
Dynamical investigations of
the Cooperrider Bogie model

by Ulla Uldahl, s080051

Technical University of Denmark (DTU)
Informatics and Mathematical Modelling (IMM-B.Sc. 2012-34)
Main supervisor: Allan Engsig-Karup
24th February 2012

Preface

This thesis is a requirement for obtaining the Bachelor degree at The Tech-
nical University of Denmark (DTU). The work has been carried out at the
Department of Informatics and Mathematical Modelling, DTU Informatics.
The project started September 2011 and was completed January 2012.

Professor Allan Peter Engsig-Karup and emeritus associate professor Hans
True have been supervising the project.

Ulla Uldahl
Kgs. Lyngby, January 2012

i

Contents

Contents ii

Introduction v

1 The bogie model 1
1.1 Views of the model . 2
1.2 The constants of the model . 3
1.3 System of equations . 5
1.4 Differential equations . 9

2 Mathematical model 11
2.1 Coordinate system . 11
2.2 Rotation matrices . 12
2.3 Wheel/rail interaction . 13
2.4 RSGEO - contact table . 18

3 Numerical implementation 23
3.1 Known numerical issues of the Cooperrider model 23
3.2 Verification strategy . 24
3.3 Simplifying the code . 24
3.4 Test and evaluation of different numerical time integration meth-

ods . 25
3.5 Verification of the implementation of the bogie model 28
3.6 Verification of the implementation of the normal and the creep

forces . 31
3.7 Testing the system at different velocities 34
3.8 Comparing two different models 35

4 Finding the critical velocities 37
4.1 The bifurcation diagram . 37
4.2 Critical Velocity . 40
4.3 Supercritical Hopf bifurcation 42
4.4 Finding the subcritical symmetry breaking bifurcation 44

ii

CONTENTS iii

5 Conclusion 47

Appendix 48

A List of symbols 49

B Rotation matrices 51

C Data from RSGEO table 55

D Test of components separately 59

E Matlab code 65
E.1 sol.m . 65
E.2 bogie.m . 68
E.3 spring_force.m . 71
E.4 damper_force.m . 72
E.5 normal_force.m . 73
E.6 creep_force.m . 75
E.7 erk.m . 78
E.8 linear_interp.m . 83

Bibliography 85

Introduction

This report will focus on the study of the dynamic motions of a railway bogie.
To develop a fast and safe train the dynamic behaviours must be considered.
In this model the bogie is running with constant velocity along a straight, hori-
zontal and perfect track. When the velocity reaches a certain value, the bogie
starts performing oscillations - hunting motions - and it is hard to gain sta-
bility again. These hunting motions causes a great wear of the railway vehicle
and the tracks, and at the same time it is not comfortable for the passengers.
Therefore it is necessary to know at which velocity the hunting motions occurs.

My contributions:

• The model has previously been investigated and implemented in C++
by several other authors and to our knowledge it is the first time, that
the model is implemented in Matlab.

• We have defined all forces as vectors in the same reference coordinate
system (the track system). The code is divided into modules, such that
e.g. the normal force of each wheel is computed using the same function.

• We have found three critical velocities for this model, which we describe
in a bifurcation diagram.

In this model we describe fourteen basic motions, and we use the precomputed
parameters from the RSGEO table for realistic wheel/rail contact. The wheels
used in this simulation have the S1002 standard profile and the rails have the
UIC60 profile. UIC is the worldwide international organisation of the railway
sector, and 60 stands for 60 kilogram per meter. The rails are tilted 1/40
inwards the center of the track. For the wheel/rail contact force, the Hertz’
and the Shen, Hendrick, and Elkins’ theories are used. Wheel lift off is not
considered in this report.

The Report

In the first chapter, the bogie model is described and all the physical para-
meters (constants) of this model are listed. In addition, the derivation of the
equations is briefly described. This is followed by chapter 2, describing the

v

vi INTRODUCTION

mathematical model based on previous work carried out at IMM-DTU [6].
The three coordinate systems and the transformation matrices between these
systems are defined. Creep and normal forces are defined by combining the
theories by Hertz’ and Shen, Hendrick, and Elkins’. In chapter 3 we verify
our Matlab implementation by analyzing the behaviour of the dynamical
variables and the contact forces, and by comparing our results against results
obtained in previous work [8]. In chapter 4, different methods are described
for finding the various solutions of the bifurcation diagram of this model.
Chapter 5 includes the conclusion and a brief discussion about further work.
Finally, we have some appendices containing a list of symbols used, the rota-
tion matrices, data from the RSGEO table, and the source code.

Chapter 1

The bogie model

In this work we implement the Cooperrider bogie model in Matlab. The
railway vehicle considered is a four-axle bogie wagon, consisting of a car body
which is resting on two bogies. Each bogie consists of three stiff elements:
A bogie frame and two wheel axles denoted as the front wheel and the rear
wheel. Through the primary suspension, the wheel axles are connected to the
bogie frames that in turn is connected to the carbody through the secondary
suspension.
The wheel axles are connected to the frame with springs and to ensure good
driving properties these are relatively stiff. The frame is connected to the car
body with both springs and dampers. In comparision to those of the primary
suspension the springs are relativley soft. This is to prevent the vibrations, as
a result of the tracks, is being transmitted to the car body. In this model all
dampers and springs, longitudinal as torsional, are considered linear and they
obey Hooke’s law, Fspring = −ky. The values for the springs and dampers are
listed in table 1.2.
The wheels used in this simulation have the S1002 profile and the rails have
the UIC60 profile. The rails are tilted 1/40 inwards.

1

2 CHAPTER 1. THE BOGIE MODEL

1.1 Views of the model
In figure 1.1 a top view of the cooperriders bogie can be seen and figure 1.2
shows a view of the cooperriders bogie seen from the rear. k refers to the
springs and D refers to the dampers, both placed at the same position. The
left and the right side of the cooperrider bogie is symmetric.

Figure 1.1: Cooperrider bogie seen from the top.

1.2. THE CONSTANTS OF THE MODEL 3

Figure 1.2: Bogie seen from the rear axle.

1.2 The constants of the model
The nominal distance between the two rails, measured 14mm under the top
of the rails, is 1435mm. This distance is called the track gauge, see figure 1.3.

Figure 1.3: Track gauge and rail incliration.

In the following table the constants of the model are listet. The springs are
considered linear and they obey Hooke’s law. The dampers are also considered
linear. M.o.i. is used as shorthand for moments of inertia.

4 CHAPTER 1. THE BOGIE MODEL

Dimensions
a = 0.75 m Half the track gauge.
b = 1.074 m Half the distance between the two wheel axles.
r0 = 0.425 m The nominal rolling radius of the wheel.
d1 = 0.620 m Horizontal distance from the springs k2 and k3

to a center of gravity.
d2 = 0.680 m Horizontal distance from the springs k5 and the

damper D1 to a center of gravity.
h1 = 0.0762 m Vertical distance from the springs k1 to a center

of gravity.
h2 = 0.6584 m Vertical distance from the springs k4 and the

damper D2 to a center of gravity.
The masses and moments of inertia (M.o.i.) used in this work
mw = 1022 kg Mass of the wheel axle.
Iwx = 678 kg·m2 M.o.i. for the roll motions of the wheel around

longitudinal axis.
Iwy = 80 kg·m2 M.o.i. for the pitch motions of the wheel around

lateral axis.
Iwz = 678 kg·m2 M.o.i. for the yaw motions of the wheel around

vertical axis.
mf = 2918.9 kg Mass of the frame.
Ifx = 6780 kg·m2 M.o.i. for the roll motions of the frame around

longitudinal axis.
Ifz = 6780 kg·m2 M.o.i. for the yaw motions of the frame around

vertical axis.
mc = 44388 kg Mass of the railcar.
Primary suspensions
k1 = 1823 kN/m Lateral horizontal spring, wheel-frame.
k2 = 3646 kN/m Longitudinal horizontal spring, wheel-frame.
k3 = 3646 kN/m Vertical spring, wheel-frame.
Secondary suspensions
k4 = 182.3 kN/m Lateral horizontal spring, frame-carbody.
k5 = 333.3 kN/m Vertical spring, frame-carbody.
k6 = 2710 kN/m Torsion spring, frame-carbody.
D1 = 20 kN/m Vertical damper, frame-carbody.
D2 = 29.2 kN/m Lateral horizontal damper, frame-carbody.
D3 = 500 kN/m Lateral horizontal damper, frame-carbody.
Dm = 150k kN·s/m Material damper, contact area. [6]

Table 1.1: Constants of the model. Unless otherwise mentioned, all paramters
are from Lasse Engbo Christensen Master project. [2].

1.3. SYSTEM OF EQUATIONS 5

1.3 System of equations

The large weight of the car body and the relative soft secondary suspension
will lead to small movements of the carbody. At least in comparision to the
bogie frame. Therefore the position of the car body can be assumes fixed and
the interaction between the two bogies and the railway vehicle is shut out.
The driving properties of the whole railway vehicle is then done by examina-
tion one single bogie.
The basic equations are given by Kaas-Petersen [1]. But since the creep force
is calculated using Hertz’ and Shen, Hendrick, and Elkins theory, there are
added 7 more equations to the system. This also gives a more precise and real-
istic model. These seven extra equations is given by the vertical movement
for all three elements and by the roll for the frontwheel and rearwheel and at
least the spinperturbation for each wheel axle. Thereby we allow 14 degrees
of freedom in this model. Lateral, vertical, yaw and roll motions for the frame
and both of the wheelaxles and a spin perturbation only for the wheelaxles.
The fourteen degrees of freedom are:

Front axle: 1. Lateral - displacement transversal to the track.
2. Vertical - displacement perpendicular upward the track.
3. Yaw - rotation around a vertical axis.
4. Roll - rotation around a horizontal axis.

