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Summary

The advance of MIMO techniques as a means of boosting data rate and reliability in

wireless communications has challenged researchers to investigate new channel estima-

tion methods. As MIMO multiplies the number of channel parameters, longer pilot-

sequences need to be sent to attain the same accuracy as SISO. Of course, this increases

the overhead resulting in a waste of channel capacity. Semi-blind channel estimators

address this problem making use of both pilot-sequence and user data to enhance the

quality of the estimate. Even though these methods are appealing in terms of mean

squared error, they considerably raise the complexity of the receiver. This issue is even

more severe if we consider that MIMO is expected to speed up the bit rate, meaning

that an increasing amount of data has to be processed to produce the estimate.

The aim of this thesis is investigating low-complexity semi-blind estimation tech-

niques, capable of improving the mean squared error and still computationally affordable.

Firstly, the MIMO-LTE channel model is formulated, then we will discuss traditional

pilot-only estimation and its limitations. Afterwards, the semi-blind problem is pre-

sented and expressed using two different approaches, one relying on the true discrete

distribution of the data symbols and the other on a Gaussian approximation. Then,

EM-based solutions are derived and compared with numerical techniques that are inde-

pendent of the size of the data sequence. Finally, all these methods are tested through

simulations assessing their accuracy and computational cost.
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Chapter 1

Introduction

Contemporary society has been defined by various thinkers as an Information Society

[1]. Manipulation, distribution, control and diffusion of information play a central role in

our globalized economy and culture. As many other changes, the advent of Information

Society has been supported by a technological revolution. In particular, computer science

and telecommunications allowed a tremendous amount of information to be transmitted

and processed in real time. This handy and fast access to information paved the way for

a new way of making use of knowledge. Especially, mobile communications are making

information technology all-pervading and are creating unthought needs and behaviours

with a huge business potential. In this context, it seems that the need of ubiquitous,

faster and more reliable communication is a major economy driver.

Long Term Evolution (LTE) is a 3rd Generation Partnership Project (3GPP) technol-

ogy that attempts to push the limits of mobile communication a step further. Employing

advanced physical layer techniques such as Orthogonal Frequency Division Multiplexing

(OFDM) and Multiple Input Multiple Output (MIMO), LTE achieves 300 Mbps nominal

downlink speeds and latencies below 5 ms. In this initial chapter we present the main

limitations affecting wireless communication and we give reasons for MIMO and OFDM.

Then, the problem of channel and noise estimation is formulated, stressing semi-blind

channel estimation, which is the object of this thesis.

1.1 The wireless channel

In contrast to wired communications, wireless transmission is characterized by two signif-

icant aspects that make it a challenging topic. Firstly, channel strength varies abruptly

over frequency and time; this phenomenon is called fading and consists of two com-
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ponents: large scale fading, caused by power losses and large obstacles shadowing the

receiver; small scale variations, which are the effect of interference among multiple repli-

cas of the transmitted signal. Secondly, wireless communication is affected by multi-user

interference: unlike wired technology, transmitters and receivers are not isolated from

the rest of the environment. Additionally, as other electronic devices, wireless receivers

are prone to thermal and shot noise, often modelled as Additive White Gaussian Noise

(AWGN).

A thorough physical description of the medium can be provided using Maxwell’s

theory of electromagnetism. Given the coordinates of the receiver-transmitter pair, the

structure of the environment and the analytical expression of the signal, it is possible

to solve a system of partial differential equations and produce a full solution of the

communication problem. However, even if this information were available, it would

require an infeasible computational effort to be processed. Thus, a statistical approach

is the most reasonable way of describing wireless transmission. This means that the

nature of the channel becomes a black-box and its global effect is described as a linear

system with transfer function given by a stochastic process.

Even from a probabilistic standpoint, it is still useful to make use of some approxi-

mate physical description for the key parameters of the model. In fact, having a rough

physical representation of the medium enables us to select the statistical model that best

suits the real channel. There are two general guidelines that can provide insight on the

experienced channel conditions: coherence time and coherence bandwidth. Coherence

time is the interval over which the channel can be considered constant; physically, this

quantity is related to Doppler spread, i.e. the maximum Doppler shift experienced by

interfering signal replicas. Coherence bandwidth is analogous to coherence time but in

frequency domain: it is the frequency interval it takes to the received signal to change

significantly. Coherence bandwidth is related to a quantity named delay spread, which

is the maximum delay difference among different versions of the signal.

Coherence time and coherence bandwidth are not significant in an absolute sense,

but only when related to the transmitted signal. In fact, the relation between frequency

coherence and signal bandwidth influences the way the wireless channel is modelled: if

frequency coherence is larger than the bandwidth, then the channel is called flat fading

and can be represented as a discrete-time linear system with one-tap transfer function.

In this case, delay spread is smaller than symbol time and adjacent symbols do not

interfere with one another, i.e. Inter Symbol Interference (ISI) is negligible.

When compared to purely AWGN channels, wireless medium - often modelled as

a Rayleigh fading channel - shows evident limitations: in fact, there is a significant
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probability that the channel is in deep fade. Assuming channel taps are represented

as zero mean Gaussian random variables, we call deep fade event the situation where

the square norm of channel taps is smaller than the SNR. In that condition, the signal

is heavily attenuated and the “instantaneous” SNR is much poorer than the nominal

one, which is an average quantity. Hence, signal degradation is twofold in the wireless

environment: both AWGN and channel fading contribute to impair performances. In

general, it can be seen that bit error probability drops exponentially with SNR for AWGN

channels, while for fading channels, if no measures are taken, only at a linear rate.

One way of overcoming these limitations is diversity coding. The idea is that the

probability of deep fading decreases if symbols are transmitted through independently

fading channels. This technique is employed in all wireless communication systems in

use and makes the medium much more reliable. There are several ways of producing

diversity: time diversity is obtained interleaving a codeword over different fades of the

channel; frequency diversity exploits redundancy provided by multiple paths, which can

be done utilising equalization techniques, spreading the symbols on a wide spectrum

or coding the information over different frequency bands; space diversity makes use of

multiple antennas placed more than one wavelength apart.

The focus of this thesis will be on MIMO and OFDM. OFDM is a transmission tech-

nique with a great advantage on wireless channels: it turns a frequency selective channel

into a number of independent flat fading channels called subcarriers. This gives two

main benefits: first, frequency diversity is gained because symbols are transmitted over

independent frequency bands; second, the equalization of each subcarrier is straightfor-

ward because at each subcarrier the channel is flat fading. In the last years OFDM

has become increasingly popular and it is used in all latest wireless systems, like ETSI

DVB-T (Digital Television), IEEE 802.16 (WiMAX), IEEE 802.11 (Wi-Fi) and 3GPP

LTE (4G).

MIMO is a versatile communication paradigm coming with two advantages: it boosts

transmission speed and it provides space diversity. In particular, using T transmitting

and R receiving antennas theoretically produces T degrees of freedom and up to T · R
diversity; moreover the capacity of the channel is increased by a factor min(T,R). For

an exhaustive theoretical derivation of MIMO channel capacity and diversity, see [2].

There are two main ways of operating a MIMO channel: spatial multiplexing techniques

(such as V-BLAST) send independent symbol streams over different antennas; while

space-time coding methods (such as Alamouti schemes or repetition codes) map each

symbol of a data stream into a space-time coordinate. The model presented in this

thesis is for spatial multiplexing; for each OFDM subcarrier, independent data streams
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are encoded across T transmitting antennas. MIMO has been successfully implemented

in a few systems: IEEE 802.11n (WiFi), IEEE 802.16e (WiMAX) and of course 3GPP

LTE.

1.2 Channel Estimation

In the simple case of a Single Input Single Output (SISO) flat fading channel with no

noise, the effect of the channel is just multiplying each symbol by a zero-mean normally

distributed complex number. This is equivalent to a scalar real-valued multiplication

of the magnitude followed by a rotation in the complex plane. It is easy to see that

- assuming M-PSK modulation- the received symbol carries no information and it is

totally useless for detection. In fact, the uniform rotation given by the channel com-

pletely destroyed the phase information. Thus, estimating the channel correctly and

compensating for its effects is a crucial part of the receiver.

Channel estimation is usually performed transmitting a known sequence of symbols,

called pilot sequence, and inferring the Channel State Information (CSI) from the ob-

servations on the receiver side. If H ∈ CR×T is a matrix containing the parameters to

estimate, and Ĥ(y) is a matrix-valued function of the observed values used to estimate

H (also called an estimator for y), a popular measure of its accuracy is the Mean Square

Error (MSE):

MSE(Ĥ) ,
1

RT
E
[
‖Ĥ(y)−H‖2

]
=

1

RT

R∑
i=1

T∑
j=1

E
[
|Ĥi,j(y)−Hi,j |

2
]

=
1

RT
Tr

{
E
[(
Ĥ(y)−H

)(
Ĥ(y)−H

)H]}
(1.1)

In this case we chose to use the Frobenius norm of the parameter matrix, which is the

sum of the MSE of its components. In order to make the MSE comparable for different

sizes of H, a normalization factor is introduced. Another important characterization is

the estimation bias, defined as:

B(Ĥ) , E
[
Ĥ(y)−H

]
(1.2)

Thus, if Ĥ(y) is unbiased, (1.1) becomes:

MSE(Ĥ) =
1

RT
Tr

{
E
[(
Ĥ(y)− E

[
Ĥ(y)

])(
Ĥ(y)− E

[
Ĥ(y)

])H]}
(1.3)
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In general, the channel estimator Ĥ(y) is a function of random variables and there is no

unique way of constructing it; some different rationales can be used:

Minimum MSE (MMSE) estimators choose the value of H that minimizes the MSE:

ĤMMSE(y) , arg min
Ĥ
{E[‖Ĥ(y)−H‖2]} = E[H|y] (1.4)

Note that the expectation in this case is a Bayesian operator; in other words, we

assume the posterior distribution of H to be known, and we integrate (or sum)

over it.

Maximum a Posteriori (MAP) determines the value of H maximizing the posterior prob-

ability of the observations:

ĤMAP (y) , arg max
H
{p(H|y)} (1.5)

As in the previous case, the distribution of H must be known. It is possible to

think of MAP and MMSE as similar criteria: while MAP chooses the value of H

producing the maximum value of p(H|y), MMSE selects the one in correspondence

to the expected value of p(H|y). If the posterior distribution is symmetric these

methods are the same.

Maximum Likelihood (ML) estimators choose H such that:

ĤML(y) , arg max
H
{p(y;H)} (1.6)

In this case a semicolon symbol is used to stress the fact that this posterior proba-

bility is different from the one used before; in fact we do not make any assumptions

on the distribution of H, which is treated as a deterministic parameter. Since in

the most of this thesis we will deal with ML estimators, keeping this difference in

mind the symbol “|” is used in place of “;”.

Of course the length of the pilot sequence influences the accuracy of the estimation

process. On the other hand, longer pilot sequences yield a higher overhead, since its

transmission is a waste of channel capacity. So, there is a trade-off between accuracy

and overhead in the estimation process.

One strategy to overcome this problem is semi-blind channel estimation. This ap-

proach not only relies on pilot symbols for estimating the CSI, but also exploits the

unknown user data. This extra information can be used to attain the same estimation
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accuracy reducing the number of pilots, or to improve the performance of the estima-

tor keeping fixed number of pilots. Unfortunately, this enhancement comes at a price:

semi-blind channel estimation requires the receiver to run iterative algorithms (typically

EM) that can burden it consistently, especially at high data rates. Moreover, this kind

of algorithms scale at least linearly with the size of the unknown data. Hence, another

trade-off is found: larger data samples improve the pilot-based estimation but overload

the receiver. The aim of this thesis is finding semi-blind estimation techniques with

reduced complexity with respect to the existing ones.

1.2.1 Cramer-Rao Lower Bound

It is often useful to have an optimal reference to compare estimators. A well known

lower bound for mean squared error is the Cramer-Rao Lower Bound (CRLB). Although

there exist several versions of CRLB, for both Bayesian and non-Bayesian estimators, in

this thesis the CRLB for complex-valued unbiased non-Bayesian estimators is used. In

particular, since the estimation is often performed in the complex domain, we will extend

the usual real-valued CRLB to complex parameters, as presented in [3]. Let θ ∈ CK

be a complex vector of parameters and θ̂(Y ) ∈ CK be an estimator for them. We can

create two auxiliary vectors:

γ =
(
θT θH

)T ∈ C2N γ̂ =
(
θ̂T θ̂H

)T
∈ C2N (1.7)

The Fisher Information Matrix (FIM) for complex parameters is defined as:

Iγ , E

[(
∂ ln p (Y |θ)

∂γT

)H ∂ ln p (Y |θ)
∂γT

]
(1.8)

Then, we have the following Cramer Rao Lower Bound for the covariance matrix of the

estimator:

Cov (γ̂) ≥ Iγ−1 (1.9)

where the matrix inequality means zHCov (γ̂) z ≥ zHIγ−1z for any z ∈ C2K .

Since dealing with a single scalar bound is more practical, we are interested in a

one-dimensional relation possibly involving the MSE: assuming θ̂ unbiased and using
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(1.3), we can write the MSE of the original parameter as:

MSE(θ̂) =
1

K
Tr
{

Cov(θ̂)
}

=
1

2K
Tr
{

Cov(γ̂)
}

(1.10)

As both Cov (γ̂) and Iγ−1 are positive semi-definite, from (1.9) and (1.10) this relation

follows:

MSE(θ̂) ≥ 1

2K
Tr
{
Iγ−1

}
(1.11)

This inequality will be used as a scalar bound for complex parameters throughout this

thesis. In the rest of this chapter, our reference channel model is presented and a

quantitative formulation of the estimation problem is given.

1.3 General MIMO-OFDM Model

We will start our model description presenting the general case of a R×T MIMO channel

modelled as a discrete-time linear system. Than, a general expression for MIMO-OFDM

will be derived. Let x[k] be a vector of length T containing the symbols transmitted

by the T transmitting antennas at time k. At the same time, an array of R antennas

receive the signal y[k]. For the simple case of a flat fading channel, the relation between

input and output can be written as:

y[k] = h[k]x[k] + w[k] (1.12)

where w[k] is a vector of R complex noise samples and h is the R × T channel matrix

that specifies how signals from different antennas mix up on the receiver side. In the

most general case, however, ISI affects the system, so that each received symbol depends

on L previous other symbols:

y[k] =

L−1∑
l=0

hl[k]x[k − l] + w[k] (1.13)

Note that in this general scenario the channel matrices also depend on time. If we

reasonably assume that the channel is constant over the observation time span (typically

one symbol time), we can reduce the model to a Linear Time Invariant (LTI) system:

y[k] =
L−1∑
l=0

hlx[k − l] + w[k] (1.14)
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In other words, we can express the effect of the channel in terms of an L-tap Finite

Impulse Response (FIR) filter. In this thesis we accept the assumption that the channel

does not change significantly during a symbol time, and we can represent it as a FIR

filter.

OFDM systems have the attracting feature of splitting a multi-tap channel into

several independent flat-fading channels operating at different frequencies. Each of these

orthogonal channels is called a subcarrier. In this section an input-output relation for the

subcarriers is given. Since transmission is independent across subcarriers, we can choose

different strategies for feeding their input. One choice is to use only one bit-stream, map

bits into symbols and finally create N subcarriers using serial-to-parallel conversion of

blocks of N symbols. In this case, the orthogonal channels have a symbol time N times

larger than the original one. Alternatively, subcarriers can be allocated up to N separate

symbol streams; this approach is used in Orthogonal Frequency-Division Multiple Access

(OFDMA), where users are given a subset of the total number of subcarriers. The latter

approach - more general - is considered in this work.

Let Xn[p] be the vector of T symbols transmitted on subcarrier n during OFDM

symbol p. The p -th OFDM symbol xp[k] is generated multiplying each subcarrier by

a complex exponential and then summing the branches. If the frequencies of these

exponential functions are integers, they form an orthogonal set:

N−1∑
n=0

ei2πjn/Ne−i2πkn/N =

N if j = k

0 if j 6= k
with k, j = 0, 1, . . . , N − 1 (1.15)

Thus we can write the p -th OFDM symbol as a function of time k:

xp[k] =
1

N

N−1∑
n=0

Xn[p] ei2πkn/N with k = −CP, . . . , N − 1 (1.16)

This is the inverse Discrete Fourier Transform (DFT) [4] of the subcarrier inputs Xn[p].

In the above expression, CP is the number of samples forming the cyclic prefix. Adding

a cyclic prefix, in fact, is a commonly used technique in OFDM: it guarantees subcarrier

orthogonality even when delayed replicas of the signal could generate discontinuities

between two different OFDM symbols. In practice, the prefix is inserted before each

symbol copying the last part of the OFDM signal before its start. To completely suppress

the potentially catastrophic effects of ISI, the length of the cyclic prefix CP must be

chosen longer or at least equal to the maximum delay of the channel. In this thesis we

always assume CP ≥ L − 1. After transmission, the prefix is simply discarded by the
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receiver [5, chap. 2].

