
A configuration system
for Siemens Airlink

Søren Løvborg

Abstract

Siemens Airlink is a railway technology providing secure wireless connectivity
between rolling stock and wayside equipment. This report documents the
process of designing, implementing, and testing NMS-NG, a replacement for
the aging Airlink NMS configuration system.

The result is a highly flexible configuration system and matching security
model, specifically tailored for the daily workflows of the different Airlink user
segments. While additional work is required (particularly on integration), the
NMS-NG documented in this report represents an important step towards
providing an effective platform for coming generations of the Airlink system.

Kongens Lyngby 2012
IMM-M.Sc-2012-100



Copyright 2012 Søren Løvborg
www.kwi.dk

This work is licensed under the Creative Commons Attribution-
Share Alike 3.0 Unported License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
letter to Creative Commons, 444 Castro Street, Suite 900, Moun-
tain View, California, 94041, USA.

Technical University of Denmark
Department of Informatics and Mathematical Modelling
Building 305, 2800 Kongens Lyngby, Denmark
Phone +45 4525 3351, Fax +45 4588 2673
reception@imm.dtu.dk
www.imm.dtu.dk

www.kwi.dk
http://creativecommons.org/licenses/by-sa/3.0/
www.imm.dtu.dk


Contents

1 Introduction 1
1.1 Description of the Airlink system . . . . . . . . . . . . . . . . . . . . 2
1.2 About the Airlink NMS . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Requirements analysis 4
2.1 User segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Modularity requirements . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Interface requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Design 7
3.1 Configuration objects . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Security model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Workflow support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Implementation language and dependencies . . . . . . . . . . . . . . 27
3.8 Command-line interface . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Web interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Implementing a parser framework 35
4.1 Lexical, syntactic and semantic analysis . . . . . . . . . . . . . . . . 35
4.2 Look-ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Left-recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Input reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Parser objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 A domain-specific language for context-free grammars . . . . . . . . 41
4.7 Parse tree transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Implementing multiple inheritance 45
5.1 Single inheritance linearization . . . . . . . . . . . . . . . . . . . . . 45
5.2 Properties of linearizations . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Depth-first linearization . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 C3 linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Testing 50
6.1 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Documentation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Generated tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusion 53

A References 54

B Glossary 55

iii



iv



1 Introduction

Modern railway systems require the rolling stock to be in constant radio contact
with wayside equipment, for purposes such as:

∙ Train protection and control

∙ TV surveillance

∙ Passenger information

∙ Public access Internet service for passengers

A range of technologies are used to provide the above, ranging from simple balise
and inductive loop technologies to the more recent GSM-R standard.

Siemens Airlink is such a technology, providing a secure wireless connection between
the on-board and wayside computer networks. Airlink only provides connectivity
up to the network transport protocol layer, unlike e.g. GSM-R, which also defines
application layer protocols (e.g. voice calls).

Airlink is used in numerous installations worldwide for transmission of train con-
trol signals and passenger information, and is an especially popular choice in new
metropolitan rail installations (figure 1).

In Denmark, Airlink technology has previously been used to provide high-speed
wireless Internet service to S-train passengers. The on-going S-bane signalling
upgrade program will see its scope expanded to include train control signals and
passenger information between 2014 and 2018.

The Airlink system uses off-the-shelf 802.11n wireless technology for communica-
tion between train units and access points. The primary advantage of this approach
compared to the current GSM-R standard is higher bandwidth, something which
e.g. is a real concern with GSM-R in the Copenhagen metropolitan area due to the
density of the train traffic. [Kroyer08]

Location Commissioned Daily passengers
Copenhagen, Denmark (S-trains) 2011 300,000
Paris, France 2011 725,000
São Paulo, Brazil 2010 ∼ 900,000
Algiers, Algeria 2010 ∼ 300,000
Budapest, Hungary 2008 500,000
Guangzhou, China 2006, 2010 ∼ 1,000,000

Figure 1: A sample of locations where an Airlink system has been either comissioned
or already implemented. (Source: [Siemens12] and operator websites.)

1



Figure 2: A sketch of the logical (top) and physical (bottom) Airlink system.

1.1 Description of the Airlink system

From the customer’s point of view, Airlink simply provides a number of parallel
network bridges, each with one endpoint on the rolling stock and another in a
central server room.

Under the hood, the system is of course a lot more complex.

At one end of the system, on the rolling stock, we have various separate customer
networks (e.g. one network for train protection, at least one for other service func-
tions, and one for public access).

These on-board networks are connected to an Airlink train unit (TU), which com-
municates with stationary access points (APs) along the track.

At the other end of the Airlink system, the signals are received by a central system
router (CSR) in a central server room, which connects to a set of physical customer
networks matching those on the rolling stock.

Typically, the customer networks are kept physically separate at each end for se-
curity and reliability, e.g. preventing a faulty network card in a passenger’s laptop
from interfering with the train protection system and bringing the train to a halt.

Though the Airlink system multiplexes these networks physically out of necessity,
one of the most important duties of the Airlink system is to maintain the network
integrity as if the networks were physically separate all the way. This means not
only keeping the networks logically separate (as in VLANs), but also enforcing
strict quality-of-service requirements to ensure e.g. that train protection signals
always get sufficient bandwidth.

2



1.2 About the Airlink NMS

Pivotal to the Airlink system is the NMS (Network Management System), respon-
sible for configuration and monitoring of the Airlink network.

For the next generation NMS (NMS-NG), Siemens desires a complete rewrite, tak-
ing into account the lessons of the current NMS.

The present NMS is a separate network node, hosting a web application allowing
users to monitor SNMP variables and traps from the other nodes in the network,
as well as configure the Airlink system.

Originally developed by a third-party contractor, the current NMS implementation
uses a diverse and complex mix of languages and technologies in what can best be
described as spaghetti code. For these reasons, it has not been properly updated
in a while and is beginning to show its age.

The biggest changes in scope and purpose (requested by the Airlink development
group) are:

∙ NMS-NG should exclude the monitoring aspect, since all deployments have
in practice used industry standard monitoring software such as Nagios, rather
than the rudimentary monitoring capabilities of the NMS.

∙ NMS-NG should not be a designated “box”, but a piece of software that can
be used on multiple computers.

For these reasons, it is useful to think of NMS-NG simply as “the Airlink configu-
ration system”.

Configuration deployment

To deploy a new configuration, the NMS does not communicate directly with nodes
in the Airlink system. Instead, the NMS sends the new configuration to the CSR,
which is then responsible for applying it across the Airlink system.

3



2 Requirements analysis

2.1 User segments

Essential to analysing the project requirements are the three Airlink user segments:

The Airlink development group in Denmark develops the core
Airlink technology. They do not interact directly with customers.
NMS-NG is used for development and testing.

The development group needs maximum flexibility in configuring
the Airlink system, including the ability to tweak system internals.

The sales and support group in France uses NMS-NG to cus-
tomize and configure the Airlink technology for the specific re-
quirements of each customer.

Sales and support works with Airlink at a higher level, using an
interface provided by Airlink development.

The customer may need to use NMS-NG occasionally in their
daily operations, e.g. when replacing a defective train unit or access
point.

In some cases, such tasks are handled by the local Siemens office,
in which case the local office will be considered the customer for
the purposes of this project.

2.2 Modularity requirements

The Airlink configuration system must enable a high level of configuration re-use.

Configuration re-use within a deployment
The network nodes (train units and access points in particular) in an Airlink deploy-
ment can easily number in the thousands. Each node is individually configurable,
with more than two hundred configuration options per node. The configuration sys-
tem must provide a way to organize these nodes into configuration classes sharing
all or parts of their configuration as necessary.

Configuration re-use across deployments
Airlink is deployed in dozens of locations worldwide, and each deployment must
be supported for decades. The configuration system must enable changes made
by Airlink development to be easily passed first to sales and support, and then
to every customer, without conflicting with existing customizations and without
unintentional side effects.

4



2.3 Security requirements

For analysing the security requirements, consider the three classical CIA security
objectives and the four different groups of threat agents seen in figure 3.

Figure 3: Security objectives and threat agents for NMS-NG.

It is important to emphasize that a threat agent is not necessarily malicious, and
protection against accidental threats is as important (if not more important) as
protection against malicious threats.

Confidentiality and availability are larger issues of the Airlink system, and outside
the scope of this project. Similarly, a number of integrity issues (e.g. physical
security) are also out of scope.

NMS-NG must, however, secure the integrity of the Airlink configuration system,
i.e. ensuring that all changes to the configuration is subject to a defined security
policy, which among other things determines which configuration properties a given
user can change, as well as the allowed values.

5



2.4 Interface requirements

Siemens interface The development group and the sales and
support group share interface requirements. The Siemens interface
must:

∙ allow full access to (and control of) the configuration system,

∙ support the use of version control for both generic and
deployment-specific configurations,

∙ be scriptable to enable reproducible test environments and
automatized regression tests.

These requirements call for a text-based configuration format that
can be used with version control systems already in use by Siemens,
as well as a command-line tool for dealing with configuration man-
agement.

