
Detection and One Class
Classification of Transient Events

in Train Track Noise

J. Arturo Lozano-Angulo

Kongens Lyngby 2012
IMM-M.Sc.-2012-120



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2012-120



Summary (English)

The thesis is about detection and one class classification of transient events in
train track noise. Two different detection approaches have been designed to
locate impulsive noise events in train track noise data. They make use of a se-
lected set of features to perform the detection of these events. These approaches
are novelty detection based approaches and simple threshold based approaches.

The novelty detection approaches take advantage of the abundance of train
track noise, containing no transient events, to create a model of normality of
the system. To perform detection, they compare any incoming data to the data
model by assessing if the incoming data belongs or not to it.

The simple threshold based approaches apply a threshold to a specific set of
feature values extracted from incoming data. Where abnormal high feature
values indicate the presence of transient events.

Three different data sets have been extracted from a long duration train track
noise measurement to create data models and to test and analyse the different
proposed detection techniques. The performance of the detectors is studied from
two different points of view. The first one is related to the ROC curve produced
by the detectors using a training data set. The second one is related to the
consistency of detection results in different data sets.
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Chapter 1

Introduction

Our modern era is characterized by the enormous amount of information gen-
erated everywhere. This increase of information is, at some extent, linked to
the capacity of storing it and generating it. For example, the improvements of
sensor technology allows us to retrieve information from our surroundings at
higher rates and more resolution, increasing in that way the amount of infor-
mation produced. Most of the time, the storage of this information is not an
issue, for example, hard disks have incremented their capacities greatly, where
it is common to have a 1 Terabyte hard disk at home. On the other hand, the
capacity to analyse all this information has not increased at the same rate. This
issue can be observed from two different points of view, a hardware processing
point of view and a software processing point of view. We are focused in the
software point of view where we are interested in extracting certain evens of
information from a huge data set.

Every day, society becomes more conscious about life quality in terms of services
and habitat surroundings. For example, noise regulations around apartment
buildings or office buildings become stricter because the life quality or efficiency
of workers would be degraded in the presence of noise. However, our modern life
style has also introduced a lot of noise to our lives, from very powerful stereo
systems, to huge and noisy vehicles. Thus, a conflict between comfort and
quality becomes present. Hence, the importance of noise control in buildings,
vehicles, etcetera. Train has been an important means of transportation all
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around the world, however, the size of the rail vehicles and the speeds it reaches
makes it more susceptible to create high levels of noise. One of the train track
defects that produce the highest levels of noise are due to excessive gaps between
train track segments. Hence the importance of being able to find this kind of
defects. An approach to deal with the problem is to mount microphones on
a train and record its journey. Then, by analysing the recorded signals, noisy
events can be detected. However, the amount of information collected can be
large due to the long distances a train can travel. Thus, the following questions
arise. Is it possible to detect train track defects based on a measurement of
train track noise? Could the proposed detection techniques perform adequately
regardless of the noise level present in the measurements?

The objective of this project is to detect transient events in train track noise
by analysing large amounts of recorded train track noise data. A detection task
typically consists of feature extraction and application of a detection strategy
based on the extracted features. Thus, a set of relevant features is studied and
applied through different detection strategies. Moreover, it is important to know
if the proposed detection methodologies perform well in terms of the number of
transient events they can detect and the consistency of the detection in different
data sets. Hence, the proposed detection strategies are evaluated through two
performance measures applied to different train track noise data sets. Finally, a
framework implemented in Matlab, for feature extraction, event detection and
performance evaluation is proposed in this project.

This thesis report is structured in the following way: Chapter 1 covers this
introduction. Chapter 2 shows a summary of the detection techniques in the
relevant fields of transient event detection providing an insight of the useful
techniques and features for the goals of this project. Chapter 3 provides the
details of the selected techniques and features based on the literature review,
as well as 2 new features proposed by the author. Also, the two main detection
strategies are covered. Chapter 4 provides the details of the designed framework
starting with a detailed description of the proposed detectors. The proposed
performance measures follow and finally, the data sets with which the detectors
were tested are described. Chapter 5 shows the results obtained as well as an
analysis of them. Finally, Chapter 6 contains the conclusions as well as the
future work suggestions. In the appendix section, detailed test results can be
found as well as a schematic of the framework structure in terms of the Matlab
scripts created.



Chapter 2

Literature Review

Transient event detection is a really broad subject. The fields that make use
of transient event detection techniques range from medical applications, to seis-
mology and machine monitoring, among others. However, not all of the fields
are relevant for transient detection in rail track noise. Thus, in this chapter, a
brief overview of the main transient event detection approaches related to tran-
sient event detection in rail track noise are presented as well as their fields of
application.

2.1 Novelty Detection

Novelty detection involves the characterization of the normal behaviour of a
system in order to identify when the system is performing outside its normal
operation state. The motivation behind novelty detection is that it is often
difficult to sufficiently train a system with the data pertaining to the events
that are to be detected, due to the fact that this data is not often available,
as the event does not occur frequently. Moreover, the deliberated generation of
the event might be difficult and expensive. Instead, it is easier to obtain data
corresponding to the normal state of the system. Hence, the normal state of the
system is modelled by using data corresponding to normal behaviour.
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The motivation behind novelty detection is that is often difficult to train a
system in all the possible kind of events it may encounter. Therefore, it makes
good sense to train it with the information that prevails [MS03a].

According to Markou and Singh [MS03a][MS03b], novelty detection can be di-
vided into two different branches, i.e., statistical approaches and neural network
based approaches.

2.1.1 Statistical approaches

The statistical approaches basically model the normal operation of the system
based on its statistical properties and define a novelty threshold. Any samples
that lie above the novelty threshold are considered as novelties or outliers from
the "normal” data. There are different ways in which a distribution model can
be built, i.e., using parametric or non-parametric distribution models.

2.1.1.1 Parametric approaches

Parametric approaches assume that the data belongs to a known distribution.
The parameters of a distribution are chosen in such a way that the distance
between the model and the data is minimized.

Gaussian Mixture Model (GMM)[WZ08] is often used to create data models.
However, one of the main problems with GMMs is the dimensionality of the
data. If the dimensionality is high, a large number of samples is required to
create an accurate model. In the literature, this is known as the curse of di-
mensionality [Das10]. An example of this limitation can be found in [TNTC99],
where the dimensionality of the data consisted of 18 dimensions and only 52
training samples were available. In high dimensional distributions ”the major
portion of the probability in the joint distribution lies away from the central re-
gion of the variable space. ... Therefore, it becomes difficult to learn about what
the distribution is doing in the central region" [Das10]. Thus, is very unlikely
that those 52 training samples could provide enough information about the 18
dimensional distribution. When using GMM, the parameters of the model are
estimated such that the log likelihood of the data with respect to the model is
maximized. This optimization problem can be solved by using, for example, the
Expectation Maximization algorithm [DLR77].

In [CBT07], Clifton et al. monitor aerospace gas-turbine engines and per-
form on-line novelty detection on it. The vibration of the engine is measured
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through transducers placed on various points of the engine. The amplitude of
the recorded data is modelled with GMM and the novelty thresholds are related
to sensor noise ratings.

In [NPF11], novelty detection is applied to sound surveillance in different en-
vironments. The "normal” behaviour of the system is modelled into a GMM.
The chosen features are based in those provided by the MPEG-7 audio proto-
col, Mel frequency cepstral coefficients, intonation, Teager Energy Operator and
wavelets. The number of GMM kernel components was varied, showing a strong
influence in the final results. The novelty threshold is given by the minimum
probability of the training data.

In [WZ08], Weiss et al. classify different terrain types for a moving robot.
Their system is able to identify novel terrain types by modelling the training
data into a GMM and defining a threshold. If the test data is considered novel,
the information is stored until a certain number of similar test data samples are
gathered. In that moment the GMM is retrained to be able to identify other
kinds of terrains apart from the already modelled.

When using statistical methods there is always the question of where to set
the novelty threshold. A good approach to decide this is proposed by Extreme
Value Theory (EVT). Extreme Value Theory models the distribution of the
extreme values of a distribution. This theory is well developed for uni-modal
and univariate distributions [CHT09]. However, the univariate uni-modal EVT
is not applicable to GMM. In [CHT09] [CHT11] EVT is extended to multimodal
multivariate distributions and is applied to engine and vital-sign monitoring.

Hidden Markov Models (HMM) [Rab89] are also used to do novelty detection,
however, they are not very popular in transient event detection. HMMs are
used to model sequential data or time dependent data. In [Mil10] [NPF11],
they are used to model the "normal” behaviour of a sound surveillance system.
The HMM breaks the training data sequences into a predefined number of states
and each state is modelled by a GMM. The HMM is trained and its parameters
are estimated using the Baum-Welch algorithm [Wel86]. The novelty threshold
is defined as the minimum log-likelihood among all training sequences. More
over, during testing, if a test sample is considered as normal, this new sample
is used to update the parameters of the HMM.

In relation to this project, a GMM could be suitable for the modelling of the
distribution of the normal state of the system. In this case, the normal state of
the system is the train track noise signal containing no transient events in it.
However, EVT will not be implemented in this project, it may be considered
for the definition of a suitable novelty threshold.
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2.1.1.2 Non-parametric approaches

The k-nearest neighbour[IPH09] technique is also used to model the "normal”
behaviour of a system, but in a non-parametric manner. The main idea is to
find how close a test data point is in relation to the k-nearest neighbours in the
training data. One of the main problems with this technique is that the number
of computations increase with the number of data points [MS03a].

An example of the application of the k-nearest neighbour technique, among
other techniques, can be found in [GMES+99]. In this work, the Euclidean
distances [TK08] between each point and its neighbours are found for a training
data set. A distance proportional to the maximum of these distances is set as
the novelty threshold. On every incoming data test point, the distances between
its neighbours is calculated and if, it exceeds the threshold, it is considered as
a novelty.

In [CO10], Cabral et al. produce a model of normality using an algorithm known
as Chameleon. This algorithm uses the k-nearest neighbour technique to create
improved quality clusters, which are built in the following way: the training
data is split into different clusters defined by the k-nearest neighbour, then the
clusters are reorganized through partitioning and merging them using a special
criteria. Once the model is created, the authors are able to identify novelty
based on the distance to the clusters and also in the number of consecutive test
data samples that belong to one particular cluster. This methodology is applied
to electrocardiograms and respiration time series.

Parzen density estimation [Sil86] is another method, based on kernel functions,
used to estimate data density functions with only few parameters or not pa-
rameters at all. In [YC02], Yeung et al. choose radially symmetric Gaussian
functions as kernel functions for the estimation method. The main reason, ac-
cording to the authors, is because this functions are smooth and can be defined
by just a variance parameter. The novelty threshold is found using a subset
of the whole training data. Even if the application field of this work is differ-
ent from transient event detection (intrusion detection), the main idea of their
method can be applied to transient event detection.

In relation to this project, the k-nearest neighbour technique could be used to
find the distances between each of the data points in the transient-free train
track noise signal. In this way a novelty threshold could be defined as a propor-
tion of the maximum of the distances between these data points. However, as
the amount of data in this work is expected to be high, the k-nearest neighbour
technique might not be suitable. On the other hand, Parzen density estimation
could be used to model the transient-free train track noise signal. In this way,
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a comparison between this technique and other parametric approaches can be
done, and an evaluation of which of the two models produced a better represen-
tation can be performed.

2.1.2 Neural network based approaches

Many different kinds of neural networks[Sam07] have been used to do novelty
detection. Examples of those networks can be found in [MS03b] and [Mil10].
However, according to [MS03b], there is not enough comparative work between
the different approaches to assess which techniques work better on different
types of data.

In [JMG95] an auto-encoder neural network is applied to helicopter fault de-
tection, DNA pattern recognition and classification of sonar targets. An auto-
encoder is a neural network composed of a certain number of input neurons
and the same number of output neurons. It also has one hidden layer with less
number of neurons than the input. The idea is to train the network with "nor-
mal” training data. Then the network is presented with a test sample. If the
sum of the absolute error between the input and the output is sufficiently small,
the sample is considered "normal”, and when the error is above the novelty
threshold, the sample is considered "novel”.

A Support Vector Machine (SVM) [JF00] is another kind of neural network that
can be used to do novelty detection. According to [MMB11], SVMs are able to
classify by finding a hyper-plane that divide the classes involved. However,
in a novelty detection style, the classification problem is reduced to only one
class. Hayton et al. [HUK+07] train a SVM that finds a hyper-plane that
separates the training data from the origin in feature space, with the largest
margin. The test samples that lie in the origin’s hyper-plane are considered as
novel. Their method is applied to jet engine monitoring. In [MMB11], they
use Support Vector Regression (SVR) to find anomalies in water distribution
systems. Apart from classification, SVMs can also be used to do regression
estimation in time series. SVR models and predicts time series. The modelling
or training is done using a "normal” time series. The model is presented to
test data and the predicted values are compared to the observed values. When
the error between these variables exceed a certain novelty threshold, novelty is
detected.

In relation to this project, an auto-encoder could be trained with a transient-
free train track noise signal. Then, when presented to any transient events, the
network should not be good enough to reconstruct the input in its output, as it
has not been trained with this kind of events. In this way, the error would be



8 Literature Review

larger for transient events and detection could be performed. A Support Vector
Machine could be used to find a hyper-plane that separates the transient-free
train track noise signal data points. Then, when presented to any transient
events, these new points should be located in a hyper-plane different from that
of the transient-free data points. However, due to time restrictions, only the
auto-encoder technique is explored in this project.

2.2 Wavelets

Wavelet analysis is considered one of the most recent tools for signal processing.
Its properties makes it suitable for analysing non-stationary signals in detection
applications. Unlike the Fourier transform, which uses sines and cosines as
basis functions, the wavelet transform uses a family of other basis functions,
or mother wavelet, that describe a signal in space and scale domains, somehow
equivalent to time and frequency domains. Thus, the selection of these basis
functions is critical for the application of the technique [ABSC11]. The wavelet
transform is divided into three kinds, namely, Continuous Wavelet Transform
(CWT), Discrete Wavelet Transform (DWT) and Wavelet Packet Transform
(WPT). Equation 2.1 shows the definition of the Continuous Wavelet Transform
[Mal99], where ψ is the mother wavelet, u is the space or position parameter
and s is the scale parameter.

Wf (u, s) =

∞∫
∞

f (t)
1√
s
ψ∗
(
t− u
s

)
dt (2.1)

One of the fields that makes extensive use of wavelet transforms is Power Quality
(PQ). This field of application consists on the opportune detection and correct
identification of electric power supply transient disturbances to protect an in-
creasing number of sensitive electrical equipment connected to the electric sup-
ply network [CDS07]. In [RAMG10] and [TR11] the DWT and CWT are used,
respectively, to do basic transient event detection. In both studies, the coeffi-
cients of one specific scale of the transformed signal are used to detect transient
events. When any of the coefficients exceeds a determined threshold a transient
event is detected. The basis functions used are the discrete Meyer and Morlet,
respectively. No further information in the selection of the basis functions is
mentioned.

Another example in PQ is found in [MJG10]. Masoum et al. use the DWT
combined with a neural network approach to perform detection and classifica-
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tion of transient events. The proposed procedure is to first filter the captured
power signals using a DWT. Then, the mother wavelet is selected. The authors
went through a thorough test analysis phase considering 40 different types of
basis wavelet functions. They concluded "The choice depends on the nature of
the application. For detection of low amplitude, short duration, fast decaying
and oscillating types of signals, the most popular wavelets are Daubechies and
Symlets families (e.g. db2, db3 etc. and sym2, sym3 etc.). Furthermore, the
accuracy of disturbance time localisation decreases as the scale increases. Also,
wideness and smoothness of mother wavelet depends on its number. Therefore
careful considerations are required for the selection of the suitable wavelet fam-
ily and its number. In this paper, after many examinations, the sym4 mother
wavelet was selected...”[MJG10]. Once the signal is transformed, the total har-
monic distortion in the wavelet domain of the processed input signal is calcu-
lated. If this quantity exceeds a certain threshold value, an event is detected
and the classification procedures are started.

