed.
The start time is 0 and the final time is 20s. The value of the time step is set to 0.1
of second, and the number of time steps to 200 (200 * 0.1 s = 20s). After passing
this problem to Ipopt, it was possible to obtain the solution after 27 Jacobian and 52
objective function evaluations. The plots of control and state variables versus time are
presented in figure 3.2. The Ipopt console output is presented below.

( s c a l e d )
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O b j e c t i v e . . . . . . . . . . . . . . . : 2 .4651069210031884 e+000
Dual i n f e a s i b i l i t y . . . . . . : 7 .4138736976623641 e−010
C o n s t r a i n t v i o l a t i o n . . . . : 1 .1657341758564144 e−015
Complemen ta r i t y . . . . . . . . . : 2 .6453533666883465 e−009
O v e r a l l NLP e r r o r . . . . . . . : 2 .6453533666883465 e−009

( u n s c a l e d )
O b j e c t i v e . . . . . . . . . . . . . . . : 2 .9531980913618203 e+000
Dual i n f e a s i b i l i t y . . . . . . : 8 .8818206897995131 e−010
C o n s t r a i n t v i o l a t i o n . . . . : 1 .7652546091539989 e−014
Complemen ta r i t y . . . . . . . . . : 3 .1691333332926395 e−009
O v e r a l l NLP e r r o r . . . . . . . : 3 .1691333332926395 e−009

Number o f o b j e c t i v e f u n c t i o n e v a l u a t i o n s = 28
Number o f o b j e c t i v e g r a d i e n t e v a l u a t i o n s = 28
Number o f e q u a l i t y c o n s t r a i n t e v a l u a t i o n s = 28
Number o f i n e q u a l i t y c o n s t r a i n t e v a l u a t i o n s = 0
Number o f e q u a l i t y c o n s t r a i n t J a c o b i a n e v a l u a t i o n s = 28
Number o f i n e q u a l i t y c o n s t r a i n t J a c o b i a n e v a l u a t i o n s = 0
Number o f L a g r a n g i a n H e s s i a n e v a l u a t i o n s = 27
T o t a l CPU s e c s i n IPOPT (w / o f u n c t i o n e v a l u a t i o n s ) = 1 .030
T o t a l CPU s e c s i n NLP f u n c t i o n e v a l u a t i o n s = 0 .000

EXIT : Opt imal S o l u t i o n Found .

Subplots in the figure 3.2 clearly show the initial conditions we imposed on the state
variables. Next states and controls were selected in such a way by the Ipopt, that
they could satisfy the oscillator model and reach 0 value within 6 seconds. From that
moment all the contributions of the state cost function g from eq. (3.3.17a) summed
over the remaining horizon obtained its minimum and were equal to 0.
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Figure 3.2: Van Der Pol Results
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Chapter 4

Oil Reservoir Model

So far it was presented how to set up Ipopt software and solve simple non-linear pro-
gram in the chapter 2. What is more, it was shown how to solve Van Der Pol oscilla-
tor optimal control problem with the simultaneous approach in the chapter 3. Conse-
quently, at the current stage the research of the optimisation topic has gone far enough
to tackle the oil problem. In this chapter the mathematical model of the two-phase
reservoir is derived. The considered model is based on finite volume method (FVM)
[37, 38, 39, 40] and conservation of mass for each phase and has already been used in
many works in the field of reservoir engineering, e.g. in [2, 41].

4.1 Two-Phase Flow 1-Dimensional Model

In order to derive one-dimensional model, the law of mass conservation is applied,
which basically states that the complete mass of an isolated system cannot be changed.
Furthermore one dimensional spatial domain is considered as: Ω = {x ∈ R : 0 ≤ x ≤
L} , and time domain as: T = {t ∈ R : t ≥ 0} The spatial domain is bounded by:
δΩ = {x ∈ R : x = 0 ∧ x = L} , and its interior is: Ωo = {x ∈ R : 0 ≤ x ≤ L} and
the boundaries and interior of time domain are the following: δT = {T ∈ R : t = 0}
T o = {t ∈ R : t ≥ 0}. Having defined our spatial and time domains, we will derive
partial differential equations of rate of change of oil and water concentrations with
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respect to time and water, oil fluxes as function of spatial position in the reservoir. Let
us introduce a quantity accumulation (Acc in kg), stating how much water or oil was
accumulated in the given spatial block of the reservoir in the given time unit, then:

Acc = In − Out (4.1.1)

Where In and Out are masses of the each phase entering and leaving the given block
respectively. Let us for now investigate the flow of the water phase in the reservoir. To
do that, we denote the accumulation and concentration term with the subscript w, which
will correspond to the water phase. We represent now left-hand side of the equation -
accumulation (Acc), as a difference of products of volume of the considered block and
water concentrations at start and final time.

Accw = Cw(t + ∆tx, x) · (S · ∆x) −Cw(t, x) · (S · ∆x) (4.1.2)

where:

• Cw - water concentration in kg/m3

• 4 t - time in s during which water travels the distance of length of the resvoir
block ( 4 x)

• S - cross-sectional area of the reservoir block in m2

• 4 x - length of the reservoir block in m

The right-hand side mass terms (Inw and Outw) of the equation (4.1.1) are represented
as products of mass transfer fluxes at the corresponding boundary surfaces, their cross-
sectional areas and time which it takes for the fluid to flow through the reservoir.

Inw = Nw(x, t) · S · ∆t (4.1.3a)
Outw = Nw(x + ∆x, t) · S · ∆t (4.1.3b)

where:

• Nw(x, t)- water mass transfer flux at the in-boundary surface of the reservoir
block, expressed in kg · m−2 · s−1

• Nw(x + ∆x, t) - water mass transfer flux at the out-boundary surface

Equations (4.1.2), (4.1.3a), (4.1.3b) are substituted into (4.1.1) which gives the follow-
ing:

(Cw(t + ∆t, x) −Cw(t, x)) · S · ∆x = (Nw(t, x) − Nw(t, x + ∆x)) · S · ∆t (4.1.4)
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then both sides of the equation are divided by S , M t and M x, which yields:

Cw(t + ∆t, x) −Cw(t, x)
∆t

= −
Nw(t, x + ∆x) − Nw(t, x)

∆x
(4.1.5)

From the equation (4.1.5) can be seen that the rate of change of water concentration
with respect to time, is equal to the rate of change of mass transfer flux with respect to
the distance with minus sign. We consider now the limits of both sides of (4.1.5) for
infinitesimally small portions of time M t and distance M x, which gives:

lim
∆t→0

Cw(t + ∆t, x) −Cw(t, x)
∆t

= − lim
∆x→0

Nw(t, x + ∆x) − Nw(t, x)
∆x

(4.1.6)

which can also be transcribed into differential equation of the following form:

∂Cw(t, x)
∂t

= −
∂Nw(t, x)

∂x
(4.1.7)

The same procedure is performed for the oil phase, which gives the same relation for
the rate of change of oil mass concentration and flux. What is more, both equations are
enriched by additional source/sink terms which represent contributions coming from
injection and production wells respectively (those terms will be zero for all the blocks
not directly connected with the production or injection wells), which gives the follow-
ing set of partial differential equations:

∂Cw(t, x)
∂t

= −
∂Nw(t, x)

∂x
− Qw (4.1.8a)

∂Co(t, x)
∂t

= −
∂No(t, x)

∂x
− Qo (4.1.8b)

where

• Qw - water sink/source term, since water is both injected at the injection wells
and sucked at the production well, this term can become either a sink or a source
term depending whether the given grid block is connected with the injection or
production well.

• Qo - oil sink term, since in our problem the only phase injected is water, this term
can be only a sink term. In other words Qo = 0 at the injection well.

Please note that at this point of model representation we do not distinguish between
sourse or sink nature of the Q term as those equations will refer to al the grid blocks
which can be penetrated by either production or injection well. The exact represen-
tation of those terms is given in section 4.2. Both fluxes through the porous medium
Nw(x, t),No(x, t) and mass concentrations Cw(x, t),Co(x, t) are functions of time t∈ T
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and position x ∈ Ω. The initial concentrations of oil and water in the reservoir are given
as:

Cw(t, x) = Cw0(x) t ∈ δT, x ∈ Ω (4.1.9a)
Co(t, x) = Co0(x) t ∈ δT, x ∈ Ω (4.1.9b)

and the fluxes of oil and water through the porous medium at the boundary conditions
are:

Nw(t, x) = 0 t ∈ δT, x ∈ Ω (4.1.10a)
No(t, x) = 0 t ∈ δT, x ∈ Ω (4.1.10b)

Having determined conservation equations and their boundary conditions, one can fo-
cus now on constitutive models where Darcy’s law will be applied for expressing flow
in the porous media. By doing so, it will be possible to introduce in the equations some
new physical quantities, describing flows in the reservoir. Firstly water and oil concen-
trations are represented as products of their porosities, densities and saturations, which
gives the following:

Cw = φρw(Pw)S w (4.1.11a)
Co = φρo(Po)S o (4.1.11b)

where:

• φ is the porosity of the reservoir block. Porosity, called also a void fraction,
is a measure of the void spaces in the material (in this case rocks) that can be
occupied by the fluids (oil and water). Porosity is a fraction of the void volume
over the total volume, its values are dimensionless and can range from 0 to 1.
In the constitutive model shown in this thesis porosity is assumed to be constant
within the reservoir.

• ρo(Po), ρw(Pw) - densities of oil and water in kg/m3. Those densities are func-
tions of oil and water pressures respectively.

• S o, S w - saturations of oil and water. Their values can range from 0 to 1 and
are equal to fraction of the oil/water volume over the void volume. Since it is
assumed that there are no other substances in the void volumes except for oil and
water, the void spaces are completely filled with oil and water which gives:

S w + S o = 1 (4.1.12)

Since water and oil travel by convection in the reservoir, their fluxes can be expressed
as:

Nw = ρw(Pw)uw(Pw, S w) (4.1.13a)
No = ρo(Po)uo(Po, S o) (4.1.13b)

where:
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Figure 4.2: Diagram with Definitions and Reference Directions for Darcy’s law

• uw(Pw, S w), uo(Po, S o) - are the linear velocities of water and oil phase respec-
tively, expressed as functions of pressure and saturation in m/s

The term pressure discharge Q is introduced (measured in units of volume per time, e.g.
m3/s), which according to the Darcy’s law, is equal to the product of the permeability
of the medium, cross-sectional area of the flow and the pressure drop, all divided by the
viscosity and the length over which the pressure is dropping. The concept of Darcy’s
law has a very wide application in the field of modelling of petroleum reservoirs and is
shown on the figure 4.2

Q =
−kS (Px+∆x − Px)

µ∆x
(4.1.14)

where:

• k - is the permeability of the medium. Permeability is the measure of a porous
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media (in this case reservoir rocks) to transmit fluid. The permeability k = k(x)
depends only on the spatial position in the reservoir and is a linear function of it.
The idea behind permeability is to determine the connectivity and preferred flow
direction in the reservoir. The permeability is defined as a tensor of size 3 x 3.
Theoretically, k is a full tensor but in many practical applications it can be also
assumed that k is a diagonal tensor, that is the one that has non-zero entries only
on the diagonal which simply means that all cross terms are equal to zero. One
distinguishes between two kinds of permeability fields which are isotropic and
unisotropic. In case of an isotropic field, horizontal permeabilities are equal to
the vertical permeability (kxx = kyy = kzz). In this work, an isotropic permeability
field is assumed. The SI unit of permeability is m2, however, in this thesis the unit
millidarcy is used, which is typical for the investigations of petroleum reservoirs.

• S - cross-sectional area through which the flow takes place (unit m2).

• µ - viscosity of the fluid, known also as thickness or internal friction of the fluid.
Viscosity is a measure of the resistance of the fluid to the deformation and its SI
unit is Pa · s.

• ∆x - length over which the pressure drop takes place in m

• P(x), P(x + ∆x) - initial and final pressures in Pa

Dividing both sides of the (4.1.14) by the area S and applying more general notation
gives:

q =
−k
µ

∆P (4.1.15)

where:

• q - is the flux (discharge per unit area, with units length per time, e.g m/s). The
relation between flux and pressure discharge is the following:

q =
Q
S

(4.1.16)

• ∆P - is the pressure gradient vector equal to the rate of change of pressure over
the given distance and its SI unit is Pa·m−1. The relation between pressures at the
boundaries and the pressure gradient (known also as a thickness of the medium)
is given in the following equation.

∆P =
Px+∆x − Px

∆x
(4.1.17)
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Please note that the flux discharge q is not the velocity experienced by the given phase
when it is travelling through the porous medium. The pore velocity v of either oil or
water phase is related to their corresponding flux discharge by the porosity, which can
be written as:

v =
q
n

(4.1.18)

The reason why flux discharge, known also as Dary’s velocity, is divided by the poros-
ity, is to account for the fact that only a fraction of the total volume is available for flow.
Consequently, the pore velocity, considered in some works as the linear velocity, is de-
fined as velocity that a conservative tracer would experience, if taken by the fluid of
the given phase through the formation. Multiplying both sides of (4.1.18) by porosity
n, yields:

vn = q (4.1.19)

In this work however, we define the linear velocity as Darcy’s velocity q (pressure
discharge) introduced in equation (4.1.15), and we do not account for the fact that
the medium is porous as in our model we do not have any phenomena influenced by
the porosity, such as formation damage or fines migration. This approach has been
undertaken in many reservoir simulation works e.g. by Völcker at [2] and yields that
the linear velocity u of the given phase used in this model is equal to:

u =
−k∆P
µ

(4.1.20)

Applying Darcy’s law enabled us to determine linear velocity of the liquid in the reser-
voir in terms of viscosity, permeability and pressure gradient. Now we rewrite equation
(4.1.20) in a differential form and enrich it by relative permeability terms to express lin-
ear velocities of each phase:

uw = −k
krw(S w)
µw

∂P
∂x

(4.1.21a)

uo = −k
kro(S o)
µo

∂P
∂x

(4.1.21b)

where:

• krw, kro- are the relative permeabilities of water and oil phase respectively. Those
permeabilities are non-linear functions of the saturation of each phase and are
approximated by the Corey relations:

sw =
S w − S wc

1 − S wc − S or
(4.1.22a)

so =
S o − S oc

1 − S oc − S or
(4.1.22b)
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krw(S w) =


0 0 ≤ S w ≤ S wc

krw0snw
w S wc ≤ S w ≤ 1 − S or

krw0 1 − S or ≤ S w ≤ 1
(4.1.23a)

kro(S o) =


0 0 ≤ S o ≤ S or

kro0sno
o S or ≤ S o ≤ 1 − S wc

kro0 1 − S wc ≤ S o ≤ 1
(4.1.23b)

where:

• krw0, kro0 - are permeabilities determined experimentally for each particular porous
medium.