Customer interface As mentioned above, the customer is quite
limited in their interactions with the system. The customer inter-
face must:

∙ allow basic manipulation of nodes (e.g. configuring the hard-
ware model or location of a node),

∙ be user friendly and not require the use of a command-line,

∙ permit remote access (subject to security policy); the cus-
tomer should not need to be physically present in the server
room when upgrading equipment in the field.

These requirements call for a simple web interface with a limited
configuration file editor. A web interface is easily remotable, and
can be secured using separate off-the-shelf software.

6



3 Design

Remark The following sections contain a number of entity-relationship diagrams,
as described in [Chen76]. A quick recap for readers unfamiliar with the diagram type:
Designed for modelling relational databases, E-R diagrams provide an abstract
description of data models. Figure 4 shows the primary building blocks: Entity
sets (corresponding to database tables, record types or classes), relationship sets
(describing relational semantics between entity sets), and attributes (corresponding
to database columns, record fields or class properties), which can be associated with
either entities or relationships.

Figure 4: An overview of symbols in an entity-relationship diagram.

3.1 Configuration objects

The current NMS defines several different types of configurable entities:

∙ Nodes (or units)

∙ Locations

∙ Layers

∙ Configuration groups

∙ Initialization scripts

∙ Cryptographic tokens

∙ Firmware images

∙ Properties (or variables)

The diagram in figure 5 illustrates how the NMS data model has a number of
predefined attributes, while the existence of a generic property system provide
extensibility.

The NMS-NG datamodel (figure 6) consolidates this into a simpler and more flex-
ible configuration model, in which all configuration data is stored using a generic
property system. To manage the increased number of generic properties, a OOP
inspired class-based inheritance system is introduced as a replacement for the var-
ious grouping features of the existing system. This ensures greater flexibility and
reduces the overall complexity of the configuration system.

7



Figure 5: The entity sets of the current Airlink system.

Figure 6: The entity sets of the NMS-NG datamodel.

8



Here follows a brief overview of the different entities, and their role in the system.

Nodes

Nodes refer to the individual computers making up the Airlink system, such as
access points, train units and routers. The goal of the configuration system is to
assign a customized configuration to each individual node.

The current Airlink system refers to these entities as units. Since the term is also
used by the configuration system in the unit of measurement sense, NMS-NG uses
the unambiguous (and more recognizable) term node instead (as in network node),
though the term unit remains in a few places for compatibility with the existing
system.

Locations, layers and configuration groups

The current NMS assigns each node exactly one location, layer and configuration
group, each of which provide settings common to multiple nodes.

NMS-NG replaces this rather inflexible system with the generic class system, al-
lowing arbitrary groupings.

Initialization scripts and properties

Each configuration group is assigned a set of initialization scripts, which are con-
catenated (in a defined order) and executed on each member node during boot.
NMS-NG automatically concatenates the configuration scripts into a single value,
and treats the result like any other generic property value.

Besides executing various shell commands, the initialization scripts of the current
Airlink system are also responsible for setting up variables on the node.

Since the variables are set up using shell commands, the only way to determine
the variables configured for a given node is by executing the shell scripts on that
node. This gives great flexibility, but also makes it harder to reason about node
configurations. For this reason, NMS-NG moves variable assignment out of the
initialization scripts, makes them first-class citizens of the configuration, and de-
termines all values before deployment.

In accordance with the new OOP inspired model, to distinguish them from ordinary
environment variables, and because these values are actually constant for a given
configuration and node, NMS-NG will use the term property instead of variable.

9



Cryptographic tokens

Each node is assigned a number of cryptographic tokens. The tokens are opaque
binary data, stored in individual files as hexadecimal strings.

NMS-NG allows these tokens to remain as individual files or to be stored as tabular
data in a single CSV file.

Firmware images

Each node is assigned a specific firmware image. The images consist of opaque
binary data, stored in individual files.

NMS-NG treats the firmware as a generic property value, but the handling of
firmware is otherwise essentially unchanged.

10



3.2 Inheritance

As seen in figure 5, the existing NMS groups nodes by location (physical location),
layer (logical location), and configuration group (themselves subdivisions of a spe-
cific node type). Each grouping provides values for a fixed set of attributes. Since
each group is entirely independent of the others, configuration values can only be
shared between groups by explicit (and error-prone) repetition.

In practice, an Airlink deployment may call for other groupings, not supported by
this limited approach:

∙ Train units on trains servicing different train lines may require different con-
figuration options.

∙ To limit interference and maximize bandwidth, it might be desirable to change
radio channels between alternate access points along a track.

∙ A node may be replaced by a newer hardware model, requiring different
configuration options (firmware in particular) for that particular node.

∙ Troubleshooting may call for a limited patch roll-out to a chosen subset of
nodes.

Each of these groupings are orthogonal to one another, and a bad fit for the available
groupings of the existing NMS.

In the current Airlink system, the work-around has been cut-and-paste: In one
small example configuration provided by the Airlink development group, 26 %
redundancy was observed across five configuration groups. Two of the groups
differed only in their choice of radio channels, with the remaining 98 % of the
group configuration needlessly repeated due to insufficient grouping mechanisms.

NMS-NG solves these problems by introducing a flexible class system (figure 7),
enabling groups to be split into subgroups and allowing arbitrary attribute as-
signments for each group. Support for multiple inheritance enables orthogonal
groupings (figure 8).

In object-oriented programming, multiple inheritance has gotten a bad rap for two
reasons:

Multiple inheritance is more complex than single inheritance

As just demonstrated, for NMS-NG the complexity is largely necessitated by the
need for orthogonal groupings, a feature that is simply not supported by single
inheritance. An alternative could be orthogonal groupings without inheritance, but
there is a reason why OOP reigns as the most widespread programming paradigm:
Inheritance provides a more elegant and natural fit for the way most people think
about data.

11



Node

AP TU CSR NMS

AP group 1 AP group 2

TU-01 TU-02 CSR-01 CSR-02 NMS-01AP-03AP-01 AP-04AP-02

Figure 7: A class graph resembling the fixed groupings of the existing NMS.

Node

AP TU CSR NMS

AP group 1 AP group 2

TU-01 TU-02 CSR-01 CSR-02 NMS-01AP-03AP-01 AP-04AP-02

Line A Line B

Figure 8: A multiple inheritance class graph, demonstrating orthogonal groupings
by line and AP group.

While multiple inheritance certainly allows users to construct incredibly complex
inheritance graphs, it doesn’t force them to. In the end, multiple inheritance is a
scalable technology, giving the users the exact amount of complexity they ask for.

The complexities of implementation will be discussed in section 5.

Multiple inheritance has worse performance than single inheritance

In the case of native compilation (e.g. C++), multiple inheritance often introduces
a slight performance penalty at runtime, compared to simple vtable-based imple-
mentations of single inheritance. This does not apply to NMS-NG, as everything
is resolved at compile-time.

12



3.3 Properties

The available properties are defined in individual property files, which specify data
types and other contraints, along with descriptive text for the property. Besides
validation, the constraints may of course also be used by a GUI frontend to assist
the user in entering property values.

Referencing a property name with no associated property file will cause a warning.

Figure 9: The NMS-NG property entity.

Wildcard property names

When defining properties, one or more dotted elements of the property name may
be an underscore (’_’). This is a wildcard which may stand for any symbol (a
string matching the regular expression /[_a-zA-Z0-9]+/).

The interpretation is that the property definition applies to all property names
that match the given pattern.

An concrete example is the multiplexer.feature.datastream.outbound._ prop-
erty, which may be defined for priorities p0 through p15. (The compiler does not
verify that properties restrict themselves to these 16 names, though, as the wildcard
can stand for any symbol.)

The existence of multiple property files matching the same property name will
cause a compile-time error.

13



File format

To ease the NMS-NG upgrade, the NMS-NG property file format remains largely
backwards compatible with the current format.

Property files consists of RFC 822-style header fields, including support for line
continuations.1 As a context-free grammar, the syntax is:2

property_file = field*

field = name ’:’ value /\n|$/

name = /[a-zA-Z$]+/

value = /([^\n]|\n )*/

Additionally:

∙ Each field may impose additional syntax constraints on its value.

∙ Newline characters in values are removed as per RFC 822.3

∙ Only ASCII characters have been observed in the existing property files, but
for good measure, the encoding of property files shall be considered UTF-8.

∙ Both Windows-style (CRLF) and Unix-style (LF) newlines are acceptable,
and both shall match ’\n’ in the context-free grammar above.

Eight different field names are recognized, all but one belonging to one of four
functional groups:

$Id ignored (VCS tag)
datatype value constraint
values value constraint
mode availability constraint
unittype availability constraint
unit descriptive text
description descriptive text
replaces alias definitions

∙ Value constraints limit the possible values assigned to the property.

∙ Availability constraints limit the situations in which the property may be
used at all.

∙ Descriptive text provide user guidance for correct property usage.

1[RFC822], section 3.1.1. “For convenience, the field-body portion of this conceptual entity can
be split into a multiple-line representation; this is called ‘folding’. The general rule is that wherever
there may be linear-white-space (not simply LWSP-chars), a CRLF immediately followed by at
least one LWSP-char may instead be inserted.”

2This notation for context-free grammars is discussed in section 4.5.
3ibid. “Unfolding is accomplished by regarding CRLF immediately followed by a LWSP-char

as equivalent to the LWSP-char.”