Rear axle: 5. Lateral - displacement transversal to the track.
6. Vertical - displacement perpendicular upward the track.
7. Yaw - rotation around a vertical axis.
8. Roll - rotation around a horizontal axis.

Bogie frame: 9. Lateral - displacement transversal to the track.
10. Vertical - displacement perpendicular upward the track.
11. Yaw - rotation around a vertical axis.
12. Roll - rotation around a horizontal axis.

Front axle: 13. Angular velocity perturbation.
Rear axle: 14. Angular velocity perturbation.

By lateral motions is meant displacement in a horizontal plane orthogonal to
the tracks direction. By vertical movements is meant displacement perpendic-
ular up relative to the track. By yaw motions is meant rotation in a horisontal
plane around a vertical axis. By roll motions is meant rotation in a vertical
plane around a horizontal axis parallel to the track.
The 14 state variables q1, ..., q14 are examinated as functions of time t. In or-
der to do this the dynamics equations are formulated using Newton’s second
law. The forces of the model come from the springs and dampers. The springs
are assumed to obey Hooke’s low Fspring = −ky, which is valid for small dis-
placements. For the dampers the linear velocity is used, Fdamper = −Dẏ. The
springs for the model can be stretched out in three directions. For simplicity

6 CHAPTER 1. THE BOGIE MODEL

we will only take the contribution from the direction where the springs and
dampers are mounted into account. The angles are assumed to be small and
thereby an aproximation is done using:

sin(δ) ≈ δ , cos(δ) ≈ 1 (1.1)

From figure 1.1 and 1.2 we see that the pure lateral displacement for the front
wheel is given by:

q1 − q9 − b sin(q11)− h1 sin(q12) ≈ q1 − q9 − bq11 − h1q12 (1.2)

Note the yaw contribution bq11, as the torsion spring is mounted in the center
of the bogie frame. The same is valid for the roll h1q12 where the spring is
mounted h1 above the rotation axis. The pure lateral displacement for the
rear wheel is given by:

q5 − q9 + b sin(q11)− h1 sin(q12) ≈ q5 − q9 + bq11 − h1q12 (1.3)

and for the bogie itself:

h2 sin(q12)− q9 ≈ h2q12 − q9 (1.4)

and the damping of the bogie is given by:

2D2(h2q̇12 − q̇9) (1.5)

where q̇9 and q̇12 is the velocity respectively of the lateral motion and the roll
motion. By writing up Newton’s second law, the ODE for the bogie-frames
lateral movement is found:

mf q̈9 = 2k1(q1 + q5− 2q9− 2h1q12) + 2k4(h2q12− q9) + 2D2(h2q̇12− q̇9) (1.6)

The definition of force moment is Mb = r×F. By use of the rotation matrices
AbT derived in section 2.2 we project the contact force into the body system.

Mb = Rw ×AbT (F + N) (1.7)

Mb =

 0
Rwy
Rwz

×
 1 ψ 0
−ψ 1 φ
0 −φ 1

 Fx
Fy
Fz

+

 0
Ny

Nz

=

 Rwy(−φ(Fy +Ny) + Fz +Nz)−Rwz(−ψFx + Fy +Ny + φ(Fz +Nz))
Rwz(Fx + ψ(Fy +Ny))
−Rwy(Fx + ψ(Fy +Ny))

We do this for the whole system and the governing equations are listed, where
Fwfc = (mw+ 1

2mf + 1
4mc)g is introduced for the static load for each wheelset.

1.3. SYSTEM OF EQUATIONS 7

In the equations Nijk is the normal force and Fijk is the friction force, both
given in the track system. The index i defines the wheelset front or rear, the
second index j defines the side, left or right and the final index k defines the
direction x, y or z. Rwy = aij is the lateral distance to the contact point
and Rwz = rij is the actual rolling radius of the wheels, both in reference to
the center of mass of the wheelset, see section 2.3 . The latter two equations
calculates the difference between the actual angular velocity of the wheelsets
and the theoretical value.

mwq̈1 = −A1 + Ffly + Ffry +Nfly +Nfry (1.8a)
mwq̈2 = −A2 + Fflz + Ffrz +Nflz +Nfrz − Fwfc (1.8b)
Iwz q̈3 = −A3 − afr(Ffrx + (Ffry +Nfry)q3) (1.8c)

− afl(Fflx + (Ffly +Nfly)q3)
Iwxq̈4 = −A4 + afl(Fflz +Nflz − (Ffly +Nfly)q4) (1.8d)

+ afr(Ffrz +Nfrz − (Ffry +Nfry)q4)
− rfl(−q3Fflx + Ffly +Nfly + q4(Fflz +Nflz))
− rfr(−q3Ffrx + Ffry +Nfry + q4(Ffrz +Nfrz))

mwq̈5 = −A5 + Frly + Frry +Nrly +Nrry (1.8e)
mwq̈6 = −A6 + Frlz + Frrz +Nrlz +Nrrz − Fwfc (1.8f)
Iwz q̈7 = −A7 − arr(Frrx + (Frry +Nrry)q7) (1.8g)

− arl(Frlx + (Frly +Nrly)q7)
Iwxq̈8 = −A8 + arl(Frlz +Nrlz − (Frly +Nrly)q8) (1.8h)

+ arr(Frrz +Nrrz − (Frry +Nrry)q8)
− rrl(−q7Frlx + Frly +Nrly + q8(Frlz +Nrlz))
− rrr(−q7Frrx + Frry +Nrry + q8(Frrz +Nrrz))

mf q̈9 = A1 +A5 +A9 + 2D2(h2q̇12 − q̇9) (1.8i)
mf q̈10 = A2 +A6 −A10 − 2D1q̇10 (1.8j)
Ifz q̈11 = bA1 +A3 − bA5 +A7 −A11 −D3q̇11 (1.8k)
Ifxq̈12 = h1A1 +A4 + h1A5 +A8 − h2A9 −A12 − 2D1d

2
2q̇12 (1.8l)

− 2h2D2(h2q̇12 − q̇9)
β̇fy q̇13 = −A13 + rfr(Ffrx + (Ffry +Nfry)q3) (1.8m)

+ rfl(Fflx + (Ffly +Nfly)q3)
β̇ry q̇14 = −A14 + rrr(Frrx + (Frry +Nrry)q7) (1.8n)

+ rrl(Frlx + (Frly +Nrly)q7)

8 CHAPTER 1. THE BOGIE MODEL

Where all the spring forces are:

A1 = 2k1(q1 − q9 − bq11 − h1q12) (1.9a)
A2 = 2k3(q2 − q10) (1.9b)
A3 = 2k2d

2
1(q3 − q11) (1.9c)

A4 = 2k3d
2
1(q4 − q12) (1.9d)

A5 = 2k1(q5 − q9 + bq11 − h1q12) (1.9e)
A6 = 2k3(q6 − q10) (1.9f)
A7 = 2k2d

2
1(q7 − q11) (1.9g)

A8 = 2k3d
2
1(q8 − q12) (1.9h)

A9 = 2k4(h2q12 − q9) (1.9i)
A10 = 2k5q10 (1.9j)
A11 = k6q11 (1.9k)
A12 = 2k5d

2
2q12 (1.9l)

A13 = 2k3d
2
1q3q12 (1.9m)

A14 = 2k3d
2
1q7q12 (1.9n)

and products of small quantities have been neglected i.e. small angles see (1.1)
and the simplified contributions from the springs.

1.4. DIFFERENTIAL EQUATIONS 9

1.4 Differential equations
The full set of equations are given by twelve second order and two first order
differential equations. In order to solve the system, it is therefore necessary to
rewrite them into a system of 26 ordinary differential equations of first order
(ODEs). This makes it possible to express the system of equations in the
general form.
This is done very easily by introducing ODEs for the velocity. The velocity is
used as a variable v = ẋ, and then the first derivative of this is used to express
the acceleration.
The substitutions:

x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, ..., x25 = q13, x26 = q̇14

And the rewritten form:

dx1
dt

= dq1
dt

= q̇1 = x2 ⇒ q̈1 = d

dt

dq1
dt

= dq̇1
dt

dx2
dt

= dq̇1
dt

= q̈1 =
∑
Fyfrontwheel

mw

.

.

.

dx23
dt

= dq12
dt

= q̇12 = x24

dx24
dt

= dq̇12
dt

= q̈12

Chapter 2

Mathematical model

In this chapter we describe how the wheel/rail interaction is modelled. We
introduced three coordinate systems to describe the orientation of the bogie.
The derivations are made for the left wheel and all coordinates are right hand
systems. It has been shown that the same equations apply to the right wheel,
but with opposite sign for the contact angle see appendix B. Furthermore we
derive the equations used calculating the creep and the normal forces. Finally
we give a short description of the data in the RSGEO data file.

2.1 Coordinate system

The coordinate systems are found appropriated for the track analysis, espe-
cially for calculating the creep and normalforces.

System Base Description
RT : {OT ;xT , yT , zT } iT , jT ,kT Track system
Rb : {Ob;xb, yb, zb} ib, jb,kb 2 body systems
Rc : {Oc;xc, yc, zc} ic, jc,kc 4 wheel-rail contact systems

Table 2.1: Coordinate systems.

The origin of the track system OT is in the track center line. xT is a horizontal
axis points in the derection of travel. yT is a horizontal axis pointing towards
the left rail w.r.t to the direction we travel. zT is pointing upwards from the
track center, see figure 1.3.
The origin of the body system Ob is located in the center of mass of each
wheel axle. This axis is pointing the same way as for the track system. The
wheel-rail contact system Rc is an auxiliary coordinate system with an origo
in the contact point between the wheel and rail. xc is a horizontal axis point-
ing in the direction of travel and the yc follows the conicity of the wheel. zc
is perpendicular to yc and pointing upwards. See figure 2.1.