The received signal yp[k], which is associated to the p-th OFDM symbol, is given by

the MIMO channel model (1.14). As we shall see, the DFT of the noise samples and the

channel impulse response matrix hl play an important role for the n-th subcarrier:

Hn ,
L−1∑
l=0

hl e
−i2πln/N (1.17)

Wn[p] ,
N−1∑
k=0

wp[k] e−i2πkn/N (1.18)

Note that Hn is a R×T matrix and Wn a vector of length R. At the receiver side, after

removing the prefix, the OFDM signal is split in N branches. In each of these branches,

the N samples of the signal are multiplied by a complex exponential with a different

frequency and then summed to give the output symbol Yn[p]. Since this is equivalent to

performing a DFT of the received signal, it is always implemented using Fast Fourier

Transform (FFT) Algorithms. Finally, under the assumptions of a long enough cyclic

prefix, we can derive a very simple expression relating the inputs Xm[p] and the outputs

Ym[p] for the subcarrier m:

Ym[p] =
N−1∑
k=0

yp[k] e−i2πkm/N

=

N−1∑
k=0

(
L−1∑
l=0

hlx[k − l] + w[k]

)
e−i2πkm/N

=
N−1∑
k=0

(
L−1∑
l=0

hl

(
1

N

N−1∑
n=0

Xn[p] ei2πn(k−l)/N

)
e−i2πkm/N

)
+
N−1∑
k=0

wp[k]e−i2πkm/N

=
1

N

N−1∑
n=0

((
L−1∑
l=0

hle
−i2πln/N

)
Xn[p]

N−1∑
k=0

ei2πk(n−m)/N

)
+Wm[p]

=

N−1∑
n=0

(HnXn[p]δnm) +Wm = HmXm[p] +Wm[p] (1.19)

This last identity simplifies considerably our model: we can think of the OFDM system

as a number of separate subcarriers where the input symbols are just multiplied by the

channel matrix in the frequency domain. From a practical point of view, the fact that

each subcarrier behaves as a flat-fading channel makes equalization much easier.

When the channel coherence time is longer than a symbol time, the estimation process
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infers the channel matrix from more than one successive symbols; thus it is convenient

to stack K observations of inputs and outputs and noise samples:

Xn =


Xn[p]

...

Xn[p+K]

 Yn =


Yn[p]

...

Yn[p+K]

 Wn =


Wn[p]

...

Wn[p+K]

 (1.20)

where Xn is a TK length vector, Yn is a RK length vector, and Wn a RK length vector.

So, with this slightly different notation, the result (1.19) becomes:

Yn = (IK ⊗Hn)Xn +Wn with n = 0, . . . , N − 1 (1.21)

1.3.1 Gaussian Noise

Let us now analyse the noise term contained in (1.14) and its relation with (1.17).

We make the common assumption that the noise samples w[k] in (1.14) are drawn

from a circular complex Gaussian distribution with zero-mean and covariance given by

Cov(w[k]) = E[w[k]w[k]H ]. Notice that in this case the covariance is a R×R matrix. We

also assume that this covariance does not change significantly during the period of inter-

est, i.e. it is constant during the time it takes to collect the symbols used for estimation.

In other terms, we are assuming that the noise is a wide-sense stationary complex Gaus-

sian process: important quantities like mean, covariance and auto-correlation function

do not change over time.

We have seen that (1.17) is the DFT of the noise samples associated to the same

OFDM symbol. It can be shown that the DFT operator is linear and can be expressed

in terms of a unitary matrix U ; then for the receiving antenna r:

(W0[p]r , . . . , WN−1[p]r)
T = U (wp[k]r, . . . , w

p[k +N − 1]r)
T r = 1, . . . , R (1.22)

where Wn[p]r and wp[k]r are the r-th component of the vectors Wn[p] and wp[k]. Thus, it

follows from the properties of the complex Gaussian distribution that these two vectors

are identically distributed. That is, for each antenna r, the noise is Gaussian even in

the frequency domain and it is independent across subcarriers. However, this does not

necessarily mean that the noise is also independent across different antennas: in the

most general case we do not make any assumptions on Cov(Wn[p]) = E(Wn[p]Wn[p]H).

Since we assumed that the noise samples in the time domain are independent even

for more than one OFDM symbol, this property still holds in their frequency domain



1.4 Assumptions 11

representation.

Summing up, we are assuming the noise vector Wn[p] to be circular complex Gaussian

with zero mean and covariance matrix given by Cov(Wn[p]) = E(Wn[p]Wn[p]H). Its

distribution does not depend on the OFDM symbol p nor on the subcarrier n.

1.4 Assumptions

In this thesis we do not employ the general model for MIMO-OFDM: instead, some

restrictive assumptions about the channel and the noise are made. Firstly, we consider

a flat fading channel: this means that Hn is constant across all different subcarriers n.

Thus, the subcarrier index can be simply dropped, resulting in the channel model:

Y = (IK ⊗H)X +W (1.23)

From now on, equation (1.23) will be the reference channel model for this thesis. As

mentioned before, semi-blind channel and noise estimation relies on Kp known pilot

symbols and Kd unknown user data. It is then useful to split the matrix Xn in these

two contributions. Assuming that at any time either all the antennas or none of them

are transmitting pilots, we can split the observation, symbol and noise vectors in two

components:

X =

(
X(P)

X(D)

)
Y =

(
Y (P)

Y (D)

)
W =

(
W (P)

W (D)

)
(1.24)

Using this new notation, we can re-write (1.23) as:

Y (P) =
(
IKp ⊗H

)
X(P) +W (P) (1.25)

Y (D) = (IKd
⊗H)X(D) +W (D) (1.26)

Moreover, we do not assume any specific pattern for data symbols; Xn
(D) is a collec-

tion of independent discrete uniform random variables, having as co-domain one of the

constellations available for LTE, i.e. QPSK, 16-QAM or 64-QAM. Furthermore no as-

sumptions are made about the structure of the pilot sequence: it is just an array of

known complex symbols. The problem of designing a good symbol sequence is out of

the scope of this thesis.

Secondly, the noise is not only considered independent of different OFDM symbols,
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but it is also assumed uncorrelated across different antennas, thus giving:

Cov(W [k]) = E
[
W [k]W [k]H

]
= σ2IR (1.27)

1.5 Problem Statement

After the model description, we are ready to formulate the estimation problem that we

will try to tackle in this work:

Definition 1.1: (Semi-Blind Estimation in flat-fading MIMO-OFDM systems)
Let (1.23) be the reference channel model for a flat-fading MIMO-OFDM system, con-

sider the pilot-data notation introduced in (1.24) and (1.25). Assume the noise to be

circular Gaussian, independent of OFDM symbols and having covariance (1.27). Given

a matrix Y , containing the observations of R antennas for K different OFDM symbols,

and a matrix X(P), comprising Kp symbols transmitted by T antennas, the Semi-Blind

Channel Estimation problem consists of finding:

• an estimator Ĥ(Y,X(P)) for the channel matrix H;

• an estimator σ̂2(Y,X(P)) for the noise variance σ2.

In the next chapters we will present some different approaches to solve this problem

efficiently. The quality of the solutions will be evaluated as described in Section 1.2:

considering Mean Square Error and computational complexity.



Chapter 2

Pilot-Only Estimation

Let us start our description by reviewing some important results for pilot-only estima-

tion. In this chapter we simply neglect the data part of the observations and consider

only pilot symbols, i.e. symbols whose value is known by the receiver. Even though

pilot-only estimation is the easiest way of getting channel coefficients and noise vari-

ance, it will be extensively used as an initial guess for such iterative methods that also

consider data symbols as part of the estimation. A Maximum Likelihood estimator is

derived and its statistical properties are presented.

2.1 Maximum Likelihood Estimator

As described in Section 1.2, maximum likelihood estimation consists of choosing the

parameter that maximizes the likelihood function associated to the problem. In the case

of pilot-only estimation, assuming additive circular Gaussian noise at the receiver, we

can write the likelihood function as:

L(H,σ2) = p(Y (P)|X(P), H, σ2) (2.1)

= CN (Y (P)|(IKp ⊗H)X(P), σ2IRKp) (2.2)

=
1

πRKp |σ2IRKp |
exp

(
−
‖Y (P) − (IKp ⊗H)X(P)‖2

σ2

)
(2.3)
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This expression must be interpreted as a function of H and σ2. So, the ML estimator

is:

(HML, σ
2
ML) = arg max

H,σ

{
1

πRKp |σ2IRKp |
exp

(
−
‖Y (P) − (IKp ⊗H)X(P)‖2

σ2

)}
(2.4)

Since the logarithm is a strictly increasing function, an alternative to maximizing the

likelihood function is to minimize its negative logarithm:

(HML, σ
2
ML) = arg min

H,σ

{
RKp lnσ2 +

‖Y (P) − (IKp ⊗H)X(P)‖2

σ2

}
(2.5)

where we also discarded the additive term not depending on H and σ2. Differentiating

this expression with respect to the complex conjugate of the channel matrix, H∗, and

setting to zero gives:

∂ lnL(H,σ2)

∂H∗
=

1

σ2

Kp−1∑
k=0

Y (P)[k]X(P)[k]H +H

Kp−1∑
k=0

X(P)[k]X(P)[k]H

 = 0 (2.6)

Notice that this is a complex matrix derivative. For a review on this kind of operations

see Appendix A and [6]. Solving for H produces:

HML =

Kp−1∑
k=0

Y (P)[k]X(P)[k]H

Kp−1∑
k=0

X(P)[k]X(P)[k]H

−1

= Λ(P)
yx

(
Λ(P)
xx

)−1
(2.7)

where we introduced these two R×R matrices:

Λ(P)
yx ,

Kp−1∑
k=0

Y (P)[k]X(P)[k]H (2.8)

Λ(P)
xx ,

Kp−1∑
k=0

X(P)[k]X(P)[k]H (2.9)

It is well known that Maximum Likelihood estimation reduces to Least Squares estima-

tion in the simple case of a linear model with Gaussian noise. Thus we can equally refer

to this result as a ML or a LS estimator.



2.1 Maximum Likelihood Estimator 15

For the noise variance, the real-valued partial derivative is computed:

∂ lnL(H,σ2)

∂σ2
=
RKp

σ2
− 1

σ4
‖Y (P) − (IKp ⊗HML)X(P)‖2 = 0 (2.10)

Solving for σ2 gives a simple solution:

σ2
ML =

‖Y (P) − (IKp ⊗HML)X(P)‖2

RKp
(2.11)

2.1.1 Statistical Properties

In order to evaluate the performance attained by the ML pilot-only estimator, two

important statistical quantities are derived: its bias and its variance.

Bias

By definition, the bias of our estimator is:

B(HML) , E
[
H −HML(Y (P))

]
= H − E

[
HML(Y (P))

]
= H − E

[
Λ(P)
yx

]
Λ(P)
xx

−1
(2.12)

As explained in Section 1.2, in this case the expectation is computed integrating over

the observations Y (P). Expanding the last expression we get:

E
[
Λ(P)
yx

]
=

Kp−1∑
k=0

E
[(
HX(P)[k] +W [k]

)
X(P)[k]H

]

= H

Kp−1∑
k=0

X(P)[k]X(P)[k]H +

Kp−1∑
k=0

E
[
W [k]X(P)[k]H

]
= HΛ(P)

xx (2.13)

In the last step we used the assumption of uncorrelated zero-mean noise. Thus we have

shown that E [HML] = H, i.e. the ML estimator is unbiased:

B(HML) = H − E[Λ(P)
yx ]Λ(P)

xx

−1
= H −HΛ(P)

xx Λ(P)
xx

−1
= 0 (2.14)
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Similarly, for the noise variance:

E
[
σ2
ML

]
=

1

RKp
E
[
‖Y (P) − (IKp ⊗HML)X(P)‖2

]
=

1

RKp
Tr


Kp−1∑
k=0

E
[
W [k]W [k]H

]
+

1

RKp
Tr

E
[
(H −HML)H(H −HML)

]Kp−1∑
k=0

X(P)[k]X(P)[k]H


=

1

RKp
Tr


Kp−1∑
k=0

σ2IR

+
1

RKp
Tr
{
E
[
(H −HML)H(H −HML)

]
Λ(P)
xx

}
(2.15)

= σ2 +
1

RKp
Tr
{
E
[
(H −HML)H(H −HML)

]
Λ(P)
xx

}
(2.16)

Thus we have shown that HML is unbiased regardless of the estimate of the noise, while

σ2
ML is biased as far as HLS 6= H.

MSE

We continue the derivation with an expression of the estimation MSE. Notice that, since

the estimate is unbiased, it is possible to simplify (1.1):

MSE(HML) =
1

RT
Tr
{
E
[
(H −HML) (H −HML)H

]}
=

1

RT
Tr
{
−HHH + E

[
HMLHML

H
]}

(2.17)

The expectation can be expanded as follows:

E
[
HMLHML

H
]

= E
[
Λ(P)
yx Λ(P)

xx

−1
(

Λ(P)
yx Λ(P)

xx

−1
)H]

=

Kp−1∑
k=0

Kp−1∑
p=0

E
[
Y (P)[k]X(P)[k]HΛxx

−1Λxx
−1X(P)[p]Y (P)[p]H

]
= HHH + σ2RΛxx

−1 (2.18)
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Inserting the above expression in (2.17), we obtain an expression for the MSE:

MSE(HML) =
σ2

T
Tr
{

Λxx
−1
}

(2.19)

Thus, given a number of receiving and transmitting antennas, the MSE grows linearly

with the variance of the noise. For the noise variance a similar result is derived:

MSE(σ2
ML) = E

[
|σ2
ML − σ2|2

]
= E

[
σ4
ML

]
− σ4 − 2

RKp
Tr
{
E
[
(H −HML)H(H −HML)

]
Λ(P)
xx

}
(2.20)

To simplify the derivation of the noise MSE, even if in reality it is never the case, perfect

knowledge about the channel matrix H is assumed (the estimator becomes unbiased).

After substituting (2.11) in the expression above, the first term can be expanded recog-

nizing a χ2 distribution and using its first two moments:

E
[
σ2
ML

]
=

1

R2K2
p

E
[
‖Y (P) − (IKp ⊗H)X(P)‖4

]
=

1

R2K2
p

E

Kp−1∑
k=0

‖W [k]‖2
2

=
σ4

4R2K2
p

E




Kp−1∑
k=0

2

σ2
‖W [k]‖2︸ ︷︷ ︸

χ2(2KpR)


2  =

σ4

RKp
+ σ4 (2.21)

Thus, merging these expressions:

MSE(σ2
ML) =

σ4

RKp
(2.22)

Notice that, even if the MSE does not explicitly depend on the channel matrix, the

derivation assumes perfect knowledge of H. Since we always have an estimate on H,

an extra error term needs to be added to (2.22). Thus, we can conclude that there is

coupling between the errors on the channel matrix and the noise variance.

2.2 CRLB for Pilot-Only Estimation

In this section we will give an expression for the Fisher Information Matrix (FIM)

connected to pilot-only estimation. This theoretical result is very helpful to better
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understand the structure of the problem and the interaction among different variables.

We will refer to the discussion about CRLB given in Section 1.2.1 and especially to the

definition of FIM in (1.8).