14



unittype: AP,TU

datatype: list<string>

values:

unit:

description: The Service Set IDentifier is the network name

of the wireless LAN that will be used. On TU several SSIDs

are allowed.

mode: TGMT,CBTC,PDS

Figure 10: The net.wlan.ssid property file.

∙ Alias definitions give alternative names to a property.

Besides the information listed in the property files, properties are classified as
either internal or external, depending on the location of the property file in one
of two directories. Internal properties are reserved for use by advanced users and
debugging, and are e.g. hidden by default by the Airlink var tool.

An example of an NMS-NG property file can be seen in figure 10.

Default values

The current Airlink property files define default values for properties, to be used if
no value is specified for a given node and property. NMS-NG, on the other hand,
has no explicit support for default values.

In NMS-NG, default values should be provided by a common base class (e.g.
Defaults), from which all nodes inherit (directly or indirectly). This class would
usually be defined in a separate defaults.conf file that may be used unchanged
across Airlink deployments.

Some of the existing Airlink property files also specify separate defaultTGMT,
defaultCBTC and defaultPDS fields, for specifying defaults that depend on the
sys.mode property (which is set to either TGMT, CBTC or PDS). In NMS-NG, this
should be implemented by providing separate TGMTDefaults, CBTCDefaults and
PDSDefaults classes (all of which should likely inherit from a common Defaults

class).

datatype

The following datatypes (field datatype) have been observed in the existing Airlink
property files:

string:
an arbitrary text string.

15



int:
a signed 32-bit integer quantity (a C signed int).

unsigned, unsigned int:
an unsigned 32-bit integer quantity (a C unsigned int).

bool:
a boolean value (either true or false).

float:
an IEEE 754 single precision (32-bit) floating point value.

IPv4Address:
an IPv4 address in dotted-decimal notation.

IPv4AddressNet:
an IPv4 address and subnet mask in CIDR notation (1.2.3.4/5).

list<string>, list<unsigned>, list<IPv4Address>:
a space-separated list of values.

The current use of datatypes is somewhat haphazard. E.g. boot.gateway.ip is
declared a string, rather than an IPv4Address, and crypt.ipsec.debug.types

(also declared a string) contains a comma-separated list (or set, really) of strings.

Based on a careful review of the 279 existing property files, NMS-NG implements
the following datatypes for improved validation and tool support:

string:
an arbitrary text string.

int:
a signed 32-bit integer quantity (a C signed int).

bool:
a boolean value (either true or false).

float:
an IEEE 754 single precision (32-bit) floating point value.

list<T>:
a space-separated list of elements of type T.

set<T>:
like list<T>, but unordered and without duplicates.

IPv4Address:
an IPv4 address in dotted-decimal notation.

IPv4AddressNet:
an IPv4 address and subnet mask in CIDR notation (1.2.3.4/5).

16



IPv4AddressPort:
an IPv4 address and port number, separated by a colon (1.2.3.4:5555).

Password:
a password hash in standard Unix crypt format.

For this to work, the following issues must be resolved:

∙ unsigned properties become int properties, each with a separate additional
value constraint that the value must be non-negative (described below).

∙ Use of existing comma-separated properties is audited, and the properties
changed to space-separated. Since much of the Airlink code is in the form of
shell-scripts, settling on space-separated lists seems appropriate.

values

The following value constraints (in the field values) have been observed in the
existing Airlink property files:

∙ blank (no constraint).

∙ comma-separated set of permitted values (very common for bool properties,
where the information is rather redundant, but also used for more informative
purposes).

∙ space-separated set of permitted values.

∙ the string numbers (redundantly specified for an int property).

∙ the string 0-? indicating an (open-ended) range of permitted values (used
redundantly for an unsigned property, but useful if the unsigned datatype
is removed).

∙ the string 1- indicating an (open-ended) range of permitted values.

∙ a string such as 1-10000 indicating a range of permitted values.

∙ the string space separated list of allowed ssid’s, carrying informa-
tion that should rightly be placed in the datatype field (which should be
list<string> instead of string) and the description field.

∙ the string comma separated list of multicast groups.

∙ the string alivewatch,x,duplicate,y, indicating a pattern to be followed,
with x and y being stand-ins for arbitrary numbers.

∙ the string line,section,ssid[,...] line,section,ssid[,...], indicat-
ing a pattern to be followed for each space-separated element.

∙ the string 2, indicating only one permitted value (which is also the default
for the two properties).

∙ the string ., with no discernible meaning.

17



NMS-NG supports the following types of value constraints:

∙ comma separated list of permitted values: foo,bar,baz

∙ regular expressions: /expr/

∙ numeric ranges: 10..24

– the use of - (hyphen-minus) is avoided, to avoid confusion with signed
values.

– open-ended ranges: 10..

– open-ended ranges: ..12

For list<T> and set<T> types, the constraints apply to each separate element.

mode, unittype

The mode field must contain a comma-separated list of modes (e.g. TGMT or CBTC),
or the special string ALL. If not set to ALL, the property will only be available for
nodes that have sys.mode set to one of the listed modes.

Similarly, the unittype field must contain a comma-separated list of node types
(e.g. AP or TU), or the special string ALL. If not set to ALL, the property will only
be available for nodes that have boot.system set to one of the listed node types.

NMS-NG will emit a warning if a property is assigned in a class or node definition,
and that definition either defines or inherits a sys.mode or boot.system value that
renders the property unavailable.

unit, description

The unit and description fields contain descriptive text, which is only intended
for human consumption.

replaces

The replaces field (new in NMS-NG) is a comma-separated list of property names,
which are rendered obsolete by the current property. The listed names become
deprecated aliases for the current property, but will continue to work, yielding a
warning on every use.

This feature is used for properties that change their name. If instead a property
is deprecated, but no replacement property is available, the deprecated property
should simply be deleted. The configuration tools will yield a warning when an
undefined property is used.

18



3.4 Configuration files

An NMS-NG configuration consists of a set of files, each of which is either a primary
or a secondary configuration file.

Primary configuration files are parsed by the NMS-NG compiler and define config-
uration classes, nodes and security policy. They exist in two formats, linear (source
code style) and tabular (CSV files).

Secondary configuration files are opaque binary files (e.g. cryptographic keys or
firmware), which are referenced by filename by the primary configuration files, and
never actually parsed by the NMS-NG compiler.

A class or node definition consists of an identifier (its name) and any number of
property value assignments. Class and node names must obey the standard C
rules for identifiers, whereas the rules for property names are more lax, as they can
contain periods.

Assigning the same property twice for the same class or node is an error, as is
multiple class definitions with the same class name.

Multiple node definitions with the same name are allowed (as long as there is no
overlap in the properties assigned in each node definition); the definitions are then
simply merged. Splitting node definitions across multiple files is useful because
different files may be associated with different privileges (discussed in section 3.5).

Linear configuration files

Using a syntax inspired by C and shell scripts, the linear configuration files define
classes and security policy (the grant keyword, discussed in section 3.5).

Property values can be simple literal values, or compile-time expressions. Proper-
ties may also obtain their value from external files (secondary configuration files).

The detailed syntax is shown as a context-free grammar in figure 11. To keep
things simple, the shown CFG does not account for comments and white-space.
(Comments start with a #, and run until the end of the line. White-space is
ignored everywhere except in quoted strings, as one would expect.)

The details of configuration file parsing are discussed at length in section 4.

A simple example
This example defines a class MyNode, inheriting from the Defaults class. Proper-
ties sys.mode and nms.ip are set to the literal strings “TGMT” and “192.168.1.1”,
while snmp.ip is set to the compile-time expression nms.ip. Hence, if a node in-
heriting from MyNode overrides the nms.ip value, it will effectively set both nms.ip

and snmp.ip.

19



config = (class | grant)*

class = "class" identifier classBase? ’{’ property* ’}’

classBase = ’(’ identifier (’,’ identifier)* ’)’

property = property_ref ’=’ property_value

property_ref = ( identifier | compiletime_expr )

( ’.’ ( symbol | compiletime_expr ) )*

property_value = quoted_value | unquoted_value | file_value

unquoted_value = symbol | compiletime_expr

quoted_value = ’"’ ( /[^{"\\]+/ | /\\./ | compiletime_expr )* ’"’

file_value = ’@"’ ( /[^{"\\]+/ | /\\./ )* ’"’

( ’[’ sha1_hash ’]’ )?

compiletime_expr = ’{’ add_expr ’}’

add_expr = mult_expr ( ( ’+’ | ’-’ ) mult_expr )*

mult_expr = basic_expr ( ( ’*’ | ’/’ | ’//’ | ’%’ )

basic_expr )*

basic_expr = property_ref | literal | ’(’ add_expr ’)’

grant = "grant" privilege "to" principal

principal = sha1_hash

privilege = "set-prop" ’(’ property_glob ’)’ |

"set-all-prop" | "set-all-ext-prop" |

"inherit" ’(’ identifier ’)’ |

"inherit-all" | "define-node"

property_glob = ( identifier | ’*’ ) ( ’.’ ( symbol | ’*’ ) )*

literal = integer | quoted_string

quoted_string = ’\’’ ( /[^’\\]+/ | /\\./ )* ’\’’

integer = /-?[0-9]+/

identifier = /[_a-zA-Z][_a-zA-Z0-9]*/

sha1_hash = /[0-9a-fA-F]{40}/

symbol = /[_a-zA-Z0-9]+/

Figure 11: Syntax of linear configuration files (using the notation described in
section 4.5).