Machinery monitoring is another example where wavelets are applied for the
detection of critical transient events which may lead to faults in the system. Al-
Badour et al. [ABSC11] use the CWT and WPT to study transient detection in
turbo-machinery. Based on a simulation study, they determine that the proper
wavelet basis functions to use for impulsive signals are the Gaussian, Daubechis
and discrete Meyer wavelets. The authors are able to detect a specific kind of
transient event based on the CWT by adopting the following procedure. After
obtaining the transform of the test signal, the local maxima in the coefficients
given by the transform are found. From the behaviour of the resulting local max-
ima lines they are able to detect transient events. The WPT is then applied to
the same kind of transient event for comparison, showing that the CWT is able
to produce better results. Furthermore, they combine the WPT and CWT to
detect other kind of transient events. The procedure consists of decomposing
the signal with WPT, reconstructing a specific level of the signal using the coef-
ficients given by the transform and then applying the CWT to the reconstructed
signal. Finally, the same local maxima lines criterion to identify the events is
used. In this work no automatic detection procedures are mentioned.

Seismology is other field that gathers experience in the detection of transient
events [Bar07]. The STA/LTA (Short Time Average to Long Time Average)
detector [Bar07] is one of the classic tools for detection in this field and it is
based on the analysis of the ratio of the amplitude of a seismic signal in short
and long time windows. It consists of two consecutive time windows of different
length that move synchronously along a seismograph. At every sample the
STA/LTA ratio is calculated. If the ratio exceeds a detection threshold then an
event is detected. This approach has two limitations, it cannot specify when an
event is over and it does not account for the frequency content of the detected
signal. The authors extend the STA/LTA detector to account for the duration of
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the event and the frequency analysis of the signal, using an envelope based and
WPT based approaches, respectively. Once again, the wavelet basis function
and the scale useful for the application are determined empirically.

In summary, wavelets appear to be a powerful tool to analyse non-stationary
signals with a great degree of detail and flexibility. However, the selection of the
basis function seems to play an important role for the success of the application
of the tool. Hence, a thorough study searching for the suitable wavelet basis
functions would be needed for the application of this tool in this project. Thus,
due to time limitations, wavelets are not covered in this work.

2.3 Adaptive Filtering

An adaptive filter is a special kind of filter that adjusts its parameters depending
on the environment where it is used, it can also track signals or system char-
acteristics varying on time [DSS07]. The adjustment of the coefficients is done
by an adaptation algorithm. One of the most used adaptation algorithms is the
Least Mean Square (LMS) algorithm. This algorithm makes use of a reference
signal representing the desired output of the filter. Thus, the algorithm adapts
the coefficients of the filter based on its inputs, which are the reference signal
and the error. The error is defined as the difference between the reference signal
and the output of the filter.

In [Cam99], an adaptive linear predictor is used to enhance electroencephalo-
gram (EEG) signals making easier the manual detection of transient events. The
adaptive linear predictor is used to attenuate the stationary components of the
EEG enhancing the non-stationary particularities of the signal. The authors put
special interest in the order of the filter claiming that a very low order would not
attenuate sufficiently the stationary peaks in the EEG, while a very high order
would retain false spectral peaks within the filter response. Thus, the authors
suggest a modification of the LMS algorithm that enhances the adaptation of
the filter coefficients.

An example in PQ where adaptive filtering is applied, not as the main detection
technique but as a crucial preprocessing step, is found in [RDR03]. Ribeiro et
al. filter the fundamental component of a sinusoidal power signal leaving any
transients present in the signal intact. To achieve this filtering step a very good
estimation of the fundamentalś frequency is required. Thus, a cascade adaptive
notch filter is used to estimate this frequency. The algorithm to adapt the filter
coefficients could be the classical Recursive Least Squares (RLS) or the LMS
algorithm. After the transients had been obtained from the original signal, a



2.4 Statistical Methods 11

DWT and Modulated Lapped Transform (MLT)[RDR03] are applied to obtain
a 14-dimensional feature vector to represent them.

Another work in the PQ field is given by [GE05]. As in the last example, the
authors use an adaptive filter as a crucial preprocessing step previous to detec-
tion. Gerek et al. use an adaptive filter to obtain the non-predictable portion
of the signal. The process consists of a decomposition of the input signal into a
lower resolution signal and a reference signal. The lower resolution signal is ob-
tained by down-sampling by a factor of 2 the input signal. The reference signal
is obtained by delaying one sample of the input signal and down-sampling the
resulting signal by a factor of 2. The adaptive filter estimates the reference sig-
nal using the lower resolution and the error between the estimate and reference
signals as inputs. Thus, the error signal contains the non-predictable portions
of the input signal. The main identification idea is that the non-predictable por-
tions of the signal are larger in magnitude when any transient events are present
in the input signal. This is due to the imposition of instantaneous spectral com-
ponents by any transient event. As the adaptation process cannot react instantly
to this sudden change, the error of the estimation is increased. The adaptation
algorithm used by the filter is again the LMS. After the non-predictable portion
of the signal is obtained, its statistical properties are analysed and the detection
of transient events is performed.

Adaptive filtering could be used in transient event detection in train track noise
by filtering the train track noise signal in such way that the stationary com-
ponents were eliminated from the signal. The stationary components could be
regarded as the part of the signal containing no transient events. Thus, the
remaining part of the signal, after filtering, would make more evident the pres-
ence of transient events. While this might be possible, it is not clear that the
transient-free portion of the signal could be assumed to be stationary. More-
over, other techniques to make more evident the presence of transient events are
studied in this project.

2.4 Statistical Methods

The statistical properties of a signal are often used to detect transient events. As
already mentioned in the last section [GE05], Gerek et al. use an adaptive filter
to obtain the non-predictable portion of a power signal. Then, this error signal is
analysed by a statistical decision block to state if there are any transient events.
The statistical block analyses the error signal in a sliding window manner and
calculates a data histogram for each window. This histogram is considered as an
estimate of the local probability density function. The authors state that, when



12 Literature Review

an event is found, the error signal presents an increase in its variance, which
is observed in a heavily tailed histogram. To quantify this increase of variance
the authors calculate a ratio between the weight of the central portion of the
histogram and the tail portions of the histogram. The resulting ratio is then
compared to a threshold to determine if an event happens or not in the specific
window. The selection of the threshold is defined as 90% of the ratio between
the weight of the central portion of the histogram and the tail portions of the
histogram in no event data.

Halim et al. propose a fault detection technique for rotating machinery based
on bi-coherence analysis [HCSZ06]. According to the authors, the presence of
non-linearities in the signal can indicate the presence of faults in the machinery.
Also, they mention that bi-coherence is a tool based on high order statistics
[Men91] capable of showing non-linearities in a time signal, but it can only be
used with stationary signals. Thus, the authors present a technique to remove
the stochastic part of a vibration signal by synchronously averaging a sufficiently
large number of rotations. Once the vibration signal is considered stationary,
bi-coherence can be applied to find faults in a rotating machine. No automatic
detection is suggested in this work.

Another example using high order statistics is found in [dlRML07]. This work is
dedicated to the detection and classification of faults in the PQ field. González
et al. state that an undisturbed power signal exhibits Gaussian behaviour,
and deviations from Gaussianity can be detected with high order statistics.
Their procedure indicates that, after filtering out the fundamental component
of a sinusoidal power signal, the calculation of higher order cumulants from the
remaining signal, namely, variance, skewness and kurtosis, is done. Furthermore,
skewness and curtosis are normalized to take into account shift and scale changes
in the transient signal. No automatic detection is suggested by the authors, but a
classification system based on neural networks is afterwards analysed, classifying
the events into short and long duration ones, based on the obtained high order
cumulants.

Statistical methods are definitely applicable in this project, looking for a change
in the statistical properties of the signal in the presence of transient events.
While bi-coherence analysis cannot be applied in this project as a train track
noise signal cannot be regarded as stationary, other statistical approaches are
studied such as a feature based on the standard deviation and mean of a train
track noise signal.
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2.5 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) [LS01] decomposes, in an approxi-
mated manner, a non-negative matrix V into the product of two non-negative
matrices W and H. Each of the columns of V is approximated by a linear com-
bination of the columns in W and the activation coefficients of each component
are contained in the columns of H. "Therefore W can be regarded as containing
a basis that is optimized for the linear approximation of the data in V " [LS01].

In [WLCS06], Wang et al. apply NMF to the onset detection, or the detection
of the starting time, of sound events. The authors try two different choices of
matrix V , that is, the magnitude of the spectrogram and RMS filtered values
of the sound time series. Their method consists on, after obtaining the NMF,
adding up the H matrix along its first dimension obtaining an approximation of
the temporal profile or envelope of the original time signal. Then, they calculate
the absolute difference between the neighbouring samples of the added up H
matrix. This enhances any sudden changes in the added up H matrix. A
threshold can then be applied to the resulting signal finding the onset of the
sound events. The spectrogram approach is shown to have better results than
the RMS filtered approach. However, the method is applied to a very simplified
sound example without any background noise. In [CTS10b], Costantini et al.
also use the magnitude of the spectrogram for onset detection in piano music.
Their method consists in building a binary representation of the magnitude of
the spectrogram by normalizing it and applying a threshold. Then, the binary
magnitude of the spectrogram is processed to point out only the spectral changes
and remove isolated spectral bins in the time-frequency representation. Finally,
they apply the NMF to this processed binary magnitude of the spectrogram
decomposing the matrix into one base component. The resulting activation
matrix H successfully corresponds to the onset of the piano notes present in
their test sample. Constantini et al. continued using NMF for onset detection
in piano music in [CTS10a], this time they apply the already described onset
detection by Wang et al. [WLCS06] showing also good results.

O’Grady et al. [OP06] illustrate that, when V is formed with the magnitude
of a spectrogram, NMF is not expressive enough to decompose a signal with
auditory objects that evolve over time. The authors propose an extension to
NMF known as convolutive NMF to account for this shortcoming. Moreover, a
sparseness constraint is applied on H. This basically reduces the probability of
the activation of more than two basis components at once. The methodology is
applied to a musical signal where 6 different musical notes are played sequentially
and at the same time. Convolutive NMF fails to decompose the signal into just 6
different basis components while convolutive NMF with a sparseness constraint
successfully decompose the signal into 6 different basis components.
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NMF could be used in this project by decomposing a processed train track noise
signal into different basis components and its activation coefficients. Then, the
decomposed data might be able to reveal new aspects of the data, useful for the
detection purposes of this work.

2.6 Energy based approaches

Some works that use the signal’s energy, directly or indirectly, to detect transient
events are presented in this section. In [CK10], Chandrika et al. use a psycho-
acoustical model for the detection of squeak and rattle events in vehicle cabins.
The purpose of using a psycho-acoustical model is to be able to detect events
detectable by human operators. The psycho-acoustical model is based in two
different psycho-acoustical models. The loudness model by Zwicker and the
Glasberg and Moore temporal loudness integration model. Zwicker’s model
[Zwi77] accounts for the non-linear spectral processing characteristics of the
human auditory system. The model consider how the sound energy is distributed
along the different auditory filters in humans. Glasberg’s and Moore’s model
[FZ07] accounts for the time domain masking in the temporal integration of
loudness. The author’s psycho-acoustical model obtains the perceived transient
loudness (PTL) which is the main feature of the detection strategy. After the
calculation of the PTL, a threshold strategy is applied to obtain the better
detection performance. The threshold was obtained for different signal to noise
ratios when the sound events were barely noticeable. It was found that the
threshold varied with the background noise level. A correlation study showed
that the found thresholds were highly correlated with the 75th percentile value
of the PTL curve. Thus, an equation was found to determinate a dynamic
threshold as a function of the 75th percentile value of the PTL curve.

There is always a great interest to develop fast methods in the detection of
transient events in the PQ field. An example of this is found in [SYT11] where
the Teager Energy Operator (TEO) [SYT11] is applied obtaining satisfactory
results. According to the authors the TEO is a non-linear high pass filter that
enhances high frequency components in transient signals and suppresses the low
frequency background. One of the most notable properties of the operator is
that it is nearly instantaneous, namely, only three samples of the signal are
needed for the calculation of the energy at each time instant. The detection
algorithm uses a reference signal to obtain a threshold. The reference signal is
just a power sinusoidal signal without any transient events. A multiple of the
average of the TEO operated reference signal is set as the threshold. The TEO
operated test signal is averaged every 5 samples and compared to the threshold.
This method allows for the detection of transients and its duration.
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Gritti et al. use Short Term Energy (STE) [GBR+12] to detect snore sounds
during the sleep of people [GBR+12]. The STE operator is the energy signal
in dB calculated in a window by window manner. A signal is analysed by
applying the operator. Then, the histogram of the operated signal is calculated.
The author’s detector works using a lower and an upper thresholds found with
the Otsu method [Ots75]. Once the lower threshold is obtained, the values of
the histogram below the lower threshold are removed and the Otsu method is
used again to obtain an upper threshold. The Otsu method is used in image
processing to select an adequate threshold of grey level to extract objects from
their background [Ots75]. The detection mechanism works as follows. When
the STE value of an operated signal exceed the upper threshold an event is
detected. The beginning of it, is registered as the point in time where the STE
value exceeded the lower threshold. When the STE value falls below the lower
threshold, the ending of the event is registered. In this way all the events in
a signal are detected and some features such as the duration of the event, the
maximum value of the event and the average STE of an event are used to train
a neural network and perform classification of the found events. The authors
report that their method is not very reliable for low intensity events.

The relevance of the energy based approaches is mostly focused in the features
they provide. As the kind of transient events to detect are impulsive in nature,
it is expected to note changes in energy at higher frequencies. Thus, Teager
Energy Operator, as a non-linear high-pass filter, might be suitable for the
characterization of this kind of events. Moreover, the presence of transient
events represent an increase of the energy in the signal. Hence, Short Term
Energy might be useful too, to characterize any transients in the signal.
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Chapter 3

Detection and One Class
Classification

As seen in last chapter, there are many approaches for doing detection of tran-
sient events. Some of those approaches are general and can be applied in a
broader selection of application fields, while other approaches are designed to
be applied in very specific fields. Thus, a first selection of the detection method-
ologies and features reviewed in the last chapter has been done mostly based on
two factors, the relevance of the methodology to the project and the available
time for the completion of the project. For example, previously it was shown
that the wavelet approaches require a thorough study of the basis functions and
relevant scales suitable for the application. Hence, such a study would not be
suitable for the time and scope of this project.

Thus, based on the literature survey done in the previous chapter, the theory
behind the feature extraction, classification strategies and methodologies used
in this project are now described. Next chapter will cover the specifics of each
of the detectors implemented as well as the used methodology.

A general description of the detector structure proposed in this project is shown
in figure 3.1. Firstly, the input data, in which transient events are to be detected,
is processed to obtain relevant features. Then, the detection block applies a de-
tection strategy to define if any events are found or not in the signal. Depending
on the detection strategy, the detector might need a training step in order to
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function properly. More details of the training step are provided later.

Input Data

Feature extraction

Detection

Transient 

event 

detected?

Yes No

Flag data as 

transient event

Do

Nothing

Figure 3.1: Flow chart of a detector’s internal process.

