
Modelling Interlocking Systems for
Railway Stations

Marie Le Bliguet
Andreas Andersen Kjær

Kongens Lyngby 2008
IMM-M.Sc.-2008-68

Technical University of Denmark
Department of Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Summary

Interlocking systems are used for ensuring the safety of trains. This master
thesis is made in cooperation with Banedanmark and deals with relay-based
interlocking systems for railway stations. The goal of this project is to develop
a formal method for verifying that such systems guarantee the safety of trains.

By using RSL models of interlocking systems, this thesis deduces an automated
procedure for making an RSL-SAL transition system that defines the dynamic
behaviour of an interlocking system. Also, the procedure specifies how to auto-
generate confidence conditions for the generated transition system, formulated
using Linear Temporal Logic (LTL). Finally, a tool for computing such a transi-
tion system and its associated confidence conditions is implemented using Java.

Furthermore, this thesis develops patterns for specifying the behaviour of ex-
ternal inputs to an interlocking system (e.g. a rule can define when a train can
enter a station), formulated using RSL-SAL. Also, patterns for specifying safety
properties are developed using LTL.

Altogether, the tool and patterns define a method that uses the state-space
based model checker SAL for verifying that interlocking systems guarantee the
safety of trains. The method has successfully been applied to a Danish railway
station.

Keywords: Formal methods, Linear Temporal Logic, Model checking, Mod-
elling, Railway interlocking systems, RAISE Specification Language, RSL-SAL,
SAL.

Resumé

Sikringsanlæg benyttes til at sikre togenes sikkerhed. Dette kandidatspeciale
er lavet i samarbejde med Banedanmark og omhandler relæbaserede station-
ssikringsanlæg. Form̊alet med dette projekt er at udvikle en formel metode til
verifikation af, at s̊adanne systemer garanterer togenes sikkerhed.

Ved brug af RSL-modeller af sikringsanlæg, udleder dette speciale en automa-
tiseret procedure til at lave et RSL-SAL transitionssystem, der definerer et
sikringsanlægs dynamiske adfærd. Proceduren specificerer ogs̊a, hvordan kon-
fidensbetingelser for det generede transitionssystem kan udledes automatisk og
formuleres i form a Linear Temporal Logic (LTL). Til sidst laves en Java-
implementering af et værktøj, der kan generere s̊adan et transitionssystem og
dets tilhørende konfidensbetingelser.

Yderligere udvikler dette kandidatspeciale mønstre (formuleret ved brug af RSL-
SAL) for eksterne inputs til et sikringsanlæg (f.eks. kan en regel definere,
hvorn̊ar et tog kan ankomme til en station). Der udvikles ogs̊a mønstre for
hvordan sikkerhedsegenskaber kan specificeres ved brug af LTL.

Tilsammen definerer værktøjet og mønstrene en metode, der bruger den til-
standsrumbaserede model checker SAL til at verificere at stationssikringsanlæg
garanterer togenes sikkerhed. Metoden er succesfuldt blevet anvendt p̊a en
dansk jernabanestation.

Nøgleord: Formelle metoder, Jernbanesikringsanlæg, Linear Temporal Logic,
Model checking, Modellering, RAISE Specification Language, RSL-SAL, SAL.

Preface

This master thesis was made at the Department of Informatics and Mathemat-
ical Modelling, the Technical University of Denmark in partial fulfilment of the
requirements for acquiring the M.Sc. degree in engineering.

The thesis was made in cooperation with Banedanmark. The goal of this thesis
is to develop a method for model checking that interlocking system guarantee
the safety of trains.

The thesis supervisors are Associate Professor Anne E. Haxthausen, Department
of Informatics and Mathematical Modelling, Technical University of Denmark,
and Kirsten Mark Hansen, Technical Operations and Maintenance, Interlocking
Systems, Banedanmark.

Kongens Lyngby, July 2008

Marie Le Bliguet (s060764) Andreas Andersen Kjær (s032103)

Acknowledgements

The authors of this thesis would like to thank:

Anne E. Haxthausen for showing great interests in this thesis, for useful feed-
back, and for many valuable inputs and discussions during the project.

Kirsten Mark Hansen for giving a detailed introduction to the domain of this
thesis, for many beneficial domain related discussions, and for being available
for questions during the project.

Chris George, International Institute for Software Technology, United Nations
University, for help related to the RSL-SAL tool and for spending time on e-mail
correspondences with the authors during the project.

Troels Andersen Kjær for proofreading the entire report.

v

Contents

Summary i

Resumé ii

Preface iii

Acknowledgements iv

1 Introduction 1

1.1 The background of the project 1

1.2 The goal of the project . 2

1.3 Main approach to solving the problem 2

1.4 Chapter overview . 4

1.5 Reader assumptions . 5

2 Domain description 7

CONTENTS vii

2.1 Division of the Danish track system 8

2.2 Physical objects . 8

2.3 Introduction to interlocking . 13

2.4 Train route based interlocking . 15

2.5 Relay- and relay group systems 22

2.6 Diagrams . 25

2.7 The Operator’s Panel . 31

2.8 Interaction overview . 34

3 Introduction to RSL-SAL and LTL 36

3.1 Transition systems . 37

3.2 Linear-Time Temporal Logic assertions 40

4 Method overview 44

4.1 The verification method defined by this thesis 44

4.2 Development of a tool for generating transition systems 47

5 Abstract model of relay diagrams 50

5.1 Assumptions about the modelled diagrams 51

5.2 Modelling diagrams . 52

6 Towards a behavioural semantics of relay diagrams 62

6.1 The notion of paths in diagrams 63

6.2 Different approaches to a behavioural semantics of relay diagrams 66

CONTENTS viii

6.3 Conditions for drawing and dropping a single relay 73

6.4 Confidence conditions for the transition system 82

6.5 Interaction with the environment 86

6.6 Abstract generation of behavioural semantics 96

6.7 Abstract generation of confidence conditions 101

7 Patterns for external behaviour and safety properties 106

7.1 Patterns for external behaviour 107

7.2 Patterns for safety properties . 124

7.3 Conclusion . 135

8 Application: Stenstrup Station 138

8.1 Introduction to Stenstrup Station 139

8.2 The behaviour of Stenstrup station 140

8.3 Safety properties . 147

8.4 Results for Stenstrup . 152

8.5 Conclusion . 154

9 Concrete model of relay diagrams 155

9.1 Types . 157

9.2 List-based model . 159

9.3 Map-based model . 162

9.4 Conversion from list-based model to map-based model 164

9.5 Concrete condition- and pathfinding 166

CONTENTS ix

9.6 Concrete generation of a transition system 169

9.7 Concrete generation of confidence conditions 170

10 Java design and implementation 171

10.1 Overview . 173

10.2 Java implementation of the concrete RSL model 178

10.3 Input Format: XML . 191

10.4 Parsing and unparsing . 194

11 Testing the Java Implementation 197

11.1 Test strategy . 197

11.2 Tests and results . 203

11.3 Conclusion . 204

12 Conclusion 205

12.1 Project summary . 205

12.2 Suggestions for future work . 206

Bibliography 208

A The abstract RSL model 209

A.1 Types . 209

A.2 Diagrams . 210

A.3 StaticInterlockingSystem . 216

A.4 Pathfinding . 218

CONTENTS x

A.5 Conditionfinding . 219

A.6 TransitionSystem . 222

A.7 StaticInterlockingSystemToTransitionSystem 224

A.8 StaticInterlockingSystemToConfidenceConditions 230

A.9 The objects . 232

B The concrete RSL model 233

B.1 Types . 233

B.2 DiagramsL . 236

B.3 StaticInterlockingSystemL . 244

B.4 Diagrams . 247

B.5 StaticInterlockingSystem . 254

B.6 StaticInterlockingSystemConversion 256

B.7 Pathfinding . 258

B.8 Conditionfinding . 261

B.9 TransitionSystem . 265

B.10 StaticInterlockingSystemToTransitionSystem 266

B.11 StaticInterlockingSystemToConfidenceConditions 272

B.12 The objects . 275

C CD Overview 277

C.1 Report . 277

C.2 Example of interlocking system behaviour 277

CONTENTS xi

C.3 RSL specifications . 278

C.4 Application to Stenstrup Station 278

C.5 Java implementation . 280

C.6 Testing . 281

Chapter 1

Introduction

1.1 The background of the project

When a train enters or leaves a railway station, it is important to be sure that
it does not derail and does not collide with another train. Therefore, rules have
to be made for when a train can enter and leave a station. Like other railway
enterprises, the owner of the main part of the Danish railways, Banedanmark,
uses interlocking systems for ensuring that the safety rules are respected. Such
systems are deployed for enforcing these rules on the physical objects of the
stations. For instance, it must be ensured that the correct signals are displayed
to the drivers of the trains.

Most of the interlocking systems in Denmark are relay- and relay group systems.
These systems have been used for Danish railway stations since the 1950’s.
Relay- and relay group systems consist of complex electrical circuits that respond
to inputs from the external world. For instance, such an input can be that a train
occupies a track section or when an operator pushes a button. If an operator
pushes a button and thereby is telling the interlocking system to authorise a
train to enter a station, the interlocking system must only let the train enter
the station if it is considered as being safe.

Banedanmark documents relay- and relay group systems using large relay di-

1.2 The goal of the project 2

agrams. These diagrams can be considered as a snapshot of an interlocking
system in a specific state. When responding to the external world, an interlock-
ing system enters new states that are not shown in the relay diagrams.

Until now, Banedanmark has verified that relay- and relay group systems work
as they are supposed to by inspecting diagrams manually and by testing the
systems after deploying them. The inspection of diagrams is done informally
without any tool or proof technique. Even though Banedanmark has many
years of experience in inspections and tests, this procedure alone cannot fully
guarantee that safety rules are enforced by the interlocking systems. There
might exist an unusual state of the interlocking system where some safety rules
are not enforced by it, making derailing or collision possible.

1.2 The goal of the project

The goal of the project is to introduce a new way of verifying that interlock-
ing systems for railway stations actually enforce safety. A general method to
verify safety properties should be developed and afterwards applied to an inter-
locking system of a railway station. Instead of relying on informal inspections,
the method should provide a formal way of verifying that interlocking systems
guarantee the safety of trains at a station.

1.3 Main approach to solving the problem

Due to the complexity of interlocking systems, it might be difficult and time-
consuming to manually prove the safety of trains at a given station. Therefore,
it has been decided to model interlocking systems in such a way that safety
properties can be checked by an automated verification tool.

To enable an automated verification of safety properties, one needs to model the
complete behaviour of an interlocking system and formulate safety properties
for it. As this is not a trivial task, this project introduces a method for obtaining
them. The method is illustrated in figure 1.1 (a more detailed method overview
will be given in chapter 4).

By examining the documentation of a station including diagrams and station
layout, a transition system containing the following items can be formulated:

1.3 Main approach to solving the problem 3

Figure 1.1: The strategy for checking safety properties of an interlocking system

• Behaviour of the interlocking system of the station: rules for how the
interlocking system responds to the external world (e.g. rules for what
happens when track sections are being occupied).

• External behaviour: rules for how the external world behaves (e.g. rules
for when track sections can be occupied).

• Safety properties: properties associated with the transition system that
can be checked by a model checker.

When formulating behaviour and safety properties in a transition system, the
properties can be verified by a checker. However, formulating such a transition
system is not a trivial task. In order to ease the verification process, this project
will provide:

• A tool for auto-generating the behaviour of an interlocking system by
inspection of diagrams.

• Patterns for how external behaviour can be formulated.

• Patterns for how safety properties can be formulated.

When developing a tool for generating the behaviour of an interlocking system,
it is essential to know that the generated models are correct. For this reason,
formal methods will be preferred in the modelling phase and in the analysis
leading to the formulation of such a generation.

The Raise Specification Language (RSL) [9] has been chosen as a modelling lan-
guage. It allows for the needed abstraction in the early modelling phase and
gives the possibility of making concrete specifications later in the project. Also,
the advantage of using RSL is that it has been extended with the possibility

1.4 Chapter overview 4

of making transition systems for which properties can be verified by a model
checker called Symbolic Analysis Laboratory (SAL) [2]. By selecting RSL, all
models can be specified using the same language. Some models can be speci-
fied using the ordinary RSL features and some can be specified using the new
extension, RSL-SAL [13] [14].

As detailed in chapter 4, two RSL models will be given: an abstract (i.e. an
algebraic and property-oriented) model and a concrete (i.e. model-oriented,
but still generic) model. When having formulated the concrete model, it will
be translated to Java. The Java implementation of the concrete model will
be able to take an XML representation of relay diagrams as input and give
an RSL-SAL transition system as output that represents the behaviour of an
interlocking system.

After having auto-generated the behaviour of an interlocking system using the
Java program, one can manually add instantiations of patterns for external
behaviour and safety properties to it. After that, the model checking tool SAL
[2] can be used for verifying the properties.

1.4 Chapter overview

This thesis contains the following chapters:

Chapter 2 will introduce the domain of this thesis. The rest of the chapters
will refer to the information provided in this chapter.

Chapter 3 will introduce RSL-SAL and Linear Temporal Logics (LTL) that
will be used in the rest of the thesis.

Chapter 4 will give an overview of the method developed by this thesis to
formulate and verify safety properties of an interlocking system. Also, it will
explain the different development steps that are taken towards implementing a
tool for generating the behaviour of an interlocking system. An overview of the
work presented in chapters 5, 6, 7, 9 and 10 will be given.

Chapter 5 will introduce an abstract RSL model of relay diagrams.

Chapter 6 will analyse and deduce how one can use the model given in chap-
ter 5 for computing the behaviour of an interlocking system. On an abstract
level, RSL functions are defined for computing a transition system that defines
how an interlocking system responds to inputs from the external world. Also,

1.5 Reader assumptions 5

confidence conditions of such a transition system are introduced and a function
for computing them is presented.

Chapter 7 will give patterns for how the behaviour of the external world can
be added to a transition system that contains the behaviour of an interlocking
system. Also, patterns for how to formulate safety properties are introduced.

Chapter 8 will apply the method developed in this project to a concrete Danish
railway station.

Chapter 9 will make a concrete RSL model that implements the models intro-
duced in chapters 5 and 6. This is a step towards an executable program that
generates the behaviour of an interlocking system.

Chapter 10 will introduce the design and implementation of the Java program
that implements the concrete model given in chapter 9.

Chapter 11 will explain how the Java implementation has been tested.

Chapter 12 will present the conclusions of this thesis. The accomplished work
will be summarised and suggestions for future work will be presented.

Appendix A contains the complete specifications introduced by chapters 5 and
6.

Appendix B contains the complete specifications introduced by chapter 9.

Appendix C will explain the content of the CD attached to this thesis.

1.5 Reader assumptions

This report will assume that the reader knows of:

• The most common applicative RSL features. However, a reader that
knows of functional programming languages like SML and logical quanti-
fiers might be able to understand the report without knowledge of RSL.

• Transition systems in general.

• Temporal Logic in general.

• State-space based model checking in general.

1.5 Reader assumptions 6

• The following UML features: sequence diagrams and especially class dia-
grams. However, the primary analysis can be understood without knowl-
edge of UML.

• The most common features of the Java language. However, the primary
analysis can be understood without knowledge of Java.

• The most common features of Extensible Markup Language (XML). How-
ever, the primary analysis can be understood without knowledge of XML.

The reader is not assumed to know of the RSL-SAL extension of RSL and the
language used for specifying model properties, LTL. The RSL-SAL and LTL
features that are used are explained in chapter 3.

Chapter 2

Domain description

This chapter will give an introduction to the key concepts of Danish railway
stations and interlocking systems that are relevant for this thesis. In general,
most of the available literature on this subject is written in Danish. If the reader
wishes to know more about Danish railways and interlocking systems in English,
we recommend reading the bachelor thesis Simulation of Relay Interlocking Sys-
tems [7]. Information on railways and interlocking systems in general can be
found in the book Railway Operation and Control [12].

Section 2.1 will explain how the track system of the Danish railways is divided.

Section 2.2 will introduce some of the physical objects that are located at Danish
railway stations.

Section 2.3 will introduce the concept of interlocking. Banedanmark’s approach
to interlocking will be explained along with Banedanmark’s basic safety goals
and different kinds of interlocking systems.

Section 2.4 will explain the concept of train route based interlocking that is used
by Banedanmark for ensuring safety.

Section 2.5 will introduce the components of relay- and relay group interlocking
systems.

2.1 Division of the Danish track system 8

Section 2.6 will introduce the diagrams used for documenting relay- and relay
group interlocking systems.

Section 2.7 will introduce the operator’s panel that can be used for generating
inputs to an interlocking system.

Section 2.8 will give an overview of the relations between an interlocking system
and the physical objects of a station.

2.1 Division of the Danish track system

As described by Niels E. Jensen and Benny Mølgaard Nielsen [11], the Danish
railway track system can be divided into two separate entities: line blocks and
stations. This division is not only physical, but also concerns the way the
railways are secured, e.g. how derailing and collisions are prevented. Securing
the rails between the stations and at the stations is considered as two different
and independent tasks. As the title of this project indicates, taking the tracks
between the stations into consideration is beyond the scope of this project. We
will only consider the safety of the trains at a station.

2.2 Physical objects

The Danish railways consist of several types of physical objects. This section
will describe the objects that are considered relevant for this project.

2.2.1 Track circuits

The railway track layout consists of track circuits (also referred to as track
sections) that can be divided into linear track circuits and points. Track circuits
can be connected at their end points and thereby form a railway network. One
can tell whether a track circuit is occupied or free thanks to captors (relays)
which will be described later in section 2.5.

2.2 Physical objects 9

2.2.1.1 Linear track circuits

Linear track circuits are, as illustrated in figure 2.1, track circuits with two end
points. Therefore, it will be impossible for a linear track circuit to provide new
branches in a railway network.

Figure 2.1: A linear track circuit

2.2.1.2 Points

Points have three end points and they will allow two new branches in a railway
network, as illustrated in figure 2.2.

Points have three possible positions: a plus position, a minus position, and an
intermediate position. The plus position allows trains to go in one direction, the
minus position allows trains to go in the other direction, and the intermediate
position, which is used when changing from plus to minus and vice versa, might
cause trains to derail. These positions are illustrated in figure 2.3.

According to Kirsten Mark Hansen from Banedanmark, there are two different
conventions for deciding which directions correspond to the plus position and
the minus position. In the past, the plus position was considered as the one
leading the train in the straightest direction through the station. This conven-
tion still appears in the literature, but it is no longer used by Banedanmark
when documenting new railway networks. The second convention, which is now
used by Banedanmark, states that the plus position corresponds to right (as seen
from the stem side), and that the minus direction corresponds to left. From
now on, we will use the second convention unless we explicitly state otherwise.

Figure 2.2: Two points following the new convention (plus=right, minus=left)

2.2 Physical objects 10

Figure 2.3: A point in the three possible positions

2.2.2 Signals

Signals are used to control the railway traffic. As explained in DSB Baneanlæg
[6], there are several kinds of signals. Some signals are used for shunting while
other signals are used for controlling the ordinary traffic on the rails.

Taking all the aspects of a signal (i.e. what a signal is displaying) into consider-
ation is not relevant for this project. The scope of this project will only require
the knowledge of a few aspects. The relevant ones (as described by Niels E.
Jensen and Benny Mølgaard Nielsen [11]) are:

• Stop.
The train must stop in front of the signal. The stop aspect will be indicated
by a red light, sometimes combined with a yellow light.

• Drive.
The train is allowed to pass the given signal, but the train driver must
expect to stop at the next signal. The drive aspect is indicated by a green
light, sometimes combined with a yellow light.

• Drive through.
The train is allowed to pass the given signal and it should expect drive
or drive through at the next signal. The drive through aspect is either
indicated by two green lights or a blinking green light.

In general, we will not distinguish between the aspects drive and drive through.
When referring to the drive aspect it can mean either of the two aspects.

There are several signal types indicating the role of the signal. For instance,
entrance signals control the entry of a station by displaying the appropriate
aspect and exit signals control the exit of a station.

2.2 Physical objects 11

2.2.3 Trains

Trains drive on track sections and can be longer than one track section (they
can be up to 800 meters long). Their drivers are supposed to respect the aspects
of the signals as explained in 2.2.2.

2.2.4 Representing a station layout

For each station, the physical objects are documented on paper. This section
will explain how to read such documentation by giving an example of parts of
the documentation from Stenstrup Station.

Stenstrup station is represented in figure 2.4. Trains approaching from Odense
arrive from the left side of the station and those approaching from Svendborg
arrive from the right side of the station.

2.2.4.1 The track layout

The station is formed by 4 linear track sections (A12, 02, 04, B12) and 2 points
(01 and 02). Points 01 and 02 enable trains to access the two central track
sections. Each point is directly associated with a track section: point 01 with
track section 01 and point 02 with track section 03. If one wishes to know
whether point 02 is occupied, one has to check the state of the relay monitoring
track section 03.

2.2.4.2 The signals

There are 6 signals at the station:

• 2 entrance signals: A from Odense, B from Svendborg. When one of
them displays a drive aspect, trains are authorised to pass it and enter
the station. They both have a distant signal, a and b respectively. Distant
signals will not be considered in this thesis.

• 4 exit signals: E, F, G and H. When one of them displays a drive aspect,
trains are authorised to pass it and leave the station.

2.2 Physical objects 12

F
ig

ur
e

2.
4:

St
at

io
n

la
yo

ut
of

St
en

st
ru

p
St

at
io

n

2.3 Introduction to interlocking 13

2.2.4.3 Other elements

S1/S2 is a point that was used to exit the station from the track 02, but it is
no longer regularly used.

There are two level crossings named ovk82 and ovk83.

2.3 Introduction to interlocking

For now, only physical objects have been introduced. This section will introduce
the concept of interlocking, i.e. how the safety rules are enforced.

Figure 2.5 shows a general approach to interlocking and the specific one used by
Banedanmark. The goal of interlocking is to ensure some basic safety goals. The
one specified by Banedanmark will be presented in section 2.3.1. These goals are
specified on a high level and there may be several approaches to implementing
these goals at a station.

Banedanmark uses train route based interlocking to ensure the safety goals. By
defining train routes and a train route table for a given station, concrete safety
rules are specified for it. An introduction to train route based interlocking will
be given in section 2.4.

After having specified safety rules on a more concrete level, a physical imple-
mentation of the concrete safety rules is made. This is done by deploying an
interlocking system that enforces rules on the physical objects at the given sta-
tion. As it will be explained in section 2.3.2, the most frequently used type of
interlocking system in Denmark is relay-based.

2.3.1 Basic safety goals

As explained in [4], Banedanmark define their basic safety goals in the following
way:

2.3 Introduction to interlocking 14

Figure 2.5: A general approach to interlocking and the specific one used by
Banedanmark

• Trains/shunt movements must not collide.

• Trains/shunt movements must not derail.

• Trains/shunt movements must not collide with vehicles or humans crossing
the railway as authorized crossings.

• Protect railway employees from trains.

This project will only consider the following basic safety goals:

• Trains must not collide.

• Trains must not derail.

2.3.2 Interlocking systems

Interlocking systems are used to ensure the safety of a station. Basically, the
interlocking systems can (as described by DSB Baneanlæg [6]) be divided into

2.4 Train route based interlocking 15

the following types:

• Mechanical systems. They were equipped with arm signals and used
wires for switching the points and setting the signals. They were put into
use around 1870 and are not used any more.

• Electro mechanical systems. This type of interlocking system was in-
troduced in the 19th century and is operated manually by a local operator
[12]. These systems are no longer frequently used by the Danish railways.

• Relay- and relay group systems. This is the most frequently used
type of interlocking systems in Denmark. It is totally electric and has
been used since the 1950’s. Further details about this kind of interlocking
system will be given later.

• Electronic systems. This kind of interlocking system is computer-based.
The first “part wise” electronic system was introduced in Denmark in 1977.
Even though the electronic systems are the most modern interlocking sys-
tems, they are rarely used in Denmark. One of the main reasons is that it
can be difficult to get spare parts for such systems in a long-term perspec-
tive and they are difficult to modify compared to relay- and relay group
systems. For instance, interlocking systems can be used for more than 50
years, but some electronic spare parts are not in production for more than
10 years.

Banedanmark uses primarily relay- and relay group systems, therefore other
kinds of interlocking systems are considered as beyond the scope of this project.
Relay- and relay group systems will later be described in section 2.5.

As previously mentioned, the Danish railways are divided into line blocks and
stations. Likewise, the interlocking systems are divided into interlocking systems
for line blocks and interlocking systems for stations. This project will only
consider interlocking systems for railway stations.

2.4 Train route based interlocking

As explained in section 2.3, there are several approaches to interlocking. The one
used by Banedanmark is train route based. For train route based interlocking,
there are two key concepts called train routes and train route tables.

A train can be allowed to follow a certain route called a train route. The rules for
when it is safe to let a train follow a specific train route are described by a train

2.4 Train route based interlocking 16

route table. If the rules of the train route table are enforced by an interlocking
system, the trains will travel safely. The following sections will describe the
concepts of train routes and train route tables. After that, it will be described
how the safety requirements are enforced.

2.4.1 Train routes

A train route (as described by Henrik W. Karlson and Carsten S. Lundsten [5])
is a route from one location in a railway station to another. Each train route
has a start location, an end location, and some via locations, e.g. track circuits
that connect the start location and the end location. A signal is linked to the
train route, i.e. a train is only allowed to enter a train route if the aspect of
a given signal allows it (see section 2.2.2): this signal can be considered as the
entrance signal of the train route. A train route is said to be locked when its
points are forced to remain in the positions required for a train to be able to
drive through the route. A train route will become unlocked (also referred to
as released) when some specific track circuits have been occupied in a certain
order.

Usually train routes are locked and unlocked in the following way:

1. Setting the points.
An operator has to put the points in the correct position.

2. Locked.
If the points are in a legal position and the operator is pushing a specific
button, the train route is locked. In this situation, the points cannot be
switched until the release of the train route. Once the train route is locked,
the operator can release the button.

3. Setting the entrance signal of the train route to a drive aspect.
When some conditions (which will be described in the train route table of
the station in section 2.4.2) are met, the signal will be switched to a drive
aspect to allow a train to enter the train route.

4. Setting the signal to a stop aspect.
When a train occupies the first track section of the train route, the en-
trance signal of the train route is switched to a stop aspect.

5. Unlocking initiated.
When a train reaches some specific location of the train route, the unlock-
ing of the train route will begin.

2.4 Train route based interlocking 17

6. Unlocked.
When a train reaches the end location of the train route, the train route
becomes unlocked.

Train routes can be of two types:

• Entrance train routes, to enable trains to enter the station.

• Exit train routes, to enable trains to exit the station.

If a train has to go through the station without any stop, an entrance and an
exit train route have to be locked at the same time.

Train routes are said to be conflicting if they are not allowed to be locked at
the same time, e.g. if they have track circuits in common.

2.4.2 Train route tables

For a given station, all the train routes and the concrete safety rules associated
with these are defined in the train route table of the station. In this section, the
concept of train route tables will be introduced by presenting such a table from
Stenstrup Station.

Recall the drawing of Stenstrup station in figure 2.4, page 12 along its explana-
tion in section 2.2.4.

The possible train routes and the possible conflicts between train routes are
described by a train route table. Such a train route table for Stenstrup station
can be seen in figure 2.6. It contains four couples of train routes:

• two entrance routes (no. 2 and 3) from Odense: the first ends at track 02,
the second ends at track 04,

• two entrance routes (no. 5 and 6) from Svendborg,

• two exit routes (no. 7 and 8) to Odense

• and two exit routes (no. 9 and 10) to Svendborg.

The train route table contains several safety parameters concerning the track
sections, the signals, etc. These have to be met in order to guaranty that trains

2.4 Train route based interlocking 18

F
ig

ur
e

2.
6:

T
he

tr
ai

n
ro

ut
e

ta
bl

e
fo

r
St

en
st

ru
p

St
at

io
n

2.4 Train route based interlocking 19

Translation:

1. Displays drive if there is already a locked and ready exit

2. Cannot be switched until 44 seconds after track circuit ↓ 03

3. Cannot be switched until 43 seconds after track circuit ↓ 01

4. Displays drive through if there is already a locked and ready exit from
track 1 in the same direction

5. Displays drive through if the entrance signal displays drive through

Figure 2.7: Notes for Stenstrup train route table in figure 2.6

can travel safely. We will examine each column of the train route table one by
one:

• nr
The id of the train route

• Direction
It is indicated in which direction the train will pass through the station,
in this case from (in Danish ”fra“) or to (in Danish ”til“) Odense, and
from or to Svenborg

• Indk/Udk
This column states whether the route is an entrance route (Indk) or an
exit route (Udk).

• Spor
This column states from which side of the station the train will enter or
leave when using the train route: 1 if the train route contains track 02, 2
if it contains 04.

• Forløb
This column states whether a safety distance is required (strækn=yes,
�=no). For example, route 02 has an end location before track sections

2.4 Train route based interlocking 20

03 and B12, but 03 and B12 are still included in the train route because
they must be free in case the train does not stop at track section 02. For
the same reason, point 02 has to be set in the plus position even though
the train must stop before it. If it cannot stop, it will not derail because
point 02 will be in its plus position.

• Signaler
This part is about the aspects of the signals used by the train route. gr
means green, rø means red and gu means yellow. If no aspect of a given
signal is indicated for a given train route, it means that the signal is not
relevant for the given train route. The signal that is required to display a
drive aspect is the entrance signal of the train route, i.e. if a train enters
the train route, it has to pass this signal first. For instance, for route
2, signals a and A (A being the entrance signal of the train route) are
supposed to display a drive aspect, F a stop aspect and G can display
either a drive or stop aspect, depending if an exit train route is locked at
the same time (see note nr. 1 in figure 2.7).
This columns are used in step 3 of the locking process of a train route (see
section 2.4.1).

• Sporskifter
The position of the points is specified in this column. It can be + if
the point has to be in the plus position, - if the point has to be in the
minus position or empty if the point is not required to be in a certain
position. Since the interlocking system of the station is relatively old, the
station documentation uses the former convention for naming the position
of the points, meaning that the plus position is leading the train in the
straightest direction through the station (see section 2.2.1.1). S1/S2 is an
exit track that is not used regularly so the point has to be locked (afl) for
all the train routes.
This section is used in steps 1 and 2 of the locking process of a train route
(see section 2.4.1). If the points are not in the position indicated by the
train route table, the locking process is aborted.

• Sporisolationer
↑ means that the specific track circuit needs to be free before switching the
entrance signal of the train route to a drive aspect. The arrows represent
the state of the relay associated to a track section (see section 2.5 for
further explanations about relays): ↑ corresponds to a drawn relay, that
means that the track is free. For instance, for route 2, A12, 01, 02, 03,
and B12 have to be free.
This section is used in step 3 of the locking process of a train route (see
section 2.4.1).

• Ovk
There are two level crossings at the Odense end of the station. If the cell

2.4 Train route based interlocking 21

corresponding to a level crossing contains “Ja”, it means that this level
crossing must be safe to be crossed by a train.
This section is used in step 3 of the locking process of a train route (see
section 2.4.1).

• Stop fald
It is the condition for when the entrance signal of the train route should
switch from a drive to a stop aspect. For instance, for route 2, signal A
must change when track section A12 becomes occupied (↓A12). Usually
the signal is changed after that the train driver has passed the first signal.
In that way, it is avoided that the driver sees the red signal before passing
the signal.
This section is used in step 4 of the locking process of a train route (see
section 2.4.1).

• Togvejsopl
This specifies the conditions for releasing the train route. It consists of
two states that have to occur in a certain order. For instance, for route 2,
at some point track circuit 01 has to be occupied and 02 free, then, at a
later time, 01 has to be free and 02 occupied. When these conditions are
met, route 2 can be released.
This section is used in steps 5 and 6 of the locking process of a train route
(see section 2.4.1).

• Gensidige spærringer
It is the set of the conflicting routes, which must not be locked at the
same time. If there is a “O” symbol, the two routes are conflicting. For
instance, route 2 has a conflict with every other route except route 9.

2.4.3 Enforcing the basic safety requirements

As described in section 2.3.1, this project will consider the two basic safety
goals: trains must not collide and trains must not derail. By enforcing concrete
rules extracted from a train route table, the basic safety goals are indirectly
implemented in the following way:

• Trains must not collide.
A train collision will be avoided by the fact that two conflicting train
routes cannot be locked at the same time, that a signal can only become
green if a train route related to this signal is locked, and that all the safety
requirements of the train route table for the given train route are met. As
the points are fixed while the train route is locked, a train cannot leave
the route it is following.

2.5 Relay- and relay group systems 22

• Trains must not derail.
A train derailment will be avoided by checking that the points of a train
route are in a legal position when locking this train route, by preventing
these points to change when the train route is still locked, and by enforcing
that a train route can only be released when a train has crossed every point
of the train route.

2.5 Relay- and relay group systems

As explained in section 2.3, the rules of train route tables are physically imple-
mented by interlocking systems. This section will introduce the kind of inter-
locking systems that is considered by this thesis, relay- and relay group systems,
and its components.

The relay- and relay group systems, mentioned in section 2.3.2, are electrical
circuits that contain relays, buttons, wires, power supplies, fuses, lamps, and
resistors. Some of these components are only used for electrical purposes, but
they will have no implication on the logics of the interlocking systems. The
following section will give an introduction to the most relevant components from
a logical point of view, relays and buttons. If the reader wishes to know more
about the physical details, we recommend reading the bachelor thesis Simulation
of Relay Interlocking Systems [7].

2.5.1 Relays

A relay is a component that can be in two states:

• Drawn / Up, graphically represented by ↑

• Dropped / Down, graphically represented by ↓

A relay has a set of contacts. A given contact of a relay can be in two states:

• Closed: current propagates through the contact.

• Open: current cannot pass the contact.

2.5 Relay- and relay group systems 23

The contacts of a relay are grouped into upper contacts and lower contacts. The
upper contacts of a relay are closed when the relay is drawn, otherwise they are
open. The lower contacts of a relay are closed when the relay is dropped,
otherwise they are open.

Drawing one relay might enable current in some parts of the circuit by having
the upper contacts closed. At the same time, it might disconnect the current in
some other parts of the circuit by having the lower contacts open.

There are two kinds of relays, regular relays and steel core relays. The following
sections will describe these.

2.5.1.1 Regular Relays

Regular relays have two pins (they can be considered as sockets for wires) and
each of them is connected to at least one wire. One regular relay can be in two
states:

• Dropped when no current is propagating through the relay, making the
relay demagnetised.

• Drawn when current is propagating through the relay, making the relay
magnetised.

Regular relays can be used as sensors for detecting the state of a physical object.
Some of the usages of a regular relay are:

• To detect if a track circuit is occupied or free:
Each track circuit is linked to one regular relay: if the track circuit is free,
the relay is drawn. If the track circuit is occupied, the relay is dropped.

• To detect the position of a point:
Two regular relays are linked to each point: the first one will be drawn
when the point is in the plus position and dropped otherwise. The second
one will be drawn when the point is in the minus position and dropped
otherwise.

• To detect the current aspect of a signal:
A regular relay is linked to each lamp of the circuit. If the lamp is on, the
relay is drawn. If not, it is dropped.

2.5 Relay- and relay group systems 24

2.5.1.2 Steel Core Relays

A steel core relay is different from a regular relay because it is capable of main-
taining its state (drawn or dropped) even though no current is propagating
through it.

It has three pins, each of them connected to at least one wire. The two upper
pins are for receiving current from a positive pole. These can be considered as
possible electrical inputs to the component and are called “up” and “down”.
The third pin is used for having an electrical output, e.g. to send the current
to a negative pole.

• if there is current between the first input (up) and the output, the relay
will be drawn.

• if there is current between the second input (down) and the output, the
relay will be dropped.

• if there is no current between one of the two inputs and the output, the
relay stays in its current state.

The relay must not receive current from both inputs at the same time and no
current can propagate from input to input through the relay.

A steel core relay can be used for storing information. For instance, when a
train route is locked, the steel core relay that is used to store that information
will be dropped. It will stay that way until the conditions for the release of the
train route are met. After that, the relay will be drawn and stay drawn until
the train route is locked again.

2.5.2 Buttons

A button is a component that is able to disconnect current in a specific wire. A
button can be in two states:

• Pushed: current is allowed to propagate through the wire.

• Released: current is not allowed to propagate through the wire.

As explained in section 2.7, buttons are controlled by an operator. In that way,
buttons can be used for generating input to an interlocking system.

2.6 Diagrams 25

2.6 Diagrams

Relay- and relay group interlocking systems are, as described in section 2.5,
electrical circuits consisting of different components. Diagrams are used by
Banedanmark to describe interlocking systems. A diagram can be considered as
a snapshot of the electrical circuit, showing the normal state (defined in the next
paragraph) of an interlocking system or a part of it. An example of diagram
can be seen in figure 2.8. Diagram signatures of components will be introduced
in the next section.

The normal state of an interlocking system is defined by the following properties:

• Current is applied to the system.

• All points are in the plus position.

• All track sections are free.

• No train route is locked.

• All signals display stop aspects.

• All buttons are released.

Because a diagram is a static snapshot of an interlocking system, it does not
explicitly describe the behaviour of the system. However, the diagrams contain
enough information to deduce the behaviour of the systems.

In this section, we will first look into the signatures of components of the dia-
grams and then we will present an example of the behaviour of an interlocking
system.

2.6.1 Signatures of relay diagrams

In a diagram one can encounter signatures of several kinds of components. These
are connected by wires, drawn as black lines. With a few exceptions, all the
signatures will be connected by at least two wires and can be associated with
pin numbers.

The following sections will describe the most essential signatures of a diagram.

2.6 Diagrams 26

Figure 2.8: An example of a diagram

2.6 Diagrams 27

2.6.1.1 Power Supplies

The power supplies are the origin of the current. From a more electrical point
of view, it can be seen as a positive pole. They are drawn in diagrams as in
figure 2.9. Their voltage and the type of current (AC ∼ or DC 6=) are indicated
near them.

Figure 2.9: A power supply Figure 2.10: A negative pole

2.6.1.2 Negative pole

The negative pole is not a physical component, but is represented in diagrams
by an arrow like in figure 2.10.

Figure 2.11: A button

2.6.1.3 Buttons

As described in sections 2.5.2 and 2.7, buttons are used for interacting with an
interlocking system and are located on an operator’s panel. An example of the
signature of a button is shown in diagrams as seen in figure 2.11. One can find a
button on the operator’s panel thanks to the coordinates given by the diagram
(here x=006, y=06).

The signature of a given button can only occur once in a diagram. As the
buttons are released in the normal state, the signature in figure 2.11 indicates
that current cannot propagate through the part of the circuit where the signature
occurs.

2.6 Diagrams 28

2.6.1.4 Regular Relays

Figure 2.12 shows a the signature of a regular relay in a diagram. It contains
the following information:

• Where the relay is physically located:
In figure 2.12, the id of the relay, 87, makes it possible to find it in a
physical relay room. In some cases, another notation is used to indicate
more directly the location of a relay in the relay room: (level number,
field number). In that way, the locations of the relays can be seen as a
coordinate system.

• The two pin numbers that are connected to the circuit:
This gives another indication about the physical location of the relay: at
one address (level number, field number), there can be two relays, a left
position and a right position. In this case, the pin numbers (here 01 and
02) indicate that the relay is at the left position. If the relay had been at
the right position, the pin numbers would have been 03 and 04.

• The state of the relay in the normal state:
The arrow to the left of the relay shown in figure 2.12 shows the state
of the relay in the normal state of the interlocking system. In this case,
the relay is dropped in the normal state, because the arrow is pointing
downwards. If the arrow pointed upwards, the relay would be drawn.

• The role of a relay can be indicated by its signature:
The relay in figure 2.12 is used in the unlocking process and the relay in
figure 2.13 monitors a signal. One can find more about the meaning of
the different relay signatures in [16].

Figure 2.12: A regular relay (helping the
unlocking process)

Figure 2.13: A regular relay (monitoring
a signal)

2.6 Diagrams 29

2.6.1.5 Steel Core Relays

The signature of a steel core relay is shown in figure 2.14. Steel core relays are
the only components that have three pins. The id of the steel core relay in the
figure is 15. The output is on pin 02. The input that will draw the relay is
on pin 01 and the input that will drop the relay is on pin 11. Pin 12 is not
accessible.

Like regular relays, the state of a steel core relay is indicated by the arrow on
the left of the relay. The only difference is that the end of the arrow is a black
dot. In figure 2.14, the steel core relay is drawn, because the arrow is pointing
upwards.

Figure 2.14: A steel core relay

2.6.1.6 Contact

A contact is like a switch that is ruled by a relay. For the contact in figure 2.15,
relay 47 must be dropped in order to have the contact closed. The contact is
linked to pins 91 and 92 of relay 47. As the normal state of 47 is dropped, the
normal state of this contact is closed and current can propagate through it. As
soon as relay 47 will be drawn, the contact will be open and the current will not
be able to propagate through it.

Figure 2.16 shows a contact that is open in the normal state. The associated
relay must be drawn in order to have the contact closed.

2.6.1.7 Other signatures

In diagrams, one can find other signatures that are not relevant for this project.
These signatures are mainly used for security and physical reasons and they do

2.6 Diagrams 30

Figure 2.15: A closed contact Figure 2.16: An open contact

not have any direct influence on the normal behaviour of an interlocking system.

• Fuses
A fuse as seen in figure 2.17 can cut current in case of an emergency or
over-current.

• Resistors
The value and the location of the resistor in figure 2.18 are indicated on
the side of it.

• Lamps
Lamps are used in the physical signals at the stations. In diagrams, the
lamps will look like the one shown in figure 2.19. The colour of the lamp is
indicated by its signature (gr for green, rø for red, and gu for yellow). A
regular relay is always linked to a lamp in order to monitor it and enable
the operator to know whether the lamp is on or off.

Figure 2.17: A fuse
Figure 2.18: A resistor

Figure 2.19: A lamp

2.7 The Operator’s Panel 31

2.6.2 An example of the behaviour of an interlocking sys-
tem

We have now considered the structure of static relay diagrams. We will now
present an example of how relay changes can happen in an interlocking system.

If one can follow a wire from a positive to a negative pole without meeting an
open contact or a released button, it means that current can propagate through
that wire. In other words, if there is a path from plus to minus that does not
contain an open contact or a released button, current propagates through that
conductive path.

If one follows the current in the normal state of the interlocking system (step 0)
in figure 2.20, one can see that there are no conductive paths: each of the four
possible paths is interrupted by an open contact or a released button. So they
are not conductive and no relay is drawn.

When the button of the circuit is pushed (step 1), there are still four possible
paths starting from the plus pole, but now one of them (shown by a continuous
arrow) can reach the minus pole, so it is conductive.

As current propagates through relay 3-7 in step 1, it is drawn in step 2. There-
fore, a contact controlled by relay 3-7 is closed, opening a new path from plus
to minus.

Finally, in step 3, relay 3-3 is drawn thanks to the path opened in step 2.

An extension of the presented scenario is on the attached CD (see appendix
C.2).

2.7 The Operator’s Panel

The operator’s panel is an interface to an interlocking system. It makes it
possible for an operator to interact with the interlocking system and see the
current state of the station, e.g. the state of the points, the track sections, etc.

An operator’s panel is a physical object that can be found at a station. Figure
2.21 shows the operator’s panel from Birkerød Station and figure 2.22 shows a
drawing of the operator’s panel for Birkerød Station.

2.7 The Operator’s Panel 32

Figure 2.20: The representation of a circuit and the possible paths for the current

2.7 The Operator’s Panel 33

Figure 2.21: An operator’s panel - Birkerød Station

The following is shown on an operator’s panel:

• The geography of the station
The organisation of the track sections, points, and signals is shown on a
static drawing of the station.

• The buttons
Thanks to them, the operator can interact with the interlocking system.
Buttons are used to request the system to change the position of the points,
to lock train routes, or in case of emergency.

• Information about the state of the station
The panel is linked to the interlocking system such that it can show the
current state of the station. The state of the track sections are indicated by
lights on the panel: if the light is green, the track is free and a train route
containing this track is locked. If the light is red, the track is occupied. If
the light is off, the track is free and no train route containing this track is
locked. There are also indications of the state of the signals, the position
of the points, etc.

Nowadays, most of the actions that can be performed from an operator’s panel
are done automatically from a central that can be far from the station. In this
project, we will consider any operator actions as if they were originated from
the operator’s panel.

2.8 Interaction overview 34

Figure 2.22: The diagram of the operator’s panel - Birkerød Station

2.8 Interaction overview

This chapter introduced the physical objects of a station, an operator’s panel,
and interlocking systems. As previously explained, this project only considers
relay- and relay group interlocking systems that enforce the safety goals at a
station by controlling some physical objects of the station.

The relationship between the different elements of a station can be seen in figure
2.23.

The following physical objects are controlled by an interlocking system:

• Signals. The rules specified in the train route table for the signals must
be enforced by the interlocking system. A drive aspect must only be
displayed when it is considered as being safe.