First of all, we need to arrange the complex parameters H and σ2 in a vector γ

defined as follows:

γ =
(
row1(H), . . . , rowR(H), row1(H∗), . . . , rowR(H∗), σ2

)T ∈ C2RT+1

=
(
row(H), row(H∗), σ2

)T
(2.23)

where we introduced the following notation: rowi(H) is the i-th row of H and row(H)

is a vector collection of the rows of H: row(H) = (row1(H), . . . , rowR(H)). Then, from

(1.8) the Fisher information matrix Iγ ∈ C(2RT+1)×(2RT+1) is partitioned as follows:

Iγ =

 IH∗H IH∗H∗ IH∗σ2

IHH IHH∗ IHσ2

Iσ2H Iσ2H∗ Iσ2σ2

 (2.24)

Let us start from the terms only involving H and its conjugate. Expanding the sub-

matrices we can see that the terms IHH∗ and IH∗H vanish: this comes from the fact

that the following second-order derivatives are null:

∂2 ln p
(
Y (P)|H,σ2

)
∂Hij ∂Hpq

= 0
∂2 ln p

(
Y (P)|H,σ2

)
∂H∗ij ∂H

∗
pq

= 0 (2.25)

On the other hand, using the derivatives computed for calculating the ML solution, we

write that:

E

[
∂2 ln p

(
Y (P)|H,σ2

)
∂H∗ij ∂H

]
=

1

σ2
δijΛ

(P)
xx

∗
E

[
∂2 ln p

(
Y (P)|H,σ2

)
∂Hij ∂H∗

]
=

1

σ2
δijΛ

(P)
xx (2.26)

where δij is the R×R matrix with zero entries except for a one in position (i, j). Then,

having the expressions for the second-order derivatives, we can infer the corresponding

information matrices using the fact that Hij = row(H)((i− i)R+ j).

row(i−1)R+j(IHH∗) = row

(
1

σ2
δijΛ

(P)
xx

)
=

1

σ2

0, . . . , 0︸ ︷︷ ︸
T (i−1)

, rowj(Λ
(P)
xx ), 0, . . . 0︸ ︷︷ ︸

T (R−i)

 (2.27)
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With similar arguments for IH∗H , the global expression for these matrices is given:

IH∗H = IR ⊗
1

σ2
Λ(P)
xx

∗ IHH∗ = IR ⊗
1

σ2
Λ(P)
xx (2.28)

Moreover, there are four second-order cross-derivatives:

∂2 ln p
(
Y (P)|H,σ2

)
∂σ2 ∂H∗

=
∂2 ln p

(
Y (P)|H,σ2

)
∂H∗ ∂σ2

=
1

σ4

(
Λ(P)
yx −HΛ(P)

xx

)
(2.29)

∂2 ln p
(
Y (P)|H,σ2

)
∂σ2 ∂H

=
∂2 ln p

(
Y (P)|H,σ2

)
∂H ∂σ2

=
1

σ4

(
Λ(P)
xy

T −H∗Λ(P)
xx

∗)
(2.30)

Even if these derivatives are non-zero, they vanish when we take the expectation. In

fact, in (2.13) it is shown that E
[
Λ

(P)
yx

]
= HΛ

(P)
xx , thus we have:

E

[
∂2 ln p

(
Y (P)|H,σ2

)
∂σ2 ∂H∗

]
=

1

σ4

(
E
[
Λ(P)
yx

]
−HΛ(P)

xx

)
= 0 (2.31)

Conversely, the second-order derivative with respect to σ2 does not vanish:

Iσ2σ2 = −KR
σ4

+
2

σ6
E
[
‖Y (P)[k]− (IKp ⊗H)X‖2

]
= −KR

σ4
+

1

σ4
E
[
χ2(2KR)

]
=
KR

σ4
(2.32)

Summing up, the Fisher Information Matrix for pilot-only joint estimation takes this

form:

Iγ =

 IHH 0 0

0 IH∗H∗ 0

0 0 Iσ2σ2

 (2.33)

with Iσ2σ2 given by (2.32) and IHH∗ and IH∗H given by (2.28). From the shape of

the FIM, we can infer two important properties of the pilot-only unbiased estimation

problem:

• the accuracy of the channel estimation is not dependent on the accuracy of noise

estimation. Notice that this was not the case for the ML estimator of the previous

section: the expression of HML was independent of σ2, but the estimate of the

noise σ2 was influenced by HML.

• The channel estimate can be decoupled across different antennas; in principle, it
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may be possible to write a set of R estimators that guess the rows of H indepen-

dently.

Given the structure of the information matrix we can split the CRLB into two separate

inequalities for channel and noise; moreover, the FIR can be inverted block by block.

Using (1.11) and the fact that Λ
(P)
xx and its inverse are Hermitian, it is easy to show that:

MSE(H) ≥ σ2

T
Tr
{

Λ(P)
xx

−1
}

(2.34)

MSE(σ2) ≥ σ4

RKp
(2.35)

Thus, comparing these expressions with (2.19) and (2.22), we see that the maximum

likelihood estimator achieves the CRLB. So, ML is the optimal (non-Bayesian) unbiased

estimator. However, the derivation of the noise MSE assumed perfect knowledge of the

channel H, this means that the noise estimator approaches the bound only asymptoti-

cally, as the channel MSE vanishes.

Even if the next chapters will deal with semi-blind channel estimators, pilot-only

CRLB is a good reference for comparing other types of estimators. In fact, since semi-

blind estimators exploit additional information other than pilot observations, we expect

them to perform at least as well as the pilot-only case. On the other hand, we can infer

what the maximum improvement of this extra knowledge could be: if we assume all

the data symbols are known at the receiver, their estimation reduces to ML pilot-only

discussed in this chapter. So, no semi-blind estimator can achieve lower MSE than a

pilot-only estimator where all the symbols (pilot and data) are known. In Chapter 6

further details are given and a thorough performance comparison is presented.



Chapter 3

Semi-Blind Estimation

In the previous chapters, we estimated the channel matrix H and the noise variance σ2

given a set of observations and pilot symbols. In this chapter, the problem of semi-blind

estimation is formulated. The main difference is that, in addition to the observations

relating to pilots, we will also try to make use of received data symbols. Since the

transmitted symbols are not known by the receiver, the complexity of the problem

increases considerably. In fact, it will be clear that a closed-form solution is no longer

possible. However, in Chapter 4 and Chapter 5 we will show that the problem can be

solved iteratively.

In particular, we start our discussion by considering the true discrete distribution of

the transmitted symbols and derive a formula for the log-likelihood function. Then, in

order to reduce the complexity of the maximization, the assumption about the discrete

distribution is relaxed, and we introduce the Gaussian approximation for the data sym-

bols. Moreover, we will give an expression for the Cramer-Rao lower bound, which is

the best possible MSE that can be achieved by any semi-blind channel estimator.

3.1 Discrete Symbol Distribution

Let us consider the transmission of K symbols from an arbitrary constellation set C

consisting of |C| complex symbols. Assume there are Kp pilots and Kd data symbols.

The vector of observations Y can be split in a pilot and data component, as in (1.25).
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Thus, the total likelihood is written as:

L(H,σ2) = p(Y |X(P), H, σ2) = p(Y (P)|X(P), H, σ2) p(Y (D)|H,σ2)

= p(Y (P)|X(P), H, σ2)
∑
X(D)

p(Y (D)|X(D), H, σ2)p(X(D)) (3.1)

where, as seen in the general model and in (1.25), there is no influence of pilot symbols

on the observation relating to the data. Assuming additive circular complex Gaussian

white noise, with covariance matrix σ2IR for each received symbol, we can write these

two probabilities as:

p(Y (P)|X(P), H, σ2) = CN
(
Y (P)

∣∣∣(IKp ⊗H)X(P), σ2IRKp

)
(3.2)

p(Y (D)|X(D), H, σ2) = CN
(
Y (D)

∣∣∣(IKd
⊗H)X(D), σ2IRKd

)
(3.3)

Thus, since X(D) is a random vector whose samples are independently drawn from a

discrete uniform distribution, we have:

p(Y (D)|H,σ2) =
1

|C|TKd

∑
X(D)

CN
(
Y (D)

∣∣∣(IKd
⊗H)X(D), σ2IRKd

)

=
1

|C|TKd

∑
X(D)

Kd∏
k

CN
(
Y (D)[k]

∣∣∣HX(D)[k], σ2IRKd

)
(3.4)

In general the sum and product over the symbols cannot be interchanged, thus the

observation samples are not independently distributed. However, if the constellation set

preserves the symmetry with respect to the origin, it is possible to interchange them. In

general, the likelihood function is:

L(H,σ2) =
1

πRKp |σ2IRKp |
exp

{
− 1

σ2
‖Y (P) − (IKp ⊗H)X(P)‖2

}
× 1

|C|TKd

× 1

πRKd |σ2IR|Kd

∑
X(D)

Kd∏
k

exp

{
− 1

σ2
‖Y (D)[k]−HX(D)[k] ‖2

}
(3.5)
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Once again, dealing with the negative log-likelihood is more practical; in addition, terms

not depending on H and σ2 can be discarded:

− lnL(H,σ2) = RKp lnσ2 +
1

σ2
‖Y (P) − (IKp ⊗H)X(P)‖2

+RKd lnσ2 − ln

∑
X(D)

∏
k

exp

{
− 1

σ2
‖Y [k](D) −HX(D)[k]‖2

} (3.6)

This expression is extremely difficult to handle. In fact, unlike the pilot-only case,

taking the logarithm did not simplify the exponential in the second term. A direct

minimization of this function is not possible in closed-form. However, we notice that its

high complexity is due to the marginalization of the unknown data in (3.2). In fact, if we

assumed perfect knowledge of the transmitted symbols, we would not have the sum in

(3.6) and optimization would be the same as for the pilot-only case. This observation is

the rationale behind the Expectation Maximization (EM) algorithm discussed in Chapter

4, which alternates symbol estimation and closed-form optimization of H and σ2.

3.2 Gaussian Approximation

The likelihood function (3.6) has an intrinsic limitation: its complexity depends dra-

matically on the number of observations in the data sequence and on the size of the

constellation |C|. In fact, the sum over X(D) consists of |C|Kd terms. Unfortunately,

with the current assumptions there is no work around it; an effective way of reducing

the complexity is relaxing the discreteness of the transmitted symbols, assuming they

are drawn from a circular complex Gaussian distribution. It will be clear that this

supposition greatly simplifies the expression of the likelihood function.

Once we decided to approximate the symbol distribution with a multivariate circular

Gaussian, we need a way of choosing a specific member from this family, i.e. a sensible

value for mean and covariance. The Kullback-Leibler (KL) divergence is a practical

way of evaluating how similar two distributions are. Let p(X(D)) be the true discrete

distribution of symbols and p̃ be a pdf belonging to the Gaussian family; then KL

divergence is defined as:

KL(p||p̃) =
∑
X(D)

p(X(D)) ln

(
p(X(D))

p̃(X(D))

)
(3.7)

A reasonable strategy is choosing p̃(X) such that it minimizes the KL divergence. Differ-
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entiating the functional and setting the derivative to zero produces this intuitive result:µp̃ = E
[
X(D)

]
= 0

Σp̃ = E
[
X(D)X(D)H

]
= IKd

⊗ E
[
X[k](D)X[k](D)H

]
= IKd

⊗ Σx

(3.8)

where Σx is the covariance matrix of a single observation (as usual they are assumed

i.i.d.). Thus, we can re-write the likelihood function (3.1) as:

L(H,σ2) = p
(
Y (P)|X(P), H, σ2

) ∫
CKd

p
(
Y (D)|X(D), H, σ2

)
p̃
(
X(D)

)
dX(D)

= CN
(
Y (P)|(IKp ⊗H)X(P), σ2IR

)
×
∫
CKd

CN
(
Y (D)|(IKd

⊗H)X(D), σ2IR

)
× CN

(
X(D)| 0, IKd

⊗ Σx

)
dX(D)

(3.9)

It can be proved (see for instance [7, p. 93]) that, if x is normally distributed and we

have the following conditional Gaussian distribution for y given x:

p(x) = CN (x|µ,Λ) (3.10)

p(y|x) = CN (y|Ax,L) (3.11)

then, the marginal distribution of y is given by:

p(y) = CN
(
y|Aµ,L+AΛAH

)
(3.12)

Using this result we obtain a final expression for the likelihood:

L(H,σ2) = CN
(
Y (P)|(IKp ⊗H)X(P), σ2IR

)
× CN

(
Y (D)|0, IKd

⊗ (σ2IR +HΣxH
H)
)

=
1

πRKp |σ2IRKp |
exp

{
− 1

σ2
‖Y (P) − (IKp ⊗H)X(P)‖2

}
× 1

πRKd |σ2IRKp +HΣxHH |Kd
exp

{
−Tr

[
IKd
⊗
(
σ2IR +HΣxH

H
)−1

Y (D)Y (D)H
]}
(3.13)
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It is practical to define a symbol for the R×R sample covariance matrix:

Λ(D)
yy ,

Kd−1∑
k=0

Y [k](D)Y [k](D)H (3.14)

With this notation we can derive an easy formula for the negative log-likelihood:

− lnL(H,σ2) = RKp lnσ2 +
1

σ2
‖Y (P) − (IKp ⊗H)X(P)‖2

+Kd ln |σ2IR +HΣxH
H |+ Tr

[(
σ2IR +HΣxH

H
)−1

Λ(D)
yy

]
(3.15)

As for the discrete distribution case, it is not possible to find closed-form solutions for H

and σ2 that minimize (3.15). However, this Gaussian approximation has a big advantage

compared to the discrete case: Λ
(D)
yy is a sufficient statistic for H and σ2. Intuitively, it

means that the sample covariance matrix Λ
(D)
yy is a “summary” that provides the same

information about H and σ2 as the original observation set Y (D).

Observation 3.1: (Sufficiency of the sample covariance)
Assuming the transmitted symbols can be approximated by a Gaussian distribution, then

the sample covariance matrix Λ
(D)
yy of the data is a sufficient statistic for H and σ2.

Proof. From the likelihood of the observations,

p(Y (D)|Hσ2) =
1

πRKd︸ ︷︷ ︸
h(Y (D))

× 1

|σ2IRKp +HΣxHH |Kd
exp

{
−Tr

[(
σ2IR +HΣxH

H
)−1

Λ(D)
yy

]}
︸ ︷︷ ︸

g(Λ
(D)
yy ,H,σ2)

(3.16)

it is straightforward to see that the first factor is independent of either H and σ2, while

the second one only depends on Y (D) through the covariance matrix Λ
(D)
yy , which is a

statistic for it. Thus, due to the Neyman Factorization Theorem [8, p. 289], Λ
(D)
yy is

sufficient statistic for Y (D).

This is the key property that will be exploited to try to reduce the computational

complexity of the estimate. Practically, it means we do not need to store the R · Kd

long vector of observations and process it iteratively, but just handle a R × R sample

covariance matrix.

As we have seen, the Gaussian assumption produces some advantages: the likelihood

function does not depend on the type of constellation used and its complexity does not

scale with the number of data symbols taken into account. However, one can wonder
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how closely it mimics the original discrete distribution: the answer depends on the mod-

ulation used and the noise level. In general, since the received symbols are distributed

as a mixture of Gaussians, but we pretend there is only one zero-mean Gaussian, the ap-

proximation performs better if the original components are more overlapping. Intuitively

this situation happens for high noise variances or high-order constellation.

3.3 Further work: Gram-Charlier Series Expansion

As we shall see in Chapter 6, Gaussian approximation manages to capture the essential

features of the data distribution when additive noise is quite high. Unfortunately, for

low-noise scenarios this distribution fails its task and does not produce any advantage

over pilot-only ML. In order to address this issue, we want to replace the normal ap-

proximation used for data symbols with another continuous distribution that is more

representative of the true discrete one; this strategy can improve performances at ex-

penses of some additional complexity.

In this section we propose a method to find different refinements for the symbol dis-

crete distribution; this is not meant to be an exhaustive discussion providing a complete

solution of the problem; instead, we just sketch an idea that could be investigated in

further studies. Firstly, the total log-likelihood is written as in (3.1):

L(H,σ2) = p(Y (P)|X(P), H, σ2)
∑
X(D)

p(Y (D)|X(D), H, σ2)p(X(D)) (3.17)

We focus on the p(X(D)) term: it is a discrete probability distribution given by the

modulation scheme in use. We know that it can be factorized over time and also over

transmitting antennas, if we assume that independent streams are sent. Additionally,

since LTE constellations (QPSK, 16QAM, 64QAM) have symmetrical distributions, we

can also separate real and imaginary parts:

p(X(D)) =
∏
k

∏
t

p (<X[k]t) p (=X[k]t) (3.18)

where X[k]t = <X[k]t + i=X[k]t is a complex symbol transmitted at OFDM symbol k

and at antenna t. The idea is approximating the distributions p (<X[k]t) and p (=X[k]t)

by means of a Gram-Charlier series expansion. The Gram-Charlier series is a way of

expressing a probability distribution in terms of an infinite sum of known distributions

(typically Gaussian), for instance, the forth-order Gram-Charlier expansion of a general
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pdf p(x) is given by:

p(x) ≈ 1√
2πσ

exp

[
−(x− µ)2

2σ2

] [
1 +

κ3

3!σ3
H3

(
x− µ
σ

)
+

κ4

4!σ4
H4

(
x− µ
σ

)]
; (3.19)

with µ, σ being the mean and standard deviation of f(x), and κi the i-th order cumulant.

Hi(x) stands for the i-th-order Hermite polynomial. Notice that from expression (3.19)

it follows that the Gaussian approximation used in Section 3.2 was just a specific case

of first-order Gram-Charlier expansion. In this sense we can say that this approach

generalizes what was done before. Then, we can obtain different levels of fidelity to the

original distribution just adding more terms to the series expansion.

Let us consider a QPSK constellation for instance, we have:

p (<X[k]t) =

1/2 if <X[k]t =
√

2/2

1/2 if <X[k]t = −
√

2/2
(3.20)

of course it has zero mean and 1/2 variance. Furthermore its characteristic function is:

Φ<X[k]t(f) = E
[
eif <X[k]t

]
=

1

2

(
ei
√

2/2f + e−i
√

2/2f
)

= cos(
√

2/2f) (3.21)

Defining K(f) , ln Φ<X[k]t(f), it can be shown that the cumulants of <X[k]t are simply

given by the following expression:

κn =
K(n)(0)

in
(3.22)

Deriving K(f) and using (3.22) we get the first four cumulants of a QPSK distribution:

κ1 = 0 κ2 = 1/2 (3.23)

κ3 = 0 κ4 = −1/2 (3.24)

Thus, substituting in (3.19), we obtain the approximate distribution of the real part of

X[k]t.

p(<X[k]t) ≈
1

π
exp

[
−x2

] [
−1

3
x4 + x2 +

3

4

]
; (3.25)

Using this formula with (3.18) and performing the integral in (3.17) produces the new

forth-order likelihood function. Unfortunatelly, due to the lack of time, we have not been
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able to compute the integral. However, we think that it should be possible to calculate

it analytically. As a further study, it would be interesting to try to optimize the refined

expression of the likelihood function using the methods illustrated in Chapter 4 and 5.