3.1 Feature extraction

Features are the main quantities in which a detector bases its decision of flagging
a data sequence as a transient event or not. Hence its importance. In this
section, the relevant features used among the literature and in this work, are
described.

3.1.1 Root Mean Square filtering

Root Mean Square (RMS) filtering consists in reducing a τ samples window to its
RMS value. This process is applied to a whole signal, dividing it in consecutive
windows, obtaining an RMS filtered signal. Thus, some time resolution and
frequency information is lost, but the energy of the signal is not changed [Pon05].
Equation 3.1 shows the RMS filter equation where N is the number of samples
in a discrete signal x.
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xRMS [m] =

√√√√1

τ

mτ∑
n=(m−1)τ+1

x2 [n] ,m = 1, 2, ..., bN
τ
c (3.1)

3.1.2 Filtering

In the pattern recognition field, filters are used to remove low frequency noise
or to analyse a signal in frequency bands. In acoustics, the most common filter
banks are octave band and one-third octave band filters [JPR+11]. The standard
centre frequencies for each filter band are shown in table 3.1.

20 25 31.5 40 50 63 80 100 125
160 200 250 315 400 500 630 800 1000
1250 1600 2000 2500 3150 4000 5000 6300 8000
10000 12500 16000 20000

Table 3.1: One-third octave and octave band (bold) center frequencies (Hz).

For an octave band the upper and lower frequencies can be calculated with
equations 3.2 and 3.3, respectively, where fc is the centre frequency of the band.

fu = fc · 21/2 (3.2)

fl = fc/2
1/2 (3.3)

In a similar way, for an one-third octave band the upper and lower frequencies
can be calculated with equations 3.4 and 3.5, respectively, where fc is the centre
frequency of the band.

fu = fc · 21/6 (3.4)

fl = fc/2
1/6 (3.5)

3.1.3 Short-Time Fourier Transform

The Fourier Transform cannot be used to analyse non-stationary signals as it
lacks time localization. The Short-Time Fourier Transform (STFT) [Sta05] com-
pensates this disadvantage by obtaining the Fourier Transform of small portions
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of a signal where stationarity is assumed [JVB+00]. To achieve this, the STFT
uses a window function shifted to the desired time in a signal. The STFT in
discrete time is showed in equation 3.6, where x is the discrete signal and w the
window function.

X (m,ω) =

∞∑
n=−∞

x [n]w [n−m] e−jωn (3.6)

3.1.4 Non-Negative Matrix Factorization

As already mentioned in the previous chapter, Non-Negative Matrix Factoriza-
tion (NMF) decomposes, in an approximated manner, a non-negative matrix V
into the product of two non-negative matrices W and H, that is,

V ≈WH (3.7)

The size of V is m by n, the way to interpret this is, n column vectors of m
elements. The basis matrix W is of size m by r, where each column r represents
a basis component. H is an r by n matrix, where each row r contains the
activation coefficient of each basis component in W . So, each column vector in
V is approximated by a linear combination of each basis component of W and
the activation coefficients in H. "Therefore W can be regarded as containing a
basis that is optimized for the linear approximation of the data in V " [LS01].
Thus, a very important aspect, core of the usage of NMF in this project, is that,
a vector containing sample data can be projected into a given W . The resulting
values of H from such projection can now be used as features. But previously,
the basis components matrix W has to be calculated.

There are three different kinds of algorithms to achieve a NMF, namely, mul-
tiplicative update algorithms, gradient descent algorithms and alternating least
squares algorithms [BBL+07]. The multiplicative update algorithm used in this
project is shown in equations 3.8 and 3.8.

H = H ⊗ WT · V
WTWH

(3.8)

W = W ⊗ V ·HT

WHHT
(3.9)

where ⊗ is an element-wise multiplication, the division is also element-wise.
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For this algorithm, matrices W and H are initialized randomly. Then, equation
3.8 is applied obtaining a new value of H. This new value of H is then used
to calculate W from equation 3.9. The new value of W is used to improve H
again, and so on. This process continues until an accepted measure between V
and WH is reached or a defined number of iterations is exceeded.

To evaluate the quality of the approximation there are two basic measures, the
square of the Euclidean distance between V and WH (equation 3.10 ) and the
divergence D of V from WH (equation 3.11 ) [LS01].

‖ V −WH ‖2=
∑
mn

(Vmn − (WH)mn)
2 (3.10)

D (V ‖WH) =‖ V ⊗ log V

WH
− V +WH ‖ (3.11)
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Figure 3.2: Example matrices V , W and H.

To better understand the concept of NMF, consider the following example. Fig-
ure 3.2a shows matrix V . It represents the magnitude of a spectrogram obtained
from the following signal:
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f(t) =


sin (2π10000t) , 0 < t ≤ 0.5
sin (2π20000t) , 0.5 < t ≤ 1
sin (2π10000t) + sin (2π15000t) , 1 < t ≤ 2
sin (2π15000t) , 2 < t ≤ 2.5

After performing NMF for 3 basis components, matrices W and H, shown in
figures 3.2b and 3.2c, are obtained. As already mentioned, each row in W
represents a basis component. Note how NMF is able to identify that the original
signal is conformed by 3 frequency components, creating 1 basis component for
each frequency. Then, matrix H indicates when each of the basis components
becomes active.

3.1.5 Teager Energy Operator

As mentioned in the last chapter, TEO is a non-linear high pass filter that en-
hances high frequency components in transient signals and suppresses the low
frequency background [SYT11]. Moreover, "TEO is able to follow the instan-
taneous energy of the signal" [SYT11]. The transient events to detect in this
project are impulsive in nature, thus, the increase of energy in the signal is
instantaneous. This makes TEO a suitable feature to enhance the presence of
any impulsive event, diminishing the effects of low frequency background. TEO
is defined in equation 3.12 where x is a discrete signal.

TEO [n] = x2 [n]− x [n− 1]x [n+ 1] (3.12)

3.1.6 Short Term Energy

Short Term Energy (STE) is another feature based on the energy of the signal,
where the average of energy is calculated in a windowed manner. The average
energy in a window containing any transient events is higher than the average
energy in a window without any transient events. Thus, STE might give a good
indication of the presence of events in a window due to instantaneous energy
increase in a window. Equation 3.13 shows how the STE is calculated where x
is a windowed signal of length M and k is a small constant to avoid log10 (0).

STE = log10

(
1

M

M∑
n=1

x2 [n] + k

)
(3.13)
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3.1.7 Coefficient of variation

The coefficient of variation (CV) is defined by the ratio

CV =
σ

µ
(3.14)

where σ and µ are the standard deviation and the mean of a random variable,
respectively. It provides a dimensionless measure of the variability of data with
respect to its mean [KOR64]. However, in [MJG10], the standard deviation
and the mean of the absolute value of a signal are used to obtain the feature
CV. When transient events are present in the signal, the mean of the absolute
value of the signal is expected to increase as well as the standard deviation of
the absolute value of the signal. Thus, CV provides a meaningful way to relate
both increases in standard deviation and mean and compare that to the same
ratio in other segments of the signal with no transient events.

3.1.8 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) [MBE10] have been mostly used
in speech recognition [MBE10], however it has also been used to characterize
music and other environmental sounds [L+00][NPF11]. MFCCs are based on
perceptual characteristics of human hearing such as the non-linear perception
of pitch and approximately logarithmic loudness perception [L+00]. Given these
characteristics of human hearing, human beings are good at detecting impulsive
transient events in train track noise. Hence, the interest to investigate if MFCCs
can also be used in transient event detection applied to train track noise. The
implementation of MFCCs used in this project is the one described in [MBE10].
A brief description of the process to obtain MFCCs is now mentioned.

The calculation of MFCCs is done in 6 steps:

Step 1: Emphasize the presence of high frequencies by applying a filter.

Step 2: Segmentation of the signal into windows.

Step 3: Multiplication with a Hamming window to remove edge effects.

Step 4: The windowed signal is transformed to the frequency domain using the
Fast Fourier Transform (FFT).

Step 5: Calculation of a weighted sum of spectral components, according to a
Mel scale filter bank, to obtain a Mel spectrum. That is, the output of each
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Mel scale filter is the weighted sum of the spectral components in the FFT
being filtered by it, in a logarithmic scale like dB SPL. Each Mel scale filter’s
magnitude frequency response has a triangular shape. Below 1 kHz the center
frequency of the filters follows a linear scale, while above 1 kHz it follows a log
scale. This models human pitch perception [L+00]. Hence, the usefulness of
MFCCs for perception related tasks.

Step 6: Application of the Discrete Cosine Transform to the Mel spectrum.

3.1.9 Maximum

Another recurrent feature among the literature is the maximum of the signal or
the maximum of the absolute value of the signal [NPF11] [dlRML07] [ASSS07]
[Meh08] [BZ08] [MJG10]. Impulsive transient events introduce instantaneous
energy in the signal, thus causing high amplitude peaks in the signal. Hence,the
maximum of the absolute value of a signal can be used as a feature to characterize
transient events.

3.1.10 New Features

Two new features have been developed for this project. They are based on the
energy of the signal in the time domain and the energy of the signal in the
frequency domain, respectively. The proposed features are applied to the signal
in figure 3.3 to demonstrate their characteristics. This sample signal is taken
from a train track noise measurement.
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Figure 3.3: 2.5 seconds sample signal taken from a train track noise measurement.
Sampling frequency 50000 Hz.
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3.1.10.1 Change of energy

Each time instant an increase of energy is observed. During normal circum-
stances the increase of energy is constant, but when a transient event is present,
a high increase of energy is observed. Figure 3.4 shows the energy of a signal as
a function of time. Note that when there is an increase of energy in the signal
there is an increase of the slope of the energy curve . Thus, to calculate the
slope or change of energy, the concept of derivative can be used. Moreover, the
change of energy at different time instants can be also introduced.
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Figure 3.4: Energy of a signal as a function of samples.

The first step to compute this feature is to obtain the energy of the signal as a
function of time, or in this case, as a function of samples, i.e. [JD96],

E [n] =

n∑
i=1

x2 [i] (3.15)

where x is a discrete signal.

Then, the change of energy every d samples is calculated as

dE [n] = E [n]− E [n− d] (3.16)

where 0 < d < N , N is the number of samples in x.

Note that this can be interpreted as calculating the energy only in the past d



26 Detection and One Class Classification

samples. That is,

dE [n] = E [n]− E [n− d]

=

n∑
i=1

x2 [i]−
n−d∑
i=1

x2 [i]

=

n−d∑
i=1

x2 [i] +

n∑
i=n−d+1

x2 [i]−
n−d∑
i=1

x2 [i]

=

n∑
i=n−d+1

x2 [i]

(3.17)

An example of this feature, obtained from the signal shown in figure 3.3, is
shown in figure 3.5.
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Figure 3.5: Example of the change of energy feature obtained from a signal. d =
500.

3.1.10.2 Logarithmic Power Spectrum

As already mentioned in the theory, the presence of transient events impose
instantaneous components in the signal [GE05]. This could be observed in
the increase of energy across the whole frequency range of the signal where
transients are present. However, the increase of energy might be very small at
some frequencies, hence, the logarithm can be used to emphasize low energy
increments and attenuate high energy increments. The STFT, calculated in a
sequential manner, produces a spectrogram. Thus, the logarithmic magnitude
of the power spectrum S is calculated from the spectrogram at every instant
of time considered. An example of S, obtained from the signal in figure 3.3, is
shown in figure 3.6.



3.1 Feature extraction 27

Time (Seconds)

F
re

q
u

e
n

c
y
 (

H
z
)

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

x 10
4

Figure 3.6: Spectrogram of a 2.5 seconds signal taken from a train track noise mea-
surement.

The last step to obtain the feature is to sum the energy in each frequency bin
for a given time instant. Equation 3.18 represents this last step.

LPS [n] =
∑
m

Sm,n (3.18)

where m represents the number of frequency points obtained from the calcula-
tion of the STFT and n is the number of STFT sequences in which a signal is
split.

An example of this feature, obtained from the signal shown in figure 3.3, is
shown in figure 3.7.
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Figure 3.7: Example of the LPS feature obtained from a signal.
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3.2 Event Detection

Two different strategies to event detection have been used in this work. The
first approach belongs to the novelty detection methodology, where the normal
behaviour of the system is modelled. The choice of a novelty detection approach
is motivated by the large amount of available data without any events, making
viable the possibility of building a model representing the normal behaviour of
the system. The second approach is simply applying a threshold to a feature
obtained from test data. When the value of a certain feature exceeds a threshold,
then the test sample is classified as an event. Both approaches are now described.

3.2.1 Novelty Detection

As described in the previous chapter, novelty detection has been divided into two
different categories, statistical and neural network approaches. Some statistical
approaches are considered in this project as well as one neural network approach.

3.2.1.1 Statistical

One of the most used common models used to describe data statistically is the
Normal or Gaussian distribution [Das10]. The univariate version of the Normal
density function is shown in equation 3.19, where µ is the mean and σ is the
standard deviation.

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,−∞ < x <∞ (3.19)

To fit this model to data only the data’s µ and σ are needed. Moreover, the
Kolmogorov-Smirnov test of goodness of fit [MJ51] can be used to verify if the
data truly has normal distribution. The Kolmogorov-Smirnov test is based on a
distance between a hypothetical cumulative density function and the cumulative
density function of the data. If this distance exceeds a certain level of signifi-
cance then there is evidence that the data does not belong to the hypothesized
distribution.

However, a multivariate normal distribution is more often needed to model the
joint distribution of more than one variable. The n-variate normal distribution
density function [HS11] is shown in equation 3.20, where x is an n-dimensions
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variable, µ is an n-dimensions vector with the mean values for each dimension
in x. Σ is an n by n covariance matrix of the form


σ2

1 ρ1,2σ1σ2 · · · ρ1,nσ1σn
ρ2,1σ2σ1 σ2

2 · · · ρ2,nσ2σn
...

...
. . .

...
ρn−1,1σn−1σ1 ρn−1,2σn−1σ2 · · · ρn−1,nσn−1σn
ρn,1σnσ1 ρn,2σnσ2 · · · σ2

n



where σn is the standard deviation of the n-th dimension of variable x and
ρn−1,n is the correlation between the data in the n − 1-th dimension and the
n-th dimension of variable x.

f (x) = (2π)
−n2 |Σ|− 1

2 e[−
1
2 (x−µ)′Σ−1(x−µ)] (3.20)

However, some distributions of data need a more flexible model when data
densities are not necessarily concentrated together. Thus, the usage of GMMs
is a common practice. The density function of a GMM is shown in equation
3.21 [WZ08], where P (j) are the mixing coefficients and p (x|j) are the Gaussian
density functions. Note that, as

∫
p (x|j) = 1,

∑
P (j) = 1. Figure 3.8 shows

an example of a mixture of 3 Gaussians.

f (x) =

M∑
j=1

P (j) p (x|j) (3.21)

The Expectation Maximization algorithm is commonly used to fit any of this
multivariate distributions [WZ08]. Note that the amount of parameters to es-
timate by the Expectation Maximization algorithm can be reduced if the co-
variance matrices Σ are restricted to a diagonal form. More over, the Akaike’s
Information Criterion (AIC) [BA02] provides a means to evaluate how accu-
rately the data is represented by the model. It is defined as shown in equation
3.22 where θ̂ are the parameters of the density function, y is the training data,
L is the likelihood function and K is the number of parameters in the density
function. As AIC gives a measure of the relative distance between a fitted model
and the unknown true mechanism that generated the training data [BA02], the
model with the minimum AIC, among a set of models, is said to better describe
the data.
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Figure 3.8: 3 Gaussians in <1 with µ = 1, 2, 4 and σ = 0.2, 0.5, 0.4, respectively
(red). GMM of the same Gaussians with mixing coefficients equal to
0.1, 0.4 and 0.5, respectively (blue).