11

12 CHAPTER 2. MATHEMATICAL MODEL

Figure 2.1: Contact system.

2.2 Rotation matrices
By use of rotation matrices the relation between the coordinate system and
the orientation of the axes are defined. Then it is easy to pass from one system
to another. The body system does not follow the rotation around the spinning
axis, which means that there is no pitch and the rotation matrix around the
y-axis is therefore unnecessary.
An important property of the rotation matrices is that the determinant is
equal to 1. This means that the matrices are orthogonal and thereby their
inverse are equal to their transpose, A−1 = AT . At the same time we see that
when α = 0 we get the identity matrix for all the rotation matrices.

A(α)
x =

 1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

A(α)
z =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

Body system to track system - track to body

1. Rotation around z by ψ (yaw)

2. Rotation around x by φ (roll)

ATb = A(ψ)
z A(φ)

x , AbT = AT
Tb

Wheel/rail system to body system - body to wheel/rail

1. Rotation around xb by δ - the contact angle is given from RSGEO-table.

Abc = A(δ)
x , Acb = AT

bc

2.3. WHEEL/RAIL INTERACTION 13

Equations of motion

The velocity v of the center of mass is expressed with reference to the track
base.

v =

V0
0

+

0
ẏ
ż

 =

Vẏ
ż

 (2.1)

and the angular velocity Ω of the wheel-axle is expressed in reference to the
body system:

Ωb =

1 ψ 0
−ψ 1 φ

0 −φ 1

φ̇

0
0

+

0
V
r0

ψ̇

 =

φ̇

V
r0
− β̇
ψ̇

 (2.2)

where β̇ = ψφ̇ is a spin perturbation that measures the difference between the
actual and the theoretical value of the spin of the wheelset around the y’ axis.
The nominal spin is V

r0
, where r0 is the nominal rolling radius.

2.3 Wheel/rail interaction

The wheels and rails are in contact and create contact forces. This chapter
describes how these forces are determined. In order to solve the normal force
contact problem, this contact is considered elastic. Apart from that the wheels
and rails are assumed to be rigid. Both wheels and rails are made of steel with
following material properties:

Young’s modulus E = 2.1 ·1011N/m2

Poissions ratio ν = 0.27
Shear modulus G = E/(2(1+ν)) = 8.2677 · 1010N/m2

Friction coefficient µ = 0.3

In order to use the theory available, the relative motions between the bodies
is here to be found. In order to find the shape of the contact patch the Hertz’
theory is used. The elastic deformation is determined by the penetration of
the wheels into the rail.

Penetration

The data from RSGEO contains a static penetration and the additional pen-
etration is here to be found. RC is a vector defining the position of the center
of the mass of the wheelset and RR defines the position of the contact point
on the rail. Both vectors are with reference to the base of the track system.
Rw is the position of the contact point on the wheel in reference to the base

14 CHAPTER 2. MATHEMATICAL MODEL

of the body system. See figure 2.2

RC = (ȳ + y)jT + (z̄ + z)kT
RR = RRyjT +RRzkT
Rw = Rwyjb +Rwzkb

Here the vector [0, ȳ, z̄]T defines the equilibrium position. The vector in the
wheel/rail contact system, pointing from the contact point on the wheel to
the contact point on the rail, is given by :

Rpen = Acb(AbT (RR −RC)−Rw)

where the penetration depth is the z-component of Rpen. Note, that this
vector is positive.

qpen ≈ sin(δ)(−RRy +RCy − φ(RRz −RCz) +Rwy)
+ cos(δ)(RRz −RCz − φ(RRy −RCy)−Rwz)

(2.3)

Figure 2.2: Vectors defining the penetration for the left wheel.

Normal force

The normal force is a function of the penetration of the wheel into the rail
and is calculated using Hertz’ theory. According to Hertz’ static theory, the
contact region is elliptical, with the major axis a and minor axis b, see figure
2.3. It is seen that the semi axes of the contact point scales with the normal
force raised to the power of on third. [5] page 35. From the theory one get

a ∝ N
1
3 , b ∝ N

1
3 (2.4)

2.3. WHEEL/RAIL INTERACTION 15

The penetration is required in order to calculate the normal force and the
relation is given by:

N ∝ qpen
3
2 (2.5)

The resulting normal force is computed using the actual geometry of the bod-
ies. By pre-calculating the reference value N0 and qpen0 it is possible to com-
pute the normal force during the simulation.

Nz = Nspring +Ndamper (2.6)

where

Nspring = N0

(
qpen
qpen0

) 3
2

, Ndamper = vpenDm

The linear damper is added for numerical reasons to represent the material
damping from the real model. The material damping coefficient is set to
1.5 ·105 Ns/m see [6] page 28, and the velocity of the penetration is calculated
by projecting velocity onto the z-direction

vpen = (ẏ − φ̇(RRz −RCz)) sin(δ)− (ż + φ̇(RRy −RCy)) cos(δ) (2.7)

the contact ellipse is also dynamically adjusted using the pre-calculated values
of a0 and b0.

a

b
= a0
b0

(2.8)

ab = a0b0

(
N

N0

) 2
3

= a0b0

N0
(
qpen

qpen0

) 3
2

N0

2
3

= a0b0
qpen
qpen0

(2.9)

Creep forces

Once the bogie is not in equilibrium position the rolling radius of the right and
the left wheel will be different. This will also effect the rotational speed of the
two wheels. But the angular velocity of the two wheels have to be the same
due to the connection through the axle they are mounted on. Longitudinal
and lateral forces will then begin acting on the wheels and these forces are
called the creep forces. The creep forces are really important for the dynamic
stability. The most recognized theory on the contact region is the Hertz theory
stating that the contact region is an ellipse, [7] page 8:15.

In order to use the theory by Kalker, the relative velocity between the wheel
and the rail, has to be found. This is given by a contribution from the wheelset

16 CHAPTER 2. MATHEMATICAL MODEL

Figure 2.3: Contact patch according to Hertz.

translational motion and a contribution from the wheelset angular velocity.
[5] page 151.

vcon = Acb(AbTv + Ωb ×Rω)

≈ Acb

 1 ψ 0
−ψ 1 φ
0 −φ 1

Vẏ
ż

+

(
V
r0
− β̇

)
Rwz − ψ̇Rwy
−φ̇Rwz
φ̇Rwy

= Acb

V + ψẏ +
(
V
r0
− β̇

)
Rwz − ψ̇Rwy

ẏ − ψV + φż − φ̇Rwz
−φẏ + ż + φ̇Rwy

=

 V + ψẏ +
(
V
r0
− β̇

)
Rwz − ψ̇Rwy

(ẏ − ψV + φż − φ̇Rwz) cos(δ) + (φψV − φẏ + ż + φ̇Rwy) sin(δ)
− sin(δ)(−ψV + ẏ + φż − φ̇Rwz) + cos(δ)(ψφV − φẏ + ż + φ̇Rwy)

(2.10)

The equations can be simplified by using the assumption that the wheels will
not lift off the rails. It means the contact point projected onto the normal
of the contact plane should be zero [5] page 154. And since the bodies in
contact are assumed to be rigid, the velocity in the normal direction is zero.
(vcon|z = 0). Then we get the following.

vcon ≈

V + ψẏ +
(
V
r0
− β̇

)
Rωz − ψ̇Rwy

(ẏ − ψV + φż − φ̇Rwz)/ cos(δ)
0

Finally, the spin creepage is defined as the rotation around the normal to the
contact plane, where the spin creep is the z component.

AcbΩb =

φ̇

cos(δ)
(
V
r0
− β̇

)
+ sin(δ)ψ̇

− sin(δ)
(
V
r0
− β̇

)
+ cos(δ)ψ̇

2.3. WHEEL/RAIL INTERACTION 17

The creepage is split into three parts - longitudinal, lateral and spin creepage.
All creepages are given in the contact plane normalized by the longitudinal
velocity.

ξx = vcon|x
V = 1 +

ψẏ+
(

V
r0
−β̇
)
Rwz−ψ̇Rwy

V

ξy = vcon|y
V = ẏ−ψV+φż−φ̇Rwz

V cos(δ)

ξsp = (AcbΩb)|z
V =

− sin(δ)
(

V
r0
−β̇
)

+cos(δ)ψ̇

V

The creep forces have been formulated by Shen, Hedrick and Elkins. The
nonlinearity existing between the creep and the creep forces is taken into
account in this model. The longitudinal and lateral creep force and a spin
creep moment is given by:

F =

Fx
Fy
Mz

 (2.11)

Due to the simulation scenario with straight tracks the spin moment existing
around the vertical axis is neglected. Thereby the nonlinear creep force is
given by [7] page 8:21.[

F̃x
F̃y

]
= −Gab

[
C11 0 0
0 C22

√
abC23

] ξxξy
ξsp

 (2.12)

where the coefficiens Cij are known as Kalker’s creepage coefficients depending
on Poisson’s ratio and the relation between a/b. For large creepages the vector
sum becomes:

|F̃| =
√
F̃x

2 + F̃y
2
> µN (2.13)

Kalker’s theory does not take into account that the creep force can not exceed
Columb’s law, F = µN , where µ is the friction coefficient. Therefore following
relations are made: Let u = |F̃|

µN , then the creep force can approximately be
determined with

|F| =
{
µN(u− 1

3u
2 + 1

27u
3) if u ≤ 3

µN, if u > 3
(2.14)

Here defining the adjustment factor from Shen, Hedrick and Elkins’ model.

ε = |F|
|F̃|

(2.15)

And finaly, the longitudinal creep force Fx and the lateral creep force Fy are
given by

Fx = εF̃x , Fy = εF̃y (2.16)
These forces are given in the contact coordinate system.