• nw, no - are determined experimentally for each particular porous medium.

• S wc - is a critical water saturation.

• S or - is a residual oil saturation.

• sw, so - are reduced saturation of water and oil.

If we assume the compressibilities of oil co and water cw to be constant over the consid-
ered pressure range, we can express the densities of the two phases using the following
equations of state:

ρw = ρw0ecw(Pw−Pw0) (4.1.24a)

ρw = ρo0eco(Po−Po0) (4.1.24b)

where:

• ρw0 = ρw(Pw0), ρo0 = ρo(Po0) are the densities at the reference pressures Pw0 and
Po0.

The pressure difference between wetting fluid (water in our model) and non-wetting
fluid is given by the capillary pressure , which is a function of water saturation:

Pcow(S w) = Po − Pw (4.1.25)

The pressure in the wetting fluid is less than in the non-wetting one. If the media is
highly permeable and porous, then capillary effects are small. In case of dense for-
mations, the capillary pressure introduces an additional diffusive term into the model;
please see [2]. The capillary effects can partly be explanation for irreducible saturations
of oil and water S wc, S or. Consequently, capillary pressure is taken into account in an
implicit way through the relative permeabilities. In our constitutive model we assume
zero capillary pressure.

Pcow(S w) = 0 (4.1.26)
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4.2 Well Models

Well modells are the terms realising how much mass of of each phase was pumped or
sucked by the well in the given unit of time. Their SI unit is [kg/s]. To model injection
and production wells, we consider indexes sets I and P for injectors and producers
respectively. As a result, the injector locations are at xI, j for j ∈ I and the producers
are at xP, j for j ∈ P. We also introduce Dirac’s delta function as:

δI, j = δ(x − xI, j) (4.2.1a)
δP, j = δ(x − xP, j) (4.2.1b)

Then the set of injection wells can be modelled as:

qin j
w, j = qw(t, x) = ρw(Pw)q jδI, j j ∈ I (4.2.2a)

qin j
o, j = qo(t, x) = 0 (4.2.2b)

where:

• q j is the volumetric injection rate of water at injection well j ∈ I in [m3/s]

Since, oil is not injected into the reservoir by the injection wells, qo(t, x) = 0. The set
of production wells can be modelled in a similar way, which is:

qprod
w, j = −α jw jρw(Pw)

kkrw(S w)
µw

(Pw − Pwell, j)δP, j (4.2.3a)

qprod
o, j = −α jw jρo(Po)

kkro(S o)
µo

(Po − Pwell, j)δP, j (4.2.3b)

where:

• Pwell, j - is the pressure at the production well j ∈ P in Pa

• α j - is the position of the control valve, and α j ∈ [0, 1]

• w j - is the index of the production well j ∈ P. Well index is dimensionless
quantity directly related to the well describing the geometry of the well [42, 43,
44, 45, 46], e.g. whether it is a central or a corner well. We use Peaceman well
indexes[47].
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The relation between sink (production) terms introduced in equations (4.1.8a), (4.1.8b)
and their corresponding well models is the following:

Qprod
w, j =

qprod
w, j

V
(4.2.4a)

Qprod
o, j =

qprod
o, j

V
(4.2.4b)

Similarly for the source (injection) terms introduced in equations (4.1.8a), (4.1.8b) one
can get:

Qin j
w, j =

qin j
w, j

V
(4.2.5a)

Qin j
o, j =

qin j
o, j

V
= 0 (4.2.5b)

Source/sink terms for oil and water phase represent the rate of produced/injected mass
of each phase over the grid block volume and their unit is [kg/(s · m3)]

4.3 State Transformation

In our two-phase immiscible flow model we used oil and water concentrations Co,Cw

as state variables. It is possible, however, to transform our model by using equations
(4.1.11) (4.1.12) (4.1.13) to compute oil pressures and water saturation, knowing their
corresponding Cw and Co. This will enable us to use oil pressure P = P(t, x) = Po(t, x)
and water saturation S = S (t, x) = S w(t, x) as new state variables instead of Cw and Co.
Hence, initial conditions of the oil problem expressed in terms of new variables will be
the following:

S (t, x) = S 0(x) t ∈ δT, x ∈ Ω (4.3.1a)
P(t, x) = P0(x) t ∈ δT, x ∈ Ω (4.3.1b)
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Chapter 5

Spatial and Time
Discretisation

This chapter is devoted to discretisation techniques used for solving numerically gov-
erning equations of the two phase flow model. Firstly we discretise the reservoir in
space and show that the new model formulation preserves the mass conservation prop-
erty, which was the initial point for derivation of equations. Next, we discretise the
model in time and come up with the residual constraints that will be used in chapter 6
for stating the discrete nonlinear program of oil production

5.1 Spatial Discretisation

Oil problem is more complex than the Van Der Pol Oscilator problem which is mainly
due to the differential form of the right hand side of the model, describing the rate of
change of oil and water fluxes as functions of positions in the reservoir. In order to get
rid of this differantial form and transcribe right-hand side of the equations to the alge-
braic one, it is necessary to discretise those equations in space. Spatial discretisation is
performed based on finite volume method. What is more, Gauss’ divergence theorem
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is employed to express the model in an integral form.

∂

∂t

∫
Ω

CwdV = −

∫
Ω

(Nwn)dS +

∫
Ω

QwdV (5.1.1a)

∂

∂t

∫
Ω

CodV = −

∫
Ω

(Non)dS +

∫
Ω

QodV (5.1.1b)

Now, it is possible to consider the reservoir not as a continuous space, but a structured
grid of finite small 3-dimensional blocks and model it in the following manner:

Ωi, j,k = {(x, y, z) ∈ R : xi− ≤ xi+, y j− ≤ y j+, zk− ≤ zk+} (5.1.2)

where:
xi− =

∑i−1
l=1 ∆l, xi = xi− + 1

2 ∆ and xi− = xi− + ∆x, the same rule applies to y and z
dimensions, which basically can be understood as every single small reservoir volume
Ωi, j,k has its mid point at (xi, y j, zk).
In this thesis, we assume the constant height (depth) of the reservoir at every point,
which enables us to simplify the reservoir model from three to two-dimensional case,
where every grid block is of the same height and does not have any adjacent blocks in
the z direction. Because of that, we do not consider any water-oil flow in the z direction,
and every grid block will have the same index k equal to unity. Consequently, from
now on it will be omitted in the further notations. Next, we compute the oil and water
concentration in each control volume Ωi, j by solving equations (5.1.1).

∂

∂t

∫
Ωi, j

CdV =
dCi, j

dt
(t)Vi, j (5.1.3)

where:

C =

[
Co

Cw

]
(5.1.4)

and finite volume is expressed as:

Vi, j = ∆xi∆y j∆zk (5.1.5)

The flux terms at the boundary conditions are resolved into rectangular components
in x and y dimension (in case of three dimensional model we would also analyse flux
terms in z direction) and can be expressed as:∫

Ωi, j

(N · n)dS = S x,i(Nx(t, xi+, y j) − Nx(t, xi−, y j)) + S y, j(Ny(t, xi+, y j) − Ny(t, xi, y j−))

(5.1.6)
where:
S denotes a boundary surface of the corresponding grid block in the given direction:

S x, j,k = ∆y j∆zk (5.1.7a)
S y,i,k = ∆xi∆zk (5.1.7b)
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Then, we introduce a new term called fluid transmisibility ζi, j = ρ(Pi, j)kr(S i, j)/µ which
is a product of density and relative permeability divided by the viscosity. Next, we
express every rectangular component of the flux in terms of fluid transmisibility, per-
meability of the grid block and pressure difference, which yields:

Nx,i+, j = −kx,i+, jζi+, j
Pi+1, j − Pi, j

xi+1 − xi
(5.1.8a)

Nx,i−, j = −kx,i−, jζi−, j
Pi, j − Pi−1, j

xi − xi−1
(5.1.8b)

∆Nx,i, j = Nx,i+, j − Nx,i−, j (5.1.8c)

Equation(5.1.8c) expresses flux in the x direction in the given grid block with index
i,j, flux contribution in y direction can be expressed following the same logic. To sus-
tain flux continuity on the interfaces of the neighbouring grid blocks, kx,i+, j and kx,i−, j

are computed using the harmonic average for the permeabilities in the adjacent grid
blocks. Also the fluid transmissibilities ζi+, j and ζi−, j are obtained by using upstream
information. The single point upstream scheme used in this work is given in Völcker
at[2]. The flux contributions in y direction are expressed in the same way as for the x
direction. In case of three-dimensional model, the flux in z direction incorporates the
additional gravity term. The source terms in equation (5.1.1) are expressed as:∫

Ωi, j

QdV = Qi, j(t)Vi, j (5.1.9)

where:

Q =

[
Qw

Qo

]
(5.1.10)

Finally, we can express our model from equation (5.1.1) as a system of ordinary differ-
ential equations of the following form:

dCi, j

dt
= −

(∆Nx,i, j

∆x
+

∆Ny,i, j

∆y

)
+ Qi, j (5.1.11)

5.2 New Model Formulation

We can recall ourselves that the model of the Van Der Pol oscilator problem was of the
following form:

d
dt

x(t) = f (t, x(t)) (5.2.1)

which is not the case for the oil problem, as it is denoted as:

d
dt

g(x(t)) = f (t, x(t)) (5.2.2)
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This model presented in eq. (5.2.2) was proposed and tried out for the simulation pur-
poses in many works e.g. in [48, 8, 41]. The reason why the model formulation is
so important, is to ensure that the new transcribed model still preserves the mass con-
servation principle as the partially differential equations constituting continuous one-
dimensional, two-phase flow model given in (4.1.8a) and (4.1.8b) were derived based
on this property. In optimisation problems involving process simulations, reformulat-
ing the problem and discretising it in time or space is always a challenge since it is often
the case that a new discrete model should preserve such properties as e.g. conservation
of mass , energy, or momentum [48]. This is due to the fact that these properties are
the initial outlet for the constraints definitions.
In our new model x(t) represents states which are oil pressures and water saturations
for every grid block of the reservoir. g(x(t)) are the conserved properties which are
the oil and water mass concentrations in the given grid block. The general form of the
model in (5.2.2) corresponds to our particular reservoir model discretised in space in
(5.1.11) where:

x(t) =


x1,1
x1,2
...

xn,n

 =



Po1,1
S w1,1
Po1,2
S w,1,2
...

Pon,n

S wn,n


(5.2.3)

where:

• n is a number of grid blocks in x and y direction. In this thesis we consider an
exemplary square oil water reservoir which consists of the same number of grid
blocks in x and y direction and that is the reason why the last element of the state
vector has index of (n,n).

• xi, j is a two dimensional vector storing water saturation S i, j and oil pressure Pi, j

in the grid block with index (i,j).

The left-hand side model vector function stores the water and oil concentrations for
every grid block of the reservoir and is denoted in the following manner:

g(x(t)) =


g1,1
g1,2
...

gn,n

 =



Co1,1
Cw1,1
Co1,2
Cw1,2
...

Con,n

Cwn,n


(5.2.4)
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where:

• gi, j is a two-dimensional vector function containing water and oil concentrationsCoi, j,
Cwi, j in the grid block with the index i,j.

The left hand side of the (5.2.2) is the following:

f (x(t)) =


f1,1
f1,2
...

fn,n

 =



fo1,1
fw1,1
fo1,2
fw1,2
...

fon,n

fwn,n


(5.2.5)

where:

• f(i, j) is a two dimensional vector function storing fluxes of oil and water in the
grid block with index i,j.

We introduce the Jacobians of the f(x(t)) and g(x(t)), with respect to the states, which
are the following:

∂g
∂x

=



∂g1,1

∂x1,1

∂g1,1

∂x1,2

∂g1,1

∂x1,3
· · ·

∂g1,1

∂xn,n
∂g1,2

∂x1,1

∂g1,2

∂x1,2

∂g1,2

∂x1,3
· · ·

∂g1,2

∂xn,n

...
...

...
. . .

...
∂gn,n

∂x1,1

∂gn,n

∂x1,2

∂gn,n

∂x1,3
· · ·

∂gn,n

∂xn,n


(5.2.6)

∂ f
∂x

=



∂ f1,1
∂x1,1

∂ f1,1
∂x1,2

∂ f1,1
∂x1,3

· · ·
∂ f1,1
∂xn,n

∂ f1,2
∂x1,1

∂ f1,2
∂x1,2

∂ f1,2
∂x1,3

· · ·
∂ f1,2
∂xn,n

...
...

...
. . .