AIC = −2log
(
L
(
θ̂ | y

))
+ 2K (3.22)

A different approach can be used to generate a model with very few parameters,
namely, Parzen-Window density estimation or kernel density estimation (KDE)
[Sil86]. If f (x) is the density function to estimate, and xn is a set of n indepen-
dent and identically distributed random variables, the Parzen-Window density
estimate is given by

f̂ (x) =
1

nh

n∑
i=1

K

(
x− xn
h

)
(3.23)

whereK is a kernel function that satisfies
∫∞
−∞K (x) dx = 1 and h is the width of

the kernel. The kernel function is typically Gaussian [YC02][Sil86] as it provides
a means to find the optimal width of the kernel [Sil86]. For univariate density
estimation using Gaussian kernel functions the optimal width hopt is

hopt =

(
4

3n

) 1
5

σ (3.24)

where n and σ are the number of samples and standard deviation of the data,
respectively. A way of finding the optimal width h in multivariate densities is
covered in [Sil86].

Once the model of normal data is obtained the event detection can be performed
choosing an adequate threshold k. Every incoming test data point xt is evalu-
ated in the density function of the model. If f (xt) ≥ k then the data point is
classified as normal. If f (xt) < k then the data point is classified as ’event’.
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Figure 3.9: GMM of two Gaussians in <1 with µ = 2, 4 and σ = 0.5, 0.4, respec-
tively. Mixing coefficients equal to 0.4 and 0.6, respectively. k = 0.002.

For the example in figure 3.9, all xt with f (xt) ≥ 0.002 are classified as normal
and those with f (xt) < 0.002 are detected as events.

3.2.1.2 Neural Networks

The only neural network studied in this project is the so called auto-encoder
[JMG95]. This neural network tries to replicate the input signal in its output,
but this can only be achieved if the input is similar to the data used to train the
network. Hence, the network has to be trained with data related to the normal
behaviour of the system. When the network is tested with a transient event,
it should not be able to replicate this input as it has not been trained with it,
indicating the presence of a transient event. The auto-encoder neural network
is composed of a certain number of input neurons, this quantity depends on the
dimensions of the input variable. For example, if the input variable was taken
from a 5 bands filtered signal, 5 input neurons could be used. The number
of output neurons is the same as the number of input neurons, and there is a
hidden layer with less neurons than the input or output. According to [JMG95],
the reduction of neurons in the hidden layer forces the network to compress
any redundancies in the data, retaining non-redundant information. Thus, the
auto-encoder performs dimensionality reduction [Bel06]. The topology of an
auto-encoder is shown in figure 3.10.

As already mentioned, the main purpose of the auto-encoder is to replicate the
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Figure 3.10: Auto-encoder with 5 input neurons, 5 output neurons and 3 neurons
in the hidden layer.

input in its output. Thus, the quality of the reconstruction is evaluated as shown
by equation 3.25, where Ii is the input of the i-th input neuron and Oi is the
output of the i-th output neuron.

Error =
∑
i

|Ii −Oi| (3.25)

After training using the back-propagation algorithm [Bel06], the detection cri-
teria is based on the error. Finally, if Error ≤ k, no event is detected, if
Error > k, an event is detected.

3.2.2 Simple Threshold Detection

The simple threshold detection methodology is directly based on a feature ex-
tracted from test data, thus, no models are required. If there exists a value
of the extracted feature that exceeds a certain k, then the test data sample is
detected as an event. Otherwise, it is considered as normal data. More over,
to account for different levels of background noise, the extracted feature is nor-
malized to its RMS value. Hence, a windowed approach is encouraged for the
application of this detection method.

When the feature is obtained in frequency bands, two different criterion are
applied to decide if the test sample contains an event or not, that is, an AND or
OR criteria. To explain better this idea, figure 3.11 can be used. In the example
in figure 3.11 the input data has been filtered in 3 frequency bands. Then, per
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each frequency band, the TEO feature has been extracted and normalized to
its respective RMS value. The 3 signals shown in figure 3.11 represent these
normalized feature values. Now, the comparison to threshold k is done. Note
that another benefit of the RMS normalization is that all frequency bands can
now be compared to the same threshold k. The first frequency band contains no
events as no feature value exceeds the threshold. However, for the second and
third frequency band, there are feature values that exceed the threshold. So,
the AND and OR criterion define when to decide that there is an event of the
signal depending on the number of frequency bands that exceed the threshold.
The AND criteria states that all frequency bands have to exceed the threshold
to define that there is an event in that signal. The OR criteria states that if
only one frequency band exceeds the threshold then there is enough evidence
that a event is happening in that signal.

2 4 6 8 10 12

x 10
4

0

10

20
4000 Hz frequency band

Samples

T
E

O

2 4 6 8 10 12

x 10
4

0

10

20
8000 Hz frequency band

Samples

T
E

O

2 4 6 8 10 12

x 10
4

0

10

20
16000 Hz frequency band

Samples

T
E

O

Figure 3.11: TEO feature obtained from the filtered signal in figure 3.3. k = 15.
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Chapter 4

Methodology

The proposed methodology is now described, taking into account the features
and detection strategies described in the last chapter.

Figure 4.1 shows, in a schematic way, the proposed methodology to analyse
the performance of the promising detectors designed during this project. By
promising detectors is understood those detectors that perform well during the
first of two steps that conform the proposed methodology.

Training 

Data Set
ROC

Detector

Consistency

Test

Test 

Data Sets

k

Figure 4.1: Schematic of the methodology proposed to evaluate different detection
techniques.

The first step makes use of a training data set to generate a Receiver Operating
Characteristic (ROC) [Faw04] curve for each detector. In our context, the ROC
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curve shows relative trade-offs, as a function of threshold k, between correctly
identified data samples containing events (true positives) and data samples not
containing events but marked as ’event’ (false positives). Having obtained the
ROC curve, a threshold k is selected based on the admissible true positives-false
positives relationship. This step will be better understood in the ROC section,
what is important to consider for now is that the ROC curve provides a means
to select promising detectors and a threshold k that meets the true positive-false
positive trade-off requirement under training data. Figure 4.2 shows an example
of the ROC curve. Each point (FalsePositiveRatio, T ruePositiveRatio) is
obtained by applying a detection strategy for a threshold k.
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Figure 4.2: Example ROC curve.

The second step evaluates the performance of the detector for the selected k
based on the consistency of its results in different test data sets. The proposed
performance measures will be explained later in this chapter.

The whole detection and one-class classification framework (figure 4.1) was im-
plemented in Matlab. A description of each of the blocks that conform the
framework now follows, where the different training sets are described in the
train track noise section 4.4.

4.1 Detector

The general behaviour of a detector is to receive an input signal, extract a
specific set of features and apply a detection strategy to give a result on the
localization of any transient events in the input signal. The detector yields an
accuracy in the localization of an event in terms of short segments of the input
signals (windows), that is, the analysis to search for transients is done window by
window. Note that no window overlapping is used in this implementation. Even
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if there is a trade-off between window size and localization accuracy, the length
of the window has been fixed in this project due to the large number of other
important tunable factors that affect the detection performance. Localization
accuracy means that, when a window has been flagged as containing an event,
there is no accurate data of the exact moment in which the event starts and
ends, it is just known that an event happens along the window. The selected
window length w, during the whole experimentation phase, has been set to 0.5
seconds. In samples, this length is 0.5 · Fs, where Fs is the sampling frequency
of the input signal. This number has been chosen based on the observation of
the duration of transient events in train track noise, that is, no transient event
plus a clearance exceeds a duration of 0.5 seconds. Also, this value provides
an acceptable localization accuracy of events for the purposes of the project.
Finally, the output of the detector is a binary sequence where each sample n
corresponds to the n-th window of the input signal. Zero values indicate no
events detected and one values indicate events detected. Figure 4.3 shows an
example of the output of the detector block. Note how each 2 windows in the
detector output (lower figure) correspond to 1 second of the signal.
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Figure 4.3: Sample signal (upper) and detector output (below).

The implemented detectors can be divided, depending on its detection strat-
egy, in novelty detectors and simple threshold detectors. The specifics of its
implementation is now covered.



38 Methodology

4.1.1 Novelty detectors

As this kind of detectors makes use of a normal-behaviour-data model, the model
and the input test data has to be normalized to make them comparable. Note
that each detector works with a specific model, hence the feature extraction
process to build the model and to perform detection is the same. Thus, the
features have to be extracted from input data at same time intervals and with
the same scale. The time interval issue is solved by splitting the test data into
windows of length w. The test data is normalized to its Z-score [Kal11] to
account for scaling issues. The Z-score is defined in equation 4.1 and it tells
how many standard deviations a sample xw [n] is away from the window mean.

Z [n] =
xw[n]− µ

σ
(4.1)

where µ and σ are the mean and standard deviation of a windowed signal xw.

Several novelty detectors were designed, its characteristics are summarized in
tables 4.1 and 4.2. The following subsections describe the obtention of the data
model and the specifics of each detector.

4.1.1.1 Training data model

Novelty detectors make use of a model to perform detection, thus, a model is
first generated from training data removing any transient events in it. This
approach needs an a priori knowledge of the location of the events in the signal.
The way to eliminate any transient events from the training data is by removing
the window of length w where events happen, as well as the past and next
consecutive windows surrounding the event window.

The general procedure to generate the data model consists of normalizing the
transient-free training data as previously described, feature extraction and, in
the case of statistical novelty detectors, fitting of the feature data set to a model.
In the case of the neural network detector, the network is trained with the feature
data set. This training could be seen as, the neural network ’learning’ the model
of the data.

For the STEuni detector, the model is obtained using the STE feature. One STE
value is obtained per window. As it will be shown later in the results chapter, the
density distribution of this feature data set is unimodal, but not exactly normal.
However, the feature data set was fit to an unimodal Gaussian distribution. For



4.1 Detector 39

Table 4.1: List of novelty detectors, features and models.

Name Features Model

STEuni STE Unimodal Gaussian

CVuni CV Unimodal Gaussian

MAXuni Maximum Unimodal Gaussian

STEparz STE Parzen window estimate

CVparz CV Parzen window estimate

MAXparz Maximum Parzen window estimate

STECVMAXgmm
STE

GMMCV
Maximum

MFCCgmm 12 MFFCs GMM

FREQNMFgmm
one octave band filtering

GMMRMS
NMF

TIMENMFgmm RMS filtering GMMNMF

FREQnn one octave band filtering Neural NetworkRMS

TIMEnn RMS filtering Neural Network
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Table 4.2: List of novelty detectors and chosen parameters.

Name Parameters

STEuni N/A

CVuni N/A

MAXuni N/A

STEparz N/A

CVparz N/A

MAXparz N/A

STECVMAXgmm gmm components: 1, AIC

MFCCgmm GMM components: 1, AIC

FREQNMFgmm GMM components: 1, AIC
NMF basis components: 3, 4

TIMENMFgmm GMM components: 1, AIC
NMF basis components: 3, 12

FREQnn hidden neurons: 3,4

TIMEnn hidden neurons: 3, 12
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this detector there are no parameters to select manually. The same description
fits for the CVuni and MAXuni detectors. Figure 4.4 exemplifies this process.

training data

1 2 ... n

1 2 ... n

f1 f2 fn... ... ... ... ... ...

window splitting

normalization

feature extraction

model fitting

Figure 4.4: Process for univariate model fitting.

The models of the STEparz, CVparz and MAXparz detectors are obtained using
Parzen window estimates. The normalization and feature extraction process is
the same as with the STEuni, CVuni and MAXuni detectors. Width h of the
Gaussian kernels used is calculated using equation 3.24. These univariate detec-
tors have been designed to investigate if the unimodal Gaussian distribution is
enough to describe the transient-free training data or a more ’descriptive’ model
of the training data is needed.

The features used by the model of the STECVMAXgmm detector are STE, CV
and Maximum. As this model is obtained with a GMM, the only parameter
to set is the number of mixture components. Hence, two different values are
investigated. That is, the components suggested by AIC and 1 component. The
process is shown in figure 4.5.
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Figure 4.5: Process for STE, CV and Maximum features, GMM fitting.
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The MFCCgmm detector uses as features 12 MFCCs taken from a frequency
range of 1000− 25000 Hz. The model is a 12 dimensions GMM. Once more, the
only parameter to set is the number of mixture components. Thus, the number
of components suggested by AIC and 1 component are investigated. Figure 4.5
applies for this model, the only difference is that 12 MFCCs are obtained as
feature for each data window so the model is a 12 dimensional GMM.
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Figure 4.6: Process for RMS filtered training data features and NMF, GMM fitting.

The model for the FREQNMFgmm detector takes into account frequency in-
formation in frequency bands. The transient-free training data set is filtered
using a one octave band filter from 1000 Hz to 25000 Hz. In total 5 frequency
bands are obtained. Thus, 5 windows are obtained at each time interval. The
RMS value is obtained from each window conforming a 5 dimensional column
vector. Thus, the size of matrix V is 5 by n, where n is the number of windows
in the transient-free training data set. As no suggestion of the number of basis
components was found, the values tested are 3 and 4 basis components. A low
number of basis components is a good starting point as it prevents any curse
of dimensionality issues from happening. To apply NMF, matrices W and H
are initialized randomly, the stopping condition is 1000 iterations or when the
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Euclidean distance between V and WH (equation 3.10) is less than 10−5. The
same settings are used for all the NMFs in this work. After applying NMF to
matrix V , each row of H is considered as a dimension of a random variable.
Hence, a 3 and 4 dimensions GMM can be fitted. Once again, the number of
components suggested by AIC and 1 component are investigated. Figure 4.6
shows this process. Matrix W is also kept as part of the model in order to
project incoming data into it.
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Figure 4.7: Process for RMS filtered transient-free training data features and NMF,
GMM fitting.

The model for the TIMENMFgmm detector uses as features matrix H obtained
from a NMF. Matrix V is obtained by applying an RMS filter to each window
of the transient-free training data set. Thus, for a τ = 40 samples, the size of V
is 625 by n, where n is the number of windows of length w in the transient-free
training data set. Once again, as no suggestion of basis components was found,
the values tested were chosen arbitrarily to be 3 and 12 basis components, taking
into account possible curse of dimensionality. Then, NMF is applied to V and
the resulting H is used to form a 3 and 12 dimensional GMM. The number of
components suggested by AIC and 1 component are investigated. Figure 4.7
shows this process. Matrix W is also kept as part of the model in order to
project incoming data into it.

To compare the dimensionality reduction capacities of NMF and neural net-
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works, neural network detectors using the same features as the NMF detectors
are proposed. Thus, the model for the FREQnn detector takes into account
frequency information. The transient-free training data set is filtered using a
one octave band filter from 1000 Hz to 25000 Hz. In total 5 frequency bands are
obtained. Thus, 5 windows are obtained at each time interval. The RMS value
from each window is obtained, conforming the input to the neural network to
train. Thus, the number of input and output neurons is 5. Figure 4.8 shows this
process. Again, the number of hidden neurons is to be found experimentally.
So 3 and 4 hidden neurons are used.
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Figure 4.8: Process for one octave band filtered transient-free training data features,
neural network training.

The model for the TIMEnn detector uses RMS filtering as feature. The τ value
for the RMS filter is set to 40 samples for comparison reasons with the TIMEN-
MFgmm detector. Note that for τ = 40 samples, the maximum frequency in
the signal after RMS filtering is 625 Hz. This may be understood as reducing
the sampling frequency in a factor of 40, that is, a sampling frequency of 1250
Hz. Note, that even if the frequency information is lost, the energy of the signal
is preserved. Thus, the number of RMS filtered values in a window of 25000
samples is 625. Thus, the number of input and output neurons is 625. In this
case, the number of hidden neurons to test is 3 and 12. Figure 4.9 exemplifies
this process.
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Figure 4.9: Process for RMS filtered transient-free training data features, neural
network training.