If that is possible, performances in terms of MSE are expected to improve for high-SNR

settings.



Chapter 4

EM-Based Solutions

In the previous chapters we have studied how to model the semi-blind estimation prob-

lem. In particular, we focused on a maximum likelihood approach and derived two cost

functions we would like to minimize. In the following two chapters we will present differ-

ent strategies to do it. The aim of this chapter is to give an overview of the Expectation

Maximization (EM) algorithm and discuss how it can be used as an iterative estimator.

We will start by reviewing the main ideas behind EM, then the general formulation is

derived making no assumptions about the distribution of the unknown symbols. Then,

the update equations for both the actual discrete distribution and the Gaussian approxi-

mation are given. Finally, we will review an alternative version of the algorithm, Relaxed

EM, which relaxes some of the convergence properties but approaches the solution con-

siderably faster.

4.1 Introduction to EM

Expectation Maximization [9] is a very popular algorithm for solving maximum likelihood

problems that are not directly tractable in closed-form. In its full generality, it relies on

the concept of hidden variable: a quantity that could greatly simplify the matter but is

not directly observable. Let Y be the set of observations and θ the parameter we are

interested in estimating. X is a set of hidden variables related to the problem. Our

aim is to maximize the likelihood function p(Y |θ) with respect to θ. If this task is too

difficult, we can think of marginalizing the likelihood over the latent variables X:

p(Y |θ) =
∑
X

p(Y,X|θ) (4.1)
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The EM algorithm results in a remarkable simplification only if the joint probability

p(Y,X|θ) is much easier to optimize than the original likelihood. This is the case in

semi-blind channel estimation; it is easy to think of the unknown transmitted symbols

X(D) as latent variables, and of course Y is the vector of observations. Then, the problem

of optimizing the joint likelihood function is simply a pilot-only estimate, which has been

successfully solved in Chapter 2. Naming q(X) the distribution of the hidden variables,

it can be proved that it is possible to rewrite the log-likelihood as:

ln p(Y |θ) = Q(q, θ) +KL(q||p) (4.2)

where we defined:

Q(q, θ) =
∑
X

q(X) ln

{
p(Y,X|θ)
q(X)

}
(4.3)

KL(q||p) = −
∑
X

q(X) ln

{
p(X|Y, θ)
q(X)

}
(4.4)

Notice that KL(q||p) is the Kullback–Leibler divergence between the actual distribution

of the hidden variables and its posterior distribution. As we shall see, the actual dis-

tribution is unknown and it will be estimated iteratively. Q(q, θ) is the so-called bound

function, because, as KL(q||p) ≥ 0, it is a lower bound for the global log-likelihood

function ln p(Y |θ).
EM is an iterative algorithm; this means that the optimization of the likelihood

function is not performed in one step, but through several iterations. Each of these

iterations is initialized with a value θold and terminates after producing a refined estimate

θnew. In turn, any iteration consists of two steps: the Expectation step (E-step) and

the Maximization step (M-step). During the E-step, θold is kept fixed and Q(q, θold) is

maximized with respect to the distribution q(X). Since the likelihood p(Y |θ) does not

depend on q(X) and the KL divergence is non-negative, the maximum of Q(q, θold) is

attained when KL(q||p) = 0. This means that q(X) = p(X|Y, θold).
Conversely, during the M-step q(X) is kept fixed to its previous value and Q(q, θ) is

maximized with respect to θ. Thus, after E and M step, the bound function is:

Q(q, θ) =
∑
X

p(X|Y, θold) ln p(Y,X|θ)−
∑
X

p(X|Y, θold) ln p(X|Y, θold)

= EX [ln p(Y,X|θ)|Y, θold]−H(X|Y, θold) (4.5)

where the first term is the only one that depends on θ and needs to be maximized, since
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the other one is a constant equal to the conditional entropy of the hidden variables.

Thus it is possible to summarize the execution of a complete EM iteration as follows:

θnew = arg max
θ
{EX [ln p(Y,X|θ)|Y, θold]} (4.6)

as discussed before, the whole discussion makes sense only if the maximization in (4.6)

can be carried out easily. Fortunately, this is our case.

4.2 General EM Solution

In this section we apply the general EM update rule (4.6) to the case of interest. For the

sake of generality, no assumptions are made about the symbol distribution. The most

obvious choice is using the transmitted symbols X(D) as hidden set X, and the couple

(H,σ2) as parameter θ. First of all, we can write the argument of the expectation (4.6)

as:

ln p(Y,X(D)|X(P), H, σ2) = ln p(Y |X(P), X(D), H, σ2) + ln p(X(D)) (4.7)

Thus, since the second term does not depend on H or σ2, the general equation becomes:

(
Hnew, σ

2
new

)
= arg max

H,σ2

{
EX(D)

[
ln p(Y |X(P), X(D), H, σ2)

∣∣∣Y,X(P), Hold, σ
2
old

]}
(4.8)

From the general model we know that p(Y |X(P), X(D), H, σ2) is distributed as a circular

Gaussian with mean (IK ⊗ H)X and variance σ2IRK . Then, changing the signs and

replacing the maximization with a minimization problem, the EM step is:

(
Hnew, σ

2
new

)
= arg min

H,σ2

{
EX(D)

[
RK lnσ2 +

‖Y − (IK ⊗H)X‖2

σ2

∣∣∣∣Y,X(P), Hold, σ
2
old

]}
(4.9)

Expanding the terms in the equation above and deriving with respect to H∗ yields:

∂

∂H∗
=− 1

σ2

(
Λ(P)
yx +

Kd−1∑
k=0

Y (D)[k]EX(D)[k]

[
X(D)[k]H

∣∣∣Y (D)[k], Hold, σ
2
old

])

− 1

σ2
H

(
Λ(P)
xx +

Kd−1∑
k=0

EX(D)[k]

[
X(D)[k]X(D)[k]H

∣∣∣Y (D)[k], Hold, σ
2
old

])
(4.10)
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Notice that we have split the expectation in K terms corresponding to K different

observations. However, since the expectation is taken with respect to the data symbols,

if one of the terms refers to a pilot observation, then that specific expectation reduces

to the value of the corresponding pilot. This is the reason why the terms Λyx and Λxx

appeared in the above expression. It is practical to introduce the following notation:

Ωyx , Λ(P)
yx +

Kd−1∑
k=0

Y (D)[k]EX(D)[k]

[
X(D)[k]H

∣∣∣Y (D)[k], Hold, σ
2
old

]
(4.11)

Ωxx , Λ(P)
xx +

K−1∑
k=0

EX(D)[k]

[
X(D)[k]X(D)[k]H

∣∣∣Y (D)[k], Hold, σ
2
old

]
(4.12)

Thus, we can write the channel matrix update as:

Hnew = Ωyx (Ωxx)−1 (4.13)

Notice that, as expected, this formula closely resembles (2.7) for the pilot-only case; the

difference here is that we base our estimate on the posterior expectation of the symbols

we do not know. With similar arguments it is possible to derive the expression for the

noise variance σ2:

σ2
new =

1

RK

(
Y HY − 2<

(
Tr
[
HH
newΩyx

])
+ Tr

[
HH
newHnewΩxx

])
(4.14)

Summing up, for each EM iteration the E step consists of computing the conditional

expectations (4.11) and (4.12), then, the M step produces new values for the channel

matrix and the noise variance through (4.13) and (4.14).

Notice that EM, as any other iterative algorithm, needs an initial guess for the

parameters to be refined; in this case, pilot-only ML estimation given by (2.7) and

(2.11) is a sensible choice. Finally, note that our discussion did not specify how to

calculate the expectations in the E step, that will be the topic of the next few sections.

4.3 Discrete distribution

In the following two sections we will give some practical expressions for the computation

of Ωyx and Ωxx. Of course, this derivation has to take into account how the transmitted

symbols are distributed. We will start by assuming the case of a discrete alphabet of

symbols, as in Section 3.1; it is clear that in this case the distribution also depends on

the modulation in use.
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Algorithm 1: EM

Input: an initial guess H0 and σ2
0; Λ

(P)
yx and Λ

(P)
xx ; max number of iterations imax;

termination threshold ε

L0 ← − lnL(H0, σ
2
0) and L−1 ← +∞;

δ ← ε;

i← 0;

while δ ≥ ε and i < imax do

// E-step:

Ωyx ← Ωyx (Hi, σi) ; // Use (4.11) with Hi, σi

Ωxx ← Ωxx (Hi, σi) ; // Use (4.12)with Hi, σi

// M-step:

Hi+1 ← Ωyx (Ωxx)−1;

σ2
i+1 ← 1

RK

(
Y HY − 2<

(
Tr
[
HH
i+1Ωyx

])
+ Tr

[
HH
i+1Hi+1Ωxx

])
;

Li+1 ← − lnL(Hi+1, σ
2
i+1);

δ ← (Li − Li+1) /|Li+1|;
i← i+ 1;

end

First of all, we notice that, since any constellation set in consideration is symmetrical

with respect to the real axis, the expectations in (4.11) and (4.12) are transparent to

conjugation:

EX(D)[k]

[
X(D)[k]H

∣∣∣Y (D)[k], Hold, σ
2
old

]
= EX(D)[k]

[
X(D)[k]

∣∣∣Y (D)[k], Hold, σ
2
old

]H
=

 ∑
X(D)[k]

X(D)[k] p
(
X(D)[k]

∣∣∣Y (D)[k], Hold, σ
2
old

)
H

(4.15)

Moreover, using Bayes’ theorem and the sum rule of probability, we can write the pos-

terior first-order moment as follows:

EX(D)[k]

[
X(D)[k]

∣∣∣Y (D)[k], Hold, σ
2
old

]
=

∑
X(D)[k]X

(D)[k] p
(
Y (D)[k]

∣∣X(D)[k], Hold, σ
2
old

)
p
(
X(D)[k]

)∑
X(D)[k] p

(
Y (D)[k]

∣∣X(D)[k], Hold, σ
2
old

)
p
(
X(D)[k]

) (4.16)
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Since we know from Section 3.1 that X(D)[k] and Y (D)[k]|X(D)[k] are distributed accord-

ing to:

p(X(D)[k]) = CN
(
X(D)

∣∣∣ 0, Σx

)
(4.17)

p
(
Y (D)[k]

∣∣∣X(D)[k], Hold, σ
2
old

)
= CN

(
Y (D)[k]

∣∣∣HoldX
(D)[k], σ2

oldIR

)
(4.18)

we obtain the posterior first order moment:

EX(D)[k]

[
X(D)[k]

∣∣∣Y (D)[k], Hold, σ
2
old

]
=

∑
X(D)[k]X

(D)[k] exp
{
− 1
σ2
old

∥∥Y (D)[k]−HoldX
(D)[k]

∥∥2
}

∑
X(D)[k] exp

{
− 1
σ2
old

∥∥Y (D)[k]−HoldX(D)[k]
∥∥2
} (4.19)

and posterior second-order moment:

EX(D)[k]

[
X(D)[k]X(D)[k]H

∣∣∣Y (D)[k], Hold, σ
2
old

]
=

∑
X(D)[k]X

(D)[k]X(D)[k]H exp
{
− 1
σ2
old

∥∥Y (D)[k]−HoldX
(D)[k]

∥∥2
}

∑
X(D)[k] exp

{
− 1
σ2
old

∥∥Y (D)[k]−HoldX(D)[k]
∥∥2
} (4.20)

From these expressions it is clear that the discrete version of the EM algorithm is very

demanding in terms of computational load: each moment requires a number of opera-

tions growing like O
(
|C|T

)
. Even more importantly, the number of posterior moments

to compute is equal to the size of the data set. Thus, it turns out that for MIMO trans-

misison and high order modulations like 16QAM or 64QAM, employing the discrete data

distribution becomes infeasible even for relatively small data sets.

4.4 Gaussian distribution

In this section, the general EM formulation is applied to the simplified case of a Gaussian

distribution of symbols. As we have already discussed in Section 3.2, this model is the

most appealing for real applications because of its reduced complexity.

We can write each expectation term in (4.11) as follows. In the rest of this section

we will prove that the posterior distribution of the data symbols is circular Gaussian, so
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we can take the conjugation outside the expectation symbol.

EX(D)[k]

[
X(D)[k]H

∣∣∣Y (D)[k], Hold, σ
2
old

]
= EX(D)[k]

[
X(D)[k]

∣∣∣Y (D)[k], Hold, σ
2
old

]H
=

{∫
X(D)[k] p

(
X(D)[k]

∣∣∣Y (D)[k], Hold, σ
2
old

)
dX(D)[k]

}H
(4.21)

A known result for multivariate Gaussian distributions is used to compute the expecta-

tion without solving analytically the integral: it can be proved that [7, p. 93], given two

normal distributions like:

p(x) = CN (x| 0, Λ) (4.22)

p(y|x) = CN (y|Ax, L) (4.23)

then the conditional distribution of x given y is:

p(x|y) = CN
(
x |ΓAHL−1y , Γ

)
, with Γ = (Λ−1 +AHL−1A)−1 (4.24)

Remembering that data is distributed as (4.17) and the conditional distribution of the

observation is given by (4.18), we can directly apply result (4.24) for normal distributions,

obtaining:

p
(
X(D)[k]

∣∣∣Y (D)[k], Hold, σ
2
old

)
= CN

(
X(D)

∣∣∣µ(D)
X|Y , Σ

(D)
X|Y

)
(4.25)

where the conditional mean and covariance matrix are given by:

µ
(D)
X|Y :=

1

σ2
old

Σ
(D)
X|Y HH

old Y
(D)[k] (4.26)

Σ
(D)
X|Y :=

(
Σ−1
x +

1

σ2
old

HH
oldHold

)−1

(4.27)

Hence, it follows immediately that the posterior first-order moment (4.21) is just the

mean µ
(D)
X|Y of this circular Gaussian distribution:

EX(D)[k]

[
X(D)[k]

∣∣∣Y,X(P), Hold, σ
2
old

]
= µ

(D)
X|Y =

1

σ2
old

(
Σ−1
x +

1

σ2
old

HH
oldHold

)−1

HH
old Y

(D)[k] (4.28)

Similarly, for getting Ωxx in (4.12) we have to compute the posterior second-order mo-
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ment:

EX(D)[k]

[
X(D)[k]X(D)[k]H

∣∣∣ Y (D)[k], Hold, σ
2
old

]
=

∫
X(D)[k]X(D)[k]H p

(
X(D)[k]

∣∣∣Y (D)[k], Hold, σ
2
old

)
dX(D)[k] (4.29)

Once again, we can avoid solving this integral by employing (4.25):

EX(D)[k]

[
X(D)[k]X(D)[k]H

∣∣∣Y (D)[k], Hold, σ
2
old

]
= Σ

(D)
X|Y + µ

(D)
X|Y µ

(D)
X|Y

H
(4.30)

In this section we derived the expressions for the first and second-order posterior mo-

ments in case of Gaussian approximation. Thus, during the E step, Ωyx and Ωxx can be

computed using (4.28) and (4.30).

4.5 Adaptive Overrelaxed EM

The convergence properties of EM algorithm have been extensively studied in literature:

in many practical situations this algorithm seems to be excruciatingly slow [10]. This

impression is confirmed by the simulations carried out in Chapter 6. The reason for this

slowness is that, in many cases, the Q(q, θ) function is a loose bound for the log-likelihood

and it takes many iterations to maximize it.

Salakhutdinov and Roweis [11] proposed a modified version of EM called Adaptive

overrelaxed EM (AEM) that is meant to solve this problem. The idea is introducing a

learning rate parameter ηi ≥ 1 that adaptively extends the EM step; if ηi = 1 the i-th

OEM step reduces to a regular EM iteration, otherwise, if ηi > 1, a longer step is taken.

For instance, for the channel matrix H, the M step becomes:

Hi+1 = Hi + ηi
(
HEM
i+1 −Hi

)
(4.31)

where HEM
i+1 indicates the channel matrix given by a regular M step. However, while

using a lerning rate parameter improves the speed of the solution, it unfortunately voids

the primary convergence property: iterations are no longer guaranteed to decrease the

negative log-likelihood function. AEM solves this issue very simply: before taking the

E-step, we verify whether the “enhanced” step would cause a reduction in the log-

likelihood, if that is the case, we proceed to the M-step and ηi+1 is increased; otherwise,

ηi+1 is set equal to 1 and a regular EM step is taken. A detailed description of AEM is
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given in Algorithm 2.

Algorithm 2: Adaptive Overrelaxed EM (AEM)

Input: initial guess for channel and noise H1 and σ1; Λ
(P)
yx and Λ

(P)
xx ; termination

threshold ε; max number of iterations imax; expansion factor α > 1

L0 ← −∞;

HEM
1 ← H1 and σEM1 ← σ1;

η1 ← 1 and δ ← ε;

i← 0;

while δ ≥ ε and i < imax do

Li ← − lnL(Hi, σi);

δ ← (Li−1 − Li) /|Li|;
// E-step:

if δ < ε then // The step is too long. Reset it.