20



class MyNode(Defaults) {

sys.mode = TGMT

nms.ip = "192.168.1.1"

snmp.ip = {nms.ip}

}

Complex expressions
Besides simple property references, NMS-NG supports a simple expression lan-
guage. The syntax as currently implemented is given in figure 11. The goal is to
remove needless call-outs to external tools for simple string processing, but further
work is required to determine the exact features to be supported.

In the following example, the node number is passed through the % formatting
operator (as implemented in the Python language, and similar to C’s sprintf) to
zero-extend the number to three digits. The resulting name is AP012.

boot.system = "AP"

node.no = 12

name = "{boot.system}{’%03d’ % node.no}"

Expressions in property references
Compile-time expressions are not limited to property values, but can also be used
in property names. This feature is particularly useful for wildcard properties, but
not limited to these.

The following example assigns the value “10.16.0.1” to the property net.eth0.ip.
One could easily imagine these three assignments being split between three diffent
configuration files, as suggested by the comments.

net.{boot_ifc}.ip = {boot_ip} # Airlink default

boot_ifc = eth0 # Firmware specific setting

boot_ip = "10.16.0.1" # Deployment specific setting

Expressions in property names must evaluate to a symbol (/[_a-zA-Z0-9]+/); in
particular, the expression value may not contain a period (’.’).

Referencing external files
Property values may be loaded from external files. Filenames are relative to the
location of the input configuration file.

firmware = @"firmware/axpl52.bin"

initscript = @"ap.d/"

As the second line shows, entire directories may be referenced, in which case each
file in that directory will be concatenated, and the result assigned to the property.

21



node,class,unitno,location.desc

CSR01,CSR,1,Equipment room

CSR02,CSR,2,Equipment room

AP01,AP,1,"Trackside, upside"

AP02,AP,2,"Trackside, downside"

TU01,TU,1,Train X

TU02,TU,2,Train Y

Figure 12: Example of defining nodes in a tabular configuration file.

class,location.desc,location.utm

EquipmentRoom,Equipment room,17T 630084 4833438

TracksideUp,"Trackside, upside",17T 630123 4833793

TracksideDown,"Trackside, downside",17T 630197 4833802

Figure 13: Tabular class definitions for specifying the locations of nodes.

Tabular configuration files

Both nodes and classes can be defined using a CSV (comma-separated values) file.
The CSV files must start with a header row, followed by zero or more data rows.

For compatibility with localized versions of Microsoft Excel, NMS-NG transpar-
ently handles SSV (semicolon-separated values) files as well.

Nodes
A node configuration CSV file must start with a column named node, specifying
node names, one or more columns named class, specifying names of classes to
inherit from, and finally one or more columns named after properties, specifying
literal values to assign to these properties.

If a property column cell is empty, the property will not be assigned for that node.

Classes
Classes can also be defined using CSV files, if a large number of heterogeneous
classes must be created and the linear configuration file format is not appropriate.
CSV files do not support expressions or external file references, though.

A class configuration CSV file must start with a column named class, specifying
class names, zero or more columns named superclass, specifying names of classes
to inherit from, and finally one or more columns named after properties, specifying
literal values to assign to these properties.

If a property column cell is empty, the property will not be assigned for that class.

22



Figure 14: The underlying data model of the NMS-NG trust model.

3.5 Security model

As discussed in the requirements analysis (section 2.3), NMS-NG concerns itself
primarily with preserving the configuration integrity.

The security model is specifically designed to support the workflows of each user
segment (development, sales and support, and customers, as defined in section 2.1).

Signed configuration files

Configuration files may be cryptographically signed by adding the appropriate
OpenPGP ASCII armor [RFC4880] to the configuration file (figure 15).

Signing a configuration file endows the file with the privileges of the security princi-
pal who does the signing. All configuration files must be signed before deployment.

In linear configuration files, a SHA-1 annotation is added to every external file refer-
ence, to ensure the signature also protects the integrity of the referenced secondary
configuration files (figure 16).

Trust model and privilege delegation

NMS-NG implements a trust model inspired by the SPKI (Simple Public-key In-
frastructure, [RFC2693]) trust model, though further simplified (figure 14).

A security principal is simply defined as the fingerprint (the SHA-1 hash) of the
public key of an assymetric keypair usable for cryptographic signatures (e.g. an
RSA or DSA public key).

A principal can hold a number of privileges, and can delegate these privileges to
other principals by signing a configuration file with delegation instructions.

23



-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA1

node,class

CSR01,CSR

TU01,TU

-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1.4.11 (GNU/Linux)

iEYEARECAAYFAlAFcTwACgkQJL/wjZlVk3dmRky3OpWFxMf14xs1bW/Fcre

n40Anj5buaNNpUYZcTGtjW+BUvbeUDJd

=kgOd

-----END PGP SIGNATURE-----

Figure 15: Example of a signed tabular configuration file.

-----BEGIN PGP SIGNED MESSAGE-----

Hash: SHA1

class Node {

tu.vg.timeout = 500

key = @"my.key" [01ce2162f92e80defa270badbe22e3aa69d9]

}

-----BEGIN PGP SIGNATURE-----

Version: GnuPG v1.4.11 (GNU/Linux)

iJwEAQECAAYFAk+9JnYACgkQ5f7VEac6VAP+OKCgRymp27kzZg24k+p1N2

7kZykJmF55L44GK57TI=

=6cY+

-----END PGP SIGNATURE-----

Figure 16: Example of a signed linear configuration file with a SHA-1 annotation.

24



Hardcoded into the Airlink system is the root principal (i.e. the root public key),
which has every privilege.

The trust model is purely additive and does not support revocations; once granted,
privileges cannot be rescinded. The scale and centralized nature of Airlink de-
ployments makes it quite feasible to simply change the root principal key (thus
instantly voiding all existing privileges), if the need arises.

Delegation instructions are placed in linear configuration files, and look like this:

grant set-all-prop to 3ce764d4faff5fa810b203bfadf516d38421f11c

The above example grants the set-all-prop privilege to the principal with the
specified public key fingerprint.

Available privileges

set-prop(prop ):
The permission to assign values to the given property. A ’*’ wildcard can
replace a dotted element, to match multiple property names.

set-all-prop:
The permission to assign values to all properties.

set-all-ext-prop:
The permission to assign values to all external properties.

inherit(class ):
The permission to have nodes and classes inherit from the given class. Secu-
rity principals are automatically granted permission to inherit from classes
defined by themselves.

inherit-all:
The permission to have nodes and classes inherit from all available classes.

define-node:
The permission to define new nodes.

25



3.6 Workflow support

We now have the building blocks for constructing a secure workflow that satisfy
the project requirements. An example setup is given in figure 17.

The Airlink development group controls the root key, but good se-
curity practice dictates that most work is done with a subordinate
key (here “Airlink development”).

With the root key, the development group defines a policy file that
delegates all privileges to the “Airlink development” principal, and
a subset of privileges to the “Sales and support” principal.

This setup allows for the root key to be easily updated, without
having to resign every configuration file (only an updated policy
file needs to be signed).

The development group defines a number of default classes
(defaults.conf), classes specific to a certain mode of operation
(cbtc.conf in this example), as well as firmware-specific classes
(firmware.conf), which (besides firmware-specific settings) also
include the requisite firmware files (axpl52.bin in this example).

The “Sales and support” principal creates a customer-specific con-
figuration file, and delegates just a few privileges to the customer.

They never change the generic configuration files received from the
development group, in order to ensure traceability and (of course)
because they don’t have the signing key.

When sales and support receives updated configuration files from
the development group, they simply replace the previously received
set with the new files, tweak the customer-specific configuration if
required and run regression tests, before forwarding the updated
configuration to the customer.

The customer maintains a small configuration file (nodes.csv)
defining e.g. which train units are located in which trains.

The customer uses the customer interface (web interface), which
handles complexities such as signing of configuration files auto-
matically.

Configuration updates from Siemens can be applied immediately,
without interfering with modifications made to nodes.csv.

26



Figure 17: An example of a complete NMS-NG setup.

3.7 Implementation language and dependencies

As has been mentioned previously, the current NMS is implemented using an un-
graceful mix of languages and technologies (including PHP and Java) that are not
used anywhere else in the Airlink system. (Especially the Java dependency is a
thorn in the side, adding over a hundred megabytes to the install image.)

For NMS-NG, the Airlink development group wishes for this large and complex set
of dependencies to be minimized, with one working paper even calling for everything
to be written as plain shell scripts.

As a result, NMS-NG is implemented in the Python language. Python is a modern,
high-level language, with superb capabilities in web development, more flexible
than Java, but stricter than PHP, with excellent OS APIs (like shell scripts and
unlike Java), while providing an OS independent platform. As a bonus, it is a
system component in Ubuntu Linux (and most other Linux distributions), one of
the primary target platforms.

By design, NMS-NG does not implement its own cryptography, instead requiring
GnuPG to be installed on the local system. (Non-cryptography related function-
ality works without GnuPG, of course.)