4.1.1.2 Detectors description

There are no particularities in the detection strategy of the STEuni, CVuni,
MAXuni, STEparz, CVparz,MAXparz, STECVMAXgmm,MFCCgmm, STECV-
MAXnn, FREQnn and TIMEnn detectors. They follow the general approach,
that is, the input data is split in windows of length w, each window is normalized
to its Z-score. Then, the respective features are obtained from the normalized
windows. Finally, these feature vectors are compared to the specific statistical
model or, in the case of the neural network detectors, the feature vectors are
fed to the neural network. Then the detection strategy for statistical models
or neural network models described in the last chapter is applied. Figure 4.10
shows this description in a schematic manner.

In the case of the FREQNMFgmm and TIMENMFgmm detectors, the detection
strategy is slightly different. First, the input data is split in windows of length
w, each window is normalized to its Z-score. Then, the respective features are
obtained from the normalized windows to form a column vector v′ per window.
Note that the features are extracted in the same manner as they are obtained
to build the data model for the respective detector. Afterwards, each vector v′
is projected into the respective matrix W , i.e., the solution in the least squares
sense of the over-determined system of equations v′ = Wh′ is found. In that
way, the resulting h′ vector can be compared to the statistical model and the
detection strategy can be performed. This description can be seen in figure 4.11.
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Figure 4.10: Detailed detection process. Novelty detectors.
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Figure 4.11: Detailed detection process for detectors that use NMF as feature. Nov-
elty detectors.

4.1.2 Simple threshold detectors

Simple threshold detectors are much more simpler in the sense that they do not
require a model obtained from transient-free training data. Table 4.3 shows the
list of simple threshold detectors as well as the used features and the varied
parameters, if applicable. For the COE and LPS detectors, the parameters
d and STFTwindow, respectively, could be related to the duration of transient
events. Then, for both detectors, the best parameter value could be one that
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fitted exactly the duration of a transient event as all the energy injected by the
event would be considered by the window implicit in the feature. This would
produce high values of the feature in this time instant. However, the duration of
a transient is variable. Thus, the parameters to test are d = 1, 512, 2048 samples
and STFTwindow = 512, 2048. For the TEOFREQ and COEFREQ detectors,
its AND and OR detection strategies are tested.

Table 4.3: List of simple threshold detectors, features and parameters.

Name Features Parameters

TEO Teager Energy Operator N/A

COE Change of Energy d: 1, 512, 2048

LPS Logarithmic Power Spectrum STFTwindow: 512, 2048

TEOFREQ one octave band filtering detection operator: AND, OR
TEO

COEFREQ one octave band filtering
d: 1, 512, 2048

COE detection operator: AND, OR

The TEO, COE and LPS detectors split the test data in windows of length w,
then, for each window, the specific feature is calculated. This result is normal-
ized to its RMS value. The simple threshold detection strategy is then applied
to each of the RMS normalized feature windows. Figure 4.12 shows a schematic
that describes this process.
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1 2 ... n
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Figure 4.12: Detailed detection process for simple threshold detectors without fre-
quency band analysis.

The TEOFREQ and COEFREQ detectors function in a very similar way to the
other simple threshold detectors, but before the features are extracted, the test
signal is filtered in one octave bands in a frequency range of 1000 − 25000 Hz.
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Then, each frequency band is split into windows, the features are extracted from
each window and finally each window is normalized by its RMS value. Figure
4.13 shows a schematic that describes this process.
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Figure 4.13: Detailed detection process for simple threshold detectors with fre-
quency band analysis.

4.2 Receiver Operating Characteristic

As mentioned before, the Receiver Operating Characteristic provides a means
to evaluate detector performance and threshold selection. This section provides
a definition of ROC curve and its interpretation.

When performing detection on a test sample, there are 4 possible outcomes. If
the sample contains an event and it is detected as an event, then it is called a
true positive (TP). If the sample does not contain an event and it is detected
as an event, it is called a false positive (FP). Moreover, if the sample does not
contain an event and no events are detected, it is called a true negative (TN).
Finally, if the sample does not contain an event and an event is detected, it is
called a false negative (FN). These 4 outcomes can be summarized in a confusion
matrix, shown in table 4.4.
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Table 4.4: Confusion matrix. Redrawn from [Faw04].

True event
p n

Hypothesized event

Y True Positives False Positives

N False Negatives True Negatives

Column totals: P N

Several metrics can be obtained from the confusion matrix [Faw04], however,
the ones used in this work are shown in equations 4.2 and 4.3.

FPR =
FP

N
(4.2)

where N is the total number of negative samples, that is, samples containing no
events. FPR stands for False Positive Ratio.

TPR =
TP

P
(4.3)

where P is the total number of positive samples, that is, samples containing
events. TPR stands for True Positive Ratio.
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Figure 4.14: ROC space with 5 detectors at constant threshold. Redrawn from
[Faw04].
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An ROC is a curve showing the relation of TPR and FPR as a function of
threshold k. An example of the ROC space is shown in figure 4.14, where 5
detectors at a fixed threshold are shown. Note that the diagonal line represents
the strategy of deciding randomly if a test sample contains or not an event
[Faw04]. An example of a detector in such situation is C. Hence, the diagonal
is the main reference, where all detectors above this line perform better than
random guessing (detectors A, B and D) and all the detectors below perform
worse (detector E). Detectors appearing close to the TPR axis can be thought as
”conservative" as they yield positives only when there is a strong evidence of it,
obtaining a low FPR. From figure 4.14 it can be seen how A is more conservative
than B. Detectors performing in the upper-right corner of the curve can be
considered as ”liberal" because they yield positive detections with little evidence
finding in that way nearly all the events, but at the expense of producing many
false positive results. The perfect detector is the one that find all positives
without doing any false positives, like detector D.

An important characteristic of a ROC curve is the area under the curve (AUC).
It allows to compare detectors, where a detector yielding a greater AUC performs
better in average [Faw04]. The interest of this project is to find detectors with
high performance, so the AUC for FPR ≤ 0.2 is of mayor concern. If a perfect
detector is considered, then the AUC for FPR ≤ 0.2 would be 0.2. Thus, an
AUC for FPR ≤ 0.2, relative to an area of 0.2, is the first indicator of detector
performance. This AUC will be denoted as AUC(0.2) from now on. Note then,
that the maximum AUC(0.2) for a perfect detector is AUC(0.2)=1.
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Figure 4.15: Example ROC curve.

Moreover, to observe the performance of a detector in the whole ROC space,
the ROC curves extracted from each detector are obtained for 0 ≤ FPR ≤ 1
and 0 ≤ TPR ≤ 1. Figure 4.15 shows an example of a ROC curve where the
detector yields an AUC(0.2) = 0.07776.
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4.3 Consistency test

After obtaining an ROC for a specific detector, the next step in its evaluation
is to choose a threshold kref for a specific reference (FPRref , TPRref ) point in
the ROC curve. Then, the idea is to detect transient events in a new data set
using threshold kref . Thus, obtaining a new (FPR, TPR) point. The closest
the new point to the reference point, the more consistent a detector performs
on different data sets. However, it is also important to find out if the new
(FPR, TPR) point moves towards an improvement of the performance of the
detector in terms of its FPR and TPR values or not. In this project, the
reference point is set arbitrarily as (0.2, TPRref ).

As it has been described, the diagonal line between points (0, 0) and (1, 1) in
ROC space indicates when a detector guesses randomly if an event is happening
or not. Thus, it is natural to think a detector improves if it moves away from
this diagonal line with respect to its reference point. Hence, part of the proposed
measure takes into account the displacement of a new (FPR, TPR) point with
respect to the reference point and the diagonal line.

Thus, the measure to evaluate the consistency of a detector is defined by the
pair

scored = (D, cos (ϕ− 135)) (4.4)

D =

√
(FPR− FPRref )

2
+ (TPR− TPRref )

2 (4.5)

ϕ = atan2 (TPR− TPRref , FPR− FPRref ) (4.6)

whereD is the euclidean distance between (FPRref , TPRref ) and (FPR, TPR),
φ is in degrees and atan2 is the 4 quadrant arctan. Note that a perfectly con-
sistent detector generates a scored = (0, 0), a detector with cos (ϕ− 135) > 0 is
a detector that improves its performance in terms of its FPR and TPR values,
and a detector with cos (ϕ− 135) < 0 is a detector that degrades its performance
in terms of its FPR and TPR values.

Figure 4.16 shows an example of two detectors. Note that, for this case, detector
A has a reference of (FPRref , TPRref ) = (0.2, 0.5) and moves to (0.1, 0.6)
with other test data set. For detector B, the reference is (FPRref , TPRref ) =
(0.2, 0.6), and moves to (0.4, 0.5) with the same other test data set. Thus,
following equation 4.4,

scoreA = (0.14, cos (135− 135)) = (0.14, 1)

scoreB = (0.22, cos (−26.5− 135)) = (0.39,−0.95)

In this sense, detector A is more consistent than B, and also improves its per-
formance in terms of FPR and TPR.
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Figure 4.16: Comparison of two detectors.

4.4 Train track noise

As already mentioned, the interest of this project is to apply the transient event
detection techniques to train track noise measurements. The noise produced by a
train is caused by different mechanisms. The most important component of train
track noise is known as rolling noise. It is produced by the interaction of wheels
and rails. This kind of noise is broad band, increasing towards high frequencies
at higher speeds. Another product of the rolling movement of the wheels is
impact noise, it is mainly caused by irregularities in the tracks and wheels.
This project is devoted to the detection of impact noise events, specifically to
transient events produced by rail joints. Rail joints are present where different
segments of a track come together. There is a gap between both segments and
sometimes also a difference in height. The noise produced by the wheel when it
passes over a rail joint can be regarded as a product of a discrete input applied
to the wheel/rail system. This induces quite high force variations [Tho09].

Another component of train track noise is known as curve squeal characterized
by its extreme tonality. This kind of noise has a high frequency content consist-
ing also of harmonics, not just the fundamental tone. This tonal characteristic
is related to the dimensions of the wheel. Aerodynamic noise contributes also
to noise generation. It can be broad-band and also tonal, depending on the
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structures in the train. This kind of noise also increases with speed, however,
much of the energy is located in the lower part of the frequency region. Also
vibrations transmitted through the ground contribute to the train track noise,
but this contribution is mainly at low frequencies [Tho09]. Thus, it makes good
sense to high pass filter the train track noise signal from 1000 Hz before any
detection is attempted.

Figure 4.17 shows an example of two signals containing transient events and
without transient events, respectively. Their spectrograms is shown as well.
Observe the broadband nature of a transient event in figure 4.17c.
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taining transient events.
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(d) Spectrogram of a signal
without transient events.

Figure 4.17: Sample of two train track noise signals and respective spectro-
grams.

The train track noise measurement used in this project was obtained by placing
a microphone below the train. The signal has a duration of approximately 1
hour and it is sampled at 50000 samples per second. The speed of the train was
also recorded during the noise measurement. The speed profile of the train is
shown in figure 4.18, note how the train varies its speed from 0 to a maximum
speed of approximately 180 km/h, exhibiting some areas at constant speed.
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Figure 4.18: Speed profile of the train recorded for this project.

4.4.1 Data sets

One training data set was considered with a duration of 235 seconds starting at
second 3591, containing a total of 62 events. It consisted of a chunk of data at
approximately constant speed of 176 km/h.

Two test data sets were considered. The first data set has a duration of 136
seconds starting at second 1916, containing a total of 50 events . The speed of
the train in this section was approximately constant at 176 km/h. The second
test data set consists of the first 300 seconds of the signal, without considering
the part where the train is stopped. Thus, the total length of this data set is
204 seconds and the total number of transient events is 48. Note, in figure 4.18,
how the speed varies from 0 to approximately 80 km/h in this last test data set.

The purpose of choosing a training data set at constant speed was to reduce
the complexity of the data models. However, the second test data set includes
data at different speeds. Thus, more information on the effect of speed on the
performance of detectors with data models might become clearer.

4.4.2 Manual event detection

As there was no information on the location of the events of interest in the
train track noise, the event detection was performed by three subjects running a
listening test. The three subjects performed the detection of impulsive transient
events in the data sets at constant speed. Whenever there was consensus by at
least two of them on the occurrence of an event, that event was validated as
existent. For the second test data set, only one of the subjects performed the
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detection. However, the best way to localize this events would be by matching
the signal with the actual physical defects in the tracks.
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Chapter 5

Results and Discussion

In the following sections, results and discussion of the ROC curves are shown
for the 17 proposed detectors and its different parameters. While consistency
results are only shown for a list of the 14 detector variations that exhibited the
largest AUC(0.2).

5.1 ROC results

As the detectors were divided in two categories according to their detection
strategy, namely, novelty detectors and simple threshold detectors. The ob-
tained ROC curves are also grouped in the same categories.

5.1.1 Novelty Detectors

For the novelty detectors, it is not possible to directly evaluate the performance
of a feature set in terms of how good it is at describing transient events. As
there exists another important variable, the data model, the feature set and the
model are evaluated together. Hence, the results presented in this section show
how good a data model, based on a particular feature set, is at discriminating
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transient events from non-transient events in the training data set. However,
these results serve as a first step to identify if a detector could work reasonably
well under general data sets.
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(a) STEuni detector ROC.
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(b) STEparz detector ROC.
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(c) CVuni detector ROC.
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(d) CVparz detector ROC.
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(e) MAXuni detector ROC.
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(f) MAXparz detector ROC.

Figure 5.1: ROC curves of detectors with unimodal univariate models. Left
column, Gaussian model. Right column, Parzen window estimate.

Figure 5.1 shows the ROC curves for the detectors STEuni, CVuni, MAXuni,
STEparz, CVparz and MAXparz detectors, which use an univariate data model.
The first thing to notice is that the AUC(0.2) of the STEuni -STEparz, CVuni -
CVparz and MAXuni -MAXparz detectors does not differ too much from each
other, meaning that no significant improvement is obtained by using a more
detailed data model as the one provided by a Parzen window density estimate. It
could be thought that a Gaussian model does not provide a very accurate model
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for this data as it is not Gaussian distributed as shown by the Kolmogorov-
Smirnov test. Figure 5.2 shows the histogram of the data set used to create
the model. The fitted Gaussian model as well as the Parzen density estimate
(dashed lines) are also shown. Note how the main difference between both
models happens in the centre part of the distribution. While the tails of the
models approximately coincide. The novelty detection approach focuses on data
points that lie outside of the model according to a threshold value. Thus, when
the threshold is low enough, the feature values that lie outside of the model
are concentrated in the tails of the distribution (as shown in figure 3.9) where
the Gaussian model and the Parzen density estimate mostly coincide. This low
threshold also produces low FPR values as the positives also concentrate in
the tails of the distribution. Hence, the AUC(0.2) using both kinds of models
variates very little.
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Figure 5.2: STE, CV and Maximum feature histograms for transient-free
training data set. Gaussian and Parzen window models compared.