18 CHAPTER 2. MATHEMATICAL MODEL

2.4 RSGEO - contact table
The RSGEO profile used in this work was provided from Lasse Engbo Christensen
[2]. The rail profile is the standard UIC60 profile with an inclination of 1/40
toward the center of the track.
For efficiency reasons it is less time consuming to use the RSGEO table. This
contact table contains 3402 pre-calculated points for the lateral displacement
between ±17 mm. Any value between two points is given by linear interpol-
ation. The data refer to the left wheels and changing the sign of the lateral
position of the wheels we get the corresponding data for the right wheels. The
contact table is generated from a static consideration.

Column Matlab Decription
1 rsg_lat Lateral displacement of the center of the mass af the

wheelset measured from the center of the track [m]
2 rsg_n0 Static normal force in contact coordinate system [N]
3 rsg_angle Angle δl between the wheelaxle and the contact

plane [rad]
4 rsg_a0 Biggest semi-axis of the contact patch (static) [m]
5 rsg_b0 Smallest semi-axis of the contact patch (static) [m]
6 rsg_rwy Lateral distance to the contact point on the wheel

measured from the center of mass of the wheelset [m]
7 rsg_rwz Actual rolling radius (positive) [m]
8 rsg_c11 Kalker’s creepage coefficient C11 [-]
9 rsg_c22 Kalker’s creepage coefficient C22 [-]
10 rsg_c23 Kalker’s creepage coefficient C23 [-]
11 rsg_rrz Vertical distance of the contact point on the rail

measured from the center of the track [m]
12 rsg_q0 Static penetration depth [m]
13 rsg_rry Lateral distance to the contact point on the rail

measured from the center of the track [m]

Table 2.2: Parameters in the RSGEO table file.

In figure 2.4 the static normalforce is shown. When we for exampel plot the
size of the semi axes of the contact ellipse we notice the very fast change in
the axes for certain displacements. This shows that the parameters are dis-
continuous functions of the lateral displacement.

2.4. RSGEO - CONTACT TABLE 19

Figure 2.4: The static normal force in the contact coordinate system.

20 CHAPTER 2. MATHEMATICAL MODEL

Figure 2.5: RSGEO values for the left wheel as function of the lateral dis-
placement of the wheelset.

2.4. RSGEO - CONTACT TABLE 21

Figure 2.6: RSGEO values for the right wheel as function of the lateral dis-
placement of the wheelset.

Chapter 3

Numerical implementation

In this work we implement the Cooperrider bogie model in Matlab. The
model has previously been investigated and implemented in C++ by several
other authors [2, 6, 8]. To our knowledge it is the first time, that the model is
implemented in Matlab. In this chapter we describe the solution of known
numerical issues related to the original Cooperrider model, we comment on
the verification strategy/process that we have performed during the imple-
mentation, we describe how we speed up the computation of the model and
our choice of numerical integrator, and we verify our Matlab implementa-
tion. The verification is done by analyzing the behaviour of the dynamical
variables and the contact forces, and by comparing our results against the
results obtained in [8].

3.1 Known numerical issues of the Cooperrider
model

During simulations of the model we have experienced some numerical problems
due to the contact forces. In the following we describe these problems and
how we solve them in practice .

• Material damper: The hard steel to steel contact between wheels and
rails exerts large normal forces on the bogie. The normal forces are
essentially modelled as spring forces in (2.6). The strong normal forces
may cause the wheels to lift from the rails. This problem is solved by
adding a linear material damper [6] to the normal forces (2.6).

• Yaw damper: A yaw damper is added to the dynamic equation of the
bogie frame (1.8k). This is done to stabilize the bogie and to prevent
large rotational movements around the z-axis, which may cause the bogie
to derail.

23

24 CHAPTER 3. NUMERICAL IMPLEMENTATION

3.2 Verification strategy
In the following we list the steps that we have performed in order to verify
our Matlab implementation of the Cooperrider model.

• Simplifying the code, so it runs faster during the verification process -
and in general.

• Evaluation of the model by comparing solutions from different numerical
time integration methods.

• Testing expected system behavior:

– Including normal and creep forces.
– Without normal and creep forces.

• Plotting each direction of the normal and the creep forces.

• Testing the system at different velocities.

• Comparing different models.

A further description of each individual step is given in the sections below.

3.3 Simplifying the code
The data points in the RSGEO table are distributed equidistantly. They are
given for the lateral movement of the left wheel for each 10−5 m. We compute
values between the data points using a linear interpolation. Because of the
small distance between each data point (i.e. high density of data points), a
linear interpolation will not induce any significant error in the simulation/solu-
tion. Therefore, we do not use any high order interpolation method, such as
cubic splines. Linear interpolation is the most simple and the computationally
fastest method for interpolation. We use our own implementation for linear
interpolation, in order to avoid the overhead calculations in the built in Mat-
lab interpolator interp1. This further speeds up the computations.
We are careful not to calculate any values more than once, e.g. if cos(δ) is
needed in different lines of code, then we save the value in a constant variable
the first time it is computed.

3.4. TEST AND EVALUATION OF DIFFERENT NUMERICAL TIME
INTEGRATION METHODS 25

3.4 Test and evaluation of different numerical time
integration methods

In this section we motivate our choice of numerical time integration method.
We try different methods of different order and we test how step size and error
tolerance influence the convergence of the methods.

The choice of solver

We have considered two different Rung-Kutta methods for numerical integra-
tion: explicit Runge-Kutta (ERK) methods and implicit Runge-Kutta (IRK)
methods. The stiffness of the system determines whether it is best to use an
explicit or an implicit method. Our system of equations is stiff due to the con-
tact forces. This is why, it has been solved using an IRK method in [2, 8, 10].
When solving stiff equation systems, an implicit solver normally uses bigger
time steps in comparison to an explicit solver. Such that fewer steps may be
needed to compute a solution using an IRK method. However, each implicit
step involves the solution of a set of nonlinear equations, and the solution of
the nonlinear equation system is computationally time consuming: it is done
iteratively by e.g. Newton’s method, and each Newton iteration may involve
an evaluation of the Jacobian of the model. Although ERK methods may
need more time steps in order to perform the integration, then each step is
computationally faster than for IRK methods. ERK methods only involves
function evaluations, which are not as time consuming as doing both function
and Jacobian evaluations, as is done in IRK methods. So, the choice between
ERK and IRK methods highly depend on the system we have to solve. Keep-
ing this in mind and based on the work by [8], we have chosen to use an
explicit solver.
The first solver we tried was ode45, which is a built in solver in Matlab. It is
explicit using the Dormand-Prince scheme of 4th order accuracy. This method
works well for most problems, and was therefore applied as our first try for
simulating the bogie. For comparison we also tried ode15s (built in Matlab
solver), which in general is a good method if the problem is stiff. We did not
find any notable difference in the solution, but the CPU time increased when
using ode15s. Inspired by [2] we also tried ode solvers with lower order than
ode45: Bogacki-Shampine (2nd order accuracy) and Heun-Euler (1st order
accuracy). In order to try the different methods mentioned above, we have
used a solver erk.m which we have got from [10] personally. Again, we did
not find any notable difference in the solution. However, it is worth mention-
ing that the computation time increases substantially using a solver of low
order. Which is because of the smaller step sizes used in low order methods,
which results in more function evaluations. We have not included the results
obtained by the different methods mentioned above. This is because we have

26 CHAPTER 3. NUMERICAL IMPLEMENTATION

not found any notable difference in the solutions, and this is also the reason
that we decided to use ode45 for simulating the bogie in Chapter 4.

Convergence test

From [2] we know that the step size and the tolerance affects the performance
of the solution. Therefore, we decided to perform a convergence test, where
we compare the absolute error (3.1) of the displacement of the rear wheels

error = |qref
9 − q9| (3.1)

In the test we compute solutions with different tolerances, i.e. the solver uses
variable step size. We have done the test with erk.m using the Dormand-
Prince scheme. The reason for using erk.m was because we wanted to be
sure to use the infinity norm to measure if a step is accepted or rejected.
The reference solution qref

9 in (3.1) is used, because we do not have the exact
solution of the system. It is also computed using erk.m. The test is performed
as follows: we simulate the system in the time span [0; 2] s, the bogie travels
at a velocity of v = 135 m/s, and we start the simulation with a lateral
disturbance of 10−3 m on the front wheels. We then compare q9 with the
reference solution qref

9 in 3.1, at t = 2 s.
The test is shown in figure 3.1. As expected the error becomes smaller as
we decrease the tolerance. We also see that the CPU time increases as we
decrease the tolerance. At a tolerance of around 10−6 we see that the error
is approximately 10−10, and we also see that the CPU time starts to increase
significantly. Therefore we use a tolerance of 10−6, both the relative and
the absolute, for simulating the bogie in Chapter 4. It is worth mentioning

Figure 3.1: Convergence test with different tolerances using erk.m.

that Dormand-Prince is a 4th order method, meaning that the accumulated
global error per step is off the order O(h4). However, this only applies to
smooth functions that are differentiable any number of times. Our model is not

3.4. TEST AND EVALUATION OF DIFFERENT NUMERICAL TIME
INTEGRATION METHODS 27

differentiable any number of times, because of the discontinuous parameters
in RSGEO, see section 2.4.

28 CHAPTER 3. NUMERICAL IMPLEMENTATION

3.5 Verification of the implementation of the bogie
model

The entire system is connected through several springs and dampers. A dis-
turbance in one element will therefore affect the entire model. In the following,
we test each body (front wheels, rear wheels and bogie frame) separately. In
order to test e.g. the behaviour of the front wheels, we fix the position of the
rear wheels and the bogie frame. In this way it is easy to see, if the body to
be tested behaves as expected.