...
∂ fn,n
∂x1,1

∂ fn,n
∂x1,2

∂ fn,n
∂x1,3

· · ·
∂ fn,n
∂xn,n


(5.2.7)

As xi, j and gi, j and fi, j are two dimensional vectors, every element of the presented
above g and f jacobian is a 2 by 2 square matrix itself. e.g:

∂gi, j

xi, j
=

 ∂goi, j

∂xoi, j

∂goi, j

∂xwi, j
∂gwi, j

∂xoi, j

∂gwi, j

∂xwi, j

 =

 ∂Coi, j

∂Poi, j

∂Coi, j

∂S wi, j
∂Cwi, j

∂Poi, j

∂Cwi, j

∂S wi, j

 (5.2.8)
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Figure 5.1: Water-Oil Discretised Reservoir with 4 Injectors and One Producer

∂ fi, j
xi, j

=

 ∂ foi, j

∂xoi, j

∂ foi, j

∂xwi, j
∂ fwi, j

∂xoi, j

∂ fwi, j

∂xwi, j

 =

 ∂ foi, j

∂Poi, j

∂ foi, j

∂S wi, j
∂ fwi, j

∂Poi, j

∂ fwi, j

∂S wi, j

 (5.2.9)

For the better clarity of the mathematical representation of our model we present a
discretised grid of the reservoir with the corresponding concentrations Ci, j and state
variables. The reservoir is organised in such a way that it consists of 225 grid blocks
(15 cubic grid blocks along x and y axis) and it is equipped with 4 water injectors,
one at each corner, and one oil producer located in the middle. By looking at the
figure and Jacobian matrix one can picture himself the size of the oil problem e.g. in
case of the reservoir having 15 grid blocks along x and y direction, one ends up with
225 grid blocks and 450 equality constraints on 450 state variables. Consequently,
the Jacobian matrix of the two-phase flow model dg/dx will be 450 by 450 element
square matrix. The complexity of the oil problem caused by its size can be, however,
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resolved by determining the sparsity structure of the Jacobian. If we recall ourselves
the equation (5.1.8), which represents the flux of each phase for every single grid block,
we can see that it involves only the pressure and saturation values of the of block itself
and his neighbours. In other words, only the states of the neighbouring grid blocks
or the states of the element itself can influence the particular flux or concentration
value. Consequently, all the elements of the Jacobians of f(x(t),u(t)) and g(x(t)), which
represent the partial derivatives of the constraints for the given block with respect to
states not corresponding to either this block or its neighbours, will be zero. e.g ∂g1,1

x1,3
= 0

because the grid block 1,3 is not a neighbour of 1,1. which means that g1,1 is not a
function of x1,3

5.3 Discretisation of the Model in Time

We have already discretised the dynamic constraints of the oil problem in space and
presented a new form of mathematical model which still preserves the primary prop-
erties such as conservation of mass. Now, we are going to completely eliminate the
differential form of the constraints by transcribing them into residual ones. In order to
perform the temporal discretisation we apply implicit Euler method which yields:

Rk(xk, uk−1, xk−1) = g(xk) − h f (xk, uk−1) − g(xk−1) f or k = 1, 2, 3...N (5.3.1)

where:

• xk - set of all the states at the time step k.

• uk - set of all the controls at the time step k.

• h - the size of the time step.

The residual constraint of the initial condition is:

R0 = x0 − a = 0; (5.3.2)

where a stores the initial values of pressures and water saturarions at all grid blocks at
time step k equal to 0. Following the same logic as when constructing the Jacobian of
the residual constraints for the Van Der Pol problem we introduce a vector z storing all
the states x and controls u for all the time steps which yields:

R(z) = 0 (5.3.3)
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And the Jacobian ∂R
∂z of the residual constraint function for the N time steps is:

∂R
∂Z

=



∂R0
∂x0

∂R0
∂u0

∂R0
∂x1

∂R0
∂u1

· · ·
∂R0
∂xN−1

∂R0
∂uN−1

∂R0
∂xN

∂R1
∂x0

∂R1
∂u0

∂R1
∂x1

∂R1
∂u1

· · ·
∂R1
∂xN−1

∂R1
∂uN−1

∂R1
∂xN

∂R2
∂x0

∂R2
∂u0

∂R2
∂x1

∂R2
∂u1

· · ·
∂R2
∂xN−1

∂R2
∂uN−1

∂R2
∂xN

∂R3
∂x0

∂R3
∂u0

∂R3
∂x1

∂R3
∂u1

· · ·
∂R3
∂xN−1

∂R3
∂uN−1

∂R3
∂xN

...
...

...
...

. . .
...

...
...

∂RN
∂x0

∂RN
∂u0

∂RN
∂x1

∂RN
∂u1

· · ·
∂RN
∂xN−1

∂RN
∂uN−1

∂RN
∂xN


(5.3.4)

What is more, every entry with respect to the vector of the control variables can be
computed from the equation below:

∂Rn

un
= −h

∂ f
∂u

(5.3.5)

Every entry of the Jacobian of the residual constraints determined in eq (5.5.2) is a
matrix itself, which size depends on the number of the finite volumes constituting a
reservoir and number of control variables (water injectors and oil producers). We have
already tried to picture the scale of the size of the oil problem by analysing the size of
the Jacobian ∂g

∂x , which is a 450x450 square matrix for an oil reservoir consisting of 15
blocks along x and y direction. The Jacobian of the residual constrains ∂R

∂z is however,
much bigger since it stores Jacobians ∂g

∂x of the model for every single time step. As
a result, analysing sparsity of this matrix will contribute a lot to the robustness and
efficiency of the computation. Below we present the Jacobian of the residual constraints
in the sparse format:

∂R
∂Z

=



∂R0
∂x0

0 0 0 0 0 0 · · · 0 0 0
∂R1
∂x0

∂R1
∂u0

∂R1
∂x1

0 0 0 0 · · · 0 0 0
0 0 ∂R2

∂x1

∂R2
∂u1

∂R2
∂x2

0 0 · · · 0 0 0
0 0 0 0 ∂R3

∂x2

∂R3
∂u2

∂R3
∂x3

· · · 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 · · ·
∂RN
∂xN−1

∂RN
∂uN−1

∂RN
∂xN


(5.3.6)
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where the non zero elements can be camputed by calling the Jacobians of the model
defined in (5.2.7) and (5.2.6) e.g.:

∂R0

∂x0
= I (5.3.7a)

∂R1

x0
= −

∂g
∂x

(x0) (5.3.7b)

∂R1

∂u0
= −h

∂ f
∂u

(x1, u0) (5.3.7c)

∂R1

∂x1
=
∂g
∂x

(x1) − h
∂ f
∂x

(x1, u0) (5.3.7d)

∂RN

∂xN−1
= −

∂g
∂x

(xN−1) (5.3.7e)

∂RN

∂uN−1
= −h

∂ f
∂u

(xN , uN−1) (5.3.7f)

∂RN

∂xN
=
∂g
∂x

(xN) − h
∂ f
∂x

(xN , uN−1) (5.3.7g)

Jacobians of the functions g(x) and f(x,u) with respect to x were already determined
in the equations (5.2.6), (5.2.7). The main difference between the representation of the
Jacobian of the residual constraints for Van Der Pol and oil problem is that, in case
of oil problem we have to call ∂g

∂X whereas in the VanDerPol problem we were calling
identity matrix. This is because our new residuals in the oil problem do not contain
states in a direct way, but in an implicit one which is as arguments of the g function.

5.4 Inequality Movement Constraints

In order to represent the physical limitations on the controls of water-flooding problem
we use movement constraints of the following form:

u∆
min ≤

du
dt

(t) ≤ u∆
max (5.4.1)

Since we use zero-order-hold-parametrisation, after discretising the continuous time
optimal control problem, these constraints can be defined in the following manner:

− u∆
min ≤ ∆uk ≤ u∆

max (5.4.2)

where:
∆uk = uk − uk−1 f or k = 1..N − 1 (5.4.3)

Let us denote qin j
w,k and BHPk as vectors storing the values of the manipulated variables

- water injection rates at the injectors and bottom whole pressures at the producers at
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time step k. Let the index n represent the number of injectors and index m the number
of producers. We represent the controls in the following vector forms:

qin j
w,k =


qin j

w,1,k
qin j

w,2,k
...

qin j
w,n,k

 (5.4.4)

BHPk =


BHP1,k
BHP2,k

...
BHPm,k

 (5.4.5)

Then we express the control vector uk from eq. (5.4.2) in the following form:

uk =

[
qin j

w,k
BHPk

]
(5.4.6)

5.5 Jacobian Matrix of the Waterflooding Discrete Non-
linear Program

One of the main features of the simultaneous method is that it treats state and control
variables as optimisation variables. Consequently, problems transcribed by this method
are expressed in terms of newly obtained variable vector e.g. z which stores both
control and state variables. The algorithm solving discrete non-linear program obtained
from direct transcription not only does not see the difference between state and control
variables but also will handle inequality movement constraint in almost the same way
as residual equality constraints on the state variables. In this section we will wrap
up inequality movement constraints with the algebraic residual constraints into one
vector function, in order to follow this uniform algorithmic approach. In order to do
that we introduce a new vector function Uk(uk, uk−1) denoting the inequality movement
constraints at time time step k, given in eq. 5.4.2 and vector function C(z) storing
the residual algebraic constraints and inequality movement constraints for all the time
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steps, then:

C(z) =



R0(x0)
R1(x1, x0, u0)

U1(u1, u0)
R2(x2, x1, u1)

U2(u2, u1)
R3(x3, x2, u2)

U3(u3, u2)
...

RN−1(xN−1, xN−2, uN−2)
UN−1(uN−1, uN−2)
RN(xN , xN−1, uN−1



(5.5.1)

The Jacobian matrix of C(z) with respect to all the states and controls stored in z will
be the following:

∂C
∂Z

=



∂R0
∂x0

∂R0
∂u0

∂R0
∂x1

∂R0
∂u1

· · ·
∂R0
∂xN−1

∂R0
∂uN−1

∂R0
∂xN

∂R1
∂x0

∂R1
∂u0

∂R1
∂x1

∂R1
∂u1

· · ·
∂R1
∂xN−1

∂R1
∂uN−1

∂R1
∂xN

∂∆u1
∂x0

∂∆u1
∂u1

∂∆u1
∂x1

∂∆u1
∂u1

· · ·
∂∆u1
∂xN−1

∂∆u1
∂uN−1

∂∆u1
∂xN

∂R2
∂x0

∂R2
∂u0

∂R2
∂x1

∂R2
∂u1

· · ·
∂R2
∂xN−1

∂R2
∂uN−1

∂R2
∂xN

∂∆u2
∂x0

∂∆u2
∂u1

∂∆u2
∂x1

∂∆u2
∂u1

· · ·
∂∆u2
∂xN−1

∂∆u2
∂uN−1

∂∆u2
∂xN

∂R3
∂x0

∂R3
∂u0

∂R3
∂x1

∂R3
∂u1

· · ·
∂R3
∂xN−1

∂R3
∂uN−1

∂R3
∂xN

∂∆u3
∂x0

∂∆u3
∂u1

∂∆u3
∂x1

∂∆u3
∂u1

· · ·
∂∆u3
∂xN−1

∂∆u3
∂uN−1

∂∆u3
∂xN

...
...

...
...

. . .
...

...
...

∂RN−1
∂x0

∂RN−1
∂u0

∂RN−1
∂x1

∂RN−1
∂u1

· · ·
∂RN−1
∂xN−1

∂RN−1
∂uN−1

∂RN−1
∂xN

∂∆uN−1
∂x0

∂∆uN−1
∂u0

∂∆uN−1
∂x1

∂∆uN−1
∂u1

· · ·
∂∆uN−1
∂xN−1

∂∆uN−1
∂uN−1

∂∆uN−1
∂xN

∂RN
∂x0

∂RN
∂u0

∂RN
∂x1

∂RN
∂u1

· · ·
∂RN
∂xN−1

∂RN
∂uN−1

∂RN
∂xN



(5.5.2)

where the entries coming from the residual equality constraints were already computed
in equations (5.3.7) and the entries coming from the inequality movement constraints
can be computed in the following manner:

∂∆uk

∂uk
= I (5.5.3a)

∂∆uk

∂uk−1
= −I (5.5.3b)
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Consequently the Jacobian ∂C
∂Z represented in the sparse format looks the following:

∂R
∂Z

=



∂R0
∂x0

0 0 0 0 0 0 · · · 0 0 0 0 0
∂R1
∂x0

∂R1
∂u0

∂R1
∂x1

0 0 0 0 · · · 0 0 0 0 0
0 −I 0 I 0 0 0 · · · 0 0 0 0 0
0 0 ∂R2

∂x1

∂R2
∂u1

∂R2
∂x2

0 0 · · · 0 0 0 0 0
0 0 0 −I 0 I 0 · · · 0 0 0 0 0
0 0 0 0 ∂R3

∂x2

∂R3
∂u2

∂R3
∂x3

· · · 0 0 0 0 0
...

...
...

...
...

...
...

. . .
...

...
...

...
...