It can also be observed, from figure 5.1, that neither of the features used is able
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to fully characterize the specific kind of transient events to be detected. This
can be observed from the low AUC(0.2) values obtained. However, it can be
seen that, as the detectors that use these features perform above the random
guessing diagonal line in ROC space, they provide some useful information on
the transient events to detect. Hence, it makes good sense to combine them in
a multivariate model. A GMM is flexible enough to characterize multi-modal
multi-variate data making the Parzen window estimate unnecessary. The deci-
sion of not using Parzen window estimate further in the project is also motivated
by the complexity of finding the optimal width of the used kernel functions in
multi-dimensional space versus the well known theory on GMM.
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(a) STECVMAXgmm detector
ROC, 1 Gaussian compo-
nent.
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(b) STECVMAXgmm detector
ROC, 30 Gaussian mixture
components.

Figure 5.3: STECVMAXgmm detector ROC curves.

Figure 5.3 shows the ROC curves for the STECVMAXgmm detector for 1 and 30
Gaussian components in its GMM, respectively. It can be observed how, when
the number of Gaussian mixture components increase, the AUC(0.2) increases
as well. This better result corresponds to an improvement of the data model.
However, is hard to tell which number of components represent in the best way
the real data distribution, taking into account that the model estimation is done
based on a finite sample data set. Thus, the best approach to get the number
of components for the data model is given by the AIC (equation 3.22) which
penalizes the increase of number of components in the mixture. In this way, the
AIC gives a measure of the least number of components that best model the
data.

Figure 5.4 show the ROC curves for the MFCCgmm detector with 1 Gaussian
component and 14 Gaussian mixture components, respectively. Note again, how
the increase of Gaussian components improves the AUC(0.2). In comparison
with the STECVMAXgmm detector, the MFCCgmm detector yields greater
AUC(0.2), meaning that this feature-model is better at discriminating transient
events than the combination of the STE, CV and Maximum features in a
GMM, at least in the training data set. However, extreme caution has to be
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(a) MFCCgmm detector ROC,
with 1 Gaussian component.
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(b) MFCCgmm detector ROC,
14 Gaussian mixture compo-
nents.

Figure 5.4: MFCCgmm detector ROC curves.

taken due to the dimensionality of the model used by the MFCCgmm detector.
This will be discussed in following sections.

Figure 5.5 shows the ROC curves for the FREQNMFgmm detector. As ex-
pected, an increase of the number of Gaussian components increments the AUC.
This improvement can be seen from figures 5.5a - 5.5b with lower AUC, to fig-
ures 5.5c - 5.5d with higher AUC. Another important aspect to notice is the
variation in AUC(0.2) due to the change of number of basis components in the
NMF. NMF can be regarded as a dimensionality reduction technique. Thus,
to achieve this reduction, it has to locate redundant data in the variables and
perform the reduction by concentrating more information in the new reduced
dimensional space discarding some information in the process. In this detector,
matrixW can be interpreted as a set of 5 dimensional variables. Through NMF,
these data is reduced to 3 dimensions and 4 dimensions variables, respectively.
As already mentioned, this reduction is only approximate and some information
is lost. With the produced NMF, matrices W and H can be used to calculate
how much information is lost in the squared Euclidean distance sense. Thus,
for a greater distance between V and WH, more information is lost. For this
particular detector, with a 4 components NMF, the squared euclidean distance
is

‖ V −Wr=4H ‖2= 0.0085

while for a 3 components NMF,

‖ V −Wr=3H ‖2= 0.2433

reflecting the loss of information as the dimensionality of the data is reduced.
However, it is difficult to tell if the lost information is vital for the correct
detection of transient events. But for this case, the dimensionality reduction
brings some benefit, an increment in the AUC(0.2).



62 Results and Discussion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Ratio

AUC(0.2) =0.11049

T
ru

e
 P

o
s
it
iv

e
 R

a
ti
o

(a) FREQNMFgmm detector
ROC, 1 Gaussian compo-
nent, 3 basis components
NMF.
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(b) FREQNMFgmm detector
ROC, 1 Gaussian compo-
nent, 4 basis components
NMF.
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(c) FREQNMFgmm detector
ROC, 65 Gaussian mix-
ture components, 3 basis
components NMF.
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(d) FREQNMFgmm detector
ROC, 51 Gaussian mix-
ture components, 4 basis
components NMF.

Figure 5.5: FREQNMFgmm detector ROC curves.

Figure 5.6 shows the ROC curves for the TIMENMFgmm detector. As with
the FREQNMFgmm detector, an improvement of the AUC(0.2) is achieved
by increasing the number of Gaussian mixture components and decreasing the
number of NMF basis components. Once again, for this particular detector, the
squared euclidean distance with 12 basis components is

‖ V −Wr=12H ‖2= 25755.14

while for a 3 components NMF,

‖ V −Wr=3H ‖2= 28757.7

Note how the squared distance is really big compared to the one found for the
FREQNMFgmm detector. This is due to the huge dimensionality reduction in
this detector. NMF reduces the dimensionality of the data from 625 dimensions
to 3 and 12 dimensions, respectively. However, is important to note that, despite
the loss of information, this detector is able to yield an AUC(0.2) larger than
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(a) TIMENMFgmm detector
ROC, 1 Gaussian compo-
nent, 3 basis components
NMF.
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(b) TIMENMFgmm detector
ROC, 1 Gaussian compo-
nent, 12 basis components
NMF.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Ratio

AUC(0.2) =0.4396

T
ru

e
 P

o
s
it
iv

e
 R

a
ti
o

(c) TIMENMFgmm detector
ROC, 70 Gaussian mix-
ture components, 3 basis
components NMF.
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(d) TIMENMFgmm detector
ROC, 37 Gaussian mix-
ture components, 12 basis
components NMF.

Figure 5.6: TIMENMFgmm detector ROC curves.

the FREQNMFgmm detector. This fact shows that the loss of information
has not impacted the characterization of transient events using this feature set.

In order to determine why, even with high loss of information due to dimen-
sionality reduction with NMF, transient event detection is possible, a deeper
knowledge on the construction of NMF basis components is needed. The calcu-
lation of the basis components is totally related with the characteristics of the
discarded data to perform the dimensionality reduction.

Figure 5.7 shows the ROC curves for the FREQnn detector. Note how an in-
crease of neurons in the hidden layer contributes to an increase in the AUC(0.2).
This is contrary to what it has been found with the FREQNMFgmm detector.
As it has been mentioned, both techniques perform a dimensionality reduction.
However, both ROC curves cannot be directly compared as they depend on other
particularities of the detectors. For instance, the NMFgmm detectors perform
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(a) FREQnn detector ROC, 3
neurons in hidden layer.
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(b) FREQnn detector ROC, 4
neurons in hidden layer.

Figure 5.7: FREQnn detector ROC curves.

a dimensionality reduction and model the lower dimensional data with a GMM.
The neural network detectors perform dimensionality reduction and then try to
reconstruct the original input from the lower dimensional representation of the
input. As the basis components reside in the internal structure of the network
and this information is not accessible in a direct manner, a direct comparison
with the NMFgmm detectors is not possible. However, it is possible to compare
them using equation 3.25 as the reconstructed input values are accessible in both
cases. For the NMFgmm detectors, the reconstruction error can be calculated
as

Error =
∑
i

|vi −Whi| (5.1)

where vi is an input column vector and hi is the projection of vector vi into W .
Then, note that the reconstructed input is the product Whi.

Figure 5.8 shows the error for the transient-free training data set. Figures 5.8a
and 5.8c show the transient-free training data set reconstruction error using a 4
dimensions reduction for a neural network and for a NMF, respectively. Figures
5.8b and 5.8d show the transient-free training data set reconstruction error using
a 3 dimensions reduction for a neural network and for a NMF, respectively. Note
how the error increases for NMF and neural network when the dimensionality
is reduced from 4 to 3 dimensions. This is expected as a lower dimensional
representation looses more data.

On the other hand, if the reconstruction error is calculated from the transient
events in the training data, something peculiar happens. For the neural network,
the error from 4 neurons in the hidden layer does not change a lot when the
number of neurons is decreased to 3. However, for the NMF, the error increases
considerably when the number of basis components is decreased. This is shown
in figure 5.9. Its worth to remember that the logic of using the neural network
is to have higher errors in the reconstruction of transient events while having
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Figure 5.8: Reconstruction error of transient-free training data for NMF and
neural network. Feature values as used in the FREQnn detector.
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Figure 5.9: Reconstruction error of transient events in training data for NMF
and neural network. Feature values as used in the FREQnn de-
tector.

lower errors for the transient-free training data. In summary, as the number of
neurons in the hidden layer increases, the reconstruction error in the transient-
free training data set is reduced. On the other hand, the reconstruction error
of the transient event data keeps having higher values even when the number
of neurons in the hidden layer is increased. In this way, the FREQnn detector
achieves higher AUC(0.2) for a higher number of neurons in the hidden layer.
Nevertheless, the AUC(0.2) values are low compared to the ones obtained from
the FREQNMFgmm detector.

Figure 5.10 shows the ROC curves for the TIMEnn detector. As with the
FREQnn detector, the AUC(0.2) is increased when the number of neurons in
the hidden layer is increased. Thus, a similar analysis to the previous one shown
for the FREQnn detector can be performed.
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(a) TIMEnn detector ROC, 3
neurons in hidden layer.
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(b) TIMEnn detector ROC, 12
neurons in hidden layer.

Figure 5.10: TIMEnn detector ROC curves.

Figure 5.11 shows the error for the transient-free training data. Figures 5.11a
and 5.11c show the training error using a 12 dimensions reduction for a neural
network and for a NMF, respectively. Figures 5.11b and 5.11d show the train-
ing error using a 3 dimensions reduction for a neural network and for a NMF,
respectively. Again, note how the reconstruction error increases when the di-
mensionality is reduced from 12 to 3 dimensions. This is expected as a lower
dimensional representation looses more data.

Figure 5.12 shows how the error for the reconstruction of transient events in-
creases when the number of hidden neurons in the hidden layer increases. This
is a desirable behaviour because, if the error decreases with the transient-free
training data, then it means the network is able to discern between transient
events and non transient events data. In this way, the TIMEnn detector achieves
higher AUC(0.2) for a higher number of neurons in the hidden layer.

The way in which the internal lower dimensional representations of the input
data is generated in the auto-encoder, is totally related with the characteristics
of the discarded data to perform the dimensionality reduction. Thus, in or-
der to determine why, when the number of hidden neurons in a neural network
increases, the AUC(0.2) increases as well, a deeper knowledge on the dimen-
sionality reduction capabilities of an auto-encoder is needed.
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Figure 5.11: Reconstruction error of transient-free training data for NMF and
neural network. Feature values as used in the TIMEnn detector.
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Figure 5.12: Reconstruction error of transient events in training data for NMF
and neural network. Feature values as used in the TIMEnn de-
tector.
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5.1.2 Simple Threshold Detectors

Figure 5.13 shows the ROC curve for the TEO detector. As it has been men-
tioned, the Teager Energy Operator acts as a non-linear high-pass filter attenu-
ating low frequency background noise. Impulse noise is characterized for being
broadband, hence when extracting the TEO feature from a train track noise
measurement, the low frequency background is expected to be attenuated while
the high frequency components of any present transient events are preserved.
In this way, the TEO detector is able to produce high AUC(0.2) as shown in
figure 5.13.
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Figure 5.13: TEO detector ROC curve.

Figure 5.14 shows the ROC curves for the TEOFREQ detector. Note how an
analysis in frequency bands does not improve the AUC(0.2), on the contrary,
it is decreased. The TEOFREQ detector filters a signal in frequency bands.
At each frame it calculates the TEO feature values and normalizes that result
to its RMS value. For low frequency bands, the TEO feature produces low
value results as the high frequency components have been filtered out of the
signal. Recall that the TEO acts as non-linear high-pass filter. Thus, after
normalization to RMS, the window segment contains high levels of noise. For
high frequency bands, the TEO feature is able to produce more accurate results
as high frequency components are still present in the signal. From figure 5.14,
it can also be observed how the or detection strategy performs worse than the
and detection strategy. This happens because low frequency bands contain high
levels of noise, thus, the or strategy tends to yield more false positive results
when no transient events are present in the signal. While the and strategy
encourages the detector to yield true positives only when there are high values
of the TEO normalized feature in higher frequency bands.
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(a) TEOFREQ detector ROC,
and detection strategy.
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(b) TEOFREQ detector ROC,
or detection strategy.

Figure 5.14: TEOFREQ detector ROC curves.

Figure 5.15 shows the ROC curves for the COE detector. Note how an increase
of the parameter d improves the AUC(0.2) up to a certain value, and then the
AUC(0.2) decreases. This could be related to the duration of transient events,
however it remains unclear how to find an optimal d parameter.
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(a) COE detector ROC, d = 1
sample.
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(b) COE detector ROC, d = 512
sample.
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(c) COE detector ROC, d =
2048 sample.

Figure 5.15: COE detector ROC curves.
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signal in figure 5.16a. d = 512
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Figure 5.16: Noise track sample data containing transient events. COE fea-
ture at different d values.

To better understand the COE feature’s behaviour as used by the COE detec-
tor, the following figures can be used. Figure 5.16 shows how the COE feature
behaves for different values of d. The signal in figure 5.16a contains some tran-
sient events in it. Figures 5.16b, 5.16c and 5.16d show how this feature changes
as the parameter d increases. Recall that, according to the processing of the
detector, the COE feature values obtained by window are normalized by its
RMS value in that window. The general effect of extracting the COE feature
is a concentration of the energy of the signal. This concentration is, recalling
the COE theory, a summation of the energy in the past d samples. However,
if the value of d is high, an extreme concentration of the energy in the signal
happens, making less evident the peaks of energy that characterize impulsive
transient events. This is shown in figure 5.16d. Thus, there exists a parameter d
that provides a good concentration of energy yielding better AUC(0.2) values.
In this case, d = 512 samples produced the highest AUC(0.2) for this detector.
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Figure 5.17 shows the ROC curves for the COEFREQ detector. In contrast with
the TEO feature, the COE feature is suitable for its application in frequency
bands.
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(a) COEFREQ detector ROC,
and detection strategy, d =
1 sample.
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(b) COEFREQ detector ROC,
or detection strategy, d = 1
sample.
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(c) COEFREQ detector ROC,
and detection strategy, d =
512 samples.
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(d) COEFREQ detector ROC,
or detection strategy, d =
512 samples.
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(e) COEFREQ detector ROC,
and detection strategy, d =
2048 samples.
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(f) COEFREQ detector ROC,
or detection strategy, d =
2048 samples.

Figure 5.17: COEFREQ detector ROC curves.

The COE feature relies on the change of energy of the signal. Thus, a COE
broadband analysis of a signal might not be able to detect tenuous changes of
energy occurring in high frequency bands due to a masking effect by components
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with more energy. Hence, the COE feature is suitable for a frequency band
analysis.

This detector produces better results using the or detection strategy than when
using the and detection strategy. This can be observed in figures 5.17b, 5.17d
and 5.17f. Recalling the or detection strategy, a window segment is declared
as a positive when one or more COE feature values exceed a threshold in any
frequency band. Thus, the detector is able to detect transient events even if the
feature exceeds the threshold value in one frequency band.

The effect of varying parameter d affects the COEFREQ detector in the same
way it affects the COE detector, but in each frequency band. This is shown in
figures 5.17b, 5.17d and 5.17f, where d = 512 produced the best AUC(0.2) for
this detector.

Figure 5.18 shows the ROC curves for the LPS detector. As it can be seen
from the figure, parameter STFTwindow affects the AUC(0.2) values obtained.
However, in the STFT this parameter is related to the frequency resolution of
the Fourier transform and to the time localization of any changes in frequency.
Thus, the change in AUC(0.2) is thought to be related to the duration of a
transient event, where a window of the same length as an event would consider
all of the energy injected by the event, producing high magnitude values in
each frequency bin. Note how the best AUC(0.2) values were achieved using a
window of 512 samples for the COE, COEFREQ and LPS detectors.
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(a) LPS detector ROC curve,
with STFTwindow = 512
samples.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Ratio

AUC(0.2) =0.56693

T
ru

e
 P

o
s
it
iv

e
 R

a
ti
o

(b) LPS detector ROC curve,
with STFTwindow = 2048
samples.