An interlocking system knows the state of:

• Track sections. When a track circuit (a linear track circuit or a point) is
occupied (by a train or due to some other physical reason), the associated
track relay will be dropped and the interlocking system can therefore know
that the track circuit is occupied.

2.8 Interaction overview 35

Figure 2.23: Relationships between the different elements of a station

• Buttons. When an operator wants to authorise a train to enter or exit
the station, he or she has to lock a specific train route. The operator
can push buttons for initiating such processes. However, an interlocking
system is only allowed to lock a given train route when it is considered as
being safe, e.g. conflicting train routes are not supposed to be locked at
the same time.

• Points. For each point there are two point relays. Thanks to them, an
interlocking system knows the position of a given point.

Note:
Points are only supposed to be switched when it is considered as being safe.
In the real world, this is enforced by interlocking systems. The mechanism for
controlling points is implemented in the same way of other functionalities of an
interlocking system, using relays and buttons.
The circuits that are enforcing safety rules on points are relatively complex.
Therefore, even though one could apply the principles presented in this thesis to
model point control, modelling the control of points performed by an interlocking
system is considered as being beyond the scope of this project. From now on,
we assume that points can be switched by an operator when some conditions
are fulfilled (see section 7.1.2).

Chapter 3

Introduction to RSL-SAL and
LTL

This chapter will introduce RSL-SAL and Linear-Time Temporal Logic. A user
guide for these languages is available on the internet [8].

As described by Juan Ignacio Perna and Chris George in [13] and [14], the RSL
language has been extended such that the following declarations are possible
within an RSL scheme:

class
transition system

/∗ Specification of a transition system ∗/
...

ltl assertion
/∗ Specification of properties that

can be checked for a transition system ∗/
...

end

• transition system is used to specify a state transition system within an

3.1 Transition systems 37

RSL scheme.

• ltl assertion enables the possibility of specifying system properties for a
state transition system within an RSL scheme using Linear-Time Temporal
Logic.

In 2006, Juan Perna extended the RSLTC tool1 such that it can convert from
RSL to Symbolic Analysis Laboratory (SAL). This tool is capable of converting
RSL specifications to a form that can be interpreted by a state space based
model checker SAL2. After the conversion, the SAL tool can check whether the
properties specified within ltl assertion are valid for a transition system defined
in transition system. The model checker will either indicate that a property is
valid or give a counter example.

The following sections give further details on the two kinds of declarations,
transition system and ltl assertion.

3.1 Transition systems

The following is an example of a transition system specified using RSL-SAL:

scheme X =
class

transition system
/∗ The name of the transition system∗/
[TS]

local
/∗ Declaration of the initial state∗/
myVarInt : Int := 0,
myVarBool : Bool := false
in

/∗ Declaration of transition rules ∗/
[rule1] myVarBool → myVarBool′ = false, myVarInt′ = 0
debc
[rule2] myVarInt = 0 → myVarBool′ = true, myVarInt′ = 1

end

1The newest version can be obtained on the internet [1].
2Further information on SAL can be found on the official SAL homepage [2].

3.1 Transition systems 38

end

The declarations after local specify the variables within the transition system
and their value in its initial state. After in, transition rules are defined. The
rules can be written on the following form:

[optionalName] guard → multipleAssignment

The rules specify how the current state of a transition system can be changed by
taking transitions. If Boolean expression guard is true in a given state, the state
can be changed by applying the multiple assignment of the transition. In that
way, a new state is obtained. For instance, rule1 defines that if myVarBool is
true, then a new state can be obtained where myVarBool is false and myVarInt
is 0. If a multiple assignment of a transition rule does not assign a new value to
a given variable, the variable will not change when taking a transition defined
by the rule.

All the possible states of a transition system are usually referred to as the state
space. As seen in the state transition diagram in figure 3.1, the state space of
TS contains two states. In the initial state, the guard of rule2 is true and makes
a transition possible to a new state. In the new state, only the guard of rule1
is true. This rule enables a transition back to the initial state.

Figure 3.1: The state transition diagram of the transition system TS.

3.1 Transition systems 39

3.1.1 Allowed RSL constructs within an RSL-SAL tran-
sition system

Not all RSL constructs within a transition system can be translated to SAL.
The next sections will explain which constructs that can or cannot be used for
translation from RSL to SAL.

3.1.1.1 Types

The following RSL types are allowed by the translator:

• Bool

• Int.

• Nat.

• Variant types.

• Sets of the form T−set are accepted if the type T is accepted.

• Maps are accepted, but they must be deterministic.

The following types are not translatable:

• Sort types

• Union types

• Product types

• Lists are neither accepted by SAL nor by the translator.

3.1.1.2 Functions

Some RSL functions can be used inside a transition system. In general, con-
crete RSL functions are accepted by the translator, but functions defined ax-
iomatically and functions defined implicitly are not translatable. The translated
functions must not be partial. If a function is undefined for a given value, one
should add a precondition stating that the function must not be applied to this
value.

The translated functions are neither allowed to be recursive nor iterative.

3.2 Linear-Time Temporal Logic assertions 40

3.1.1.3 Operators

Some RSL operators are not allowed by the translation tool. For instance, the
hd operator is not allowed.

3.1.1.4 Comprehended expressions

Comprehended expressions are not translatable to SAL.

3.1.1.5 Case expressions

Case expressions for the accepted types are allowed by the translator. If one
wishes to write a case expression with a product (case a× b of), one should use
a nested case expression, e.g.:

f : Int × Int → Int
f(a,b) ≡

case a of
→
case b of

→ 0
end

end

3.1.1.6 Axioms

Axioms cannot be translated from RSL to SAL.

3.2 Linear-Time Temporal Logic assertions

The properties that are checked by the SAL tool are expressed using Linear-
Time Temporal Logic, also known as LTL. Such properties are called assertions
and they can be valid or invalid for a given transition system. If a property is

3.2 Linear-Time Temporal Logic assertions 41

valid, it means that it is true for all the possible traces of the studied transition
system.

LTL assertions are basically Boolean expressions combined with some operators
that allow references to future states. The following is an example of an LTL
assertion that refers to the above transition system TS :

ltl assertion
[assertionName] TS ` myVarInt = 0

The assertion states that myVarInt equals 0 in the initial state of TS. If one
wants to refer to future states (when using SAL, the future includes the current
state), the following operators are possible:

• G means globally true. G(p) expresses that the LTL expression p must
be satisfied by any future state.

• F means eventually true. F(p) expresses that the LTL expression p must
be true in some future state.

• X means true in the next state. X(p) expresses that the LTL expression
p must be true in the next state.

• U means strong until. U(p,q) expresses that p must remain true until q
is true and that q is eventually true.

• W means weak until. W(p,q) expresses that p must remain true until q
is true, but q is not required to be eventually true.

• R means release. R(p,q) expresses that q remains true until after a state
where p is true. When p is true, it “releases” q. If p does not become
true, q must remain true forever.

The meaning of these operators is illustrated by figure 3.2.

The LTL operators can be combined. For instance, G(F(p)) expresses that p
must be true over and over again. Another example is X(X(p)) which expresses
that p is true in the second state after the current state.

In general, the usual RSL operators for Boolean expressions like the ones for
negation, conjunction, disjunction and implication can be used in the LTL ex-
pressions.

3.2 Linear-Time Temporal Logic assertions 42

Figure 3.2: Description of the LTL operators

3.2 Linear-Time Temporal Logic assertions 43

Further information on LTL can be found in Logic in Computer Science by
Michael Huth and Mark Ryan [10].

Chapter 4

Method overview

Chapter 2 introduced the domain of this thesis and chapter 3 introduced the
language RSL-SAL. This chapter will give an overview of the approach to model
relay-based interlocking systems and verify properties related to them.

Section 4.1 will give an overview of the method that is developed in this project
for formulating and verifying safety properties for an interlocking system using
RSL-SAL.

Section 4.2 will describe the development steps that will be taken during this
report in order to develop a tool that is used as part of the method described
in section 4.1.

4.1 The verification method defined by this the-
sis

As mentioned in chapter 2, Banedanmark uses diagrams to describe the normal
state of an interlocking system. When checking safety properties, it is not
enough to consider a single state like the normal state. One must prove that
safety is guaranteed in every possible state of an interlocking system. Proving

4.1 The verification method defined by this thesis 45

properties by hand for a single interlocking system might be difficult due to the
high number of possible states. Also, a manually-based proof process might be
time consuming.

For these reasons, it is decided to automate the proving process by using the
SAL state-based model checking tool. The advantage of model checking is that if
one can describe the behaviour of an interlocking system in terms of a transition
system, the proofs can be done automatically.

However, obtaining a transition system that describes the behaviour of an in-
terlocking system and formulating safety properties are not trivial tasks. This
project will provide a method to do so, illustrated in figure 4.1.

Figure 4.1: The verification method defined by this thesis for checking safety
properties of an interlocking system

The main idea behind this method is that one should be able to start from the
existing documentation for a station and its interlocking system and use it for
formulating everything needed for the verification process. During the process,
the following three steps are made for generating an RSL-SAL scheme that will
be used when verifying properties:

4.1 The verification method defined by this thesis 46

• The first step when making an RSL-SAL scheme is to make a transition
system that contains the internal behaviour of an interlocking system and
some specific confidence conditions. The internal behaviour defines how an
interlocking system responds to actions performed in the external world,
e.g. when track sections are being occupied or freed and buttons are
being pushed or released. Confidence conditions are conditions that do
not relate to the safety of trains at a station, but that specify desired
diagram properties that must be true. If a confidence condition is invalid,
the model of the internal behaviour is not sound.

As interlocking systems are documented by diagrams, it is decided to use
them as a base to generate the internal behaviour and the confidence con-
ditions. Doing this manually is neither a quick nor a trivial task. There-
fore, it has been decided to provide a tool to perform such a generation.
An overview of how the tool was developed will be given in the following
section.

• The second step when making an RSL-SAL scheme is to extend the auto-
generated transition system containing the internal behaviour of an in-
terlocking system with external behaviour. The external behaviour is a
collection of rules for when track sections can be occupied, when buttons
can be pushed, etc. Any verification of properties is then sound under the
assumptions made when specifying the external behaviour. The external
behaviour of a given station can be generated by analysing the layout of
this station and its operator panel. In section 7.1, patterns for generating
different kinds of external behaviour are introduced. One could think of
making a tool for generating external behaviour, but doing so is considered
as being beyond the scope of this project.

• The third step is to formulate and add safety properties to the RSL-SAL
scheme using LTL. Some safety properties may be derived directly from a
train route table while others are more directly related to the overall safety
goals. Again, one might make a tool for generating safety properties, but
it is decided to limit this part of the project to providing patterns for
formulating such properties. Such patterns can be found in section 7.2.

When having generated the internal behaviour, the confidence conditions, the
external behaviour, and the safety properties of a given interlocking system, one
has a complete RSL-SAL scheme that can be used for checking the properties
of this interlocking system. The RSL-SAL scheme can then be translated to
SAL using the RSLTC tool. After that, the SAL model checker can be used for
checking the safety properties and for each property it will either report that
the property is valid or it will give a counter-example for it.

An application of the method for checking safety properties of an interlocking

4.2 Development of a tool for generating transition systems 47

system can be found in chapter 8.

4.2 Development of a tool for generating tran-
sition systems

This section will give details on how the tool provided for generating a transition
system that describes the internal behaviour of an interlocking system will be
developed.

There are different approaches to obtaining the behaviour of an interlocking
system. Section 6.2 will explain two distinct approaches for making a transi-
tion system that describes the behaviour of an interlocking system. In that
given section, it is decided to generate a specific transition system for a specific
interlocking system.

Figure 4.2 gives an overview of a how different development steps are taken
in order to obtain a tool for doing this. Initially, everything is specified on an
abstract level using RSL. After that, a concrete version of the abstract specifica-
tion is introduced. Finally, a Java implementation of the concrete specification
is made.

In order to analyse an interlocking system described by diagrams, an abstract
syntax for them is introduced. This is done by defining an abstract (i.e. al-
gebraic and property-oriented) model of a collection of diagrams, called static
interlocking system (see the block labelled A in figure 4.2). Details on a static
interlocking system is given in chapter 5.

After that, chapter 6 will analyse and deduce how a transition system describing
the internal behaviour of a static interlocking system and the associated confi-
dence conditions should be computed. The end result of the chapter is abstract
generator functions (see the block labelled B in figure 4.2) that take an instance
of the model introduced in A and produces a transition system and its asso-
ciated confidence conditions, E. E is RSL abstract syntaxes for an RSL-SAL
transition system and LTL assertions.

When having done the necessary analysis on an abstract level, a development
step is taken in chapter 9 towards a program that can do the transformation.
The chapter introduces concrete (i.e. model-oriented, but still generic) RSL
models of A and B : C is a concrete model that implements A and D is a
concrete model that implements B.

4.2 Development of a tool for generating transition systems 48

F
ig

ur
e

4.
2:

A
n

ov
er

vi
ew

of
th

e
de

ve
lo

pm
en

t
st

ep
s

to
w

ar
ds

an
R

SL
-S

A
L

tr
an

si
ti

on
sy

st
em

co
nt

ai
ni

ng
th

e
be

ha
vi

ou
r

of
in

te
rl

oc
ki

ng
sy

st
em

s.

4.2 Development of a tool for generating transition systems 49

In order to provide a tool that can be executed on most of the modern operating
systems, it is decided to implement the concrete model using Java. The design
of the Java implementation and the Java implementation itself are introduced
in chapter 10.

Java implementations of C, D, and E are made: H, I, and J respectively. How-
ever, this is not enough for enabling the step shown in figure 4.1 where diagrams
are converted directly to an RSL-SAL scheme: the tool must be able to take
diagrams as an input and give an RSL-SAL scheme as output using concrete
RSL-SAL syntax.

To be able to take diagrams as an input, an XML version of a static interlocking
system is introduced, G. One can translate the diagrams of an interlocking
system, F, to an XML version of a static interlocking system, G. A parser will
then be responsible for converting the XML to H such that I can convert it
to J. One might imagine that a graphical user interface can be made to draw
diagrams and convert them to XML. However, this is considered as being beyond
the scope of this project. Therefore, the conversion must be done manually.

In order to translate the data represented by J to an RSL-SAL scheme, K, an
unparser is introduced as part of the Java implementation.

The parser and the unparser are both detailed in chapter 10.

Now, having explained the approach to this project, we are ready to begin the
modelling process.

Chapter 5

Abstract model of relay
diagrams

Chapters 2 and 3 introduced the domain, RSL-SAL, and Linear-Time Temporal
Logic. After that, chapter 4 detailed the method developed by this thesis for
formulating and verifying safety properties for interlocking systems. It was
explained that the auto-generation of a transition system that contains the
internal behaviour of an interlocking system will both be modelled on an abstract
and on a concrete level before a Java implementation of the generation is made.

As explained in chapter 2, an interlocking system can be described by diagrams
that are snapshots of it in its normal state. The purpose of this chapter is to
introduce an abstract RSL model of such diagrams using sorts and abstract
observer functions. As diagrams do not model the behaviour of interlocking
systems, this chapter will only model interlocking systems in a static state.

The model of diagrams will then be used in chapter 6 for analysing and deduc-
ing how one can define functions that generate an RSL-SAL transition system
containing the behaviour of an interlocking system.

Section 5.1 of this chapter will explain some assumptions about the modelled
diagrams. After that, an RSL model for diagrams will be introduced in section
5.2. The complete RSL model will not be presented in this chapter. If the

5.1 Assumptions about the modelled diagrams 51

Figure 5.1: Shunt situation
Figure 5.2: The same behaviour without
the use of shunting

reader wishes to read the whole abstract model together with its associated
transformation functions, it can be found in appendix A.

5.1 Assumptions about the modelled diagrams

This section will introduce assumptions about the modelled diagrams. Every
modelled diagram is expected to fulfil the assumptions of this section.

In the circuits represented by diagrams, shunting can be used for dropping
relays. In figure 5.1, when the contact ruled by relay 67 is closed, relay 87 is
dropped due to a phenomenon called shunting.

When the contact is closed, the branch containing the relay has a much higher
resistance than the branch that is only containing a contact. In that situation,
the current will not go through the branch containing the relay because of its
relatively high resistance compared to the second branch.

In this project, we do not want to model resistance. Therefore, we will assume
that diagrams are transformed such that they do not include shunting situations.
The diagram part in figure 5.1 can be replaced with a behavioural equivalent
diagram part that can be seen in figure 5.2. By adding a specific contact, the
relay will now be dropped thanks to the added contact instead of being dropped
due to shunting.

From now on, we will assume that similar modifications are done to every dia-
gram in order to avoid the use of shunting.

5.2 Modelling diagrams 52

5.2 Modelling diagrams

This section will introduce an abstract RSL model of relay diagrams. Only the
most important details of the model will be explained here. The whole model
can be seen in appendix A together with the introduced schemes in chapter 6.

The abstract RSL model consists of the following schemes:

• Types. The purpose of this scheme is to represent the common types and
the common auxiliary functions. The complete scheme can be found in
appendix A.1, page 209.

• Diagrams. The purpose of this scheme is to describe what diagrams look
like using an abstract type for a diagram and observer, auxiliary, and well-
formed functions. The complete scheme can be found in appendix A.2,
page 210.

• StaticInterlockingSystem. The purpose of this scheme is to describe
what an interlocking system looks like using abstract types for diagrams
and interlocking systems, and observer, auxiliary, and well-formed func-
tions. The complete scheme can be found in appendix A.3, page 216.

In order to enable references between the schemes, the following global objects
are introduced:

• T, an instance of Types.

• D, an instance of Diagrams.

• SIS, an instance of StaticInterlockingSystems.

The following sections will give a more detailed description of the mentioned
RSL schemes.

5.2.1 Types

This section will explain parts of the Types scheme that includes common ele-
ments of the abstract RSL model. The purpose of the abstract model is not to
give concrete types for the components in a diagram. Instead, an identifier for
a component in a Diagram or a StaticInterlockingSystem is introduced as a sort
type:

5.2 Modelling diagrams 53

type
Id

For representing the state of a relay, a variant type is introduced. As seen in the
following declaration, a relay can either be up or down (i.e. drawn or dropped):

type
State == up | down

Further types and functions are included in the Types scheme, but these are
only relevant when extracting the behaviour of an interlocking system from a
StaticInterlockingSystem. Therefore, the explanation of these functions will not
be given until chapter 6.

5.2.2 Diagrams

This section will explain the Diagrams scheme that models diagrams, but not
a collection of diagrams. For representing a diagram, the following sort type is
introduced:

type
Diagram

5.2.2.1 Identifying components

The components of a diagram are represented by values in the Id type from
the Types scheme. Observer functions are introduced in order to identify which
type of component an identifier represents. Examples of such observer functions
are:

value
isPlus : T.Id × Diagram → Bool,
isMinus : T.Id × Diagram → Bool

5.2 Modelling diagrams 54

isPlus indicates whether a given Id is a positive pole in a given Diagram and
isMinus indicates whether a given id is a negative pole in a given Diagram.
Similar observer functions of the same type are introduced in order to test
whether an Id is representing a regular relay, a steel relay, a contact, a button, or
a junction in a given diagram. The names of these functions are isRegularRelay,
isSteelRelay, isContact, isButton, and isJunction respectively.

Junctions are not components of the real diagram circuits. However, diagrams
have a general way of introducing branches. Branches in a circuit represented
by a diagram are either introduced by steel core relays or by letting three wires
meet. When three wires meet in a diagram, we will from now refer to this as a
junction. Two junctions can be seen in figure 5.3.

Figure 5.3: Two junctions marked by circles.

Junctions will be used in the model of the diagrams for introducing branches.
This will allow for setting up rules about the number of neighbours. For instance,
one can make rules for allowing regular relays to be connected to exactly two
other components in the model of a diagram. If a given relay is connected to
several components inside the real diagram, one can connect this relay to a
junction and then connect the junction to the other components.

A junction is only supposed to introduce one branch in a network. If one
wishes to introduce several branches at the same time, several junctions can
be connected in series.

As one might have noticed, there is no function for detecting whether a com-
ponent is a lamp, a fuse, a resistor, or a power source that were introduced
in section 2.6.1. Concerning the lamps, each of them is monitored by a relay.
Therefore, they are not needed as part of the model. If one wants to know the
state of a given lamp, one can consider the relay that monitors the lamp. As

5.2 Modelling diagrams 55

we do not model electrical phenomenons like resistance, resistors, fuses, and the
power sources are not included in the model.

5.2.2.2 Connecting components

As previously explained in section 2.6.1, the components in a diagram have pins
that can be considered as sockets. Components are connected from pin to pin
by wires. If one wants to make a model that includes all the information of the
diagrams, it is necessary to model the pins.

If pins were included in the model, the components represented by Ids would
be related to their pins and two components would be connected if two of their
pins were connected. Such information would be needed if the components were
asymmetric, e.g. if the direction of the current going through the component
were important. However, most of the components of the diagrams are sym-
metrical. For instance, a regular relay can be drawn if there is current through
it, but where the current is coming from does not matter. The only asymmetric
component is the steel core relay. Further information on it is presented in the
next section.

As most components are symmetric, there is no need to include pin information
in each component. It would introduce extra information to the model that is
not required to extract the behaviour of interlocking systems.

Therefore, it is chosen not to include the information about pins in the definition
of components. Instead, it is chosen to introduce a neighbour relation between
two identifiers representing two components in a diagram:

value
areNeighbours : T.Id × T.Id × Diagram → Bool

The function tests whether the two components represented by the two Ids are
neighbours in the Diagram. If two components are neighbours, it corresponds
to having a wire between them inside the Diagram. For instance, the function is
supposed to return true when being applied to the identifiers of the two contacts
shown in figure 5.4 and the Diagram that contains them. The contacts in figure
5.3 are not considered as being neighbours, but they are neighbours to the
junctions.

5.2 Modelling diagrams 56

Figure 5.4: Two contacts that are neighbours.

5.2.2.3 Extra steel core relay information

Most components conduct current from one neighbour to another neighbour
when all the conditions for having current through the component are fulfilled
(e.g if the component is a button, it has to be pushed, if it is a contact, it
has to be closed, if it is a regular relay or a junction, it is always conductive).
However, as previously mentioned in section 2.5.1.2, a steel core relay cannot
conduct current between all its neighbours. For instance, the steel core relay in
figure 5.5 is only capable of conducting current from up to minus and down to
minus, but not from up to down.

If current is conducted from up to minus, the relay will be drawn and if current
is conducted from down to minus, the relay will be dropped. When no current
is applied to the steel core relay, it will maintain its state.

Figure 5.5: A steel core relay with named neighbours

Therefore, the areNeighbours function is not enough for specifying how steel
relays are connected to other components in a Diagram. In order to add the
needed extra information, it is decided to add the following observer functions
to the model:

value
upRelation : T.Id × Diagram ∼→ T.Id,

5.2 Modelling diagrams 57

downRelation : T.Id × Diagram ∼→ T.Id,
minusRelation : T.Id × Diagram ∼→ T.Id

These functions are only supposed to be applied to Ids representing steel core
relays in the given Diagram. When applied to the Id of a steel core relay, the
functions are supposed to return an Id of a neighbour to the steel core relay
in a Diagram. The functions will, respectively, give the neighbour connected
to the up part, the neighbour connected to the down part, and the neighbour
connected to the minus part of the steel core relay.

5.2.2.4 Representing a relay state

The state of a relay in the normal state of an interlocking system is represented
in relay diagrams. Therefore, the following observer function is introduced for
observing the state of a relay identified by an Id in a given Diagram:

value
relayState : T.Id × Diagram ∼→ T.State

5.2.2.5 Representing contact information

As previously mentioned, diagrams contain the following information about con-
tacts:

• The id of the relay that rules the contact, i.e. opens or closes it when
changing state.

• The state of this relay in the normal state of the interlocking system.

• The state of the contact, i.e. open or closed in the normal state of the
interlocking system.

As the state of the relay that rules the contact is already represented by the
relayState function, it would be redundant to add that information. The follow-
ing observer functions are enough for adding the necessary information about
contacts:

5.2 Modelling diagrams 58

value
relayIdForContact : T.Id × Diagram ∼→ T.Id,
relayStateForContact : T.Id × Diagram ∼→ T.State

relayIdForContact will return the Id of the relay that rules the contact and
relayStateForContact will return the state of the relay required for the contact
to be closed. Whether the contact is open or closed can then be extracted from
the model by considering the state of the relay that rules the contact.

5.2.2.6 State of buttons

As buttons are released in the normal state of an interlocking system, the state
of a button is not given by any observer function. The normal state of a button
is implicitly released.

5.2.2.7 Well-formed diagrams

For now, diagrams have been considered, but no constraints have been intro-
duced on the observer functions. From now on, we will refer to diagrams that
follow the conventions used by Banedanmark as well-formed Diagrams.

The following axiomatic function is introduced for testing whether a Diagram
is well-formed:

value
isWfDiagram : Diagram → Bool

axiom
∀ d : Diagram • isWfDiagram(d) ⇒

okNeighbourRelation(d) ∧ okNumberOfNeighbours(d) ∧
twoPoles(d) ∧ noIdOverlaps(d) ∧
okSteelRelayRelations(d)

The axiom underspecifies the function in the sense that the defined constraints
must hold for every well-formed Diagram. However, further constraints can be
added when refining the specification.

okNeighbourRelation checks that:

5.2 Modelling diagrams 59

• An Id cannot be neighbour to itself.

• The areNeighbours function is symmetric.

okNumberOfNeighbours checks that:

• A plus and a minus in a Diagram both have at least one neighbour.

• Contacts, regular relays, and buttons have exactly 2 neighbours.

• Steel core relays and junctions have exactly 3 neighbours.

twoPoles checks that:

• There are exactly one plus and one minus in a Diagram.

Note: Real diagram can contain several positive and negative poles. This is
reflected in the model by allowing an unlimited number of neighbours for a plus
and a minus. Instead of adding more than one positive pole or negative pole,
one can add extra neighbours to an already existing pole.

noIdOverlaps checks that:

• At most one of the observer functions isPlus, isMinus, isRegularRelay,
isSteelRelay, isContact, isButton, and isJunction can be true for a given
Id in a given Diagram.

okSteelRelayRelations checks that:

• For every Id that is a steel core relay in a given Diagram, the set of the
returned Ids from upRelation, downRelation, and minusRelation applied
to the Id of the steel core relay is equal to the set of all the neighbours of
the given Id in the given Diagram.

5.2.3 StaticInterlockingSystem

Scheme StaticInterlockingSystem is responsible for handling a collection of Di-
agrams that represents a snapshot of a given interlocking system in its normal
state. For representing the whole interlocking system, the following sort type is
introduced:

5.2 Modelling diagrams 60

type
StaticInterlockingSystem

For getting the Diagrams of a StaticInterlockingSystem, the following observer
function is introduced:

value
diagrams : StaticInterlockingSystem → D.Diagram-set

The diagrams contain relays that are part of the circuits of the interlocking
system. However, some relays are not ruled by the circuits of the diagrams.
These external relays are ruled by the external world and will be used as input
to the interlocking system. For instance, a track relay will be dropped when a
train occupies its associated track circuit and drawn when the associated track
circuit is free. In general, if a relay rules at least one contact in a diagram
of an interlocking system, but does not occur in one of the diagrams of the
interlocking system, it is an external relay.

As contacts of the external relays appear in the diagrams, it is necessary to have
information about the external relays of the interlocking system. For getting the
Ids of the external relays in a StaticInterlockingSystem, the following observer
function is introduced:

value
externalRelayIds : StaticInterlockingSystem → T.Id-set

Because external relays can have different states in the normal state of the
system, the initial state of each external relay must be specified. It is therefore
decided to introduce the following observer function for determining the state
of an external relay:

value
externalRelayState : T.Id × StaticInterlockingSystem ∼→ T.State

5.2.3.1 Well-formed StaticInterlockingSystem

As for Diagrams, it is necessary to assume that a StaticInterlockingSystem fulfils
the conventions used by Banedanmark. For checking that, an axiomatic well-
formed function for StaticInterlockingSystems is introduced:

5.2 Modelling diagrams 61

value
isWfStaticInterlockingSystem : StaticInterlockingSystem → Bool

axiom
∀ sis : StaticInterlockingSystem •

isWfStaticInterlockingSystem(sis) ⇒
(∀ d : D.Diagram •

d ∈ diagrams(sis) ⇒ D.isWfDiagram(d)) ∧
uniqueIds(sis) ∧ contactsHaveRelays(sis)

The axiom underspecifies the function in the sense that the defined constraints
must hold for every well-formed StaticInterlockingSystem. However, further
constraints can be added when refining the specification.

The quantified expression checks that:

• All the Diagrams of the StaticInterlockingSystem are well-formed.

uniqueIds checks that:

• An Id is never used more than once in the sense that two elements in
the interlocking system (either in the diagrams or in the external relays)
cannot have the same Id.

contactsHaveRelays checks that:

• Each contact is ruled by a relay that exists in some part of the StaticIn-
terlockingSystem.

5.2.3.2 The normal state properties

As previously mentioned in section 2.6, an interlocking system has a normal state
in which some specific properties are fulfilled. Checking that an interlocking
system is in the normal state is closely related to modelling the behaviour of
an interlocking system. Therefore, checking that the diagrams represent an
interlocking system in its normal state will be treated in section 6.5.4.1.

Chapter 6

Towards a behavioural
semantics of relay diagrams

Chapter 5 dealt with modelling the static structure of relay diagrams on an
abstract level and introduced RSL schemes Types, Diagrams, and StaticInter-
lockingSystem. Also, the following sorts were introduced: Id for identifying
components inside a relay diagram, Diagram for representing a single relay di-
agram, and StaticInterlockingSystem for representing a collection of Diagrams
and external relays.

As explained in chapter 4, generator functions will be formulated for converting
the static model of interlocking systems presented in chapter 5 to an RSL-
SAL transition system and LTL assertions expressing confidence conditions for
it. The generated transition system models the behaviour of the interlocking
system. For the same transition system, the confidence conditions can be used
for verifying that it specifies the complete behaviour of this interlocking system
and respects some desired properties that are not related to safety.

This chapter will analyse how such functions can be formulated on an abstract
level. This is done by introducing abstract syntax for transition systems and
LTL assertions (block E, figure 4.2, page 48) and generator functions (block B,
figure 4.2).

6.1 The notion of paths in diagrams 63

Most of the focus will be on the circuits of the relay diagrams. Rules will
be introduced for drawing and dropping relays, but general rules for how the
external world behaves (e.g. when buttons can be pushed and track relays can
be occupied) will not be introduced in this chapter. Only the problems related
to interactions with buttons and track sections will be discussed. Patterns for
external behaviour are described in chapter 7.

The following main sections are included in this chapter:

• Section 6.1 will explain how paths can be used to decide whether a relay
can be dropped or drawn.

• Section 6.2 will discuss two different approaches for making a transition
system that models the behaviour of an interlocking system. It will be
decided to generate specific transition systems based on specific StaticIn-
terlockingSystems instead of making a general transition system that could
be used for every StaticInterlockingSystem.

• Section 6.3 will deduce formal conditions for when a single relay can be
dropped or drawn.

• Section 6.4 will give an informal discussion of problems related to the
chosen model in section 6.2. Confidence conditions will be introduced for
proving that the problems do not exist for a specific transition system.

• Section 6.5 will give an informal discussion of problems related to mod-
elling interactions between interlocking systems and the external world.
Further confidence conditions will be introduced.

• Section 6.6 will, based on the discussions in sections 6.2, 6.3, 6.4, and 6.5,
give a formal description of how a transition system that describes the
behaviour of a StaticInterlockingSystem can be generated.

• Section 6.7 will, based on the discussions in sections 6.4 and 6.5, give a
formal description of how to generate the confidence conditions that must
be verified in order to know if the generated transition system is sound.

6.1 The notion of paths in diagrams

Diagrams are, as previously mentioned in section 2.6, snapshots of interlocking
systems in the normal state. When modelling the behaviour of an interlocking
system, the model is no longer static and will be able to enter different states.

6.1 The notion of paths in diagrams 64

This section will informally describe how to decide when a relay of a diagram is
allowed to change its state based on the current state of the interlocking system.

In order to decide whether a given relay can be dropped or drawn, it is necessary
to introduce a way to decide whether there is current through a given part of the
circuit. As explained in section 5.1, it is assumed that the modelled diagrams
do not use resistance for shunting down relays. With that assumption in mind,
it is possible to use the concept of a path to decide whether there is current
through a relay.

In this context, a path can be considered as a list of Ids representing components
contained by a given Diagram such that:

• its first element is the positive pole of the Diagram.

• its last element is the negative pole of the Diagram.

• path(1) is neighbour with path(2), path(2) is neighbour with path(3),...,
path(n-1) is neighbour with path(n), where n is the length of the path.

In principle, there can be an unlimited number of paths in a Diagram. Therefore,
it is decided only to consider simple paths, i.e. paths without repetition of
elements in a Diagram. From now on, when referring to a path, we mean a
simple path without repetition of elements.

Figure 6.1: A diagram with two simple paths from plus to minus. The paths
are indicated by the dotted lines.

6.1 The notion of paths in diagrams 65

6.1.1 The notion of conductive paths

Having a path containing a given regular relay is not enough to know whether
the relay should be drawn or dropped. To know that, one needs to know if there
is current propagating through the path.

Current will propagate through all the components of a path if and only if all
the contacts inside the path are closed and all the buttons inside the path are
pushed. From now on, we will refer to a path as being conductive if and only if
current propagates through the path.

If there is a regular relay inside a conductive path, the relay can be drawn in
the next state. On the contrary, if no conductive path goes through a regular
relay, it can be dropped in the next state.

Whether a path is conductive or not will depend on the state of the interlocking
system. Therefore, for each state of the interlocking system, one should consider
every path through a given regular relay in order to decide whether it can be
dropped or drawn in the next state of the system. For instance, in the diagram
shown in figure 6.1, no path is conductive because the contact ruled by relay A1
is closed and button B1 is released. However, if A1 is drawn or B1 is pushed at
some point, there is a conductive path through relay RR1 and it can be drawn.

6.1.2 Paths containing steel core relays

Recall section 5.2.2.3 that explains how extra observer functions have been
added to the abstract model for providing information on steel core relays.
As explained in the same section, even though a steel core relay has three
neighbours, current cannot pass through it to all its neighbours. Current can
pass through a steel core relay from the neighbour given by the upRelation
observer function to the neighbour given by minusRelation. Also, current can
pass through a steel core relay from the neighbour given by downRelation to
the neighbour given by minusRelation. However, current cannot pass through a
steel core relay between the neighbours given by upRelation and downRelation.

This implies that some of the paths through a steel core relay cannot be conduc-
tive by definition. From now on, such paths will be considered as being illegal.
Figure 6.2 shows a part of an impossible path through a steel core relay from
up to down. Current cannot go this way and the paths containing this sequence
of components should never be considered.

6.2 Different approaches to a behavioural semantics of relay diagrams 66

Figure 6.2: A part of an illegal path through a steel core relay that is indicated
by the dotted line.

Figure 6.3 shows two parts of legal paths through a steel core relay. A steel core
relay can then be drawn in the next state if there is a conductive path through
it that contains both its neighbour given by upRelation and minusRelation. In
the same way, a steel core relay can be dropped in the next state if there is a
conductive path through it that contains its neighbours given by downRelation
and minusRelation. If there is no conductive path through a steel core relay, the
steel core relay should keep its current state in the next state of the interlocking
system.

Figure 6.3: Two parts of legal paths through a steel core relay. The paths are
indicated by the dotted lines.

6.2 Different approaches to a behavioural se-
mantics of relay diagrams

We have now informally introduced the concept of a path in a Diagram of a
StaticInterlockingSystem. If all the contacts in the path are closed and all the
buttons in the path are pushed in the current state of the interlocking system,
there is current through the components that are in the path.

6.2 Different approaches to a behavioural semantics of relay diagrams 67

This section will discuss two different approaches to modelling the behavioural
semantics of relay diagrams. The first approach will try making a general tran-
sition system that can be used for modelling the behaviour of an arbitrary
StaticInterlockingSystem. The second approach will discuss how to make a spe-
cific transition system that models the behaviour of a specific StaticInterlock-
ingSystem. At the end of the section, one of the approaches is selected to be
used for the rest of the project.

6.2.1 A general semantics of relay diagrams

This section will present an idea for how to make a general RSL-SAL transition
system that can be used for modelling the behaviour an arbitrary, well-formed
StaticInterlockingSystem (introduced in chapter 5) that is given to the RSL-SAL
scheme of the transition system as a parameter.

Suppose a type State is given to represent the state of an interlocking system:

type
State

State will contain every information needed for knowing whether the relays are
drawn or dropped, the contact are closed or open, and the button are pushed
or released.

When the current state of an interlocking system and the static structure given
by the StaticInterlockingSystem type are given, it will be possible to decide
whether there is a conductive path through some part of the circuit or not.
Therefore, it will also be possible to decide whether a relay can be drawn or
dropped by examining the current State of the interlocking system.

The observer functions canDraw and canDrop are therefore introduced for mak-
ing such decisions:

value
canDraw :

T.Id × State × SIS.StaticInterlockingSystem ∼→ Bool,
canDrop :

T.Id × State × SIS.StaticInterlockingSystem ∼→ Bool

For instance, canDraw is assumed to return true if the relay identified by the

6.2 Different approaches to a behavioural semantics of relay diagrams 68

Id can be drawn in the current State of the StaticInterlockingSystem, otherwise
it is assumed to return false.

Furthermore, generator functions for drawing and dropping a relay are intro-
duced:

value
draw : T.Id × State ∼→ State,

drop : T.Id × State ∼→ State

For instance, draw is assumed to return a new state where the relay identified
by Id is drawn. Every other variable of the transition system is assumed to keep
its value in the new state.

Also, a generator function for computing the initial state based on a StaticIn-
terlockingSystem is introduced:

value
makeInitialState : SIS.StaticInterlockingSystem ∼→ State

After having presented these functions, a transition system that is able to model
the behaviour of an arbitrary StaticInterlockingSystem can be introduced:

context: SIS, T
scheme SISSemantics(

SISContainer :
class

value
sis : SIS.StaticInterlockingSystem

end) =
class

type
State

value
canDraw :

T.Id × State × SIS.StaticInterlockingSystem ∼→ Bool,

6.2 Different approaches to a behavioural semantics of relay diagrams 69

canDrop :
T.Id × State × SIS.StaticInterlockingSystem ∼→ Bool,

draw : T.Id × State ∼→ State,

drop : T.Id × State ∼→ State,

makeInitialState : SIS.StaticInterlockingSystem ∼→ State

transition system
[InterlockingSystem]
local

state : State := makeInitialState(SISContainer.sis)
in

(debc id : T.Id •

[drawRelay]
id ∈ SIS.allRelayIds(SISContainer.sis) ∧
canDraw(id, state, SISContainer.sis) →

state′ = draw(id, state))
debc
(debc id : T.Id •

[dropRelay]
id ∈ SIS.allRelayIds(SISContainer.sis) ∧
canDrop(id, state, SISContainer.sis) →

state′ = drop(id, state))
end

end

The transition rule drawRelay can draw the relay of the interlocking system iden-
tified by id if the current state permits to draw it. In the same way, dropRelay
can drop the relay of the interlocking system identified by id if the current state
permits to drop it.

6.2.2 A specific semantics of relay diagrams

This section will present the idea of making a specific transition system that
models the behaviour of a specific StaticInterlockingSystem. The idea is to ex-
amine a StaticInterlockingSystem and then generate a specific transition system
that models the behaviour of it.

6.2 Different approaches to a behavioural semantics of relay diagrams 70

If a transition of the transition system introduced in the previous section was
taken, it would either draw or drop a single relay. Instead of making two general
rules like in the previous section, one can introduce specific rules for drawing
and dropping specific relays. For instance, one could, for each relay, make one
rule for drawing it and one rule for dropping it.

The state of relays can be modelled as Boolean variables where true is equivalent
to drawn and false is equivalent to dropped. Similarly, buttons can be modelled
as Boolean variables where true is equivalent to pushed and false is equivalent
to released.

Recall figure 6.1, page 64. A transition system that models the behaviour of
relay RR1 is:

transition system
[InterlockingSystem]
local

RR1 := false,
A1 := false,
B1 := false,
/∗ Other variables ∗/
...

in
[drawRR1]
∼RR1 ∧ (A1 ∨ B1) → RR1′ = true

debc
[dropRR1]

RR1 ∧ ∼(A1 ∨ B1) → RR1′ = false
debc
/∗ Other transition rules ∗/
...

end

As the Boolean variables are false, relays RR1 and A1 are dropped in the initial
state and button B1 is released.

The transition rule drawRR1 specifies that RR1 can be drawn if:

1. RR1 is dropped.

2. A1 is drawn or B1 is pushed. This corresponds to the condition for having
current through RR1.

6.2 Different approaches to a behavioural semantics of relay diagrams 71

The transition rule dropRR1 states that RR1 can be dropped if:

1. RR1 is drawn.

2. A1 is dropped and B1 is released. This corresponds to the condition for
not having current through RR1.

In more general terms: suppose the Diagrams of a StaticInterlockingSystem
contain N relays. A transition system that will describe its behaviour will be
on the following form:

transition system
[InterlockingSystem]
local

/∗ X1 is either true or false ∗/
R1 := X1,
...
/∗ XN is either true or false ∗/
RN := XN,
/∗ Declarations of other variables ∗/
...

in
[drawR1]

canDrawR1 → R1′ = true
debc
[dropR1]

canDropR1 → R1′ = false
debc
...
[drawRN]

canDrawRN → RN′ = true
debc
[dropRN]

canDropRN → RN′ = false
debc
/∗ Other transition rules ∗/
...

end

When making such an interleaving model for a specific StaticInterlockingSystem,
the difficult parts is to calculate the guards of each transition rule. If one
wishes to calculate the guards, one has to examine all the possible paths in

6.2 Different approaches to a behavioural semantics of relay diagrams 72

each Diagram of the StaticInterlockingSystem. For instance, the condition for
drawing a regular relay is a condition that evaluates to true if and only if there
is a conductive path through it.

Also, it is necessary to prove that the interleavings of relay changes also include
the states that can be obtained by drawing and dropping relays concurrently.
Therefore, it is also necessary to introduce some confidence conditions (formu-
lated as LTL assertions) that can be used for verifying that this is actually the
case.

Specifying such a transition system for a specific StaticInterlockingSystem man-
ually is not a trivial task. Therefore, this approach should be supported by
functions that, given a StaticInterlockingSystem, automatically generate a tran-
sition system and its confidence conditions. Such a generation is illustrated in
figure 6.4.

Figure 6.4: Conversion from a StaticInterlockingSystem to a transition system
and its confidence conditions.

The idea is to formulate an abstract syntax for an RSL-SAL transition sys-
tem and for the necessary LTL expressions. Generator functions to convert
an abstract syntax for relay diagrams (i.e. a StaticInterlockingSystem and its
contained Diagrams) to abstract syntax of a transition system and confidence
conditions can then be specified.

The functions shown in figure 6.4 correspond to the box marked B in figure
4.2, page 48. The abstract syntaxes for an RSL-SAL transition system and its
confidence conditions correspond to the box marked E.

6.2.3 Conclusion

In this section, two approaches to obtaining the behaviour of an interlocking
system described by the type StaticInterlockingSystem have been presented.

There are two central problems related to the SISSemantics scheme introduced
in section 6.2.1. First of all, as explained in chapter 3, RSL-SAL supports neither

6.3 Conditions for drawing and dropping a single relay 73

recursive nor iterative functions. For a regular relay, canDraw and canDrop will
have to examine whether a conductive path exists through it. For a steel core
relay, the functions will have to examine whether a conductive path exists trough
a specific part of it. Therefore, it seems difficult to formulate these functions
without using recursion or iteration inside SISSemantics, making it impossible
to translate the scheme to SAL.

The second central problem is that maps in RSL-SAL seem to be quite inefficient
in terms of verification time. Our experience with this data structure is that it
takes a relatively long time to verify simple properties when using maps, even
if the state space is small. As lists and recursive data types are not available in
RSL-SAL, sets are the only alternative to maps. Formulating a completely set-
based version of a StaticInterlockingSystem seems to be difficult in an RSL-SAL
context, especially because it is impossible to iterate through sets (as explained
in chapter 3, recursion, the hd set operator, and comprehended expressions are
not allowed). Therefore, using maps seems to be unavoidable.

With these facts in mind, it is decided to use the approach introduced in section
6.2.2: generator functions will be specified for transforming a StaticInterlock-
ingSystem to a transition system and its confidence conditions. Generating the
transition system before translating it to RSL-SAL allows the use of recursive
functions. Therefore, it is possible to use functions that would have been im-
possible to use in SISSemantics. The drawback of making a specific transition
system is that one needs to generate a transition system each time one wants
the behaviour of a new StaticInterlockingSystem. However, with the limitations
of RSL-SAL in mind, it seems unlikely that one can succeed in using the first
solution.