Li ← − lnL(HEM
i , σEMi );

δ ← (Li−1 − Li) /|Li|;
ηi+1 ← 1;

Ωyx ← Ωyx

(
HEM
i , σEMi

)
; // Use (4.11) with HEM

i , σEMi

Ωxx ← Ωxx

(
HEM
i , σEMi

)
; // Use (4.12) with HEM

i , σEMi

else

ηi+1 ← α ηi ; // Increase η

Ωyx ← Ωyx (Hi, σi) ; // Use (4.11) with Hi, σi

Ωxx ← Ωxx (Hi, σi) ; // Use (4.12) with Hi, σi

end

// M-step:

HEM
i+1 ← Ωyx (Ωxx)−1;

σEMi+1 ←
√

1
RK

(
Y HY − 2<

(
Tr
[
HH
i+1Ωyx

])
+ Tr

[
HH
i+1Hi+1Ωxx

])
;

Hi+1 = Hi + ηi+1

(
HEM
i+1 −Hi

)
;

σi+1 = σi + ηi+1

(
σEMi+1 − σi

)
;

i← i+ 1;

end
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Notice that the log-like maximization problem has been formulated for the couple

(H,σ) instead of (H,σ2). In fact, when extending the step size through η, we must

make sure that all the parameters stay within their own domain. To avoid iterations with

negative variances, we decided to work with standard deviations so that the optimization

is unconstrained.

AEM is very appealing for our semi-blind problem; in fact, its cost function has an

advantage: when the Gaussian approximation is used, it is possible to compute the log-

likelihood just using (3.15), without having to calculate the posterior moments of the

E-step. Note that this would not be the case if the general discrete distribution were

used. In light of this observation, we slightly modified the algorithm description given

by [11]: instead of computing the E-step before the if-clause (see Algorithm 2) and then

check for the decrease condition; we moved the E-step inside the if-clause, and then used

two different methods for calculating it. This modification does not change the algorithm

because the log-likelihood function does not explicitly depend on the posterior moments

of the latent variables, i.e. it can be computed without knowledge of the posteriors.

On the other hand, we save complexity because, even if the step is too long, we do not

need to re-evaluate the E-step. Thus, AEM provides a faster convergence rate without

increasing the complexity of the iteration: compared to the standard EM version, the

only extra operation consists in re-computing the log-likelihood function in case the step

size needs to be reset.

4.6 EM Convergence

A well known result for the EM algorithm is that, at each iteration, the log-likelihood

function is non-decreasing:

ln p(Y |θi+1) ≥ ln p(Y |θi) ∀i ≥ 1 (4.32)

A detailed discussion about this result is given in [9]: the proof relies on the fact that

the bound function is non-decreasing because it is maximized during the M-step, while

the KL divergence decreases or stays constant as a consequence of Jensen’s inequality.

In Chapter 5 we will show that, for any optimization algorithm, increasing the cost

function (in this case log-likelihood function) is a necessary but not sufficient condition

for convergence to a local maximum. Fortunately, EM provides stronger guarantees: Jeff

Wu [12] showed that:

Theorem 4.1: (Wu)
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If Q(q, θ) belongs to the exponential family, then all the limit points of an instance θi

are stationary points, and ln p(Y |θi) converges monotonically to ln p(Y |θ∗), for some

stationary point θ∗.

Since the semi-blind case verifies the hypothesis of this theorem, we can guarantee

global convergence to a stationary point (but not to a local maximum).

One may wonder how the presence of a learning rate η (Section 4.5) affects the

behaviour of the EM algorithm. I turns out [11] that for AEM convergence to a stationary

point is only guaranteed locally.
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Chapter 5

Numerical Optimizers

In this chapter we go through a totally different approach for solving the semi-blind

estimation problem explained in Chapter 3: instead of using the EM algorithm, several

numerical methods are presented. The main advantage coming from these techniques is

that they exploit the sufficiency property of Observation 3.2. Unlike EM, the computa-

tion of posterior moments is no longer needed and the complexity of the solution does

not scale with the length of the data sequence.

In this section we will only consider the Gaussian approximation of the transmitted

symbols, and we will try to minimize its negative log-likelihood (3.15), which plays the

role of a cost function:

− lnL(H,σ2) = RKp lnσ2 +
1

σ2
‖Y (P) − (IKp ⊗H)X(P)‖2

+Kd ln |σ2IR +HΣxH
H |+ Tr

[(
σ2IR +HΣxH

H
)−1

Λ(D)
yy

]
(5.1)

where Y (P), X(P),Kp,Kd,Σx,Λ
(D)
yy are known constant quantities. It is convenient to

interpret the negative log-likelihood as a real-valued function f of a real vector x:

x = (< row1(H), · · · ,< rowR(H),= row1(H), · · · ,= rowR(H), σ)T ∈ R2RT+1 (5.2)

f(x) = − lnL(H,σ2) ∈ R (5.3)

where rowi(H) is the i-th row of H. From our previous discussion, the term σ2IR +

HΣxH
H is the covariance matrix of the observations, hence we can assume it is positive

definite. Then, the natural logarithm in the third term and the matrix inversion in the

last term are always defined. The domain of the cost function is then the convex set

D = R2RT+1.



42 Numerical Optimizers

5.1 Steepest Descent

The simplest numerical optimizer is called steepest descent. At the k-th step, the channel

matrix and the noise variance are updated following the direction of their gradient:

xk+1 = xk − αk∇f(x) (5.4)

where αk is a scalar determining the length of step to be taken. It is well known that the

gradient is the direction along which a function grows the most rapidly, so it makes sense

to move to the opposite direction. Notice that moving away from the gradient is not the

only possibility: in general a descent direction is any direction making an angle θk with

the opposite gradient that is strictly less than π/2. In principle, an infinitesimal step

towards a descent direction causes a reduction of the cost; unfortunately, it would take an

infinite number of steps to converge to the optimum. In practice, we are interested in a

step producing a significant reduction, but if it is too long we could end up increasing the

cost function. For this reason, choosing the correct step size α is crucial and it results

in a trade-off between convergence speed and accuracy of the solution. The steepest

descent algorithm can be formulated as follows:

Algorithm 3: Steepest Descent
Input: x0 and a likelihood threshold ε

f0 ← f(x0);

δ ← ε;

k ← 0;

while δ ≥ ε do

pk ← −∇f(xk);

αk ← linesearch (c1, c0, xk, pk);

xk+1 ← xk + αk pk;

fk+1 ← f(xk+1);

δ ← (fk − fk+1) /|fk+1|;
k ← k + 1;

end

Since choosing a suitable step size is very important for any numerical optimizer,

conditioning whether the optimum is achieved and at which rate, it is worth reviewing

the most important results on this topic. A much more thorough analysis can be found

in [13] and [14]. We start by presenting an example of poor step length selection and we
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Figure 5.1: Example of sequence of steps decreasing the cost function but not converging
to a local minimum.

give some conditions to correctly choose αk.

The first concern when studying the convergence of an optimizer is making sure

that the cost function is reduced at each iteration. This requirement is necessary for

convergence to a local minimum, but unfortunately it is not sufficient. In fact, it is easy

to demonstrate that, even if a generic algorithm produces a sequence of decreasing steps,

it may not reach a local minimum. For example, consider the quadratic function f(x) =

x2−1 in Figure 5.1, the minimum -1 is reached for x = 0; suppose a generic minimization

algorithm produces the steps {xk} = (−1)k
√

1 + k/k, then the corresponding sequence

of costs is f(xk) = 1/k2. It is easy to see that, even if each step reduces the cost function,

fk+1 < fk ∀k ≥ 1, convergence to the local minimum is not achieved at all.

Let the multivariate real-valued function f(x) be the cost to minimize, xk is the vector

of the variables at k-th iteration and pk a descent direction, then a commonly accepted

strategy for choosing the step size αk is enforcing the following Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk (5.5)

∇f(xk + αkpk)
T pk ≥ c2∇fTk pk (5.6)

with 0 < c1 < c2. The first condition ensures that the cost after the k-th step has

significantly reduced; c1 governs how large this reduction has to be. The second condition
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is meant to rule out those steps that are not sufficiently big. The parameter c2 governs

the strictness of the second requirement. Notice that the issue displayed in Figure 5.1

would be solved by enforcing the Wolfe conditions; in fact (5.5) makes sure that the

chosen step size produces a significant decrease of the cost function; then, our sequence

{xk} would break that rule after some iterations.

One may wonder whether finding step lengths satisfying these requirements is always

possible; fortunately it can be proved that, under some non-restrictive conditions:

Lemma 5.1: (Wolfe Conditions Existence)
If f : Rn → R is continuous differentiable and bounded below (otherwise the minimization

problem is not well-defined) and pk is a descent direction, then there exist intervals of

step lengths satisfying the Wolfe conditions.

The second condition can be modified to ensure that αk lies closer to its optimal

value. The strong Wolfe conditions require that αk satisfies:

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk (5.7)

|∇f(xk + αkpk)
T pk| ≤ c2|∇fTk pk| (5.8)

5.1.1 Steepest Descent Convergence

We give a definition of convergence that takes into account the gradient of the cost

function. Since in general it is quite difficult to prove the a sequence tends to a local

minimum, this notion of convergence only ensures that a stationary point is approached.

Definition 5.2: (Global Convergence)
A minimization algorithm is said to be globally convergent if, for any starting point

x0 ∈ D, the norm of the gradient tends to zero:

∀x0 ∈ D lim
k→∞

‖∇fk‖2 = 0 (5.9)

Definition 5.3: (Local Convergence)
A minimization algorithm is said to be locally convergent if there exist a neighbourhood

δx∗ of the solution x∗, such that, if x0 ∈ δx∗ the norm of the gradient tends to zero:

∃δx∗ : ∀x0 ∈ δx∗ lim
k→∞

‖∇fk‖2 = 0 (5.10)

For the steepest descent method, choosing a direction opposite to the gradient and
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fulfilling the Wolfe conditions ensures that a cost reduction is always attained. However,

to be sure that a stationary point is finally achieved, we need Zoutendijk’s important

theorem: it is a quite general result that will come useful in the rest of this thesis. The

great advantage of using Wolfe conditions also follows from it.

Let θk be the angle between the opposite of the gradient and the search direction

pk. As explained before, in order to pk to be a discent direction, −π
2 < θk <

π
2 and thus

0 < cos θk ≤ 1.

Theorem 5.2: (Zoutendijk’s Theorem)
If αk satisfies the Wolfe conditions and pk is a descent direction; if f is bounded below

in Rn and it is continuous differentiable in an open set containing the level set L = {x :

f(x) < f(x0)}. Moreover assume that the gradient is Lipschitz continuous. Then:

∞∑
k=0

cos2 θk‖∇fk‖2 <∞ (5.11)

We know that a necessary condition for a series to be convergent is that its argu-

ment vanishes as the index goes to infinity; then, this theorem has a very important

consequence:

lim
k→∞

cos2 θk‖∇fk‖2 = 0 (5.12)

thus, if we guarantee that at each step the chosen descent direction is bounded away

from 90o, i.e. there is a positive δ such that 0 < δ ≤ cos θk ≤ 1, then:

lim
k→∞

‖∇fk‖2 = 0 (5.13)

This is the global convergence property. Since the gradient descent method follows

the direction of the opposite gradient at each step (cos θk = 1 ∀k), then, under the

assumptions of the previous theorem, global convergence is always guaranteed.

5.1.2 Gradient Computation

In this section the gradient of the log-likelihood function is derived: we will make use of

complex matrix differentiation theory as presented in [6] and summarized in Appendix

A. In order to leave the notation uncluttered and exploit the matrix form of the log-

likelihood, we will compute the gradient with respect to the channel matrix in the

complex domain, as defined in [6]. Following that notation, the complex gradient is
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itself a matrix, and it is given by:

∇H
[
− lnL(H,σ2)

]
= 2

∂
(
− lnL(H,σ2)

)
∂H∗

∈ CR×T (5.14)

Notice that from this expression it is always possible to return to the real domain and

handle the real and imaginary parts of the channel coefficients separately; in fact from

(A.5) it follows that:

<
{
∇H

[
− lnL(H,σ2)

]}
=
∂
(
− lnL(H,σ2)

)
∂<H

(5.15)

=
{
∇H

[
− lnL(H,σ2)

]}
=
∂
(
− lnL(H,σ2)

)
∂=H

(5.16)

thus, we can create the real-valued vector gradient taking the real and imaginary parts

of the complex matrix gradient and then juxtaposing their rows to form a vector.

The partial complex derivative with respect to H∗ is given by:

∂
(
− lnL(H,σ2)

)
∂H∗

=
1

σ2

[
− ∂

∂H∗
Tr
{
HΛ(P)

yx

H
}
− ∂

∂H∗
Tr
{
HHΛ(P)

yx

}
+

∂

∂H∗
Tr
{
HΛ(P)

xx H
H
}]

+Kd
∂

∂H∗
ln
∣∣σ2IR +HΣxH

H
∣∣+

∂

∂H∗
Tr
{(
σ2IR +HΣxH

H
)−1

Λ(D)
yy

}
(5.17)

After some calculations all the terms can be computed using the properties of complex

differentials [6] and the definition of formal complex derivative (A.2):

∂
(
− lnL(H,σ2)

)
∂H∗

=
1

σ2

(
−Λ(P)

yx +HΛ(P)
xx

)
+Kd

(
σ2IR +HΣxH

H
)−1

HΣx

−
(
σ2IR +HΣxH

H
)−1

Λ(D)
yy

(
σ2IR +HΣxH

H
)−1

H Σx (5.18)

Given that the term σ2IR+HΣxH
H is positive definite, both the real and the imaginary

parts of this matrix appear to be continuous and differentiable in their domain.

For the standard deviation σ, the regular derivative for real functions of real variables

is used, producing:

∂
(
− lnL(H,σ2)

)
∂σ

=
2RKp

σ
− 2

σ3
‖Y (P) − (IKp ⊗H)X(P))‖2

+ 2σKdTr
{(
σ2IR +HΣxH

H
)−1
}
− 2σTr

{(
σ2IR +HΣxH

H
)−2

Λ(P)
yy

}
(5.19)
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So, the global vector gradient ∇f(x) ∈ R2RT+1 is computed taking the real and imag-

inary parts of the complex matrix gradient ∇H
[
− lnL(H,σ2)

]
, juxtaposing their rows

and the noise derivative to form a vector of length 2RT + 1.

Notice that the cost of computing these derivatives is dominated by the matrix

inversion
(
σ2IR +HΣxH

H
)−1

, which requires O(R3) operations. The number of pilots

is also relevant because (5.19) is O(Kp). On the other hand, the number of data symbols

does not influence the complexity of the gradient; in fact Λ
(D)
yy can be computed before

the execution of the algorithm, while the samples are being collected.

5.2 Newton-Raphson

Another important optimization strategy is the Newton-Raphson method. The main

idea is approximating the cost function by means of a second-order Taylor expansion

around the current iteration point:

f(xk + p) ≈ fk + pT∇fk +
1

2
pT∇2fkp , mk(p) (5.20)

where ∇2fk is the Hessian matrix at xk. With the (very restrictive) assumption of

positive definite Hessian, it is possible to find the vector p that directly minimizes mk(p).

In other words, it is possible to locally approximate the cost function with a convex

paraboloid that touches its surface in xk and has the same curvature; then, minimizing

the paraboloid instead of f , the optimal step consists in moving from xk to the vertex.

More formally, setting the derivative of mk(p) to zero, the direction to follow is given

by:

pk = −
(
∇2fk

)−1∇fk (5.21)

This direction is also called Newton direction. The Newton-Raphson method consists of

the steps shown in the description below.

This method has at least two important advantages:

• Convergence rate is quadratic, i.e. faster than gradient descent and then any other

method not employing the Hessian.

• The line search algorithm can be greatly simplified to become a backtracking line

search [13]: in fact, in those regions where the cost function is close to be quadratic,

then αk = 1 is the optimal choice. This is due to the fact that taking a unitary

step means moving directly to the vertex of the paraboloid, which is the optimal
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Algorithm 4: Newton-Raphson
Input: x0 and a likelihood threshold ε

f0 ← f(x0) and f−1 ← +∞;

δ ← ε;

k ← 0;

while δ ≥ ε do

pk ← −
(
∇2fk

)−1∇fk;
αk ← linesearch (c1, c0, xk, pk);

xk+1 ← xk + αk pk;

fk+1 ← f(xk+1);

δ ← (fk − fk+1) /|fk+1|;
k ← k + 1;

end

choice if f is almost quadratic. In case the quadratic approximation is too loose

and the full step does not satisfy the Wolfe conditions, then we can compensate

trying smaller values of α. This technique is called backtracking like search.

On the other hand, supposing the Hessian to be positive definite is a really restrictive,

nevertheless essential, assumption for convergence: failing this, we have no guarantees

that pk is a descending direction. This means that Newton-Raphson method is ensured

to be globally convergent only for those functions where the Hessian is always positive

definite, i.e. for convex functions. Alternatively, it can be proved that for any twice

differentiable function with continuous Hessian and local maximizer x∗, there exists a

neighbourhood of x∗ where the algorithm converges. Then, according to this result,

Newton-Raphson attains local convergence only if started inside this local convergence

region.