Test with normal and creep forces

In the following, we will perform a test to verify if the front wheels are guided
back into the center of the track after a disturbance. We let the bogie travel
at a velocity of 135 m/s, and we give the wheels a lateral disturbance of 10−4

m (figure 3.2), a disturbance of 10−4 rad of the yaw angle (figure 3.4) and
a disturbance of 10−4 rad of the roll angle (figure 3.5). Because the wheels
are constrained to be in contact with the rails through the wheel/rail contact
point, we do not give any vertical disturbance to the wheels (figure 3.3).

Figure 3.2: Lateral disturbance of the front wheels of 10−4 m with fixed rear
wheels and bogie frame.

Figure 3.3: No vertical disturbance of the front wheels and fixed rear wheels
and bogie frame.

3.5. VERIFICATION OF THE IMPLEMENTATION OF THE BOGIE
MODEL 29

Figure 3.4: Disturbance of the yaw angle of 10−4 rad with fixed rear wheels
and bogie frame.

Figure 3.5: Disturbance of the roll angle of 10−4 rad with fixed rear wheels
and bogie frame.

In the figures 3.2, 3.4 and 3.5 we see that the front wheels are guided to back
to center of the track within a short time, and we therefore conclude that the
front wheels behaves as expected. However, we see that the front wheels are
damped more rapidly than in [8]. This may be because of the fixed car body
in our model. The tests for the rear wheels and the bogie frame are performed
in the same manner and can be found in Appendix D.

30 CHAPTER 3. NUMERICAL IMPLEMENTATION

Test without normal and creep forces

In the following, we will perform a test to verify if the front wheels oscillates
around the center of the track. To perform this test we neglect the contri-
butions from the normal and the creep forces, otherwise the system will be
damped. Once again we let the bogie travel at a velocity of 135 m/s, and we
give the wheels a lateral disturbance of 10−4 m (figure 3.6), a disturbance of
10−4 rad of the yaw angle (figure 3.8) and a disturbance of 10−4 rad of the
roll angle (figure 3.9). Like in the previous test, we do not give any vertical
disturbance to the wheels (figure 3.7).

Figure 3.6: Lateral disturbance of the front wheels of 10−4 m with fixed rear
wheels and bogie frame and without normal and creep forces.

Figure 3.7: No vertical disturbance of the front wheels and with fixed rear
wheels and bogie frame and without normal and creep forces.

In the figures 3.6, 3.8 and 3.9 we see that the front wheels oscillates around
the center of the track. Due to the missing normal and creep forces, the sys-
tem has no damping, and as expected, the system does not loose energy and
the oscillations continue with constant amplitude - assuming that there is no
numerical diffusion in the integration method. The tests for the rear wheels
and the bogie frame are performed in the same manner and can be found in
Appendix D.

3.6. VERIFICATION OF THE IMPLEMENTATION OF THE NORMAL
AND THE CREEP FORCES 31

Figure 3.8: Disturbance of the yaw angle of 10−4 rad with fixed rear wheels
and bogie frame and without normal and creep forces.

Figure 3.9: Disturbance of the roll angle of 10−4 rad with fixed rear wheels
and bogie frame and without normal and creep forces.

3.6 Verification of the implementation of the
normal and the creep forces

In this section we verify our implementation of the normal and the creep forces.
We plot each principal direction (x-, y-, z-direction) of the forces (given in the
track system) for the left and the right front wheels, and we compare our
results with the results in [8]. We perform two tests: in the first test we let
the bogie travel at 40 m/s, in the second test we let the bogie travel at 132
m/s. In each test we give both the front and the rear wheels a disturbance of
10−4 rad of the roll angle.

Testing the normal forces

In figure 3.10 the bogie travels at 40 m/s, i.e. below the critical velocity. In
figure 3.11 the bogie travels at 132 m/s, i.e. above the critical velocity. In
both figures we see that: Nx oscillates around zero for both the left and the
right wheel. Ny points towards the center of the track, i.e. it is negative
for the left wheel and positive for the right wheel. Nz is positive and points
upwards for both the left and the right wheel and corresponds to 1/8 of the
total weight of one railway wagon including two bogies. Furthermore, we see

32 CHAPTER 3. NUMERICAL IMPLEMENTATION

that Nx oscillates in antiphase when comparing the left and the right wheels,
and Ny oscillates in phase when comparing the left and the right wheels. The
penetration depth qpen is positive in the range 10−4 m, which is consistent
with the RSGEO table values. From these results, and from comparison with
the results in [8], we conclude that the normal forces behave like expected.

Figure 3.10: Normal forces acting on the left and right front wheels. The
bogie travels at 40 m/s, i.e. below the critical velocity.

Figure 3.11: Normal forces acting on the left and right front wheels. The
bogie travels at 132 m/s, i.e. above the critical velocity.

Testing the creep forces

In figure 3.12 the bogie travels at 40 m/s, i.e. below the critical velocity. In
figure 3.13 the bogie travels at 132 m/s, i.e. above the critical velocity. In
both figures we see that Fx oscillates around zero for both the left and the
right wheel. Fy points away from the center of the track, i.e. it is positive for

3.6. VERIFICATION OF THE IMPLEMENTATION OF THE NORMAL
AND THE CREEP FORCES 33

the left wheel and negative for the right wheel. Fz is positive and pointing
upwards for both the left and the right wheel. Furthermore, we see that Fx
and Fz oscillate in antiphase when comparing the left and the right wheels, Fy
oscillates in phase when comparing the left and the right wheels. The reason
that Fz does not oscillate around zero, is because of the contribution from the
spin creep. From these results, and from comparison with the results in [8],
we conclude that the creep forces behave like expected.

Figure 3.12: Creep forces acting on the left and right front wheels. The bogie
travels at 40 m/s, i.e. below the critical velocity.

Figure 3.13: Creep forces acting on the left and right front wheels. The bogie
travels at 132 m/s, i.e. above the critical velocity.

34 CHAPTER 3. NUMERICAL IMPLEMENTATION

3.7 Testing the system at different velocities
In this section we test the system at three different velocities. All three tests
are started with a lateral disturbance of 10−3 m on the front wheels, and we
simulate in the time span [0; 25] s.
In figure 3.14 the bogie travels at 128 m/s, and we see that the rear wheels
starts performing hunting motions that oscillates around the track center. In
figure 3.15 the bogie travels at 132 m/s, and still the rear wheels perform
hunting motions that oscillates around the track center. However, at 132 m/s
the amplitude is bigger than for 128 m/s. At both situations the bogie travels
at velocities above the supercritical hopf bifurcation with an asymptotical
stable periodic symmetric solution.

Figure 3.14: Lateral displacement
of the rear wheels. The bogie travels
at a velocity of 128m/s.

Figure 3.15: Lateral displacement
of the rear wheels. The bogie travels
at a velocity of 132m/s.

In figure 3.16 and 3.17 the bogie travels at 135 m/s, and first of all we see
that the amplitude becomes larger, secondly we see that the hunting motion
of the rear wheels does not oscillate around the track center. In addition,
we see, that if we change the sign of the disturbance, then the offset will be
to the opposite side. In this situation the bogie travels at a velocity above
the supercritical symmetry breaking bifurcation with an asymptotical stable
periodic asymmetric solution - we comment further on this in Chapter 4

3.8. COMPARING TWO DIFFERENT MODELS 35

Figure 3.16: Lateral displacement
of the rear wheels. The bogie tra-
vels at a velocity of 135m/s. The
lateral disturbance is 10−3 m.

Figure 3.17: Lateral displacement
of the rear wheels. The bogie tra-
vels at a velocity of 135m/s. The
lateral disturbance is −10−3 m.

3.8 Comparing two different models
In this section we compare our results from our model with results obtained
from a model implemented by Daniele Bigoni. The two models both consist
of one bogie attached to a fixed carbody. However, the two model differ from
each other with regard to the contact forces, in that our model also includes
a material damper in the normal force (2.6).

Figure 3.18: Danieles lateral diplacement - velocity 135m/s.

Figure 3.18 shows the results obtained by Daniele Bigoni with a model as
described above, and where the bogie travels at a velocity of 135 m/s. As
expected we see that the hunting motion does not oscillate around the track
center. Like in our model there is an offset that changes side, as the sign of

36 CHAPTER 3. NUMERICAL IMPLEMENTATION

the disturbance changes. However, we see a difference in the amplitude in
comparison to the behaviour of our model, see figure 3.16 and 3.17.

Chapter 4

Finding the critical velocities

In this chapter we describe the bifurcation diagram for this dynamic system
and systematically find the three critical velocities:

• vC , the critical velocity.

• vH , the velocity at which the supercritical Hopf bifurcation occurs.

• vS , the velocity at which the subcritical symmetri breaking bifurcation
occurs.

The three velocities are related such that

vC < vH < vS (4.1)

This is illustrated in the bifurcation diagram in figure 4.1, in which the green
line represents the asymptotically globally stable stationary solutions, the red
line represents the asymptotically stable periodic symmetric solutions, and the
blue line represents the asymptotically stable periodic asymmetric solutions.
For the rest of this chapter, when we use the terms: green line, red line or
blue line, then we refer to the colored lines in figure 4.1.

4.1 The bifurcation diagram
In this section we will describe what happens with the system if we increase
the velocity from below vC to above vS , and subsequently decrease the velocity
until it is below vC again. For this we use the illustration in figure 4.1:

• Increasing the velocity:

– The green line: Assume we let the bogie travel at a velocity
below vC , i.e. we start the system in a stable stationary solution,
and hereafter we slowly increase the velocity. In this case, the
system is stable and will not oscillate. If we disturb the system

37

38 CHAPTER 4. FINDING THE CRITICAL VELOCITIES

in this area, it will remain stable and will be guided back into the
track center. The system will stay in this condition until we reach
vH .