The rest of this chapter will discuss how to generate a specific transition system
and its confidence conditions based on a StaticInterlockingSystem.

6.3 Conditions for drawing and dropping a sin-
gle relay

In the previous section, it was decided to specify functions that can generate
a transition system that models the behavioural semantics of a StaticInterlock-
ingSystem.

The state of the transition system will contain:

6.3 Conditions for drawing and dropping a single relay 74

• A Boolean variable for each button. True is equivalent to pushed and false
is equivalent to released.

• A Boolean variable for each relay. True is equivalent to drawn and false
is equivalent to dropped.

For each relay R, two rules will be introduced, a transition rule for drawing it
and a transition rule for dropping it:

[drawR]
canDrawR → R′ = true
debc
[dropR]
canDropR → R′ = false

The purpose of this section is to consider how to obtain the guards of such rules
on an abstract level. This will be done by adding further functionality to the
abstract model introduced in chapter 5. The RSL schemes introduced in this
chapter can be found in appendix A together with the schemes of chapter 5.

6.3.1 Types

Section 5.2.1 introduced the Type scheme (see appendix A.1, page 209) that
contains some of the common types and auxiliary functions. In order to intro-
duce an abstract syntax for the RSL type Bool, the following variant type has
been added to the Types scheme:

type
BooleanExp ==

and(a : BooleanExp-set) |
or(o : BooleanExp-set) |
neg(n : BooleanExp) |
literal(id : Id)

and contains a set of BooleanExp. It should be interpreted as having conjunc-
tions between all the members of the set. Therefore, the expression should be

6.3 Conditions for drawing and dropping a single relay 75

interpreted as true if and only if all the members of the set a are evaluated as
true or the set is empty. Otherwise, it should be interpreted as false.

The only difference between and and or is that or corresponds to having dis-
junctions between the members of the set o instead of conjunctions. Therefore,
the or expression should be interpreted as true if and only if there exists a
member of the o set that is interpreted as true or the set is empty. Otherwise
it should be interpreted as false.

neg corresponds to having the negation of a Boolean expression. neg should be
interpreted as true if and only if the inner expression, n, is interpreted as false.
Otherwise neg should be interpreted as false.

literal contains an Id that is of the same data type as the one used for identifying
components inside a StaticInterlockingSystem. If id of a literal equals an Id of a
relay, it should be interpreted as true if and only if the relay is drawn. Otherwise
it should be interpreted as false. A literal should be interpreted in the same
fashion for buttons. If id of a literal equals the Id of a button, it should be
interpreted as true if and only if the button is pushed. Otherwise it should be
interpreted as false.

6.3.2 Pathfinding

Section 6.1 informally introduced the concept of a path. It is now time to make
a more formal description of what a path is inside a Diagram of a StaticInter-
lockingSystem.

To make an RSL description of a path, a scheme called Pathfinding (see ap-
pendix A.4, page 218) and a global object PF referring to the functionality of
Pathfinding have both been added to the abstract model. The major function-
ality of Pathfinding will be explained here.

The concept of paths was introduced in section 6.1. A path can be formulated
as an Id -list:

type
Path = T.Id∗

To decide whether a path is legal or not, the following well-formed function is
introduced:

6.3 Conditions for drawing and dropping a single relay 76

value
isWfPath : Path × D.Diagram ∼→ Bool
isWfPath(p, d) ≡

noDuplicates(p) ∧
len p ≥ 2 ∧
D.isPlus(p(1), d) ∧ D.isMinus(p(len p), d) ∧
(∀ n : Nat •

n ∈ (inds p \ {len p}) ∧
D.areNeighbours(p(n), p(n + 1), d)) ∧

noSteelRelayProblem(p, d)
pre D.isWfDiagram(d)

The function noDuplicates checks that a path does not contain duplicates. Also,
it is checked that a path contains at least two elements and that the first Id
of a path represents a positive pole and the last Id of a path represents a
negative pole. The quantified expression inside the well-formed function checks
that the components of a path are neighbours in a way such that p(1) and
p(2) are neighbours, p(2) and p(3) are neighbours, ..., and p(n-1) and p(n) are
neighbours, where n is the length of the path. noSteelRelayProblem checks that,
for all steel relays in the path, the Ids given by the functions upRelation and
downRelation are not both inside the same path.

In order to know whether a path contains a set of Ids representing components,
the following function is introduced:

value
isPathFor : Path × T.Id-set → Bool
isPathFor(p, ids) ≡ ids ⊆ elems p

By combining the above functions, it is possible to specify a function that gives
all the well-formed paths in a Diagram that contain a given set of Ids:

value
allPathsFor : T.Id-set × D.Diagram ∼→ Path-set
allPathsFor(ids, d) ≡
{p | p : Path • isWfPath(p, d) ∧ isPathFor(p, ids)}

pre D.isWfDiagram(d) ∧ ids ⊆ D.allIds(d)

Note: The function does not tell how to compute the paths inside a Diagram.
How to do this will be explained in section 9.5 that gives a more concrete version
of the Pathfinding scheme.

6.3 Conditions for drawing and dropping a single relay 77

6.3.3 Conditionfinding

In order to compute the conditions for drawing and dropping relays, a scheme
called Conditionfinding (see appendix A.5, page 219) and a global object of
it, CF, have been added to the abstract model. The following sections will
introduce the content of this scheme.

6.3.3.1 Path conductivity

As previously explained in section 6.1, current can propagate through the com-
ponents of a path if the buttons of the path are pushed and the contacts of the
path are closed.

The following function is supposed to take the Id of a button or a contact and the
Diagram that contains the given button or contact as argument. The function
returns a BooleanExp that will be interpreted as true if the given contact is
closed or the given button is pushed:

value
isConducting : T.Id × D.Diagram ∼→ T.BooleanExp
isConducting(id, d) ≡

if D.isButton(id, d) then
/∗ A pushed button is conductive ∗/
T.literal(id)

else
/∗ The conductivity of a contact ∗/
/∗ depends on the relay that is ruling it ∗/
case D.relayStateForContact(id, d) of

T.up →
/∗ The contact is conductive if the relay is drawn ∗/

T.literal(D.relayIdForContact(id, d)),
T.down →
/∗ The contact is conductive if the relay is dropped ∗/

T.neg(T.literal(D.relayIdForContact(id, d)))
end

end
pre

D.isWfDiagram(d) ∧
(D.isButton(id, d) ∨ D.isContact(id, d))

6.3 Conditions for drawing and dropping a single relay 78

After having introduced this function, it is possible to make a function that
gives a BooleanExp that will be interpreted as true if and only if there is current
through a given path. In other words, the function will give an expression that
is true if all the contacts are closed and all the buttons are pushed:

value
isConducting : PF.Path × D.Diagram ∼→ T.BooleanExp
isConducting(p, d) ≡

T.and(
{isConducting(id, d) |

id : T.Id •

id ∈ elems p ∧
(D.isButton(id, d) ∨ D.isContact(id, d))})

pre D.isWfDiagram(d) ∧ PF.isWfPath(p, d)

6.3.3.2 Conditions for having current through a regular relay

When having a function that gives the condition for having current through a
path and a function that gives all the paths through a set of Ids inside a Diagram,
the combination of these can be used for making conditions for having current
through a regular relay.

The following function gives the condition for having current through a regular
relay:

value
currentThroughRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
currentThroughRegularRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path • p ∈ PF.allPathsFor({id}, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d)

The or expression contains all the conductivity conditions for all the possible
paths through the given regular relay. This part of the expression will therefore
be true in a given state if there exists at least one conductive path through the
relay.

6.3 Conditions for drawing and dropping a single relay 79

In the same way, it is possible to make a function that gives the condition for
not having current through a regular relay:

value
noCurrentThroughRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
noCurrentThroughRegularRelay(id, d) ≡

T.neg(currentThroughRegularRelay(id, d))
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d)

The function returns the negation of the condition for having current through
the relay.

6.3.3.3 Conditions for having drawing and dropping current through
a steel core relay

As explained in section 6.1.2, steel core relays can be dropped in the next state
when having current through a part of a steel core relay and drawn in the next
state when having current through another part of the steel core relay.

The following function gives an expression that is true if and only if there is a
current through the part of the relay that makes it draw:

value
drawingCurrentThroughSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
drawingCurrentThroughSteelRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path •

p ∈
PF.allPathsFor(
{D.upRelation(id, d), id,

D.minusRelation(id, d)}, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d)

In the same way, the following function will give an expression that is true if
and only if there is a current through that part of the relay that makes it drop:

6.3 Conditions for drawing and dropping a single relay 80

value
droppingCurrentThroughSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
droppingCurrentThroughSteelRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path •

p ∈
PF.allPathsFor(

{D.downRelation(id, d), id,
D.minusRelation(id, d)}, d)})

pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d)

6.3.3.4 Conditions for drawing and dropping regular relays

With a function for knowing when there is a current through a regular relay, it
can also be determined when it can be drawn. Having current through a regular
relay is not enough as a condition for drawing it, because a relay can only be
drawn if it is not already drawn.

A function that gives the condition for drawing a regular relay is then:

value
canDrawRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDrawRegularRelay(id, d) ≡

T.and(
{T.neg(T.literal(id)),

currentThroughRegularRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d)

For instance, for relay r1, if the condition for drawing it is draw r1 (using
concrete RSL-SAL syntax), the condition for drawing r1 is:
∼ r1 ∧ draw r1

Similarly, a regular relay can be dropped if there is no current through it and
it is drawn:

value

6.3 Conditions for drawing and dropping a single relay 81

canDropRegularRelay :
T.Id × D.Diagram ∼→ T.BooleanExp

canDropRegularRelay(id, d) ≡
T.and(
{T.literal(id),

noCurrentThroughRegularRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d)

6.3.3.5 Conditions for drawing and dropping steel core relays

A steel core relay can be drawn when a drawing current propagates through it
and it is dropped. The following function gives the condition for drawing a steel
core relay:

value
canDrawSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDrawSteelRelay(id, d) ≡

T.and(
{T.neg(T.literal(id)),

drawingCurrentThroughSteelRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d)

Similarly a steel core relay can be dropped if there is a dropping current through
it and it is drawn:

value
canDropSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDropSteelRelay(id, d) ≡

T.and(
{T.literal(id),

droppingCurrentThroughSteelRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d)

6.4 Confidence conditions for the transition system 82

6.4 Confidence conditions for the transition sys-
tem

As previously mentioned, it is decided to make a transition system that includes
two transition rules for each relay: a rule for dropping it and a rule for drawing
it. The guards of these rules can be computed in terms of abstract syntax by
the functions introduced in section 6.3.

However, we have not discussed the problems related to only drawing and drop-
ping a single relay at a time. The danger is that such a model might not include
the states that can be obtained by changing relay states concurrently.

Also, we have not discussed a specific problem related to steel core relays: there
should never be a dropping and a drawing current through a steel core relay at
the same time.

This section will introduce confidence conditions that can be used for proving
that such problems do not exist.

6.4.1 Steel core relay issue

As previously described in section 2.5.1.2, a steel core relay must not have
a drawing current and a dropping current through it in the same state. The
previously defined conditions for drawing and dropping a steel core relay cannot
be true at the same time because a relay can only be dropped when it is drawn
and it can only be drawn when it is dropped. However, the two conditions for
having current through the two parts of the steel core relay can be true at the
same time. Such a situation is not desired by Banedanmark and it is therefore
relevant to prove that it does not happen.

Suppose c1 is the condition for having a drawing current through a given steel
core relay and c2 is the condition for having a dropping current through the
same steel core relay (c1 and c2 can be computed by the functions drawingCur-
rentThroughSteelRelay and droppingCurrentThroughSteelRelay given in section
6.3 and afterwards be converted from abstract syntax to concrete RSL-SAL syn-
tax). Then an LTL assertion expressing that c1 and c2 are never true in the
same state is:

ltl assertion
[mutualExclusionC1C2] InterlockingSystem ` G(∼(c1 ∧ c2))

6.4 Confidence conditions for the transition system 83

In order to be sure that steel core relays behave in a consistent manner, it is
decided that a similar property should be verified for each steel core relay.

6.4.2 Concurrency issues

When only dropping or drawing one relay at a time, we ignore the fact that
events can happen concurrently. It might only happen rarely, but one cannot
dismiss the possibility of a situation where several relays change their state at
the exact same time. In RSL-SAL, the only way of modelling this would be to
introduce other transition rules. For instance, one could introduce a transition
rule for drawing a relay relay1, a transition rule for drawing a relay relay2, and a
transition for drawing them at the same time. However, following this principle
would lead to a lot of extra transition rules. Each time several events can happen
concurrently, there should be a transition for handling this. Introducing such
extra rules would lead to the following issues:

• The number of transition rules would be greatly increased.

• The introduction of transition rules for concurrent relay changes would
lead to extra static analysis before making the transition system. It would
be necessary to decide which guards can be true at the same time. Doing
this statically might not be a trivial task.

• The introduction of a lot of extra rules would lead to an increased run-
ning time when model checking. The SAL verification tool would have to
evaluate a lot of extra guards when building the state space.

• The introduction of extra guards would probably make it difficult for a
human reader to understand the transition system.

Instead of adding extra transitions, it would be better to prove that the order of
the transitions does not matter. Verifying this will include proving that there is
no race between transitions (i.e. it should be proved that taking one transition
cannot falsify the guard of another transition). This can be proved by checking
that if a guard is true at one point, it remains true until the transition protected
by the guard is taken. In reality, it corresponds to that if a relay can change its
state, it will change its state before the physical condition for changing it is no
longer existing.

Verifying this is especially relevant because Banedanmark desires determinism:
a relay that can change state should change state even though other relay
changes occur.

6.4 Confidence conditions for the transition system 84

By verifying this, Banedanmark can avoid situations where an interlocking sys-
tem seems to be working properly, but suddenly one day a new sequence of relay
changes takes place, making the interlocking system enter an unsafe state. This
might happen because some relays react slower than they used to.

The interleaving model introduced in section 6.2.2 contains exactly two transi-
tion rules for changing the state of a relay. Also, each transition rule can only
change the state of a single relay. Therefore, the transition rules can be grouped
into pairs such that each pair is mutually assignment disjoint with every other
pair. As each pair contains a rule for drawing and a rule for dropping the same
relay, the guards of the rules cannot be true at the same time. This means that
if one proves that there is no race between the transitions, one also proves that
the model will include the states that can be obtained by taking two transitions
concurrently.

One can ensure that the order does not matter by verifying that if a guard
becomes true, then it will remain true until the corresponding transition is
taken. If the condition for drawing a relay is fulfilled, it will remain true until
the relay is drawn.

Assume that a guard, g1, contains all the conditions needed for drawing re-
lay1. These conditions are given by the function canDrawRegularRelay or the
function canDrawSteelRelay defined in section 6.3 (assuming that the abstract
syntax is converted to concrete syntax). The following LTL expression will then
correspond to expressing that g1 remains true until relay1 is drawn:

ltl assertion
[g1UntilDrawn] InterlockingSystem `

G(g1 ⇒ X(∼g1 ⇒ relay1))

The LTL expression should be interpreted in the following way:

It holds for all states: if g1 is true in one state, the following will hold for the
next state: If g1 is false, then relay1 is drawn. Therefore, when g1 becomes
true in one state, it must remain true until relay1 is drawn.

An equivalent pattern can be used when dropping the relays. In the following
LTL expression, it is assumed that g2 is the guard for dropping relay1 :

ltl assertion
[g2UntilDropped] InterlockingSystem `

G(g2 ⇒ X(∼g2 ⇒ ∼relay1))

6.4 Confidence conditions for the transition system 85

The two LTL expressions for relay1 are sufficient for verifying that there will
not be any concurrency issues related to drawing and dropping relay1. However,
if one wishes to ensure that racing conditions do not exist and the transition
system can obtain the states that can be obtained by changing relay states con-
currently, one must verify equivalent LTL assertions for all relays. All the LTL
expressions for verifying that no concurrency issues exist can then be consid-
ered as confidence conditions for a transition system containing two rules for
each relay, one for drawing it and one for dropping it. If one of the expressions
is invalid, the model will not cover the case where some specific relay changes
happen at the same time. That is, the interleaving model will not be completely
sound if one of the confidence conditions is invalid.

It can therefore be concluded that the above pattern for detecting concurrency
issues must be introduced for every transition that is capable of drawing and
dropping a relay.

6.4.3 Conclusion

We have now studied an approach where we focus on the logics of interlocking
systems instead of modelling the propagation of current. Section 6.3 described
how to obtain the following conditions based on the Diagrams of a StaticInter-
lockingSystem:

• A condition for when it is possible to draw a relay, gup,r (given by can-
DrawRegularRelay or canDrawSteelRelay, converted to concrete RSL-SAL
syntax).

• A condition for when it is possible to drop a relay, gdown,r (given by
canDropRegularRelay or canDropSteelRelay, converted to concrete RSL-
SAL syntax).

A transition system can be formulated by using these principles:

• Every relay and button are modelled as a Boolean variable. For relays,
true means drawn and false means dropped. For buttons, true means
pushed and false means released.

• The initial value of the Boolean variables will correspond to the normal
state of the StaticInterlockingSystem.

• For each relay r of a diagram, two transition rules are added:

6.5 Interaction with the environment 86

– one that can draw r when gup,r is true

gUpr → r′ = true,

– one that can drop r when gdown,r is true

gDownr → r′ = false,

• In RSL-SAL, only one transition can be taken at a time. In order to be sure
that this transition system also includes the states that can be obtained
by drawing or dropping relays concurrently, it is necessary to verify that
there are no racing conditions. In other words, if the condition for drawing
a relay is true, it must remain true until the relay is drawn. The same
should hold for conditions for dropping a relay. If such a condition is true,
it must remain true until the relay is dropped.

If the above transitions are defined, the associated assertions for checking
that the order does not matter are:

ltl assertion
[relayUpConcurrency] InterlockingSystem `

G(gUpr ⇒ X(∼gUpr ⇒ r))
[relayDownConcurrency] InterlockingSystem `

G(gDownr ⇒ X(∼gDownr ⇒ ∼r))

• Also, it has been decided to verify that there is never a drawing current and
a dropping current through a steel core relay in the same state. Suppose
c1 and c2 are computed by the functions drawingCurrentThroughSteelRe-
lay and droppingCurrentThroughSteelRelay given in section 6.3 (assuming
that abstract syntax is converted to concrete RSL-SAL syntax). The fol-
lowing assertion will then express that c1 and c2 are never true at the
same time:

ltl assertion
[mutualExclusionC1C2] InterlockingSystem ` G(∼(c1 ∧ c2))

6.5 Interaction with the environment

We have previously focused on how to model diagrams, but the modelling of
the interaction with the environment has been postponed. The following section
will look deeper into this topic.

6.5 Interaction with the environment 87

An interlocking system can receive different inputs from different sources in the
external world. Examples of such sources are:

• Buttons that can be pushed or released.

• Track relays that are dropped or drawn when a given track circuit be-
comes occupied or free, respectively.

Like the other relays, track relays can either be drawn or dropped, and but-
tons can be pushed or released. Therefore, they can be modelled as Boolean
variables. If a button is pushed or the track monitored by a track relay is free,
the corresponding variable is true. If a button is released or the track circuit
monitored by a track relay is occupied, the corresponding variable is false.

However, it is not possible to apply the previous deduced rules for dropping and
drawing relays on buttons and track relays. For instance, a button can in reality
be pushed or released at any time.

For pushing and releasing a button, one might introduce a transition rule similar
to the one shown in the following transition system:

transition system
[InterlockingSystem]
local

button1 : Bool := false,
...

in
true → button1′ = ∼button1
debc
...

end

In the above transition system, the button can always change its state. Similarly,
one might introduce a rule for when to occupy track sections.

6.5.1 Timing issues

The above representation of track relays and buttons is not enough for making
a transition system that models the behaviour of an interlocking system. In

6.5 Interaction with the environment 88

general, one of the major problems is that RSL-SAL does not have the notion
of time.

For instance, if one takes a closer look at the above transition system that
contains button1, one can identify the following possible trace of the system:

0. button1 = false

1. button1 = true

2. button1 = false

3. button1 = true

4. button1 = false

5. ...

In the given trace, the transition system does nothing else than changing the
state of the button. Even if other transitions than the one changing the state
of the button are possible, the above trace will still exist. This behaviour is
considered as being unrealistic because of the high speed of the propagation of
the current in the circuits of interlocking systems. It seems unlikely that relay
changes occur slower than the release of a button, especially because the number
of relays changes following an event in the external world (e.g. when a button
becomes pushed or a track becomes occupied) is usually low.

If time had been available in RSL-SAL, this issue could have been solved by
enforcing that a button has to be pushed for a minimum period of time, offering
the relays of the interlocking system a chance to respond. One could think of
adding a clock to the systems, but that would require exact measurement of how
fast a relay changes its state. Also, introducing a clock would greatly increase
the number of states, making it likely that one would encounter a state-space
explosion. Finally, adding clocks to a language that does not have a notion
of time might be difficult. Instead, one could think of making a model in an
environment like UPPAAL [3] that provides clocks as a language construct.

Also, the above trace would introduce troubles when verifying the confidence
conditions introduced in section 6.4. For instance, if a guard for drawing a relay
depends on having a certain button pushed, the guard can change from being
true to false and false to true without taking the transition.

Another problem related to this totally random behaviour is that it causes an
explosion of the number of possible states. For instance, if a button can change

6.5 Interaction with the environment 89

in every state, the total number of states will be multiplied by 2. The size of
the state space might for instance make verification infeasible as a consequence
of having many buttons.

6.5.2 Solution to the timing issues

In general, the above issue can be summarised as: the inputs from the external
world can happen faster than the interlocking system can respond to them,
leading to an unrealistic starvation of the possible relay changes. As the notion
of time does not exist in RSL-SAL, it is needed to ensure that the relays are
able to respond to the inputs.

Taking a transition can be interpreted as an event, meaning that something
happens in the external world or in the circuit of the interlocking system. In
general, transitions can be split into two kinds of events:

• Internal events: they correspond to something happening inside the
electrical circuit. For example, when a relay is drawn, it is an internal
event.

• External events: they happen when something generates an input to
the interlocking system.

Examples of such external events are:

• The state of a button is changed.

• The state of a track relay is changed (when something occupies or frees a
track).

The idea is to assume that external events are slower than internal events. This
can be enforced by rejecting external events until no internal event is possible.
It can be formulated like:

• if there is a possible internal transition: no external transitions can be
taken.

• if there is no possible internal transition: external transitions can be taken.

6.5 Interaction with the environment 90

From now on, we will refer to an interlocking system as being idle if the system
is waiting for an external event. Also, we will refer to the system as being busy
if internal events are possible. Figure 6.5 shows how external events cannot
happen when the system is busy.

Figure 6.5: A possible chain of transitions

Even though we consider it as being realistic to assume that the external world is
slower than the electrical circuits, one should have in mind that the verification
will only be sound under this given assumption.

We have not assumed anything yet about how the track relays are updated and
buttons are pushed, but we have decided that it will happen slower than the
current propagates.

Further assumptions about external behaviour will be introduced in chapter 7.

6.5.3 How to introduce the concept of idle and busy in a
transition system

For now, we have introduced the concept of internal and external events and
it has been decided that a system can either be idle or busy. However, how to
introduce this in an RSL-SAL context is still not considered. This section will
discuss how to do it.

Consider the following transition system where gi1 and gi2 are guards for two
internal events and ge1 and ge2 are guards for two external events:

transition system
[InterlockingSystem]
local

...

6.5 Interaction with the environment 91

in
/∗ Rules for internal events∗/
gi1 → ...
debc
gi2 → ...
debc
/∗ Rules for external events ∗/
ge1 → ...
debc
ge2 → ...

end

The criteria for having an idle system is that no internal event can happen. In
this particular case, it can be formulated like:

ExternalOK ≡∼(gi1 ∨ gi2)

The following sub-sections will explain two different solutions for how to enforce
that external transition rules are only taken when no internal transitions are
possible. We will refer to ExternalOK as the condition for not having any
possible internal transition.

6.5.3.1 Extension of the guards with ExternalOK

A solution to distinguishing between internal and external events is to introduce
ExternalOK as part of the guard of every external event. Applying this principle
to the above transition system will give the following:

transition system
[InterlockingSystem]
local

...
in

/∗ Rules for internal events∗/
gi1 → ...
debc
gi2 → ...
debc
/∗ Rules for external events ∗/

6.5 Interaction with the environment 92

∼(gi1 ∨ gi2) ∧ ge1 → ...
debc
∼(gi1 ∨ gi2) ∧ ge2 → ...

end

For small transition systems, this might be an acceptable solution, but for sys-
tems with many external transitions, it would be inefficient. In each state, the
SAL tool would have to examine the extension of the guard for all the external
transition rules. This might be expensive when dealing with large interlocking
systems.

6.5.3.2 Introduction of an idle variable

Instead of extending the guards of each external transition rule with Exter-
nalOK, we decided to introduce an artificial Boolean variable called idle and
an artificial transition rule to decide when the system is idle. The idea is to
extend all the guards of external transition rules with the idle variable. The
variable must be true in order to take the transition, i.e the system has to be
idle to allow an external event. When an external transition is taken, the idle
variable is set to false. The only way of setting it to true is to take the artificial
transition whose guard consists of ExternalOK. Applying this principle to the
above transition system will give the following:

transition system
[InterlockingSystem]
local

/∗ true if the system is idle ∗/
idle : Boolean := false
...

in
/∗ Rules for internal events ∗/
gi1 → ...
debc
gi2 → ...
debc
/∗ Rules for external events ∗/
idle ∧ ge1 → idle′ = false, ...
debc
idle ∧ ge2 → idle′ = false, ...
debc

6.5 Interaction with the environment 93

/∗ Transition for making the system idle ∗/
∼idle ∧ ∼(gi1 ∨ gi2) → idle′= true

end

The benefit of this solution is that the condition for being idle will only be
checked one time in each non-idle state. Due to the constraints on the idle
variable, the state space will not be increased a lot by adding it. Because of
that, we select this solution to distinguish between internal and external events
and thereby solve the competition issue between these two kinds of events.

6.5.4 Properties related to the idle variable

After having introduced the idle variable, it is possible to formulate some desired
system properties in terms of LTL assertions using idle. The following sections
will introduce these properties.

6.5.4.1 Initial state of the idle variable

As described in section 2.6, the diagrams or an interlocking system present the
interlocking system as it is in its normal state. In our context, the initial state
of a transition system will correspond to the normal state of an interlocking
system. In the normal state of an interlocking system, no relay changes are
possible unless something happens in the external world. If not, it means that at
least one diagram of the interlocking system contains an error. This corresponds
to having the conditions for being idle fulfilled in the initial state. For reasons of
consistency, this property should be verified. To do this, there are two possible
solutions:

• The idea of the first solution is to set idle to true in the initial state and
verify that the conditions for being idle are fulfilled in the initial state. For
the above transition system, the LTL assertion for verifying this would look
like:

ltl assertion
[InitIdle] InterlockingSystem ` ∼(gi1 ∨ gi2)

• The second idea is having idle = false in the initial state and verify that
idle is true in the next state, i.e. the only possible transition in the initial

6.5 Interaction with the environment 94

state is the one that makes the system idle. In LTL, it can be expressed
like this:

ltl assertion
[InitIdle] InterlockingSystem ` X(idle)

The advantage of the second solution is that the LTL assertion is the same for
all transition systems and can be applied to all transition systems that use the
idle variable. On the contrary, the first solution requires a specific LTL assertion
for a specific transition system. Therefore, the second solution is chosen.

6.5.4.2 No internal cycle

Another desired property of interlocking systems is that a chain reaction of
internal relay changes always ends in an idle state. For instance, if an input
is received from the external world, the interlocking system should respond to
it and at some point find another idle state where no change will happen until
a new input is received from the external world. Thereby, it is verified that
unrealistic starvation of events of the external world is avoided. In our context,
this is equivalent to having an idle system over and over again. In LTL, it can
be formulated like:

ltl assertion
[AlwaysEventuallyIdle] InterlockingSystem ` G(F(idle))

The formula states that the system will always eventually be idle.

In general, both of the above properties should be verified for every transition
system in order to detect possible errors in the diagrams of the interlocking
system.

6.5.5 Conclusion

We have now discussed how to integrate the interaction with the external world.
The main problem was that the notion of time does not exist in RSL-SAL. There-
fore, it has been decided to distinguish between internal events and external
events. An internal event is something that happens inside the electrical circuit

6.5 Interaction with the environment 95

of an interlocking systems and an external event is something that happens in
the external world. The main assumption is that external events cannot hap-
pen if internal events are possible. This corresponds to assuming that changes
happen faster in the circuit than in the external world.

To do that, it has been decided that a transition system can either be idle or
busy. In a state where the system is idle, no internal events are possible and the
transition system is ready to accept external events. If the system is busy, only
internal events will be possible. To enforce this, the following concepts have
been introduced:

• A Boolean variable called idle. If the variable is true, the system is idle.
Otherwise the system is busy.

• idle is initialised to false.

• External events cannot happen when idle is false.

• When an external event happens, idle is set to false.

• A transition is made for setting idle to true. This transition can only be
taken if no internal transition is possible.

Suppose we have a transition system containing the following internal transition
rules:

guard1 → relay1′ = true
debc
guard2 → relay1′ = false
debc
guard3 → relay2′ = true
debc
guard4 → relay2′ = false

The transition rule for setting idle to true will be:

∼idle ∧ ∼ (guard1 ∨ guard2 ∨ guard3 ∨ guard4) → idle′ = true

Suppose the following external transitions are possible:

extguard1 → extRelay1′ = true

6.6 Abstract generation of behavioural semantics 96

debc
extguard2 → extRelay1′ = false
debc
extguard3 → extRelay2′ = true
debc
extguard4 → extRelay2′ = false

Then idle must be added as part of the guard and it must be set to false when
taking one of the transitions:

idle ∧ extguard1 → idle′ = false, extRelay1′ = true
debc
idle ∧ extguard2 → idle′ = false, extRelay1′ = false
debc
idle ∧ extguard3 → idle′ = false, extRelay2′= true
debc
idle ∧ extguard4 → idle′ = false, extRelay2′ = false

In order to check that no relay change is possible in the initial state, one can
check that idle is true in the state after the initial state:

ltl assertion
[InitIdle] InterlockingSystem ` X(idle)

In order to ensure that a sequence of internal transitions terminates, it is checked
that the transition system always will be idle at some point in the future:

ltl assertion
[AlwaysEventuallyIdle] InterlockingSystem ` G(F(idle))

6.6 Abstract generation of behavioural seman-
tics

In the previous sections we have discussed different approaches for how to make
a transition system that models the behaviour of a StaticInterlockingSystem. It

6.6 Abstract generation of behavioural semantics 97

has been decided to make a transition system consisting of one Boolean vari-
able for each relay and one Boolean variable for each button. In this context,
true is equivalent to drawn or pushed while false is equivalent to dropped or
released. Furthermore, it has been decided to make one transition rule per relay
for drawing it and one transition rule per relay for dropping it. How to obtain
these rules is specified in section 6.3.

In addition to that, section 6.5 introduced the concept of idle. The system
should be set to idle if and only if no internal event is possible.

The purpose of this section is to specify a function that, given a StaticInterlock-
ingSystem, can generate a transition system that models the dynamic behaviour
of the given interlocking system. The transition system will be represented using
abstract syntax.

The following sections will only present parts of RSL schemes. The schemes
can be viewed in their full length in appendix A that contains the abstract RSL
model.

6.6.1 RSL abstract syntax for RSL-SAL transition sys-
tems

As previously mentioned in chapter 3, RSL-SAL contains the possibility of in-
troducing several data types like maps and sets. As previously decided, the only
data type we are going to need is Boolean. In the same way, it is only necessary
to assign the values true or false to variables. The assigned values do not need
to be evaluations of Boolean expressions.

In order to introduce abstract syntax for the RSL type Bool in a transition
system, the following variant type has been added to the Types scheme (see
appendix A.1, page 209):

type
Boolean == True | False

We will now introduce the TransitionSystem scheme of the abstract model in
appendix A.6, page 222. To introduce the abstract syntax for a variable decla-
ration in the initial state of a transition system, the following short record type
has been introduced:

6.6 Abstract generation of behavioural semantics 98

type
Var ::

id : T.Id
val : T.Boolean

id is the variable name which is of the same type as the identifiers for components
inside a StaticInterlockingSystem. It will therefore be possible to use the Ids
from a StaticInterlockingSystem as variable names in the transition system. val
is the value of the given Var in the initial state.

The variables will be used in the state of the transition system. In order to
define transition rules, it is necessary to define assignments. The short record
type definition of an assignment is:

type
Assignment ::

id : T.Id
assign : T.Boolean

id is supposed to be equal to the id of a Var inside the state of the transition
system such that assign is assigned to that variable in the next state of the
transition system.

RSL-SAL allows multiple assignments as part of a transition rule. In order to
introduce multiple assignments, the following data type is introduced:

type
MultipleAssignment = Assignment∗

One could have chosen a set of assignments, but a list better reflects the fact
that assignments in RSL-SAL are specified in an ordered, comma separated
sequence.

Section 6.3 introduced how to compute rules for dropping and drawing relays.
Such rules are formulated in terms of the data type BooleanExp that includes
literals with Ids. Therefore, BooleanExp can be used directly as guard inside a
transition rule. A type for transition rules that includes a guard and a Multi-
pleAssignment is:

type

6.6 Abstract generation of behavioural semantics 99

TransitionRule ::
guard : T.BooleanExp
assignments : MultipleAssignment

After having introduced Var and TransitionRule, it is possible to make a type
for a transition system:

type
TransitionSystem ::

state : Var∗

transitionRules : TransitionRule∗

One could have chosen sets instead of lists, but we prefer having the transition
system as close as possible to how a real RSL-SAL transition system is specified.

6.6.1.1 Well-formed transition systems

A data type for transition systems has now been introduced. However, it has
not been specified what a well-formed transition system is. In our context, a
well-formed TransitionSystem is a system that corresponds to a real RSL-SAL
transition system that can be type-checked.

The following well-formed function has been introduced for testing whether a
TransitionSystem is well-formed:

value
isWfTransitionSystem : TransitionSystem → Bool
isWfTransitionSystem(ts) ≡

isWfState(state(ts)) ∧
areWfTransitionRules(state(ts), transitionRules(ts))

isWfState checks that the variable declarations in the state use different Ids.
areWfTransitionRules checks that:

• The identifiers used inside the guards are defined in variables of the state.

• Each multiple assignment contains minimum one assignment.

6.6 Abstract generation of behavioural semantics 100

• If identifiers are referred to by assignments, the identifiers are defined in
the state.

• A multiple assignment cannot contain more than one assignment for a
given identifier.

6.6.2 Transformation to a transition system

A TransitionSystem has now been defined. Therefore, it is possible to define a
transformation from a StaticInterlockingSystem to a TransitionSystem. To do
that, scheme StaticInterlockingSystemToTransitionSystem has been introduced
in the abstract RSL model in appendix A.7, page 224. The scheme defines the
following function to make the behavioural semantics of a StaticInterlockingSys-
tem:

value
makeBehaviouralSemantics :

SIS.StaticInterlockingSystem ∼→ TS.TransitionSystem
makeBehaviouralSemantics(sis) as ts post

TS.isWfTransitionSystem(ts) ∧ stateRel(sis, ts) ∧
transitionRel(sis, ts)

pre SIS.isWfStaticInterlockingSystem(sis)

The function takes a well-formed StaticInterlockingSystem as argument and
gives back a well-formed TransitionSystem.

The function stateRel checks that the following properties hold:

• For each relay, the initial state of sis will contain a variable with the same
Id as the relay and an initial value that corresponds to the state of the
relay in the StaticInterlockingSystem. true corresponds to drawn and false
corresponds to dropped.

• For each button, the initial state of sis will contain a variable with the
same Id as the button and false as initial value.

• A variable idle is defined in the state and is initialised to false.

• No other variables are defined in the state.

The function transitionRel checks that the following properties hold:

6.7 Abstract generation of confidence conditions 101

• For each relay, the transition rules will contain one rule for drawing it and
one rule for dropping it. The guards of the rules will correspond to the
ones defined in section 6.3.

• A transition rule is defined for setting idle to true if no other transition is
possible. The guard of the transition corresponds to the one specified in
section 6.5.

• No other transition rules are defined.

6.7 Abstract generation of confidence conditions

It has now been specified how to obtain a transition system that models the
behaviour of a StaticInterlockingSystem. As informally explained in sections 6.4
and 6.5, there are some LTL assertions that express confidence conditions of the
generated transition system. This section will give a more formal description of
these confidence conditions on an abstract level.

First, RSL abstract syntax for LTL assertions will be introduced. Then, an
implicit function for generating the confidence conditions will be defined.

6.7.1 RSL abstract syntax of LTL assertions

In order to model LTL assertions in RSL, the following type has been added to
the Types scheme of the abstract model shown in appendix A.1, page 209:

type
LTLassertion ==

G(g : LTLassertion) |
F(f : LTLassertion) |
X(x : LTLassertion) |
Imply(lhs : LTLassertion, rhs : LTLassertion) |
B(b : BooleanExp)

The variant type represents the necessary LTL operators for expressing the
conditions introduced in sections 6.4 and 6.5. The constructors and destructors
should be interpreted in the following way:

• G(g) means that g is globally true.

6.7 Abstract generation of confidence conditions 102

• F(f) means that f is eventually true.

• X(x) means that x is true in the next state.

• Imply(lhs,rhs) means that lhs implies rhs.

• B(b) means that the BooleanExp b is true.

For more information on LTL operators, see chapter 3.

6.7.2 LTL generation

It is now time to specify the generation of LTL assertions of the confidence con-
ditions. Scheme StaticInterlockingSystemToConfidenceConditions is introduced
for taking care of the conversion (see the complete scheme in appendix A.8,
page 230). The following will introduce the central functions of StaticInterlock-
ingSystemToConfidenceConditions:

For specifying the assertions described in sections 6.4 and 6.5, two generator
functions are introduced.

The first function takes two Boolean expressions and generates an assertion
specifying that the two expressions are never true in the same state:

value
mutualExclusionLTL :

T.BooleanExp × T.BooleanExp → T.LTLassertion
mutualExclusionLTL(b1, b2) ≡

T.G(T.B(T.neg(T.and({b1, b2}))))

The method gives abstract syntax corresponding to the formula given in section
6.4.1. When applied to b1 and b2, the function gives abstract syntax corre-
sponding to the following assertion:

ltl assertion
[mutualExclusionB1B2] InterlockingSystem ` G(∼(b1 ∧ b2))

The function will be useful when specifying that the conditions for having a
drawing current and a dropping current through a steel core relay are never
true at the same time.

6.7 Abstract generation of confidence conditions 103

The second function takes an Id and two Boolean expressions as argument and
gives a list of two LTLassertions:

value
trueUntilChangeLTL :

T.Id × T.BooleanExp × T.BooleanExp →
T.LTLassertion∗

trueUntilChangeLTL(id, upGuard, downGuard) ≡
〈T.G(

T.Imply(
T.B(upGuard),
T.X(

T.Imply(
T.B(T.neg(upGuard)),
T.B(T.literal(id)))))),

T.G(
T.Imply(

T.B(downGuard),
T.X(

T.Imply(
T.B(T.neg(downGuard)),
T.B(T.neg(T.literal(id)))))))〉

The function gives abstract syntax corresponding to the assertions specified in
section 6.4.2. When being applied to id, upGuard, and downGuard, the function
gives a list containing abstract syntax that corresponds to the following concrete
syntax:

ltl assertion
[upGuardUntilDrawn] InterlockingSystem `

G(upGuard ⇒ X(∼upGuard ⇒ id)),

[downGuardUntilDropped] InterlockingSystem `
G(downGuard ⇒ X(∼downGuard ⇒ ∼id))

It is now possible to specify an implicit function that gives all the conditions
introduced in section 6.4 and section 6.5 (SIStoTS is an object of StaticInter-
lockingSystemToTransitionSystem and SIStoTS.idle is an underspecified value):

value

6.7 Abstract generation of confidence conditions 104

makeConfidenceConditions :
SIS.StaticInterlockingSystem ∼→ T.LTLassertion∗

makeConfidenceConditions(sis) as cc post
/∗ G(F(idle)) ∗/
T.G(T.F(T.B(T.literal(TS.id(SIStoTS.idle))))) ∈

elems cc ∧
/∗ X(idle) ∗/
T.X(T.B(T.literal(TS.id(SIStoTS.idle)))) ∈

elems cc ∧
/∗ For regular relays: ∗/
/∗ G(canDraw ⇒ X(∼canDraw ⇒ id)) ∗/
/∗ G(canDrop ⇒ X(∼canDrop ⇒ ∼id)) ∗/
(∀ d : D.Diagram, id : T.Id •

d ∈ SIS.diagrams(sis) ∧
id ∈ SIS.internalRelayIds(sis) ∧
D.isRegularRelay(id, d) ⇒

let
canDraw = CF.canDrawRegularRelay(id, d),
canDrop = CF.canDropRegularRelay(id, d)

in
elems trueUntilChangeLTL(id, canDraw, canDrop) ⊆

elems cc
end) ∧

/∗ For steel core relays: ∗/
/∗ G(canDraw ⇒ X(∼canDraw ⇒ id)) ∗/
/∗ G(canDrop ⇒ X(∼canDrop ⇒ ∼id)) ∗/
/∗ G(∼(drawingCurrent ∧ droppingCurrent)) ∗/
(∀ d : D.Diagram, id : T.Id •

d ∈ SIS.diagrams(sis) ∧
id ∈ SIS.internalRelayIds(sis) ∧
D.isSteelRelay(id, d) ⇒

let
canDraw = CF.canDrawSteelRelay(id, d),
canDrop = CF.canDropSteelRelay(id, d),
drawingCurrent =

CF.drawingCurrentThroughSteelRelay(id, d),
droppingCurrent =

CF.droppingCurrentThroughSteelRelay(id, d)
in

elems trueUntilChangeLTL(id, canDraw, canDrop) ⊆
elems cc ∧

mutualExclusionLTL(
droppingCurrent, drawingCurrent) ∈

6.7 Abstract generation of confidence conditions 105

elems cc
end)

pre SIS.isWfStaticInterlockingSystem(sis)

The first part of the post-conditions checks that the following assertions are
generated:

• G(F(idle)), the system is always eventually idle

• X(idle), the system is idle in the state after the initial state

The second part of the post-conditions checks that assertions verifying the fol-
lowing are generated:

• For all relays: if the condition for drawing the relay is true, it remains true
until the relay is drawn. If the condition for dropping the relay is true, it
remains true until the relay is dropped.

• For all steel core relays: there can never be current through both parts of
a steel core relay at the same time.

Note: The function allows the generation of additional confidence conditions.
We do not intent to add others, but doing so would neither change the semantics
of the associated transition system nor change the semantics of the necessary
confidence conditions.

Chapter 7

Patterns for external
behaviour and safety

properties

Chapter 6 introduced the behaviour of a StaticInterlockingSystem in terms of a
transition system. This chapter will present the next two steps of the method
presented in section 4.1: developping patterns for the external behaviour for
a station (i.e. rules will be stated for occupation of track sections, switching
points, and pushing and releasing buttons) and patterns for safety properties to
be verified for a transition system that includes both the internal and external
behaviours, based on the documentation of the station.

Figure 7.1 illustrates how the internal relays of an interlocking system interact
with the external world. The internal relays listen to the external world in the
sense that pushing or releasing a button, occupying or freeing a track circuit, and
changing a point might enable relay changes in the circuits of the interlocking
system.

Our model of the internal behaviour responds to the external world by letting
the guards of the transition rules refer directly to the state of the buttons, point
relays, and track relays. Any change of their state might enable some transitions
and disable other transitions.

7.1 Patterns for external behaviour 107

Figure 7.1: Interaction between internal relays and the external world

If a transition system, as the ones described in chapter 6, does only define the
internal behaviour, it cannot be used for verifying safety properties. Because
the track sections will never be occupied, the buttons will never be pushed, and
the points will never be changed, the transition system will remain in an idle
state. Therefore, the state space will only include two states: the normal state
defined by the diagrams with idle equal to false and the same normal state with
idle equal to true. In order to verify safety properties, external behaviour must
be introduced such that the behaviour defined in chapter 6 can respond to the
external world.

Section 7.1 will introduce patterns for adding external behaviour to a transition
system containing the internal behaviour. After that, section 7.2 will introduce
patterns for safety properties for transition systems containing both internal
and external behaviour. The focus will both be on basic safety goals like having
no collision and no derailing and be on safety properties derived from a train
route table.

7.1 Patterns for external behaviour

As the internal behaviour of a StaticInterlockingSystem is defined by an RSL-
SAL transition system, the only way of introducing external behaviour is adding
transition rules for the external behaviour inside the transition system contain-
ing the internal behaviour.

7.1 Patterns for external behaviour 108

In chapter 6 it was decided to have transition rules for the external behaviour
on the following form:

[externalRule] idle ∧ eg → idle′ = false, externalAssignments...

where idle is true if and only if no rule for the internal behaviour is possible. eg
is the condition for taking this transition that modifies the external world and
externalAssignments are modifications of the external world.