Even if the cost function is not globally convex, it is possible to come up with

methods for dealing with a non-positive definite Hessian: the simplest solution would be

taking a steepest descent step in case the Hessian is not positive definite; alternatively,

it is possible to adjust its negative eigenvalues to make them positive without wasting

the curvature information conveyed by the Hessian matrix. However, these procedures

add additional complexity and typically involve a Cholesky or LU decomposition of

the Hessian [13, Appendix D]. Anyway, there is no agreement on which modification

strategy is the best and certainly no theoretical results ensuring that a modified step

would preserve the convergence speed of the original Newton direction.
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In our case, we cannot assume the cost function to be convex; moreover, simulation

results have shown that initializing the optimization with a pilot-only ML estimate

is not sufficient to let the staring point sit within a convergent neighbourhood of the

minimum. In addition to these convergence issues, computing the Newton step is a

cumbersome operation that requires to build a R(2RD+1)×(2RD+1) Hessian matrix and

invert it. For these two reasons we decided to focus on numerical methods not involving

the computation of the Hessian.

5.3 Conjugate Gradient Methods

Conjugate Gradient (CG) methods are a class of algorithms that were first proposed

for solving linear systems with positive definite coefficient matrices. As we shall see,

CG copes with these problems in an elegant and inexpensive fashion. Afterwards, these

techniques have been extended to deal with large non-linear optimization problems; the

advantage of such methods is that they attain a fast convergence rate without requiring

the computation of the Hessian matrix. Our discussion will start by presenting the linear

conjugate gradient; then the non-linear version is derived.

5.3.1 Linear Methods

Let A be a symmetrical positive definite matrix and b a known vector, the linear conju-

gate gradient method aims to solve a linear system for x:

Ax = b; (5.22)

which is equivalent to the following minimization problem:

minφ(x) ,
1

2
xTAx− bTx. (5.23)

This can be seen by noticing that φ(x) is a convex quadratic function with gradient

∇φ(x) = Ax− b , r(x), (5.24)

and the stationary point x∗ such that Ax∗ = b is also a global minimizer, on account of

the convexity of φ(x). Hence, (5.22) and (5.23) are equivalent as they share the same

unique solution x∗ .

The main characteristic of CG algorithms is that search directions pk must satisfy
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the conjugacy property :

pTi Apj = 0 ∀i 6= j. (5.25)

Apart from this distinctive feature, the sequence of solutions is then updated according

to the usual rule

xk+1 = xk + αkpk, (5.26)

where α is a suitable step size; in this case αk can be computed in closed form minimizing

the function φ(x) along the direction xk + αkpk:

αk = arg min
α
{φ(xk + αpk)} = −

rTk pk

pTkApk
. (5.27)

Choosing conjugate search directions results in some interesting features [14]:

• For any starting point x0 ∈ Rn, the sequence {xk} converges to the solution x∗ in

at most n steps.

• The gradient rk at each step is orthogonal to all previous directions:

∀k rTk pi = 0 with i = 1, . . . , k − 1 (5.28)

Of course these properties only hold if the conjugacy requirement is met. Thus, the

main challenge is finding a set of directions fulfilling (5.25); for instance, a orthogonal

basis of eigenvectors v1, . . . , vn of A does the job:

vTi Avj = vTi vj = 0 ∀i 6= j (5.29)

Unfortunately finding v1, . . . , vn using the Gram-Schmidt procedure is too expansive

for a large number of parameters. Instead, we want any conjugate direction pk to be

computed from the previous one; in particular, pk is written as a linear combination of

the gradient rk and pk−1:

pk = −rk + βkpk−1, (5.30)
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where βk is chosen to satisfy pTi Apj = 0. Multiplying each term by pTk−1A yields:

βk =
rTk Apk−1

pTk−1Apk−1
(5.31)

It can be shown that the gradient vectors resulting from these equations have the prop-

erty of being mutually orthogonal. Summarizing, the linear conjugate gradient method

consists of the steps listed in Algorithm 5.

Algorithm 5: Linear Conjugate Gradient
Input: x0

r0 ← Ax0 − b and p0 ← −k0;

k ← 0;

while rk 6= 0 do

αk ← −
rTk pk

pTkApk
; (5.32)

xk+1 ← xk + αkpk; (5.33)

rk+1 ← Axk+1 − b; (5.34)

βk ←
rTk Apk−1

pTk−1Apk−1
; (5.35)

pk+1 ← −rk+1 + βk+1pk; (5.36)

k ← k + 1;

end

5.3.2 Non-Linear Methods

It has been shown by Fletcher and Reeves that this simple algorithm for linear systems

can be extended to optimize general non-linear functions f(x), only with some small

changes. Firstly, the appropriate step size has to be chosen by a line search algorithm

enforcing the Wolfe conditions (5.5) and (5.6); secondly rk is now the gradient of the

cost function f(x). With some slight modifications to the linear version, the non-linear

Fletcher-Reeves (FR) conjugate gradient can be written as in Algorithm 6.

Comparing to steepest descent, the additional complexity needed for computing βk+1

and pk+1 consists of two inner products and a sum. Each of these operations is O(n); in

addition, the cost of computing the gradient must be taken into account.

Another version of non-linear conjugate gradient was proposed by Polak and Ribière
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Algorithm 6: Fletcher-Reeves Conjugate Gradient
Input: x0 and c1, c0 conveniently chosen

f0 ← f(x0) and f−1 ← +∞;

∇f0 ← ∇f(x0);

p0 ← −∇f0;

δ ← ε and k ← 0;

while δ ≥ ε do

αk ← linesearch (c1, c0, xk, pk); (5.37)

xk+1 ← xk + αk pk; (5.38)

∇fk+1 ← ∇f(xk+1); (5.39)

βFRk+1 ←
∇fTk+1∇fk+1

∇fTk ∇fk
; (5.40)

pk+1 ← −∇fk+1 + βFRk+1pk; (5.41)

δ ← (fk − fk+1) /|fk+1|

k ← k + 1;

end

(PR); the only difference is the way β is computed:

βPRk+1 ←
∇fTk+1 (∇fk+1 −∇fk)

∇fTk ∇fk
(5.42)

Even though PR and FR coincide if the function f(x) is strongly convex, in general they

differ significantly. Even their convergence properties are quite different, as we shall

discuss.

5.3.3 CG Convergence

Non-linear CG methods have unusual convergence properties [14]: while linear CG is

proven to converge at most in r steps, with r being the number of eigenvalues of the co-

efficient matrix A; non-linear CG convergence depends on a number of factors, and it is

strongly influenced by the choice of parameter βk. In general, Fletcher-Reeves algorithm

has better theoretical convergence guarantees than Polak-Ribière; this behaviour, how-

ever, is quite unexpected because in practice PR performs better than F-R [14, p.130].

In Chapter 6 we will show that this is the case also for our specific problem. For the

Fletcher-Reeves algorithm this result holds:
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Theorem 5.3: (Al-Baali)
Suppose that Fletcher-Reeves algorithm is implemented with a line search satisfiying the

strong Wolfe conditions (5.7) and (5.8) with 0 < c1 < c2 <
1
2 , moreover the cost function

f has these properties:

• the level set associated to the starting point L , {x|f(x) ≤ f(x0)} is bounded

• In some open neighbourhood N ⊆ L, the function f(x) is Lipschitz continuously

differentiable.

Then:

lim inf
k→∞

‖∇fk‖ = 0 (5.43)

Notice that the assumptions of this theorem are quite permissive, the first of which

is certainly met by the semi-blind cost function. Although we could not prove formally

that the second one is met, in light of the simulation results we conjecture that the

second assumption should also be true. This convergence result is not as strong as for

gradient descent, in fact, only the infimum of the sequence of gradients tends to zero.

Unfortunately there is no similar result for the Polak-Ribière algorithm: it seems that

its properties have not been fully understood yet [14, p.130].

5.4 Alternative Methods

In this section we propose some unconventional methods for optimization that have

been studied in this work. The reason for studying these methods is to try to reduce

complexity even further. We will start by describing an estimator based on a second-

order constraint for SISO systems; then an approximate MIMO estimator based on LQ

decomposition of the channel matrix is presented.

5.4.1 Constrained Optimization

One of the first attempts we made at solving the semi-blind estimation problem consisted

of a constrained maximization of the log-likelihood function. As we shall see, this way

of solving the problem has a limited applicability to SISO (single input single output)

channels, which are a specific case of MIMO systems. In this section, channel, symbols

and observations are respectively denoted with lower-case letters h, x, y; however, this

notation is equivalent to the general MIMO model when R = T = 1. Then the channel

h ∈ C is just a complex scalar, while y ∈ CK x ∈ CK are vectors, and as usual
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K = Kp + Kd. We will start by illustrating how this SISO estimator is built, why

it is attractive and finally what drawbacks are encountered.

The idea behind this SISO estimator is to make use of a sensible constraint to simplify

the maximization of the log-likelihood function. Even though it will still be impossible

to formulate a closed-form solution for h and σ2, we can try to simplify each iteration

through a coordinate descent approach. In fact, if h can be expressed as a function of

σ2 and vice-versa, each step of the iterative algorithm will alternate the optimization of

one of the variables while keeping the other fixed.

A good constraint to apply to the maximum likelihood function can be derived

noticing that, according to the Gaussian approximation of Section 3.2, observations are

normally distributed with zero mean and covariance matrix:

E
[
y(D)y(D)H

]
= IKd

⊗
(
σ2 + ρx|h|2

)
(5.44)

where ρx , E [x[k]x[k]∗] is the average power of the transmitted symbols. Then:

E
[
‖y(D)‖2

]
= E

[
y(D)Hy(D)

]
= Tr

{
E
[
y(D)y(D)H

]}
= Kd

(
σ2 + ρx|h|2

)
(5.45)

But, since the elements y[k] of the vector y are i.i.d circular Gaussian, we can approxi-

mate this second-order moment with the corresponding sample moment:

E
[
‖y(D)‖2

]
≈

Kd∑
k=0

|y[k]|2 = ‖y(D)‖2 (5.46)

Hence, combining these two expressions, the resulting constraint will be:

σ2 + ρx|h|2 ≈
1

Kd
‖y(D)‖2 (5.47)

Equation (5.47) will be used as an exact maximization constraint for the log-likelihood

function, despite its nature is intrinsically inaccurate; in fact, according to the law of

large numbers, the equality only holds when Kd →∞.

We can incorporate (5.47) inside the maximization process using the Lagrange mul-

tipliers method; then, introducing a real multiplier λ, the cost function becomes:

− lnL(h, σ2) = Kp lnσ2 +
1

σ2
‖y(P) − hx(P)‖2 +Kd ln

(
σ2 + ρx|h|2

)
(5.48)

+
‖y(D)‖2

σ2 + ρx|h|2
+ λ

(
σ2 + ρx|h|2 −

1

Kd
‖y(D)‖2

)
(5.49)
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After differentiating with respect to h, σ2, λ and manipulating these derivatives, we have

two closed-form update rules:

h = −

√
‖y(D)‖2/Kd − σ2

ρx‖x(P)Hy(P)‖2
x(P)Hy(P) (5.50)

σ2 =


1
Kd
‖y(D)‖2 − |h|2 if ‖y(D)‖2 ≥ Kd|h|2

‖y(P) − hx(P)‖2
(
Kp − ‖y(P)−hx(P)‖2

‖y(D)‖2/Kd−ρx|h|2

)−1
otherwise

(5.51)

Notice that if we did not set this constraint, it would not be possible to write any closed-

form expression for channel and noise: in general a fourth-degree system of two equations

has to be solved. On the other hand, the presence of the multiplier reduces the degree

from fourth to second. Note also that in (5.50), data observations only influence the

magnitude of h, while its phase is completely determined by pilot-related observations.

The quality of the estimate given by this method depends on the precision of approxi-

mation (5.47): the closer to the expected value, the more accurate the resulting estimate.

We shall prove that the approximation is much closer to the expected value if symbols

are drawn from a constant modulus constellation such as M-PSK. In fact, in case sym-

bols have different magnitudes, an extra degree of uncertainty is added. Remembering

that y[k] ∼ CN (y[k] | 0, σ2 + ρx|h|2), we can write

1

Kd
‖y(D)‖2 =

σ2 + ρx|h|2

2Kd

Kd∑
k=0

2 |y[k]|2

σ2 + ρx|h|2
∼ σ2 + ρx|h|2

2Kd
χ2 (2Kd) (5.52)

Since our constraint is distributed as a χ2, then its mean is σ2 + ρx|h|2; however, we are

more interested in the variance:

Var

(
1

Kd
‖y(D)‖2

)
=

(
σ2 + ρx|h|2

2Kd

)2

Var
(
χ2 (2Kd)

)
=

2

Kd

(
σ2 + ρx|h|2

)
(5.53)

It is easy to see that, for M-PSK constellations, symbol power ρx is constant for all

the symbols and often set equal to 1. Conversely, for the rest of modulation schemes

that power is only unitary on average, while its instantaneous value can change from

one symbol to another. For instance, any normalized 16-QAM symbol has power 1/5

with probability 1/4; power 9/5 with probability 1/4 and power 1 with probability

1/2. Hence, taking the expected value of (5.53) with respect to this distribution yields

the actual variance of the constraint. In Figure 5.2, the variance of ‖y(D)‖2/Kd is
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Figure 5.2: Var(‖y(D)‖2/Kd) against number of data symbols Kd for QPSK and 16-QAM
modulation.

plotted against the number of data symbols for two different modulation schemes. It is

evident that non-constant distribution of powers worsens the accuracy of the estimate.

From this observation it follows that this constrained optimization technique is especially

suited for constant modulus modulations such as M-PSK; as we shall see in Chapter 6,

performances are quite disappointing otherwise.

5.4.2 LQ Approximation

In this section a suboptimal approximation for the Gaussian distribution is proposed.

In particular, the aim of this approximation is reducing the space of parameters to be

optimized. Consider the channel matrix H ∈ CR×T , it is possible to break it in two

factors using the LQ decomposition:

H = LQ with Q ∈ CT×T , L ∈ CR×T , (5.54)

where Q is a unitary square matrix (QQH = QHQ = IR) and L is lower triangular

matrix (Lij = 0 if i > j). So far we considered a general symbol covariance matrix

Σx = E
[
X[k]X[k]H

]
; in this section we assume that symbols have equal power for all

antennas and they are uncorrelated over different antennas, Σx = ρxIT . Inserting the

LQ decomposition inside the negative log-likelihood function and using the fact that Q
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is unitary, we obtain:

− lnL(Q,L, σ2) = RKp lnσ2 +
1

σ2
‖Y (P) − (IKp ⊗ LQ)X(P)‖2

+Kd ln |σ2IR + ρxLL
H |+ Tr

[(
σ2IR + ρxLL

H
)−1

Λ(D)
yy

]
(5.55)

This equation shows that the data part of the likelihood does not depend on the unitary

matrix Q; hence, similarly to the pilot-only case, it iseasy to derive a closed form solution

for Q.

− lnL(Q,L, σ2)

∂Q∗
=

1

σ2

(
−LHΛ(P)

yx + LHLQΛ(P)
xx

)
(5.56)

The value of Q is given by:

Q =
(
LHL

)−1
LHΛ(P)

yx Λ(P)
xx

−1
= L†Λ(P)

yx Λ(P)
xx

−1
(5.57)

where L† indicates the Moore-Penrose matrix inverse:
(
LHL

)−1
LH , L†. Conversely,

it is not possible to extract a closed-form solution for L, so the best we can do is writing

its partial derivative as:

− lnL(Q,L, σ2)

∂L∗
=

1

σ2

(
−Λ(P)

yx Q
H + LQΛ(P)

xx Q
H
)

+ ρxKd

(
σ2IR + ρxLL

H
)−1

L

− ρx
(
σ2IR + ρxLL

H
)−1

Λ(D)
yy

(
σ2IR + ρxLL

H
)−1

L (5.58)

Since the expression for the parameter Q is linked to L through (5.57), the formally

correct way for solving this system is using a coordinate descent approach: at each

iteration, only one parameter is optimized at the time, while keeping the other fixed
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[13]. A hypothetical algorithm would require the following steps:

Algorithm 7: LQ Optimization
Input: an initial pilot-only guess for HLS

LQ-Decompose HLS = LLSQLS ;

L0 ← LLS and Q0 ← QLS ;

k ← 0;

while convergence not achieved do(
Lk+1, σ

2
)
← arg min

L,σ2

{
− lnL(L,Qk, σ

2)
}

; (5.59)

Qk+1 ← L†k+1 Λ(P)
yx Λ(P)

xx

−1
; (5.60)

k ← k + 1;

end

This way of solving the problem does not introduce any losses in performance and

it is expected to reach the same optimal value as the other iterative optimizers. Of

course, optimizing L several times is quite cumbersome even if the space of parameters

has reduced.