0 0 0 0 0 0 0 · · ·
∂RN−1
∂xN−2

∂RN−1
∂uN−2

∂RN−1
∂xN−1

0 0
0 0 0 0 0 0 0 · · · 0 −I 0 I 0
0 0 0 0 0 0 0 · · · 0 0 ∂RN

∂xN−1

∂RN
∂uN−1

∂RN
∂xN


(5.5.4)



Chapter 6

Oil Production Optimisation

In this chapter we present the numerical experiment of testing simultaneous method
for optimising oil production. In order to increase the economic value of the reservoir
and investigate the behaviour of the fluids in the subsurface, we use the two-phase flow
model defined in chapter 4. The model was discretised in space by the finite volume
method and Gauss’ divergence theorem. The time discretisation was performed by us-
ing first order ESDIRK method called implicit Euler. The solution to the constrained
optimisation nonlinear problem is found by interior point algorithm in the linesearch
framework with BFGS approximation for the second order derivatives. The simulta-
neous search provided by the direct transcription method couples reservoir model with
the optimal point solution reducing the number of simulations in the gradient based
iteration process.
This chapter is organised in the following way. Section 6.1 presents the waterflood-
ing optimal control problem. In section 6.2 we describe the economic objective with
respect to which optimisation is performed. In the section 6.3 we test simultaneous
method on a particular production scenario and discuss the results.
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6.1 Oil Optimal Control Problem

We have derived partial differential equations governing the flow of each phase in the
chapter 4 and shown that the obtained model preserves the mass property which was
the initial assumption for the model formulation. We are going to use the two phase
flow model from (5.2.2) to formulate the waterflooding problem as a continuous Bolza
problem.

min
{u(t),x(t)}

t f
t0

t f∫
t0

J(x(t), u(t))dt (6.1.1a)

s.t. x(t0) = x0 (6.1.1b)
dg
dt

(x(t)) = f (x(t), u(t)) t ∈ [t0, t f ] (6.1.1c)

u∆
min ≤

du
dt

(t) ≤ u∆
max (6.1.1d)

umin ≤ u(t) ≤ umax (6.1.1e)

The eq(6.1.1c) describes the two phase black oil simulator, which represents the physi-
cal system of the reservoir as a plant, whereas constraints (6.1.1d) should be understood
as movement ones and model the physical limitations on adjusting the controlable in-
puts. Then in order to transcribe the infinite dimensional problem into numerically
traceable one, we use a direct collocation method and fully discretise the optimal con-
trol problem by approximating the controls and states as piecewise polynomial func-
tions on finite elements by applying implicit first order Runge Kutta method. This
enables to represent optimal control problem as a discrete nonlinear program of the
following form:

min
{uk ,xk}

φ =

N−1∑
k=0

J(xk,uk) (6.1.2a)

s.t. R0(x0) = 0 (6.1.2b)
Rk+1(xk+1, xk, uk) = 0 (6.1.2c)

u∆
min ≤ ∆uk ≤ u∆

max (6.1.2d)
umin ≤ uk ≤ umax (6.1.2e)

Or alternatively in a simultaneous manner:

min
{z}

φ(z) (6.1.3a)

s.t. C(z) ≤ 0 (6.1.3b)
zmin ≤ z ≤ zmax (6.1.3c)
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For the notational convenience and consistence with the solution of Van Der Poll prob-
lem, the residual function(6.1.2c) representing the simulator was described further in
eq. (5.3.1). The upper and lower bounds on the manipulated variables are set in the
following manner. The lower bound value umin = qin j,w,min is set to 0 m3/day whereas
the upper bound on the injection rate is computed in such a way that no more that given
number of porous volumes is injected throughout the whole production. Following
those bound constraints one will implicitly satisfy:

0 ≤
N−1∑
k=0

Nin j∑
j=1

∫ tk+1

tk
qin j

w, j(t)dt ≤ PVmax (6.1.4)

The lower and upper bounds on bottom whole pressures(umin = BHPmin and umax =

BHPmax) are set to 150 and 200 bars respectively. Those values are typical in petroleum
industry for the production wells. Bascially the upper bound on the bottom whole
pressure is set in such a manner that it is lower than the initial pressure in the reservoir.
This quarantees the pressure difference and flow from reservoir to the producers.

6.2 Stage Cost Function

The stage cost function(J) of the oil problem is used to maximise the net present value
(NPV) of oil production and is related to oil recovery as a function of dynamic valve
settings of injection rates at the injection wells and bottom whole pressures at the pro-
duction wells.

J = −

N∑
k=1

∆(tk)

Nprod∑
j=1

[roqo, j(k) − rwsqw, j(k)] −
Nin j∑
j=1

[rwqw, j(k)]

(1 + b)a (6.2.1)

where:

• k - time step counter

• N - total number of time steps in the simulation

• Nin j - the total number of injection wells in the reservoir

• Nprod - the total number of production wells in the reservoir

• j - the well segment counter

• qo - oil flow rate. [m3/s]

• qw - water flow rate [m3/s]
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• ro - oil price 5 [$ /m3]

• rw - water price 283 [$ /m3]

• rws - water, oil separation price 10 [$ /m3]

• ∆(tk) time step k [s]

• b - discount factor expressed as a fraction per year. The idea behind using a
discount factor is to compensate for the fact that money loose its value with
time.

• a - number of years passed since the start of production.

In order to estimate NPV, values of produced oil in all the production wells are summed
up and then the costs of water injection at the injection wells and water separation are
subtracted. The reason why the cost of water separation is included in the objective
cost function is to realise that the oil obtained in the production wells is actually in the
two-phase oil-water mixture and still some effort has to be put in on the downstream
production line to separate those two phases. In order to impose more dynamic be-
haviour of the optimiser with respect to time the discount factor is used which gives
the weight to the profit obtained faster. Thanks to that we are sure that we use the
optimal operational strategy for the reservoir management and we inject water not too
rapidly and not too slowly at the same time. For example, one could inject the whole
porous volume of the reservoir in the beginning of the oil production and fill the whole
reservoir with water. This action would definitely increase the oil production but could
also result in the higher cost for water injection and water separation as the water sat-
uration in the reservoir would be very high. Consequently, even though oil production
was performed very fast and reservoir was fully exploited, the Net Present Value would
be relatively low. With this approach, one can conclude when it makes sense to stop
injecting water, shut the production wells down and stop the production e.g. injection
rates at some point can be very small and the net present value will not be increasing
for the next time steps of the simulation.

6.3 Production Scenario

In order to test the simultaneous method for optimisation of the oil field, the numerical
experiment with the following production scenario was carried out:
Simulation is performed in the spatially discretised reservoir into 15 x 15 grid blocks.
Each of the grid blocks is 25 m wide, 25 m long and 20 m high, which means that the
volume of each block is 12500 m3 and the volume of the whole reservoir is 2812500
m3. The porosity is 0.2 and constant within the reservoir which gives the total porous
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volume (PV) of the reservoir equal to 5631250 m3. The injection well is located at the
left hand side of the reservoir and is divided into 15 segments equipped in one injector
each. The permeability field is constructed, based on the standar case with to permeable
streaks presented in [49] and [8]. The production well is located on the right hand side
of the reservoir and is divided into 15 segments, where each of the segments contains
one producer. In the production simulation water is injected by 15 injectors in order to
displace the oil towards the producers sucking the mixture of oil and water. Sweeping
oil from the reservoir and delivering it to production wells is considered as final stage
of the upstream production and further processes are not analysed in the two phase
displacement simulator. The discount rate factor related to NPV is set to zero since
in many works e.g. in [9] it has been shown that the optimal injection rates are very
sensitive to this parameter. The simulation is performed for 1500 days and the width
of the time step ∆t is 30 days which gives 100 discrete time steps. The decreasing oil
saturations in the individual reservoir blocks at different stages of the production are
presented in the figure 6.1.

Figures 6.2(a) and 6.2(b) show respectively the values of the bottom whole pressures
at the 15 segments of production well and the injection rates of the 15 segments of
injection well projected on the whole time horizon.

Figures 6.3(a) and 6.3(b) show respectively the plots of evolution of the net present
value and injected porous volumes against time.

In can be clearly seen that the maximum of the net present value is attained at the 990th
day of production. Although the oil saturations are decreasing with the increasing time
of production, the net present value does not increase. This means that the injected wa-
ter front has hit the production well and produced after that period poorly oil-saturated
two-phase mixture does not compensate for the prices of further water injection and
water-oil separation. The physical sense of this result can be supported by the fact
that in the 990th day 1.08 PV was injected, which means that whole void space of the
reservoir was flooded with water. In most cases simulation studies under waterflooding
expect the total injection rate to be at least equal or grater than one porous volume of
the reservoir. Since after 990th day one cannot obesrve any increase in the NPV, which
is in this case the exponent of the reservoir potential, according the the optimiser the
wells are shot down after this day. It also shows the sense behind the studies done in this
thesis and how simulation based optimisation techniques help to answer the very open
question when to stop the production and how much profit expect from the reservoir.
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(a) Oil Saturations at 100th day
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(b) Oil Saturations at 300th day
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(c) Oil Saturations at 500th day
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(d) Oil Saturations at 700th day
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(e) Oil Saturations at 800th day
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(f) Oil Saturations at 900th day

Figure 6.1: Distribution of Oil Saturation at Different Stages of the Production
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Figure 6.2: Control Values vs Time
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Figure 6.3: Net Present Value and Corresponding Injected Porous Volumes
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Chapter 7

Conclusions and Future Work

The main focus in this thesis concerned the optimisation of oil production in the sec-
ondary recovery phase by the use of simultaneous method and interior point optimiser
(IPOPT). This chapter is the final one and briefly summarises accomplished tasks un-
dertaken in order to achieve the final goal.

• We have set up the open source solver IPOPT used for solving problems in this
thesis. The tool was configured with the Microsoft Visual Studio Integrated De-
velopment Environment (MS VS IDE) and plugged in as a dynamic link library
(dll) into several C++ implementations of optimisation problems investigated in
this thesis. The process of setting up IPOPT in MSVS 2008 was thoroughly
described in appendix B

• We have taught ourselves and demonstrated how to solve simple nonlinear pro-
grams with the use of Ipopt and C++ object oriented language in chapter 2.

• We have tested the simultaneous method by direct collocation, solving an exem-
plary optimal control problem of Van Der Pol oscilator and presented the results
in chapter 3.

• We have implemented the two phase immiscible flow of black oil simulator in an
isothermal reservoir with isotropic permeability field. The model is used to sim-
ulate the flow in the subsurface reservoir water-flooded in the secondary recovery
phase. The differential algebraic equations were derived based on Darcy’s law
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and mass conservation principle. The injection and production well models are
based on the Peaceman well index for vertical wells in a non-square Cartesian
grids. The control parameters of operation of injection and production wells are
water injection rates and bottom whole pressures respectively.

• We have used the Corey relations to model the relative permeabilities of each
phase and used the residual water and oil saturation to impose the boundaries
on the saturation of each phase. We have neglected the pressure difference be-
tween two phases known as capilary pressure [50]. We have discretised the flow
governing equations in space by using finite volume method (FVM) and Gauss’
divergence theorem. Since this method requires the information about fluxes
at the interfaces of the control volumes, we used two point flux approximation
(TPFA) and the single-point upstream (SPU) scheme for computing the interface
fluxes. The spatially discretised model was solved by applying backward Euler
fully implicit (FIM) method.

• We have stated the problem of production optimisation of oil reservoir as a con-
tinuous Bolza’ problem with water pressures and saturations as state variables
and water injection rates and bottom whole pressure as controllable inputs. The
optimisation goal was to increase the reservoir performance throughout the given
production period in terms of net present value (NPV) as economic objective. In
order to solve our continuous time problem we transcribed it into numerically
traceable one by approximating states and controls as a piecewise polynomial
functions on finite elements and represent it as a discrete nonlinear program.

• We optimised oil production by using simultaneous method in a nonlinear model
predictive control framework. The optimisation is based on interior-point method
in a linesearch framework with limited memory BFGS approximation for the
Hessian of Lagrangian and exact analytical representation for the gradients. The
reservoir simulator and routines for representing fully discrete nlp were written
in C++ object oriented language in Microsoft Visual Studio Integrated Develop-
ment Environment.

• The simultaneous method was tested on a particular scenario of oil production.
Results clearly show that this method has a clear and merit potential for further
investigation and solution of realistic cases.

Throughout accomplishing points listed above a few things have been observed which
motivated the following comments on the project and suggestions for the future work.

Simultaneous method leads to a very large and sparse nonlinear problem. Since we
performed our optimisation with the simulation scenario on a home PC computer, we
were limited to a big extent by the machine memory resources. Consequently, we
were trying to trade off between the realistic simulation scenario and guarantee that our
equations are integrated properly by selecting reasonably big time steps and control
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volumes. This was done by realising the fact that the fluid velocities in the subsurface
reservoir are of order of magnitude 10−5 and the optimisation problem is not smooth,
so the information could be lost in case of too big step selection. Figures 6.1(a), 6.1(b),
6.1(c), 6.1(d) show that in some areas of the reservoir the transition between saturations
in the neighbouring grid blocks was quite rapid, which might suggest selecting smaller
steps in the future work. It doesn’t, however, negate the fact that it was possible to solve
the model with the simultaneous search and first order implicit scheme instead of using
high-order ESDIRK methods with step size control. Another important thing worth
paying attention to, is the way the model equation were discretised in space, which is
by finite volume method (FVM). In finite volume method the whole physical space is
represented as a collection of smaller control volumes filling the entire domain. The
elements can have different dimensions as wells as there are no limitations on the whole
grid structure, which easily allows the method to represent unstructed grids in higher
dimension. The solution, however, is approximated by the cell average at the centre of
the element which in our case defines saturations of each phase to be constant within
each control volume. There exist other approaches that try to deal with this problem
such as streamline based simulations, where one solves the equations for saturations
changing along the randomly shaped lines representing the path travelled by the fluid
particles in the reservoir, whereas pressures are found still with the FVM approach
as they do not change that much with the spatial position in the reservoir [51]. The
model implemented for simulation purposes in this work considers two phases, which
are oil and water and is also known under term simple black oil simulator. However,
many reservoir are build of multiple rocktypes, e.g. cap rock, which results in low
pressure level and appearance of hydrocarbons which would simply represent the gas
phase. In order to perform a simulation in such conditions the third, gas phase should
be considered in the model with assumption that gas can dissolve in oil and oil vaporise
in gas.
The simulation performed in this work was done on the two-dimensional grid. If one
would like to consider a realistic simulator, he should realise himself that petroleum
reservoir should be represented by three-dimensional grid of any shape, not necessarily
rectangular, accounting also for flow in the vertical direction with the gravity force
contribution.
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Abstract 
In the world of increasing demand for energy and simultaneously decreasing number of newly found oil 

fields one can witness the interest for the simulation studies combined with optimisation methods in order to 

improve secondary recovery phase under water flooding techniques. Since the optimisation on the realistic 
reservoirs can be prohibitive when it comes to size and computation time a lot of attention was given to 

single-shooting methods combined with the use of adjoints for gradient computation which reduces the size 

of the problem. There exist, however other approaches optimisation of oil reservoirs as multiple-shooting or 

simultaneous method which have not been investigated that much by industrial and academic communities 
mainly because they do not eliminate states from the optimisation algorithm resulting in a problem of up to 

millions of optimisation variables. 

In this paper we investigate the simultaneous approach on direct transcription for optimising oil production 
in the secondary recovery phase under water flooding. Results are encouraging and suggesting a merit 

potential of this approach for further investigation. 

In the first section we explain the idea of smart well technology in the two phase flow reservoir. Then we 
introduce the process of reservoir management and picture the location of optimisation algorithms in it. 