Figure 7.2 illustrates how rules can be introduced for the external behaviour.
By listening to the status of the points, the track relays, the buttons, and some
of the internal relays of the diagrams (e.g. signal relays), the external transition
rules define when it is possible to modify the external world.

In reality, several external events might happen at the same time. For instance,
one might push a button at the exact same moment as a track relay goes down.
However, combining external behaviour like having one transition for pushing a
given button, one transition for occupying a given track, and one transition for
doing both at the same time will lead to a high number of rules for the external
transitions. It is therefore decided to ignore the fact that external events can
happen concurrently. After changing the state of a point, a track relay, or a
button, the relays of the circuits of the interlocking system will have time to
respond to the event before new events can happen. This assumption excludes
some system states that can happen in the reality, but obtaining such states in
the reality is considered as being unlikely.

The following sections will discuss how to introduce behaviour for track relays,
points, and buttons.

7.1.1 Patterns for track relay behaviour

This section will discuss two different approaches to changing the status of track
relays. The two approaches can be characterised as random track relay behaviour
and ordered track relay behaviour.

The following sections will look deeper into the two approaches.

7.1 Patterns for external behaviour 109

Figure 7.2: Interaction between internal relays and the external world using
rules for external behaviour

7.1.1.1 Random track relay behaviour

Track relays monitor the status of the track circuits of the station. For instance,
a track relay is down if there is a train on the track circuit it is linked to.
However, having trains occupying track sections is not the only way of changing
tracks relays. If a piece of metal falls on a track circuit, it might short-circuit
the current running through the track circuit, causing the track relay to drop.
With this in mind, one can argue that the behaviour of the track relays does
not only depend on train movements: a track relay can go down any time, even
though a train does not occupy the track circuit monitored by it.

The consequence of this observation is random track relay behaviour. When
the system is idle, any track relay can change its state. A transition rule for
changing the state of a track relay t might be:

[randomT] idle → idle′ = false, t′ = ∼t

Similar transitions can be introduced for every track relay of a station.

7.1 Patterns for external behaviour 110

7.1.1.2 Ordered track relay behaviour

The advantage of having a random track relay behaviour is that it will include
states where abnormal things happen, like a piece of metal falling down on
a track section. The disadvantage is that it does not model train movements.
Proving that trains neither derail nor collide will therefore be indirect compared
to proving that two trains do never occupy the same track circuit at the same
time.

If one wishes to include train movements inside the transition system, assump-
tions about trains must be introduced. Trains may have different lengths, im-
plying that the number of track circuits a train is able to occupy at the same
time varies from train to train.

In this section, we will assume the following properties about trains:

• Trains can at most occupy two track circuits at a time.

• Trains follow the track layout while moving.

• Trains respect the aspects displayed by the signals (see section 2.2.2 for
more details about signals).

• Trains in general follow a direction while driving through a station. At
some track circuits, a train might be able to change direction, but this will
not apply to all the track sections. Shunting is not modelled.

• Trains follow the points, i.e. drive in the direction of which the points are
directed.

Track relays are not enough to represent train movements because they do not
indicate any direction. Therefore, movement rules for trains must be able to
access and modify information on the direction of a train. There are at least two
different ways of storing this information. One approach is to represent trains
inside the transition system. A train might have a position and a direction.
Another approach is to model the positions of trains. Instead of representing a
specific train occupying a specific track, one can represent that there is a train
on a given track in a given direction without knowing which train.

There are two main advantages of the second approach:

• The first advantage is that it will give a smaller state space: assume
that we use the first approach and have two trains, train1 and train2.

7.1 Patterns for external behaviour 111

Furthermore, assume we have track sections track1 and track2. In one
state of the system, train1 might be on track1 and train2 on track2.
In another state of the system, train2 might be on track1 and train1 on
track2. The two states will have the same effect on the interlocking system
and will both be in the state space. The second approach will not include
such equivalent states, because it does not distinguish between train1 and
train2.

• The second advantage is that the second approach does not have a limited
number of trains.

Therefore, the rest of this section will refer to the second approach. The strategy
of it is illustrated in figure 7.3. The movement rules will use the position of
the points and the status of the signal relays combined with the current train
positions (i.e. information on where trains are located on the track circuits and
their direction, together with the track relays) for deciding the next possible
movement of a train. When a train moves, the train positions will be updated.

The patterns for the movement rules will be given in the following order: first
rules for linear track circuits, then rules for points.

Movements on linear track circuits:
Consider figure 7.4 which shows an artificial station with an entrance signal
A, an exit signal B, and two track sections, T1 and T2, monitored by track
relays t1 and t2 respectively. For that station, one can introduce the following
variables indicating train positions for movements from A to B:

T1 AtoB : Bool := false,
T1 T2 AtoB : Bool := false,
T2 AtoB : Bool := false

Having T1 AtoB = true will indicate that there is a train on track circuit T1
and it is moving from A to B. Similar, having T1 T2 AtoB = true will indicate
that a train is on both T1 and T2 and is moving from A to B.

If trains were allowed to move from B to A, one could introduce the similar
variables:

T2 BtoA : Bool := false,
T2 T1 BtoA : Bool := false,
T1 BtoA : Bool := false

7.1 Patterns for external behaviour 112

Figure 7.3: Interaction between internal relays and the external world using
train movement rules

7.1 Patterns for external behaviour 113

Figure 7.4: An ordered track relay behaviour for an artificial station. Signal A
is an entrance signal and signal B is an exit signal for the station.

7.1 Patterns for external behaviour 114

For instance, having T1 BtoA = true would indicate that a train is on T1 and
is moving from B to A.

In figure 7.4, the track circuits are initially free, as they are supposed to be in
the normal state. A rule for letting a train enter the station from A could be:

[insertTrainA]
idle ∧ aGreen →

idle′ = false, T1 AtoB′ = true, t1′ = false

The rule inserts a train if signal A is green (i.e. signal A displays a drive aspect).
It updates the train position T1 AtoB and makes track relay t1 drop by setting
t1 to false. If there is already a train in the position T1 AtoB, the new train
will not be taken into consideration because the variable can only tell that there
is a train, but not how many trains there are. However, the situation will be
equivalent to having a collision and one has to verify that this situation never
happens (see section 7.2.1.1).

The rest of the rules for train movements from A to B are:

[t1AtoB]
idle ∧ T1 AtoB →
idle′ = false, T1 AtoB′ = false, T1T2 AtoB = true, t2 = false

debc
[t1t2AtoB]

idle ∧ T1T2 AtoB →
idle′ = false, T1T2 AtoB′ = false, T2 AtoB = true, t1 = true

debc
[t2AtoB]

idle ∧ T2 AtoB ∧ bGreen →
idle′ = false, T2 AtoB′ = false, t2 = true

t1AtoB and t1t2AtoB make the train move towards B and occupy and free
track circuits corresponding to the pattern shown in figure 7.4. t2AtoB makes
the train leave the station if signal B is green. Similar rules can be made for
movements in the other direction. This would, however, require the introduction
of an entrance signal and an exit signal for movements from B to A.

Movements on points:
If a station includes points, the train movement rules should be able to send the

7.1 Patterns for external behaviour 115

Figure 7.5: The possible positions of a points and two signals associated with
it. For trains to enter the point from T1 and T2, the signals C and D must be
green respectively.

7.1 Patterns for external behaviour 116

train in different directions depending on the position of the points. An example
of a point that is linked to two linear track circuits can be seen in figure 7.5.

When a train approaches point P from the left, three things can happen:

• If the point is in the plus position, the point will direct the train to T2.

• If the point is in the minus position, the point will direct the train to T1.

• If the point is in the intermediate position, the train will derail.

The movements from P to T1 and T2 there can therefore be represented by
the following position variables:

• P right, indicating that the train is on P and is moving towards T1 or T2.

• P T1 right, indicating that the train is on P and on T1 and is moving
towards T1.

• P T2 right, indicating that the train is on P and on T2 and is moving
towards T2.

• T1 right, indicating that the train is on T1 and is moving away from P.

• T2 right, indicating that the train is on T2 and is moving away from P.

There is no reason for representing the intermediate position: if a train is on a
point that is in the intermediate position, a safety property should detect that
a derailing is happening (see section 8.3.1.2).

Similar train positions can be constructed for the movements from T1 and T2
to P.

Suppose plusP and minusP are the relays that are drawn if and only if P is in
the plus position and minus position respectively. Also, suppose that p, t1, and
t2 are the track relays that monitor track circuits P, T1, and T2 respectively.
The movement rules for movements from left to right can then be defined as:

[P right plus]
idle ∧ plusP ∧ P right →

idle′ = false,
P right′ = false,

7.1 Patterns for external behaviour 117

P T2 right′ = true,
t2′ = false

debc
[P right minus]

idle ∧ minusP ∧ P right →
idle′ = false,
P right′ = false,
P T1 right′ = true,
t1′ = false

debc
[P T1 right]

idle ∧ P T1 right →
idle′ = false,
P T1 right′ = false,
T1 right′ = true,
p′ = false

debc
[P T2 right]

idle ∧ P T2 right →
idle′ = false,
P T2 right′ = false,
T2 right′ = true,
p′ = false

When a train is moving from T1 and T2 towards P, the train will either occupy
P or derail if P is not in the required position. Therefore, the movement rules
in that direction should not consider the position of P. However, they must
consider the signals that allow the train to enter a point.

Suppose a signal relay cGreen is drawn when signal C displays a drive aspect.
Also, suppose T1 left represents that there is a train on T1 driving towards P
and that T1 P left represents that there is a train on P and T1 driving away
from T1. A movement rule that allows a train to enter P from T1 can then be
formulated in the following way:

[T1 left]
idle ∧ T1 left ∧ cGreen →

idle′ = false,
T1 left′ = false,
T1 P left′ = true,
p′ = false

7.1 Patterns for external behaviour 118

7.1.1.3 Conclusion

In this section two kinds of track relay behaviour were introduced:

• Random track relay behaviour : Any track circuit can be occupied or free
at any time.

• Ordered track relay behaviour : Track circuits are occupied by trains follow-
ing movement rules. These rules are based on assumptions about trains,
e.g. that a train can at most occupy two track circuits at a time.

Due to the simplicity of the rules for random track relay behaviour it can easily
be applied to any station and will include situations where a track circuit appears
to be occupied even though there is no train at the station.

Ordered track relay behaviour requires analysis of the track layout before formu-
lating the movement rules and does not include the states where track circuits
are not occupied by trains. However, ordered track relay behaviour allows for
direct verification of some of the basic safety goals described in section 2.3.1:
trains do not collide and trains do not derail.

In general, it must be concluded that random track relay behaviour will cover
every possible combination of track relay changes while ordered track relay be-
haviour only covers a subset of these. This subset can be increased by adding
trains with different lengths to the system. However, doing so might not scale
very well, because movement variables should be added for each possible train
length. This will increase the state space, the number of variables, and the
number of transition rules.

One should also consider the length of the track circuits of a station in order to
increase realism. For instance, it may not be realistic that a train at some point
only occupies a point.

Therefore, a random track relay behaviour might be preferable even though the
safety properties related to it are not directly related to the basic safety goals.

7.1.2 Patterns for point behaviour

This section will present patterns for point behaviour. First, assumptions will
be stated about the point behaviour and then the patterns will be formulated.

7.1 Patterns for external behaviour 119

7.1.2.1 Assumptions about point behaviour

Real interlocking systems are supposed to enforce that the position of points can
only be changed when it is considered as being safe. Point control is done using
circuits containing relays, implying that the functions developed in chapter 6
can be used for generating the behaviour of point control from the diagrams
describing its circuits. However, hardware implementation of point control can
be quite complex compared to implementations of locking and unlocking of train
routes. In this project, we will therefore not look deeper into real hardware
implementation of point control, even though the functions defined in chapter
6 could be used for handling it.

In reality, a point should never be changed when a train route that includes the
point is locked or when the point is occupied. In this section, we assume that
points do not malfunction and that the rules for changing points are obeyed.
The condition for changing a point must therefore express that such routes are
not locked and that the point is not occupied when the given point is changed.

Usually, switching a point is initiated by pushing buttons. Therefore, it is
decided to treat the changes of a point as external events. In other words,
points can be changed when the system is idle and when changing a point, idle
should be set to false.

7.1.2.2 Formulation of patterns

The purpose of this section is to introduce a model abstraction from the real
point control. As described in section 2.2.1.2, points can be in a minus position,
a plus position, and an intermediate position. For each point, there are two
relays:

• A relay that is drawn if and only if the given point is in the plus position.

• A relay that is drawn if and only if the given point is in the minus position.

Neither of the two relays are drawn if the point is in the intermediate position.

Suppose we have a point P with relay plusP indicating whether the point is in
the plus position and relay minusP indicating whether the point is in the minus
position.

7.1 Patterns for external behaviour 120

Suppose that a Boolean expression, gP, expresses the fact that no train routes
that includes P is locked and that P is free. In the real world, the given point
should never be changed when gP is false. Therefore, one could actually prove
that this actually is enforced by the interlocking system. However, as we assume
that the rules for changing the points are obeyed, we can use gP as part of the
guard for changing the points.

The following transition rules defines the behaviour of P :

[intermediateToMinus]
idle ∧ gP ∧ ∼plusP ∧ ∼minusP → idle′ = false, minusP′ = true

debc
[minusToIntermediate]

idle ∧ gP ∧ ∼plusP ∧ minusP → idle′ = false, minusP′ = false
debc
[intermediateToPlus]

idle ∧ gP ∧ ∼plusP ∧ ∼minusP → idle′ = false, plusP′ = true
debc
[plusToIntermediate]

idle ∧ gP ∧ plusP ∧ ∼minusP → idle′ = false, plusP′ = false

The rules allow to switch P from the intermediate position to the plus position
or the minus position and from the plus position or the minus position to the
intermediate position, as shown in figure 7.6. When defining behaviour for each
point, one can introduce similar rules for every point if one does not want to
model the circuits that control the points.

7.1.3 Patterns for button behaviour

This section will present patterns for button behaviour. First, assumptions will
be stated about the button behaviour and then the patterns will be formulated.

7.1.3.1 Assumptions about button behaviour

In reality, buttons can be pushed or released any time, which in our context will
correspond to allowing changing the state of a button when the system is idle
as well as not idle. However, as explained in section 6.5, we will only allow the
changes of a button when the system is idle.

7.1 Patterns for external behaviour 121

Figure 7.6: State transition diagram of point P, with the behaviour described
in section 7.1.2

Also, it is in reality possible to have several buttons pushed at the same time.
However, there is a problem related to having several buttons pushed at the
same time. If one tries to lock conflicting train routes at the same time by
having several buttons pushed at the same time, it might lead to a competition
between the locking of the train routes. Only one of these train routes can be
locked at the same time, so the timing of the electrical circuits will decide which
train route there will be locked. From a logical point of view, the end result of
the locking procedure will be non-deterministic.

Non-determinism when drawing and dropping will contradict one of the confi-
dence conditions introduced in section 6.4. It was decided to verify that if the
condition for drawing or dropping a relay is true, it remains true until the relay
has changed its state. Competition between the locking of several train routes
will imply that some relays for locking the conflicting train routes can change
state, but when one of the train routes eventually becomes locked, some of the
relays cannot change their state any more due to the fact that the given train
route was locked. In that way, the introduced confidence condition in 6.4 will
be invalid for the involved relays.

As this type of confidence condition is important for the soundness of the verifi-
cation of safety properties, it is decided not to include the competition between
several buttons as part of the external behaviour. It is therefore decided to
assume that only one button can be pushed at a time.

7.1 Patterns for external behaviour 122

Another problem occurs when a button is kept pushed too long. Usually inter-
locking systems have an emergency release procedure for unlocking train routes
in case a button is pushed too long. However, in this project, we do not model
such a procedure. This implies that if a button remains pushed, it may prevent
a train route from being unlocked even if all the conditions for unlocking it are
true. Therefore, it is necessary to enforce that a button is not pushed too long.

This can be done by releasing every button before setting idle to true combined
with pushing only one button at a time, i.e. when the system is in an idle state,
all buttons are released.

7.1.3.2 Formulation of patterns

Suppose we have a system with two buttons, B1 and B2. The initialisation of
these buttons in an auto-generated transition system would be:

B1 : Bool := false,
B2 : Bool := false

Transition rules for pushing the two buttons are:

[pushB1] idle → idle′ = false, B1′ = true
debc
[pushB2] idle → idle′ = false, B2′ = true

The two guards do not contain ∼ B1 or ∼ B2 because one of the assumptions
of this button behaviour is that the system cannot be idle if a button is pushed.
If one wishes to apply another kind of behaviour, one should not forget to add
them to the guards.

Now, the only problem is how to release the button that is pushed before setting
idle to true. One might be tempted to release it when idle is set to true.
However, releasing a button might enable some internal transitions, meaning
that idle is not supposed to be true any more. Releasing a button and setting
the system in an idle state must therefore happen in several steps:

1. When no internal transition is possible, the button that is pushed is re-
leased. This might enable further internal transitions.

7.1 Patterns for external behaviour 123

2. When no internal transition is possible, idle is set to true.

Enforcing this can be done by modifying the transition rule for setting idle
to true such that it can be taken twice before setting idle to true. Suppose
ExternalOK is the requirement described in section 6.5.3.1 for setting idle to
true.

The idle transition described by section 6.5 is then on the following form:

[setIdle] ∼idle ∧ ExternalOK → idle′ = true

In a system with two buttons, B1 and B2, the idle transition can then be
modified in the following way:

[setIdle] ∼idle ∧ ExternalOK → idle′ = ∼(B1 ∨ B2), B1′ = false, B2′ = false

If no internal transition is possible, setIdle will release the buttons. Furthermore,
idle will be set to true if and only if all the buttons are released in the current
state. When setIdle is taken, there will be two possible scenarios:

1. If every button is released, idle is set to true.

2. If a button is pushed, it will be released, but idle will not be set to true.
The next time setIdle is taken, all the buttons are released and idle is set
to true.

An example of a chain of transitions under the introduced button behaviour can
be seen in figure 7.7.

Similar button behaviour can be introduced for an arbitrary transition system by
treating every button in the same way as B1 and B2. In that way, competition
between the locking of different train routes is avoided.

Note: It will still be possible to try locking a train route R2 when a conflicting
train route R1 is locked. When the conflicting train route R1 is locked, the
buttons for locking this train route will be released and a new button (like the
one initiating the locking of R2) can be pushed.

In the real world, this behaviour corresponds to the fact that the operator must
push a button until the actions enabled by it have taken place and that he or she

7.2 Patterns for safety properties 124

Figure 7.7: A possible chain of transitions with the button behaviour described
in section 7.1.3

afterwards releases the button in time such that the system can respond to this
release before anything else happens. One can avoid making this assumption
by modelling the emergency release procedure, using the diagrams describing
it. The assumption is only introduced to limit the scope of this project.

The second assumption requires that the operator only pushes one button at a
time, which does not require any knowledge of the internal state of the inter-
locking system. If one wishes to avoid this assumption, one should ensure that
no race between the locking of train routes takes place.

7.2 Patterns for safety properties

After having analysed how to add external behaviour to a transition system
containing rules for the internal behaviour of an interlocking system, it is now
time to introduce patterns for safety properties that should be proven to hold
for the complete transition system.

First of all, it is important to prove the basic safety goals described in section
2.3.1:

• Trains do not collide.

• Trains do not derail.

Secondly, it can be proved that the implementation requirements specified in a
train route table are respected. Proving these will (as explained later) turn out
to be an indirect way of proving the basic safety goals.

7.2 Patterns for safety properties 125

As described in section 7.1, safety can be verified under different assumptions
about the external behaviour. In this section, we will assume having the point
behaviour and the button behaviour described in section 7.1. For the track relay
behaviour, safety properties can be verified using:

• Random track relay behaviour.

• Ordered track relay behaviour.

For these kinds of track relay behaviour, we will use the assumptions described
in 7.1. As ordered track relay behaviour uses train positions, verification of
the basic safety goals can be more direct for this kind of track relay behaviour.
Therefore, the first of the following sections will describe how to express the
basic safety goals in terms of LTL assertions. Afterwards, safety properties that
apply to both random track relay behaviour and ordered track relay behaviour
will be introduced.

7.2.1 Patterns for basic safety properties

With the random track relay behaviour, it is not possible to distinguish between
trains and other objects that occupy a track section. Therefore, if one wants
direct proofs of the basic safety goals, it is necessary to use ordered track relay
behaviour, as specified in section 7.1.1.2.

Recall the station shown in figure 7.4, page 113. For that station, the following
track positions were introduced:

T1 AtoB : Bool := false,
T1 T2 AtoB : Bool := false,
T2 AtoB : Bool := false,
T2 BtoA : Bool := false,
T2 T1 BtoA : Bool := false,
T1 BtoA : Bool := false

7.2.1.1 No collision

This section will formulate LTL assertions for checking that collisions do not
take place.

7.2 Patterns for safety properties 126

When expressing the next LTL assertions, the following function will be used
for extracting a Nat from a Bool expression such that 1 corresponds to true
and 0 corresponds to false:

value
v : Bool → Nat
v(b) ≡ if b then 1 else 0 end

A collision on track section T1 has occurred if there is more than one train on
T1.

The following LTL assertion checks that at most one train is on track section
T1 at a time:

ltl assertion
[noCollisionOnT1] InterlockingSystem `

G(v(T1 AtoB) + v(T1T2 AtoB) + v(T1 BtoA) + v(T2T1 BtoA) ≤ 1)

This is not sufficient for checking that no collision takes place on T1. If T1 AtoB
is true and the signal A is green, a new train can enter the station without
changing the train position variables. The transition rule for inserting the new
train will set T1 AtoB to true. As T1 AtoB is already true, the change will not
be detected by the above assertion and thereby not be detected as a collision.

To check that such a collision does not take place, the following LTL assertion
is introduced:

ltl assertion
[noTrainOnT1WhenAGreen] InterlockingSystem `

G(idle ∧ aGreen ⇒
v(T1 AtoB) + v(T1T2 AtoB) + v(T1 BtoA) + v(T2T1 BtoA) = 0)

The LTL expression states that it holds for every state that if the system is idle
and signal A is green, then track section T1 is empty. The check for having idle
must be added in order to give the system a chance to respond on having T1
occupied. Signal A is supposed to be green to allow a train to enter T1 (driving
towards B). Then, when a train enters T1, the system is supposed to respond
to that during a sequence of non-idle states. Finally, when idle becomes true,
the system has responded and signal A is not supposed to be green any more.

7.2 Patterns for safety properties 127

Similar properties can be introduced for T2. In fact, they would be equivalent
to the ones defined for T1 with a few modifications of the used variables in the
expressions.

For a real station, one will have to analyse the track layout when formulating
similar properties for a specific station.

7.2.1.2 No derailing

This section will formulate LTL assertions to check that derailing does not take
place.

Consider point P in figure 7.8. When trains approach P from T0, they cannot
derail if the point is either in the plus position or in the minus position and
remains in that position while the train occupies it.

Figure 7.8: A point P and the track sections next to it.

Suppose that P has relays plusP and minusP for indicating its position. Fur-
thermore, suppose that p is the name of the track relay that monitors whether
there is a train on P. The following expression will check that P is either in the
plus position or the minus position when P is occupied:

ltl assertion
[plusOrMinusPositionWhenP] InterlockingSystem `

G(∼p ⇒ plusP ∨ minusP)

The expression states that if there is a train on P, P cannot be in the interme-
diate position. As P needs to enter the intermediate position on the way from
the plus position to the minus position or the other way around, the expression
will also ensure that the position of the point is not changed when a train is on
it.

When ensuring this, derailing cannot happen when trains are approaching P
from T0. If a train reaches P, the point will remain in either the plus position
or the minus position until the train has left the track. However, when a train

7.2 Patterns for safety properties 128

approaches P from either T1 or T2, this property is not sufficient to ensure that
derailing does not take place. For instance, if P is in a position such that P
and T1 are connected and a train approaches P from T2, a derailing will take
place.

Consider figure 7.9 that shows different occupations of P, T1, and T2. When a
train is on P and T1, the point must connect P and T1. Similarly, if a train
occupies P and T2, P must connect P and T2.

Figure 7.9: Different ways of occupying a point and the track sections next to
it.

Suppose that having plusP drawn indicates that P is connected to T2 and that
P T2 fwd and T2 P back are the position variables for representing that a train
occupies P and T2, going from P to T2 or from T2 to P respectively. Then,
the following expression will check chat P must be in the plus position when
there is a train on both P and T2 :

ltl assertion
[no derailing P t01] InterlockingSystem `

G((v(P T2 fwd) + v(T2 P back) ≥ 1) ⇒ plusP)

If minusP indicates that P is connected to T1 and that P T1 fwd and T1 P back
are the position variables representing that a train occupies P and T1, going

7.2 Patterns for safety properties 129

from P to T1 or from T1 to P respectively, the similar expression for T1 and
P is:

ltl assertion
[no derailing P t01] InterlockingSystem `

G((v(P T1 fwd) + v(T1 P back) ≥ 1) ⇒ minusP)

When model checking the above assertions for P using ordered track relay be-
haviour, one can ensure that trains do not derail. Similar expressions should be
introduced for each point of a station in order to make sure that derailing does
not take place in the context of ordered track relay behaviour.

7.2.2 Patterns for safety properties extracted from the
train route table

This section will focus on safety properties that can be checked for both random
and ordered track relay behaviour. These properties are derived from train route
tables. After having introduced the properties, it will be analysed whether these
properties ensure safety. The properties will be formulated in such a way that
the train positions from ordered track relay behaviour are not required.

Further information on train routes and train route tables can be found in
section 2.4.

7.2.2.1 Locking of conflicting routes

As mentioned in section 2.4, a train route table specifies the routes that are
considered as being conflicting. Therefore, it is relevant to verify that conflicting
train routes are never locked at the same time.

Having a train route locked is usually indicated by having some points in a
certain position combined with having a steel core relay in a certain state.
Therefore, one can tell whether a given train route is locked by examining the
state of the interlocking system.

Suppose that L1 is true when a specific train route, TR1, is locked. Furthermore,
assume that train route TR2 is locked when L2 is true and train route TR3
is locked when L3 is true. That TR2 and TR3 are never locked when TR1 is
locked can then be formulated in the following way:

7.2 Patterns for safety properties 130

ltl assertion
[notT2orT3WhenT1] InterlockingSystem `

G(L1 ⇒ ∼(L2 ∨ L3))

7.2.2.2 Signals

Train route tables specify that some conditions need to be fulfilled when chang-
ing the entrance signal of a train route to a drive aspect. These conditions can
be found in a train route table. For instance, when an entrance signal allows
a train to approach a station, the condition for letting a train enter one of the
routes that go past the signal must be fulfilled. These conditions are:

• A train route that uses the train as an entrance signal is locked.

• The points are in the legal position for the locked train route.

• The track sections specified for the locked train route are free.

• The signals display the aspects specified for the locked train route.

For a given station, assume that we have a signal A and two entrances routes,
TR1 and TR2, that go past A. Suppose that CTR1 and CTR2 are the condi-
tions for entering TR1 and TR2 respectively.

If aGreen is the relay that is drawn when A allows trains to enter the station, the
following assertion expresses that A will only allow trains to enter the station
when the conditions for doing so are fulfilled:

ltl assertion
[enterFromAWhenSafe] InterlockingSystem `

G(idle ∧ aGreen ⇒ CTR1 ∨ CTR2)

The formula states that if signal A is green in an idle state, one of the conditions
CTR1 and CTR2 is true.

7.2.2.3 Stop fald

A train route table specifies when the entrance signal of a given train route
should stop displaying a drive aspect. Suppose that signal A from the previous

7.2 Patterns for safety properties 131

section must stop displaying a drive aspect when track T (monitored by track
relay t) is occupied. The following assertion expresses that the signal stops
displaying a drive aspect when the given track is occupied:

ltl assertion
[stopFallA] InterlockingSystem `

G(idle ∧ ∼t ⇒ ∼aGreen)

It is necessary to add idle on the left-hand side of implication in order give the
system time to respond to the occupation of T.

7.2.2.4 Point positions

It is relevant to verify that if a train route is locked, the points of this train
route are in the position specified for it.

Suppose L is the condition for having a train route locked and CP is true if the
points associated to the given train route are in the acceptable positions defined
by the train route table for the given train route. The following assertion will
then express that the points are in the right position when the route is locked:

ltl assertion
[pointsInPositionWhenLocked] InterlockingSystem `

G(L ⇒ CP)

In that way, a train following the train route will not derail if the route remains
locked until the train has passed the point. However, the formula in itself is not
enough to ensure that derailing does not take place. If the route is unlocked
before a given train has passed the point, one cannot be sure that the point
does not switch position before the train has passed it.

7.2.2.5 Train route release

As mentioned before, if a train is following a train route and the train route is
unlocked before the train reaches the end of it, a point of the train route might
be switched before the given train has passed it. In other words, if the train
route is unlocked too early, derailing might happen. This section will introduce

7.2 Patterns for safety properties 132

patterns that can be used for model checking that a given train route remains
locked long enough.

Figure 7.10: Scenario: locking of a train route under random track relay be-
haviour. The conditions Release 1 and Release 2 are used to check that the
route is not released too early.

A train route table establishes when a train route is to be released. Usually
rules for releasing train routes specify conditions on the occupation of two track
circuits. Suppose the involved track circuits are T1 and T2. The following
states can then be used to specify the rule for unlocking the train route:

• State 1 : T1 is occupied and T2 is free.

• State 2 : T2 is occupied and T1 is free.

An example of a rule can then be that a given train route must not be unlocked
unless state 1 occurs at some point and that state 2 occurs at some point later
before the route is unlocked.

7.2 Patterns for safety properties 133

A scenario using random track relay behaviour in which a train route becomes
locked and unlocked can be seen in figure 7.10. As seen in the scenario, the route
remains locked until state 1 and state 2 have happened in the order specified
by the rule. The pattern state 2 eventually followed by state 1 is observed, but
the release does not happen before the pattern state 1 eventually followed by
state 2 is observed.

For checking that the unlocking does not happen too early, we will introduce
two LTL assertions.

Suppose L is the condition for having the train route in figure 7.10 locked and
t1 and t2 are the track relays monitoring T1 and T2.

The following assertions can then specify that the train route is not unlocked
before state 1 has occurred:

ltl assertion
[release1] InterlockingSystem `

G(∼L ∧ X(L) ⇒ X(W(L, L ∧ ∼t1 ∧ t2)))

release1 is illustrated in figure 7.10. When the train route is unlocked in the
current state and locked in the next state, it should hold that, from the next
state, the route must remain locked until state 1 occurs and that the route is
still locked in that state. The boxes marked Release 1 indicate that the weak
until operator ensures that the route remains locked until state 1.

The second assertion is:

ltl assertion
[release2] InterlockingSystem `

G(L ∧ X(∼L) ⇒ t1 ∧ ∼t2)

release2 is also illustrated in figure 7.10. When the train route is locked in
the current state and unlocked in the next state, we have state 2. The box
marked Release 2 indicates if the assertion applies to the state before the route
is unlocked.

Together the two rules specify that if the train route becomes locked at some
point, state 1 must happen before the unlocking of the route and that if the
unlocking happens, we have state 2.

7.2 Patterns for safety properties 134

7.2.2.6 Indirect verification of basic safety goals

We have now introduced LTL assertions for expressing that:

1. Conflicting train routes are not locked at the same time.

2. The signals can only allow the trains to pass them if the conditions for
doing so are true. Such conditions are given by the train route tables.
Some signals must display some specific aspects, some points need to be
in a specific position, some track circuits need to be free, combined with
having a train route locked.

3. A signal displaying a drive aspect changes to stop aspect when a specific
track section is occupied.

4. The points are in the required position by a train route as long as the
train route is locked.

5. A train route is not released too early.

One can notice that property 3 is included in property 2. Property 2 states
among other things that a signal cannot display a drive aspect if a track in the
train route is occupied. This includes the track which is referred to by property
3.

Neither of these properties will alone ensure the overall basic safety goals. The
interesting question is then whether a combination of these ensure that neither
collision nor derailing take place.

To ensure that collisions do not take place, the following needs to be verified:

• Conflicting train routes cannot be locked at the same time: prop-
erty 1 will ensure this.

• That a train can only enter or leave a station when it is con-
sidered as being safe: property 2 will ensure that. By verifying that
property for every signal, several trains will not be allowed to enter con-
flicting train routes at the same time.

• That a train entering a train route will follow it: for instance, if the
points are changed when a train is using its train route, this train will be
sent away from it. In order to enforce this requirement, property 4 and 5
are needed. As these properties state that the points will remain in their

7.3 Conclusion 135

position when a train route is locked and the train route is not released too
early (i.e. before all the points of the train route were passed), it means
that the train cannot leave its route.

By ensuring that two conflicting train routes cannot be locked at the same time,
that a train is only allowed to enter or leave a station when it is safe and that it
has a route to follow, combined with ensuring that the train will actually follow
its route until it reaches the end of it, one can be sure that collisions do not
take place.

Also, the combination of 4 and 5 ensures that no derailing takes place. As the
points are in the required position when a given train route is locked and a given
train route cannot be released too early, derailing cannot happen.

In other words, properties 1, 2, 4, and 5 are enough for ensuring the basic safety
goals. If one verifies these properties for every point, signal, and train route,
one can verify that the basic safety goals are ensured by a given interlocking
system.

7.3 Conclusion

In this chapter, patterns were introduced for adding external behaviour (i.e.
behaviours of points, track relays, and buttons) to a transition system that
models the internal behaviour of an interlocking system (see chapter 6).

For points and buttons, only one version of behaviour is suggested. However,
for track relays, two kinds of behaviour have been introduced:

• Random track relay behaviour (see section 7.1.1.1), where a track section
can become occupied or freed when the system is idle.

• Ordered track relay behaviour (see section 7.1.1.2), where track sections
are occupied by trains only.

Two kind of patterns for LTL assertions that specify safety properties have been
introduced:

• Patterns for checking the basic safety goals(section 7.2.1).
They can be integrated with a scheme containing a transition system that

7.3 Conclusion 136

models internal behaviour and ordered track relay behaviour. These as-
sertions check directly whether a collision or a derailing is possible in this
transition system.

• Patterns for safety properties extracted from the train route table of the
station (section 7.2.2).
They can be integrated with a scheme containing a transition system that
models internal behaviour, button behaviour, point behaviour, and either
random or ordered track relay behaviour and used for model checking that
the requirements expressed by the train route table are respected.

It has been concluded that the basic safety goals can be proved indirectly by
proving the properties derived from the train route table. Therefore, one can
verify the basic safety goals under random track relay behaviour when making
the following assumptions:

• Only one external event can happen at a time.

• An external event can only occur when the system is idle.

• Trains respect the aspects displayed by signals.

• Points cannot be switched when they are occupied.

• Points cannot be switched when a train route containing them is locked.

• Only one button can be pushed at a time.

• All buttons have to be released before any other external transition can
be taken.

When using the patterns provided for ordered track relay behaviour, the follow-
ing extra assumption are made:

• Trains are not longer than two track sections.

• Trains can only change direction at some specific track sections.

One can try adding trains with different lengths to ordered track relay behaviour,
but as mentioned in section 7.1.1.3, ordered track relay behaviour will not scale
easily. Scaling it will lead to a high number of position variables and a larger
state space.

7.3 Conclusion 137

It is possible to indirectly prove the basic safety goals using random track relay
behaviour. This behaviour includes more states possible in the real world than
ordered track relay behaviour and is therefore considered as being stronger when
model checking safety properties. However, in chapter 8, we will still apply both
kinds of patterns to a concrete railway station.

Chapter 8

Application: Stenstrup
Station

Relay diagrams were modelled in chapters 5 and functions for generating the
internal behaviour of an interlocking system were introduced in chapter 6. A
model-oriented refinement of these will be given in chapter 9 and a Java imple-
mentation of it will be presented in chapter 10.

When having the Java program and the patterns for external behaviour and
safety properties that were introduced in chapter 7, the method for verifying
safety properties for a concrete station is complete.

The purpose of this chapter is to apply the method to a Danish railway station by
using the Java program and by instantiating the patterns for external behaviour
and safety properties. Stenstrup Station is a good choice for this experiment
because it is a small station that contains all the physical objects introduced in
chapter 2.

First section 8.1 will introduce Stenstrup Station. After that, in sections 8.2 and
8.3, we use the developed method to derive internal and external behaviours as
well as safety properties for this station.

In section 8.4, the verification results of the RSL-SAL transition system repre-
senting Stenstrup will be presented and finally, in section 8.5, conclusions are

8.1 Introduction to Stenstrup Station 139

made based on the results.

8.1 Introduction to Stenstrup Station

The layout (see figure 2.4, page 12) and train route table (see figure 2.6, page
18) of Stenstrup Station have already been introduced and explained in sections
2.2.4 and 2.4.2. This section will describe Stenstrup on a more technical level:
which diagrams are used to represent the interlocking system of the station and
how the relays found in these diagrams are linked to the physical objects they
monitor.

8.1.1 The diagrams

The interlocking system of Stenstrup Station is represented by 18 diagrams:

• 3 for each train route couple (locking and releasing).

• 1 for the signal A.

• 1 for the signal B.

• 1 for the signals E and F.

• 1 for the signals G and H.

• 2 for auxiliary relays.

These diagrams have been transformed before translating them to XML:

• The transformed diagrams fulfil the assumptions written in the section
5.1.

• Some extra lamps and their associated relays are removed (the ones whose
name ends by .rs). They are simply a copy of the main lamp and have
exactly the same behaviour.

• The part of the diagrams taking care of the emergency release has been
removed.

• The contacts ruled by external relays that are neither linked to points nor
track sections are removed.

8.2 The behaviour of Stenstrup station 140

These external relays (and their associated contacts) could have been kept, but
in that case, their behaviour should have been studied carefully to obtain the
transition rules that define it. It was chosen to limit the scope of the project to
external behaviour of only track relays, points, and buttons. Therefore, some
auxiliary external relays (like the ones for level crossings ovk82 and ovk83) are
removed. One has to be careful not to remove contacts that are needed for
ensuring the safety of trains at a station. Removing such contacts might lead
to invalid assertions when checking confidence conditions and safety properties.

As explained in appendix C.4.1, one can find the original diagrams of Stenstrup
as well as an explanation of the performed modifications on the attached CD.

These diagrams contain:

• 38 regular relays

• 8 steel core relays

• 4 buttons

8.1.2 Components necessary when specifying external be-
haviour and safety properties

When formulating the external behaviour, one needs to give specific behaviour
to the external relays and the buttons. Also, when specifying safety properties,
it is necessary to refer to some specific relays.

Table 8.1 shows how certain relays of the diagrams indicate the state of a physical
object at the station or a train route. One can refer to this table later when
specifying the external behaviour and the safety properties.

Table 8.2 shows the purpose of the buttons that are on the operator’s panel.

8.2 The behaviour of Stenstrup station

8.2.1 The internal behaviour

The RSL scheme containing the internal behaviour and the associated confi-
dence conditions was computed from an XML representation of the diagrams of

8.2 The behaviour of Stenstrup station 141

Type Name of the relays Physical objects/train
route

Behaviour

Track relays t01, t02, t03, t04, a12,
b12

Track sections 01, 02,
03, 04, A12 and B12

If 01 is occupied
then the relay t01 is
dropped, etc.

Point relays plus01, minus01 Point 01 plus01 /minus01
is drawn only when
point 01 is in plus/mi-
nus position.

Point relays plus02, minus02 Point 02 plus02 /minus02
is drawn only when
point 02 is in plus/mi-
nus position.

Signal relays xGreen, xRed, xYel-
low

Signal X(=A,B,E,F,G
or H)

If the signal X dis-
plays its drive aspect,
then the relay xGreen
is drawn

Signal relays xGreen2 Signal X(=A or B) If the signal X dis-
plays its drive as-
pect, then the relay
xGreen2 is drawn

Locking relays ia, iadub trains routes 2 or 3 If 2 or 3 is locked, the
relay ia and iadub are
dropped.

Locking relays ib, ibdub trains routes 5 or 6 If 5 or 6 is locked, the
relay ib and ibdub are
dropped.

Locking relays ua, uadub trains routes 7 or 8 If 7 or 8 is locked, the
relay ua and uadub
are dropped.

Locking relays ub, ubdub trains routes 9 or 10 If 9 or 10 is locked, the
relay ub and ubdub is
dropped.

Table 8.1: The role of the relays found in the diagrams of Stenstrup

8.2 The behaviour of Stenstrup station 142

Name Related to train routes
b00406 7, 8
b00606 2, 3
b03106 5, 6
b03306 9, 10

Table 8.2: The role of the buttons of the operator’s panel of Stenstrup: when
a button is pushed, the locking process of one of the related train routes (de-
pending on the position of the points) begins.

Stenstrup by the program introduced in chapter 10 and it can be found on the
attached CD (see appendix C.4.4).

8.2.2 The external behaviour

Now that the internal behaviour of the interlocking system of Stentrup Station is
described by a transition system, external behaviour has to be added, following
the patterns introduced in section 7.1. There are three categories of external
behaviour that need to be added: one for track relays, one for buttons, and one
for points. This will be described in further details in the following sections.

The resulting transition systems can be found on the attached CD (see appendix
C.4.2).

8.2.2.1 The track relays

As mentioned in section 7.1.1 there are two ways of modelling track relay be-
haviour: random track relay behaviour and ordered track relay behaviour. The
following will explain how these are formulated for Stenstrup Station:

Random track relay behaviour The behaviour will be formulated by in-
stantiating the patterns given in section 7.1.1.1, page 109.

At Stenstrup, there are 6 track sections: A12, B12, 01, 02, 03, and 04. When
using a random track relay behaviour, each relay linked to these track sections
will be ruled by one transition rule that can be taken each time the system is
idle.

8.2 The behaviour of Stenstrup station 143

From Odense From Svendborg Both directions
a12 fwd b12 back t02 fwd back

a12 t01 fwd b12 t03 back t04 fwd back
t01 fwd t03 back

t01 t02 fwd t03 t02 back
t01 t04 fwd t03 t04 back
t02 t03 fwd t02 t01 back
t04 t03 fwd t04 t01 back

t03 fwd t01 back
t03 b12 fwd t01 a12 back

b12 fwd a12 back

Table 8.3: Position variables for Stenstrup

For example, as track section A12 is linked to relay a12, the transition rule for
changing the state of the relay is:

[randomA12] ∼idle → idle′ = false, a12′ = ∼a12

Ordered track relay behaviour The behaviour will be formulated by in-
stantiating the patterns given in section 7.1.1.2, page 110.

Position variables are needed to represent the trains on the track. As previously
explained, we assume that a train can at most occupy two track sections at a
time. Due to this assumption, a train position will define a direction and the
occupation of either a single track or two neighbour tracks.

The only exception is train positions for track sections 02 and 04. When trains
occupy these, they are allowed to change direction. E.g. they can arrive from
Odense, move to track section 02, stop, and leave the station towards Odense.
Therefore, there is no need to have a direction for trains when they are on these
track sections.

All the position variables necessary to describe an ordered track relay behaviour
for Stenstrup can be found in table 8.3. All these variables are initialized to false
because there is no train at the station in the normal state of the interlocking
system. In order to allow trains to enter and to exit the station, transition rules
are added. Examples of the formulated transition rules for train movements are:

• For a train to enter the station:

8.2 The behaviour of Stenstrup station 144

When entering from Odense, the train has to wait for signal A to become
green. When it is green, track section A12 becomes occupied (i.e. track
relay a12 is dropped) and the position variable a12 fwd is set to true.

[insertTrainA]
idle ∧ aGreen →
idle′ = false, a12 fwd′ = true, a12′ = false

There is a similar rule for entering the station from Svendborg.

• For a train to occupy the next track section:
When a train is on A12 and coming from Odense, the next step is to
move to track section 01. After the transition is taken, track section 01
will become occupied, a12 fwd will be set to false and a12 t01 fwd to true.

[a12Fwd]
idle ∧ a12 fwd →
idle′ = false,
a12 fwd′ = false,
a12 t01 fwd′ = true,
t01′ = false

• For a train to leave a track section:
When a train is on A12 and 01 and coming from Odense, the next step
is to leave track section A12. After this transition, track section A12 will
become free, a12 t01fwd will be set to false and t01 fwd will be set to true.

[a12t01Fwd]
idle ∧ a12 t01 fwd →
idle′ = false,
a12 t01 fwd′ = false,
t01 fwd′ = true,
a12′ = true

• For a train to cross a point:
Stenstrup is using the old point convention described in section 2.2.1.2.
When a train is on a point, the next track section that will be occupied
by the train will depend on the position of the point. If a train is on track
section 01 coming from Odense (t01 fwd = true), there are two possible
transition rules:

– if point 01 is in the plus position

8.2 The behaviour of Stenstrup station 145

[t01plusFwd]
idle ∧ plus01 ∧ t01 fwd →
idle′ = false,
t01 fwd′ = false,
t01 t02 fwd′ = true,
t02′ = false

– if point 01 is in the minus position

[t01minusFwd]
idle ∧ minus01 ∧ t01 fwd →
idle′ = false,
t01 fwd′ = false,
t01 t04 fwd′ = true,
t04′ = false

8.2.2.2 The points

This section will instantiate the patterns for point behaviour given in section
7.1.2, page 118.