Simulations have shown that the value of Q changes only slightly during the itera-

tions; starting from this observation a suboptimal optimizer is proposed. This subop-

timal solution consists in neglecting the update of Q and applying one of the iterative

optimizers studied in this chapter on L only.

Algorithm 8: Suboptimal LQ optimization
Input: an initial pilot-only guess for HLS

LQ-Decompose HLS = LLSQLS ;(
L, σ2

)
← arg minL,σ2

{
− lnL(L,QLS , σ

2)
}

;

The advantage resulting from LQ decomposition is that in some cases the dimen-

sionality of the optimization decreases considerably. Let us quantify this reduction: if

R 6= T , then the matrix H can take two different structures, as shown in Table 5.1; in

particular, Lsq is a T × T square lower triangular matrix and, as its number of non-zero

entries in each row increases by one unit from 1 to T , it is equal to
∑T

n=1 n = T (T−1)/2;

moreover Lfull is a (T −R)×R matrix whose number of non-zero elements is (T −R)R.
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H decomposition Non-zero elements of L

R = T [Lsq] [Q] T (T − 1)/2

R > T

[
Lsq

Lfull

] [
Q
]

T (T − 1)/2 + (T −R)R

R < T
[
Lsq 0

] [
Q
]

T (T − 1)/2

Table 5.1: H decomposition for different values of R and T

From this table it turns out that the maximum reduction in terms of number of

parameters is achieved when R < T . On the other hand, it is difficult to quantify

which is the experienced loss due to suboptimality in terms of MSE; in the next chapter

simulations are performed to answer this question.
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Chapter 6

Simulations

The first objective of this work was investigating low-complexity solutions to the prob-

lem of semi-blind estimation. Unfortunately, evaluating the complexity of an iterative

algorithm is not always easy. Defining complexity as the average number of computa-

tions it takes to execute a complete optimization process, it is clear that it depends on

two factors: the average number of calculations per iteration and the average number of

iterations. In general, we are interested in estimating how these two factors scale with

respect to MIMO dimensions R and T and the size of the data sequence Kd. While the

O-notation is a popular way of expressing the asymptotic behaviour of each iteration,

the rate of convergence presented in Chapter 5 gives a rough idea of how fast the gradient

of the cost function tends to zero. In practice, simulations are always performed to test

the theoretical results and provide an effective comparison among different solutions.

Not only the computational complexity requires simulations, but also the perfor-

mance of an iterative estimator can be hardly predicted theoretically. The best we can

do is writing a CRLB for semi-blind estimation, but its formulation would just provide a

lower bound for the MSE of any estimator based on the same likelihood function. Then,

CRLB does not help to relate different methods.

This chapter will start by comparing semi-blind and pilot-only algorithms in terms

of achieved estimation accuracy, i.e. mean square error. The goal is also assessing to

what extent assumptions and approximations influence the MSE. As we shall see, the

number of transmitting and receiving antennas plays an important role and in Section

6.1 several different settings will be tested. Afterwards, in Section 6.2 the convergence

rate is discussed analysing the average number of iterations needed to reach a certain

threshold. Finally, in Section 6.3 another comparison consists in measuring the global

execution time of a large number of optimization problems. This type of experiments
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gives an overall figure of merit about the complexity of different solutions.

There are several different setups and pictures worth to be shown, however too many

images might be confusing to the reader; for the sake of clarity, only the most important

figures are displayed in this chapter, while the rest of them can be found in Appendix

B.

6.1 Estimation Accuracy

In this section our primary interest is evaluating the empirical MSE for different channel

estimators: the expected value in Equation (1.1) is approximated by taking the average

over a substantial number of independent estimates. The MSE is plotted as a function of

the SNR to observe how performances are influenced by the noise level and especially to

find out which is the SNR-range where the Gaussian approximation is most beneficial. In

order to obtain reliable results, estimation is carried out 2000 times for each SNR level.

In each simulation the MSE for pilot-only estimation is also given, in fact it is a useful

reference to assess what relative advantage we are gaining from taking into account the

data observations.

The simulation environment reflects the assumption we made in Section 1.4 and chan-

nel and noise are jointly estimated. Observations are created using the i.i.d. Rayleigh

fading model, then, each element in H is drawn from an independent complex Gaussian

distribution with:

E [Hij ] = 0 E
[
|Hij |2

]
= 1 (6.1)

for i = 1, . . . , R and j = 1, . . . , T . The transmitted symbols are coded independently

across transmitting antennas and the overall power is normalized to one:

Σx , E
[
X[k]X[k]H

]
=

1

T
IT (6.2)

From the normalization made on the channel and the choice of the symbol covariance

matrix, it follows that the SNR at each receiving antenna is simply:

SNR ,
E
[
X[k]HHHHX[k]

]
E [W [k]HW [k]]

=
Tr
{
E
[
HHHX[k]X[k]H

]}
Tr {E [W [k]W [k]H ]}

=
1
T E
[
Tr
{
HHH

}]
R σ2

=
RT

RTσ2
=

1

σ2
(6.3)

When evaluating an estimator, it is interesting to understand how its accuracy impacts
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on the global communication reliability; unfortunately, there is no simple rule relating

estimation MSE and bit error probability. In some cases, full knowledge about the

channel H does not produce a consistent improvement in terms of BER; for instance,

if the SNR is very poor, errors are mostly due to the AWGN term W more than the

fading nature of the channel H. Hence, under these circumstances even an estimator

with very low MSE would not be able to improve the overall bit error probability. We

can conclude that an estimator boosting performance in that region is less valuable than

another one enhancing the estimation where it really influences the error rate. From

this standpoint, the capacity C [bit/s/Hz] associated to the channel H is a good gauge

because it gives an upper bound on the highest reliable transmission rate. For MIMO

systems with uniform transmitting power allocation, C it is given by [2]:

C , E
[
log det

(
IR +

1

σ2
HΣxH

H

)]
= E

[
log det

(
IR +

SNR

T
HHH

)]
(6.4)

As before, the expectation over channel realizations is approximated by averaging over

a large number of repetitions. In order to insert channel uncertainty inside (6.4), we can

think of the estimation error as a noise source other than AWGN:

Y [k] = HX[k] +W [k] + (Ĥ(y)−H)X[k]︸ ︷︷ ︸
,N [k]

(6.5)

where N [k] is the total noise due to AWGN and channel uncertainty. Notice that, when

we assume that N [k] is an independent noise source, we are making an approximation:

N [k] cannot be independent of the signal as it contains the transmitted symbols in its

expression. Then, we define a different approximated S̃NR that takes into account the

estimation error:

S̃NR ,
Tr
{
E
[
HHHX[k]X[k]H

]}
Tr {E [N [k]N [k]H ]}

=
R

Tr {σ2IR}+ 1
T Tr

{
E
[(
Ĥ −H

)(
Ĥ −H

)H]}
=

1

σ2 + ·MSE(Ĥ)
(6.6)

Now we are able to judge the impact of our estimators on the global communication

system: capacity (6.4) is approximated on a large number of channel realizations making

use of the modified SNR expression given by (6.6).
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6.1.1 1R x 1T SISO

Let us start by the simplest case: 1R × 1T (SISO) channel. In Figure 6.1 we plot the

MSE for the channel matrix H and in Figure B.1 for the noise variance σ2. Channel

and noise are jointly estimated and the chosen modulation is QPSK. Several curves are

displayed in the plots, for simplicity here we give an extended legend:

Pilot-only ML ML estimation as in Chapter 2 based on pilot-only. Solid blue line.

Pilot+Known data ML estimation as in Chapter 2 based on pilot and data (assumed

known). Dashed blue line.

Discrete EM EM algorithm with discrete distribution of the transmitted symbols. Dashed

green line.

Gaussian EM EM algorithm with Gaussian approximation of symbols. Continuous green

line.

AEM Adaptive Overrelaxed EM algorithm with Gaussian approximation of symbols.

Dashed dark green line.

Steepest Descend Steepest descend algorithm. Solid black line.

Conjugate Gradient Polak-Ribiere version of the conjugate gradient method, solid pur-

ple line. The Fletcher-Reeves version where present is a dashed grey line.

LQ Conjugate Gradient Conjugate gradient with LQ approximation as in Section 5.4.2.

Solid red line.

Constrained Coordinate Descent Constrained coordinate descent as in Section 5.4.1.

Dashed grey line.

Observing Figure 6.1 and taking the two blue lines as references, the first remark

is that for low SNRs the discrete version of EM (dashed green line) gives only a little

improvement to the pilot-only estimation accuracy. In fact, it is clear that discrete

EM, Gaussian EM, AEM, steepest descent and CG yield the same average error in the

low SNR region. This behaviour was expected: in that region the noise component

dominates the signal component, then the observations are only weakly informative

about the transmitted symbols. On the contrary, for high SNRs discrete EM attains

the same performance as if the transmitted symbols were known by the receiver. As

explained in Chapter 2, least square estimator (dashed blue line) achieves the unbiased



6.1 Estimation Accuracy 65

−5 0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

C
h
a
n
n
e
l 
M

S
E

1R x 1T MIMO QPSK 10 pilots,  30 data,   2000 rep.

 

 

LS(ML)  pilots

LS(ML) pilots+ known data

EM discrete dist.

AEM

EM Gaussian dist.

Steepest

CG

CG Lq approx

Const

Figure 6.1: MSE versus channel SNR for SISO QPSK channel. 10 pilots and 30 data
symbols.

CRLB; thus, we can say that in a high-SNR regime discrete EM is the optimal unbiased

estimator.

We can also notice that the MSE curves relative to Gaussian EM, AEM, Steepest

descent and CG overlap for the whole SNR range; these methods in fact optimize the

same Gaussian semi-blind log-likelihood and seem to converge to the same optimum.

This is a positive result since these algorithms can only be proved to converge to local

minima, but in this case they all reach the same point. Moreover, we can see that

the Gaussian approximation produces a real benefit in terms of MSE only in a middle-

range SNR region: in fact for extreme SNR values these curves return to the pilot-only

level. We already discussed the low SNR regime, while at high SNRs this behaviour is

explained considering the expression (3.15) of the log-likelihood: it can be seen that if

σ2 shrinks (high SNR), then the contribution of the data part vanishes. Intuitively, this

means that for high SNRs the approximation in use is too loose and does not capture the

complexity of the problem: as noise decreases, approximating a mixture of Gaussians

with a single bell is no longer permitted.

Considering the purple line, we observe that the CG optimizer with LQ approxima-

tion does not introduce any loss in performance, which is due to the fact that in the

SISO 1× 1 case there is no parameter reduction (see Table 5.1) with respect to the full
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problem; however, as the diagonal of L is real, the optimization is performed in the real

domain.

Let us describe the behaviour of the constrained optimization method developed in

5.4.1 (dashed grey line): for low and middle range SNRs its MSE is higher than the non-

constrained methods; conversely for high SNRs it considerably outruns the accuracy of

the other methods based on the same Gaussian assumptions. In some sense it seems that

the presence of a maximization constraint drags the algorithm away from the natural

optimum and produces a sub-optimal solution that unexpectedly boasts a better MSE.

Although this may look like a contradiction, we have to consider the fact that the non-

constrained likelihood function comes from an approximation we made on the symbol

distribution; then, enforcing the constraint may produce solutions that are sub-optimal

for the approximated Gaussian log-likelihood, but mimic in a better way the actual

discrete likelihood.
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Figure 6.2: MSE versus channel SNR for SISO 16QAM channel. 10 pilots and 30 data
symbols.

In Figure 6.2 channel MSE is given for a 16-QAM constellation. Notice that from

(2.19) the pilot-only MSE is unchanged, since the power of the constellation has been

normalized to one. Comparing this picture with Figure 6.1 for QPSK, it is easy to

see a worsening in MSE for the grey line associated to constrained optimization. This

behaviour was explained in Section 5.4.1: when the constellation does not have constant
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modulus, approximating the symbol variance with its sample variance produces poorer

results. Furthermore, as already seen in Figure 5.2, the approximation becomes relatively

coarser as the SNR increases. Hence, for high SNRs the maximization constraint is too

rough and does not give any advantage. Apart from this, the other curves based on

Gaussian approximation are consistent to what we pointed out for QPSK. Conversely, it

is easy to see that discrete EM (dashed green line) approaches the optimum pilot-data

LSE much more slowly than for the QPSK case. We can interpret this observation noting

that the number of possible sequences of transmitted data grows exponentially with the

constellation order; this results in a larger degree of uncertainty when computing the

posterior moments in the E step (see Section 4.3).

Analysing how accurately noise variance is estimated (Figure B.1 on page 85), we

note that its behaviour is in line with the results obtained for channel MSE. The only

exception is constrained optimization (dashed gray line) that performs poorly for the

central range of SNRs.

6.1.2 2R x 1T MIMO

Let us consider the case of 2R× 1T MIMO transmission. Figure 6.3 displays the chan-

nel MSE. First of all, notice that from (2.19) it follows that the pilot-only accuracy

does not depend on the number of receiving antennas R; then the blue lines used as

references are unchanged. While pilot-only estimation is unaffected by the presence of

an extra receiving antenna, both discrete and Gaussian semi-blind estimation improve

considerably. For instance, we can see that discrete EM reaches the pilot-data level

at 8dB instead of 12dB. Similarly, in the central region Gaussian EM achieves a 3dB

improvement compared to the pilot-only case, while for SISO it only attains 1.5dB. This

improvement is due to the fact that, for a given number of data symbols Kd, having two

receiving antennas provides twice as many observations as the SISO channel.
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Figure 6.3: MSE versus channel SNR for 2R × 1T MIMO QPSK channel. 10 pilots and
30 data symbols.

As expected, LQ approximation experiences a performance loss that in the central

range is approximately equal to 1dB.

Noise estimators (Figure B.2 at page 86) also produce lower errors when semi-blind

estimation is employed; in particular, methods based on Gaussian approximation are

close to discrete EM: they need almost 3dB less to achieve the same MSE as pilot-based

LS. We omit plots for 16-QAM since they are very similar to QPSK, with the only

exception of discrete EM converging slower.

6.1.3 1R x 2T MIMO

Simulations for 1R × 2T QPSK are presented in Figure 6.4 and Figure B.3; unlike the

previous 2R×1T MIMO case, here it is not possible to record a significant improvement

for semi-blind estimation compared to SISO channel. This can be explained by the

fact that for the same number of observations we have a double amount of transmitted

symbols; the uncertainty is then increased.

Pilot-only estimation also appears to augment the error variance with the number

of transmitted antennas, this can be noted comparing Figure 6.4 and 6.3. The explicit

relation between transmitting antennas and pilot-only MSE is provided by equation
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Figure 6.4: MSE versus channel SNR for 1R × 2T MIMO QPSK channel. 10 pilots and
30 data symbols.

(2.19), and depends the matrix Λxx given by the actual pilot allocation strategy. For

instance, it can be shown [15] that if only one antenna at the time transmits pilots when

the others are silent, then the MSE grows linearly with T . Even if MSE is not improved

in this scenario, having two transmitting antennas is beneficial from another point of

view: it can either provide diversity, in fact transmitting the same symbol over the two

antennas produces two independently fading channels; or it can alternatively double the

symbol rate. Simulation results are similar for noise variance estimation, displayed in

Figure B.3 at page 86. Note that for both channel and noise estimation it is not possible

to spot any difference in performance between regular Gaussian approximation and LQ

approximation of Section 5.4.2.

6.1.4 2R x 2T MIMO

Let us consider the 2R × 2T MIMO scenario, channel and noise MSE are shown in

Figure 6.5 and B.4. As the number of receiving antennas does not influence the pilot-

only error, the pilot-only reference lines are placed at the same level as for 1R × 2T

MIMO. Compared to that case, however, semi-blind estimation is now more accurate,

because of the higher number of observations available. In particular, around the 5dB
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region those methods based on Gaussian approximation offer a 1.5dB advantage over

pilot-only LS, while LQ approximation only achieves a 1dB improvement.
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Figure 6.5: MSE versus channel SNR for 2R × 2T MIMO QPSK channel. 10 pilots and
30 data symbols.

Figure 6.6 shows how capacity is affected by the estimation accuracy achieved by

different methods; as expected, different estimators do not differ at low SNR levels, as

AWGN dominates the effects of channel uncertainty. On the other hand, sensibility to

estimation errors is maximum for low noise setups. At middle-range SNR levels, where

Gaussian semi-blind methods produce some MSE gain over pilot-only ML, we also record

a capacity boost: considering 2R × 2T MIMO with Kp = 10 and Kd = 30, there is a

0.25 dB enhancement for Gaussian semi-blind estimators, and 0.6dB for discrete EM.

Summing up our remarks about MIMO estimation accuracy, we can conclude that:

• more transmitting antennas provide higher rates or additional diversity but make

the estimation process less accurate (for both pilot-based and semi-blind methods).

• more receiving antennas increase diversity and do not affect the error of pilot-only

estimation, conversely, semi-blind estimation gains precision.

• all the estimators based on Gaussian approximation reach the same error level and

the same capacity.
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Figure 6.6: Capacity versus channel SNR for 2R × 2T MIMO QPSK channel. 10 pilots
and 30 data symbols.