NMS-NG has no other dependencies. In particular, it does not depend on a
database server (unlike the current NMS).

27



3.8 Command-line interface

NMS-NG includes a command-line tool (nms), which supports manipulation and
inspection of a local set of configuration files, as well as communication with a
CSR.

Signing

Configuration files may be signed using the nms sign command:

$ nms sign system.conf

The command removes any existing OpenPGP ASCII armor, adds correct SHA-1
hashes for all external files, and finally signs the file (adding up-to-date ASCII
armor) using GnuPG (gpg --clearsign).

nms unsign removes the ASCII armor and file hashes again:

$ nms unsign system.conf

File lists

The nms tool can produce a list of all the files making up a given configuration
(including secondary configuration files):

$ nms files

By specifying filenames on the command-line, the tool will only list the specified
files and the external files they reference. As such, the above command is equivalent
to:

$ nms files *.conf *.csv

The command can e.g. be used to easily bundle up an entire configuration:

$ tar cf backup.tar $(nms files)

In verbose mode (nms files -v), the command shows the signing status (unsigned,
valid or invalid signature) of each file.

28



Properties

The tool can be used to inspect individual property values for classes and nodes:

$ nms var AP retrieswlan0

2

Or all properties may be shown for a given node:

$ nms var AP001

boot.system=AP

name=AP001

ip=10.141.14.1

retrieswlan0=3

This only shows external properties, unless in verbose mode(-v).

Nodes

Nodes (and selected properties) can be listed in a tabular layout:

$ nms nodes ip

node ip

----- ------------

CSR01 192.168.64.1

CSR02 192.168.64.2

AP001 10.141.14.1

AP002 10.141.14.2

The command nms nodes --csv can be used to export the table as a CSV file.

Classes

The tool can list all available classes:

$ nms classes

AP

AP1

CSR

Node

TU

29



The --tree option causes the classes to be listed as a tree (multiple inheritance
may cause the same class to appear multiple times):

$ nms classes --tree

o Node

|-o AP

| |-- AP1

|-- CSR

\-- TU

Validation

Errors in the configuration may cause the tool to fail with a compile-time error.
However, not all commands require a completely valid configuration to succeed;
the nms files command for instance only requires that the files are syntactically
valid, and does not verify e.g. that the class inheritance graph is even valid.

The nms validate command request an explicit and complete validation of the
configuration, including checking that every file is correctly signed, and that the
security policy is obeyed.

Deployment

The configuration may be deployed to a CSR:

$ nms deploy 1.2.3.4

Deployment to the CSR happens using the rsync tool to copy all configuration
files over. The rsync protocol provides automatic delta-compression, limiting how
much data needs to be copied.

The configuration is validated by nms before deployment, and again by the CSR.

Retrieving the active configuration

If no local copy exists, the currently active configuration may be retrieved from the
CSR. The configuration files are placed in a specified directory.

$ nms retrieve 1.2.3.4 target-dir/

Like deployment, configuration retrieval is performed using the rsync tool.

30



Figure 18: The dashboard provides a configuration overview and an activity feed.

3.9 Web interface

The NMS-NG web interface (the “WUI”) provides a subset of the features of the
command-line interface, and some WUI specific features:

∙ Deploying a new configuration to a CSR

∙ Retrieving the currently active configuration from a CSR

∙ Configuration import/export

∙ Linear configuration file viewer

∙ Tabular configuration file editor

∙ User account management

The goal is to support the daily operations of the customer, and to allow use by
non-technical users.

Dashboard

Shown after log in, the dashboard provides shortcuts to fetch and view the currently
deployed configuration, and to edit the draft configurations. At the bottom is an
activity feed, listing the most recent entries of the WUI log file and ensuring that
the user is aware of recent actions taken by other users.

31



User accounts

A WUI user account corresponds directly to an NMS-NG security principal, though
not all security principals have a user account.

The WUI user account database consists simply of a set of files, one per account.
Each file contains an encrypted OpenPGP private key that can be used for signing
configuration files.

To log in to the WUI, the user must provide a username and passphrase. The
username corresponds to the filename of a user account key file, and the passphrase
is used to decrypt the key file.

The user is hence granted access to the WUI only upon successfully decryption of
a user account key.

This also means that a compromise of the web server does not immediately lead to a
compromise of the remaining Airlink system, since all the keys (which are required
to actually do anything) are encrypted. (Of course, once a user logs in to the
compromised web server, the attacker will be able to impersonate that particular
user, but that is a fundamental problem of any web interface.)

The WUI provides a page for basic user account administration (changing pass-
words, adding and deleting accounts).

To add a new account, the user must upload a key file. A valid key file can be
generated by the customer using any compliant OpenPGP implementation (such
as GnuPG), or one can be provided by Siemens upon request. (This slight difficulty
in creating new accounts was deemed acceptable, since most Airlink deployments
will have perhaps two or three user accounts, which rarely change.)

Since each user account is simply a standard OpenPGP key file, technically inclined
users can also perform user administration directly on the server.

Configuration management

The WUI can track multiple, separate draft configurations, which it can import
and export in the form of zip-files. The WUI provides a page for viewing the files
of a given configuration, as well as an editor for tabular configuration files.

More than a simple text grid, the tabular configuration file editor provides property
hint texts and combo-box (auto-completion) features to assist the user in choosing
the right properties and property values.

On request, the WUI retrieves the currently active configuration from a CSR, for
viewing by the user. If the user attempts to edit the current configuration, it is
automatically copied to a draft configuration, which the user can then edit and
deploy.

32



Figure 19: The log in screen.

Figure 20: The user account management screen.

33



Figure 21: Viewing a file from the current configuration.

Figure 22: Editing a file from a draft configuration.

34



Step Chomsky type Analytic complexity
Lexical Type 3 Regular
Syntactic Type 2 Context-free
Semantic Type 1 or 0 Context-sensitive or higher

Figure 23: The three levels of analytic complexity correspond loosely to increasing
levels in the Chomsky hierarchy of formal language complexity.

1.3*2
lexical−−−−→ 1.3 * 2

syntactic−−−−−→
*

1.3

{{{{
2

>>> semantic−−−−−→ 2.6

characters tokens parse tree result

Figure 24: How a simple calculator might parse user input.

4 Implementing a parser framework

4.1 Lexical, syntactic and semantic analysis

The parsing of formal languages (programming languages in particular) is typically
divided into three steps, in order of increasing complexity (figure 23).

Lexical analysis converts a sequence of characters into a sequence of tokens by
repeated application of a regular language recognizer (that is, using regular ex-
pressions). Tokens are typically words, literals, operators and punctuation. “Null
tokens” (usually whitespace and comments) are discarded during this step.

Syntactic analysis converts the sequence of tokens into a parse tree, according
to a context-free grammar.

Semantic analysis converts the parse tree in a non-formalized and program-
specific manner into the desirable end-result.

Figure 24 shows an example of this process.

While this separation is mathematically redundant (since each step has enough
analytic complexity to perform the previous steps on its own), it greatly simplifies
the parsing process:

∙ The non-formalized semantic analysis is separated from the syntactic analysis,
allowing the well-established formalisms of context-free grammars to be used
for the latter.

∙ The context-free grammar is greatly simplified by not dealing with null to-
kens, not to mention by not operating at the individual character level.

35



Lexical analysis of string literals

A side effect of this three-step approach is that all parts of the language where
whitespace is significant (such as string literals and one-line comments) must be
describable using regular expressions, because the context-free step never sees the
whitespace. Hence even the most complex token in the C language, the string
literal, can be described by a regular expression, which roughly looks like this:

"([^"\\]|\\.)*"

The exact definition in the C standard [ISO9899] is equivalent to:

L?"([^\n"\\]|\\[’"?\\abfnrtv]|\\[0-7]{1,3}|\\x[0-9a-fA-F]+|

\\u[0-9a-fA-F]{4}|\\U[0-9a-fA-F]{8})*"

Slightly more complex, but definitely regular.

This fact holds true for most derivatives of the C language, as well. For instance,
the definition of the string literal in the Java Language Specification [JLS:SE7] is
equivalent to the following regular expression:

"([^\n\r"\\]|\\[btnfr"’\\]|\\[0-7]{1,2}|\\[0-3][0-7][0-7])*"

(The \u Unicode escape sequence is absent, because it is handled by an even earlier
parsing step.)

Lexical analysis of the NMS-NG linear configuration language

In the NMS-NG linear configuration language, string literals can contain embedded
expressions, a feature found in many Unix shell languages (such as the Bourne shell)
and derivatives (such as PHP and Perl).

Obviously, the whole string literal including expressions cannot be handled as a
single lexical token, since the expression syntax is context-free, not regular. How-
ever, the lexical rules inside a string literal are quite different from those on the
outside – whitespace is significant, for instance. Thus an NMS-NG string literal
cannot be split into separate tokens either, as the analytic complexity of this too
is above regular.

The result is that the NMS-NG configuration language cannot be analysed us-
ing regular grammars; the syntactic analysis must be performed directly on the
raw sequence of characters. To deal with whitespace and comments gracefully,
the developed parser framework contains explicit support for “null tokens” in the
syntactic analysis step.