As previously mentioned, Stenstrup has two points, 01 and 02. As seen in
section 7.1.2, each point has three positions: plus, intermediate and minus.
Two relays are linked to each point. The position of a point is detected by these
relays. For example, point 01 is linked to relay plus01 that is only drawn when
the point is in the plus position and to relay minus01 that is only drawn when
the point is in the minus position. So point 01 is in:

• the plus position if plus01 is up and minus01 is dropped,

• the minus position if plus01 is down and minus01 is drawn,

• the intermediate position if both plus01 and minus01 are dropped.

A point can only be changed when no train route containing it is locked and
when it is free (see section 7.1.2). For point 01, three couples of train routes use
it. Whether they are locked is shown by the state of three steel core relays ia,
ib and ua. The occupation of the point is shown by relay t01. The interlocking
system has to be in an idle state when changing a point. The transition rules
for point 01 will be on the following form:

idle ∧ ia ∧ ib ∧ ua ∧ t01 ∧ ... → ...

8.2 The behaviour of Stenstrup station 146

For each point there are four transition rules for switching it from intermediate
to plus, intermediate to minus, plus to intermediate, and minus to intermediate.
The state of the point is part of the transition guard and, when the transition
is taken, all the point relays are updated to their new value. The following is
an example of the transition rule for switching point 01 from its intermediate
position to its plus position:

[intermediateToPlus1]
idle ∧ ia ∧ ib ∧ ua ∧ t01 ∧ ∼plus01 ∧ ∼minus01 →
idle′ = false, plus01′ = true

8.2.2.3 The buttons

This section will instantiate the patterns for button behaviour given in section
7.1.2, page 118.

At Stenstrup, there are 4 buttons that initiate the locking of train routes. As
decided in section 7.1.3, only one button can be pushed at a time, and once
all the internal consequences of pushing a button have occurred, the button
is released. Then, when all the consequences of this release are finished, the
system is idle.

The following has to be added to the transition system in order to include the
proper button behaviour:

• one transition rule for each button to push it. Here is the transition rule
for the button b00406 :

[pushButton b00406]
idle → idle′ = false, b00406′ = true

• the idle transition rule is changed to:

[setIdle]
gIdle →
idle′ = ∼(b00406 ∨ b00606 ∨ b03106 ∨ b03306),
b00406′ = false,
b00606′ = false,
b03106′ = false,
b03306′ = false

8.3 Safety properties 147

where gIdle is the original guard of the setIdle transition rule auto-generated
by the Java program.

8.3 Safety properties

Now that the internal and external behaviours of Stenstrup are formalized by a
complete transition system, it is time to introduce the safety properties that have
to be respected by the transition system. As explained in section 7.2, there are
two categories of properties. The first directly expresses the basic safety goals
using ordered track relay behaviour. The second expresses the basic safety goals
by proving the properties of the train route table. The second category can be
used for both kinds of track relay behaviour.

As explained in appendix C.4.3, all the properties can be found on the attached
CD.

8.3.1 Basic safety properties

The following sections give examples of how the patterns introduced in section
7.2.1 can be applied to Stenstrup station, when assuming an ordered track relay
behaviour.

8.3.1.1 No collision

The pattern for specifying that no collision takes place (see section 7.2.1.1, page
125) will now be instantiated.

To check that there is no possible collision, one can use the position variables in-
troduced for the behaviour of the track relays. The principle of this is explained
in section 7.2.1.1: a track section can only be occupied by one train at a time,
i.e. for track 01, at most one of the position variables a12 t01 fwd, t01 fwd,
t01 t02 fwd, t01 t04 fwd, t02 t01 back, t04 t01 back, t01 back and t01 a12 back
can be true in one state. The corresponding assertion is (using the function v
defined in section 7.2.1.1):

ltl assertion
[no collision t01] InterlockingSystem `

8.3 Safety properties 148

G(
v(a12 t01 fwd) + v(t01 fwd) + v(t01 t02 fwd) +
v(t01 t04 fwd) + v(t02 t01 back)+ v(t04 t01 back) +
v(t01 back) + v(t01 a12 back) ≤ 1),

8.3.1.2 No derailing

The pattern for specifying that no collision takes place (see section 7.2.1.2, page
127) will now be instantiated.

To verify that derailing does not take place on point 01, one has to check that:

• when the point is occupied, it is not in its intermediate position. The
occupation of the point is monitored by track relay t01.

ltl assertion
[no derailing t01] InterlockingSystem `

G(∼t01 ⇒ plus01 ∨ minus01),

• when the point and track section 04 are occupied by a train, the point is
in the minus position.

ltl assertion
[no derailing t01t04] InterlockingSystem `

G(
(v(t01 t04 fwd) + v(t04 t01 back) ≥ 1) ⇒
minus01),

• when the point and track section 02 are occupied by a train, the point is
in the plus position.

ltl assertion
[no derailing t01t02] InterlockingSystem `

G(
(v(t01 t02 fwd) + v(t02 t01 back) ≥ 1) ⇒
plus01),

8.3 Safety properties 149

8.3.2 Safety properties extracted from the train route ta-
ble

The second approach to verifying that the basic safety goals are implemented
by the interlocking system is to use the requirements of the train route table
specific to Stenstrup. The following sections give examples of how the patterns
introduced in section 7.2.2 can be applied to Stenstrup Station. This will in-
directly ensure that there is no possibility of collision or derailing and can be
done under the two behaviours introduced in section 7.1.1, because the resulting
assertions will not depend on train positions.

8.3.2.1 Locking of conflicting routes

The pattern for specifying that conflicting train routes are not locked at the
same time (see section 7.2.2.1, page 129) will now be instantiated.

In the train route table shown in figure 2.6, page 18, the conflicting train routes
are indicated one by one. The locking of train routes 2 and 3 is indicated by
the steel core relay iadub, the locking of 5 and 6 by ibdub, the locking of 7 and
8 by uadub, and the locking of 9 and 10 by ubdub. For instance, if we look at
train routes 2 and 3, they are conflicting with train routes 5,6,7, and 8. That
means that iadub should not be dropped at the same time as ibdub or uadub. 2
is also in conflict with 10, and 3 is in conflict with 9. However, 2 and 10 cannot
be locked at the same time because they require different positions for point 02.
The same goes for 3 and 9, and for 2 and 3.

The following assertion checks that if either train route 2 or 3 is locked, none
of their conflicting train routes are locked.

ltl assertion
[conflict locking ia] InterlockingSystem `

G(∼iadub ⇒ ibdub ∧ uadub)

8.3.2.2 Signals

The pattern for specifying that the signals behave as specified in the train route
table (see section 7.2.2.2, page 130) will now be instantiated.

8.3 Safety properties 150

There is one assertion for each signal that is extracted from the train route
table. The following paragraph specifies the assertion for signal A.

Signal A must only display a drive aspect (indicated by a green light) if either
train route 2 or 3 is locked. The conditions from train route 2 are: signal F
is red, signal G is red or green, both points are in the plus position, and track
sections A12, 01, 02, 03, and B12 are free. These requirements are specified
in columns “Signaler”, “Sporskifter”, and “Sporisolationer” of the train route
table. The ones for train route 3 can be deduced in the same way. Finally, A
must not be green if neither train route 2 nor train route 3 is locked. So the
assertion for signal A is:

ltl assertion
[signalA] InterlockingSystem `
G(idle ∧ aGreen ⇒

∼ia ∧ a12 ∧ t01 ∧ t03 ∧ b12 ∧
((t02 ∧ plus01 ∧ plus02 ∧ fRed ∧ (gRed ∨ gGreen))∨
(t04 ∧ minus01 ∧ minus02 ∧ eRed ∧ (hRed ∨ hGreen)))),

i.e. when signal A is green and there are no more possible internal transitions,
train route 2 or 3 must be locked and the conditions concerning points, signals,
and track sections for the locked train route must be valid.

8.3.2.3 Stop Fall

The pattern for specifying that the a signal stops displaying a drive aspect when
a train is on a specific track section (see section 7.2.2.3, page 130) will now be
instantiated.

The train route table specifies when each signal has to change from its drive
aspect to its stop aspect. There is one assertion for each signal.

Two train routes, 5 and 6, use signal B as an entrance signal, i.e. when signal
B displays a drive aspect, a train is allowed to enter one of the routes. Both
express the same condition: signal B must not display a drive aspect when track
section B12 is occupied.

ltl assertion
[stopfallB]

InterlockingSystem `

8.3 Safety properties 151

G(idle ∧ ∼b12 ⇒ ∼bGreen),

i.e. if track section B12 is occupied, in the next state, either the system still
has some possible internal transitions or signal B has stopped displaying a drive
aspect.

8.3.2.4 Point positions

The pattern for specifying that a point is in its required position when a train
route is locked (see section 7.2.2.4, page 131) will now be instantiated.

When locking a train route, the position of the points has to be checked. For
Stenstrup Station, when locking an entrance train route from Odense (shown
by the steel core relay ia), there are two possible combinations of positions:
points 01 and 02 should be in the plus position (shown by relays plus01 and
plus02), or they should be in the minus position (shown by relays minus01 and
minus02).

ltl assertion
[locking points ia] InterlockingSystem `

G(∼ia ⇒
(plus01 ∧ plus02) ∨ (minus01 ∧ minus02)),

i.e. if an entrance train route from Odense is locked, the points are either both
in their plus position or both in their minus position.

8.3.2.5 Train route release

The pattern for specifying that a train route is not released too early (see section
7.2.2.5, page 131) will now be instantiated.

For train route 5 and 6 (monitored by steel core relay ib), the 2 assertions
expressing that the train routes are not released too early are:

ltl assertion
[releaseIB1] InterlockingSystem `

G(ib ∧ X(∼ib) ⇒

8.4 Results for Stenstrup 152

X(W(∼ib, ∼ib ∧ ∼t03 ∧ ((t02 ∧ plus01) ∨ (t04 ∧ minus01))))),
[releaseIB2] InterlockingSystem `

G(∼ib ∧ X(ib) ⇒ (t03 ∧ ((∼t02 ∧ plus01) ∨ (∼t04 ∧ minus01))))

i.e.

• for releaseIB1 : if ib is drawn in the current state and dropped in the
next state, ib will stay dropped until the first condition given by the train
route table is fulfilled (03 is occupied and either track section 02 is free
and point 02 is in the plus position, or track section 04 is free and point
02 is in the minus position)

• for releaseIB2 : if ib is dropped in one state and drawn in the next one, the
second condition given by the train route table is fulfilled (03 is free and
either track section 02 is occupied and point 02 is in the plus position, or
track section 04 is occupied and point 02 is in the minus position).

8.4 Results for Stenstrup

Now that the transition system is complete and all the safety properties are
defined, the properties can be verified. The results will be presented in the
following sections. As it was written before, there are two different transition
systems: one using ordered track relay behaviour and one using random track
relay behaviour.

8.4.1 Test setup

The properties were verified using the following configuration:

Software:

• Operating system: Ubuntu 8.04, Kernel Linux 2.6.24-19-generic

• RSLTC version: 2.5-1

• SAL version: 3.0

Hardware:

8.4 Results for Stenstrup 153

• CPU: Intel Core 2 Duo E6850, 3.00 GHz, 4 MB L2 cache

• Motherboard: Asus G33, mATX, Socket 775, P5K-VM

• RAM: Corsair XMS Xtreme, 4GB, PC6400, DDR2 TWIN2X4-6400C5

(SAL 3.0 only takes advantage of a single CPU kernel at a time.)

8.4.2 Results for ordered track relay behaviour

The file used for this verification can be found on the attached CD (as explained
in appendix C.4.4). It also contains the train position variables as defined in
section 8.2.2.1. There are three types of assertions:

• 102 confidence conditions linked to the internal behaviour.
All the assertions are valid, i.e. there is no concurrency issue and no
problems related to steel core relays.
Verification time: 1 hour 7 minutes and 19 seconds.
Approximated memory usage: 249 MB.

• 12 assertions checking directly that there is no possible collision and no
possible derailing.
All the assertions are valid.
Verification time: 20 seconds.
Approximated memory usage: 74 MB.

• 28 assertions extracted from Stenstrup’s train route table.
All the assertions are valid, the train route table is respected.
Verification time: 3 minutes and 28 seconds.
Approximated memory usage: 116 MB.

8.4.3 Results for random track relay behaviour

The file used for this verification can be found on the attached CD (as explained
in appendix C.4.4). It contains the random track relay behaviour as defined in
section 8.2.2.1. Under this behaviour, only two categories of assertions are
checked:

• 102 confidence conditions linked to the internal behaviour.
All the assertions are valid, i.e. there is no concurrency issue and no

8.5 Conclusion 154

problems related to steel core relays.
Verification time: 26 minutes and 57 seconds.
Approximated memory usage: 150 MB.

• 28 assertions extracted from Stenstrup’s train route table.
All the assertions are valid, i.e. the train route table is respected.
Verification time: 1 minutes and 46 seconds.
Approximated memory usage: 117 MB.

8.5 Conclusion

In this chapter all the principles seen in chapters 6 and 7 were put in practice
for a Danish station, Stenstrup. The process starts from the diagrams, the track
layout, the operator’s panel and the train route table of the station provided
by Banedanmark. From these, one can extract the internal behaviour from
the diagrams and create the two possible external behaviours from the track
layout of the station. Finally, one can write the different assertions that will be
model-checked.

All the assertions of the resulting transitions systems are valid, i.e. that train
traffic at Stenstrup Station can be considered as being safe under the assump-
tions written in section 7.3.

This chapter has demonstrated that the principles introduced in the previous
chapters are applicable to a concrete station. Stenstrup is a regular station that
contains all the elements that one can find at any other Danish station. The
only possible limitation of the method is the state space. One cannot know
whether the memory usage becomes too high when applying the method to
larger stations.

Another conclusion is that random track relay behaviour is not only the most
general compared to ordered track relay behaviour. It is also more efficient
in terms of running time and the memory usage is lower when verifying confi-
dence conditions. If one introduces trains with different lengths under ordered
track relay behaviour, the state space (implying a higher memory usage) and
verification time would increase for this kind of behaviour.

With this in mind and when knowing that the properties derived from the train
route table together covers the basic safety goals, we conclude that random track
relay behaviour is preferable when model-checking safety properties.

Chapter 9

Concrete model of relay
diagrams

As explained in chapter 4, relay diagrams and the conversion of these to an RSL-
SAL transition system and its confidence conditions are modelled on different
levels.

Chapter 5 introduced an abstract model (i.e. algebraic and property-oriented)
for relay diagrams. Furthermore, chapter 6 introduced generator functions for
transforming abstract syntax for relay diagrams to abstract syntaxes for RSL-
SAL transition systems and LTL assertions. The generated transition system
models the behaviour of the interlocking system. For the same transition system,
LTL assertions define confidence conditions that can be used for verifying that
it specifies the complete behaviour of the interlocking system and respects some
desired properties that are not related to safety.

The purpose of this chapter is to introduce a concrete (model-oriented, but still
generic) version of the models and generator functions specified in chapters 5
and 6. The goal is to give a model where the functionalities are specified on a
level where they can be translated to another programming language by hand.

When the specifications presented by this chapter are translated to another lan-
guage, the resulting program must be able to read diagrams of an interlocking

156

system in a certain format and afterwards be able to make a file containing an
RSL scheme with the transition system that models the behaviour of the inter-
locking system and the confidence conditions. How the parsing of the diagrams
works and how the creation of the final RSL scheme is done will not be consid-
ered in this chapter. However, the RSL schemes can still be made in a way such
that it is easy to generate a StaticInterlockingSystem based on a text file.

Using a StaticInterlockingSystem that is specified such that it is close to the
layout of a text file might not be efficient when doing computation. Therefore,
it seems difficult to make a model that fits both the need for the computation of
transition systems and confidence conditions and the need for being close to the
format of a text file. Instead of making a compromise, it is chosen to introduce
two different models and a translation from one of the models to the other.

The first model will be given by the StaticInterlockingSystemL and DiagramsL
schemes. It will be based on lists and will therefore be close to what one can
specify in a text file.

The second model will be given by the StaticInterlockingSystem and Diagrams
schemes and use map-based computation.

The overall strategy of the concrete implementation, including a conversion from
an instance of list-based model to an instance of map-based model, can be seen
in figure 9.1.

Figure 9.1: The overall strategy for the concrete computation of transition sys-
tems and confidence conditions.

9.1 Types 157

Section 9.1 will introduce common types that are used by both the list-based
model and the map-based model. They are used to contain the information
used for implementing the observer functions.

Section 9.2 will introduce a model based on lists, section 9.3 will introduce
a model based on maps, and section 9.4 will introduce a conversion from the
list-based model to the map-based model.

Section 9.5 will introduce a concrete way of computing the conditions (intro-
duced in section 6.3) for when a relay can be drawn, dropped, etc. Especially, it
will describe how to find all the paths through a component inside a Diagram.

Section 9.6 will introduce a concrete version of the function specified in section
6.6 for computing the behaviour of a StaticInterlockingSystem specified in sec-
tion 9.3. Afterwards, section 9.7 will introduce a concrete implementation of the
function given in section 6.7 for generating confidence conditions of a transition
system.

9.1 Types

Chapter 5 introduced an abstract syntax for relay diagrams. The components
were identified by type Id, but concrete representations of components were not
introduced. This section will explain the necessary changes of the Types scheme
of the abstract model (see appendix A.1, page 209) when taking a step towards
a concrete model. A complete version of the concrete Types scheme presented
in this chapter can be found in appendix B.1, page 233.

In the concrete model, an Id will have the type Text :

type
Id = Text

In that way, the names of the components from the diagrams can directly be
used as identifiers.

The observer functions of the concrete models introduced in the following sec-
tions should be concrete. To store the information needed by the concrete
versions of the observer functions, it is decided to introduce concrete types for
each kind of component that is represented by the abstract model.

9.1 Types 158

Short record types RegularRelay, SteelRelay, ExternalRelay, Button, Pole, Con-
tact, and Junction are introduced for that purpose. An example of such a type
is:

type
RegularRelay ::

getId : Id
getInitState : State

The destructor getId gives the Id of the given regular relay and getInitState
gives its initial state.

Another example of the introduced types is Pole:

type
Pole :: getId : Id

The destructor getId gives the Id of the given pole.

For convenience, a union type for representing a component inside a Diagram
is introduced:

type
Component =

Pole | Junction | RegularRelay | SteelRelay |
Button | Contact

As external relays are not present in a Diagram, ExternalRelay is not part of
the union type.

For convenience, a function named idFromComponent is introduced to extract
the Id of a given component:

value
idFromComponent : Component → Id
idFromComponent(c) ≡ ...

9.2 List-based model 159

The introduced type Pole does not store information on whether a given Pole
is positive or negative. Therefore, the following type is introduced to contain a
positive pole and a negative pole:

type
Poles ::

plus : Pole
minus : Pole

In order to represent relations between components inside a Diagram, the fol-
lowing type is introduced:

type
Edge = Id × Id

9.2 List-based model

As previously explained, the idea behind introducing a list-based concrete ver-
sion of the abstract model introduced in chapter 5 is to make a model close to
the format of a text file. Later on, it will be possible to parse data from a text
file and use this data for making an instance of the list-based model.

Scheme DiagramsL (see appendix B.2, page 236) containing a list-based version
of a Diagram is therefore introduced. The concrete version DiagramL is on the
following form:

scheme DiagramsL =
class

type
/∗ the components of a diagram ∗/
Components ::

getPoles : T.Poles
getContacts : T.Contact∗

getButtons : T.Button∗

getRegularRelays : T.RegularRelay∗

getSteelRelays : T.SteelRelay∗

getJunctions : T.Junction∗,
/∗ A diagram corresponding to one circuit ∗/

9.2 List-based model 160

Diagram ::
/∗ All the components in the diagram ∗/
getComponents : Components
/∗ All the edges between the components in the
diagram∗/
getEdges : T.Edge∗

value
/∗ observer functions and auxiliary functions ∗/
...

end

For each component type inside a Diagram (except poles), there is a list con-
taining all the components of the given type. For the poles, a Diagram contains
one positive pole and one negative pole.

The list of Edges in a Diagram specifies the neighbour relation between compo-
nents such that if there is an Edge between two components, they are neighbours.

In order to implement the Diagrams scheme of the abstract model, every ob-
server function of it is implemented using the above data structure. An example
of such a function is the one telling whether a given Id is a positive pole inside
a Diagram:

value
isPlus : T.Id × Diagram → Bool
isPlus(id, d) ≡

T.getId(T.plus(getPoles(getComponents(d)))) = id

The well-formed function of the abstract Diagram scheme given in appendix
A.2, page 210 was axiomaticly defined in the following way:

value
isWfDiagram : Diagram → Bool

axiom
∀ d : Diagram • isWfDiagram(d) ⇒ c1

Where c1 consists of several constraints on the Diagrams. This leads to making
a concrete well-formed function on the following form:

value

9.2 List-based model 161

isWfDiagram : Diagram → Bool
isWfDiagram(d) ≡ c1 ∧ c2

Where c2 expresses the following constraints on a list-based diagram:

• The list of Edges does not contain duplicates. If (id1,id2) is an Edge,
(id2,id1) is not an Edge.

• An Edge can only contain ids of components that are defined in the Di-
agram. If (id1,id2) is an Edge of one diagram, id1 and id2 are the ids of
two components of this Diagram.

• For each list of components, the following holds: the list does not contain
duplicates and two components inside a list cannot have the same Id.

To represent a list-based StaticInterlockingSystem, scheme StaticInterlockingSys-
temL is introduced. It contains the following type for a StaticInterlockingSystem
where DL is an object of DiagramL:

type
StaticInterlockingSystem ::

getDiagrams : DL.Diagram∗

getExternal : T.ExternalRelay∗

Again, concrete versions of the observer functions are introduced. The StaticIn-
terlockingSystem scheme of the abstract model was defined in the following way:

value
isWfStaticInterlockingSystem : Diagram → Bool

axiom
∀ sis : StaticInterlockingSystem •

isWfStaticInterlockingSystem(sis) ⇒ c1

Where c1 expresses constraints on a StaticInterlockingSystem. This leads to
defining a concrete well-formed function for the list-based StaticInterlockingSys-
tem in the following way:

value
isWfStaticInterlockingSystem(sis) ≡ c1 ∧ c2

9.3 Map-based model 162

c2 expresses the following additional constraints:

• The Diagram-list does not contain duplicates.

• The ExternalRelay-list does not contain duplicates and two external relays
do not have the same Id.

The DiagramsL and StaticInterlockingSystemL schemes statically implement all
the functionality of the abstract model. All the types and functions from the
abstract model are present and the well-formed constraints from the abstract
model are also enforced on the concrete model. One could also prove that the
new schemes implement Diagrams and StaticInterlockingSystem of the abstract
model respectively. However, doing so is considered as being beyond the scope
of this project.

9.3 Map-based model

This section will introduce a map-based implementation of the StaticInterlock-
ingSystem and Diagrams schemes(see appendix A.2, page 210) from the abstract
model in chapter 5. The purpose is to make a model that is more efficient when
performing computation than the list-based model introduced in section 9.2.

A scheme called Diagrams (see appendix B.4, page 247) is introduced in order
to implement the functionality of the Diagrams scheme of the abstract model.
In the concrete model, scheme Diagrams is on the following form:

scheme Diagrams =
class

type
/∗ poles can be plus or minus ∗/
PoleType == plus | minus,
Diagram ::

getComponentMap : T.Id →m T.Component
getEdges : T.Edge-set
/∗ Information on the type of the poles ∗/
getPoleType : T.Id →m PoleType

value
/∗ observer functions and auxiliary functions ∗/
...

9.3 Map-based model 163

end

A Diagram has one map for representing all the components. The relation
between components inside a Diagram are represented as a set of Edges.

As additional information, a map is defined for storing the type of each Pole,
using PoleType.

Like in DiagramsL, the observer functions of the Diagram scheme in the abstract
model are implemented. The well-formed function for a Diagram contains the
same constraints as in the underspecified axiom of the abstract model and adds
further constraints:

• Each Id in the domain of the component map is mapped to a component
with the same Id.

• If an Edge (id1,id2) is defined, (id2,id1) is not defined in the Edge-set.

• An Edge can only contain ids of components that are defined in the dia-
gram. If (id1,id2) is an Edge of one diagram, id1 and id2 are the ids of
two components of this Diagram.

• Each Pole defined in the range of the component map, has its Id defined
in the domain of the map for storing the pole types.

Scheme StaticInterlockingSystem is added to the concrete map-based model for
implementing the StaticInterlockingSystem of the abstract model. The following
type is defined for representing a StaticInterlockingSystem:

type
StaticInterlockingSystem ::

getDiagrams : D.Diagram-set
getExternal : T.Id →m T.ExternalRelay

Besides having a set of Diagrams, a map is defined inside the StaticInterlock-
ingSystem to represent external relays. Again, the observer functions from the
concrete model are implemented in a concrete manner. The well-formed func-
tion is almost the same as in the underspecified axiom in the abstract model.
The only extra constraint is:

• The Ids inside the domain of the map containing the external relays are
mapped to ExternalRelays with the same name.

9.4 Conversion from list-based model to map-based model 164

The schemes introduced in this section have statically the same functionality
as the ones defined in the abstract model and the constraints defined in the
well-formed functions of the abstract model are also defined by the well-formed
functions in the concrete schemes. However, it is considered as being beyond
the scope of this project to prove that the schemes implement the ones from the
abstract model.

9.4 Conversion from list-based model to map-
based model

As previously explained, it should be possible to convert an instance of the list-
based model defined in section 9.2 of a StaticInterlockingSystem to an instance
of the map-based model defined in section 9.3.

To do the conversion, scheme StaticInterlockingSystemConversion (see appendix
B.6, page 256) is introduced. The scheme defines a function with the following
signature where SISL and SIS are objects of the concrete models StaticInter-
lockingSystemL and StaticInterlockingSystem respectively:

value
convertStaticInterlockingSystem :

SISL.StaticInterlockingSystem ∼→ SIS.StaticInterlockingSystem
convertStaticInterlockingSystem(sisl) ≡ ...

pre SISL.isWfStaticInterlockingSystem(sisl)

The function is explicitly defined and uses the concrete auxiliary function con-
vertDiagram for converting a DiagramL (on the list form) to a Diagram (on the
map form). Both functions require that their arguments are well-formed.

After the conversion, the observer functions of the map-based model will behave
exactly as they did in the list-based model. One could prove this, but estab-
lishing the proof is beyond the scope of this project. An example of a relation
between list-based Diagrams and the map-based Diagrams resulting from the
conversion is:

∀ d : DL.Diagram, id : Id • DL.isWfDiagram(d) ⇒
DL.isPlus(id, d) ≡ D.isPlus(id, convertDiagram(d))

9.4 Conversion from list-based model to map-based model 165

(DL and D are, respectively, objects of the list-based Diagrams scheme and the
map-based Diagrams scheme).

The expression states that, for each list-based Diagram, if the list-based dia-
gram is well-formed, the list-based version of isPlus applied to the Diagram
and an arbitrary Id behaves like the map-based version of isPlus applied to the
converted Diagram and the same Id.

In general, if a well-formed, list-based StaticInterlockingSystem is converted to a
map-based StaticInterlockingSystem, the map-based representation will be well-
formed:

∀ sis : SISL.StaticInterlockingSystem •

SISL.isWfStaticInterlockingSystem(sis) ⇒
SIS.isWfStaticInterlockingSystem(convertStaticInterlockingSystem(sis))

This is illustrated in figure 9.2. Figure 9.3 illustrates that no conversion takes
place if the list-based StaticInterlockingSystem is not well-formed.

Figure 9.2: The list-based StaticInterlockingSystem is well-formed. After the
conversion, the generated map-based StaticInterlockingSystem is also well-
formed.

One could make a similar conversion from a map-based implementation to a list-
based implementation. However, maps do not specify any order. Therefore, if
one has a list-based model, converts it to a map-based model, and then converts
it back again, the lists will not necessarily have the same order as before.

9.5 Concrete condition- and pathfinding 166

Figure 9.3: The list-based StaticInterlockingSystem is not well-formed. The
precondition of the conversion function is false and no conversion takes place.

9.5 Concrete condition- and pathfinding

The purpose of this section is to make a concrete model of the Conditionfinding
scheme for the map-based implementation of a StaticInterlockingSystem. Ac-
tually, the Conditionfinding scheme of the abstract model (see appendix A.5,
page 219) is concrete enough for being reused in the concrete model. However,
the abstract Pathfinding scheme (see appendix A.4, page 218) used by it is not
concrete enough because it contains the following function definition:

value
allPathsFor : T.Id-set × D.Diagram ∼→ Path-set
allPathsFor(ids, d) ≡
{p | p : Path • isWfPath(p, d) ∧ isPathFor(p, ids)}

pre D.isWfDiagram(d) ∧ ids ⊆ D.allIds(d)

The problem is that the function does not specify how to compute the paths.
Therefore, we need to introduce functions to do this task.

In the concrete model of Pathfinding (given in appendix B.7, page 258), the
above function is replaced with the following one:

value
allPathsFor : T.Id-set × D.Diagram ∼→ Path-set
allPathsFor(ids, d) ≡

9.5 Concrete condition- and pathfinding 167

{p | p : Path •

p ∈ makePathsBetweenPoles(d) ∧
isPathFor(p, ids)}

pre D.isWfDiagram(d) ∧ ids ⊆ D.allIds(d)

The function makePathsBetweenPoles computes every simple path in the Dia-
gram d starting with the positive pole and ending with the negative pole.

The following algorithm (presented using pseudo-code) was inspired by an algo-
rithm presented by Skiena in [15]. The backbone of the implemented algorithm
is two mutual recursive functions, makePathsBetweenComponents and extend-
Path.

makePathsBetweenComponents : D.Diagram ∼→ Path-set
makePathsBetweenComponents(endComponent, currentPath, d)

if(currentPath(len currentPath) = endComponent)
then
{currentPath}

else
extendPath(endComponent,

neighbours of currentPath(len currentPath), currentPath, d)
end

end

extendPath : T.Id × T.Id-set × Path × D.Diagram ∼→ Path-set
extendPath(endComponent, neighboursToBeVisited, currentPath, d)

if neighboursToBeVisited = {}
then {}
else

let
nextComponent = an element of neighboursToBeVisited
nextPath = currentPath ̂ 〈 nextComponent 〉

in
if(nextPath is legal)

then
makePathsBetweenComponents(endComponent, nextPath, d)

else {}
end
∪
extendPath(endComponent,

9.5 Concrete condition- and pathfinding 168

neighboursToBeVisited\{nextComponent}, currentPath, d)
end

end

makePathsBetweenPoles initiates the process by calling makePathsBetweenCom-
ponents in the following way:

makePathsBetweenPoles : D.Diagram ∼→ Path-set
makePathsBetweenPoles(d) ≡

makePathsBetweenComponents(negative pole in d, 〈positive pole in d〉, d)
pre D.isWfDiagram(d)

The arguments are given to makePathsBetweenComponents such that:

• endComponent equals the negative pole of the diagram d.

• currentPath equals a list containing only the positive pole of the diagram
d.

• d equals the diagram containing the two poles.

makePathsBetweenComponents will then give the set of paths from the positive
pole to the negative pole inside d.

makePathsBetweenComponents works as follows:

• If the last component of currentPath is endComponent, it will return the
set containing only currentPath.

• Otherwise, it will compute the Id set representing the neighbours of the
last Id in currentPath and apply it to extendPath together with endCom-
ponent, currentPath, and d. In this case, makePathsBetweenComponents
will return the result given by extendPath.

extendPath works as follows:

• If the set neighboursToBeVisited is empty, it will return the empty set.

• Otherwise, it will take a random Id from the set neighboursToBeVisited.
If currentPath extended with the chosen neighbour is a legal path, the re-
sult from makePathsBetweenComponents applied to currentPath extended

9.6 Concrete generation of a transition system 169

with the random element will be included in the result from extendPath.
extendPath will then make a recursive call to itself with the random el-
ement removed from the set of neighboursToBeVisited. By adding a re-
cursive call to the result, extendPath will give every legal extension of
currentPath with a single element from the set neighboursToBeVisited.

9.6 Concrete generation of a transition system

The purpose of this section is to introduce a concrete version of the makeBe-
haviouralSemantics function given in scheme StaticInterlockingSystemToTran-
sitionSystem of the abstract model (see in appendix A.7, page 224).

The concrete version of scheme StaticInterlockingSystemToTransitionSystem can
be found in appendix B.10, page 266. The scheme will be responsible for con-
verting a map-based StaticInterlockingSystem to abstract syntax of a Transi-
tionSystem. The abstract syntax of an RSL-SAL TransitionSystem can be found
in scheme TransitionSystem (see appendix B.9, page 265) and is identical with
the one defined in the abstract model.

The following function is made for replacing the implicit makeBehaviouralSe-
mantics function from the abstract model:

value
makeBehaviouralSemantics :

SIS.StaticInterlockingSystem ∼→ TS.TransitionSystem
makeBehaviouralSemantics(sis) ≡

TS.mk TransitionSystem(makeState(sis), makeTransitionRules(sis))
pre SIS.isWfStaticInterlockingSystem(sis)

The function makeState is made such that it exactly gives a state corresponding
to what is defined in the implicit version of makeBehaviouralSemantics. In the
same way, the function makeTransitionRules computes the transition rule such
that the post-condition from the abstract model is fulfilled.

Proving that the post-condition from the abstract model holds for the new model
is, however, considered as being beyond the scope of this project.

9.7 Concrete generation of confidence conditions 170

9.7 Concrete generation of confidence conditions

As for scheme StaticInterlockingSystemToTransitionSystem, a concrete version
of StaticInterlockingSystemToConfidenceConditions from the abstract model
(that is given in appendix A.8, page 230) is introduced.

The new version of scheme StaticInterlockingSystemToConfidenceConditions (see
appendix B.11, page 272) contains a concrete version of the function makeCon-
fidenceConditions. makeConfidenceConditions makes a list of confidence con-
ditions such that the post-condition of the same method in the abstract model
is fulfilled. In the abstract model, the post-condition was underspecified in the
sense that it defined that some conditions needed to be included, but it did not
forbid adding other conditions than the specified ones. On the contrary, the
concrete version is made in a way such that all the conditions needed to fulfil
the post-conditions will be included in the result, but no other conditions will
be included.

makeConfidenceConditions uses auxiliary functions together with functions de-
fined in Conditionfinding.

Proving that the post-condition from the abstract model holds for the new model
is considered as being beyond the scope of this project.

Chapter 10

Java design and
implementation

As explained in the method overview given in chapter 4, the concrete model
presented in chapter 9 is to be converted to a Java implementation. The im-
plementation will then work as a tool for auto-generating the behaviour of an
interlocking system and the associated confidence conditions. This chapter will
present the Java design and the implementation of the concrete model.

Java has been chosen for several reasons:

• Java is platform-independent. As RSL-SAL and SAL are available for
both Windows and Linux, it will be possible to work with the generated
transition systems using different operating systems. Therefore, the pro-
gram for generating transition systems should work on both platforms.

• Java supports graphical user interfaces, making it possible to extend the
implementation presented in this chapter with such an interface in the
future.

In general, the Java implementation will be close to the concrete model, but some
RSL language constructs like variant types and quantifiers are not supported by
Java. Also, Java allows for using an object-oriented style which, in some cases,

172

might be preferable. Therefore, there will be minor differences between the Java
implementation and the concrete model.

On one hand, one could also think of switching to a more iterative style in order
to obtain efficiency. On the other hand, for this application, correctness is more
important than efficiency. Therefore, it is chosen to implement the functions of
the concrete model using its recursive style.

Besides implementing the schemes from the concrete model, a parser and an
unparser will be introduced such that data can be parsed from a stream or a text
file, interpreted as a StaticInterlockingSystem, converted to a TransitionSystem,
and unparsed to concrete RSL-SAL syntax.

Section 10.1 will present an overview of the design and the implementation using
UML.

Section 10.2 will explain how the concrete RSL model given in chapter 9 is
implemented. UML diagrams will be used for explaining the structure of the
Java classes.

Section 10.3 will explain the choice of a text format that can be used for ex-
pressing a text based StaticInterlockingSystem. The chosen text format will be
XML.

Section 10.4 will explain how a parser is made to process the XML format given
in section 10.3. Also, an unparser is introduced for unparsing a TransitionSystem
to an RSL-SAL scheme.

In general, we will not aim to fulfil the UML 1.X or 2.X standards. The purpose
of the UML diagrams is to help the reader without giving too many details.
Therefore, only the necessary details will be shown.

As explained in appendix C.5, the Java classes and an executable compilation
for Java 1.6.X can be found on the attached CD. An API generated by the
Java-doc tool can be found on the same CD.

Because proofs related to implementation relations are considered as being be-
yond the scope of this project, we will not prove implementation relations be-
tween the concrete model and the Java implementation.

10.1 Overview 173

10.1 Overview

The purpose of this section is to give an overview of the Java design and imple-
mentation.

10.1.1 Implementation relations

Figure 10.1 explains the relation between the functions and data types of the
RSL schemes and the Java classes.

Classes containing static methods are introduced for doing the conversion from
a StaticInterlockingSystem to a TransitionSystem. By using static methods,
the functional programming style from RSL is kept. Schemes Pathfinding,
Conditionfinding, StaticInterlockingSystemToTransitionSystem, StaticInterlock-
ingSystemToConfidenceConditions, and StaticInterlockingSystemConversion de-
fine generator functions. For each of these schemes, a class has been introduced
that defines static methods that are equivalent to the ones defined in the scheme.

Schemes StaticInterlockingSystem, Diagrams, StaticInterlockingSystemL, and
DiagramsL both define data types and some functions that work on these types.
For representing the types and the functions, classes that can be instantiated are
introduced. E.g. a class for representing the StaticInterlockingSystem scheme
will both contain the methods of the scheme and private fields for representing
the StaticInterlockingSystem data type. Instead of taking a StaticInterlock-
ingSystem as argument, the methods of this class will be applied directly to the
private fields of an instance of a StaticInterlockingSystem.

The Types scheme contains multiple data types. In general, for each of these
types, a class is introduced. These classes are located in the package called types.
However, in order to represent the LTLassertion type, sub-package types.ltl is
introduced. This package contains multiple classes for implementing the given
type. Also, the sub-package called types.bool contains multiple classes in order
to represent the type BooleanExp.

10.1.2 Computational overview

The sequence diagram in figure 10.2 gives an overview of how the generation of
an RSL-SAL transition system takes place when everything goes well, i.e. if the
parsed StaticInterlockingSystem is well-formed and no I/O error occurs. The

10.1 Overview 174

Figure 10.1: How the functions and types from the RSL schemes are imple-
mented

10.1 Overview 175

process is initiated by the static class XMLToRSLSAL. By using an instance of
an XMLParser, text in XML format is parsed from a stream. The XMLParser
gives back a list-based StaticInterlockingSystem, called SISL in the figure. The
process can only continue if SISL is well-formed. Otherwise, XMLToRSLSAL
will abort the process.

After the well-formed check, SISL is given to the static class StaticInterlock-
ingSystemToValidationSystem (in the figure called SISLToValidationSystem).
SISL is then given to the static class StaticInterlockingSystemConversion (in
the figure called SISConversion).

This class will convert the list-based StaticInterlockingSystem, SISL, and return
a map-based StaticInterlockingSystem, SIS.

After the conversion, the static classes StaticInterlockingSystemToTransition-
System and StaticInterlockingSystemToConfidenceConditions (in the figure called
SISToTransitionSystem and SISToConfidenceConditions) are used for generat-
ing a TransitionSystem and its corresponding confidence conditions in terms of
LTLassertions. These are stored in an instance of the class called ValidationSys-
tem whose only purpose is to store a TransitionSystem and the corresponding
ConfidenceConditions.

The ValidationSystem is returned to XMLToRSLSAL. XMLToRSLSAL will
then ask an instance of the RSLSALUnparser to unparse the ValidationSys-
tem and send it to a stream.

StaticInterlockingSystemToTransitionSystem and StaticInterlockingSystemToCon-
fidenceConditions will behave as the corresponding schemes in the concrete
model by invoking methods on the static class called Conditionfinding. This
class implements every method of the corresponding RSL scheme and invokes
methods on the static class called Pathfinding. Again, Pathfinding implements
all the methods of its corresponding RSL scheme. The static structure of the
classes used for making a ValidationSystem can be seen in figure 10.3.

10.1.3 Packages overview

This section will detail how the implementation is organised. The following
packages are introduced:

conversion includes the needed classes for converting from a list-based StaticIn-
terlockingSystem to a map-based StaticInterlockingSystem and from a map-
based StaticInterlockingSystem to a ValidationSystem. This includes Condi-

10.1 Overview 176

Figure 10.2: Sequence diagram: An overview of how an RSL-SAL transition
system is made based on parsed data from a stream. SIS is used as a short for
StaticInterlockingSystem.

10.1 Overview 177

Figure 10.3: Class diagram: Structure of the static classes used for computing
a ValidationSystem consisting of a TransitionSystem and its ConfidenceCondi-
tions. SIS is used as a short for StaticInterlockingSystem.

10.2 Java implementation of the concrete RSL model 178

tionfinding and Pathfinding.

driver includes the class Driver that contains a main method. This method will
be used for starting the conversion process from an XML file to a file containing
concrete RSL-SAL syntax. The user will be asked to specify an input XML file,
an output XML file, and the name of the generated RSL-SAL scheme.

exceptions includes the class NotWellFormedException. An instance of this
exception is thrown if a parsed StaticInterlockingSystem is not well-formed.

parser includes everything related to parsing a StaticInterlockingSystem de-
scribed using XML.

sis includes everything needed for representing a map-based StaticInterlock-
ingSystem.

sisL includes everything needed for representing a list-based StaticInterlock-
ingSystem.

transitionSystem includes everything needed for representing a Transition-
System and a ValidationSystem except the common types representing LTL
and Boolean expressions.

types includes Java implementations of most of the types given in the Types
scheme of the concrete model.

types.bool includes the Java implementation of a BooleanExp.

types.common includes common functionality that is specific to the Java im-
plementation.

types.ltl includes the Java implementation of an LTLassertion.

unparser includes everything related to unparsing a ValidationSystem to RSL-
SAL.

10.2 Java implementation of the concrete RSL
model

This section will focus on how the types of the concrete RSL model are con-
verted to Java. Also, the section will explain how extra functionality is added

10.2 Java implementation of the concrete RSL model 179

to the Java implementation compared to the concrete model. However, the
computation is still done in the same way as in the concrete model.

As Java does not support quantifiers, union types, short record types, and vari-
ant types, in some cases, it has been necessary to use some more Java-specific
features when implementing the types.

10.2.1 Feedback on well-formed checks

The well-formed checks in RSL return true or false, but if something is not
well-formed, they do not report why.

In order to increase the user-friendliness, it is decided to extend the well-formed
checks in RSL with error-reporting features. This enables detailed feedback to
the user in case something is not well-formed.

For making a standardised way of performing well-formed checks, an inter-
face called WellFormedCheckable is introduced. The interface defines methods
isWellFormed() of the type Boolean and getErrorLog() of the type String. Every
class that defines a well-formed check must implement this interface. isWell-
Formed() is supposed to give true or false like a well-formed function in RSL
does. If it detects an error, a log will be stored such that getErrorLog() can
report the error. The well-formed checkable classes will therefore be on the
following form:

public class A implements WellFormedCheckable{

public boolean isWellFormed () {
. . .

}

public St r ing getErrorLog () {
. . .

}

. . .
}

Also, it has been decided to give diagrams a name. In that way, the error
reporting functionality can give the name of a Diagram if it is not well-formed.

10.2 Java implementation of the concrete RSL model 180

10.2.2 Ids and restriction on Ids and Diagram names

In the concrete RSL model, an Id has the type Text. Therefore, it has been
decided to use the type String for an Id.

The Ids of the relays are also used for the names of the variables in the state.
This means that they must be legal in an RSL-SAL context. For instance,
spaces in variable names cannot be handled by RSL-SAL.

This leads to introducing a restriction on Ids such that each Id must match
the following regular expression: [a − zA − Z][a − zA − Z0 − 9]∗. An Id must
therefore start with an upper-case or lower-case letter. The first letter can then
be followed by an arbitrarily long and possibly empty sequence of upper-case
letters, lower-case letters, and numbers.

Also, it has been decided to reserve some specific names. For instance, the idle
variable must have a unique name. Therefore, the String “idle” cannot be used
as an Id in a StaticInterlockingSystem.

In order to make a common way of checking an Id, the static class IdRules has
been introduced with methods for checking whether an Id is legal and for giving
text explanations of why an illegal Id is not legal.