Figure 5.18: LPS detector ROC curves.
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5.2 AUC(0.2) results

Table 5.1 shows the list of the promising detectors based on the highestAUC(0.2).
The detectors that had an AUC(0.2) larger or equal to the AUC(0.2) of the best
univariate detector were chosen as promising. The main logic behind this arbi-
trary election is, if a complex detector cannot perform better than a simple one,
then it is not worth considering it. However, this does not mean the discarded
detector’s settings cannot be tweaked to outperform the simplest detectors.

Table 5.1: List of promising detectors, parameters and AUC(0.2), in
AUC(0.2) descending order.

Name Parameters AUC(0.2)

MFCCgmm 14 Gaussian mixture components 0.6867

COEFREQ or detection strategy 0.5852

d = 512 samples

LPS STFTwindow = 512 samples 0.5778

LPS STFTwindow = 2048 samples 0.5669

COEFREQ or detection strategy 0.5580

d = 2048 samples

TEO N/A 0.5079

MFCCgmm 1 Gaussian component 0.4995

STECVMAXgmm 30 Gaussian mixture components 0.4928

COE d = 512 samples 0.4630

COEFREQ or detection strategy 0.4602

d = 1 sample

COEFREQ and detection strategy 0.4447

d = 1 sample

TIMENMFgmm 70 Gaussian mixture components 0.4396

3 NMF basis components

COEFREQ and detection strategy 0.4314

d = 512 samples

CVparz N/A 0.4164
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The detectors and settings shown in table 5.1 were tested for consistency results.
A list of all detectors, its relevant parameters and relevant ROC values can be
found in table A.1 in the appendix.

The results shown in this section have to be considered carefully, as they only
reflect the capacity of the detectors to perform transient event detection in a
specific test. Hence, the results might change drastically in the evaluation of
the detectors in other data sets. Those results are now analysed.

5.3 Consistency test results

Table 5.2 shows the results for the consistency test using test data set 1. In
table A.2 in the appendix all the relevant information of these results can be
consulted.

The first thing to notice from table 5.2 is how most of the detectors based on
the novelty detection approach exhibited the lowest consistency results. This
is even more surprising due to the fact that the test data set for this results
had similar speed as the training data. Hence, it can be said that the training
data set used to generate the models was not general enough to perform well on
other data sets. Moreover, by listening to the training data set and test data
set 1, it can be perceived how both present different background noise elements.
This could explain at some extent the generalization issue of the obtained data
models used by the detectors.

Another important fact to consider is the number of samples to create the mod-
els. For the training data set, the number of transient free samples available
was 338. For the STECVMAXgmm and TIMENMFgmm detectors the dimen-
sionality of the model was 3 dimensions. As the covariance matrix for the GMM
was restricted to be diagonal, only P parameters had to be estimated for each
Gaussian component in the mixture. Moreover, P more parameters had to be
estimated for the mean values of each Gaussian component in the mixture. In
total 2P parameters need to be estimated for each Gaussian component. If we
consider that, at least, one data sample is needed to fit a Gaussian component,
then we can obtain the number of minimum data samples needed to appro-
priately fit a model. Thus, for the STECVMAXgmm model with 30 Gaussian
mixture components, at least 2·P ·30 = 2·3·30 = 180 data samples were needed.
Hence, it can be concluded that this model was fitted appropriately. For the
TIMENMFgmm model with 70 Gaussian components, the number of samples
needed for an appropriate fit was 2 ·P · 70 = 2 · 3 · 70 = 420. As this number ex-
ceeds the actual number of samples it can be said that the model was over-fitting
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Table 5.2: List of promising detectors. Results of consistency test in test data
set 1, in score descending order.

No. Name Parameters score

1 COEFREQ and detection strategy (0.0498, -0.9893)

d = 512 samples

2 TEO N/A (0.0500, -0.9668)

3 CVparz N/A (0.0905, -0.1860)

4 LPS STFTwindow = 512 samples (0.0945, -0.8937)

5 LPS STFTwindow = 2048 samples (0.1243, -0.8923)

6 COEFREQ or detection strategy (0.1296, -0.6254)

d = 2048 samples

7 COEFREQ or detection strategy (0.1516, 0.1630)

d = 1 sample

8 COEFREQ or detection strategy (0.1924, -0.1200)

d = 512 samples

9 COE d = 512 samples (0.2072, -0.1707)

10 COEFREQ and detection strategy (0.2156, -0.9895)

d = 1 sample

11 STECVMAXgmm 30 Gaussian mixture components (0.3126, -0.3329)

12 TIMENMFgmm 70 Gaussian mixture components (0.3481, -0.7940)

3 NMF basis components

13 MFCCgmm 1 Gaussian component (0.4438, -0.2258)

14 MFCCgmm 14 Gaussian mixture components (0.6254, -0.5119)
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the data leading to a poor performance of the model. In the other hand, the
MFCCgmm detectors did not have any fitting issues as, for the 14 Gaussian mix-
ture components, the needed number of samples was 2 ·P ·14 = 2 ·12 ·14 = 336.
However, is most likely that the high dimensionality of the model, 12 dimen-
sions, led to an incorrect estimation of the model due to curse of dimensionality
issues.

The detector with higher consistency score was the COEFREQ detector with
d = 512 samples, using the and strategy. This is mainly due to the detection
strategy, which detects an event in a certain window only if all the frequency
bands exceed the threshold value. In this sense, the detector yields positives
only when it has strong evidence of the existence of events. In this sense, as
the training data set and test data set 1 have similar levels of background noise,
the detector is expected to perform similar under similar background noise level
conditions. Another important point to notice about the COEFREQ detector is
that the parameter d seems to be associated to the consistency of the detector.
Where the d = 2048 samples produced the best consistency for this detector
under the or strategy. However, for d = 1, the detector improved its detection
performance moving away from the diagonal line in the sense defined by its
score. It is worth to mention that this was the only detector that improved its
detection performance for this data set.

Another remarkable result is the one obtained by the CVparz detector, with a
consistency score of 0.0905. This fact suggests there exists a good generalization
of the model using the CV feature, at least for data at the same speed.
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Figure 5.19: (FPRref , TPRref ) and (FPR, TPR) points for consistency test in
test data set 1 for the first 5 detectors according to table 5.2. All
points on the FPRref = 0.2 represent (FPRref , TPRref ) points.
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The LPS detector presented the highest TPRref of all the detectors. Even if
its consistency was not the best, its new TPR was still among the highest, only
outperformed by the CVparz detector. However, note that the LPS detector has
a lower FPR than the CVparz detector, making it the best detector in detection
performance for test data set 1. This can be seen in figure 5.19, which, for clarity,
only shows how the first 5 detectors in table 5.2 moved from (FPRref , TPRref )
to (FPR, TPR). A comparison of all the promising detectors for this test data
set can be found in figure A.1 in the appendix.

Table 5.3: List of promising detectors. Results of consistency test in test data
set 2, in score descending order.

No. Name Parameters score

5 LPS STFTwindow = 2048 samples (0.0826,0.1386)

4 LPS STFTwindow = 512 samples (0.1128,0.9353)

1 COEFREQ and detection strategy (0.2058,0.3524)

d = 512 samples

3 CVparz N/A (0.2267,0.6204)

12 TIMENMFgmm 70 Gaussian mixture components (0.2502,-0.4960)

3 NMF basis components

6 COEFREQ or detection strategy (0.2542,0.1972)

d = 2048 samples

8 COEFREQ or detection strategy (0.2792,0.3610)

d = 512 samples

2 TEO N/A (0.3242,0.2059)

10 COEFREQ and detection strategy (0.3394,-0.0785)

d = 1 sample

9 COE d = 512 samples (0.3569,0.6993)

11 STECVMAXgmm 30 Gaussian mixture components (0.3612,0.2610)

7 COEFREQ or detection strategy (0.3723,0.1468)

d = 1 sample

14 MFCCgmm 14 Gaussian mixture components (0.8231,-0.5210)

13 MFCCgmm 1 Gaussian component (0.8752,-0.3597)

Table 5.3 shows the results for the consistency test using test data set 2. In
table A.3 in the appendix all the relevant information of these results can be
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consulted.

The first thing to note about this set of results is that the consistency ratings
are much higher than for test data set 1. Meaning that the detectors are less
consistent in this data set. This is reasonable as test data set 2 was taken from
a different chunk of data, where the speed was variable and lower.

For this data set, the MFCCgmm detector moved to point (1, 1) in ROC space.
This particular point means that the detector defines every window in the test
data set as containing an event, finding in that way all the events (TPR = 1),
but also producing all possible false positives (FPR = 1). This can be seen in
figure A.2 in the appendix. Figure 5.20 only shows how the first 5 detectors
in table 5.3 moved from (FPRref , TPRref ) to (FPR, TPR) in test data set
2. The reason for such a bad performance of the MFCCgmm detector could be
related to the frequency characteristics of the data sets due to changes in speed.
A lower speed reduces the background noise due to wind and other factors,
which mainly manifest at higher frequencies.
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Figure 5.20: (FPRref , TPRref ) and (FPR, TPR) points for consistency test in
test data set 2 for the first 5 detectors according to table 5.3. All
points on the FPRref = 0.2 represent (FPRref , TPRref ) points.

This time, the LPS detectors presented the best consistency results, and more-
over, its displacement was towards an increase in detection performance. The
COEFREQ detector kept being at the first places in the consistency test as well
as the CVparz detector. Regarding the COEFREQ detector, the and strategy
ensures the detector only yields positives when there is strong evidence of the
presence of events. Regarding the CVparz detector, the results suggest that the
CV feature possesses certain ability to describe transient events without being
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largely affected by background noise introduced by speed changes.

The TIMENMFgmm detector improved its consistency relative to the other
detectors, but it was not a great improvement compared to its consistency result
in test data set 1. Once again, consistency issues seem to be related to parameter
d in the COEFREQ detector using an or detection strategy, where a larger
value of d produces more consistent results.

An important observation is that the TEO detector decremented its consistency
performance. However, its detection performance increased, moving to point
(0.3771, 0.9167). This improvement could be as a product of an attenuation
of high frequency background noise due to lower speeds, making it easier for
the feature to reveal high frequency sudden changes of energy. Recall the TEO
feature functions as non-linear high-pass filter.

The COE detector also decreased its consistency performance, however its
detection performance is the best of all of the detectors, moving into point
(0.2039, 0.9375) in ROC space.

For this test data set, most of the detectors presented low consistency ratings,
however, that occurred because they showed improvements in its detection per-
formance ratings. This suggests that, in general, it is easier to detect transient
events in lower speed data. This is related to the increase of background noise
with an increase of speed of the train.

It is difficult to define which of the detectors has the best overall performance.
A higher AUC(0.2) is desired to detect most of the transient events present in
a noise track signal while keeping the false positives at minimum. However,
consistency is also desired to be able to predict the performance of the detector
for different data sets. Having a consistency rating of zero for different data sets
would represent to have a strong certainty of the detection rates regardless of
the data set. Thus, some detectors had high AUC(0.2) but did not have good
consistency results.

However, it could be said that the training data set belonged to a very noisy
portion of the signal, representing the most hard condition in which a detector
can operate. Thus, in terms of a detector’s goal, the training data could be
regarded as the limit detection performance condition and no worse true pos-
itive and false positive rates should be accepted for data sets with less noisy
conditions. In that sense most of the simple threshold detectors yielded good
results, improving their detection performance for a less noisy environment.
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Chapter 6

Conclusion

Transient event detection is a very broad subject, and a broad number of differ-
ent approaches are applied from different points of view. The fields that apply
transient event detection techniques range from medical applications, to seismol-
ogy and machine monitoring, among others. Naturally, the relevant techniques
to investigate were those which were applied to a similar field of interest. In
this project, the application field was detection of transient events in train track
noise. The kind of transient events to detect were impulsive events produced by
uneven rail joints. Thus, the relevant fields in literature review were those in
which the term transient event was associated with sudden injection of energy
to a system. The found relevant fields of application were machine monitoring,
sound surveillance, power quality, among others.

A detection task can be divided into feature extraction and application of a
detection strategy. The feature extraction process is crucial for a correct char-
acterization of transient events. Then, a detection strategy can analyse these
extracted features to conclude on the detection of transient events. The relevant
features for this project were mostly associated with the frequency information
and energy in a train track noise signal. Moreover, 2 features and 1 detec-
tion strategy based on the energy of the signal and its frequency content were
proposed.

The studied detection strategies can be divided in novelty detection and simple



84 Conclusion

threshold detection. The novelty detection strategy involves the characterization
of the normal behaviour of a system in order to identify when the system is
performing outside its normal operation state. The simple threshold strategy
involves the direct evaluation of feature values, looking for those that exceed a
threshold in order to detect events.

Once that the architecture of the detectors is defined, their performance can
be evaluated in terms of a Receiver Operating Characteristic curve, showing
the relation between True Positive Ratio and False Positive Ratio values as a
function of a parameter k of the detector. This ROC curve provides a means
for the selection of suitable detectors with high detection performance, that is,
high True Positive Ratios at low False Positive Ratios. Moreover, a measure of
consistency performance was developed to evaluate the consistency of detector
results for different test data sets. The consistency of a detector is important
to be able to predict its performance in different data sets. Providing, in that
way, some confidence on the detection results regardless of the evaluated test
data set.

Thus, a processing framework, implemented in Matlab, incorporating the de-
tectors and the performance evaluation modules was created. The framework
is flexible enough to allow for the creation of new detectors, based on the im-
plemented features or new features, and the evaluation of them in terms of
its detection and consistency performance. A description of the framework’s
structure in terms of the scripts generated can be found in section B, in the
appendix.

A total of 17 detectors was designed, implemented and tested. That is, 12 nov-
elty detection detectors and 5 simple threshold detectors. The characteristics
of the training data represented a major issue for the novelty detectors. The
training data was taken from a portion of the train track signal at fairly constant
speed. However, this speed was the maximum of the train, thus, a high level of
background noise was present. Different sources contribute for the character-
ization of background noise and all of them are accentuated at higher speeds.
Thus, complex data models were needed to correctly model the data. A limiting
factor was the number of samples to generate the model, affecting the quality of
it. Moreover, it was found that the generated data models were not completely
valid for test data sets obtained at different train speeds.

The major success of the simple threshold detectors was its simplicity. They
tend to generate fairly consistent values in data at approximately the same
speed. However, they are not very consistent in data at lower speeds where
they tend to increase its detection performance. Moreover, this could be seen
as an advantage if a training set at high speeds can be used to provide a limit
in detector performance. Thus, the detectors should be expected to perform



6.1 Future work 85

better for data sets with less background noise.

A more profound knowledge of the training data set has to be obtained in order
to improve the performance of novelty detectors. The large variations of the
properties of the signal due to background noise and speed proofed to greatly
affect the proposed models. Hence, the noise track signal and its variation with
speed has to be better understood for the improvement of any data models.

This project was delightful for the author as there are a lot of subjects to
study on many interesting topics, in order to solve a complex detection prob-
lem. Transient event detection showed to be a very challenging topic, specially
when applied to detection in train track noise, where a lot of factors contribute
to the characterization of the noise signal. Through the literature review, it was
observed that most of the fields under study assumed a very controlled applica-
tion field, with simulated data or noise free signals for example. When, for this
project, the application field was directly taken from a real life problem where
no easy solutions seemed to be enough to solve the problem. There is still a lot
of work to do, and some guidelines are now presented.