– The red line: The bogie now travels at a velocity above vH . In
this case the system is in a stable periodic symmetric cycle, i.e. it
is stable and oscillates around the track center, see figure 3.14 and
3.15. The system will stay in this condition until we reach vS .

– The blue line: The bogie now travels at a velocity above vS . Also
in this case the system is in a stable limit cycle, i.e. it is stable and
oscillates. However, it does not oscillate around the track center,
see figure 3.16 and 3.17. If we increase the velocity further, the
system will stay in this condition and the amplitude will increase.

• Decreasing the velocity:

– The blue line: The bogie now travels at a velocity above vS ,
and the system oscillates as mentioned above. We then decrease
the velocity until we reach vC . At this point, the system will jump
back into a stable stationary solution, i.e. the system will be guided
back into the track center and stop to oscillate (the system is back
on the green line).

Figure 4.1: The bifurcation diagram with varying velocity.

From the description above, we see that different velocities generates different
solutions, which we will list below:

4.1. THE BIFURCATION DIAGRAM 39

• For 0 < v < vC :

– 1 asymptotically globally stable stationary solution.

• For vC < v < vH :

– 1 asymptotically stable stationary solution.
– 2 unstable saddle cycles.
– 2 asymptotically stable periodic asymmetric cycles.

• For vH < v < vS:

– 1 unstable stationary solution.
– 1 asymptotically stable periodic symmetric cycle.
– 2 unstable saddle cycles.
– 2 asymptotically stable periodic asymmetric cycles.

• For v > vS:

– 1 unstable stationary solution.
– 2 asymptotically stable periodic asymmetric cycles.

40 CHAPTER 4. FINDING THE CRITICAL VELOCITIES

4.2 Critical Velocity
In this section we find the critical velocity vC by a method called ramping, i.e.
we want to find the velocity at which the system jumps from an asymptotically
stable periodic asymmetric solution (the blue line) to an asymptotically glob-
ally stable stationary solution (the green line) in figure 4.1. In this method
the velocity of the bogie is decreased until the hunting motions (periodic os-
cillations) disappear. This is illustrated in figure 4.2, in which we decrease

Figure 4.2: Finding the critical velocity by ramping (4.2).

the velocity by 3 m/s per integrated second, i.e. we decelerate the bogie by 3
m/s2. We let the bogie travel at constant velocity 135 m/s in 15 s before we
start to decelerate. In this way, we make sure that the system is in a stable
periodic asymmetric cycle before the deceleration starts. The ramping is done
as follows

v = v0 + amax(0, t− tramp), v0 = 135 m/s, a = −3 m/s2, tramp = 15 s (4.2)

In figure 4.2 we see that the oscillations start to decrease at t = 41 s, and we
use (4.2) to compute the critical velocity to be

135 m/s− 3 m/s2(41 s− 15 s) = 57 m/s (4.3)

The test performed in figure 4.2 only gives a rough approximation of vC . This
is because of the inertia in the system, i.e. it takes a certain amount of time
until the hunting motions are completely vanished from the system. Therefore
we cannot determine vC by this test alone. It is simply not possible to see in
the figure exactly when the oscillations starts to decrease, and vC is probably

4.2. CRITICAL VELOCITY 41

greater than 57 m/s.
Therefore we do a second ramping test using a = −0.1 m/s2, searching for vC
between 57 m/s and 60 m/s. We use the system state at t = 40 s from the
first test as initial state in the second test. The ramping in the second test is
done as follows

v = v0 + amax(0, t− tramp), v0 = 60 m/s, a = −0.1 m/s2, tramp = 0 s (4.4)

The results from the second test is shown in figure 4.3 and 4.4. We see

Figure 4.3: Finding the critical velocity by ramping (4.4).

that the hunting motions start to decrease at t = 11.5 s, and we use (4.4) to
compute the critical velocity to be

60 m/s− 0.1 m/s2(11.5 s− 0 s) = 58.85 m/s (4.5)

For the same reason as mentioned above, the second test will also just give us
an approximate value of vC .
Therefore we perform a third test, such that we can determine vC more ac-
curately. This is done as follows: we use the same initial values as in the first
and the second tests, but now we let the bogie travel at constant velocity.
Then we simulate the system until t = 5 s and check if the system stays in the
stable periodic asymmetric cycle, or if the oscillations collapse. In figure 4.5
we run the bogie at three different velocities: 59.5 m/s, 59.7 m/s and 59.9 m/s.
The figure shows that the hunting motions disappear, and that the stationary
solution occurs, between 59.5 m/s and 59.7 m/s. Therefore, we conclude that
59.5 < vC < 59.7 m/s.

42 CHAPTER 4. FINDING THE CRITICAL VELOCITIES

Figure 4.4: Finding the critical velocity by ramping (4.4).

Figure 4.5: Lateral displacement at the velocities 59.5 m/s, 59.7 m/s and 59.9
m/s.

4.3 Supercritical Hopf bifurcation

In this section we find the supercritical Hopf bifurcation vH , i.e. we want
to find the velocity at which the system may shift between asymptotically
globally stable stationary solutions (the green line) and asymptotically stable

4.3. SUPERCRITICAL HOPF BIFURCATION 43

periodic symmetric solutions (the red line) in figure 4.1. One way of finding
the supercritical Hopf bifurcation is to look at the Jacobian matrix of the
model. If the real part of the eigenvalues are in the left half-plane, i.e. Re
λ < 0, then the system is in a stable stationary solution (the green line). If
the real part of one of the complex conjugated pairs of the eigenvalues are in
the right half-plane, i.e. Re λ > 0, then the system is in an asymptotically
stable periodic symmetric solution (the red line). So, assuming the system is
in a solution on the green line, and we increase the velocity. Then a change
of the eigenvalues, as described above, indicates when the system shifts into
a solution on the red line, and we have found vH .
However, we have not implemented the Jacobian, because we use and explicit
method for numerical integration. Instead we use bisection to find the su-
percritical Hopf bifurcation. From section 4.2 we know that vC = 59 m/s,
and from figure 3.14 we know that the system is in an asymptotically stable
periodic symmetric solution (the red line) at a velocity of 128 m/s. Using
this information, (4.1) tells us that 59 < vH < 128 m/s, which we may use
to initialize the bisection. The criteria for choosing a new end-point in the
bisection, is to check whether the amplitude of the hunting motions is either
increasing or decreasing.

Figure 4.6: Finding the supercritical Hopf bifurcation.

Figure 4.6 shows the result of the bisection. In the left figure the bogie travels
at a velocity of 125.5 m/s, and in the right figure the bogie travels at a velocity
of 126 m/s. In the left figure we see that the amplitude is decreasing, so at
v = 125.5 m/s the system is in a stable stationary solution (the green line).
In the right figure we see that the amplitude is increasing, so at v = 126 m/s
the system is in an asymptotically stable periodic symmetric solution (the red
line). Therefore, we conclude that 125.5 < vH < 126.0 m/s.

44 CHAPTER 4. FINDING THE CRITICAL VELOCITIES

4.4 Finding the subcritical symmetry breaking
bifurcation

In this section we find the subcritical symmetry breaking bifurcation vS , i.e.
we want to find the velocity at which the system jumps from an asymptot-
ically stable periodic symmetric solution (the red line) to an asymptotically
stable periodic asymmetric solution (the blue line) in figure 4.1. Once again
we use the bisection to find the subcritical symmetry breaking bifurcation.
From section 4.3 we know that vH = 126 m/s, and from figure 3.16 and 3.17
we know that the system is in an asymptotically stable periodic asymmetric
solutions (the blue line) at a velocity of 135 m/s. Using this information, (4.1)
tells us that 126 < vS < 135 m/s, which we may use to initialize the bisection
method.

Figure 4.7: Finding the subcritical symmetry breaking bifurcation.

Figure 4.8 shows the result of the bisection. In the left figure the bogie travels
at a velocity of 132 m/s, and in the right figure the bogie travels at a velocity
of 132.5 m/s. In the left figure we see that the bogie oscillates around the
track center, so at v = 132 m/s the system is in an asymptotically stable
periodic symmetric solution (the red line). In the right figure we see that the
hunting motion of the bogie does not oscillate around the track center, so at
v = 132.5 m/s the system is in an asymptotically stable periodic asymmetric
solutions (the blue line).

4.4. FINDING THE SUBCRITICAL SYMMETRY BREAKING
BIFURCATION 45

Figure 4.8: Lateral displacement at the velocities 132.3 m/s, 132.4 m/s and
132.5 m/s.

The test performed in figure 4.8 only gives a rough approximation of vS .
Therefore we do a second test. In figure 4.8 we run the bogie at three differ-
ent velocities: 132.3 m/s, 132.4 m/s and 132.5 m/s. The figure shows that
the bogie does not oscillate around the track center and the system is in an
asymptotically stable periodic asymmetric solutions, between 132.4 m/s and
132.5 m/s. Therefore, we conclude that 132.4 < vS < 132.5 m/s.

Chapter 5

Conclusion

This project is a study in the nonlinear dynamics of a railway bogie using
realistic wheel/rail contact. When modelling a dynamical system it is desirable
to use the simplest model possible and on the same time be able to produce
reliable results.

• In this model the driving properties of the whole railway vehicle is done
by examination one single bogie. Therefore we only need fourteen equa-
tions describing the movements of the the railway vehicle. The basic
equations is given by Kaas-Petersen [1]. When writing up the equations
for the system, we have neglected all of the very small contributions
from springs and dampers. In spite of the simplified model we do get
reliable results, at least compared with the results obtained in [2, 8].