10.2.3 Maps, sets, and lists

When implementing maps, sets, and lists, it is possible to take advantage of the
Java collection framework. When using the collection framework, it is necessary
to implement hash code methods and equals methods such that Java is capable
of comparing elements. These methods will not be explained in this section, but
the reader can assume that such methods are defined when needed.

The following generic classes have been used for representing maps, sets, and
lists:

• HashMap for representing maps.

• HashSet and LinkedHashSet for representing sets. LinkedHashSet keeps
the order in which the elements have been added.

• ArrayList for representing lists.

10.2 Java implementation of the concrete RSL model 181

A static class called SetOperations is introduced in order to enable set operations
that are not directly available in Java. For instance, a static method hd is
introduced for representing the RSL operator hd :

public stat ic <T> T hd(Co l l e c t i on <T> c) {
I t e r a t o r <T> i t = c . i t e r a t o r () ;
i f (! i t . hasNext ()) {

throw new RuntimeException (”Cannot apply hd to an empty
c o l l e c t i o n ”) ;

}

return i t . next () ;
}

As the method is generic and works with Collections, it will both be applicable
to sets and lists. Similar auxiliary methods are defined and the Java generics
features are used when possible.

10.2.4 Representing components

The Types scheme of the concrete model (see appendix B.1, page 233) defines
the components of a Diagram and a StaticInterlockingSystem in the following
way:

type
Component =

Pole | Junction | RegularRelay | SteelRelay |
Button | Contact

As Java does not support union types, it is necessary to use a more Java-specific
feature for representing a Component. Also, as the components will have some
basic functionality in common (e.g. an id), it is decided to introduce the abstract
class Component that is specified in the following way:

public abstract class Component implements WellFormedCheckable{
. . .

}

And the components will be implemented in the following way:

public class AComponent extends Component{
. . .

}

10.2 Java implementation of the concrete RSL model 182

The class diagram in figure 10.4 visualises how the components are defined in
the Java implementation.

In order to enforce restrictions on the fields of a Component, e.g. enforcing that
an Id is defined and is legal, it has been decided to let the Component class
implement the WellFormedCheckable interface.

isWellFormed() checks the fields of the Component and gives true if they are
acceptable. In case it gives false, getErrorLog can afterwards be used to obtain
an explanation of the problem.

In RSL, types Button, Junction, and Pole only contain an Id. Therefore, these
are almost pure extensions of Component.

A Contact also extends Component. Furthermore, relayId and relayState are
added corresponding to the Contact-specific information of the concrete RSL
model.

Both RegularRelays and SteelRelays will have an initial state. In order to avoid
defining the same common functionality twice, the abstract class InternalRelay
is defined as an extension of Component. It defines an initial state of a relay.

A RegularRelay is then an almost pure extension of InternalRelay while a Steel-
Relay defines Ids of its 3 neighbours like in the concrete RSL model.

In principle, the ExternalRelay class could extend InternalRelay and thereby get
the common relay information. However, that would make an ExternalRelay
a Component. This would be inconsistent because an ExternalRelay is not
supposed to occur in a Diagram. Therefore, an ExternalRelay must define an
Id and an initial state.

The Types scheme of the concrete model (see appendix B.1, page 233) defined
the type State:

type
State == up | down

In order to represent such a State, the following enumeration is introduced:

public enum State {
up , down

}

10.2 Java implementation of the concrete RSL model 183

The implementation of the observer functions in the Diagrams and StaticInter-
lockingSystems schemes will then be capable of returning a State.

The Poles class is introduced to represent the type Poles defined in the Types
scheme. As in the concrete RSL model, it defines fields for storing a positive
Pole and a negative Pole.

Like Component, Poles and ExternalRelay implement WellFormedCheckable
and must therefore be able to check the validity of their private fields.

10.2.5 Representing a list-based Static Interlocking Sys-
tem

As previously mentioned in section 10.1, it has been decided to merge the RSL
scheme StaticInterlockingSystemL (as defined in appendix B.3, page 244) and its
contained type for representing a list-based StaticInterlockingSystem into one
class such that the data stored in private fields represent the data of StaticInter-
lockingSystem and the functions of StaticInterlockingSystemL can then be used
on the private fields. The class StaticInterlockingSystemL is implemented in the
following way:

package s i s L ;

public class S t a t i c I n t e r l o c k i n g S y s t e m implements
WellFormedCheckable {

private ArrayList<Diagram> diagrams ;

private ArrayList<ExternalRelay> ex t e rna lRe lay s ;

// func t i ons from the S ta t i c In t e r l o ck ingSys t emL scheme
. . .

}

The functionality will be the same as in the concrete RSL model. In the same
way, the functionality from DiagramsL (see appendix B.2, page 236) and the
list-based data type Diagram have been merged.

A class diagram representing the implementation of the list-based StaticInter-
lockingSystem can be seen in figure 10.5. A Diagram has fields for storing
ArrayLists of the different Component types except Pole. As in the concrete
RSL model, the poles are stored in an instance of the type Poles. Edges are
stored in an ArrayList as instances of the Edge class corresponding to the RSL
type Edge.

10.2 Java implementation of the concrete RSL model 184

Button

Junction
Component

id : String

InternalRelay
initialState : String
getInitialState() : State

SteelRelay
upId :String
downId : String
minusId : String

Poles

 1

 minus

 1

 plus

Pole

RegularRelay

«Interface»
WellFormedCheckable

isWellFormed() : Boolean
getErrorLog() : String

Contact
relayId : String
relayState : String
getRelayState() : State

«Enumeration»
State

up
down

ExternalRelay
id : String
ínitialState : String
getInitialState() : State

Figure 10.4: Class diagram: the Components of a StaticInterlockingSystem

10.2 Java implementation of the concrete RSL model 185

In order to enable well-formed checks on a Diagram, the Diagram class imple-
ments the WellFormedCheckable interface. Furthermore, the necessary func-
tions defined in DiagramsL of the concrete model have been implemented.

A StaticInterlockingSystem is also WellFormedCheckable. It contains ArrayLists
of Diagrams and ExternalRelays. Again, the necessary functions in StaticInter-
lockingSystemL of the concrete model have been implemented.

 *

 edge-list
Diagram

name : String

Button RegularRelay SteelRelay

 *

 regularRelay-list

 *

button-list

 *

 diagramList

«Interface»
WellFormedCheckable

isWellFormed() : Boolean
getErrorLog() : String

Contact

Edge
id1 : String
id2 : String

*

 contact-list

junction-list
Junction

 *
externalRelay-list

ExternalRelay

Poles
plus : Pole
minus : Pole

 *

 steelRelay-list

StaticInterlocking-
System

 1

 poles

Figure 10.5: Class diagram: A list-based StaticInterlockingSystem

10.2 Java implementation of the concrete RSL model 186

10.2.6 Representing a map-based Static Interlocking Sys-
tem

The functionality of the schemes of the map-based model, StaticInterlockingSys-
tem (see appendix B.5, page 254) and Diagram (see appendix B.4, page 247),
have, respectively, been merged with the map-based types for StaticInterlock-
ingSystem and Diagram. The implementation of the class StaticInterlockingSys-
tem is made in the following way:

package s i s ;

public class S t a t i c I n t e r l o c k i n g S y s t e m implements
WellFormedCheckable {

private HashSet<Diagram> diagrams ;

private HashMap<Str ing , ExternalRelay> ex t e rna lRe lay s ;

// func t i ons from the scheme S ta t i c In t e r l o c k in gSy s t em
. . .

}

Section 10.1 explained that well-formed checks are made on a list-based StaticIn-
terlockingSystem before it can be converted to a map-based StaticInterlock-
ingSystem. Therefore, the conversion will be applied only to well-formed, list-
based StaticInterlockingSystems, implying that the conversion always will give a
well-formed, map-based StaticInterlockingSystem. As the list-based StaticInter-
lockingSystem is well-formed, the map-based StaticInterlockingSystem resulting
from the conversion will be well-formed. So there is no need for implementing the
well-formed checks of a map-based StaticInterlockingSystem. Therefore, Well-
FormedCheckable is not implemented for a map-based StaticInterlockingSystem.

The Diagram class of the map-based StaticInterlockingSystem can be seen in
figure 10.6. In the Java implementation, a map-based Diagram has a HashSet
of Edges, a HashMap representing the Components, and a HashMap containing
the PoleTypes. An enumeration has been introduced for representing the RSL
variant type PoleType.

A StaticInterlockingSystem contains a HashSet of Diagrams and a HashMap for
storing ExternalRelays.

All the necessary observer functions from the concrete RSL model have been
implemented by Diagram and StaticInterlockingSystem.

10.2 Java implementation of the concrete RSL model 187

 *

 diagram-set

*

externalRelay-map

 *

component-map

*

edge-set

Diagram
name : String

2
poleType-map

Edge
id1 : String
id2 : String

Component

ExternalRelay

«Enumeration»
PoleType

plus
minus

StaticInterlocking-
System

Figure 10.6: Class diagram: A map-based StaticInterlockingSystem

10.2.7 Representing Boolean expressions and LTL asser-
tions

Variant types are not supported by Java. Therefore, when implementing Boolean-
Exp and LTLassertion from the Types scheme of the concrete RSL model (see
appendix B.1, 233), one needs to use Java features that have the same semantics
as these RSL types.

In RSL, constructors can be used for creating a value of a variant type. These
constructors are defined directly as part of the variant type.

Java will only allow constructors for classes. In order to make similar con-
structors in Java as the ones defined in the RSL versions of BooleanExp and
LTLassertion, it has been decided to make one class for each constructor. Each
class that corresponds to a constructor will then implement an interface that
represents the type of which the class defines a constructor.

Suppose one has the following variant type in RSL:

10.2 Java implementation of the concrete RSL model 188

type
Variant == A(a : T1) | B(b : T2)

The following interface can then be used for defining the type:

public interface Variant {

}

And the classes for implementing the constructors can then be defined in the
following way:

public class A implements Variant {
public A(T1 a) {

. . .
}
. . .

}

public class B implements Variant {
public B(T2 b) {

. . .
}
. . .

}

Figure 10.7 illustrates how the pattern has been applied for implementing the
RSL type BooleanExp. An empty interface has been defined for representing
a BooleanExp. The interface is implemented by the classes And, Or, Neg, and
Literal.

Like in the concrete RSL model, And and Or contain sets. When computing the
conditions based on paths, it will be helpful for a human reader if the conditions
are presented in the order in which the Buttons and Contacts are present in the
paths. In that way, it will be possible to understand a condition by manually
following a path in a diagram. In order to enable this, LinkedHashSet are used
as the set types of And and Or. A LinkedHashSet will remember the order of
which the members where added, but will still avoid repetition of members. The
order of a LinkedHashSet is not affected if an element is re-inserted.

Neg contains a single BooleanExp and Literal contains a String representing an
Id.

In figure 10.7, one can also see that an interface is introduced for representing
LTLassertion. Classes corresponding to the constructors G, F, X, Imply, and B
have been introduced.

10.2 Java implementation of the concrete RSL model 189

RSL-SAL allows for naming LTL assertions. In order to increase the user-
friendliness, it is decided to name the confidence conditions after their type, the
Id of the component for which a given confidence conditions states a property,
and the name of the diagram containing the component. In order to enable this,
the class LTLassertionContainer is introduced. It contains a name and an LT-
Lassertion. The static class StaticInterlockingSystemToConfidenceConditions is
then supposed to name assertions by including them in an LTLassertionCon-
tainer.

toString methods have been defined in order to enable an easy export of LTL
assertions and Boolean expressions to RSL-SAL syntax.

 1 1

«Interface»
LTLassertion

1

G F

 1
 lhs

B Imply

«Interface»
BooleanExp

X

1

*

set*

set

 1

Neg

 1

And Or

LTLassertionContainer
name : String

 1

 rhs

Literal
identifer : String

Figure 10.7: Class diagram: Representation of BooleanExp and LTLassertion

10.2 Java implementation of the concrete RSL model 190

10.2.8 Simplification of formulas

Recall the Conditionfinding scheme of the concrete RSL model in section 9.5. A
condition for having current through a given part of a circuit will be on the form
c1 ∨ ...∨ cn where all the conditions c1, ..., cn will be on the form pi,1 ∧ ...∧ pi,m.

It might be the case that one of the conditions c1, ...,cn, say cx, contains a pair
of complementary elements, e.g. a and ∼a. In that case, cx is statically false
and can be removed from the formula without changing the logical meaning of
it. In other words, c1 ∨ ... ∨ cx ∨ ... ∨ cn can be reduced to c1 ∨ ... ∨ cn

In order to avoid evaluating condition parts that are always false, it it chosen
to remove them when generating the RSL-SAL scheme. This is done without
changing how the conditionfinding mechanism works. The And class seen in
figure 10.7 is given a method for checking whether it represents something that
is statically false. The Or will then have a method for removing every And
instance inside of it that is statically false. After a disjunction of conjunctions
is computed by Conditionfinding, it will be told to remove the parts of it that
are statically false.

10.2.9 Presentation of validation- and transition systems

As previously mentioned, the Java class ValidationSystem is introduced for con-
taining a transition system and its LTL assertions. Such a ValidationSystem can
be seen in figure 10.8. It has references to an instance of TransitionSystem and
an ArrayList of named LTL assertions represented by instances of LTLasser-
tionContainer.

For representing the state, a TransitionSystem has an ArrayList of Var in-
stances. As in the concrete RSL model, a Var has an Id and an initial value.
For representing the Boolean variant type of the concrete specification, the enu-
meration Boolean is introduced. This enumeration is used for the initial value
in a Var.

Furthermore, a TransitionSystem contains an ArrayList of TransitionRules. It
has been decided to name each TransitionRule such that one can see which relay
a given rule belongs to. As in the concrete RSL model, a TransitionRule has
a guard of type BooleanExp and a MultipleAssignment. A MultipleAssignment
contains a an ArrayList of Assignment instances. Like in the concrete RSL
model, an Assignment has an Id and an assigned value of the type BooleanExp.

10.3 Input Format: XML 191

As for the map-based StaticInterlockingSystem and Diagram, it has been decided
not to include the well-formed functions for TransitionSystem. If the input to
the computation is well-formed, the result will be well-formed.

Figure 10.8: Class diagram: ValidationSystem and TransitionSystem

10.3 Input Format: XML

This section will describe the chosen input format that can be parsed by the
Java program. The chosen format is XML. XML is selected because it is a
well-known standard that is easy to parse for programs and is readable for a
human user. Also, XML parsers are available for many programming languages
and XML documents are extendible if one wishes to add further constructs in

10.3 Input Format: XML 192

a Diagram or a StaticInterlockingSystem.

The purpose of the XML format is to make something as close to the list-based
StaticInterlockingSystem as possible. In that way, a parser can easily make an
instance of this model based on an XML document.

The chosen XML format declares a StaticInterlockingSystem on the following
form:

<?DOCTYPE xml version=” 1 .0 ” ?>
<S t a t i c I n t e r l o c k i n g S y s t e m>

<DiagramList>
DL

</ DiagramList>

<Externa lRe layL i s t>
ERL

</ Externa lRe layL i s t>
</ S t a t i c I n t e r l o c k i n g S y s t e m>

ERL is a sequence of ExternalRelays on the following form:

<ExternalRelay id=’ extId1 ’ i n i t i a l S t a t e=X1/>
. . .

The attributes of each ExternalRelay correspond to the fields of an ExternalRe-
lay in the concrete RSL mode. Definitions of initialState (in this case X1) must
be equal to one of the two strings ’up’ and ’down’ .

DL is a sequence of Diagrams. A Diagram is on the following form:

<Diagram name = ’ diagram1 ’>
<Components>

<Poles>
<Plus> <Pole id = ’ plusID ’ /> </ Plus>
<Minus> <Pole id = ’ minusID ’ /> </Minus>

</ Poles>

<ButtonList>
BL

</ ButtonList>

<ContactList>
CL

</ ContactLis t>

<Junc t i onL i s t>
JL

</ Junc t i onL i s t>

<S t e e l R e l a y L i s t>

10.3 Input Format: XML 193

SRL
</ S t e e l R e l a y L i s t>

<RegularRe layList>
RRL

</ RegularRe layLis t>
</Components>

<EdgeList>
EL

</ EdgeList>
</Diagram>

Poles corresponds to the type Poles of the concrete RSL model and it defines a
positive and a negative pole.

BL defines a sequence of Buttons on the following form:
<Button id=’ buttonID1 ’ />
. . .

In that way, a Button defines the same field as in the concrete RSL model

CL defines a sequence of Contacts on the following form:
<Contact id=’ contactID1 ’ cond i t i onRe layId=’ r e l a y I d ’

r e l a y S t a t e=X2/>
. . .

The attributes of a Contact corresponds to the fields of a Contact in the concrete
RSL model. conditionRelayId defines the Id of the relay that rules the contact
and relayState defines the required state of the relay to have the contact closed.
Definitions of relayState (in this case X2) must be equal to one of the two strings
’up’ and ’down’ .

JL defines a sequence of Junctions on the following form:
<Junct ion id=’ junct ionID1 ’ />
. . .

SRL is a sequence of SteelRelays and is on the following form:
<Stee lRe lay id=’ s tee lRe layID1 ’ i n i t i a l S t a t e=X3 upId=’ cp up ’ downId=

’ cp down ’ minusId=’ cp minus ’ />
. . .

Again, definitions of initialState (in this case X3) must be equal to one of the
two strings ’up’ and ’down’. downId and minusId represent the up relation, the
down relation, and the minus relation of a SteelRelay respectively.

10.4 Parsing and unparsing 194

RRL is almost equivalent to to SRL. It defines a sequence of RegularRelay in
the following way:

<RegularRelay id=’ re layID1 ’ i n i t i a l S t a t e=X4/>

Definitions of initialState (in this case X4) must be equal to one of the two
strings ’up’ and ’down’.

In a Diagram, EL is a sequence of edges on the following form:

<Edge id1=’ componentId1 ’ id2=’ componentId2 ’ />
. . .

The attributes of an Edge correspond to the fields of an Edge in the concrete
RSL model.

10.4 Parsing and unparsing

This section will explain some of the principles for parsing an XML version of
StaticInterlockingSystem and for unparsing a ValidationSystem.

10.4.1 Parser implementation

In our context, a parser is supposed to read text and give back a list-based
StaticInterlockingSystem. As previously mentioned, XML will be used for de-
scribing the StaticInterlockingSystems, but one could have chosen another for-
mat. Therefore it is chosen to make the following parser interface that is to be
implemented by every parser:

public interface Parser {
public s i s L . S ta t i c I n t e r l o c k i n g Sy s t e m parseStream (InputStream in)

throws Exception ;
}

The parser will then parse data from an InputStream and give back a list-based
StaticInterlockingSystem. An InputStream allows for reading data from a file,
from System.In etc.

When implementing the XML parser, one can take advantage of Java XML
libraries instead of implementing every layer of the parsing. In this project,

10.4 Parsing and unparsing 195

it has been chosen to use Commons Digester 1.8 from the Apache project1.
Its dependencies are Commons Logging 1.1.x and Commons BeanUtils 1.7. As
explained in the Apache license2, the parser library and its dependencies are
free and can be redistributed.

The advantage of Digester is that it allows for setting up rules for when objects
should be created and when methods should be called. For instance, the fol-
lowing will set up a rule for when a StaticInterlockingSystem instance should be
created by an instance of Digester called digester :

d i g e s t e r . addObjectCreate (” S t a t i c I n t e r l o ck i n g S y s t e m ” , ” s i s L .
S t a t i c I n t e r l o c k i n g S y s t e m ”) ;

The rule specifies that when the root element < StaticInterlockingSystem >
is encountered, an instance of a list-based StaticInterlockingSystem should be
created and pushed on a stack of objects.

“Setter methods” of StaticInterlockingSystem will then be called during the
parsing and at the end, the parser will return the instance of StaticInterlock-
ingSystem from the stack.

The advantage of Digester is that it allows for specifying high level rules for
how to process XML. The disadvantage is that it cannot check that an XML
file defines some specific tags and attributes. For instance, if an attribute of a
tag is undefined, it will interpret it as null. Therefore, it will not check whether
the required tags or attributes are defined. If other tags than the required are
defined, Digester will ignore them.

After the parsing, it is therefore necessary to check every data structure for
undefined attributes. It implies that the implementation must be defensive,
which is an advantage if someone replaces the parser with another one.

10.4.2 Unparser implementation

As for the parser, one could replace the RSL-SAL unparser with another un-
parser. Therefore, the following interface has been defined for an unparser:

public interface Unparser {
public void unparse (S t r ing name , Val idat ionSystem vs , PrintStream

out) ;
}

1The parser and its dependencies can be found on http://commons.apache.org/digester/
2http://commons.apache.org/license.html

10.4 Parsing and unparsing 196

The unparse method takes a name that can be interpreted as an RSL scheme
name, a ValidationSystem that is to be unparsed, and a PrintStream for giving
the result of the unparsing. A PrintStream could be System.out or something
that writes directly to a file.

The unparser takes advantage of the concept of delegation by using the toString
methods of the Java classes. These methods are able to export the classes as
concrete RSL-SAL syntax. For instance, the classes that define LTL assertions
and Boolean expressions are capable of converting instances of them directly to
concrete RSL-SAL syntax, allowing the unparser to abstract from such tasks.

In that way, the primary responsibility of the unparser is to ensure that every-
thing is unparsed in the right order with a proper indentation. The following
method is defined for sending a String to a PrintStream with a specific inden-
tation:

private void p r i n t l n (S t r ing s , int indentat ion , PrintStream out) {
for (int i = 0 ; i < i ndenta t i on ; i++){

out . p r i n t (” ”) ;
}

out . p r i n t l n (s) ;
}

When having this auxiliary method available, one can use the following method
for unparsing the state of a TransitionSystem:

private void unparseState (ArrayList<Var> s ta te , PrintStream out) {
for (int i = 0 ; i < s t a t e . s i z e () ; i++){

p r i n t l n (s t a t e . get (i) + (i < s t a t e . s i z e () −1 ? ” , ” : ””) , 8 , out) ;
}

}

Due to the principle of delegation, the method abstracts from converting Var
instances to concrete RSL-SAL syntax. Similar methods are implemented for
exporting lists that contain instances of LTLassertion and TransitionRule.

Chapter 11

Testing the Java
Implementation

This chapter will explain how the Java implementation introduced in chapter
10 is tested. As explained in appendix C.6, the test files can be found on the
attached CD together with a more detailed explanation.

Section 11.1 will explain the test strategy. Three categories of tests will be
introduced and a strategy for implementing the tests is formulated.

Section 11.2 will present the results of the tests.

Section 11.3 will make a conclusion based on the results of the tests.

11.1 Test strategy

This section will introduce the test strategy. In order to focus each test on
a specific aspect of the program, it is chosen to divide the tests into several
categories.

If the input to the Java program is valid, the execution will perform the following

11.1 Test strategy 198

steps:

Step 1: Parse the XML file.

Step 2: Check that the necessary attributes are well-defined (e.g that they are
not null).

Step 3: Check that the parsed instance of the list-based StaticInterlockingSys-
tem is well-formed.

Step 4: Transform the StaticInterlockingSystem to a TransitionSystem.

Step 5: Unparse the TransitionSystem.

We will now analyse each of the above steps in order to define test categories:

Step 1: The used XML parser is responsible for performing the parsing and it
will throw exceptions if the XML cannot be parsed. This functionality is
part of the Digester library class and we will assume that the used library
is working as specified in its API. Therefore, it is not necessary to test this
step.

Step 2: The rest of the execution relies on step 2 functioning as expected.
Therefore, it will be relevant to test step 2 separately.

Step 3: The rest of the execution relies on step 3 functioning as expected.
Therefore, it will be relevant to test step 3 separately.

Step 4: It is essential that the generated transition systems and their confi-
dence conditions are correct with respect to the diagrams. Therefore, it
is relevant to test the conversion of well-formed StaticInterlockingSystems
to a ValidationSystem.

Step 5: The unparser can be tested separately, but it can also be tested to-
gether with step 4. Especially if the testing of step 4 is performed using
functional testing, every test in this category will involve unparsing. As
it will be explained later, step 4 will be tested using functional testing,
making it unnecessary to make a direct test of step 4.

This leads to the following test categories:

1. Attribute-related tests (step 2).

2. Well-formed related tests (step 3).

11.1 Test strategy 199

3. Transition system and confidence condition generation tests (step 4).

A test strategy for each of these categories will be formulated in the next sec-
tions.

11.1.1 Attribute-related tests

The attribute-related tests are supposed to check that proper error messages
are generated by the program if the defined attributes of the parsed XML file
are unacceptable.

Consider the following XML declarations of Junctions. Neither of them are
malformed XML, but they are not acceptable in our context.

Undefined ID:
<Junct ion />

Empty Id:
<Junct ion id=’ ’ />

Illegal Id:
<Junct ion id=’£a ’ />

(As explained in section 10.2, the regular expression [a−zA−Z][a−zA−Z0−9]∗
must be matched and the Id must not be a reserved (e.g. if it equals “idle”).)

Similar illegal declarations can be made for any type of component. Therefore,
for each type of component, it must be tested that the expected error messages
are shown and the computation is aborted if one of the fields is illegal.

For each type of component and the external relays, it is decided to make three
tests for each of its fields:

1. A test where the field is not defined.

2. A test where the content of the field is empty.

3. A test where the content of the field is illegal. For Ids, this means that
the regular expression [a − zA − Z][a − zA − Z0 − 9]∗ is not matched or
that the Id is reserved.

11.1 Test strategy 200

Making this test will ensure that the content of the lists with components is
legal. However, one could also imagine the following inconsistencies:

1. Some required definitions are not present in the parsed XML.

2. Too many definitions are present in the parsed XML.

An example of inconsistency 2 is the following Diagram:
<Diagram name = ’ diagram1 ’>

<Components>
. . .

<ButtonList>
. . .

</ ButtonList>
. . .

<ButtonList>
. . .

</ ButtonList>
. . .

</Components>
. . .

</Diagram>

It must be checked that proper error messages are shown to the user and that the
execution is aborted if inconsistencies 1 or 2 occur. Such tests are made when
necessary. For instance, it is tested that the external relays are not declared
twice.

11.1.2 Well-formed related tests

That a StaticInterlockingSystem is well-formed is a precondition for converting
it into a TransitionSystem. Therefore, it is essential that the computation is
aborted in case a StaticInterlockingSystem is not well-formed. Also, it must be
tested that proper error messages are shown to the user.

Therefore, it has been decided to make one or more tests related to each possible
type of violation of the well-formed function of the list-based StaticInterlock-
ingSystem. For instance, it must be checked that a StaticInterlockingSystem is
not considered as being well-formed if a RegularRelay contained by it has the
same Id as another RegularRelay, a positive Pole, a negative Pole, a Contact, a
Button, a Junction, a SteelRelay, or an ExternalRelay.

Also, it is decided to focus the tests on borderline cases with respect to the
well-formed constraints. For instance, if a given type of Component must have

11.1 Test strategy 201

two neighbours, at least two tests will be made. One test with a Diagram con-
taining such a component that has 1 neighbour. A second test with a Diagram
containing such a component that has 3 neighbours.

11.1.3 Transition system and confidence condition gener-
ation tests

Transition system generation tests are introduced for testing that the generated
transition system actually expresses the behavioural semantics of a given inter-
locking system. Also, it must be tested that the required confidence conditions
are generated.

In general, the following things must be checked for the generated RSL scheme:

1. The state is initialised correctly:
the correct number of variables are declared in the state. The buttons
are released and the relays have the state specified in the StaticInterlock-
ingSystem. The idle variable is set to false.

2. There are two transition rules for each relay, one for drawing it and one
for dropping it.

3. The idle transition rule is declared.

4. No other transition rule is declared.

5. The guards of the transition rules are correct.

6. The LTL assertions X(idle) and G(F(idle)) are declared.

7. Two LTL assertions are declared for each regular relay.

8. Three LTL assertions are declared for each steel core relay.

9. No other LTL assertions are generated.

10. The content of the LTL assertions is correct.

11. The generated RSL-SAL scheme is formulated using correct RSL-SAL
syntax.

1-4, 6-9, and 11 can be checked statically without analysing the possible paths
inside the Diagrams.

11.1 Test strategy 202

However, 5 and 10 require further analysis. When testing them, it is necessary to
let the implemented tool generate transition systems and confidence conditions
for interlocking systems of which the result is already known. In other words,
for each of the interlocking systems used for the test, it must be possible to
calculate the conditions for drawing and dropping relays manually. It will then
be possible to compare the auto-generated results with the manually calculated
conditions.

The implemented algorithm that calculates conditions for drawing and drop-
ping relays relies on a pathfinding algorithm. When testing that the transition
systems are calculated correctly, it is essential to test that the computed condi-
tions correspond to the ones that can be obtained by considering the well-formed
paths in a diagram. Therefore, it is chosen to make artificial interlocking sys-
tems that each test a specific property of the pathfinding algorithm. The tests
will have the two following focuses:

• the algorithm works for parallel and series connections in general and
every possible path is taken into consideration by the Conditionfinding
algorithm.

• The computation does not consider any illegal path, e.g. a path where a
rule related to steel core relay is not respected.

In other words, the strategy for testing the generation of transition systems and
confidence conditions is to create a set of artificial interlocking systems that test
the different rules of the computation of conditions and paths. These systems
are made such that it is possible to compute all the possible paths by hand and
use them when inspecting the auto-generated results. Each time one of these
tests are made, 1-4, 6-9, and 11 will be tested too by inspecting the state, the
transition rules, and the confidence conditions.

11.1.4 Strategy for test implementation

When implementing tests for each category, it will be possible to use unit testing
and functional testing.

For Java, the unit test framework JUnit1 is available. A benefit of using JUnit
is that the tests can be repeated quickly and unattendedly in an automated
manner. This is useful for projects with a long implementation phase or for
projects where refactoring of the implementation is likely to happen.

1For further information, see http://www.JUnit.org

11.2 Tests and results 203

In our project, the Java implementation phase has been relatively short due to
the fact that most of the functionality was already defined in the concrete model
introduced in chapter 9. Also, refactoring of the implementation is not likely to
happen because it would probably require refactoring of both the abstract and
the concrete model. Therefore, we do not need these benefits of unit testing.

Furthermore, unit testing is useful when one wants to focus the tests on specific
parts of a program instead of testing the complete program. However, with the
chosen division of the test cases, it will be possible to formulate functional tests
that only focus on specific parts of the program. Therefore, this specific benefit
from unit testing can also be obtained when using functional testing.

As most benefits of unit testing are not needed and the other ones can be
obtained by using functional testing, there is no specific reason for preferring
unit testing instead of functional testing.

Making unit tests will require formulations of the expected results and inputs
using their abstract syntaxes. This will be time consuming compared to making
functional tests. For each functional test, it will be required to make an XML file
containing a StaticInterlockingSystem. It will then be applied to the program
and the result will be inspected.

As we do not gain anything from unit tests and the formulation of these will
be more time-consuming than making the functional tests, it is chosen to use
functional testing only.

11.2 Tests and results

As explained in the test strategy, the tests are divided into three categories:

1. Attribute related tests.
For this category, 78 XML files have been formulated. Each of these files
formulate a single test.

2. Well-formed related tests.
For this category, 53 XML files have been formulated for testing the con-
straints defined by the well-formed function in the sisL.Diagram class.
Furthermore, 27 XML files have been formulated for testing the rest of
the constraints defined by the well-formed function in the StaticInterlock-
ingSystem class. Each of these files formulate a single test.

11.3 Conclusion 204

3. Transition system and confidence condition generation tests.
For this category, 5 XML files containing a StaticInterlockingSystem with
a single diagram have been formulated. Each Diagram is used for testing
specific aspects of the condition finding process. Furthermore, a file with a
StaticInterlockingSystem containing all the Diagrams from the 5 files has
been formulated.

As explained in appendix C.6, the test files can be found on the attached CD
together with explanation of the tests.

Each of the 164 test files were applied to the program and the outputs were as
expected, i.e. no bugs were detected during the testing phase. All the test were
performed in a Windows XP SP2 environment using Java 1.6.0 05. Some of the
tests have also been performed in a Ubuntu 8.04, Kernel Linux 2.6.24-19-generic
environment using Java 1.6. 06.

11.3 Conclusion

The formulated test program has a high coverage and it tests the important
functionalities of the implementation. As all the tests gave the expected results,
it is concluded that it is likely that the program functions as it is supposed to.

Chapter 12

Conclusion

The following conclusion consists of two parts: a project summary and sugges-
tions for future work.

12.1 Project summary

The goal of this thesis was to develop a formal method for verifying that inter-
locking systems for railway stations guarantee the safety of trains.

In order to do so, we have studied and modelled relay interlocking systems
for Danish railway stations: static and dynamic models have been specified on
different levels of abstraction. Furthermore, a transformation from an instance
of a static model to an instance of a dynamic model and its associated confidence
conditions has been specified using RSL and afterwards implemented using Java.
The Java program can transform an XML description of relay diagrams to an
RSL-SAL scheme. To complete the scheme resulting from such a transformation,
behaviour of the external world and safety properties must be added.

We have formulated patterns for the behaviour of external inputs to interlocking
systems. The dynamic model must be extended with instances of these patterns
such that it includes the interaction with the external world. Also, patterns for

12.2 Suggestions for future work 206

safety properties have been developed. Instances of these can be verified using
the state-space based model checking tool SAL.

Altogether, the work presented in this thesis has successfully defined a method
that uses ordinary station documentation as a starting point for verifying that
interlocking systems guarantee the safety of trains at a station. It has been
demonstrated that the method is fully applicable to a small Danish railway
station. However, as the method has not been applied to larger stations, we
cannot say anything about its scalability.

12.2 Suggestions for future work

Even though this thesis has successfully developed a method for verifying that
interlocking systems guarantee the safety of trains, there is still room for future
work.

First of all, implementation relations should be proven in order to ensure the
correctness of the concrete RSL model and the Java implementation.

Also, one cannot know to which extent the size of the state space will constrain
the verification of safety properties for larger stations. Therefore, it will be
relevant to make a scalability study.

The user-friendliness of the developed method can be improved in several ways.
A tool for auto-generation of external behaviour and safety properties can be
implemented. Also, it will be useful to develop a graphical user interface that
is able to transform a graphical representation of diagrams to the XML format
specified by this thesis and visualise counter-examples generated by the SAL
model checker.

One could also think of extending the Java implementation with an algorithm
for simplifying the logical conditions for drawing and dropping relays. However,
that might make the conditions less understandable for a human reader and it
will not change the size of the state space.

Bibliography

[1] The rsltc repository. http://www.iist.unu.edu/newrh/III/3/1/docs/
rsltc/.

[2] Symbolic analysis laboratory, official home page. http://sal.csl.sri.
com/.

[3] Uppaal, the official home page. http://www.uppaal.com/.

[4] Banedanmark. Functional safety requirements Version 1.1 Issue 1.3. In-
ternal Banedanmark publication, 2003.

[5] Henrik W. Carlson and Carsten S. Lundsten. Introduktion til sikrings- og
fjernstyringsanlæg. Rambøll, 2006.

[6] Banetjenesten Danske Statsbaner. DSB Baneanlæg. Danske statsbaner,
Teknisk Afdeling, 1989.

[7] Louise Elmose Eriksen and Boe Pedersen. Simulation of Relay Interlocking
Systems. 2007. IMM-BSC-2007-52.

[8] Ana Garis. Raise tool user guide. http://www.iist.unu.edu/newrh/III/
3/1/docs/rsltc/user_guide/html/ug_62.html.

[9] The RAISE Language Group. The RAISE Specification Language. Prentice
Hall Int., 1992.

[10] Michael Huth and Mark Ryan. Logic in Computer Science. Cambridge
University Press, 2004. ISBN 0 521 54310 X paperback.

[11] Niels E. Jensen and Benny Mølgaard Nielsen. De danske jernbaners signaler
og sikringssystemer gennem 150 år. Banebøger, 1998.

http://www.iist.unu.edu/newrh/III/3/1/docs/rsltc/
http://www.iist.unu.edu/newrh/III/3/1/docs/rsltc/
http://sal.csl.sri.com/
http://sal.csl.sri.com/
http://www.uppaal.com/
http://www.iist.unu.edu/newrh/III/3/1/docs/rsltc/user_guide/html/ug_62.html
http://www.iist.unu.edu/newrh/III/3/1/docs/rsltc/user_guide/html/ug_62.html

BIBLIOGRAPHY 208

[12] Joern Pachl. Railway Operation and Control. VTD Rwail Publishing, 3604
220th Pl. Sw, Mountlake Terrace WA 98043 USA, 2002. ISBN 0-9719915-
1-0.

[13] Juan Ignacio Perna and Chris George. Model Checking RAISE Applicative
Specifications. In Proceedings of the Fifth IEEE International Conference
on Software Engineering and Formal Methods. IEEE Computer Society,
2007.

[14] Juan Ignacio Perna and Chris George. Model checking RAISE specifica-
tions. Technical Report 331. UNU-IIST, P.O.Box 3058, Macau, November
2006.

[15] Steven S. Skiena. The Algorithm Design Manual, chapter Combinatorial
Search and Heuristic Methods. Springer-Verlag, 1997.

[16] DSB skolen. Signaturer for sikringsplan Version 1.01.

Appendix A

The abstract RSL model

This appendix contains the schemes introduced by chapters 5 and 6. The
schemes correspond to the boxes marked with A, B and E in figure 4.2, page
48.

A.1 Types

scheme Types =
class

type
/∗ identifier∗/
Id,
/∗ a boolean expression ∗/
BooleanExp ==

and(a : BooleanExp-set) |
or(o : BooleanExp-set) |
neg(n : BooleanExp) |
literal(id : Id),

/∗ a boolean value∗/
Boolean == True | False,
/∗ a state of a relay∗/

Diagrams 210

State == up | down,

/∗ type for LTL assertions ∗/
LTLassertion ==

G(g : LTLassertion) |
F(f : LTLassertion) |
X(x : LTLassertion) |
Imply(lhs : LTLassertion, rhs : LTLassertion) |
B(b : BooleanExp)

value
/∗ auxiliary functions ∗/

/∗ gets all the ids that are inside a given
boolean expression ∗/
idsInBoolExp : BooleanExp → Id-set
idsInBoolExp(exp) ≡

case exp of
literal(l) → {l},
neg(nexp) → idsInBoolExp(nexp),
and(aset) → idsInBoolExpSet(aset),
or(oset) → idsInBoolExpSet(oset)

end,

/∗ gets all the ids in a set of boolean expressions
∗/
idsInBoolExpSet : BooleanExp-set → Id-set
idsInBoolExpSet(set) ≡

if set = {} then {}
else

let head = hd set in
idsInBoolExp(head) ∪
idsInBoolExpSet(set \ {head})

end
end

end

A.2 Diagrams

context: T

Diagrams 211

scheme Diagrams =
class

type Diagram

value
/∗ observer functions ∗/
/∗ true if the ID is a positive pole in the diagram,
otherwise false ∗/
isPlus : T.Id × Diagram → Bool,

/∗ true if the ID is a negative pole in the diagram,
otherwise false ∗/
isMinus : T.Id × Diagram → Bool,

/∗ true if the ID is a regular relay in the diagram,
otherwise false ∗/
isRegularRelay : T.Id × Diagram → Bool,

/∗ true if the ID is a steel relay in the diagram,
otherwise false ∗/
isSteelRelay : T.Id × Diagram → Bool,

/∗ true if the ID is a contact in the diagram,
otherwise false ∗/
isContact : T.Id × Diagram → Bool,

/∗ true if the ID is a button in the diagram,
otherwise false ∗/
isButton : T.Id × Diagram → Bool,

/∗ true if the ID is a junction in the diagram,
otherwise false ∗/
isJunction : T.Id × Diagram → Bool,

/∗ observer functions for steel relays ∗/

/∗ if the steel relay is receiving current
from the returned neighbour of this function,
it can be drawn ∗/
upRelation : T.Id × Diagram ∼→ T.Id,

/∗ if the steel relay is receiving current
from the returned neighbour of this function,

Diagrams 212

it can be dropped ∗/
downRelation : T.Id × Diagram ∼→ T.Id,

/∗ gives a neighbour of a steel relay
from which the steel relay cannot receive
current ∗/
minusRelation : T.Id × Diagram ∼→ T.Id,

/∗ observer function for regular relays and steel
relays∗/
/∗ gives the initial state of a relay in a given
diagram∗/
relayState : T.Id × Diagram ∼→ T.State,

/∗ observer functions for contacts ∗/

/∗ for a contact in a given diagram, the function
gives the relay that controls the contact ∗/
relayIdForContact : T.Id × Diagram ∼→ T.Id,

/∗ For a contact in a given diagram, the function
gives the required state of the relay that controls
the contact
for the contact to be closed ∗/
relayStateForContact : T.Id × Diagram ∼→ T.State,

/∗ true if the two ids are neighbours in the given
diagram,
otherwise false ∗/
areNeighbours : T.Id × T.Id × Diagram → Bool,

/∗ auxiliary functions ∗/
/∗ gives all the neighbours of a given id in
a given diagram ∗/
neighboursOf : T.Id × Diagram → T.Id-set
neighboursOf(id1, d) ≡
{id2 |
id2 : T.Id •

id2 ∈ allIds(d) ∧ areNeighbours(id1, id2, d)},

/∗ Gives all the ids of a given diagram ∗/
allIds : Diagram → T.Id-set
allIds(d) as ids post

Diagrams 213

ids =
{id |
id : T.Id •

isPlus(id, d) ∨ isMinus(id, d) ∨
isRegularRelay(id, d) ∨ isSteelRelay(id, d) ∨
isContact(id, d) ∨ isButton(id, d) ∨
isJunction(id, d)},

/∗ well−formed functions for diagrams ∗/

/∗ true if a diagram is well−formed∗/
isWfDiagram : Diagram → Bool

axiom
/∗ The definition of the well−formed function is

underspecified such that further constraints
can be added later. ∗/

∀ d : Diagram • isWfDiagram(d) ⇒
okNeighbourRelation(d) ∧ okNumberOfNeighbours(d) ∧
twoPoles(d) ∧ noIdOverlaps(d) ∧
okSteelRelayRelations(d)

value
/∗ an id cannot be neighbour to it self
and the areNeighbours function is symmetric
∗/
okNeighbourRelation : Diagram → Bool
okNeighbourRelation(d) ≡

(∀ id1, id2 : T.Id •

id1 ∈ allIds(d) ∧ id2 ∈ allIds(d) ⇒
((areNeighbours(id1, id2, d) ⇒ id1 6= id2) ∧

(areNeighbours(id1, id2, d) ⇒
areNeighbours(id2, id1, d)))),

/∗ checks that each id has the required number
of neighbours ∗/
okNumberOfNeighbours : Diagram → Bool
okNumberOfNeighbours(d) ≡

(∀ id : T.Id •

id ∈ allIds(d) ⇒
(
/∗ a positive pole has minimum 1 neighbour ∗/
(isPlus(id, d) ⇒ card neighboursOf(id, d) ≥ 1) ∧
/∗ a negative pole has minimum 1 neighbour ∗/

Diagrams 214

(isMinus(id, d) ⇒
card neighboursOf(id, d) ≥ 1) ∧

/∗ a regular relay has exactly 2 neighbours ∗/
(isRegularRelay(id, d) ⇒

card neighboursOf(id, d) = 2) ∧
/∗ a contact has exactly 2 neighbours ∗/
(isContact(id, d) ⇒

card neighboursOf(id, d) = 2) ∧
/∗ a button has exactly 2 neighbours ∗/
(isButton(id, d) ⇒

card neighboursOf(id, d) = 2) ∧
/∗ a steel relay has exactly 3 neighbours ∗/
(isSteelRelay(id, d) ⇒

card neighboursOf(id, d) = 3) ∧
/∗ a junction has exactly 3 neighbours ∗/
(isJunction(id, d) ⇒

card neighboursOf(id, d) = 3))),

/∗ checks that there is exactly one positive pole,
one negative pole ∗/
twoPoles : Diagram → Bool
twoPoles(d) ≡

let
plus =
{id |
id : T.Id • id ∈ allIds(d) ∧ isPlus(id, d)},

minus =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isMinus(id, d)}
in

card plus = 1 ∧ card minus = 1
end,

/∗ checks that the ids are not overlapping,
e.g. an Id of a junction cannot be the ID of a Pole ∗/
noIdOverlaps : Diagram → Bool
noIdOverlaps(d) ≡

let
plus =
{id |
id : T.Id • id ∈ allIds(d) ∧ isPlus(id, d)},

minus =
{id |

Diagrams 215

id : T.Id •

id ∈ allIds(d) ∧ isMinus(id, d)},
regularRelays =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isRegularRelay(id, d)},
steelRelays =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isSteelRelay(id, d)},
contacts =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isContact(id, d)},
buttons =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isButton(id, d)},
junctions =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isJunction(id, d)}
in

card plus + card minus + card regularRelays +
card steelRelays + card contacts + card buttons +
card junctions = card allIds(d)

end,

/∗ checks for each steel relay that the set of
steel relay relations equals the set of neighbours ∗/

okSteelRelayRelations : Diagram → Bool
okSteelRelayRelations(d) ≡

(∀ id : T.Id •

id ∈ allIds(d) ⇒
(isSteelRelay(id, d) ⇒

{upRelation(id, d), downRelation(id, d),
minusRelation(id, d)} = neighboursOf(id, d))