• LQ approximation adds an additional error compared to regular Gaussian approx-

imation, this is approximately 1db extra for 2R× 2T MIMO.
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6.2 Convergence Rate

In this section we evaluate the convergence rate of the estimators studied in this thesis,

in particular, we will focus on those methods based on Gaussian approximation. Con-

vergence rate is determined by two main factors: data/pilot ratio and SNR level. As

we shall see, some methods are slower in specific SNR regions while they are faster in

others. For simplicity, we will only consider the 2R× 2T setup, which is the most repre-

sentative. Figure 6.7 displays the evolution of MSE for a low-noise setup (15 dB) while

Figure 6.8 refers to the 0 dB case. In general we observe that for high SNRs numerical
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Figure 6.7: Evolution of MSE over the iterations for 3:1 and 6:1 data/pilot ratio, SNR
equal to 15dB.
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methods are faster then EM, especially as the data/pilot ratio increases; conversely, at

lower SNRs EM dominates. As a general remark, given an SNR level, we notice an

opposite behaviour for EM and numerical optimizers: if the Kd/Kp ratio increases, then

EM becomes slower while numerical optimizers tend to speed up convergence. This is-

sue is partially solved by Adaptive overrelaxed EM that, especially after few iterations,

converges to the solution significantly faster than regular EM.
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Figure 6.8: Evolution of MSE over the iterations for 3:1 and 6:1 data/pilot ratio, SNR
equal to 15dB.
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6.3 Computational Load

In this section we will try to evaluate the overall complexity of semi-blind estimators. As

explained at the beginning of this chapter, it is not only important to define how many

iterations are needed for convergence, but also what computational cost is involved. It

is clear that there exists a sort of trade-off between the cost of each iteration and the

total number of iterations. As before, convergence is dependent on the SNR and the

data/pilot ratio; for this reason, algorithms are simulated varying both the noise level

and the number of data symbols. As seen in Chapter 3, semi-blind estimators based

on numerical optimization have the great advantage of being unaffected by an increase

of the number of data symbols: in fact, according to Observation 1, sample covariance

is a sufficient statistic for the observations and can be computed “off-line”, before the

actual optimization. Conversely, EM needs to iterate between data posterior moment

evaluation and joint estimation; as already noted, this makes the execution time of EM

grow linearly with the size Kd of the data array.

2T x 2R MIMO QPSK − Joint Est. SNR = 10 dB, 10 pilots,  2000 rep, termination threshold = 1e−06
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Figure 6.9: Execution time and average number of iterations as functions of the data/pilot
ratio for 2R× 2T MIMO QPSK channel. SNR = 10 dB

From Figure 6.9 it is easy to observe that, for conjugate gradient methods, the

execution time remains almost constant with Kd, while it grows for EM. It is interesting

to spot at which data/pilot ratio CG-PR becomes more advantageous than EM: this
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2T x 2R MIMO QPSK − Joint Est. SNR = 0 dB, 10 pilots,  2000 rep, termination threshold = 1e−06
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Figure 6.10: Execution time and average number of iterations as functions of the
data/pilot ratio for 2R× 2T MIMO QPSK channel. SNR = 0 dB

happens at 4:1 for 10 dB SNR level and at 6:1 if the SNR is 0 dB dB (see Figure 6.10).

From Figure 6.11 and 6.12 we notice that, varying the SNR, EM behaves unexpect-

edly: for mid-range SNRs, the number of iterations raises, while it decreases for high and

low SNR levels. This fact has a negative impact on application purposes; in fact, looking

at Figure 6.5, we notice that the range where EM is the slowest is also the range where

it provides an accuracy gain over pilot-only LSE. In other words, it is only beneficial to

use EM in the region where it converges slowly. Conversely, CG methods seem to be

more stable for both the number of iterations and the total execution time.

As discussed in Section 4.5, AEM is expected to outperform standard EM in terms of

number of iterations; this is confirmed by our simulations and, most notably, Figures 6.9

and 6.10 show that this acceleration comes with a small computational overhead. Notice

that, according to Figure 6.11, this advantage is more evident in the central SNR region,

where EM proved to be slower: unlike EM, AEM curve is flat across the SNR span. We

can conclude that AEM solves the slowing-down convergence issue experienced by EM,

and it is complexity-wise superior to it for any SNR and Kd/Kp ratio.



76 Simulations

2T x 2R MIMO QPSK  10 pilots, 40 data, 2000 rep, termination threshold = 1e−06
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Figure 6.11: Execution time and average number of iterations as functions of the SNR
for 2R× 2T MIMO QPSK channel. Kd/Kp = 4 : 1
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Figure 6.12: Execution time and average number of iterations as functions of the SNR
for 2R× 2T MIMO QPSK channel. Kd/Kp = 8 : 1
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Regarding the relation between modulation scheme and computational cost of the

estimators, Figure 6.13 shows that results for 16QAM are very similar to QPSK. Since

all these methods assume a Gaussian distribution of symbols, they are unaffected by

the constellation chosen. On the other hand, as CG complexity is given by the cost

of computing the gradient matrix, conjugate gradient performs better if the number of

receiving antennas is reduced; this can be seen in Figure B.7 on page 88 for a 1R × 2T

setup and Figure B.8 for a 2R× 1T setup.

Summarizing, the choice between AEM and CG depends on the SNR, the data/pilot

ratio and the MIMO setup; in light of the simulations we can deduce that:

• AEM outperforms EM for the whole SNR span and Kd/Kp range.

• CG is preferable to AEM at middle-high SNR levels (more than 10dB for 2R×2T )

and for large data/pilot ratios (the exact value depending on the specific MIMO

setup).

• CG degrades its performance with respect to AEM as the number of antennas

increases.
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Figure 6.13: Execution time and average number of iterations as functions of the
data/pilot ratio for 2R× 2T MIMO 16QAM channel. SNR = 0 dB
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Chapter 7

Conclusions

In this thesis we described and addressed the problem of semi-blind channel estimation

from a complexity-aware prospective: our aim was to investigate and test different ap-

proaches leading to a reduction in the number of computations required by the estimation

process.

We started by defining a model for OFDM-MIMO, assuming a flat-fading Rayleigh

channel with white Gaussian additive noise; then the semi-blind problem was formulated.

In Chapter 2, pilot-only estimation was reviewed: this method consisted in a robust one-

shot maximization of the likelihood function of the channel given the observations and

the pilot-sequence. As it only involves one R× T matrix inversion, pilot-only ML is the

simplest way of inferring channel and noise variance. Afterwards, we derived a general

expression for the mean squared error of this estimator; additionally, it can be shown

that, if one non-zero pilot per antenna is allocated at each OFDM symbol, the MSE

increases with the number of transmitting antennas, while it drops as the inverse of the

number of pilots. This implies that, in order to achieve the same error, if the number

of transmitting antennas grows, the length of the pilot sequence has to increase as well.

Of course, longer pilot sequences reduce the overall efficiency of the medium.

Instead of sending more pilots, we can enhance the estimation error exploiting the

additional information provided by data observations. In Chapter 3 we introduced the

semi-blind approach and presented two different ways to deal with the uncertainty con-

cerning transmitted symbols. Firstly, the true discrete symbol distribution was used to

marginalize the likelihood function: this yielded a complex combinatorial expression.

Then, we approximated the unknown symbols by means of a zero-mean Gaussian distri-

bution. In the latter case, the expression was easier and had an interesting feature: the

observation sample covariance matrix is a sufficient statistic for the observation vector.
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However, in both of the cases it was not possible to deduce a closed-form expression for

the channel and the noise maximizing the likelihood function. This means that, unlike

pilot-only ML, semi-blind estimators will require several iterations to converge to a lo-

cal solution. It is clear that there is a trade-off between the complexity of an iterative

semi-blind solution and the spectral inefficiency of the pilot-only ML estimator.

Chapter 4 presented the EM framework as an elegant solution to the semi-blind

problem. It alternates between two steps: the computation of first and second-order

posterior moments of the unknown symbols (E-step) and the estimation of H and σ2

(M-step). While the M-step only requires one R × T matrix inversion, the complexity

of the E-step depends on the unknown symbols. In case of discrete distribution, the

number of operations grows linearly with the number of data symbols and exponentially

with the constellation order. Conversely, if the Gaussian approximation is utilised, there

is no dependence on the actual modulation scheme, but complexity still expands with

the size of the data. This situation is undesirable because we are typically interested in

using as much data as possible to refine the estimate.

Preliminary tests showed that EM convergence rate was unsatisfactory, in particular

we recorded an evident slow-down at high-SNR regime. To correct this situation, an

adaptive overrelaxed version of EM (AEM) has been adapted to our case to accelerate the

traditional EM algorithm. Employing a quality of the Gaussian log-likelihood, we showed

that, for each iteration, it is possible to enhance the step size without compromising the

convergence guarantees and adding only a small computational overhead.

In order to make use of the sufficiency property 1, in Chapter 5 we reviewed sev-

eral numerical optimization techniques that could solve the problem without computing

posteriors. Starting from the basic steepest descent, we analysed the Newton-Raphson

method and two non-linear conjugate gradient techniques. Convergence properties have

been explained and related to our case of interest. Moreover, we gave an operative

expression for the complex matrix-valued gradient of the log-likelihood. Finally, two

additional solutions were proposed: a reduced-complexity estimator relying on the LQ

decomposition that can be used to reduce the space of parameters and a constraint-based

optimizer applicable to constant-modulus SISO channels.

Finally, in Chapter 6 all these algorithms were tested for accuracy, convergence speed

and computational cost. We observed that, for low SNRs, semi-blind methods do not

enhance pilot-only estimation because noise dominates the contribution given by the

data. At high SNR levels, discrete EM approaches CRLB with perfect symbol knowledge;

however, this result is achieved at the expense of a great computational load. On the

other hand, methods based on the Gaussian approximation produce an estimation gain
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only for middle-high (0-15 dB) SNR levels. Furthermore, we noted that employing

numerical optimizers in place of EM is advantageous for small MIMO setups, higher

SNRs (over 10-15 dB) and large data/pilot ratios (over 5-8:1). Moreover, AEM proved

to outperform EM in terms of average number of iterations and computations across all

the SNR range. As it attains the same mean squared error, AEM is to prefer to the

standard version of EM.
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Appendix A

Complex Derivatives

Let f(z) be a complex-valued function of a complex variable z ∈ R ⊆ C, before differ-

entiating we should make sure that f is analytical in R, i.e. that the Cauchy-Riemann

equations are satisfied:

∂f(z)

∂=z
= i

∂f(z)

∂<z
∀z ∈ R (A.1)

This is equivalent to require that f(z) is independent of z∗. Unfortunately, for most of

the practical functions in use this requirement is not met. To overcome this limitation,

complex derivatives can be generalized as formal complex derivatives:

df(z)

dz
,

1

2

(
∂f(z)

∂<z
− i∂f(z)

∂=z

)
df(z)

dz∗
,

1

2

(
∂f(z)

∂<z
+ i

∂f(z)

∂=z

)
(A.2)

If f is analytical, the generalized derivative coincides with the standard one and df(z)
dz∗ = 0.

If we assume that f(Z) is a real-valued function of the n×m complex matrix Z, then,

the matrix complex derivatives df(Z)
dZ and df(Z)

dZ∗ are n×m matrices defined as follows:(
df(Z)

dZ

)
ij

,
df(Z)

dZij
i = 1, . . . , n j = 1, . . . ,m (A.3)(

df(Z)

dZ∗

)
ij

,
df(Z)

dZ∗ij
i = 1, . . . , n j = 1, . . . ,m (A.4)

where Zij ∈ C is the (i, j) element in Z. This type of derivative is the most used in this

thesis.
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The gradient of f(Z) can be defined as the n×m matrix:

∇f(Z) , 2
df(Z)

dZ∗
=
∂f(z)

∂<Z
+ i

∂f(Z)

∂=Z
(A.5)
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Additional Figures

Noise Estimation MSE

−5 0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

SNR(dB)

N
o
is

e
 M

S
E

1R x 1T MIMO QPSK 10 pilots,  30 data,   2000 rep.

 

 

LS(ML)  pilots

LS(ML) pilots+ known data

EM discrete dist.

AEM

EM Gaussian dist.

Steepest

CG

CG Lq approx

Const

Figure B.1: MSE versus noise SNR for SISO QPSK noise variance. 10 pilots and 30 data
symbols.
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Figure B.2: MSE versus noise SNR for 2R × 1T QPSK noise variance. 10 pilots and 30
data symbols.
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Figure B.3: MSE versus noise SNR for 1R × 2T QPSK noise variance. 10 pilots and 30
data symbols.
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Figure B.4: MSE versus noise SNR for 2R × 2T QPSK noise variance. 10 pilots and 30
data symbols.
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Figure B.5: Capacity versus channel SNR for 2R × 2T MIMO QPSK channel. 10 pilots
and 60 data symbols.
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Computational Load for Different MIMO Setups

1R x 1T MIMO QPSK − Joint Est. SNR = 10 dB, 10 pilots,  2000 rep, termination threshold = 1e−06
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Figure B.6: Execution time and average number of iterations as functions of the data/pilot
ratio for 1R× 1T MIMO QPSK channel. SNR = 10 dB
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Figure B.7: Execution time and average number of iterations as functions of the data/pilot
ratio for 1R× 2T MIMO QPSK channel. SNR = 10 dB
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2R x 1T MIMO QPSK − Joint Est. SNR = 10 dB, 10 pilots,  2000 rep, termination threshold = 1e−06
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Figure B.8: Execution time and average number of iterations as functions of the data/pilot
ratio for 2R× 1T MIMO QPSK channel. SNR = 10 dB



90 Additional Figures



Bibliography

[1] James R. Beniger. The Control Revolution: Technological and Economic Origins of

the Information Society. Harvard University Press, 1986.

[2] David Tse and Pramod Viswanath. Fundamentals of Wireless Communication.

Cambridge University Press, Cambridge, 2005.

[3] Adriaan van den Bos. A Cramer-Rao Lower Bound for Complex Parameters. IEEE

Transactions on Signal Processing, 42(10):–, 1994.

[4] John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing. Prentice

Hall, 4 edition, April 2006.

[5] Yong Soo Cho, Jaekwon Kim, Won Young Yang, and Chung G. Kang. MIMO-

OFDM wireless communications with MATLAB. Wiley & Sons, Singapore, 2010.

[6] A. Hjorungnes and D. Gesbert. Complex-Valued Matrix Differentiation: Techniques

and Key Results. IEEE Transactions on Signal Processing, 55(6):2740 –2746, june

2007.

[7] Christopher M. Bishop. Pattern recognition and machine learning. Springer, New

York, NY, 2006.

[8] Nitis Mukhopadhyay. Probability and Statistical Inference. Marcel Dekker, Inc.,

2000.

[9] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. JOURNAL OF THE ROYAL STATISTICAL

SOCIETY, SERIES B, 39(1):1–38, 1977.

[10] K.B. Petersen, O. Winther, and L.K. Hansen. On the slow convergence of EM and

VBEM in low-noise linear models. Neural computation, 17(9):1921–1926, 2005.



92

[11] Ruslan Salakhutdinov and Sam Roweis. Adaptive Overrelaxed Bound Optimization

Methods. In Proceedings of International Conference on Machine Learning, ICML.

International Conference on Machine Learning, ICML, pages 664–671, 2003.

[12] C. F. Jeff Wu. On the Convergence Properties of the EM Algorithm. The Annals

of Statistics, 11(1):95–103, 1983.

[13] Dimitri P. Bertsekas and Dimitri P. Bertsekas. Nonlinear Programming. Athena

Scientific, 2nd edition, September 1999.

[14] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, August

2000.

[15] Xiaoli Ma, Liuqing Yang, and Georgios B. Giannakis. Optimal Training for MIMO

Frequency-Selective Fading Channels. IEEE Transactions on Wireless Communi-

cations, 4:453–466, 2005.


	Summary
	Acknowledgements
	List of Figures
	List of Algorithms
	Notation
	Introduction
	The wireless channel
	Channel Estimation
	Cramer-Rao Lower Bound

	General MIMO-OFDM Model
	Gaussian Noise

	Assumptions
	Problem Statement

	Pilot-Only Estimation
	Maximum Likelihood Estimator
	Statistical Properties

	CRLB for Pilot-Only Estimation

	Semi-Blind Estimation
	Discrete Symbol Distribution
	Gaussian Approximation
	Further work: Gram-Charlier Series Expansion

	EM-Based Solutions
	Introduction to EM
	General EM Solution
	Discrete distribution
	Gaussian distribution
	Adaptive Overrelaxed EM
	EM Convergence

	Numerical Optimizers
	Steepest Descent
	Steepest Descent Convergence
	Gradient Computation

	Newton-Raphson
	Conjugate Gradient Methods
	Linear Methods
	Non-Linear Methods
	CG Convergence

	Alternative Methods
	Constrained Optimization
	LQ Approximation 


	Simulations
	Estimation Accuracy
	1R x 1T SISO
	2R x 1T MIMO
	1R x 2T MIMO
	2R x 2T MIMO

	Convergence Rate
	Computational Load

	Conclusions
	Complex Derivatives
	Additional Figures
	Bibliography