• A mathematical model of the system is presented and it has been shown
that the same equations for the creep and normal forces apply to both
the right and the left side of the wheels. The only difference is in the sign
of the contact angle. The interaction forces of the system are derived
as vectors and in this way we only need one function to compute the
contact forces of all four wheels.

• To our knowledge it is the first time, that the model is implemented in
Matlab. When solving the ODE system we choose an explicit solver
instead of an implicit solver. Regarding the CPU time used for simula-
tions, we have no previous work to compare with. However, it is possible
to solve this model in a reasonable time frame using Matlab.

• We verify our implementation by analyzing the behaviour of the dynam-
ical variables. This is done by several plots e.g. a plot of each principal
direction (x-, y-, z-direction) of the creep and normal forces for the left
and the right front wheels and by comparing our results against the
results obtained in [8].

47

48 CHAPTER 5. CONCLUSION

• We describe the bifurcation diagram for this dynamic system and sys-
tematically find the three critical velocities. The three velocities are
related such that vC < vH < vS . This is illustrated in the bifurcation
diagram in figure 4.1.

Further work

In general, the dampers are of great influence for the driving properties of a
railway vehicle. A previous study by [10] has shown that the dampers of a
railway vehicle are not independent, but has great influence on each other.
[10] modelled realistic nonlinear dampers, and conical wheel profiles running
on circular tracks. It would be interesting to further investigate the behaviour
of the nonlinear dampers using the model and the realistic wheel/rail contact
implemented in this work.

Appendix A

List of symbols

ATb Rotation matrix changing body coordinates to track coordinates
AbT Rotation matrix changing track coordinates to body coordinates
Abc Rotation matrix changing contact coordinates to body coordinates
Acb Rotation matrix changing body coordinates to contact coordinates
A(α)
x Rotation matrix. Around axis x with the angle α

A(α)
z Rotation matrix. Around axis z with the angle α

a Acceleration vector
a Longitudinal semi-axis in the contact ellipse
b Lateral semi-axis in the contact ellipse
C11, C22, C23 Kalkers creepage coefficients
D Dampers
E Young’s modules
F̃x, F̃y Creep forces according til Klaker’s linear theory
˜|F | Magnitude of the creep force according to Kalker’slinear theory
|F | Magnitude of the creep force according to Shen-Hedrick-Elkins’ model
g Contribution of gravity
G Shear modelus
Iwx M.o.i. for the roll motions of the wheel around x-axis.
Iwy M.o.i. for the pitch motions of the wheel around y-axis.
Iwz M.o.i. for the yaw motions of the wheel around z-axis.
Ifx M.o.i for the roll motions of the frame around longitudinal axis.
Ifz M.o.i. for the yaw motions of the frame around vertical axis.

Table A.1: Symbols (a-i)

49

50 APPENDIX A. LIST OF SYMBOLS

iT , jT ,kT Base of the track coordinate system
ib, jb,kb Base of the body coordinate system
ic, jc,kc Base of the contact coordinate system
k Spring stiffnesses
mc Mass of the carbody
mf Mass of the frame
mw Mass of the wheelset
N Normal force between the wheel and rail
OT Origin of the track coordinate system
Ob Origin of the body coordinate system
Oc Origin of the contact coordinate system
qpen Penetration depth of the wheel into the rail
q0 Static penetration
RT Track coordinate system
Rb Body coordinate system
Rc Contact coordinate system
Rpen Vector from the contact point on the wheel to the contact point on the rail
Rc Vector defining the position of the center of the mass of the wheelset
RR Vector defining the contact point on the rail
Rω Vector defining the contact point on the wheel
r0 Nominal rolling radius of the wheel
v Velocity vector
vcon Relative velocity between the wheel and the rail

Table A.2: Symbols (i-v)

β̇ Spin perturbation
δ Contact angle
ε Adjustment factor in Shen-Hedrick-Elkins’ model
µ Friction coefficient
ν Poisson’s ratio
ξx Longitudinal creep
ξy Lateral creep
ξz Spin creep
φ Roll angle
ψ Yaw angle
ω The nominal spin
Ωb Angular velocity of the wheelset

Table A.3: Greek symbols

Appendix B

Rotation matrices

In this chapter I derive the transformation matrices.

Rotation around x
Following coordinate systems are considered

R1 : (O1;x1, y1, z1) , R2 : (O2;x2, y2, z2)

where R2 is obtained by a counter-clockwise rotation of R1 around x1 with
the angle α. The bases are related by:

x1 = (x1 · x2)x2 + (x1 · y2)y2 + (x1 · z2)z2 = x2

y1 = (y1 · x2)x2 + (y1 · y2)y2 + (y1 · z2)z2 = cosαy2 − sinαz2

z1 = (z1 · x2)x2 + (z1 · y2)y2 + (z1 · z2)z2 = sinαy2 + cosαz2

A(α)
x =

1 0 0
0 cosα − sinα
0 sinα cosα

For the right wheels the two bases are related by:

x1 = (x1 · x2)x2 + (x1 · y2)y2 + (x1 · z2)z2 = x2

y1 = (y1 · x2)x2 + (y1 · y2)y2 + (y1 · z2)z2 = cosαy2 + sinαz2

z1 = (z1 · x2)x2 + (z1 · y2)y2 + (z1 · z2)z2 = − sinαy2 + cosαz2

A(α)
x =

1 0 0
0 cosα sinα
0 − sinα cosα

51

52 APPENDIX B. ROTATION MATRICES

Rotation around z
Following coordinate systems are considered

R1 : (O1;x1, y1, z1) , R2 : (O2;x2, y2, z2)

where R2 is obtained by a counter-clockwise rotation of R1 around x1 with
the angle α.

x1 = (x1 · x2)x2 + (x1 · y2)y2 + (x1 · z2)z2 = cosαx2 − sinαy2

y1 = (y1 · x2)x2 + (y1 · y2)y2 + (y1 · z2)z2 = sinαx2 + cosαy2

z1 = (z1 · x2)x2 + (z1 · y2)y2 + (z1 · z2)z2 = z2

A(α)
z =

cosα − sinα 0
sinα cosα 0

0 0 1

Wheel-rail contact system to body system

1. Rotation around xb by δ

Abc = A(δ)
x , Acb = AT

bc

Body system to track system
1. Rotation around zT by ψ (yaw)

2. Rotation around xT by φ (roll)

ATb = A(ψ)
z A(φ)

x , AbT = AT
Tb

53

Rotationmatrices
The following matrices is simplified using trigonometry.

Right/Left wheel ATb = A(ψ)
z A(φ)

x

=

cψ −sψcφ sψsφ
sψ cψcφ −cψsφ
0 sφ cφ

Left wheel Abc = A(δ)

x

=

1 0 0
0 cδ −sδ
0 sδ cδ

ATc = ATbAbc

=

cψ −sψc(φ+ δ) sψs(φ+ δ)
sψ cψc(φ+ δ) −cψs(φ+ δ)
0 s(φ+ δ) c(φ+ δ)

Right wheel Abc = A(δ)

x

=

1 0 0
0 cδ sδ
0 −sδ cδ

ATc = ATbAbc

=

cψ −sψc(φ− δ) sψs(φ− δ)
sψ cψc(φ− δ) −cψs(φ− δ)
0 s(φ− δ) c(φ− δ)

Table B.1: Rotationmatrices. Here, c = cos and s = sin

54 APPENDIX B. ROTATION MATRICES

Right/Left wheel ATb = A(ψ)
z A(φ)

x

=

1 −ψ 0
ψ 1 −φ
0 φ 1

Left wheel Abc = A(δ)

x

=

1 0 0
0 cδ −sδ
0 sδ cδ

ATc = ATbAbc

=

1 −ψc(φ+ δ) ψs(φ+ δ)
ψ c(φ+ δ) −s(φ+ δ)
0 s(φ+ δ) c(φ+ δ)

Right wheel Abc = A(δ)

x

=

1 0 0
0 cδ sδ
0 −sδ cδ

ATc = ATbAbc

=

1 −ψc(φ− δ) ψs(φ− δ)
ψ c(φ− δ) −s(φ− δ)
0 s(φ− δ) c(φ− δ)

Table B.2: Approximate rotationmatrices. Here, c = cos and s = sin

Appendix C

Data from RSGEO table

To make it easier to understand the code, we give a brief description of the
data from RSGEO and how the table is used, respectively for the left wheels
and the right wheels. Subsequently, the first five lines of the RSGEO table
are listed. Furthermore we plot all RSGEO values as a function of the lateral
displacement for both the left and the right wheel.

Description Left wheel Right wheel
y Given directly from RSGEO Flipped around the z-axis
N0 Given directly from RSGEO Flipped around the z-axis
δ Given directly from RSGEO Flipped around the z-axis and the y-axis
a0 Given directly from RSGEO Flipped around the z-axis
b0 Given directly from RSGEO Flipped around the z-axis
Rwy Given directly from RSGEO Flipped around the z-axis and the y-axis
Rwz Flipped around the y-axis Flipped around the z-axis and the y-axis
C11 Given directly from RSGEO Flipped around the z-axis
C22 Given directly from RSGEO Flipped around the z-axis
C23 Given directly from RSGEO Flipped around the z-axis
Rrz Given directly from RSGEO Flipped around the z-axis
q0 Given directly from RSGEO Flipped around the z-axis
Rry Given directly from RSGEO Flipped around the z-axis and the y-axis

55

56 APPENDIX C. DATA FROM RSGEO TABLE

y [m] N0 [N] δ [rad] a0 [m]
-0.01700 66604.4707017493 0.043652537 0.00656931
-0.01699 66604.4385295224 0.043663594 0.00656874
-0.01698 66604.4174969331 0.043670821 0.00656819
-0.01697 66604.4075862261 0.043674226 0.00656766
-0.01696 66604.4087883589 0.043673813 0.00656717

b0 [m] Rwy [m] Rwz [m]
0.00352271 0.775173707 0.42454303
0.00352389 0.775167656 0.42454328
0.00352509 0.775161599 0.42454354
0.00352628 0.775155535 0.42454379
0.00352748 0.775149464 0.42454404

C11 [-] C22 [-] C23 [-]
5.07979826325327 4.80394451402366 2.49187187388858
5.07904342362409 4.80296585757342 2.49091799021527
5.07829381464116 4.80199370040575 2.48998163323036
5.07754943371750 4.80102804220109 2.48904108418390
5.07680484571060 4.80005937879926 2.48811338946733

Rrz [m] qpen0 [m] Rry [m]
-0.000052853178 0.000118493 0.7518796300
-0.000052816988 0.000118492 0.7518861589
-0.000052780971 0.000118491 0.7518926839
-0.000052744996 0.000118489 0.7518992057
-0.000052708995 0.000118488 0.7519057244

Table C.1: The first five lines of date from the RSGEO table.