)
end

StaticInterlockingSystem 216

A.3 StaticInterlockingSystem

context: T, D
scheme StaticInterlockingSystem =

class
type StaticInterlockingSystem

value
/∗ observer functions ∗/
/∗ gives the diagrams of a static interlocking
system∗/
diagrams : StaticInterlockingSystem → D.Diagram-set,
/∗ gives the external relay ids of a static interlocking
system ∗/
externalRelayIds :

StaticInterlockingSystem → T.Id-set,

/∗ gives the initial state of an external relay in a given
static interlocking system ∗/
externalRelayState :

T.Id × StaticInterlockingSystem ∼→ T.State,

/∗ auxiliary functions ∗/
/∗ gives all the internal relay ids of a
static interlocking system ∗/
internalRelayIds :

StaticInterlockingSystem → T.Id-set
internalRelayIds(sis) ≡
{id |
id : T.Id • id ∈ allRelayIds(sis) ∧ (

(∃ d : D.Diagram •

d ∈ diagrams(sis) ∧
(D.isRegularRelay(id, d) ∨

D.isSteelRelay(id, d))))},

/∗ gives all the relay ids of a static interlocking
system∗/
allRelayIds : StaticInterlockingSystem ∼→ T.Id-set
allRelayIds(sis) ≡

internalRelayIds(sis) ∪ externalRelayIds(sis),

StaticInterlockingSystem 217

/∗ well−formed functions∗/

/∗ true if a StaticInterlockingSystem is well−formed ∗/
isWfStaticInterlockingSystem :

StaticInterlockingSystem → Bool

axiom
/∗ The definition of the well−formed function is

underspecified such that further constraints
can be added later. ∗/

∀ sis : StaticInterlockingSystem •

isWfStaticInterlockingSystem(sis) ⇒
(∀ d : D.Diagram •

d ∈ diagrams(sis) ⇒ D.isWfDiagram(d)) ∧
uniqueIds(sis) ∧ contactsHaveRelays(sis)

value
/∗ checks that the ids are unique∗/
uniqueIds : StaticInterlockingSystem → Bool
uniqueIds(sis) ≡

/∗ the ids of two different diagrams cannot overlap
∗/
(∀ d1, d2 : D.Diagram •

d1 ∈ diagrams(sis) ∧ d2 ∈ diagrams(sis) ⇒
(d1 6= d2 ⇒ D.allIds(d1) ∩ D.allIds(d2) = {})) ∧

/∗ the ids of a diagram and the external ids cannot overlap
∗/
(∀ d : D.Diagram •

d ∈ diagrams(sis) ⇒
D.allIds(d) ∩ externalRelayIds(sis) = {}),

/∗ for each contact in a diagram, the relay
that controls the contact must be defined ∗/
contactsHaveRelays : StaticInterlockingSystem → Bool
contactsHaveRelays(sis) ≡

(∀ d : D.Diagram, id : T.Id •

d ∈ diagrams(sis) ∧ id ∈ D.allIds(d) ∧
D.isContact(id, d) ⇒

D.relayIdForContact(id, d) ∈
allRelayIds(sis))

end

Pathfinding 218

A.4 Pathfinding

context: T, D
scheme Pathfinding =

class
type Path = T.Id∗

value
/∗ well formed functions ∗/

/∗ checks if a path is well formed∗/
isWfPath : Path × D.Diagram ∼→ Bool
isWfPath(p, d) ≡

/∗ a path does not repeat ids ∗/
noDuplicates(p) ∧
/∗ minimum 2 ids in a path∗/
len p ≥ 2 ∧
/∗ a path starts with a positive pole
and ends with a negative pole ∗/
D.isPlus(p(1), d) ∧ D.isMinus(p(len p), d) ∧
/∗ (p(1),p(2)),...,(p(n−1),p(n)) are neighbours
∗/
(∀ n : Nat •

n ∈ (inds p \ {len p}) ∧
D.areNeighbours(p(n), p(n + 1), d)) ∧

/∗ the up and down path of a steel relay
cannot be in the same path at the same time
∗/
noSteelRelayProblem(p, d) pre D.isWfDiagram(d),

/∗ checks that a path has no duplicate elements ∗/
noDuplicates : Path → Bool
noDuplicates(p) ≡ card elems p = len p,

/∗ checks that the up and down part of a steel relay
are not in the same path at the same time ∗/

noSteelRelayProblem : Path × D.Diagram ∼→ Bool
noSteelRelayProblem(p, d) ≡

(∀ id : T.Id •

id ∈ elems p ∧ D.isSteelRelay(id, d) ⇒
∼ (D.upRelation(id, d) ∈ elems p ∧

D.downRelation(id, d) ∈ elems p))
pre

D.isWfDiagram(d) ∧

Conditionfinding 219

(∀ id : T.Id •

id ∈ elems p ⇒ id ∈ D.allIds(d)),

/∗ for path computation ∗/
/∗ true if a set of ids is contained by a path
∗/
isPathFor : Path × T.Id-set → Bool
isPathFor(p, ids) ≡ ids ⊆ elems p,

/∗ gives all the paths through a given set of
ids
in a give diagram ∗/
allPathsFor : T.Id-set × D.Diagram ∼→ Path-set
allPathsFor(ids, d) ≡
{p | p : Path • isWfPath(p, d) ∧ isPathFor(p, ids)}

pre D.isWfDiagram(d) ∧ ids ⊆ D.allIds(d)
end

A.5 Conditionfinding

context: T, D, PF
scheme Conditionfinding =

class
value

/∗ gives the boolean expression that is true iff
there can be
current throuh a give button or a given contact
∗/
isConducting : T.Id × D.Diagram ∼→ T.BooleanExp
isConducting(id, d) ≡

if D.isButton(id, d) then T.literal(id)
else

case D.relayStateForContact(id, d) of
T.up → T.literal(D.relayIdForContact(id, d)),
T.down →

T.neg(T.literal(D.relayIdForContact(id, d)))
end

end
pre

D.isWfDiagram(d) ∧

Conditionfinding 220

(D.isButton(id, d) ∨ D.isContact(id, d)),

/∗ generation of boolean expressions ∗/
/∗ gives the expression that is true iff
the path is conductive
(note: poles and relays are always conductive,
but buttons and contacts must be closed in order
to obtain conductivity)∗/
isConducting : PF.Path × D.Diagram ∼→ T.BooleanExp
isConducting(p, d) ≡

T.and(
{isConducting(id, d) |

id : T.Id •

id ∈ elems p ∧
(D.isButton(id, d) ∨ D.isContact(id, d))})

pre D.isWfDiagram(d) ∧ PF.isWfPath(p, d),

/∗ gives the boolean expression that is true iff
there is current through the given regular relay
∗/
currentThroughRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
currentThroughRegularRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path • p ∈ PF.allPathsFor({id}, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d),

/∗ gives the condition for not having current
through a given
regular relay∗/
noCurrentThroughRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
noCurrentThroughRegularRelay(id, d) ≡

T.neg(currentThroughRegularRelay(id, d))
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d),

/∗ gives the boolean expression that is true iff
there is no current through the given regular
relay ∗/
canDrawRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDrawRegularRelay(id, d) ≡

Conditionfinding 221

T.and(
{T.neg(T.literal(id)),

currentThroughRegularRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d),

/∗ gives the boolean expression that is true iff
a given regular relay
can be dropped ∗/
canDropRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDropRegularRelay(id, d) ≡

T.and(
{T.literal(id),

noCurrentThroughRegularRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d),

/∗ gives the boolean expression that is true iff
there is current through the given regular relay
that makes it draw
∗/
drawingCurrentThroughSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
drawingCurrentThroughSteelRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path •

p ∈
PF.allPathsFor(
{D.upRelation(id, d), id,

D.minusRelation(id, d)}, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d),

/∗ gives the boolean expression that is true iff
there is current through the given regular relay
that makes it drop
∗/
droppingCurrentThroughSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
droppingCurrentThroughSteelRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path •

p ∈

TransitionSystem 222

PF.allPathsFor(
{D.downRelation(id, d), id,

D.minusRelation(id, d)}, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d),

/∗ gives the boolean expression that is true iff
a given steel relay
can be drawn∗/
canDrawSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDrawSteelRelay(id, d) ≡

T.and(
{T.neg(T.literal(id)),

drawingCurrentThroughSteelRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d),

/∗ gives the boolean expression that is true iff
a given steel relay
can be dropped ∗/
canDropSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDropSteelRelay(id, d) ≡

T.and(
{T.literal(id),

droppingCurrentThroughSteelRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d)

end

A.6 TransitionSystem

context: T
scheme TransitionSystem =

class
type

/∗ a variable in the state of a transition system
∗/
Var :: id : T.Id val : T.Boolean,

/∗ an assignment in a transition rule.
the Var with the given id in the current state

TransitionSystem 223

will be assigned the new value ∗/
Assignment :: id : T.Id assign : T.Boolean,

/∗ all the assignments in a transition rule ∗/
MultipleAssignment = Assignment∗,

/∗ a transition rule has a guard and
a multiple assignment ∗/
TransitionRule ::

guard : T.BooleanExp
assignments : MultipleAssignment,

/∗ a transition system has an initial state
and some transition rules ∗/
TransitionSystem ::

state : Var∗

transitionRules : TransitionRule∗

value

/∗ well formed functions ∗/
/∗ checks that a transition system is well formed ∗/
isWfTransitionSystem : TransitionSystem → Bool
isWfTransitionSystem(ts) ≡

isWfState(state(ts)) ∧
areWfTransitionRules(state(ts), transitionRules(ts)),

/∗ the variables in the state must have unique ids
and duplicates are not allowed ∗/

isWfState : Var∗ → Bool
isWfState(state) ≡

(∀ v1, v2 : Var •

v1 ∈ state ∧ v2 ∈ state ∧ id(v1) = id(v2) ⇒
v1 = v2)

∧
card elems state = len state,

/∗ checks that all the transition rules are well formed ∗/
areWfTransitionRules :

Var∗ × TransitionRule∗ → Bool
areWfTransitionRules(state, transitionRules) ≡

let
/∗ all the ids that are defined in the state ∗/
ids = {id(var) | var : Var • var ∈ elems state}

StaticInterlockingSystemToTransitionSystem 224

in
(∀ tr : TransitionRule •

tr ∈ elems transitionRules ⇒
/∗ The ids in a guard must be defined in the state ∗/
T.idsInBoolExp(guard(tr)) ⊆ ids ∧
/∗ There must minimum be one assignment ∗/
len assignments(tr) > 0 ∧
/∗ the id in an assignment must be defined in the state ∗/
(∀ a : Assignment •

a ∈ assignments(tr) ⇒ id(a) ∈ ids) ∧
/∗ a variable cannot be assigned several values in
the same multiple assignment ∗/
(∀ a1, a2 : Assignment •

a1 ∈ elems assignments(tr) ∧
a2 ∈ elems assignments(tr) ∧
id(a1) = id(a2) ⇒ a1 = a2) ∧

card elems assignments(tr) = len assignments(tr))
end

end

A.7 StaticInterlockingSystemToTransitionSystem

context: T, TS, D, CF, SIS
scheme StaticInterlockingSystemToTransitionSystem =

class
value

/∗ the identifier of the idle variable ∗/
idleId : T.Id,
/∗ the idle variable ∗/
idle : TS.Var = TS.mk Var(idleId, T.False),

/∗ calculates the behavioural semantics
(a transition system) of
a static interlocking system ∗/
makeBehaviouralSemantics : SIS.StaticInterlockingSystem ∼→ TS.TransitionSystem
makeBehaviouralSemantics(sis) as ts post

TS.isWfTransitionSystem(ts) ∧ stateRel(sis, ts) ∧
transitionRel(sis, ts)

pre SIS.isWfStaticInterlockingSystem(sis),

StaticInterlockingSystemToTransitionSystem 225

/∗ observer functions ∗/
/∗ gives all the ids in a static interlocking
system
that
should be defined in the state of the final transition
system,
i.e. the ids of the buttons and the relays ∗/
stateIds : SIS.StaticInterlockingSystem ∼→ T.Id-set
stateIds(sis) ≡
{id |
id : T.Id •

id ∈ SIS.externalRelayIds(sis) ∨
(∃ d : D.Diagram •

d ∈ SIS.diagrams(sis) ∧
(D.isRegularRelay(id, d) ∨
D.isSteelRelay(id, d) ∨ D.isButton(id, d)))},

/∗ true if a multiple assignment assigns a given
value
to a given id, otherwise false ∗/
assignsValue :

TS.MultipleAssignment × T.Id × T.Boolean → Bool
assignsValue(ma, id, b) ≡

TS.mk Assignment(id, b) ∈ elems ma,

/∗ true if a multiple assignment assigns a given
value
to a given id and makes no other assignments,
otherwise false ∗/
assignsOnly :

TS.MultipleAssignment × T.Id × T.Boolean → Bool
assignsOnly(ma, id, b) ≡

ma = 〈TS.mk Assignment(id, b)〉,

/∗ true if a state matches a given boolean expression.
true should be equivalent to up,
false should be equivalent to down ∗/
stateMatchesBoolean : T.State × T.Boolean → Bool
stateMatchesBoolean(s, b) ≡

case s of
T.up → b = T.True,
T.down → b = T.False

StaticInterlockingSystemToTransitionSystem 226

end,

/∗ check the state of the end result ∗/
stateRel :

SIS.StaticInterlockingSystem × TS.TransitionSystem ∼→
Bool

stateRel(sis, ts) ≡
/∗ the external relays are defined in the
initial state of the transition system.
the initial value in the initial state of the
transition
system must match the state of the relay. ∗/
(∀ id : T.Id •

id ∈ SIS.externalRelayIds(sis) ⇒
(∃ var : TS.Var •

var ∈ elems TS.state(ts) ∧
TS.id(var) = id ∧
stateMatchesBoolean(

SIS.externalRelayState(id, sis),
TS.val(var)))) ∧

/∗ relays from the diagrams are defined in the
initial state of the transition system.
the initial value in the initial state of the
transition
system must match the initial state of the relay.
∗/
(∀ id : T.Id, d : D.Diagram •

d ∈ SIS.diagrams(sis) ∧
(D.isRegularRelay(id, d) ∨ D.isSteelRelay(id, d)) ⇒

(∃ var : TS.Var •

var ∈ elems TS.state(ts) ∧
TS.id(var) = id ∧
stateMatchesBoolean(

D.relayState(id, d), TS.val(var)))) ∧
/∗ buttons from the diagram are defined in the
initial state of the transition system.
the values in the inital state are false. ∗/
(∀ id : T.Id, d : D.Diagram •

d ∈ SIS.diagrams(sis) ∧ D.isButton(id, d) ⇒
(∃! var : TS.Var •

var ∈ elems TS.state(ts) ∧
TS.id(var) = id ∧ TS.val(var) = T.False)) ∧

/∗ every variable in the state of the transition

StaticInterlockingSystemToTransitionSystem 227

system
has a corresponding button or relay id in the
the static
interlocking system or is the idle variable
∗/
(∀ var : TS.Var •

var ∈ elems TS.state(ts) ⇒
TS.id(var) ∈ stateIds(sis) ∨ var = idle) ∧

/∗ the idle variable is defined in the state
∗/
idle ∈ elems TS.state(ts)

pre
SIS.isWfStaticInterlockingSystem(sis) ∧
TS.isWfTransitionSystem(ts),

/∗ checks the transitions of the end result ∗/
transitionRel :

SIS.StaticInterlockingSystem × TS.TransitionSystem ∼→
Bool

transitionRel(sis, ts) ≡
/∗ Regular relays have transition rules ∗/
(∀ id : T.Id, d : D.Diagram •

d ∈ SIS.diagrams(sis) ∧
D.isRegularRelay(id, d) ⇒

/∗ a specific rule for drawing is defined∗/
((∃! tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ∧
TS.guard(tr) =

CF.canDrawRegularRelay(id, d) ∧
assignsOnly(TS.assignments(tr), id, T.True)) ∧

/∗ a specific rule for dropping is defined ∗/
(∃! tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ∧
TS.guard(tr) =

CF.canDropRegularRelay(id, d) ∧
assignsOnly(TS.assignments(tr), id, T.False)

) ∧
/∗ exactly one transition rule can draw the regular
relay∗/
(∃! tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ∧
assignsValue(TS.assignments(tr), id, T.True)

) ∧

StaticInterlockingSystemToTransitionSystem 228

/∗ exactly one transition rule can drop the regular
relay∗/
(∃! tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ∧
assignsValue(

TS.assignments(tr), id, T.False)))) ∧
/∗ Steel relays have transition rules ∗/
(∀ id : T.Id, d : D.Diagram •

d ∈ SIS.diagrams(sis) ∧ D.isSteelRelay(id, d) ⇒
/∗ a specific rule for drawing is defined∗/
((∃! tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ∧
TS.guard(tr) = CF.canDrawSteelRelay(id, d) ∧
assignsOnly(TS.assignments(tr), id, T.True)) ∧

/∗ a specific rule for dropping is defined ∗/
(∃! tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ∧
TS.guard(tr) = CF.canDropSteelRelay(id, d) ∧
assignsOnly(TS.assignments(tr), id, T.False)

) ∧
/∗ exactly one transition rule can draw the steel
relay∗/
(∃! tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ∧
assignsValue(TS.assignments(tr), id, T.True)

) ∧
/∗ exactly one transition rule can drop the steel
relay∗/
(∃! tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ∧
assignsValue(

TS.assignments(tr), id, T.False)))) ∧
/∗ every transition rule assigns a value to a
corresponding internal
relay that is obtained from a diagram or is
the idle
transitionRule∗/
(∀ tr : TS.TransitionRule •

tr ∈ elems TS.transitionRules(ts) ⇒
len TS.assignments(tr) = 1 ∧
(TS.id(TS.assignments(tr)(1)) ∈

SIS.internalRelayIds(sis)) ∨
tr = makeIdleTransitionRule(sis)) ∧

/∗ the idle transition rule is defined in the

StaticInterlockingSystemToTransitionSystem 229

transition rules
∗/
makeIdleTransitionRule(sis) ∈

elems TS.transitionRules(ts)
pre

SIS.isWfStaticInterlockingSystem(sis) ∧
TS.isWfTransitionSystem(ts),

/∗ makes the idle transition rule from a list
of transition rules ∗/
makeIdleTransitionRule :

SIS.StaticInterlockingSystem ∼→ TS.TransitionRule
makeIdleTransitionRule(sis) ≡

let
regularUpConditions =
{CF.canDrawRegularRelay(rr, d) |
rr : T.Id, d : D.Diagram •

rr ∈ SIS.internalRelayIds(sis) ∧
d ∈ SIS.diagrams(sis) ∧
D.isRegularRelay(rr, d)},

regularDownConditions =
{CF.canDropRegularRelay(rr, d) |
rr : T.Id, d : D.Diagram •

rr ∈ SIS.internalRelayIds(sis) ∧
d ∈ SIS.diagrams(sis) ∧
D.isRegularRelay(rr, d)},

steelUpConditions =
{CF.canDrawSteelRelay(rr, d) |
rr : T.Id, d : D.Diagram •

rr ∈ SIS.internalRelayIds(sis) ∧
d ∈ SIS.diagrams(sis) ∧
D.isSteelRelay(rr, d)},

steelDownConditions =
{CF.canDropSteelRelay(rr, d) |
rr : T.Id, d : D.Diagram •

rr ∈ SIS.internalRelayIds(sis) ∧
d ∈ SIS.diagrams(sis) ∧
D.isSteelRelay(rr, d)},

conditions =
regularUpConditions ∪
regularDownConditions ∪
steelUpConditions ∪ steelDownConditions

in

StaticInterlockingSystemToConfidenceConditions 230

TS.mk TransitionRule(
T.and(

{T.neg(T.literal(TS.id(idle))),
T.neg(T.or(conditions))}),

〈TS.mk Assignment(TS.id(idle), T.True)〉)
end

pre SIS.isWfStaticInterlockingSystem(sis)
end

A.8 StaticInterlockingSystemToConfidenceConditions

context: T, TS, D, CF, SIS, SIStoTS
scheme StaticInterlockingSystemToConfidenceConditions =

class
value

/∗ calculates the confidence conditions of the
behavioural semantics
(a transition system) of
a static interlocking system ∗/
makeConfidenceConditions :

SIS.StaticInterlockingSystem ∼→ T.LTLassertion∗

makeConfidenceConditions(sis) as cc post
T.G(T.F(T.B(T.literal(TS.id(SIStoTS.idle))))) ∈

elems cc ∧
T.X(T.B(T.literal(TS.id(SIStoTS.idle)))) ∈

elems cc ∧
(∀ d : D.Diagram, id : T.Id •

d ∈ SIS.diagrams(sis) ∧
id ∈ SIS.internalRelayIds(sis) ∧
D.isRegularRelay(id, d) ⇒

let
canDraw = CF.canDrawRegularRelay(id, d),
canDrop = CF.canDropRegularRelay(id, d)

in
elems trueUntilChangeLTL(id, canDraw, canDrop) ⊆

elems cc
end) ∧

(∀ d : D.Diagram, id : T.Id •

d ∈ SIS.diagrams(sis) ∧
id ∈ SIS.internalRelayIds(sis) ∧

StaticInterlockingSystemToConfidenceConditions 231

D.isSteelRelay(id, d) ⇒
let

canDraw = CF.canDrawSteelRelay(id, d),
canDrop = CF.canDropSteelRelay(id, d),
drawingCurrent =

CF.drawingCurrentThroughSteelRelay(id, d),
droppingCurrent =

CF.droppingCurrentThroughSteelRelay(id, d)
in

elems trueUntilChangeLTL(id, canDraw, canDrop) ⊆
elems cc ∧

mutualExclusionLTL(
droppingCurrent, drawingCurrent) ∈

elems cc
end)

pre SIS.isWfStaticInterlockingSystem(sis),

/∗defines the 2 true concurrency ltl assertions
for an id∗/
trueUntilChangeLTL :

T.Id × T.BooleanExp × T.BooleanExp →
T.LTLassertion∗

trueUntilChangeLTL(id, upGuard, downGuard) ≡
〈T.G(

T.Imply(
T.B(upGuard),
T.X(

T.Imply(
T.B(T.neg(upGuard)),
T.B(T.literal(id)))))),

T.G(
T.Imply(

T.B(downGuard),
T.X(

T.Imply(
T.B(T.neg(downGuard)),
T.B(T.neg(T.literal(id)))))))〉,

/∗defines the mutual exclusion rule : the two
BooleanExp cannot be true at the same time∗/
mutualExclusionLTL :

T.BooleanExp × T.BooleanExp → T.LTLassertion
mutualExclusionLTL(b1, b2) ≡

T.G(T.B(T.neg(T.and({b1, b2}))))

The objects 232

end

A.9 The objects

context: Types
object T : Types

context: Diagrams
object D : Diagrams

context: StaticInterlockingSystem
object SIS : StaticInterlockingSystem

context: Pathfinding
object PF : Pathfinding

context: Conditionfinding
object CF : Conditionfinding

context: TransitionSystem
object TS : TransitionSystem

context: StaticInterlockingSystemToTransitionSystem
object SIStoTS : StaticInterlockingSystemToTransitionSystem

Appendix B

The concrete RSL model

This appendix contains the schemes introduced by chapter 9. The schemes
correspond to the boxes marked with C, D and E in figure 4.2, page 48.

B.1 Types

scheme Types =
class

type
/∗ identifier∗/
Id = Text,
/∗ a boolean expression ∗/
BooleanExp ==

and(a : BooleanExp-set) |
or(o : BooleanExp-set) |
neg(n : BooleanExp) |
literal(id : Id),

/∗ a boolean value∗/
Boolean == True | False,
/∗ a state of a relay∗/
State == up | down,

Types 234

/∗ Added types ∗/
/∗ Edge for connection the components in a diagram
∗/
Edge = Id × Id,
/∗ There must be two poles in a diagram ∗/
Pole :: getId : Id,
Poles :: plus : Pole minus : Pole,
/∗ For the introduction of a branch in the diagram
∗/
Junction :: getId : Id,
Contact ::

/∗ The Id of the contact∗/
getId : Id
/∗ The Id of the relay that is controlling the
contact∗/
getRelayId : Id
/∗ The required state of the controlling relay
for having the
contact closed ∗/
getRelayState : State,

Button :: getId : Id,
/∗ A regular relay in a graph ∗/
RegularRelay ::

/∗ The Id of the relay ∗/
getId : Id
/∗ The initial state of the relay ∗/
getInitState : State,

/∗ A Steel Core Relay ∗/
SteelRelay ::

/∗ The Id of the relay ∗/
getId : Id
/∗ The initial state of the relay∗/
getInitState : State
/∗ A steel relay will be connected by edges to
3 other components .
The following Ids are Ids of these components.
If there is current through the relay
from up to minus, the relay will be drawn. If
there is current from down to minus, the
relay will be dropped. ∗/
getUp : Id getDown : Id getMinus : Id,

/∗ components in a diagram ∗/
Component =

Pole | Junction | RegularRelay | SteelRelay |

Types 235

Button | Contact,
/∗ external relay in a StaticInterlockingSystem
∗/
ExternalRelay :: getId : Id getInitState : State,
/∗ type for LTL assertions ∗/
LTLassertion ==

G(g : LTLassertion) |
F(f : LTLassertion) |
X(x : LTLassertion) |
Imply(lhs : LTLassertion, rhs : LTLassertion) |
B(b : BooleanExp)

value
/∗ auxiliary functions ∗/
/∗ gets all the ids that are inside a given
boolean expression ∗/
idsInBoolExp : BooleanExp → Id-set
idsInBoolExp(exp) ≡

case exp of
literal(l) → {l},
neg(nexp) → idsInBoolExp(nexp),
and(aset) → idsInBoolExpSet(aset),
or(oset) → idsInBoolExpSet(oset)

end,

/∗ gets all the ids in a set of boolean expressions
∗/
idsInBoolExpSet : BooleanExp-set → Id-set
idsInBoolExpSet(set) ≡

if set = {} then {}
else

let head = hd set in
idsInBoolExp(head) ∪
idsInBoolExpSet(set \ {head})

end
end,

/∗ gets the ID of a component ∗/
idFromComponent : Component → Id
idFromComponent(c) ≡

case c of
mk Pole() → getId(Component to Pole(c)),
mk Junction() → getId(Component to Junction(c)),
mk RegularRelay() →

DiagramsL 236

getId(Component to RegularRelay(c)),
mk SteelRelay() →

getId(Component to SteelRelay(c)),
mk Button() → getId(Component to Button(c)),
mk Contact() → getId(Component to Contact(c))

end
end

B.2 DiagramsL

context: T
scheme DiagramsL =

class
type

/∗ the components of a diagram ∗/
Components ::

getPoles : T.Poles
getContacts : T.Contact∗

getButtons : T.Button∗

getRegularRelays : T.RegularRelay∗

getSteelRelays : T.SteelRelay∗

getJunctions : T.Junction∗,
/∗ A diagram corresponding to one circuit ∗/
Diagram ::

/∗ All the components in the diagram ∗/
getComponents : Components
/∗ All the edges between the components in the
diagram∗/
getEdges : T.Edge∗

value
/∗ observer functions ∗/
/∗ true if the ID is a positive pole in the diagram,
otherwise false ∗/
isPlus : T.Id × Diagram → Bool
isPlus(id, d) ≡

T.getId(T.plus(getPoles(getComponents(d)))) = id,

/∗ true if the ID is a negative pole in the diagram,
otherwise false ∗/

DiagramsL 237

isMinus : T.Id × Diagram → Bool
isMinus(id, d) ≡

T.getId(T.minus(getPoles(getComponents(d)))) = id,

/∗ true if the ID is a regular relay in the diagram,
otherwise false ∗/
isRegularRelay : T.Id × Diagram → Bool
isRegularRelay(id, d) ≡

(∃ rr : T.RegularRelay •

rr ∈ getRegularRelays(getComponents(d)) ∧
T.getId(rr) = id),

/∗ true if the ID is a steel relay in the diagram,
otherwise false ∗/
isSteelRelay : T.Id × Diagram → Bool
isSteelRelay(id, d) ≡

(∃ sr : T.SteelRelay •

sr ∈ getSteelRelays(getComponents(d)) ∧
T.getId(sr) = id),

/∗ true if the ID is a contact in the diagram,
otherwise false ∗/
isContact : T.Id × Diagram → Bool
isContact(id, d) ≡

(∃ c : T.Contact •

c ∈ getContacts(getComponents(d)) ∧
T.getId(c) = id),

/∗ true if the ID is a button in the diagram,
otherwise false ∗/
isButton : T.Id × Diagram → Bool
isButton(id, d) ≡

(∃ b : T.Button •

b ∈ getButtons(getComponents(d)) ∧
T.getId(b) = id),

/∗ true if the ID is a junction in the diagram,
otherwise false ∗/
isJunction : T.Id × Diagram → Bool
isJunction(id, d) ≡

(∃ j : T.Junction •

j ∈ getJunctions(getComponents(d)) ∧
T.getId(j) = id),

DiagramsL 238

/∗ observer functions for steel relays ∗/
/∗ if the steel relay is receiving current
from the returned neighbour of this function,
it can be drawn ∗/
upRelation : T.Id × Diagram ∼→ T.Id
upRelation(id, d) ≡

T.getUp(
hd {sr |

sr : T.SteelRelay •

sr ∈
elems getSteelRelays(getComponents(d))})

pre isSteelRelay(id, d),

/∗ if the steel relay is receiving current
from the returned neighbour of this function,
it can be dropped ∗/
downRelation : T.Id × Diagram ∼→ T.Id
downRelation(id, d) ≡

T.getDown(
hd {sr |

sr : T.SteelRelay •

sr ∈
elems getSteelRelays(getComponents(d))})

pre isSteelRelay(id, d),

/∗ gives a neighbour of a steel relay
from which the steel relay cannot receive
current ∗/
minusRelation : T.Id × Diagram ∼→ T.Id
minusRelation(id, d) ≡

T.getMinus(
hd {sr |

sr : T.SteelRelay •

sr ∈
elems getSteelRelays(getComponents(d))})

pre isSteelRelay(id, d),

/∗ observer function for regular relays and steel
relays∗/
/∗ gives the initial state of a relay in a given
diagram∗/
relayState : T.Id × Diagram ∼→ T.State
relayState(id, d) ≡

DiagramsL 239

case
(hd {c |

c : T.Component •

c ∈
elems getSteelRelays(getComponents(d)) ∪
elems getRegularRelays(getComponents(d)) ∧

T.idFromComponent(c) = id})
of

T.mk RegularRelay(, state) → state,
T.mk SteelRelay(, state, , ,) → state

end
pre isSteelRelay(id, d) ∨ isRegularRelay(id, d),

/∗ observer functions for contacts ∗/
/∗ for a contact in a given diagram, the function
gives the relay that controls the contact ∗/
relayIdForContact : T.Id × Diagram ∼→ T.Id
relayIdForContact(id, d) ≡

T.getRelayId(
hd {ct |

ct : T.Contact •

ct ∈ elems getContacts(getComponents(d))}
)

pre isContact(id, d),

/∗ For a contact in a given diagram, the function
gives the required state of the relay that controls
the contact
for the contact to be closed ∗/
relayStateForContact : T.Id × Diagram ∼→ T.State
relayStateForContact(id, d) ≡

T.getRelayState(
hd {ct |

ct : T.Contact •

ct ∈ elems getContacts(getComponents(d))}
)

pre isContact(id, d),

/∗ true if the two ids are neighbours in the given
diagram,
otherwise false ∗/
areNeighbours : T.Id × T.Id × Diagram → Bool
areNeighbours(id1, id2, d) ≡

DiagramsL 240

(id1, id2) ∈ elems getEdges(d) ∨
(id2, id1) ∈ elems getEdges(d),

/∗ auxiliary functions ∗/
/∗ gives all the neighbours of a given id in
a given diagram ∗/
neighboursOf : T.Id × Diagram → T.Id-set
neighboursOf(id1, d) ≡
{id2 |
id2 : T.Id •

id2 ∈ allIds(d) ∧ areNeighbours(id1, id2, d)},

/∗ Gives all the ids of a given diagram ∗/
allIds : Diagram → T.Id-set
allIds(d) ≡

let
componentSet =
{T.plus(getPoles(getComponents(d)))} ∪
{T.minus(getPoles(getComponents(d)))} ∪
(elems getRegularRelays(getComponents(d))) ∪
(elems getSteelRelays(getComponents(d))) ∪
(elems getContacts(getComponents(d))) ∪
(elems getButtons(getComponents(d))) ∪
(elems getJunctions(getComponents(d)))

in
{T.idFromComponent(c) |
c : T.Component • c ∈ componentSet}

end,

/∗ well formed functions for diagrams ∗/
/∗ true if a diagram is well formed∗/
isWfDiagram : Diagram → Bool
isWfDiagram(d) ≡

okNeighbourRelation(d) ∧ okNumberOfNeighbours(d) ∧
twoPoles(d) ∧ noIdOverlaps(d) ∧
okSteelRelayRelations(d) ∧
/∗ extra checks for DiagramL ∗/
isWfEdges(getEdges(d)) ∧
isWfComponents(getComponents(d)),

/∗ an id cannot be neighbour to it self
and the areNeighbours function is symmetric
∗/
okNeighbourRelation : Diagram → Bool

DiagramsL 241

okNeighbourRelation(d) ≡
(∀ id1, id2 : T.Id •

id1 ∈ allIds(d) ∧ id2 ∈ allIds(d) ⇒
((areNeighbours(id1, id2, d) ⇒ id1 6= id2) ∧

(areNeighbours(id1, id2, d) ⇒
areNeighbours(id2, id1, d)))),

/∗ checks that each id has the required number
of neighbours ∗/
okNumberOfNeighbours : Diagram → Bool
okNumberOfNeighbours(d) ≡

(∀ id : T.Id •

id ∈ allIds(d) ⇒
(
/∗ a positive pole has minimum 1 neighbour ∗/
(isPlus(id, d) ⇒ card neighboursOf(id, d) ≥ 1) ∧
/∗ a negative pole has minimum 1 neighbour ∗/
(isMinus(id, d) ⇒

card neighboursOf(id, d) ≥ 1) ∧
/∗ a regular relay has exactly 2 neighbours ∗/
(isRegularRelay(id, d) ⇒

card neighboursOf(id, d) = 2) ∧
/∗ a contact has exactly 2 neighbours ∗/
(isContact(id, d) ⇒

card neighboursOf(id, d) = 2) ∧
/∗ a button has exactly 2 neighbours ∗/
(isButton(id, d) ⇒

card neighboursOf(id, d) = 2) ∧
/∗ a steel relay has exactly 3 neighbours ∗/
(isSteelRelay(id, d) ⇒

card neighboursOf(id, d) = 3) ∧
/∗ a junction has exactly 3 neighbours ∗/
(isJunction(id, d) ⇒

card neighboursOf(id, d) = 3))),

/∗ checks that there is exactly one positive pole,
one negative pole ∗/
twoPoles : Diagram → Bool
twoPoles(d) ≡

let
plus =
{id |
id : T.Id • id ∈ allIds(d) ∧ isPlus(id, d)},

minus =

DiagramsL 242

{id |
id : T.Id •

id ∈ allIds(d) ∧ isMinus(id, d)}
in

card plus = 1 ∧ card minus = 1
end,

/∗ checks that the ids are not overlapping,
e.g. a junction cannot be a pole, a pole cannot
be a contact etc.∗/
noIdOverlaps : Diagram → Bool
noIdOverlaps(d) ≡

let
plus =
{id |
id : T.Id • id ∈ allIds(d) ∧ isPlus(id, d)},

minus =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isMinus(id, d)},
regularRelays =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isRegularRelay(id, d)},
steelRelays =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isSteelRelay(id, d)},
contacts =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isContact(id, d)},
buttons =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isButton(id, d)},
junctions =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isJunction(id, d)}
in

card plus + card minus + card regularRelays +
card steelRelays + card contacts + card buttons +
card junctions = card allIds(d)

DiagramsL 243

end,

/∗ checks for each steel relay that the set of
steel relay relations equals the set of neighbours
∗/
okSteelRelayRelations : Diagram → Bool
okSteelRelayRelations(d) ≡

(∀ id : T.Id •

id ∈ allIds(d) ⇒
(isSteelRelay(id, d) ⇒

{upRelation(id, d), downRelation(id, d),
minusRelation(id, d)} = neighboursOf(id, d))

),

/∗ Checks that the edges do not contain duplicates
and that
(id2,id1) is not an edge if (id1,id2) is an edge
∗/
isWfEdges : T.Edge∗ → Bool
isWfEdges(el) ≡

(∀ (id1, id2) : T.Edge •

(id1, id2) ∈ elems el ⇒
(id2, id1) 6∈ elems el) ∧

len el = card elems el,

/∗ checks that the components do not
contain duplicates ∗/
isWfComponents : Components → Bool
isWfComponents(cs) ≡

len getContacts(cs) = card elems getContacts(cs) ∧
(∀ ct1, ct2 : T.Contact •

ct1 ∈ elems getContacts(cs) ∧
ct2 ∈ elems getContacts(cs) ∧
T.getId(ct1) = T.getId(ct2) ⇒ ct1 = ct2) ∧

len getButtons(cs) = card elems getButtons(cs) ∧
(∀ b1, b2 : T.Button •

b1 ∈ elems getButtons(cs) ∧
b2 ∈ elems getButtons(cs) ∧
T.getId(b1) = T.getId(b2) ⇒ b1 = b2) ∧

len getRegularRelays(cs) =
card elems getRegularRelays(cs) ∧

(∀ rr1, rr2 : T.RegularRelay •

rr1 ∈ elems getRegularRelays(cs) ∧
rr2 ∈ elems getRegularRelays(cs) ∧

StaticInterlockingSystemL 244

T.getId(rr1) = T.getId(rr2) ⇒ rr1 = rr2) ∧
len getSteelRelays(cs) =

card elems getSteelRelays(cs) ∧
(∀ sr1, sr2 : T.SteelRelay •

sr1 ∈ elems getSteelRelays(cs) ∧
sr2 ∈ elems getSteelRelays(cs) ∧
T.getId(sr1) = T.getId(sr2) ⇒ sr1 = sr2)

end

B.3 StaticInterlockingSystemL

context: T, DL
scheme StaticInterlockingSystemL =

class
type

StaticInterlockingSystem ::
getDiagrams : DL.Diagram∗

getExternal : T.ExternalRelay∗

value
/∗ observer functions ∗/
/∗ gives the diagrams of a static interlocking
system∗/
diagrams : StaticInterlockingSystem → DL.Diagram-set
diagrams(sis) ≡ elems getDiagrams(sis),

/∗ gives the external relay ids of a static interlocking
system ∗/
externalRelayIds :

StaticInterlockingSystem → T.Id-set
externalRelayIds(sis) ≡
{T.getId(er) |
er : T.ExternalRelay •

er ∈ elems getExternal(sis)},

/∗ gives the initial state of an external relay
in a given
static interlocking system ∗/
externalRelayState :

T.Id × StaticInterlockingSystem ∼→ T.State

StaticInterlockingSystemL 245

externalRelayState(id, sis) ≡
T.getInitState(

hd {er |
er : T.ExternalRelay •

er ∈ elems getExternal(sis) ∧
T.getId(er) = id})

pre id ∈ externalRelayIds(sis),

/∗ auxiliary functions ∗/
/∗ gives all the internal relay ids of a
static interlocking system ∗/
internalRelayIds :

StaticInterlockingSystem → T.Id-set
internalRelayIds(sis) ≡
{id |
id : T.Id •

(∃ d : DL.Diagram •

d ∈ diagrams(sis) ∧
(DL.isRegularRelay(id, d) ∨

DL.isSteelRelay(id, d)))},

/∗ gives all the relay ids of a static interlocking
system∗/
allRelayIds : StaticInterlockingSystem → T.Id-set
allRelayIds(sis) ≡

internalRelayIds(sis) ∪ externalRelayIds(sis),

/∗ well formed functions∗/
/∗ checks that a static interlocking system
is well formed ∗/
isWfStaticInterlockingSystem :

StaticInterlockingSystem → Bool
isWfStaticInterlockingSystem(sis) ≡

(∀ d : DL.Diagram •

d ∈ diagrams(sis) ⇒ DL.isWfDiagram(d)) ∧
uniqueIds(sis) ∧ contactsHaveRelays(sis) ∧
/∗ Extra checks for StaticInterlockingSystemL
∗/
noDuplicateDiagrams(getDiagrams(sis)) ∧
noDuplicateExternal(getExternal(sis)),

/∗ checks that the ids are unique∗/
uniqueIds : StaticInterlockingSystem → Bool
uniqueIds(sis) ≡

StaticInterlockingSystemL 246

/∗ the ids of two different diagrams cannot overlap
∗/
(∀ d1, d2 : DL.Diagram •

d1 ∈ diagrams(sis) ∧ d2 ∈ diagrams(sis) ⇒
(d1 6= d2 ⇒

DL.allIds(d1) ∩ DL.allIds(d2) = {})) ∧
/∗ the ids of a diagram and the external ids cannot
overlap
∗/
(∀ d : DL.Diagram •

d ∈ diagrams(sis) ⇒
DL.allIds(d) ∩ externalRelayIds(sis) = {}),

/∗ for each contact in a diagram, the relay
that controls the contact must be defined ∗/
contactsHaveRelays : StaticInterlockingSystem → Bool
contactsHaveRelays(sis) ≡

(∀ d : DL.Diagram, id : T.Id •

d ∈ diagrams(sis) ∧ id ∈ DL.allIds(d) ∧
DL.isContact(id, d) ⇒

DL.relayIdForContact(id, d) ∈
allRelayIds(sis)),

/∗ The diagram list does not contain duplicates
∗/
noDuplicateDiagrams : DL.Diagram∗ → Bool
noDuplicateDiagrams(dl) ≡ card elems dl = len dl,

/∗ The external relay list does not contain duplicates
∗/
noDuplicateExternal : T.ExternalRelay∗ → Bool
noDuplicateExternal(erl) ≡

card elems erl = len erl ∧
(∀ er1, er2 : T.ExternalRelay •

er1 ∈ elems erl ∧ er2 ∈ elems erl ∧
T.getId(er1) = T.getId(er2) ⇒ er1 = er2)

end

Diagrams 247

B.4 Diagrams

context: T
scheme Diagrams =

class
type

/∗ poles can be plus or minus ∗/
PoleType == plus | minus,
Diagram ::

getComponentMap : T.Id →m T.Component
getEdges : T.Edge-set
/∗ Information on the type of the poles ∗/
getPoleType : T.Id →m PoleType

value
/∗ observer functions ∗/
/∗ true if the ID is a positive pole in the diagram,
otherwise false ∗/
isPlus : T.Id × Diagram → Bool
isPlus(id, d) ≡

id ∈ dom getPoleType(d) ∧
getPoleType(d)(id) = plus,

/∗ true if the ID is a negative pole in the diagram,
otherwise false ∗/
isMinus : T.Id × Diagram → Bool
isMinus(id, d) ≡

id ∈ dom getPoleType(d) ∧
getPoleType(d)(id) = minus,

/∗ true if the ID is a regular relay in the diagram,
otherwise false ∗/
isRegularRelay : T.Id × Diagram → Bool
isRegularRelay(id, d) ≡

id ∈ dom getComponentMap(d) ∧
case getComponentMap(d)(id) of

T.mk RegularRelay() → true,
→ false

end,

/∗ true if the ID is a steel relay in the diagram,
otherwise false ∗/
isSteelRelay : T.Id × Diagram → Bool

Diagrams 248

isSteelRelay(id, d) ≡
id ∈ dom getComponentMap(d) ∧
case getComponentMap(d)(id) of

T.mk SteelRelay() → true,
→ false

end,

/∗ true if the ID is a contact in the diagram,
otherwise false ∗/
isContact : T.Id × Diagram → Bool
isContact(id, d) ≡

id ∈ dom getComponentMap(d) ∧
case getComponentMap(d)(id) of

T.mk Contact() → true,
→ false

end,

/∗ true if the ID is a button in the diagram,
otherwise false ∗/
isButton : T.Id × Diagram → Bool
isButton(id, d) ≡

id ∈ dom getComponentMap(d) ∧
case getComponentMap(d)(id) of

T.mk Button() → true,
→ false

end,

/∗ true if the ID is a junction in the diagram,
otherwise false ∗/
isJunction : T.Id × Diagram → Bool
isJunction(id, d) ≡

id ∈ dom getComponentMap(d) ∧
case getComponentMap(d)(id) of

T.mk Junction() → true,
→ false

end,

/∗ observer functions for steel relays ∗/
/∗ if the steel relay is receiving current
from the returned neighbour of this function,
it can be drawn ∗/
upRelation : T.Id × Diagram ∼→ T.Id
upRelation(id, d) ≡