36



4.2 Look-ahead

NMS-NG implements an LL parser (specifically, a recursive descent parser). Of
LL parsers, LL(1) are the most common. This means that whenever the parser
encounters a production with multiple alternatives, it makes its choice based only
on the next input token (a look-ahead of 1).

LL(1) parsers perform better than parsers with higher look-ahead, and also benefit
from more appropriate error reporting in case of syntax errors.

As an example of the latter, take the input string user; and the following grammar:

entity = user | group

user = "user" identifier ’;’

group = "group" identifier ’;’

The lexical analysis yields two tokens, user and ;.

An LL(1) parser will start at entity, then (using one token of look-ahead) choose
the user production over group. After consuming the user token, the parser will
expect to find an identifier, but instead finds a ;, provoking an error of the form
“Expected identifier, found ‘;’ at input position 4”.

An LL parser with higher look-ahead will start at entity, but then deduce that
neither alternative is a valid match for the input, provoking an error of the form
“Expected entity, found ‘user;’ at input position 0”, a much less helpful message.

Solution

As explained in section 4.1, since the NMS-NG parser has no separate lexical step,
it technically operates with tokens corresponding to individual characters.

Having a look-ahead of only one character is hardly enough for most languages
(Java would e.g. not be able to distinguish the keywords “public” and “private”),
so clearly an LL(1) parser is not an option in our case. Instead, the NMS-NG parser
has a variable amount of look-ahead, LL(*), depending on the specific grammar
production currently being matched.

In practice, the look-ahead is typically implemented to be a single keyword, identi-
fier, operator or punctuation character. The end result is that the parser resembles
a traditional LL(1) parser with a preceding lexical analysis step, except that it
handles the aforementioned problem of strings with embedded expressions.

37



4.3 Left-recursion

Due to their simplistic nature, LL parsers with finite look-ahead have trouble with
a number of context-free grammar constructs. The most common problem is left-
recursion, which frequently occurs in grammars that avoid Kleene repetition.

Take for example this simple expression syntax, which only supports subtraction:

expr = number | expr ’-’ number

The LL parser has no way to distinguish these alternatives, since both start with
a number token (either directly or recursively).

A common work-around is to replace left-recursion with right-recursion:

expr = number ( ’-’ expr | )

This grammar is weakly equivalent to the left-recursive one above, in that it
matches the same expression language. However, it is not strongly equivalent
since it produces a right-associative parse tree instead of a left-associative tree.
This causes problems in the semantic analysis (since the subtraction operator is
supposed to be left-associative), leading to incorrect results (figure 25). There are
workarounds, of course, but they needlessly complicate the semantic analysis.

Solution

Most left-recursion problems are solved by adding parser support for the Kleene
star, which also allows the grammar to be specified in a natural and concise manner.
The resulting parse tree becomes flat, rather than nested (figure 25).