6.1 Future work

The future work ideas showed in this section are very concise and are mostly
focused in the improvement of the detectors showed in the project. However, a
continuation of the project should naturally lead to the classification problem of
identifying different classes of transient events. Hopefully, the proposed features
and methods will provide useful information for a classification task. Moreover,
some other detection techniques based on, for example, adaptive filtering and
wavelets could be studied.

Most of the detectors had a lot of parameters that affected its performance,
thus, it is recommended to perform a thorough analysis on them to find the
optimal parameters, understanding in that way its limitations.

NMF and auto-encoder neural networks perform dimensionality reduction, how-
ever, the characteristics of the generated basis components is different from each
other. This differences affect the performance of the detectors that implement
each of the approaches. Hence, it is recommended to find out how the ba-
sis components are created and what kind of information is discarded in order
to perform dimensionality reduction. This knowledge might lead to a suitable
number of basis components to set for a specific field of application.
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The features used in the simple threshold detectors proofed to be effective to
characterize transient events, hence, new novelty detectors based on these fea-
tures can be studied. Recalling that the novelty detectors make use of a data
model, thus, the features used in the simple threshold detectors can be incorpo-
rated to a data model.

In this moment, the way to select a threshold suitable for the detection of tran-
sient events in different training sets is done through the ROC curve. However,
a more convenient way to find this value of k could be found by applying Ex-
treme Value Theory, where threshold k is chosen taking into consideration the
distribution of data in the tails or extremes of a given model.

The speed information was not directly used in any of the detection strategies.
Thus, it is recommended to analyse how to incorporate the it to any data models.
An idea could be, for example, a data model as function of speed.
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Results for ROC and
Consistency tests

Table A.1: List of detectors, parameters and ROC relevant information, in
AUC(0.2) descending order.

Name Parameters TPRref kref AUC(0.2)

MFCCgmm 14 Gaussian
mixture compo-
nents

0.8065 6.7481e-10 0.6867

COEFREQ or detection
strategy

0.6613 2.2533 0.5852

d = 512 samples

LPS STFTwindow =
512 samples

0.7097 6.5301e-02 0.5778

LPS STFTwindow =
2048 samples

0.7581 4.9620e-02 0.5669

COEFREQ or detection
strategy

0.7258 1.0945 0.5580

d = 2048 sam-
ples
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TEO N/A 0.6452 9.5118 0.5079

MFCCgmm 1 Gaussian com-
ponent

0.6452 5.9075e-11 0.4995

STECVMAXgmm 30 Gaussian
mixture compo-
nents

0.6452 6.1313e+01 0.4928

COE d = 512 samples 0.5806 1.3088 0.4630

COEFREQ or detection
strategy

0.5968 1.2811e+01 0.4602

d = 1 sample

COEFREQ and detection
strategy

0.6129 7.8695 0.4447

d = 1 sample

TIMENMFgmm 70 Gaussian
mixture compo-
nents

0.7258 8.5503 0.4396

3 NMF basis
components

COEFREQ and detection
strategy

0.5000 9.7112e-01 0.4314

d = 512 samples

CVparz N/A 0.6290 1.2449e+01 0.4164

CVuni N/A 0.5968 1.4205e+01 0.4074

STECVMAXgmm 1 Gaussian com-
ponent

0.5806 5.5015e+01 0.4043

MAXparz N/A 0.5323 5.0669e-01 0.3937

FREQNMFgmm 65 Gaussian
mixture compo-
nents

0.6452 1.8655e+02 0.3927

3 NMF basis
components

COE d = 1 sample 0.5484 1.0596e+01 0.3899

TEOFREQ and detection
strategy

0.5000 5.1708 0.3846

TIMEnn 12 neurons in
hidden layers

0.6290 3.4091e+002 0.3824
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COE d = 2048 sam-
ples

0.4839 9.5621e-01 0.3767

MAXuni N/A 0.4839 5.3631e-01 0.3756

TIMENMFgmm 37 Gaussian
mixture compo-
nents

0.5000 2.7962e+04 0.3350

12 NMF basis
components

TEOFREQ or detection
strategy

0.4516 1.0480e+01 0.3087

FREQnn 4 neurons in
hidden layer

0.3871 8.1927e-03 0.2493

FREQnn 3 neurons in
hidden layer

0.3226 1.9506e-02 0.2342

STEparz N/A 0.3871 5.0638 0.2327

STEuni N/A 0.3710 6.3395 0.2202

FREQNMFgmm 51 Gaussian
mixture compo-
nents

0.4194 4.5241 0.2201

4 NMF basis
components

TIMEnn 3 neurons in
hidden layers

0.4194 2.9513e+002 0.2142

TIMENMFgmm 1 Gaussian com-
ponent

0.3710 2.4545 0.2089

3 NMF basis
components

FREQNMFgmm 1 Gaussian com-
ponent

0.2742 1.0349e+01 0.1819

4 NMF basis
components

COEFREQ and detection
strategy

0.2903 9.3425e-01 0.1812

d = 2048 sam-
ples

TIMENMFgmm 1 Gaussian com-
ponent

0.2581 4.0381e+03 0.1515
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12 NMF basis
components

FREQNMFgmm 1 Gaussian com-
ponent

0.2419 3.0567e+01 0.1105

3 NMF basis
components

Table A.2: List of 14 promising detectors, parameters and consistency test
relevant information, in score descending order. Test data set 1.

No. Name Parameters FPR TPR score

1 COEFREQ and detection
strategy

0.2297 0.4600 (0.0498, -0.9893)

d = 512 samples

2 TEO N/A 0.2432 0.6200 (0.0500, -0.9668)

3 CVparz N/A 0.2748 0.6800 (0.0905, -0.1860)

4 LPS STFTwindow =
512 samples

0.2297 0.6200 (0.0945, -0.8937)

5 LPS STFTwindow =
2048 samples

0.2387 0.6400 (0.1243, -0.8923)

6 COEFREQ or detection
strategy

0.3288 0.7400 (0.1296, -0.6254)

d = 2048 sam-
ples

7 COEFREQ or detection
strategy

0.2883 0.7200 (0.1516, 0.1630)

d = 1 sample

8 COEFREQ or detection
strategy

0.3514 0.7800 (0.1924, -0.1200)

d = 512 samples

9 COE d = 512 samples 0.3694 0.7000 (0.2072, -0.1707)

10 COEFREQ and detection
strategy

0.3288 0.4400 (0.2156, -0.9895)

d = 1 sample

11 STECVMAXgmm 30 Gaussian
mixture compo-
nents

0.4820 0.7800 (0.3126, -0.3329)
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12 TIMENMFgmm 70 Gaussian
mixture compo-
nents

0.5450 0.6800 (0.3481, -0.7940)

3 NMF basis
components

13 MFCCgmm 1 Gaussian com-
ponent

0.5766 0.8800 (0.4438, -0.2258)

14 MFCCgmm 14 Gaussian
mixture compo-
nents

0.8063 0.9600 (0.6254, -0.5119)
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Figure A.1: (FPRref , TPRref ) and (FPR, TPR) points for consistency test in
test data set 1. All points on the FPRref = 0.2 represent
(FPRref , TPRref ) points.

Table A.3: List of 14 promising detectors, parameters and consistency test
relevant information, in score descending order. Test data set 2.

No. Name Parameters FPR TPR Score

5 LPS STFTwindow =
2048 samples

0.1341 0.7083 (0.0826,0.1386)

4 LPS STFTwindow =
512 samples

0.1536 0.8125 (0.1128,0.9353)

1 COEFREQ and detection
strategy

0.2849 0.6875 (0.2058,0.3524)
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d = 512 samples

3 CVparz N/A 0.2263 0.8542 (0.2267,0.6204)

12 TIMENMFgmm 70 Gaussian
mixture compo-
nents

0.4413 0.7917 (0.2502,-0.4960)

3 NMF basis
components

6 COEFREQ or detection
strategy

0.3408 0.9375 (0.2542,0.1972)

d = 2048 sam-
ples

8 COEFREQ or detection
strategy

0.3128 0.9167 (0.2792,0.3610)

d = 512 samples

2 TEO N/A 0.3771 0.9167 (0.3242,0.2059)

10 COEFREQ and detection
strategy

0.4581 0.8333 (0.3394,-0.0785)

d = 1 sample

9 COE d = 512 samples 0.2039 0.9375 (0.3569,0.6993)

11 STECVMAXgmm 30 Gaussian
mixture compo-
nents

0.3799 0.9583 (0.3612,0.2610)

7 COEFREQ or detection
strategy

0.4218 0.8958 (0.3723,0.1468)

d = 1 sample

14 MFCCgmm 14 Gaussian
mixture compo-
nents

1.0000 1.0000 (0.8231,-0.5210)

13 MFCCgmm 1 Gaussian com-
ponent

1.0000 1.0000 (0.8752,-0.3597)
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Figure A.2: (FPRref , TPRref ) and (FPR, TPR) points for consistency test in
test data set 2. All points on the FPRref = 0.2 represent
(FPRref , TPRref ) points.
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Appendix B

Detection Framework
Structure

The framework structure is mostly organized as in figure B.1.

Training 

Data Set
ROC

Detector

Consistency

Test

Test 

Data Sets

k

Figure B.1: Framework structure.

In the following sections the built framework is described in terms of scripts.
The scripts are organized in packages or directories. Each of the packages and
its contents is briefly described.

Table B.1 shows the list of packages in the framework.
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Table B.1: List of packages.

Package

Consistency
Features

NoveltyDetectors
ROC

SimpleThresholdDetectors
ROC

B.1 Consistency package

kTester.m

Description:

• Definition of data sample indexes that belong to test data set 1.

• Obtention of location of manually detected transient events in test data set 1.
This step is important for the calculation of FPR and TPR values.

• Creation of detector instance.

• Obtention of FPR and TPR values for the specific kref value.

• Display of comparison between detected and manually detected transient
events.

• Storage of obtained FPRref , TPRref , FPR, TPR kref and score values for
test data set 1.

• Definition of data sample indexes that belong to test data set 1.

• Obtention of location of manually detected transient events in test data set 2.
This step is important for the calculation of FPR and TPR values.

• Creation of detector instance.

• Obtention of FPR and TPR values for the specific kref value.

• Display of comparison between detected and manually detected transient
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events.

• Storage of obtained FPRref , TPRref , FPR, TPR kref and score values for
test data set 2.

Dependencies

getIdealEvents.m
NoveltyDetectors package

SimpleThresholdDetectors package
getScore.m

B.2 Features package

filterBankData.m

Description:

• Creation of filter bank.

• Data filtering.

Dependencies

createFilterBank.m

getCOE.m

Description:

• COE feature calculation.
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getLPS.m

Description:

• LPS feature calculation.

getRMS.m

Description:

• RMS feature calculation.

getSTE.m

Description:

• STE filter calculation.

melfiltermatrix.m

Description:

• Calculation of Mel filter coefficients.

mfcc.m

Description:

• MFCC feature calculation.

Dependencies

melfiltermatrix.m
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NMF.m

Description:

• NMF feature calculation

B.3 NoveltyDetectors package

CVparzModelGen.m

Description:

• Generation of CVparz detector’s model.

Dependencies

getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m

CVuniDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction and model
evaluation.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
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CVuniModelGen.m

Description:

• Generation of CVuni detector’s model.

Dependencies

getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m

FREQNMFgmmDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction and model
evaluation.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
createFilterBank.m

getRMS.m

FREQNMFgmmModelGen.m

Description:

• Generation of FREQNMFgmm detector’s model.
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getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m
createFilterBank.m

getRMS.m
NMF.m

Dependencies

FREQnnDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction and evaluation
in neural network.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
createFilterBank.m

getRMS.m

FREQnnModelGen.m

Description:

• Training of FREQnn neural network.

Dependencies

MAXparzModelGen.m

Description:
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getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m
createFilterBank.m

getRMS.m

• Generation of MAXparz detector’s model.

Dependencies

getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m

MAXuniDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction and model
evaluation.

• Application of detection strategy.

Dependencies

hPFilterSignal.m

MAXuniModelGen.m

Description:

• Generation of MAXuni detector’s model.
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getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m

Dependencies

MFCCgmmDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction and model
evaluation.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
mfcc.m

MFCCgmmModelGen.m

Description:

• Generation of MFCCgmm detector’s model.

Dependencies

getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m
mfcc.m
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STECVMAXgmmDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction and model
evaluation.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
getSTE.m

STECVMAXgmmModelGen.m

Description:

• Generation of STECVMAXgmm detector’s model.

Dependencies

getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m
getSTE.m

STEparzModelGen.m

Description:

• Generation of STEparz detector’s model.
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getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m
getSTE.m

Dependencies

STEuniDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction and model
evaluation.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
getSTE.m

STEuniModelGen.m

Description:

• Generation of STEuni detector’s model.

Dependencies

getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m
getSTE.m
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TIMENMFgmmDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction and model
evaluation.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
getRMS.m

TIMENMFgmmModelGen.m

Description:

• Generation of TIMENMFgmm detector’s model.

Dependencies

getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m
getRMS.m
NMF.m

TIMEnnDetector.m

Description:
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• Initialization: Obtention of signal to analyse, feature extraction and evaluation
in neural network.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
getRMS.m

TIMEnnModelGen.m

Description:

• Training of TIMEnn neural network.

Dependencies

getIdealEvents.m
getSignal.m

getTrainingMatrixFromSignal.m
getRMS.m
NMF.m

B.4 ROC package

ROCgenerator.m

Description:

• Definition of data sample indexes that belong to the training data set.

• Obtention of location of manually detected transient events in the training
data set. This step is important for the calculation of FPR and TPR values.
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getIdealEvents.m
NoveltyDetectors package

SimpleThresholdDetectors package

• Creation of detector instance.

• Calculation of k values to use for the generation of the ROC curve. This values
are obtained from the detector properties.

• Obtention of FPR and TPR values for the defined k values.

• Calculation of AUC(0.2).

• Display of ROC curve and storage of FPRref , TPRref , kref and AUC(0.2)
values.

Dependencies

B.5 SimpleThresholdDetectors package

COEDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
getCOE.m
getRMS.m
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COEFREQDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
createFilterBank.m

getCOE.m
getRMS.m

LPSDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
getLPS.m
getRMS.m

TEODetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction.

• Application of detection strategy.
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Dependencies

hPFilterSignal.m
getTEO.m
getRMS.m

TEOFREQDetector.m

Description:

• Initialization: Obtention of signal to analyse, feature extraction.

• Application of detection strategy.

Dependencies

hPFilterSignal.m
createFilterBank.m

getTEO.m
getRMS.m

B.6 Utilities package

createFilterBank.m

Description:

• Obtention of filter center frequencies.

• Design of filters.

Dependencies

getValidFrequencies.m
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getEvents.m

Description:

• Reading of events file. The events file is a list of indexes where each value
represents the sample where a transient event begins in a measurement signal.

getIdealEvents.m

Description:

• Obtention of indexes where all the transient events happen within a signal.

• Obtention of window number where transient events happen within a specified
portion of a signal.

Dependencies

getEvents.m

getScore.m

Description:

• Obtention of consistency score.

getSignal.m

Description:

• Obtention of a portion of a measurement signal.

Dependencies
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hPFilterSignal.m

getTrainingMatrixFromSignal.m

Description:

• Obtention of matrix with transient-free data.

getValidFrequencies.m

Description:

• Obtention of center frequencies for one octave and one-third octave band
filters.

hPFilterSignal.m

Description:

• Obtention of a portion of a measurement signal.
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