Diagrams 249

T.getUp(
T.Component to SteelRelay(getComponentMap(d)(id)))

pre isSteelRelay(id, d),

/∗ if the steel relay is receiving current
from the returned neighbour of this function,
it can be dropped ∗/
downRelation : T.Id × Diagram ∼→ T.Id
downRelation(id, d) ≡

T.getDown(
T.Component to SteelRelay(getComponentMap(d)(id)))

pre isSteelRelay(id, d),

/∗ gives a neighbour of a steel relay
from which the steel relay cannot receive
current ∗/
minusRelation : T.Id × Diagram ∼→ T.Id
minusRelation(id, d) ≡

T.getMinus(
T.Component to SteelRelay(getComponentMap(d)(id)))

pre isSteelRelay(id, d),

/∗ observer function for regular relays and steel
relays∗/
/∗ gives the initial state of a relay in a given
diagram∗/
relayState : T.Id × Diagram ∼→ T.State
relayState(id, d) ≡

case getComponentMap(d)(id) of
T.mk RegularRelay() →

T.getInitState(
T.Component to RegularRelay(

getComponentMap(d)(id))),
T.mk SteelRelay() →

T.getInitState(
T.Component to SteelRelay(

getComponentMap(d)(id)))
end

pre isSteelRelay(id, d) ∨ isRegularRelay(id, d),

/∗ observer functions for contacts ∗/
/∗ for a contact in a given diagram, the function
gives the relay that controls the contact ∗/

Diagrams 250

relayIdForContact : T.Id × Diagram ∼→ T.Id
relayIdForContact(id, d) ≡

case getComponentMap(d)(id) of
T.mk Contact() →

T.getRelayId(
T.Component to Contact(getComponentMap(d)(id))

)
end

pre isContact(id, d),

/∗ For a contact in a given diagram, the function
gives the required state of the relay that controls
the contact
for the contact to be closed ∗/
relayStateForContact : T.Id × Diagram ∼→ T.State
relayStateForContact(id, d) ≡

case getComponentMap(d)(id) of
T.mk Contact() →

T.getRelayState(
T.Component to Contact(getComponentMap(d)(id))

)
end

pre isContact(id, d),

/∗ true if the two ids are neighbours in the given
diagram,
otherwise false ∗/
areNeighbours : T.Id × T.Id × Diagram → Bool
areNeighbours(id1, id2, d) ≡

(id1, id2) ∈ getEdges(d) ∨
(id2, id1) ∈ getEdges(d),

/∗ auxiliary functions ∗/
/∗ gives all the neighbours of a given id in
a given diagram ∗/
neighboursOf : T.Id × Diagram → T.Id-set
neighboursOf(id1, d) ≡
{id2 |
id2 : T.Id •

id2 ∈ allIds(d) ∧ areNeighbours(id1, id2, d)},

/∗ Gives all the ids of a given diagram ∗/
allIds : Diagram → T.Id-set

Diagrams 251

allIds(d) ≡ dom getComponentMap(d),

/∗ well formed functions for diagrams ∗/
/∗ true if a diagram is well formed∗/
isWfDiagram : Diagram → Bool
isWfDiagram(d) ≡

okNeighbourRelation(d) ∧ okNumberOfNeighbours(d) ∧
/∗ the following check is an extra check for the
concrete Diagram ∗/
polesHaveType(d) ∧ twoPoles(d) ∧
noIdOverlaps(d) ∧ okSteelRelayRelations(d) ∧
/∗ Extra checks for concrete Diagram ∗/
idsMatchComponents(getComponentMap(d)) ∧
isWfEdges(getEdges(d)),

/∗ an id cannot be neighbour to it self
and the areNeighbours function is symmetric
∗/
okNeighbourRelation : Diagram → Bool
okNeighbourRelation(d) ≡

(∀ id1, id2 : T.Id •

id1 ∈ allIds(d) ∧ id2 ∈ allIds(d) ⇒
((areNeighbours(id1, id2, d) ⇒ id1 6= id2) ∧

(areNeighbours(id1, id2, d) ⇒
areNeighbours(id2, id1, d)))),

/∗ checks that each id has the required number
of neighbours ∗/
okNumberOfNeighbours : Diagram → Bool
okNumberOfNeighbours(d) ≡

(∀ id : T.Id •

id ∈ allIds(d) ⇒
(
/∗ a positive pole has minimum 1 neighbour ∗/
(isPlus(id, d) ⇒ card neighboursOf(id, d) ≥ 1) ∧
/∗ a negative pole has minimum 1 neighbour ∗/
(isMinus(id, d) ⇒

card neighboursOf(id, d) ≥ 1) ∧
/∗ a regular relay has exactly 2 neighbours ∗/
(isRegularRelay(id, d) ⇒

card neighboursOf(id, d) = 2) ∧
/∗ a contact has exactly 2 neighbours ∗/
(isContact(id, d) ⇒

card neighboursOf(id, d) = 2) ∧

Diagrams 252

/∗ a button has exactly 2 neighbours ∗/
(isButton(id, d) ⇒

card neighboursOf(id, d) = 2) ∧
/∗ a steel relay has exactly 3 neighbours ∗/
(isSteelRelay(id, d) ⇒

card neighboursOf(id, d) = 3) ∧
/∗ a junction has exactly 3 neighbours ∗/
(isJunction(id, d) ⇒

card neighboursOf(id, d) = 3))),

/∗ checks that there is exactly one positive pole,
one negative pole ∗/
twoPoles : Diagram → Bool
twoPoles(d) ≡

let
plus =
{id |
id : T.Id • id ∈ allIds(d) ∧ isPlus(id, d)},

minus =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isMinus(id, d)}
in

card plus = 1 ∧ card minus = 1
end,

/∗ checks that the ids are not overlapping,
e.g. a junction cannot be a pole, a pole cannot
be a contact etc.∗/
noIdOverlaps : Diagram → Bool
noIdOverlaps(d) ≡

let
plus =
{id |
id : T.Id • id ∈ allIds(d) ∧ isPlus(id, d)},

minus =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isMinus(id, d)},
regularRelays =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isRegularRelay(id, d)},
steelRelays =

Diagrams 253

{id |
id : T.Id •

id ∈ allIds(d) ∧ isSteelRelay(id, d)},
contacts =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isContact(id, d)},
buttons =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isButton(id, d)},
junctions =
{id |
id : T.Id •

id ∈ allIds(d) ∧ isJunction(id, d)}
in

card plus + card minus + card regularRelays +
card steelRelays + card contacts + card buttons +
card junctions = card allIds(d)

end,

/∗ checks for each steel relay that the set of
steel relay relations equals the set of neighbours
∗/
okSteelRelayRelations : Diagram → Bool
okSteelRelayRelations(d) ≡

(∀ id : T.Id •

id ∈ allIds(d) ⇒
(isSteelRelay(id, d) ⇒

{upRelation(id, d), downRelation(id, d),
minusRelation(id, d)} = neighboursOf(id, d))

),

isWfEdges : T.Edge-set → Bool
isWfEdges(es) ≡

(∀ (id1, id2) : T.Edge •

(id1, id2) ∈ es ⇒ (id2, id1) 6∈ es),

/∗ checks that each id in the map is mapped to
a component with the same id∗/
idsMatchComponents : (T.Id →m T.Component) → Bool
idsMatchComponents(componentMap) ≡

(∀ id : T.Id •

id ∈ componentMap ⇒

StaticInterlockingSystem 254

id = T.idFromComponent(componentMap(id))),

/∗ checks that each pole has a type ∗/
polesHaveType : Diagram → Bool
polesHaveType(d) ≡

(∀ c : T.Component •

c ∈ rng getComponentMap(d) ⇒
case c of

T.mk Pole(id) → id ∈ dom getPoleType(d),
→ true

end)
end

B.5 StaticInterlockingSystem

context: T, D
scheme StaticInterlockingSystem =

class
type

StaticInterlockingSystem ::
getDiagrams : D.Diagram-set
getExternal : T.Id →m T.ExternalRelay

value
/∗ observer functions ∗/
/∗ gives the diagrams of a static interlocking
system∗/
diagrams : StaticInterlockingSystem → D.Diagram-set
diagrams(sis) ≡ getDiagrams(sis),

/∗ gives the external relay ids of a static interlocking
system ∗/
externalRelayIds :

StaticInterlockingSystem → T.Id-set
externalRelayIds(sis) ≡ dom getExternal(sis),

/∗ gives the initial state of an external relay
in a given
static interlocking system ∗/
externalRelayState :

StaticInterlockingSystem 255

T.Id × StaticInterlockingSystem ∼→ T.State
externalRelayState(id, sis) ≡

T.getInitState(getExternal(sis)(id))
pre id ∈ externalRelayIds(sis),

/∗ auxiliary functions ∗/
/∗ gives all the internal relay ids of a
static interlocking system ∗/
internalRelayIds :

StaticInterlockingSystem → T.Id-set
internalRelayIds(sis) ≡
{id |
id : T.Id •

(∃ d : D.Diagram •

d ∈ diagrams(sis) ∧
(D.isRegularRelay(id, d) ∨

D.isSteelRelay(id, d)))},

/∗ gives all the relay ids of a static interlocking
system∗/
allRelayIds : StaticInterlockingSystem → T.Id-set
allRelayIds(sis) ≡

internalRelayIds(sis) ∪ externalRelayIds(sis),

/∗ well formed functions∗/
/∗ checks that a static interlocking system
is well formed ∗/
isWfStaticInterlockingSystem :

StaticInterlockingSystem → Bool
isWfStaticInterlockingSystem(sis) ≡

(∀ d : D.Diagram •

d ∈ diagrams(sis) ⇒ D.isWfDiagram(d)) ∧
uniqueIds(sis) ∧ contactsHaveRelays(sis) ∧
/∗ Extra constraints added ∗/
isWfExternalRelays(sis),

/∗ checks that the ids are unique∗/
uniqueIds : StaticInterlockingSystem → Bool
uniqueIds(sis) ≡

/∗ the ids of two different diagrams cannot overlap
∗/
(∀ d1, d2 : D.Diagram •

d1 ∈ diagrams(sis) ∧ d2 ∈ diagrams(sis) ⇒
(d1 6= d2 ⇒

StaticInterlockingSystemConversion 256

D.allIds(d1) ∩ D.allIds(d2) = {})) ∧
/∗ the ids of a diagram and the external ids cannot
overlap
∗/
(∀ d : D.Diagram •

d ∈ diagrams(sis) ⇒
D.allIds(d) ∩ externalRelayIds(sis) = {}),

/∗ for each contact in a diagram, the relay
that controls the contact must be defined ∗/
contactsHaveRelays : StaticInterlockingSystem → Bool
contactsHaveRelays(sis) ≡

(∀ d : D.Diagram, id : T.Id •

d ∈ diagrams(sis) ∧ id ∈ D.allIds(d) ∧
D.isContact(id, d) ⇒

D.relayIdForContact(id, d) ∈
allRelayIds(sis)),

/∗ Checks that the Ids in the domain of the externa
relay map
matches the components in the range of the map
∗/
isWfExternalRelays : StaticInterlockingSystem → Bool
isWfExternalRelays(sis) ≡

(∀ id : T.Id •

id ∈ dom getExternal(sis) ⇒
id = T.getId(getExternal(sis)(id)))

end

B.6 StaticInterlockingSystemConversion

context: SIS, SISL, D, DL
scheme StaticInterlockingSystemConversion =

class
value

/∗ converts a DL.Diagram to a D.Diagram ∗/
convertDiagram : DL.Diagram ∼→ D.Diagram
convertDiagram(dl) ≡

let
componentSet =

StaticInterlockingSystemConversion 257

{T.plus(DL.getPoles(DL.getComponents(dl)))} ∪
{T.minus(DL.getPoles(DL.getComponents(dl)))} ∪
(elems DL.getRegularRelays(DL.getComponents(dl))) ∪
(elems DL.getSteelRelays(DL.getComponents(dl))) ∪
(elems DL.getContacts(DL.getComponents(dl))) ∪
(elems DL.getButtons(DL.getComponents(dl))) ∪
(elems DL.getJunctions(DL.getComponents(dl))),

componentMap =
[T.idFromComponent(c) 7→ c |
c : T.Component • c ∈ componentSet],

edges = elems DL.getEdges(dl),
plus = T.plus(DL.getPoles(DL.getComponents(dl))),
minus = T.minus(DL.getPoles(DL.getComponents(dl))),
poleTypeMap =

[T.getId(plus) 7→ D.plus,
T.getId(minus) 7→ D.minus]

in
D.mk Diagram(componentMap, edges, poleTypeMap)

end
pre DL.isWfDiagram(dl),

/∗ converts a SISL.StaticInterlockingSystem to
a SIS.StaticInterlockingSystem∗/
convertStaticInterlockingSystem :

SISL.StaticInterlockingSystem ∼→
SIS.StaticInterlockingSystem

convertStaticInterlockingSystem(sisl) ≡
let

diagrams =
{convertDiagram(dl) |
dl : DL.Diagram •

dl ∈ SISL.getDiagrams(sisl)},
external =

[T.getId(er) 7→ er |
er : T.ExternalRelay •

er ∈ elems SISL.getExternal(sisl)]
in

SIS.mk StaticInterlockingSystem(diagrams, external)
end

pre SISL.isWfStaticInterlockingSystem(sisl)
end

Pathfinding 258

B.7 Pathfinding

context: T, D
scheme Pathfinding =

class
type

Path = T.Id∗,
PoleIds :: getPlus : T.Id getMinus : T.Id

value
/∗ well formed functions ∗/
/∗ checks if a path is well formed∗/
isWfPath : Path × D.Diagram ∼→ Bool
isWfPath(p, d) ≡

/∗ a path does not repeat ids ∗/
noDuplicates(p) ∧
/∗ minimum 2 ids in a path∗/
len p ≥ 2 ∧
/∗ a path starts with a positive pole
and ends with a negative pole ∗/
D.isPlus(p(1), d) ∧ D.isMinus(p(len p), d) ∧
/∗ (p(1),p(2)),...,(p(n−1),p(n)) are neighbours
∗/
(∀ n : Nat •

n ∈ (inds p \ {len p}) ∧
D.areNeighbours(p(n), p(n + 1), d)) ∧

/∗ the up and down path of a steel relay
cannot be in the same path at the same time
∗/
noSteelRelayProblem(p, d) pre D.isWfDiagram(d),

/∗ checks that a path has no duplicate elements
∗/
noDuplicates : Path → Bool
noDuplicates(p) ≡ card elems p = len p,

/∗ checks that the up and down part of a steel
relay
are not in the same path at the same time ∗/
noSteelRelayProblem : Path × D.Diagram ∼→ Bool
noSteelRelayProblem(p, d) ≡

(∀ id : T.Id •

id ∈ elems p ∧ D.isSteelRelay(id, d) ⇒

Pathfinding 259

∼ (D.upRelation(id, d) ∈ elems p ∧
D.downRelation(id, d) ∈ elems p))

pre
D.isWfDiagram(d) ∧
(∀ id : T.Id •

id ∈ elems p ⇒ id ∈ D.allIds(d)),

/∗ for path computation ∗/
/∗ true if a set of ids is contained by a path
∗/
isPathFor : Path × T.Id-set → Bool
isPathFor(p, ids) ≡ ids ⊆ elems p,

/∗ gives all the paths through a given set of
ids
in a give diagram ∗/
allPathsFor : T.Id-set × D.Diagram ∼→ Path-set
allPathsFor(ids, d) ≡
{p |
p : Path •

p ∈ makePathsBetweenPoles(d) ∧
isPathFor(p, ids)}

pre D.isWfDiagram(d) ∧ ids ⊆ D.allIds(d),

/∗ Added functions ∗/
makePoles : D.Diagram ∼→ PoleIds
makePoles(d) ≡

let
plusSet =
{id |
id : T.Id •

id ∈ D.allIds(d) ∧ D.isPlus(id, d)},
minusSet =
{id |
id : T.Id •

id ∈ D.allIds(d) ∧ D.isMinus(id, d)}
in

mk PoleIds(hd plusSet, hd minusSet)
end

pre D.isWfDiagram(d),

/∗ checks that a new possible path does not contain
duplicates or a steel relay problem ∗/

Pathfinding 260

legalPathExtension : Path × D.Diagram ∼→ Bool
legalPathExtension(p, d) ≡

noDuplicates(p) ∧ noSteelRelayProblem(p, d)
pre D.isWfDiagram(d),

/∗ Gives the set of well formed paths in a diagram
∗/
makePathsBetweenPoles : D.Diagram ∼→ Path-set
makePathsBetweenPoles(d) ≡

let poles = makePoles(d) in
makePathsBetweenComponents(

getMinus(poles), 〈getPlus(poles)〉, d)
end

pre D.isWfDiagram(d),

/∗ tries to extend a path with each id in neighboursToBeVis
ted.
each legal extension will be returned ∗/
extendPath :

T.Id × T.Id-set × Path × D.Diagram ∼→ Path-set
extendPath(

endComponent, neighboursToBeVisited, currentPath, d) ≡
if neighboursToBeVisited = {} then {}
else

let
nextComponent = hd neighboursToBeVisited,
nextPath = currentPath ̂ 〈nextComponent〉

in
if legalPathExtension(nextPath, d)
then

makePathsBetweenComponents(
endComponent, nextPath, d)

else {}
end ∪
extendPath(

endComponent,
neighboursToBeVisited \ {nextComponent},
currentPath, d)

end
end

pre
D.isWfDiagram(d) ∧ endComponent ∈ D.allIds(d) ∧
neighboursToBeVisited ⊆ D.allIds(d) ∧

Conditionfinding 261

elems currentPath ⊆ D.allIds(d),

/∗ makes all possible extensions of currentPath
that are legal
and has endComponent as the end of the path
∗/
makePathsBetweenComponents :

T.Id × Path × D.Diagram ∼→ Path-set
makePathsBetweenComponents(

endComponent, currentPath, d) ≡
let

currentComponent = currentPath(len currentPath)
in

if currentComponent = endComponent
then {currentPath}
else

extendPath(
endComponent,
D.neighboursOf(currentComponent, d),
currentPath, d)

end
end

pre
len currentPath > 0 ∧ D.isWfDiagram(d) ∧
endComponent ∈ D.allIds(d) ∧
elems currentPath ⊆ D.allIds(d)

end

B.8 Conditionfinding

context: T, D, PF
scheme Conditionfinding =

class
value

/∗ gives the boolean expression that is true iff
there can be
current throuh a give button or a given contact
∗/
isConducting : T.Id × D.Diagram ∼→ T.BooleanExp
isConducting(id, d) ≡

Conditionfinding 262

if D.isButton(id, d) then T.literal(id)
else

case D.relayStateForContact(id, d) of
T.up → T.literal(D.relayIdForContact(id, d)),
T.down →

T.neg(T.literal(D.relayIdForContact(id, d)))
end

end
pre

D.isWfDiagram(d) ∧
(D.isButton(id, d) ∨ D.isContact(id, d)),

/∗ generation of boolean expressions ∗/
/∗ gives the expression that is true iff
the path is conductive
(note: poles and relays are always conductive,
but buttons and contacts must be closed in order
to obtain conductivity)∗/
isConducting : PF.Path × D.Diagram ∼→ T.BooleanExp
isConducting(p, d) ≡

T.and(
{isConducting(id, d) |

id : T.Id •

id ∈ elems p ∧
(D.isButton(id, d) ∨ D.isContact(id, d))})

pre D.isWfDiagram(d) ∧ PF.isWfPath(p, d),

/∗ gives the boolean expression that is true iff
there is current through the given regular relay
∗/
currentThroughRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
currentThroughRegularRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path • p ∈ PF.allPathsFor({id}, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d),

/∗ gives the condition for not having current
through a given
regular relay∗/
noCurrentThroughRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp

Conditionfinding 263

noCurrentThroughRegularRelay(id, d) ≡
T.neg(currentThroughRegularRelay(id, d))

pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d),

/∗ gives the boolean expression that is true iff
there is no current through the given regular
relay ∗/
canDrawRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDrawRegularRelay(id, d) ≡

T.and(
{T.neg(T.literal(id)),

currentThroughRegularRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d),

/∗ gives the boolean expression that is true iff
a given regular relay
can be dropped ∗/
canDropRegularRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDropRegularRelay(id, d) ≡

T.and(
{T.literal(id),

noCurrentThroughRegularRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isRegularRelay(id, d),

/∗ gives the boolean expression that is true iff
there is current through the given regular relay
that makes it draw
∗/
drawingCurrentThroughSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
drawingCurrentThroughSteelRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path •

p ∈
PF.allPathsFor(
{D.upRelation(id, d), id,

D.minusRelation(id, d)}, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d),

/∗ gives the boolean expression that is true iff

Conditionfinding 264

there is current through the given regular relay
that makes it drop
∗/
droppingCurrentThroughSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
droppingCurrentThroughSteelRelay(id, d) ≡

T.or(
{isConducting(p, d) |

p : PF.Path •

p ∈
PF.allPathsFor(
{D.downRelation(id, d), id,

D.minusRelation(id, d)}, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d),

/∗ gives the boolean expression that is true iff
a given steel relay
can be drawn∗/
canDrawSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDrawSteelRelay(id, d) ≡

T.and(
{T.neg(T.literal(id)),

drawingCurrentThroughSteelRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d),

/∗ gives the boolean expression that is true iff
a given steel relay
can be dropped ∗/
canDropSteelRelay :

T.Id × D.Diagram ∼→ T.BooleanExp
canDropSteelRelay(id, d) ≡

T.and(
{T.literal(id),

droppingCurrentThroughSteelRelay(id, d)})
pre D.isWfDiagram(d) ∧ D.isSteelRelay(id, d)

end

TransitionSystem 265

B.9 TransitionSystem

context: T
scheme TransitionSystem =

class
type

/∗ a variable in the state of a transition system
∗/
Var :: id : T.Id val : T.Boolean,

/∗ an assignment in a transition rule.
the Var with the given id in the current state
will be assigned the new value ∗/
Assignment :: id : T.Id assign : T.Boolean,

/∗ all the assignments in a transition rule ∗/
MultipleAssignment = Assignment∗,

/∗ a transition rule has a guard and
a multiple assignment ∗/
TransitionRule ::

guard : T.BooleanExp
assignments : MultipleAssignment,

/∗ a transition system has an initial state
and some transition rules ∗/
TransitionSystem ::

state : Var∗

transitionRules : TransitionRule∗

value

/∗ well formed functions ∗/
/∗ checks that a transition system is well formed ∗/
isWfTransitionSystem : TransitionSystem → Bool
isWfTransitionSystem(ts) ≡

isWfState(state(ts)) ∧
areWfTransitionRules(state(ts), transitionRules(ts)),

/∗ the variables in the state must have unique ids
and duplicates are not allowed ∗/

isWfState : Var∗ → Bool
isWfState(state) ≡

StaticInterlockingSystemToTransitionSystem 266

(∀ v1, v2 : Var •

v1 ∈ state ∧ v2 ∈ state ∧ id(v1) = id(v2) ⇒
v1 = v2)

∧
card elems state = len state,

/∗ checks that all the transition rules are well formed ∗/
areWfTransitionRules :

Var∗ × TransitionRule∗ → Bool
areWfTransitionRules(state, transitionRules) ≡

let
/∗ all the ids that are defined in the state ∗/
ids = {id(var) | var : Var • var ∈ elems state}

in
(∀ tr : TransitionRule •

tr ∈ elems transitionRules ⇒
/∗ The ids in a guard must be defined in the state ∗/
T.idsInBoolExp(guard(tr)) ⊆ ids ∧
/∗ There must minimum be one assignment ∗/
len assignments(tr) > 0 ∧
/∗ the id in an assignment must be defined in the state ∗/
(∀ a : Assignment •

a ∈ assignments(tr) ⇒ id(a) ∈ ids) ∧
/∗ a variable cannot be assigned several values in
the same multiple assignment ∗/
(∀ a1, a2 : Assignment •

a1 ∈ elems assignments(tr) ∧
a2 ∈ elems assignments(tr) ∧
id(a1) = id(a2) ⇒ a1 = a2) ∧

card elems assignments(tr) = len assignments(tr))
end

end

B.10 StaticInterlockingSystemToTransitionSystem

context: T, TS, D, CF, SIS
scheme StaticInterlockingSystemToTransitionSystem =

class
value

StaticInterlockingSystemToTransitionSystem 267

/∗ the identifier of the idle variable ∗/
idleId : T.Id = ′′idle′′,
/∗ the idle variable ∗/
idle : TS.Var = TS.mk Var(idleId, T.False),

/∗ calculates the behavioural semantics
(a transition system) of
a static interlocking system ∗/
makeBehaviouralSemantics :

SIS.StaticInterlockingSystem ∼→ TS.TransitionSystem
makeBehaviouralSemantics(sis) ≡

TS.mk TransitionSystem(
makeState(sis), makeTransitionRules(sis))

pre SIS.isWfStaticInterlockingSystem(sis),

/∗ makes a list of Var that contains all ids combined
with b∗/
makeIdVars : T.Id-set × T.Boolean → TS.Var∗

makeIdVars(ids, b) ≡
if ids = {} then 〈〉
else

let id = hd ids in
〈TS.mk Var(id, b)〉 ̂ makeIdVars(ids \ {id}, b)

end
end,

/∗ makes the vars of all the buttons in a diagram.
all the vars are false because buttons are not
pushed in the normal state ∗/
makeButtonVars : D.Diagram-set → TS.Var∗

makeButtonVars(ds) ≡
if ds = {} then 〈〉
else

let
d = hd ds,
buttonIds =
{id |
id : T.Id •

id ∈ D.allIds(d) ∧ D.isButton(id, d)}
in

makeIdVars(buttonIds, T.False) ̂
makeButtonVars(ds \ {d})

end

StaticInterlockingSystemToTransitionSystem 268

end
pre

(∀ d : D.Diagram • d ∈ ds ⇒ D.isWfDiagram(d)),

/∗ Makes the vars of all the external relays
∗/
makeExternalRelayVars :

T.Id-set × SIS.StaticInterlockingSystem ∼→
TS.Var∗

makeExternalRelayVars(ids, sis) ≡
if ids = {} then 〈〉
else

let
id = hd ids,
initState =

case SIS.externalRelayState(id, sis) of
T.up → T.True,
T.down → T.False

end
in
〈TS.mk Var(id, initState)〉 ̂
makeExternalRelayVars(ids \ {id}, sis)

end
end

pre
SIS.isWfStaticInterlockingSystem(sis) ∧
ids ⊆ SIS.externalRelayIds(sis),

/∗ makes the vars for all the buttons and all
the external relays in a static interlocking
system ∗/
makeExternalVars :

SIS.StaticInterlockingSystem ∼→ TS.Var∗

makeExternalVars(sis) ≡
makeButtonVars(SIS.diagrams(sis)) ̂
makeExternalRelayVars(SIS.externalRelayIds(sis), sis)

pre SIS.isWfStaticInterlockingSystem(sis),

/∗ makes the relay vars in a diagram ∗/
makeRelayVars : T.Id-set × D.Diagram ∼→ TS.Var∗

makeRelayVars(ids, d) ≡
if ids = {} then 〈〉
else

StaticInterlockingSystemToTransitionSystem 269

let
id = hd ids,
initState =

case D.relayState(id, d) of
T.up → T.True,
T.down → T.False

end
in
〈TS.mk Var(id, initState)〉 ̂
makeRelayVars(ids \ {id}, d)

end
end

pre
D.isWfDiagram(d) ∧
(∀ id : T.Id •

id ∈ ids ⇒
(D.isSteelRelay(id, d) ∨

D.isRegularRelay(id, d))),

/∗ makes the relay vars of all the diagrams in
a diagram set∗/
makeInternalRelayVars : D.Diagram-set ∼→ TS.Var∗

makeInternalRelayVars(ds) ≡
if ds = {} then 〈〉
else

let
d = hd ds,
relays =
{id |
id : T.Id •

id ∈ D.allIds(d) ∧
(D.isRegularRelay(id, d) ∨

D.isSteelRelay(id, d))}
in

makeRelayVars(relays, d) ̂
makeInternalRelayVars(ds \ {d})

end
end

pre
(∀ d : D.Diagram • d ∈ ds ⇒ D.isWfDiagram(d)),

/∗ makes the initial state of a transition system
∗/

StaticInterlockingSystemToTransitionSystem 270

makeState :
SIS.StaticInterlockingSystem ∼→ TS.Var∗

makeState(sis) ≡
makeInternalRelayVars(SIS.diagrams(sis)) ̂
makeExternalVars(sis) ̂ 〈idle〉

pre SIS.isWfStaticInterlockingSystem(sis),

/∗ gives all the transition rules from the
relays in a diagram that are also defined in
the set of ids ∗/
rulesInSet :

T.Id-set × D.Diagram ∼→ TS.TransitionRule∗

rulesInSet(ids, d) ≡
if ids = {} then 〈〉
else

let id = hd ids in
if D.isRegularRelay(id, d)
then
〈TS.mk TransitionRule(

CF.canDrawRegularRelay(id, d),
〈TS.mk Assignment(id, T.True)〉),

TS.mk TransitionRule(
CF.canDropRegularRelay(id, d),
〈TS.mk Assignment(id, T.False)〉)〉

else
〈TS.mk TransitionRule(

CF.canDrawSteelRelay(id, d),
〈TS.mk Assignment(id, T.True)〉),

TS.mk TransitionRule(
CF.canDropSteelRelay(id, d),
〈TS.mk Assignment(id, T.False)〉)〉

end ̂ rulesInSet(ids \ {id}, d)
end

end
pre

D.isWfDiagram(d) ∧
(∀ id : T.Id •

id ∈ ids ⇒
(D.isSteelRelay(id, d) ∨

D.isRegularRelay(id, d))),

/∗ makes all the internal transition rules from
the diagrams in a diagram set ∗/

StaticInterlockingSystemToTransitionSystem 271

makeInternalTransitionRules :
D.Diagram-set ∼→ TS.TransitionRule∗

makeInternalTransitionRules(ds) ≡
if ds = {} then 〈〉
else

let
d = hd ds,
relayIds =
{id |
id : T.Id •

id ∈ D.allIds(d) ∧
(D.isRegularRelay(id, d) ∨

D.isSteelRelay(id, d))}
in

rulesInSet(relayIds, d) ̂
makeInternalTransitionRules(ds \ {d})

end
end

pre
(∀ d : D.Diagram • d ∈ ds ⇒ D.isWfDiagram(d)),

/∗ makes the idle transition rule from a list
of transition rules ∗/
makeIdleTransitionRule :

SIS.StaticInterlockingSystem → TS.TransitionRule
makeIdleTransitionRule(sis) ≡

let
regularUpConditions =
{CF.canDrawRegularRelay(rr, d) |
rr : T.Id, d : D.Diagram •

rr ∈ SIS.internalRelayIds(sis) ∧
d ∈ SIS.diagrams(sis) ∧
D.isRegularRelay(rr, d)},

regularDownConditions =
{CF.canDropRegularRelay(rr, d) |
rr : T.Id, d : D.Diagram •

rr ∈ SIS.internalRelayIds(sis) ∧
d ∈ SIS.diagrams(sis) ∧
D.isRegularRelay(rr, d)},

steelUpConditions =
{CF.canDrawSteelRelay(rr, d) |
rr : T.Id, d : D.Diagram •

rr ∈ SIS.internalRelayIds(sis) ∧

StaticInterlockingSystemToConfidenceConditions 272

d ∈ SIS.diagrams(sis) ∧
D.isSteelRelay(rr, d)},

steelDownConditions =
{CF.canDropSteelRelay(rr, d) |
rr : T.Id, d : D.Diagram •

rr ∈ SIS.internalRelayIds(sis) ∧
d ∈ SIS.diagrams(sis) ∧
D.isSteelRelay(rr, d)},

conditions =
regularUpConditions ∪
regularDownConditions ∪
steelUpConditions ∪ steelDownConditions

in
TS.mk TransitionRule(

T.and(
{T.neg(T.literal(TS.id(idle))),
T.neg(T.or(conditions))}),

〈TS.mk Assignment(TS.id(idle), T.True)〉)
end,

/∗ makes all the transition rules from a static
interlocking system ∗/
makeTransitionRules :

SIS.StaticInterlockingSystem →
TS.TransitionRule∗

makeTransitionRules(sis) ≡
let

internalTransitions =
makeInternalTransitionRules(SIS.diagrams(sis))

in
internalTransitions ̂
〈makeIdleTransitionRule(sis)〉

end
pre SIS.isWfStaticInterlockingSystem(sis)

end

B.11 StaticInterlockingSystemToConfidenceConditions

context: T, TS, D, CF, SIS, SIStoTS
scheme StaticInterlockingSystemToConfidenceConditions =

StaticInterlockingSystemToConfidenceConditions 273

class
value

/∗ calculates the confidence conditions of the
behavioural semantics
(a transition system) of
a static interlocking system ∗/
makeConfidenceConditions :

SIS.StaticInterlockingSystem ∼→ T.LTLassertion∗

makeConfidenceConditions(sis) ≡
makeConfidenceConditionsFromDiagramSet(

SIS.diagrams(sis)) ̂
〈T.G(T.F(T.B(T.literal(TS.id(SIStoTS.idle))))),

T.X(T.B(T.literal(TS.id(SIStoTS.idle))))〉
pre SIS.isWfStaticInterlockingSystem(sis),

/∗ makes the confidence conditions for the relays
defined in ids and d
∗/
assertionsInSet :

T.Id-set × D.Diagram ∼→ T.LTLassertion∗

assertionsInSet(ids, d) ≡
if ids = {} then 〈〉
else

let id = hd ids in
if D.isRegularRelay(id, d)
then

trueUntilChangeLTL(
id, CF.canDrawRegularRelay(id, d),
CF.canDropRegularRelay(id, d))

else
let

canDraw = CF.canDrawSteelRelay(id, d),
canDrop = CF.canDropSteelRelay(id, d),
drawingCurrent =

CF.drawingCurrentThroughSteelRelay(id, d),
droppingCurrent =

CF.droppingCurrentThroughSteelRelay(id, d)
in

trueUntilChangeLTL(id, canDraw, canDrop) ̂
〈mutualExclusionLTL(

drawingCurrent, droppingCurrent)〉
end

end ̂ assertionsInSet(ids \ {id}, d)

StaticInterlockingSystemToConfidenceConditions 274

end
end

pre
D.isWfDiagram(d) ∧
(∀ id : T.Id •

id ∈ ids ⇒
(D.isSteelRelay(id, d) ∨

D.isRegularRelay(id, d))),

/∗ makes the confidence conditions from the diagrams
in a diagram set ∗/
makeConfidenceConditionsFromDiagramSet :

D.Diagram-set ∼→ T.LTLassertion∗

makeConfidenceConditionsFromDiagramSet(ds) ≡
if ds = {} then 〈〉
else

let d = hd ds in
assertionsInSet(D.allIds(d), d) ̂
makeConfidenceConditionsFromDiagramSet(ds \ {d})

end
end

pre
(∀ d : D.Diagram • d ∈ ds ⇒ D.isWfDiagram(d)),

/∗defines the 2 true concurrency ltl assertions
for an id∗/
trueUntilChangeLTL :

T.Id × T.BooleanExp × T.BooleanExp →
T.LTLassertion∗

trueUntilChangeLTL(id, upGuard, downGuard) ≡
〈T.G(

T.Imply(
T.B(upGuard),
T.X(

T.Imply(
T.B(T.neg(upGuard)),
T.B(T.literal(id)))))),

T.G(
T.Imply(

T.B(downGuard),
T.X(

T.Imply(
T.B(T.neg(downGuard)),

The objects 275

T.B(T.neg(T.literal(id)))))))〉,

/∗defines the mutual exclusion rule : the two
BooleanExp cannot be true at the same time∗/
mutualExclusionLTL :

T.BooleanExp × T.BooleanExp → T.LTLassertion
mutualExclusionLTL(b1, b2) ≡

T.G(T.B(T.neg(T.and({b1, b2}))))
end

B.12 The objects

context: Types
object T : Types

context: DiagramsL
object DL : DiagramsL

context: StaticInterlockingSystemL
object SISL : StaticInterlockingSystemL

context: Diagrams
object D : Diagrams

context: StaticInterlockingSystem
object SIS : StaticInterlockingSystem

context: Pathfinding
object PF : Pathfinding

The objects 276

context: Conditionfinding
object CF : Conditionfinding

context: TransitionSystem
object TS : TransitionSystem

context: StaticInterlockingSystemToTransitionSystem
object SIStoTS : StaticInterlockingSystemToTransitionSystem

Appendix C

CD Overview

This appendix details the content of the CD attached to this thesis.

C.1 Report

Two electronic versions of the report can be found on the CD in the folder
Report. IMM-MSc-2008-68-Print.pdf is the print-version and IMM-MSc-2008-
68-Net.pdf is the net-version.

C.2 Example of interlocking system behaviour

Folder Example on the CD contains behaviourExample.pdf. This file presents an
example of interlocking system behaviour during the locking of a train route at
Stenstrup Station.

RSL specifications 278

C.3 RSL specifications

The sub-folders of folder RSL on the CD contain the .rsl files of the specifications
presented in appendices A and B.

C.3.1 Abstract model

Folder RSL/Abstract on the CD contains the .rsl files of the abstract model
presented in appendix A.

C.3.2 Concrete model

Folder RSL/Concrete on the CD contains the .rsl files of the concrete model
presented in appendix B.

C.4 Application to Stenstrup Station

The sub-folders of folder Stenstrup on the CD contain material related to the
application of the method developed in this thesis to Stenstrup Station.

C.4.1 Station documentation

Folder Stenstrup/StationDocumentation on the CD contains the station docu-
mentation of Stenstrup Station:

• Layout of the station: stenstrupLayout.jpg

• Operator’s panel: stenstrupOperatorPanel.jpg

• Train route table: stenstrupTrainRouteTable.jpg

• Diagrams: The diagrams of Stenstrup Station are located in folder Sten-
strup/StationDocumentation/Diagrams, along with file DiagramModifica-
tions.pdf that explains how they are modified before the translation to
XML.

Application to Stenstrup Station 279

• XML representation of the diagrams, used for generating the internal be-
haviour: stenstrup.xml

C.4.2 External behaviours

Folder Stenstrup/ExternalBehaviours on the CD contains the external behaviours
for Stenstrup Station:

• externalBehaviourButtons.rsl contains instantiations of the patterns for
button behaviour.

• externalBehaviourPoints.rsl contains instantiations of the patterns for point
behaviour.

• externalBehaviourTrackOrdered.rsl contains instantiations of the patterns
for ordered track relay behaviour.

• externalBehaviourTrackRandom.rsl contains instantiations of the patterns
for random track relay behaviour.

The general patterns for external behaviour are described in section 7.1.

C.4.3 Safety properties

Folder Stenstrup/SafetyAssertions on the CD contains the safety properties
specified for Stenstrup Station:

• collision derailing assertions.rsl contains instantiations of the patterns ex-
pressing the basic safety goals.

• train route table assertions.rsl contains instantiations of the patterns ex-
pressing the safety properties derived from the train route table.

The general patterns for safety properties are described in section 7.2.

C.4.4 TransitionSystems

Folder Stenstrup/TransitionSystems on the CD contains the RSL-SAL schemes
that have been used for verification of safety properties:

Java implementation 280

This sub-folder contains several RSL-SAL schemes:

• internalTransitionSystem.rsl contains the auto-generated transition sys-
tem and its confidence conditions, i.e. the internal behaviour of the inter-
locking system at Stenstrup Station.

• randomStenstrup CC.rsl contains both internal and external behaviour,
assuming random track relay behaviour. The only assertions specified in
this scheme are the confidence conditions.

• randomStenstrup TrainRoute.rsl contains both internal and external be-
haviour, assuming random track relay behaviour. The only assertions
specified in this scheme are the ones that are extracted from the train
route table.

• orderedStenstrup CC.rsl contains both internal and external behaviour,
assuming ordered track relay behaviour. The only assertions specified in
this scheme are the confidence conditions.

• orderedStenstrup TrainRoute.rsl contains both internal and external be-
haviour, assuming ordered track relay behaviour. The only assertions
specified in this scheme are the ones that are extracted from the train
route table.

• orderedStenstrup Basic.rsl contains both internal and external behaviour,
assuming ordered track relay behaviour. The only assertions specified in
this scheme are the ones used for expressing the basic safety goals.

C.5 Java implementation

The sub-folders of folder Java on the CD contain everything related to the Java
implementation presented in chapter 10.

C.5.1 Source

The sub-folders of Java/Source on the CD contain the packages and the source
files of the Java implementation.

Testing 281

C.5.2 API

Folder Java/API on the CD contains the API of the Java implementation,
generated by the Java JDK 6 (also referred to as 1.6.X) javadoc tool.

C.5.3 Executable

Folder Java/Executable on the CD contains an executable version of the Java
implementation, InternalBehaviourGeneration.jar. If one wants to execute the
program, Java RE 6 (also referred to as 1.6.X) is required. Information on how
to execute the program can be found in file readme.txt.

The dependencies of the Java implementation are located in folder Java/Exe-
cutable/lib together with their license.

C.6 Testing

Folder TestFiles and its sub-folders on the CD contain the performed tests on
the Java implementation. File test.pdf explains the performed tests.

C.6.1 Input XML files

Folder TestFiles/Functional on the CD contains all the XML files that have
been used as input to the program when performing attribute-related tests and
well-formed related tests.

C.6.2 Generated transition systems

Folder TestFiles/Result on the CD contains 6 sub-folders, one for each of the
well-formed static interlocking systems that have been used as part of the test-
ing. Each folder contain a picture of the used diagrams for the test, the input
XML file to the tested program, and the generated transition system. Comments
on the results can be found in TestFiles/test.pdf.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 The background of the project
	1.2 The goal of the project
	1.3 Main approach to solving the problem
	1.4 Chapter overview
	1.5 Reader assumptions

	2 Domain description
	2.1 Division of the Danish track system
	2.2 Physical objects
	2.3 Introduction to interlocking
	2.4 Train route based interlocking
	2.5 Relay- and relay group systems
	2.6 Diagrams
	2.7 The Operator's Panel
	2.8 Interaction overview

	3 Introduction to RSL-SAL and LTL
	3.1 Transition systems
	3.2 Linear-Time Temporal Logic assertions

	4 Method overview
	4.1 The verification method defined by this thesis
	4.2 Development of a tool for generating transition systems

	5 Abstract model of relay diagrams
	5.1 Assumptions about the modelled diagrams
	5.2 Modelling diagrams

	6 Towards a behavioural semantics of relay diagrams
	6.1 The notion of paths in diagrams
	6.2 Different approaches to a behavioural semantics of relay diagrams
	6.3 Conditions for drawing and dropping a single relay
	6.4 Confidence conditions for the transition system
	6.5 Interaction with the environment
	6.6 Abstract generation of behavioural semantics
	6.7 Abstract generation of confidence conditions

	7 Patterns for external behaviour and safety properties
	7.1 Patterns for external behaviour
	7.2 Patterns for safety properties
	7.3 Conclusion

	8 Application: Stenstrup Station
	8.1 Introduction to Stenstrup Station
	8.2 The behaviour of Stenstrup station
	8.3 Safety properties
	8.4 Results for Stenstrup
	8.5 Conclusion

	9 Concrete model of relay diagrams
	9.1 Types
	9.2 List-based model
	9.3 Map-based model
	9.4 Conversion from list-based model to map-based model
	9.5 Concrete condition- and pathfinding
	9.6 Concrete generation of a transition system
	9.7 Concrete generation of confidence conditions

	10 Java design and implementation
	10.1 Overview
	10.2 Java implementation of the concrete RSL model
	10.3 Input Format: XML
	10.4 Parsing and unparsing

	11 Testing the Java Implementation
	11.1 Test strategy
	11.2 Tests and results
	11.3 Conclusion

	12 Conclusion
	12.1 Project summary
	12.2 Suggestions for future work

	Bibliography
	A The abstract RSL model
	A.1 Types
	A.2 Diagrams
	A.3 StaticInterlockingSystem
	A.4 Pathfinding
	A.5 Conditionfinding
	A.6 TransitionSystem
	A.7 StaticInterlockingSystemToTransitionSystem
	A.8 StaticInterlockingSystemToConfidenceConditions
	A.9 The objects

	B The concrete RSL model
	B.1 Types
	B.2 DiagramsL
	B.3 StaticInterlockingSystemL
	B.4 Diagrams
	B.5 StaticInterlockingSystem
	B.6 StaticInterlockingSystemConversion
	B.7 Pathfinding
	B.8 Conditionfinding
	B.9 TransitionSystem
	B.10 StaticInterlockingSystemToTransitionSystem
	B.11 StaticInterlockingSystemToConfidenceConditions
	B.12 The objects

	C CD Overview
	C.1 Report
	C.2 Example of interlocking system behaviour
	C.3 RSL specifications
	C.4 Application to Stenstrup Station
	C.5 Java implementation
	C.6 Testing