expr = number ( ’-’ number )*

left-associative right-associative Kleene star

−

−
~~~

3

????

1

����
2

AAAA

−

1

����
−

AAA

2

}}}}
3

????

−

1

����
2 3

????

((1− 2)− 3) = −4 (1− (2− 3)) = 2 (1− 2− 3) = −4

Figure 25: How associativity affects the result.

38



4.4 Input reconstruction

One NMS-NG feature is the ability of the nms tool to read a source file, add SHA-
1 annotations to file references, and write out the resulting source file otherwise
unchanged.

Most parser frameworks struggle to support this task, for at least two reasons:

∙ Since whitespace and comments are discarded during lexical analysis, they
cannot be recovered later.

∙ They do not retain source-accurate token representations, e.g. discarding in-
formation about leading zeros in a decimal literal.

The NMS-NG parser accurately tracks all source elements, including whitespace
and comments, to ensure that an accurate reconstruction is possible.

4.5 Parser objects

The most basic object of the parser is the recognizer, which is an object that,
given an input to recognize, yields either succees or failure. On success, the recog-
nizer consumes zero or more characters of input and also returns a match object
corresponding to these input characters.

A recognizer can be named or anonymous (inline). Named recognizers permit
recognizers to be used more than once, and enables recursive recognizers (in the
form of productions that refer to themselves).

An atomic recognizer yields likewise atomic match objects, which are the leaf nodes
of the parse tree.

The NMS-NG parser provides three different atomic recognizers:

∙ The literal recognizer matches a specific character string. NMS-NG uses this
to match punctuation (e.g. braces) and operators. A single-quoted string
(e.g. ’{’) denotes a literal recognizer.

∙ The word recognizer also matches a specific character string, but the string
must be followed by a non-alphabetical character in the input. NMS-NG
uses this to match keywords (e.g. class), since using a plain literal recog-
nizer would also match e.g. the word classic. A double-quoted string (e.g.
"class") denotes a word recognizer.

∙ The regular expression recognizer matches an arbitrary regular expression.
NMS-NG uses this to match all other tokens, such as identifiers, literals,
comments and whitespace. A string surrounded by slashes (e.g. /[0-9]+/)
denotes a regular expression recognizer.

39



Figure 26: An annotated production declaration.

A complex recognizer yields match objects that are divisible into submatches (the
internal nodes of the parse tree).

The NMS-NG parser provides three different complex recognizers:

∙ A production recognizer matches one of several given alternatives; each al-
ternative being a sequence of subrecognizers. The default implementation
uses the first recognizer of each alternative (a look-ahead of one “token”) to
determine which alternative to pursue.

∙ A Kleene star recognizer repeatedly tries to match the input against a given
subrecognizer, yielding a list of submatches. It always succeeds in finding
a match, though the match may be empty. The Kleene star recognizer is
denoted by an asterisk (*) following the target subrecognizer.

∙ An optional recognizer works like the Kleene star, but without repetition. It
will hence match zero or one times. The optional recognizer is denoted by a
question mark (?) following the target subrecognizer.

Null recognizers

Production recognizers may define a set of null recognizers for handling whitespace
and comments. While parsing an alternative, the production recognizer runs the
null recognizers before and after every subrecognizer. As previously explained, the
resulting null matches (if any) are not discarded, but included in the parse tree.

Submatch names

Production recognizers may assign names to submatches for the benefit of the
semantic analysis step, which can use these names to navigate the parse tree instead
of numeric indices. This is particularly important when using null recognizers, as
the resulting null matches affect the indices assigned to the other submatches.

40



Figure 27: The parser object tree corresponding to figure 26.

4.6 A domain-specific language for context-free grammars

Manual construction of the objects of a context-free grammar is a verbose and
error-prone task. For this reason, the NMS-NG parser framework defines a small
domain-specific language for defining CFGs. This language is of course parsed
using the parser framework itself, and resembles the CFG notation used in this
report.

production = alternative ( ’|’ alternative )*

alternative = element*

element = assignment? recognizer number?

recognizer = identifier | literal | word | regEx | ’(’ production ’)’

number = ’*’ | ’?’

assignment = /([_a-zA-Z][_a-zA-Z0-9]*)\s*=/

identifier = /[_a-zA-Z][_a-zA-Z0-9]*\b/

literal = /’([^’\\]|\\.)*’/

word = /"([^"\\]|\\.)*"/

regEx = /\/([^/\\]|\\.)*\//

By using the reflection capabilities of Python, the NMS-NG parser does away
with the separate “compiler compiler” preprocessing step required by many parser
frameworks. The result is a very compact notation for declaring a context-free
grammar. A full example is given in figure 28.

41



4.7 Parse tree transforms

For the initial semantic analysis, the NMS-NG parser framework implements a
transformation model that operates directly on the parse tree. This enables trans-
formation patterns to be written in a declarative manner, and automatically be
applied to matching nodes of the parse tree.

For simple tasks, the entire semantic analysis can be performed this way, with
no further processing required. An example can be seen in figure 28, in which
MyTransform transforms the raw parse tree into the final numerical result.

42



import operator as ops

from libnms.parse.grammar import *

from libnms.parse.smartgrammar import *

from libnms.parse.transform import *

class MyMatch(SmartMatch):

""" A customized SmartMatch that automatically skips whitespace. """

class Recognizer(Production):

nullRecognizers = [ RegularExpression(’\s+’) ]

class MyGrammar(SmartGrammar):

class Root(MyMatch):

""" a=additive /$/ """

class Additive(MyMatch):

""" m=multiplicative _=(op=opAdditive m=multiplicative)* """

class Multiplicative(MyMatch):

""" p=parenthesis _=(op=opMultiplicative p=parenthesis)* """

class Parenthesis(MyMatch):

""" val=integer | ’(’ val=additive ’)’ """

integer = RegularExpression(’-?[0-9]+’)

opAdditive = RegularExpression(’[-+]’)

opMultiplicative = RegularExpression(’[*/]’)

class MyTransform(MatchTransform):

root = lambda s, v: v.a

additive = lambda s, v:

reduce(lambda acc, elm: elm.op(acc, elm.m), v._, v.m)

multiplicative = lambda s, v:

reduce(lambda acc, elm: elm.op(acc, elm.p), v._, v.p)

parenthesis = lambda s, v: v.val

integer = lambda s, v: int(v._text)

opAdditive = lambda s, v: ops.add if v._text == ’+’ else ops.sub

opMultiplicative = lambda s, v: ops.mul if v._text == ’*’ else ops.div

input = "1 + 2 * (3 + 4)"

parseTree = MyGrammar.root.match(SourcePosition(input)) # Syntactic step

output = MyTransform(MyGrammar)(parseTree) # Semantic step

assert output == 15

Figure 28: A simple calculator example using the NMS-NG parser framework.

43



44



5 Implementing multiple inheritance

A fundamental fact of any inheritance system (single inheritance systems, too)
is that a class may inherit conflicting definitions from its parents. Though some
languages require manual conflict resolution,4 most resolve conflicts by computing
a class precedence list (CPL, also known as the method resolution order) for each
class – and using the first definition found in CPL order.

A linearization is an algorithm for computing class precedence lists. There exists
many different linearizations; we shall look at three in common use.

5.1 Single inheritance linearization

𝑅

𝐴

>>~~~
𝐵

``@@@

𝐶

OO

bases(𝑅) = 𝜖
bases(𝐴) = R
bases(𝐵) = R
bases(𝐶) = A

cpl1(𝑅) = R
cpl1(𝐴) = AR
cpl1(𝐵) = BR
cpl1(𝐶) = CAR

Figure 29: A single inheritance class tree, listing CPLs for each class.

In a single inheritance system, each class has at most one base class.

The CPL of 𝐶 is trivially defined as the vertices of the path extending from 𝐶 to
the root of the class hierarchy.

5.2 Properties of linearizations

With multiple inheritance, the construction of the CPL becomes more complex,
with several different linearizations in common use.

[Barrett96] lists four desirable properties for a linearization:

∙ In an acceptable linearization, only the shape of a class’ inheritance graph may
be used in determining its CPL. E.g. having class names or the declaration
order in the source code affect the linearization is unacceptable. In practice,
this property is a given; the author knows of no unacceptable linearizations
seeing actual use.

∙ A monotonic algorithm guarantees that every CPL is an extension (without
reordering) of the base class CPLs. [Ducournau94]

4For example, C++ requires manual conflict resolution when a class virtually inherits the same
virtual method from multiple base classes.

45



∙ A linearization that observes local precedence order will not produce a CPL
which is inconsistent with the local precedence order (i.e. the bases tuple) of
that class, or any superclass. That is, if class 𝐴 precedes class 𝐵 in bases(𝐶),
the CPLs of 𝐶 and all of its subclasses should have 𝐴 before 𝐵.

∙ Extended precedence graph (EPG) consistency further constrains CPLs to en-
sure consistency across the inheritance graph. This property is best explained
by an example; see figure 30.

Already, the first two properties are in conflict: There is no acceptable linearization
which is monotonic for all conceivable inheritance graphs. [Ducournau94]

An inheritance graph is said to be inconsistent under a given linearization, if the
algorithm cannot produce a CPL for every class in the inheritance graph.

It is also easy to see that the local precedence order property on its own causes
some inheritance graphs to be rejected as inconsistent (figure 31).

𝐴

𝑋 𝑌

𝐵

@@

>>}}}
𝐶

^^

>>~~~

𝐷

``AAA
>>}}}

class bases cplD cplC3

𝑋 𝜖 X X
𝑌 𝜖 Y Y
𝐴 𝜖 A A
𝐵 AX BAX BAX
𝐶 AY CAY CAY
𝐷 BC DBCAYX DBCAXY

Figure 30: An example of EPG inconsistency (from [Barrett96]). cplD is the Dylan
linearization, which (while monotonic and observant of local precedence order) is
not EPG consistent, and gives 𝑌 precedence over 𝑋 despite 𝐵 coming before 𝐶.
cplC3, on the other hand, satisfies all three properties.

𝐴MM
���

kk 𝐵MM
���

33

𝑋 𝑌

𝑍

``AAA
>>~~~

bases(𝐴) = 𝜖
bases(𝐵) = 𝜖
bases(𝑋) = AB
bases(𝑌 ) = BA
bases(𝑍) = XY

cpl(𝐴) = A
cpl(𝐵) = B
cpl(𝑋) = XAB
cpl(𝑌 ) = YBA
cpl(𝑍) = ?

Figure 31: An example of an inheritance graph which is inconsistent under any
linearization observing local precedence order.

46



5.3 Depth-first linearization

The depth-first linearization is a trivial extension of single inheritance linearization:

bases(𝐶) = 𝐵1 · · · 𝐵𝑛 ⇒ cpldf(𝐶) = 𝐶 · cpldf(𝐵1) · · · cpldf(𝐵𝑛)

The depth-first algorithm is clearly non-monotonic. If e.g. 𝑅1 and 𝑅2 are collapsed
into a single class 𝑅 in figure 32, we get figure 33. As can be seen, 𝑅 comes before
𝐵 in cpldf(𝐶), despite 𝐵 coming before 𝑅 in cpldf(𝐵), which violates monotonicity.

In general, the algorithm provides non-monotonic results when there’s more than
one path from one class to another.

Despite its flaws, this algorithm is often used due to its simplicity, e.g. in Perl5 and
older versions of Python.6

𝑅1 𝑅2

𝐴

OO

𝐵

OO

𝐶

aaCCCC
=={{{{

bases(𝑅1) = 𝜖
bases(𝑅2) = 𝜖
bases(𝐴) = R1

bases(𝐵) = R2

bases(𝐶) = AB

cpldf(𝑅1) = R1

cpldf(𝑅2) = R2

cpldf(𝐴) = AR1

cpldf(𝐵) = BR2

cpldf(𝐶) = CAR1BR2

Figure 32: A multiple inheritance class tree, listing depth-first CPLs.

𝑅

𝐴

>>~~~
𝐵