Section III describes the two timescales involved in oil production and resulting challenges. Section IV 

points out the features of different optimisation methods, which have the potential for solving oil problem. In 

section V we present the mathematical formulation of the reservoir model and then we discretise and use it to 
formulate the optimal control problem in section VI. Section VII presents the particular instance of a 

production scenario with the corresponding results. Finally, the conclusions and suggestions for the future 

work are made in the last section. 
 

Key Words: Optimisation,  Reservoir Simulation, Discretisation, Two Phase Flow, Waterflooding 
 

I. Introduction 

Natural petroleum reservoirs are characterised by 2-phase flow of oil and water in the porous media (e.g. 

rocks). Conventional methods of extracting oil from those fields, which utilise high initial pressure obtained 
from natural drive, leave more than 70 % of oil in the reservoir. A promising decrease of these remained 

resources can be provided by smart wells applying water injections to sustain satisfactory pressure level in 

the reservoir throughout the whole process of oil production. Basically, to enhance secondary recovery of the 
remaining oil after drilling, water is injected at the injection wells of the down-hole pipes (figure 1.). This 

sustains the pressure in the reservoir and drives oil towards production wells. There are however, many 

factors contributing to the poor conventional secondary recovery methods e.g. strong surface tension, 

heterogeneity of the porous rock structure leading to change of permeability with position in the reservoir, or 
high oil viscosity. Therefore it is desired to take into account all these phenomena by implementing a 

realistic simulator of the 2-phase flow reservoir, which imposes the set of constraints on the state variables of 

optimisation problem. Then, thanks to optimal control, it is possible to adjust effectively injection rates, 
bottom whole pressures or other parameters to control the flow in every grid block of the reservoir and 

effectively navigate oil to the production wells so it does not remain in the porous media. The use of such a 



smart technology known also as smart fields, or closed loop optimisation, can be used for optimising the 

reservoir performance in terms of net present value of oil recovery or another economic objective.  

 

 
Figure 1 Schematic view of horizontal smart wells, [Jansen et al.,2008] 

 

II. Reservoir Engineering 

In order to maximise reservoir performance in terms of oil recovery or another economic objective, reservoir 

management process is carried out throughout the life cycle of the reservoir, which can be in order of years 

to decades. Reservoir management was firstly elaborated by Jansen et al. [2004] and its scheme is presented 
in the figure 2. In some other works this scheme might be presented in the slightly different way as the 

reservoir management can be enriched or missing some elements depending on the management strategy e.g. 

in case of an open loop reservoir management system models are not updated with data from the sensors 
through data assimilation algorithms and whole optimization is performed offline. What is more, some 

strategies distinguish between low and high order system models, which are responsible for uncertainty 

quantification. The top element in the fig. 2 represents the physical system constituting reservoir and well 
facilities. The central element refers to system models which consist of static (geological), dynamic 

(reservoir flow) and well bore flow models. The reason why multiple models are used is because each of 

them has some uncertain parameters which allow to determine uncertainty about the subsurface. The updated 

models through data assimilation and history matching technique with an uncertainty description give the 
support to the optimizer. On the right side of the figure, we have sensors, which are responsible for keeping 

the track of the processes that occur in the system. Sensors can be interpreted as physical devices taking 

measurements of the reservoir parameters, such as water or oil saturations and pressures but they can also be 
considered in more abstract manner as sources of information about the system variables e.g. interpreted well 

tests, time lap-seismics. On the left-hand side of the figure, one can find optimisation algorithms, which try 

to maximize the performance of the reservoir in terms of the given objective (e.g. net present value) based on 
the set of the constraints obtained from reservoir models. Since it is almost impossible to capture all 

important issues in the mathematical formulation, the optimizer and estimator elements will always include 

some human judgment. Very important element of the closed-loop reservoir management process are data 

assimilation algorithms (bottom of the figure), which obtain the data about the real world from the sensors 
and then update less realistic models with the more correct information. Data assimilation and model update 

is performed more frequently than off-line reservoir optimisation as models can easily get off the right track 

during simulation. As a result, most of reservoir management processes are understood as closed loop ones 
and their crucial elements are model based optimisation, decision making and model updating through the 

data assimilation techniques. One can realise himself that model based optimisation which is the main area of 

focus in this work, is a very significant element of the whole reservoir management process. 

 



 
Figure 2 Reservoir Management Process, [Jansen et al. 2004] 

 

III. Multi-scale (Upstream and Downstream) Optimisation 

From physical point of view processes involved in oil production can be classified into upstream and 

downstream ones. Downstream processes refer to e.g. pipelines and export facilities whereas upstream 

processes are the ones happening in the reservoir e.g. subsurface flows. Those two types of processes differ 

from each other very distinctively when it comes to their timescales. In the upstream processes the velocity 

of the fluid can be very slow mainly due to some physical properties of the reservoir such as low 

permeability value or its size which can be up to two tens of kilometres. Hence it can take up to decades to 

navigate oil by injecting water towards production wells. In case of downstream parts of production 

timescales are much lower and can be in order of minutes or even seconds. In this work we focus on 

optimisation of upstream production where we model the two phase flow and run so called reservoir 

simulation. The simulation is based on mathematical models governed by partial differential equations 

(PDEs, governing equations) and is performed for a long time horizon, even up to decades of years. 

Consequently the optimisation of upstream part of oil production is run off-line whereas downstream part is 

mostly performed on-line. One of the most challenging aspects in closed loop reservoir engineering involves 

the combination of short-term production optimisation and long-term reservoir management. An open 

question is: what is the best way of implementing the found, optimal trajectory that was computed off-line 

into the daily performance of an oil field. Technically, daily valve setting are selected such that they result in 

instantaneous maximisation of oil production limited by constraints on the processing capacities of gas and 

water co-produced with the oil. Such settings are mostly determined with heuristics operating protocols, 

sometimes supported with off-line model based optimisation using sequential or quadratic programming to 

maximise instantaneous reservoir performance. What is more, a simple, frequent online feedback control is 

used for stabilising the flow rates and pressures in the processing facilities to separate oil, water and gas 

streams from the wells. It can be seen that there are a few control and optimisation processes going in 

parallel at different time scales. This kind of strategy involves a layer control structure where longer-term 

optimisation results provide set points and constraints for the instantaneous, short term optimisation, which 

then navigates and provides set points for field controllers. This modular approach, also known as multi-



scale optimisation, has been widely used in the process industry and was proposed for reservoir management  

in Jansen et al. [2004] and has also been elaborated in Saputelli [2006]. 

IV. Optimisation Methods 

Optimisation of oil production is stated as an optimal control problem constrained by the 2 phase flow model 

and boundaries on state and control variables. The model is non-linear and governed by partial differential 

equations (PDEs) for an each phase. The optimisation is performed in the nonlinear model predictive control 

framework where constrained dynamic optimisation problem is re-solved and re-implemented on regular 

sampling intervals; see Biegler et al. [2004]. This supports the advantages coming with combining the 

numerical optimal control solution with the feedback of the updated model through data assimilation 

techniques. There exist three main methods (single-shooting, multiple-shooting and simultaneous method) 

for solving NMPC dynamic optimisation problem and can be categorised based on how they discretise the 

continuous optimisation problem; see Ringset [2010]. So far, the most of attention from academic and 

industrial oil communities was given to single-shooting method which has been tried out in many works e.g. 

in Völcker et al. [2010], Capolei et al. [2011] or Suwartadi [2009] for optimization of oil reservoirs. The 

main reason for usage of single-shooting method (or sequential as optimisation is executed sequentially to 

numerical simulation for gradient computation) is because after reformulation it uses only manipulated 

variables (controls) as optimisation variables which reduces the optimisation space in the algorithm. Size 

reduction is a very attractive feature especially for oil problems since they have the tendency to be very big 

in the first place (up to millions of variables) so it is very convenient to eliminate the states from the 

optimisation algorithm and solve the smaller reformulation sequentially (SQP); see Li [1989] and Di 

Oiliveira [1995]. What is more, single-shooting is used with high order ESDRIK methods equipped with the 

error estimator which results not only in lower number of discretisation points but also ensures that the 

model equations are integrated properly. Contrary to single-shooting approach, the simultaneous method, 

which implementation for optimization of oil reservoirs is the main interest in this work, uses also a 

discretisation of the future process model variables as optimization variables. Thanks to that, the method 

offers the full advantage of an open structure after reformulation such as direct access to first and second 

order derivatives, many degrees of freedom and periodic boundary conditions. The transcribed nonlinear 

program by this method is however, much larger than by single-shooting. Nevertheless, it is very often the 

case that after direct transcription the problem is very sparse and structured so it is possible to define the 

sparsity pattern in an algorithmic way. Of course implementation of the sparsity pattern can be sometimes 

very time consuming but it offers a great trade-off when it comes to reduction of the problem size and other 

computational aspects. In simultaneous method the model is not solved at each iteration but a simultaneous 

search for both model solution and optimal point is carried out. In case of single shooting the model is solved 

(with an initial value solver) sequentially with reduced size optimisation problem. Consequently single 

shooting may be costly if evaluation of the problem functions is costly e.g. if implicit discretisation scheme 

must be applied, which is the case in optimisation of oil production. 

V. Reservoir Model 

The model for two-phase, completely immiscible flow comprises partial differential equations representing 

the mass conservation for water and oil phase of the following form: 
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which state that the rate of change of water/oil concentration(
wC /

oC ) with respect to time is equal to 

negative rate of change of flux(
wN /

oN ) of each phase with respect to distance, enriched by the fee injection 

and production terms(
wQ /

oQ ). The concentration of each phase is expressed as product of its density, 

saturation  and porosity of the reservoir.  
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The porosity is the fraction of the void space that can be occupied by the fluid and is assumed to be constant 

with respect to position in the reservoir. Saturations 
wS , 

oS are defined as the fraction of a volume filled by 

that phase. Since it is assumed that the petroleum reservoir contains only oil and water and two phases fill 

the available volume, saturations satisfy the following equation: 

1w oS S  (3) 

Densities of each phase are pressure dependent and are represented by the following equations of state: 
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wc ,  
oc  are compressibilities of each fluid assumed to be constant in the given range of interest. 

0 0( )w w wP  , 
0 0( )o o oP   are the densities at the reference pressures 

0wP  and 
0oP  

Mass is transported by convection and its velocity is obtained from Darcy’s law that formulates the velocity 

through porous medium. This allows to express the fluxes as: 
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wu , ou are linear velocities and are defined as the velocities that a conservative tracer would experience if 

taken by the fluid of the given phase through the porous formation.  The reason why we use linear velocities 

and do not account for the fact that the medium is porous is because in our model we do not have any 

phenomenon influenced by the porosity such as formation damage or fines migration. This approach has 
been undertaken in many reservoir simulation works e.g. Völcker et al. [2009] or Aziz [1971] and yields: 
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Where ( )k k x  denotes the absolute permeability of the porous medium, which is dependent only on the 

spatial position in the reservoir. ( )rw rw wk k S  and ( )ro ro ok k S are relative permeabilities of each phase 

and are modelled by the Corey relations; see Völcker et al. [2009]. We also use residual oil saturation orS

and connate water saturation wcS to impose the following boundaries on the saturation of each phase. 
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Then the reduced saturations can be modelled as: 
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Due to the surface tension and curvature in the interface between two phases the oil pressure tends to be 

higher than the water. The pressure difference between 2 phases is called the capillary pressure. This effect 

however, is very low in the highly permeable and porous media and is neglected in this model; see 
Berenblyum [2003]. The model is discretised in space by using finite volume method (FVM ) and Gauss’ 

divergence theorem ; see Völcker et al. [2012], which enables to consider the reservoir as a grid formed by 

blocks with constant dimensions. Each grid block is given an index i which indentifies its position in the 

reservoir. The absolute permeabilities 
ik  are assumed to be isotropic and constant within the grid block. The 

geological permeabilities at the interfaces between neighbouring grid blocks i and j are calculated as 

harmonic average of the absolute permeabilities of those blocks. What is more, the relative permeabilities  

,rw ijk ,
,ro ijk  at the interfaces between neighbouring grid blocks i and j are calculated using upstream 

weighting which requires the use of integer variables and results in solving mixed integer nonlinear program 

(MINMLP) having a highly combinatorial character which is more complex than a regular NLP. 

 

VI. General Formulation and Time Discretisation 
In optimisation problems involving process simulations, reformulating the problem and discretising it in time 

or space is always a challenge since it is often the case that a new discrete model should preserve such 

properties as e.g. conservation of mass, energy, or momentum. This is due to the fact that these properties are 
the initial outlet for the constraints definitions. As proposed by Völcker et al. [2012] mass preserving, 

spatially discretised reservoir model has the following form: 
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d
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In which ( ) mx t  represents the states (pressures and water saturations), ( ( )) mg x t   are the properties 

conserved, whereas the right hand side function ( , ( )) mf t x t   has the usual interpretation. Then with the 

use of eq. 9 we can formulate the water flooding problem as a continuous Bolza problem 
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The constraints min max( )
d

u u t u
dt

   should be understood as movement ones and model the physical 

limitations on the controls (water injection rates and bottom whole pressures). In order to transcribe the 
infinite dimensional problem into numerically traceable one we use direct collocation method and fully 

discretise the optimal control problem by approximating the controls and states as piecewise polynomial 

functions on finite elements by applying implicit first order Runge Kutta method (Implicit Euler). This 

enables to represent to optimal control problem as a nonlinear program (NLP). 
 

VII. Production Scenario 

The numerical experiment of optimising production in oil reservoir was performed under following scenario: 
Simulation is run in the reservoir discretised into 15 x 15 grid blocks . Each of the grid blocks is 25 meters 



wide, 25 meters long and 15 meters high, the rock porosity is 0.2 and constant within the reservoir which 

gives the total porous volume equal to 562500 cubic meters. The time horizon was 1500 days was divided 

into 50 equal time steps of 30 days each. The injection well is located at the left hand side of the reservoir 
and is divided into 15 segments equipped in one injector each. The production well is located on the right 

hand side of the reservoir and is divided into 15 segments, where each of the segments contains one producer. 