``AAA

𝐶

``@@@
>>}}}

bases(𝑅) = 𝜖
bases(𝐴) = R
bases(𝐵) = R
bases(𝐶) = AB

cpldf(𝑅) = R
cpldf(𝐴) = AR
cpldf(𝐵) = BR
cpldf(𝐶) = CARBR ≡ CARB

Figure 33: The depth-first linearization is not monotonic.

5Depth-first is the default linearization in Perl 5, but not in the upcoming Perl 6.
6Depth-first was used for all classes before Python 2.1, for “old-style” classes in versions 2.1

through 2.7, and eliminated in Python 3.

47



5.4 C3 linearization

The C3 linearization, first described by [Barrett96], satisfies all four previously men-
tioned properties, and is thus in a sense optimal.

Central to the algorithm is the merge function, which takes one or more input
strings and merges them into a new string that contains each input symbol exactly
once, while preserving the relative ordering of the symbols in each input string.

merge works by looking at the heads of every input sequence and picking the first
of them that can be added to the result sequence without violating the relative
orderings of the remaining input strings. Once a class is satisfied by appearing in
the result, it is removed from all inputs sequences wherein it occurs. This procedure
is repeated until all input sequences are empty.

An example of the merge operation is shown in figure 35. The first three columns
are input sequences, the fourth column is the result sequence. The horizontal line
progresses downwards as the algorithm proceeds; the letters under the line are what
remains of the input sequences.

Figure 36 shows how the algorithm deals with the inconsistent inheritance graph
from figure 31. After the shown steps, merge has to choose between 𝐴 and 𝐵, but
both are in the tail of an input sequence, and hence not eligible to go next, causing
the algorithm to bail with an error.

C3 determines the CPL by merging the CPL of each base class together with the
string of base classes:

bases(𝐶) = 𝐵1 · · · 𝐵𝑛

⇓
cplC3(𝐶) = 𝐶 · merge

(︀
cplC3(𝐵1), . . . , cplC3(𝐵𝑛), bases(𝐶)

)︀
The merge pseudo-code can be seen in figure 37.

𝑅

𝐴

>>~~~
𝐵

``AAA

𝐶

``@@@
>>}}}

bases(𝑅) = 𝜖
bases(𝐴) = R
bases(𝐵) = R
bases(𝐶) = AB

cplC3(𝑅) = R
cplC3(𝐴) = AR
cplC3(𝐵) = BR
cplC3(𝐶) = CABR

Figure 34: A multiple inheritance class tree, listing C3 CPLs.

48



𝐵 𝐶 𝐸
𝐷 𝐷

𝐵 𝐵
𝐷 𝐶 𝐸

𝐷

𝐵 𝐵
𝐶 𝐶

𝐷 𝐷 𝐸

𝐵 𝐵
𝐶 𝐶

𝐷 𝐷 𝐷
𝐸

𝐵 𝐵
𝐶 𝐶

𝐷 𝐷 𝐷
𝐸 𝐸

Figure 35: Example of merging: merge(BD , CD , 𝐸) = BCDE

𝑋 𝑌 𝑋
𝐴 𝐵 𝑌
𝐵 𝐴

𝑋 𝑋 𝑋
𝐴 𝑌 𝑌
𝐵 𝐵

𝐴

𝑋 𝑋 𝑋
𝑌 𝑌 𝑌

𝐴 𝐵
𝐵 𝐴

Figure 36: Example of a failed merge: merge(XAB , YBA, XY ) = ?

merge(𝑋1, ..., 𝑋𝑛)

1 result ← 𝜖
2 while ∃𝑋𝑖 : 𝑋𝑖 ̸= 𝜖
3 do next ← 𝜖
4 � Find the next class to satisfy. next must not be in the tail of any
5 � sequence, since that would mean another class has priority.
6 for each 𝑋𝑖 where 𝑋𝑖 ̸= 𝜖
7 do if ∀𝑋𝑗 : head(𝑋𝑖) ̸∈ tail(𝑋𝑗)
8 then next ← head(𝑋𝑖)
9 break

10 if next = 𝜖
11 then error Inconsistent input sequences.
12 result ← result ·next
13 � Since next is now satisfied, remove it from all inputs.
14 for each 𝑋𝑖 where 𝑋𝑖 ̸= 𝜖
15 do� Only check the heads; we know next is not in any tail.
16 if head(𝑋𝑖) = next
17 then 𝑋𝑖 ← tail(𝑋𝑖)
18 return result

Figure 37: Pseudo-code for the C3 merge function.

49



6 Testing

Since NMS-NG is just a component of the larger Airlink system, and to limit the
scope of the project, testing has focused on black box unit testing.

To verify test coverage, the excellent coverage.py code coverage tool for Python
was used (figure 40).

6.1 Unit tests

Unit tests are implemented using the unittest module from the Python standard
library, which provides a unit testing framework modelled after JUnit.

As such, the implementation is fairly straightforward: NMS-NG consists of a num-
ber of Python packages. A test module in each package contains a number of test
fixtures (classes), one for each of the remaining modules in the package.

6.2 Documentation tests

A problem with unittest tests cases are that they can become rather verbose.
For this reason, some of the unit tests employ the doctest module of the Python
standard library, which is great for simple ad-hoc tests and for testing code with
side effects (in particular, code that prints to stdout).

doctest works by extracting code samples from documentation comments in the
code, running them, and verifying their accuracy. As such, doctest provide a twist
on Knuth’s literate programming paradigm: The documentation is the unit tests.

6.3 Generated tests

The tests for the C3 implementation exploit the fact that Python uses C3 internally
in its own class model.

The test suite therefore constructs identical inheritance graphs using NMS-NG
classes and Python classes, and compares the resulting class precedence lists. The
test suite includes a set of manually created test cases, but it also generates 500
random test cases at runtime, with highly complex inheritance graphs, and verifies
those. To ensure any errors are reproducible, the random generator is run with a
fixed seed, so the same test cases are generated every time.

50



def testGlobs(self):

pdc = PropertyDefinitionCollection()

pdc.add(PropertyDefinition(’net._.ip’))

pdc.add(PropertyDefinition(’foo.bar._’))

pdc.add(PropertyDefinition(’foo._.baz’))

self.assertEquals(pdc[’net.eth0.ip’], pdc[’net._.ip’])

self.assertEquals(pdc[’foo.bar.42’], pdc[’foo.bar._’])

self.assertEquals(pdc[’foo.42.baz’], pdc[’foo._.baz’])

self.assertRaises(PropertyDefinitionError,

pdc.__getitem__, ’foo.bar.baz’)

Figure 38: An example of a test case, in this case testing the property definition
wildcard feature.

def normalizeLineEndingsUnix(text):

r""" Normalizes line endings to Unix style.

>>> normalizeLineEndingsUnix(’Hi.\r\n’)

’Hi.\n’

"""

return text.replace(’\r\n’, ’\n’)

Figure 39: A simple utility function, complete with documentation and unit test.

51



Figure 40: A code coverage report for the NMS-NG project.

52



7 Conclusion

The NMS-NG presented in this report is a highly flexible configuration system, and
solves numerous problems that the Airlink developers has had with the existing
NMS. The accompanying security model improves security significantly, and is
carefully designed to not get in the way of the daily workflows of the different
Airlink user segments.

The design of NMS-NG is almost complete, with a few details left to be ironed
out together with the Airlink development group. The result should provide an
effective platform for coming generations of the Airlink system.

The implementation is perhaps 75 % complete. While the core functionality (such
as the configuration compiler) is fully functional, there are gaps in the implementa-
tion, particularly in the error handling (which is highly rudimentary) and the web
interface (which currently only exists as design sketches).

The currently implemented unit tests cover a healthy amount of the application
code, but need to be expanded to cover the entire code base. Integration testing
(testing NMS-NG together with the remaining Airlink system) has not begun.
Once the web interface is working, it will of course also need testing; as with all
user interface tests, this can be somewhat tricky. Fortunately, there exist some
excellent Python libraries for this purpose, which integrate nicely with the existing
unittest and coverage.py infrastructure.

53



A References

[ISO9899] ISO/IEC 9899:TC2 Programming languages – C (committee draft).
ISO/IEC, 2005.

[Siemens12] References: Fully automated metro lines worldwide. Siemens, 2012.

[Barrett96] Barrett, Cassels, Haahr, Moon, Playford, Withington. A mono-
tonic superclass linearization for Dylan. In Proceedings of the 11th
ACM SIGPLAN conference on object-oriented programming, sys-
tems, languages, and applications, OOPSLA ’96, pp. 69–82. ACM,
1996.

[RFC4880] Callas, Donnerhacke, Finney, Shaw, Thayer. OpenPGP Message
Format. IETF, 2007.

[RFC822] David H. Crocker. Standard for the format of ARPA Internet text
messages. IETF, 1982.

[Ducournau94] Ducournau, Habib, Huchard, Mugnier. Proposal for a monotonic
multiple inheritance linearization. In Proceedings of the ninth an-
nual conference on object-oriented programming systems, language,
and applications, OOPSLA ’94, pp. 164–175. ACM, 1994.

[RFC2693] Ellison, Frantz, Lampson, Rivest, Thomas, Ylonen. SPKI Certifi-
cate Theory. IETF, 1999.

[JLS:SE7] Gosling, Joy, Steele, Bracha, Buckley. The Java Language Specifi-
cation: Java SE 7 Edition. Oracle, 2012.

[Kroyer08] Kent Krøyer. Signalsystem for 24 milliarder: Skærm i førerkabine
afløser lamper ved skinner. Ing.dk, 2008.

[Chen76] Peter Pin-shan Chen. The entity-relationship model: Toward a
unified view of data. ACM Transactions on Database Systems, 1;
9–36, 1976.

54



B Glossary

802.11n
The latest 802.11 wireless LAN (“Wi-Fi”) standard, finalized in 2009.

AP
Access point (see pg. 2).

ASCII armor
The OpenPGP standard for including binary cryptographic data (e.g. a dig-
ital signature) in a plain text file.

CFG
Context-free grammar, the formal specification of a context-free language (see
pg. 39).

CPL
Class precedence list (see pg. 45).

CIDR notation
A shorthand for specifying an IP address and an associated network mask
(the latter specified as the number of leading one bits in the mask).

CRLF
Carriage return and line feed, the ASCII control codes that indicates a
Windows-style newline. Compare LF.

CSR
Central system router (see pg. 2).

DSA
Digital Signature Algorithm, a widely used digital signature algorithm.

GnuPG
GNU Privacy Guard, an open-source OpenPGP implementation.

GSM-R
Global System for Mobile Communications – Railway, a variant of the GSM
mobile phone standard specifically designed for railway communications.

GUI
Graphical user interface.

Kleene repetition
Refers to a number of formal language operators, most importantly the Kleene
star (denoted * in regular expressions) indicating that a construct may appear
zero or more times.

LF
Line feed, the ASCII control code that indicates a Unix-style newline. Com-
pare CRLF.

55



LWSP-char
Linear white space character, an ASCII space or horizontal tab control char-
acter ([RFC822]).

NMS
Network Management System (either the present NMS or NMS-NG).

NMS-NG
Next Generation NMS, the new NMS described in this report.

OOP
Object-oriented programming.

OpenPGP
A standard for document signing and encryption (as well as key manage-
ment), defined in [RFC4880] and related documents.

RFC
A standards documents published by the Internet Engineering Task Force.

RSA
A widely used algorithm for public-key encryption and digital signatures.

TU
Train unit (see pg. 2).

VLAN
Virtual LAN, the result of multiplexing multiple logically separate networks
on a single physical network.

vtable
Virtual method table, a mechanism for dynamic dispatch in OOP.

WUI
Web user interface, specifically the NMS-NG web interface.

56


	1 Introduction
	1.1 Description of the Airlink system
	1.2 About the Airlink NMS

	2 Requirements analysis
	2.1 User segments
	2.2 Modularity requirements
	2.3 Security requirements
	2.4 Interface requirements

	3 Design
	3.1 Configuration objects
	3.2 Inheritance
	3.3 Properties
	3.4 Configuration files
	3.5 Security model
	3.6 Workflow support
	3.7 Implementation language and dependencies
	3.8 Command-line interface
	3.9 Web interface

	4 Implementing a parser framework
	4.1 Lexical, syntactic and semantic analysis
	4.2 Look-ahead
	4.3 Left-recursion
	4.4 Input reconstruction
	4.5 Parser objects
	4.6 A domain-specific language for context-free grammars
	4.7 Parse tree transforms

	5 Implementing multiple inheritance
	5.1 Single inheritance linearization
	5.2 Properties of linearizations
	5.3 Depth-first linearization
	5.4 C3 linearization

	6 Testing
	6.1 Unit tests
	6.2 Documentation tests
	6.3 Generated tests

	7 Conclusion
	A References
	B Glossary