In the production simulation water is injected by 15 injectors in order to displace the oil towards the 

producers sucking the mixture of oil and water. Delivering oil towards production wells is considered as final 
stage of the upstream production and further processes are not analysed in the 2-phase displacement 

simulator. The discount rate factor related to NPV is set to zero since in many works it has been shown that 

the optimal injection rates are very sensitive to this parameter, e.g. Capolei  [2011]. The physical model data, 
as well as fluid properties and economic data that we used for this experiment can be found in Völcker 

[2012]. The water injection rates are constrained in such a way that no more than 2 porous volumes are 

injected throughout the total production time which gives minimum and maximum injection rates of single 

producer Qwmin and Qwmax equal to 0 and 50 cubic meters per day respectively. The lower and upper bounds 
on production well control parameters ( bottom whole pressures) are set to 150 and 200 bars respectively. 

Such values are commonly used in this kind of simulations by the industrial community. The decreasing oil 

saturations within the reservoir at different stages of oil production are shown in the figures 3-7: 

 
Figure 3 Oil Saturations after 100 Days 

 
Figure 4  Oil Saturations after 300 days 



 
Figure 5 Oil Saturations after 500 days 

 
Figure 6 Oil Saturations after 700 days 

 
Figure 7 Oil Saturations after 900 days 

The evolution of the net present value (NPV) and the injected porous volumes (PVs) are presented in the 

figures 8 and 9 respectively: 



 
Figure 8 Evolution of Net Present Value throughout the production time 

 
Figure 9 Evolution of injected porous volumes throughout the production 

Figures 10 and 11 present the values of the manipulated controls (bottom whole pressures and water 

injection rates).  

 
Figure 10 Bottom whole pressures in bars at the 15 producers throughout the production time 



 
Figure 11 Water injection rates  in cubic meters at the 15 injectors throughout the production time 

Figures 3-7 clearly show how oil is swept out from the reservoir by the injected water throughout the 

production. Figure 8 and 9 distinctly demonstrate that the maximum npv (46 million dollars) was reached 

after injecting 1.08 pv at the 1000
th
 day of the production, which means that the value of oil produced after 

this time did not compensate for the prices of water injection and water separation that also contribute to the 

economic potential of the reservoir. Consequently, according to the optimizer the wells should be shut down 

at 1000
th
 day. This kind of simulation studies help to answer a very open question when to stop the 

production and how much profit expect from the reservoir. 

VIII. Conclusions and Future Work 
We have implemented the mathematical model of the two phase flow reservoir with the use of two point flux 

approximation (TPFA) and the single point upstream (SPU) scheme for computing the fluxes. The partial 

differential equations were derived by using the property of mass conservation and solved by discretising 

them in space and time by using finite volume method (FVM) and first order implicit Euler method 
respectively. The developed black oil simulator was applied in the nonlinear model predictive control 

(NMPC) framework combined with the simultaneous method for optimising the oil production in terms of 

the net present value (NPV) as the objective cost. As an optimisation algorithm, interior point method in the 
line search framework; see Wächter et al. [2006] and Schenk [2007], was chosen by using large scale 

optimisation package Ipopt; see Wächter et al. [2010]. The package distribution was plugged in as dynamic 

link library (DLL) to implementation of the reservoir model. The simulator and routines for representing 
fully discrete nlp were written in C++ object oriented language (OOL) in Microsoft Visual Studio Integrated 

Development Environment (MSVS IDE). 

 

The found solution to the test problem clearly shows that the simultaneous method by direct collocation has a 
clear and merit potential for solving real case problem as the results obtained in this work make physical 

sense. This is very important as in this approach model is not solved in a conventional way, sequentially at 

each iteration but a simultaneous search for points satisfying model equations is done by the algorithm. 
Consequently, it could be the case that the model constraints are not satisfied if the algorithm terminates 

before converging. The relatively steep transition in the saturations between the neighbouring grid blocks is a 

suggestion for incorporating the mathematical term representing sweep efficiency in the objective cost 

function or reducing the size of the grid blocks.  In the future work real life scenarios of productions for 
satisfyingly small time steps will be solved. This can be accomplished by deriving and implementing 

analytical expressions for second order derivatives constructing the Hessian of the Lagrangian matrix. At the 

current stage, this matrix is approximated by BFGS method which does not enable to represent it in a sparse 
way which means considering only non-zero elements and reducing the problem size. 
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1 Abstract
Ipopt(Interior Point Optimiser) is an open source mathematical library for
solving optimisation problems which can be utilised in Microsoft Visual Stu-
dio Integrated Development Environment(IDE). This document is a guide
for installing Ipopt with its relevant third party components and setting it
up in Visual Studio. At the beginning reader is given a brief introduction
about Ipopt distribution and mathematical libraries that it applies. What
is more, installation process and possible ways of getting Ipopt are given.
Finally, the user is led step by step through compilation process of differ-
ent types of Ipopt libraries and implementing them in a new Visual Studio
project aimed at stating and solving the optimisation problem. This paper
was written based on Introduction to Ipopt tutorial by Andreas Wächter1
and readme files2 that come together with COIN-Ipopt package of the same
author.

2 Introduction
Ipopt is an open source package for nonlinear optimisation. It can com-
pute and solve non-linear problems defined by an objective function f(x),
and vector functions of equality and inequality constraints. Basically, Ipopt
calculations are based on interior point line search filter method, thanks to
which local minimiser can be found. In order to solve optimisation problem
in Ipopt, one needs to interface with its libraries by coding a problem in C,
C++ programing languages or alternatively use AMPL, which is a special
language for modelling mathematical problems.
Primarily, Ipopt was written in Fortran, however due to further elaboration,
it was completely reimplemented and rewritten into C++ object oriented
language. Although, originally Ipopt was used in Linux, it was written in
a very generic way enabling the cross-platform usage. In other words, it is
possible to use Ipopt solver in the Windows operating system and compile it
against Microsoft Visual C++ compiler. In this tutorial, the reader will be
led step by step how to install and build Ipopt against separately distributed
third party code, so it can be applied and utilised in the Visual Studio 2008
IDE.

3 Ipopt Distribution
Note: IPOPTBASEDIR refers to the main directory where the content of
downloaded Ipopt zip file is unpacked. In this directory ThirdParty, Build-
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Tools and Ipopt directories are located.
In this section the structure of Ipopt distribution directory and its third party
code will be described.

3.1 Ipopt Solver
Ipopt is released as an open source code under the Eclipse Public License and
is available from the COIN-OR Initiative web site as one of the COIN-OR
Projects (https://projects.coin-or.org/Ipopt). Once Ipopt is downloaded on
the user’s computer, either as tarball or from subversion, it comes with a given
directory structure that should not be violated as different Visual Studio
projects keep their relative dependencies with respect to the downloaded
base directory. In the IPOPTBASEDIR/Ipopt/MSVisualStudio/ there are
three Microsoft Visual C++ solution directories. Although each of them
applies Ipopt for solving optimisation problem, there exists slight difference
in their application and suitability for specific user preferences. All three
Visual Studio solutions and their functionalities are described in the following
subsections.

3.1.1 Binary DLL Link Example Solution (BinaryDLL-Link-Example
folder)

Once Binary DLL Link Example solution file is open, one can see only an
example project in the project tree view(figure 1). It is so because this so-
lution keeps a linker input to already precompiled Ipopt binary library that
should be downloaded from ICOIN - OR alternative projects website.
This solution is recommended in case someone wants to use Ipopt with free
distributed netlib libraries, without possibility to specify optimisation prob-
lem in AMPL language, since it is the least time consuming one. It only re-
quires downloading the correct binary dynamic link library form the COIN-
OR Ipopt project web site and placing it in the directory where program
executable file is created. For further information please go to corresponding
compilation subsection.

3.1.2 Visual C++/C DLL Solution(v8 folder)

This is a visual studio solution for compiling Ipopt with third party code and
then linking it statically to the program specifying the optimisation problem.
It is a static solution as C++ library projects are statically referenced and
linked with each other in the compilation process.
If solution file is open, one can see that it contains projects corresponding
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Figure 1: Visual Studio Binary DLL-Link Example Solution View
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to third party code modules like: libCoinLapack, libCoinBlas, libCoinHSL.
In order to get familiar with the project structure ,please have a look on
figure 2 presenting solution tree view of the Visual Studio solution explorer.
Since third party Visual C++ library projects are added as dependencies to
Ipopt project, it is very important to build all referenced third party code
projects before compiling Ipopt project. It is also possible to build the whole
solution by right clicking on the solution icon (a top icon in the project
solution explorer tree view) and selecting Build Solution option since the
whole solution comes with already specified built order.Once this is done, it
is possible to run hs071 example project, which solves simple optimisation
problem. Please note that any of the third party projects keeps references
to C and C++ files, although some third party components have been origi-
nally written in Fortran. It means that before compilation it is necessary to
run Fortran to C compiler on some of third party modules. Otherwise Vi-
sual Studio compiler will report an error saying that some referenced C files
are missing. A detailed information for downloading and preparing third
party code for building against Ipopt library is given in the corresponding
Compilation subsection.

3.1.3 Visual C++/Fortran DLL Solution(v8 - ifort folder)

This solution enables user to build Ipopt dynamic link library moslty directly
from the Fortran files of the third party code. If the solution file is open, one
can see that it contains Fortran and C++ projects that build the third party
code modules (figure 3). These are: CoinBlas, CoinLapack, CoinMetis, Coin-
MumsF90, libhsl, libhsl-no-MA57. In order compile some of these projects,an
Intel Fortran compiler should be configured with the Visual Studio IDE. One
can say that this solution is a bit less time consuming to set up, if the Intel
Fortran compiler is installed since Fortran files are directly compiled without
the need of translating them into C ones as in the previous C/C++ solution.
All projects keep references to their corresponding third party Fortran files,
which should be located in the IPOPTBASEDIR\ThirdParty directory, so
they can be compiled. In the solution tree view one can see that there are
a few projects that build sparse symmetric solvers libraries, e.g: CoinMetis,
libhsl, libhsl-no-57. It is possible to build the Ipopt library against all of
them, or only specific ones, depending on the particular application of Ipopt
package and user preferences. If there is any library project that user does
not need, it can be simply unmarked from the Ipopt dependencies list and
excluded form the compilation.
As in the previous case the Ipopt C++ library project keeps references
(project dependencies) to the third party code projects so the utilised For-
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Figure 2: Visual C++/C DLL Solution View
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tran project should be build in the first place. The order for building these
projects is given in Ipopt Compilation section or can be checked by right
clicking on the solution icon in the project tree view and selecting project
dependencies option in the right click content menu.
Please note that it is also possible to build the whole solution by right click-
ing on the solution icon (a top icon in the project solution explorer tree view)
and select build since the whole solution comes with already specified built
order.
After building Ipopt, one will end up with Ipopt.dll file that can be added to
any C++ project specifying the optimisation problem. This result library file
should be roughly similar to one that is utilised by BinaryDLL-link-Example
solution and can be downloaded from COIN-OR project web site, except for,
in this case user has an option of specifying exactly which third party code
he would like to have Ipopt build against. This is very important when one
wants to implement optimised libraries of the third party code, e.g. MKL
or MA57 which are not distributed by the COIN-OR initiative. In case of
using standard not optimised , free distributed third party code libraries, it
is recommended to download Ipopt dll from Coin - OR initiative web site
and use Binary DLL Example Solution.

3.2 Third Party Code
Unfortunately Ipopt is not distributed with the so called third party code
that it utilises for calculations. Before compiling Ipopt, third party code
should be downloaded from the right online sources and placed in the Third-
Party directory in the IPOPTBASEDIR folder. In other words, it is user
responsibility to download the third party code. Exact steps on how to
do this are given in Download and Installation section. Third party code
determines functionality of Ipopt and consequently user does not need to
download and set up all of it but only these libraries that correspond to the
desired problems. Below different components of the third party code with
their functionality are described:

* BLAS (Basic Linear Algebra) - it is possible to obtain a source code of
this library directly from www.netlib.org. There exists however, pos-
sibility of getting already precompiled and optimized version of this
library. Since it is one of the basic and sufficient ones, an optimized
version of it can result in big speed up of computation time. An exam-
ple of optimizaed BLAS library is MKL(Math Kernel Library) released
by hardware vendor Intel.
Visual Studio projects of Ipopt also posses settings for compilation
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Figure 3: Visual Studio Fortran/C++ DLL Solution View

8



against MKL. A detailed explanation on utilising these settings is given
in the Compilation section.
There exist also other versions of BLAS distributed by processor ven-
dors e.g.

* ACML(AMD Core Math library) by AMD
* ESSL (Engineering Scientific Subroutine Library) by IBM

* LAPACK (Linear Algebra Package) - this component is only required
by Ipopt if the user tries to compute solution with quasi-Newton op-
tions. In this case, if LAPACK is missing, the software will report an
error. In case of calling LAPACK package from Ipopt, it is much more
efficient to do so in Windows operating system as LAPACK libraries
are mostly distributed as not optimised for the Linux operating system.

* HSL(Harwell Subroutine Library) is a mathematical Fortran library for
a very large scale scientific computation. Consequently Ipopt does not
need to implement all of it but only some of its routines depending on
the tasks it should solve. For example Ipopt needs to call and obtain
solution from sparse symmetric solver. In order to do that it needs to
be built against one of the following solvers contained in HSL.

* MA 27
* MA 57

It is also possible to obtain sparse symmetric solvers from other vendors:

* MUMPS (Multifrontal Massively Pralllel Sparse Direct Solver)
* PARADISO(The Parallel Direct Solver)

* ASL - this component is completely optional and does not contribute
to calculations in any way. ASL contains set of solver interfaces to
the AMPL language which can be used for specifying constrained op-
timisation problem. This code is useful only when the user decides to
interface with Ipopt not through C++ program but script in AMPL
language. Using AMPL language is much easier than C++ coding
since it is a language developed specifically for defining mathematical
problems. Applying AMPL however, results in longer calculation time
as it enriches the program in another layer. In order to get further
information about AMPL please go to the following web site:
http://www.ampl.com/
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3.3 Additional Remarks
All mentioned sparse symmetric solvers can be loaded into Ipopt as dynamic
link libraries. Once it is done the user will be able to call different solvers for
solving optimisation problems with the most suitable settings for the given
problem in terms of efficency and accuracy of the computations.(e.g. some
solvers can converge faster than the others, because they are optimised).
Please note that some of the third party code components are written in
Fortran. Consequently in order to build and load them as static or dynamic
link libraries in Visual Studio, one will need either a Fortran to C compiler
or an Intel Fortran compiler configured for Visual Studio. More detailed
information about getting and building third party code in Visual Studio
will be given in the Compilation section.

4 Download and Installation
This section explains in details how to obtain Ipopt and third party code.
What is more, it instructs the user where to place single modules, so they
can be automatically utilized by Visual Studio projects that come with the
package.

4.1 Getting Ipopt
There are two possible ways of getting Ipopt from ICOIN-OR Ipopt project
web site. These are the following:

* as a tarball

* through subversion

4.1.1 Getting Ipopt as a Tarball

In order to download Ipopt as a tarball please go to the following URL in
your web browser:
-http://www.coin-or.org/download/source/Ipopt
and download the Ipopt zip package Ipopt-x.y.z.zip, where x.y.z is the version
number. The latest stable version number is 3.9.1.

4.1.2 Getting Ipopt via Subversion

In order to get Ipopt via subversion, a subversion client must be installed on
the user’s computer system. A good example of subversion client is Tortois-
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eSVN which is an open source software and can be downloaded from:
http://tortoisesvn.tigris.org/
Tortoise software is added to the Windows shell extension after installation
so it is possible to right click on the folder where Ipopt should be located and
in the mouse right click content menu select svn checkout option as shown
on the figure 4. This action will open a new Tortoise window(figure 4) where
user can specify the URL address of the repository and path of checkout
directory on a computer drive where Ipopt should be located. In order to
connect to latest Ipopt project repository please type there the following
URL repository adress:
https://projects.coin-or.org/Ipopt/browser/stable/3.9
and click Ok. This will connect the user to the Ipopt repository and download
the distribution into specified folder.

4.2 Getting Third Party Code
Third Party Code is an independent set of libraries that is released on dif-
ferent licence conditions than Ipopt routines. Consequently, it cannot be
obtained from CPOIN-OR initiative web site, but has to be downloaded di-
rectly from other vendors sites. In this section a few examples explaining
how to obtain third party code will be presented. It is also essential to place
the third party code in the right directory which is:
IPOPTBASEDIR\ThirdParty\*
where * should correspond to the given name of the third party code library,
e.g:

* IPOPTBASEDIR\ThirdParty\LAPACK

* IPOPTBASEDIR\ThirdParty\BLAS

4.2.1 Getting BLAS

In order to obtain BLAS library for Windows operating system one should ei-
ther use wget or donwload the code directly. To install wget, it is necessary to
work in Unix/Linux like environment, for example Cygwin which is a Linux
emulator for windows. Having wget installed enables to run get.Blas file
which is located in the IPOPTHOMEDIR\ThirdParty\BLAS which down-
loads the Blas code to the desired directory. To download the code directly
from the source page, please go to the following URL:
http://www.netlib.org/blas/blas.tgz
and unpack the package in the:

11



Figure 4: Tortoise Content Menu and Checkout Window
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IPOPTBASEDIR\ThirdParty\BLAS
so that all the BLAS Fortran files are located there.

4.2.2 Getting ASL

Although ASL is not necessary for compiling Ipopt, it is very convinient to
build Ipopt against this library especially if the user is not very familiar with
C++ programing language. In order to download ASL code please go the
the following URL adress:
http://netlib.sandia.gov/ampl/index.html,
click on the solvers(tar) link and unpack this package in such a way that the
folder solvers is located in the following directory:
IPOPTBASEDIR\ThirdParty\ASL.
The solvers folder contains library of routines for interfacing different op-
timisation solvers with AMPL modeling language. For further information
about solvers package please have a look on solvers readme file under follow-
ing URL:
http://www.netlib.org/ampl/solvers/README

4.2.3 Getting HSL

Information on the Harwell Subroutine Library (HSL) is available at
http://www.cse.clrc.ac.uk/nag/hsl/
Some of the required HSL routines are available in the HSL Archive which can
be obtained for free for non-commercial purposes. It is user responsibility to
make sure that he utilises these routines according to the licence conditions.
Here are listed sparse symmetric linear solvers with their licence conditions:

* MA57 this solver is distributed as part of commercial copy of the HSL
library. It can also be obtained by academic who wants to use the "HSL
2007 for Researchers" library

* MA27 - this solver is distributed as part of HSL Archive.

* MC19 - this solver is distributed as part of HSL Archive.

In order to download mentioned HSL Archive subroutines (like ma27 and
mc19) one needs to register at the HSL Archive website:
http://hsl.rl.ac.uk/archive/hslarchive.html
or the HSL 2007 for Researchers website:
http://hsl.rl.ac.uk/hsl2007/hsl20074researchers.html
After successful registration process, it is possible to log in and go to the page
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that lists all the available HSL packages for download and click on the name
of the desired routine (like MA27). This redirects the user to the download
page with the button "Download Package (comments removed)". Here the
user should click on that button and leave the precision choice at default
setting which is "Double Precion". This action brings up a web page which
contains the code for the subroutine as text. All that has to be done now,
is to save this page into a corresponding Fortran file, e.g ma27ad.f in case
of MA27 routine. Alternatively if the web browser does not provide "Save
page to" option, one can simply select all the content of the web page and
then copy and paste it into mentioned Fortran file. The same steps should
be performed in case of downloading MC19 routine which should be saved
into mc19ad.f file.
When downloading MA57 routine, it is essential to download not only the
source code of the routine but also all the dependencies. This can be done
by clicking on "Download HSL dependencies" on the ma57 download page
which gives everything packed into a one file. Below the dependencies for
the MA57 routine are listed:

* fd15ad.f

* mc21ad.f

* mc34ad.f

* mc47ad.f

* mc59ad.f

* mc64ad.f

In case of using METIS routine a metis.f dummy file is required. However
it is strongly recommended to use METIS with configure flag to specify pre-
compiled Metis library. For further information about using METIS please
have a look at the ThirdParty/Metis directory.
It is not necessary to download any dependencies for MA27 and MC19.

4.2.4 Getting LAPACK

In order to download LAPACK please go to official LAPACK web site:
http://www.netlib.org/lapack/
and click on one of the release links, e.g. LAPACK version 3.1 or LAPACK
version 3.2.2. LAPACK content should be unpacked into the:
IPOPTBASEDIR\ThirdParty\LAPACK\LAPACK directory
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NOTE: The LAPACK source files are expected to be in the subdirectories:
IPOPTBASEDIR\ThirdParty\LAPACK\LAPACK\SRC
IPOPTBASEDIR\ThirdParty\LAPACK\LAPACK\INSTALL

5 Ipopt Compilation in Microsoft Visual Stu-
dio

Remarks: The information gathered in this section is based on and sums
up Wächter at 2 in the IPOPTBASEDIR/Ipopt/MSVisualStudio/ directory
there are three Microsoft Visual Studio Solution folders. This section de-
scribes step by step how to compile and build each of them. Before starting
any of the steps mentioned in this section, it is strongly recommended that
the required third party code components have already been downloaded
and placed in the instructed directories. In order to get information on
downloading third party code please go to Download and Installation section
or read INSTALL.* files in the third party code directories, e.g IPOPT-
BASEDIR\ThirdParty\BLAS\INSTALL.BLAS.
All solution are Microsoft Visual Studio 2005 ones but they are completely
transferable to Visual Studio 2008. One tries to open any of the solutions with
Microsoft Visual Studio 2008 a conversion wizard window will pop up(figure
5) and take the user step by step through conversion process.

5.1 Compilation of Binary DLL Link Example Solution(BinaryDLL-
Link-Example folder)

Note: DLLBASEDIR refers to the main directory where downloaded dll
package was unpacked.
To compile this solution, one needs to obtain the Ipopt dll package and un-
pack its content into the IPOPTBASEDIR\Ipopt\MSVisualStudio\BinaryDLL-
Link-Example directory so that the "include\coin" folder of the binary dll
package will be located in BinaryDLL-Link-Example solution folder. The
include\coin folder is specified as additional include directory for the solu-
tion and contains header files defining implementation cpp files that were
compiled into Ipopt dll. It is also possible to unpack dll package according
to the user preferences but then, one should make sure that the right path
to the include\Coin folder is specified as additional include directories of the
solution.
Binary dll packages are available at the COIN-OR Ipopt project web site
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Figure 5: Visual Studio Conversion Wizard
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under following URL adress:
http://www.coin-or.org/download/binary/Ipopt/
To compile and run the solution, correct version(debug or release depending
on the build settings) of the Ipopt dll should be copied to the directory where
the compiled executable is located. E.g. In case of working on Windows op-
erating system on 32 bit machine please copy the files:
Ipopt*.dll and Ipopt.lib from:
IPOPTBASEDIR\Ipopt\MSVisualStudio\BinaryDLL-Link-Example\lib\
win32\degug\to:
IPOPTBASEDIR\Ipopt\MSVisualStudio\BinaryDLL-Link-Example\Debug\
as this is a default location for the executable file.
It is also possible to locate Ipopt*.lib and dll file according to user preferences,
as long as, he makes sure that the right additional dependency directories
and additional dependencies for the linker input were specified.

Additional Remarks In DLLBASEDIR\lib\win*, where * reprsents the
Windows operating system architecture (e.g 32), there are debug and release
folders which hold versions of the Ipopt dll and lib files respectively. It is
very important that user uses the dll and lib files of the appropriate ver-
sion for the build settings since debug and release versions are not binary
compatible. This is mainly because Microsoft Visual C++ compiler treats
standard library string arguments of methods in the Ipopt C++ interface
in a slightly differently way. Consequently, using release dll in debug code
and vice versa will lead to stack corruption, runtime errors, or other hard-
to-explain crashes.
DLLBASEDIR\lib\win* also contains MKL folder where dll , linked against
the optimized Intel MKL Blas and Lapack libraries, is located. One can ben-
efit from these optimised libraries on multi-core processors. In case of single
core machines they do not appear to have much effect or can even lead to
slightly decreased performance.
When downloading dll package, it is essential to download one for the ap-
propriate architecture and operating system. It is also important that the
version number of the binary dll file corresponds to the version number of
the Ipopt distribution, e.g:
In case of having version 3.9.1 of Ipopt distribution on Windows 32 bit oper-
ating system please download Ipopt-3.9.1-win32-win64-dll.7z package from:
http://www.coin-or.org/download/binary/Ipopt/
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5.2 Compilation of Visual C++/C DLL Solution(v8
folder)

This solution compiles Ipopt library project against third party code C++
projects . These are HSL, LAPACK, BLAS and ASL.Please note that ASL
has only to be compiled if, someone wants to interface Ipopt through AMPL
language. In case of coding problems in C++ , ASL project does not have
to be compiled and can be omitted in the build process.
Since some of third party code is written in Fortran, and Visual Studio keeps
references to C files it is also necessary to obtain the f2c Fortran to C com-
piler. Below are presented steps that user should go through to build the
solution:

1. From netlib, download the file:
http://www.netlib.org/f2c/libf2c.zip
and extract it in:
IPOPTBASEDIR\Ipopt\MSVisualStudio\v8
(do not specify a "libf2c" subdirectory in the path) so that one will see
the file:
BASDIR\Ipopt\MSVisualStudio\v8\libf2c\makefile.vc

2. Open a Visual Studio DOS prompt and go into the directory:
cd BASDIR\Ipopt\MSVisualStudio\v8\libf2c\
Here one should type:
nmake -f makefile.vc all
If there is a problem related to the comptry.bat file, please edit the file
makefile.vc and just delete the one occurance of the word "comptry.bat".
If an error stating that unistd.h is not found occurs, edit the file ’make-
file.vc’ and add "-DNO_ISATTY" to CFLAGS.

3. Download the Fortran to C f2c.exe executable, place it somewhere on
the hard drive and add its location to the Windows path variable.
Adding f2c.exe to the path variable will enable user to access Fortran
to C compiler from any location on the hard drive.
Fortran to C compiler can be obtained from the following link:
http://www.netlib.org/f2c/mswin/

4. Please note that this step is only necessary if it has not been done, when
going through Download and Installation section in this document
Download the Blas, Lapack, and HSL source code into (for further
information about this step please go to Download and Installation
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section in this document or read the INSTALL.* files in the appropri-
ate subdirectories of ThirdParty folder):
BASDIR\ThirdParty

5. In a Microsoft Visual Studio Console window, go to the directory
BASDIR\Ipopt\MSVisualStudio\char92v8\libCoinBlas
and run the batch file:
convert_blas.bat
This runs the Fortran to C f2c compiler and generates new C files of the
BLAS library that was originally developed in Fortran. After running
bat file, one should get the following output in the console window
(figure 6)

6. Repeat the previous step in the following directories:
BASDIR\Ipopt\MSVisualStudio\v8\libCoinLapack
BASDIR\Ipopt\MSVisualStudio\v8\libCoinHSL
using the convert_*.bat files that are located there, where * corre-
sponds to name of the third party code module, e.g. HSL. The outputs
of the bat files in console window for translating HSL and LAPACK
from Fortran to C are presented in the figures 7 and 8 respectively. If
everything went well, user should obtain similar output on his console.

7. This step compiles ipopt.exe AMPL solver executable and is only re-
quired if one wants to interface with Ipopt through AMPL language
for specifying optimisation problems. In order to do it please follow
the steps below:
Download the ASL code into the directory(for information about down-
loading the ASL code please see Getting ASL subsubsection in the
Download and Installation section of this document or see INSTALL.ASL
file in the directory given below):
BASDIR\ThirdParty\ASL
Then, in a Visual Studio DOS prompt in that directory, type:
copy details.c0 details.c
nmake -f makefile.vc
If comptry.bat reports errors, delete its occurrence in the makefile.vc.
Calling makefile compiles and builds ipopt.exe AMPL solver executable.
If this process is executed successfully, one should get the console out-
put as presented on the figure 9.

Now it is possible to open the solution file:
BASDIR\Ipopt\MSVisualStudio\v8\Ipopt.sln
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Figure 6: Convert Blas Bat File Console Output

20



Figure 7: Convert HSL Bat File Console Output
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Figure 8: Convert LAPACK Bat File Console Output

Figure 9: ASL Makefile Console Output
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right click on the solution icon in the solution explorer tree view and in the
right click content menu select Build Solution option.This will compile the
Ipopt library, and C++ example project. It is also possible to compile each
project separately. In order to do it please follow the given build order since
third party code projects are also dependent on each other:

1. libCoinBLas

2. libCoinLapack

3. libCoinHSL

4. libIpopt

5. hs071_cpp

6. IpoptAmplSolver (optional, only for compiling ipopt.exe AMPL solver
executable if ASL code was downloaded)

Please note that in case of building the whole solution the right build order
is already specified and all projects are linked with each other so it is not
necessary to worry which library project should be compiled first. To see the
build order in Visual Studio please right click on solution or any project in
the Visual Studio solution explorer and select Project Dependencies option
in the right click content menu. This action opens a new window where build
order and project dependencies can be specified for any project in the solu-
tion(figure 10). It is possible to swap between project by Projects drop down
box. and edit their dependencies. On the Figure 11 project dependencies for
hs071_cpp example project are shown. As it can bee seen, IpoptAmplSolver
project is excluded since hs071_cpp does not implement AMPL modelling
language, hence it is not necessary to compile a solver interface for it.
Now it is possible to add another C++ project that will represent the opti-
misation problem and call Ipopt solver to get solution. To add a new project
just click on the solution icon in the Visual Studio solution explorer(tree
view) and in the right click content menu select Add -> New Project and
select typical C++ CLR Console Application project in the Add New Project
window among available projects(Figure 12).After creating a new project it
is important to specify the correct paths for the additional include directo-
ries,and also additional dependencies and library directories for the linker.
To do it, please follow steps given below.

1. Right click on the new project in the Visual Studio project tree view and
select properties in the content menu. In the Property Page window
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Figure 10: Visual C++/C DLL Solution Project Build Order
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Figure 11: Visual C++/C DLL Solution Project Dependencies
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Figure 12: Add New Project Window
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Figure 13: Visual C++/C DLL Solution Additional Include Directories

please go to Configuration/(C/C++)/General and add the following
include directories:
..\..\..\..\Ipopt\src\Interfaces
..\..\..\..\Ipopt\src\Common
..\..\..\..\BuildTools\headers
..\..\..\..\Ipopt\src\Algorithm
..\..\..\..\Ipopt\src\LinAlg
as it was done for the hs071_cpp example project(figure 13)

2. In the Property Page window please go to Configuration/Linker/Gen-
eral and add the following relative path to Additional Library Directo-
ries:
..\libf2c (figure 14)

3. In the same window, please go to Linker/Input and add the following
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Figure 14: Visual C++/C DLL Solution Additional Library Directories

Figure 15: Visual C++/C DLL Solution Additional Dependencies

additional dependency vcf2c.lib in the Additional Dependencies field
(Figure 15)

Now it is possible to start implementing optimisation problem in the new
C++ project. For further information about interfacing with Ipopt using
C++ language please see Ipopt documentation on the COIN - OR initiative
Ipopt project documentation web page:
http://www.coin-or.org/Ipopt/documentation/
It is also possible to obtain a pdf version of documentation and tutorial in
the documentation section on COIN - OR initiative Ipopt project web page:
http://www.coin-or.org/Ipopt/
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5.3 Compilation of Visual C++/Fortran DLL Solution
(v8-ifort folder)

This section instructs the user how to compile Visual C++/Fortran dll so-
lution that results in the dynamic link library that can be utilised in any
Visual Studio project. It relies mainly on the Intel Fortran compiler to com-
pile the third party Fortran components (especially since the MUMPS solver
uses F90). This dll includes the BLAS, LAPACK and MUMPS solvers which
can be freely distributed. Alternatively, the solution contains a configura-
tion where the resulting dll uses the (optimised, multi-threaded) Intel MKL
versions of the BLAS and LAPACK libraries rather than the free-distributed
netlib versions. Please note that it is user responsibility to obtain optimised
multi-threaded versions of the BLAS and LAPACK libraries.
It is possible to compile separately non-free HSL and PARDISO solvers into
a dll which can be dynamically loaded by the Ipopt dll when these solvers are
selected by the user in the C++ program. Thus, there is a separate project
to compile the HSL dll in the Visual Studio solution.
In order to compile the solution please follow the steps given below:

1. This step is only necessary if it has not been done when going through
Download and Installation section.
Download the Blas, Lapack, and MUMPS and Metis source code into(for
further information about this step please go to Download and Instal-
lation section in this document or read the INSTALL files in the ap-
propriate subdirectories of ThirdParty folder):
IPOPTBASEDIR\ThirdParty

2. Edit the file:
BASDIR\Ipopt\MSVisualStudio\v8-ifort\Ipopt\IntelPaths.vsprops
to reflect the base path to the Intel compiler on the hard drive to allow
the link step succeed in finding the appropriate libraries.

3. Open the solution file:
BASDIR\Ipopt\MSVisualStudio\v8-ifort\IpOpt-ifort.sln

After selecting a build configuration (win32/x64 release/MKL release/de-
bug), one can build the Ipopt project to obtain the Ipopt dll for that con-
figuration. The project dependencies will make sure the all third party com-
ponents are built as well. The compile step of the MUMPS Fortran project
might fail for a couple times until all interdependencies between the F90 files
are resolved properly.
If one wants to use the HSL solver, then it is necessary to obtain the HSL
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source code(please see Download and Installation section of this document)
and build either the libhsl project in case of having both the sources for the
MA27 and MA57 solvers, or libhsl-no-MA57 in case of having access to the
MA27 solver. Both projects result in libhsl.dll, which should be placed into
path to make it available to Ipopt for more information; see Wächter at 2.

Additional Remarks When linking against Ipopt.dll in newly created
C++ project, one should use the IpoptApplicationFactory method exported
by the DLL to obtain an IpoptApplication pointer rather than using the new
operator. By doing so it is possible to call the methods of the IpoptAppli-
cation object as usual. Note, however, that the virtual interfaces exposed
(recursively) by the DLL do not provide access to the more exotic interfaces
or member functions in the Ipopt library. Another option for calling Ipopt
methods is to use the C interface of Ipopt which is also exported by the DLL.
For more information about IpoptApplication pointers please go to Ipopt tu-
torial and documentation available at1:
www.coin-or.org/Ipopt/documentation

6 References
1. Andreas Wächter, Introduction to Ipopt: A tutorial for downloading,

installing, and using Ipopt, Rev (1930), 2010, https://projects.coin-
or.org/Ipopt

2. Andreas Wächter, Read Me files in Ipopt download package https://projects.coin-
or.org/Ipopt
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Appendix C

Derivatives of the Flux and
Concentration Terms

In this appendix we explain further the analitycal expressions for the derivatives of the
terms used in (5.2.8) and (5.2.9).

C.1 Concentrations

Since the concentration of either oil or water phase in the given block is a function
of pressure and water saturation in this block only the derivatives of the concentration
terms with respect to the states of the same block will be non-zero. The derivatives of
water concentration in the block i,j with respect to presure and water saturation i, j are
the following:

∂Cw,i, j

∂S w,i, j
=
∂(φρw(Po,i, j)S w,i, j)

∂S w,i, j
= φρw(Po,i, j) (C.1.1a)

∂Cw,i, j

∂Po,i, j
=
∂(φρw(Po,i, j)S w,i, j)

∂Po,i, j
= φS w,i, j

∂ρw(Po,i, j)
∂Po,i, j

(C.1.1b)
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The derivatives of oil concentration in the block i,j with respect to presure and water
saturation i, j are the following:

∂Co,i, j

∂S w,i, j
=
∂(φρo(Pw,i, j)(1 − S w,i, j))

∂S w,i, j
= −φρo(Po,i, j) (C.1.2)

∂Co,i, j

∂Po,i, j
=
∂(φρo(Po,i, j)(1 − S w,i, j))

∂Po,i, j
= φ(1 − S w,i, j)

∂ρo(Po,i, j)
∂Po,i, j

(C.1.3)

Where the derivatives of the water and oil densities with respect to pressures are the
following:

∂ρo(Po,i, j)
∂Po,i, j

= coρo(Po,i, j) (C.1.4a)

∂ρw(Po,i, j)
∂Po,i, j

= cwρw(Po,i, j) (C.1.4b)

C.2 Fluxes

We have already explained in section thte in case of flux derivatives we can expect the
non-zero elements when differentiating the water/oil fluxes of the block i,j with respect
to states of this block as well as with respect to states of the neighbours. By neighbours
we understand the blocks sharing the same interface on one of the sides, e.g. the east,
west, south or north. The reason for this is that we used two point flux approximation
and single point upstream scheme for flux computation where fluxes at the interfaces
between 2 blocks are computed using the pressure gradient between those 2 blocks.
The derivatives of water flux terms in the block i,j with respect to water saturation in
this block are the following:

∂Fw,i, j

∂S w,i, j
= −

∂
(

∆Nw,x,i, j

∆x +
∆Nw,y,i, j

∆y

)
∂S w,i, j

(C.2.1)

where the derivative of flux contirbution in x direction is the following:

∂
∆Nw,x,i, j

∆x

∂S w,i, j
=
∂(Nw,x,i+, j − Nw,x,i−, j)

∂S w,i, j

1
∆x

(C.2.2)

and the derivatives of the fluxes at the interfaces are the following:

∂Nw,x,i+, j

∂S w,i, j
=

 0 Pi+1, j − Pi, j ≥ 0
−kx,i+, j

Pi+1, j−Pi, j

xi+1−xi

∂ζw,i, j

∂S w,i, j
Pi+1, j − Pi, j < 0 (C.2.3a)

∂Nw,x,i−, j

∂S w,i, j
=

 0 Pi, j − Pi−1, j < 0
−kx,i−, j

Pi, j−Pi−1, j

xi−xi−1

∂ζw,i, j

∂S w,i, j
Pi, j − Pi−1, j ≥ 0 (C.2.3b)



C.2 Fluxes 157

While the derivatives of oil fluxes are computed in the same way, let us focus on the
derivatives of water/oil flux tems with respect to oil pressure.

∂Fw,i, j

∂Po,i, j
= −

∂
(

∆Nw,x,i, j

∆x +
∆Nw,y,i, j

∆y

)
∂Po,i, j

(C.2.4)

∂
∆Nw,x,i, j

∆x

∂Po,i, j
=
∂(Nw,x,i+, j − Nw,x,i−, j)

∂Po,i, j

1
∆x

(C.2.5)

∂Nw,x,i+, j

∂Pw,i, j
=

 kx,i+, j
ζw,i+1, j

xi+1−xi
Pi+1, j − Pi, j ≥ 0

−
kx,i+, j

xi+1−xi
( ∂ζw,i, j

∂Poi , j
(Pi+1, j − Pi, j) − ζw,i, j) Pi+1, j − Pi, j < 0

(C.2.6a)

∂Nw,x,i−, j

∂Pw,i, j
=

 −kx,i−, j
ζw,i−1, j

xi−xi−1
Pi, j − Pi−1, j < 0

−
kx,i−, j

xi−xi−1
( ∂ζw,i, j

∂Poi , j
(Pi, j − Pi−1, j) + ζw,i, j) Pi, j − Pi−1, j ≥ 0

(C.2.6b)

The water/oil flux derivatives with respect to states of the neighbouring blocks are
computed following the same logic.
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Appendix D

List of Conferences and
Workshops

This appendix lists all the conferences and workshops at which the work done in this
thesis was presented in form of either poster or oral presentation.

• Centre for Energy Resources Engineering (CERE) Discussion Meeting in Hillerød,
Denmark on 6-8 June 2011

• Student Technical Conference STC 2011 in Wietze, Germany on 13-14 October
2011

• 17th Nordic Process Control Workshop hosted by Technical University of Den-
mark (DTU), Kgs Lyngby, Denmark on 25-27 January, 2012

• East Meets West International Student Petroleum Congress in Krakow, Poland
hosted by AGH University of Science and Technology on 25-27 April 2012

• Centre for Energy Resources Engineering (CERE) Discussion Meeting in Hillerød,
Denmark on 13-15 June 2012
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Appendix E

Project Objectives (Contract)

As requested the aim of this document is to give an overall overview on what is going
to be done in the Master Project entitled Modeling and Production Optimisation of Oil
Reservoirs.

First of all, we will introduce ourselves into optimization topic, with special emphasis
on non-linear constrained optimization. This will be done by solving some simple non-
linear programs, so called nlps by using Interior Point Optimiser.

Next step is to do the research in the field of optimization of upstream oil production
and try to sum up, what so far has been done in this area,, e.g. optimization methods
have been used e.g. single shooting with adjoint-based gradient computation.

In addition, we will introduce our own approach for solving oil problem, which is
direct collocation method, where we will translate the continuous time problem into
discrete nlp. Before doing that however, we will get familiar with the tool for large
scale non-linear optimization called Ipopt. The tool will be set up in Visual Studio en-
vironment and simple nlps and optimal control problems will be solved (Van Der Pol
Oscillator problem) before tackling oil problem.

What is more, we will derive the mathematical model of the two phase (oil and water)
immiscible flow reservoir and demonstrate how we come up with dynamic constraints
on an objective cost function.
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After all these steps, we will tackle oil problem using direct collocation method which
will translate it to discrete nlp. The discrete nlp with its corresponding reservoir model
will be implemented in Visual Studio and solved using Ipopt.

Finally, results will be shown, and conclusion will be made.

Danmark, Kongens Lyngby,
March 2012,
Dariusz Michal Lerch
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