57

Figure C.1: RSGEO values for the left and the right wheel as a function of
the lateral displacement of the wheelset.

Appendix D

Test of components separately

In the following, we test, if the rear wheels are guided into the center of the
track. We let the bogie travel at a velocity of 135 m/s, and simultaneously
we give a lateral disturbance of 10−4 m (figure D.1), a disturbance of the yaw
angle of 10−4 rad (figure D.3) and a disturbance of the roll angle of 10−4 rad
(figure D.4). Because the wheels are constrained to be in contact with the rails
through the wheel/rail contact point, we do not give any vertical disturbance
to the wheels (figure D.2).

Figure D.1: Lateral disturbance of the rear wheels of 10−4 m with fixed front
wheels and bogie frame.

59

60 APPENDIX D. TEST OF COMPONENTS SEPARATELY

Figure D.2: No vertical disturbance of the rear wheels and fixed front wheels
and bogie frame.

Figure D.3: Disturbance of the yaw angle of 10−4 rad with fixed front wheels
and bogie frame.

Figure D.4: Disturbance of the roll angle of 10−4 rad with fixed front wheels
and bogie frame.

In the following, we test, if the bogie are guided into the center of the track.
We let the bogie travel at a velocity of 135 m/s, and simultaneously we give a
lateral disturbance of 10−4 m (figure D.5), a disturbance of the yaw angle of
10−4 rad (figure D.7) and a disturbance of the roll angle of 10−4 rad (figure
D.8). Because the wheels are constrained to be in contact with the rails
through the wheel/rail contact point, we do not give any vertical disturbance
to the wheels (figure D.6).

61

Figure D.5: Lateral disturbance of the bogie wheels of 10−4 m with fixed.

Figure D.6: No vertical disturbance of the bogie and with fixed wheels.

Figure D.7: Disturbance of the yaw angle of 10−4 rad with fixed wheels.

Figure D.8: Disturbance of the roll angle of 10−4 rad with fixed wheels.

62 APPENDIX D. TEST OF COMPONENTS SEPARATELY

In the following, we test, if the rear wheels are in the center of the track
but this time without the contribution from normal and creep forces. Once
again we let the bogie travel at a velocity of 135 m/s, and simultaneously we
give a lateral disturbance of 10−4 m (figure D.9), a disturbance of the yaw
angle of 10−4 rad (figure D.11) and a disturbance of the roll angle of 10−4

rad (figure D.12). Once again we do not give any vertical disturbance to the
wheels (figure D.10).

Figure D.9: Lateral disturbance of the rear wheels of 10−4 m with fixed front
wheels and bogie frame and without normal and creep forces.

Figure D.10: No vertical disturbance of the rear wheels and with fixed front
wheels and bogie frame and without normal and creep forces.

63

Figure D.11: Disturbance of the yaw angle of 10−4 rad with fixed front wheels
and bogie frame and without normal and creep forces.

Figure D.12: Disturbance of the roll angle of 10−4 rad with fixed front wheels
and bogie frame and without normal and creep forces.

In the following, we test, if the bogie are in the center of the track but this
time without the contribution from normal and creep forces. Once again we
let the bogie travel at a velocity of 135 m/s, and simultaneously we give a
lateral disturbance of 10−4 m (figure D.13), a disturbance of the yaw angle of
10−4 rad (figure D.15) and a disturbance of the roll angle of 10−4 rad (figure
D.16). Once again we do not give any vertical disturbance to the wheels (figure
D.14).

Figure D.13: Lateral disturbance of the rear wheels of 10−4 m with fixed
wheels and without normal and creep forces.

64 APPENDIX D. TEST OF COMPONENTS SEPARATELY

Figure D.14: No vertical disturbance of the rear wheels and with fixed wheels
and without normal and creep forces.

Figure D.15: Disturbance of the yaw angle of 10−4 rad with fixed wheels and
without normal and creep forces.

Figure D.16: Disturbance of the roll angle of 10−4 rad with fixed wheels and
without normal and creep forces.

Appendix E

Matlab code

E.1 sol.m

1 c l e a r a l l
2 c l o s e a l l
3 c l c
4
5 %%
6 % UI %
7 %%
8 % time
9 tspan = [0 , 2 0] ;

10 % v e l o c i t y
11 v e l = 132 ;
12
13 % opts = [] ;
14 % opts = odeset (’ RelTol ’ , 1 e −3 , ’AbsTol ’ , 1 e −4) ;
15 % opts = odeset (’ RelTol ’ , 1 e −4 , ’AbsTol ’ , 1 e −5) ;
16 opts = odeset (’ RelTol ’ ,1 e −6, ’ AbsTol ’ ,1 e −6) ;
17 % opts = odeset (’ RelTol ’ , 1 e −6 , ’AbsTol ’ , 1 e −8) ;
18 % opts = odeset (’ RelTol ’ , 1 e −8 , ’AbsTol ’ , 1 e −10) ;
19
20 %%
21 % Data from RSGEO %
22 %%
23 load r sgeo . dat
24 z_start = −1.2916e −04; % s t a t i c pene t ra t i on
25 p = 1e −3; % per turbat i on
26
27 % i n i t i a l va lue s :
28 q s t a r t = [p , 0 , z_start , 0 , 0 , 0 , 0 , 0 , . . . % f r o n t wheel
29 0 ,0 , z_start , 0 , 0 , 0 , 0 , 0 , . . . % rea r wheel
30 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . . % bog ie frame
31 0 , 0] ; % sp in per turbat i on
32 % S p l i t the bog ie in par t s . . .
33 % q s t a r t = [p , 0 , z_start , 0 , p , 0 , p , 0 , . . . % f r o n t wheel
34 % 0 ,0 , z_start , 0 , 0 , 0 , 0 , 0 , . . . % rea r wheel
35 % 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . . % bog ie frame

65

66 APPENDIX E. MATLAB CODE

36 % 0 , 0] ; % sp in per turbat i on
37 % q s t a r t = [0 , 0 , z_start , 0 , 0 , 0 , 0 , 0 , . . . % f r o n t wheel
38 % p , 0 , z_start , 0 , p , 0 , p , 0 , . . . % rea r wheel
39 % 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , . . . % bog ie frame
40 % 0 , 0] ; % sp in per turbat i on
41 % q s t a r t = [0 , 0 , z_start , 0 , 0 , 0 , 0 , 0 , . . . % f r o n t wheel
42 % 0 ,0 , z_start , 0 , 0 , 0 , 0 , 0 , . . . % rea r wheel
43 % p , 0 , p , 0 , p , 0 , p , 0 , . . . % bog ie frame
44 % 0 , 0] ; % sp in per turbat i on
45
46 % q (1) : [m] Front wheel l a t e r a l p o s i t i o n
47 % q (2) : [m/ s] Front wheel l a t e r a l v e l o c i t y
48 % q (3) : [m] Front wheel v e r t i c a l p o s i t i o n
49 % q (4) : [m/ s] Front wheel v e r t i c a l v e l o c i t y
50 % q (5) : [rad] Front wheel yaw angle
51 % q (6) : [rad / s] Front wheel yaw ang le v e l o c i t y
52 % q (7) : [rad] Front wheel r o l l ang le
53 % q (8) : [rad / s] Front wheel r o l l ang le v e l o c i t y
54 % q (9) : [m] Rear wheel l a t e r a l p o s i t i o n
55 % q (10) : [m/ s] Rear wheel l a t e r a l v e l o c i t y
56 % q (11) : [m] Rear wheel v e r t i c a l p o s i t i o n
57 % q (12) : [m/ s] Rear wheel v e r t i c a l v e l o c i t y
58 % q (13) : [rad] Rear wheel yaw ang le
59 % q (14) : [rad / s] Rear wheel yaw angle v e l o c i t y
60 % q (15) : [rad] Rear wheel r o l l ang le
61 % q (16) : [rad / s] Rear wheel r o l l ang le v e l o c i t y
62 % q (17) : [m] Bogie frame l a t e r a l p o s i t i o n
63 % q (18) : [m/ s] Bogie frame l a t e r a l v e l o c i t y
64 % q (19) : [m] Bogie frame v e r t i c a l p o s i t i o n
65 % q (20) : [m/ s] Bogie frame v e r t i c a l v e l o c i t y
66 % q (21) : [rad] Bogie frame yaw angle
67 % q (22) : [rad / s] Bogie frame yaw angle v e l o c i t y
68 % q (23) : [rad] Bogie frame r o l l ang le
69 % q (24) : [rad / s] Bogie frame r o l l ang le v e l o c i t y
70 % q (25) : [rad / s] Spin per turbat i on f r o n t axe l
71 % q (26) : [rad / s] Spin per turbat i on r ea r axe l
72
73 %%
74 % Bogie and wheel c h a r a c t e r i s t i c s %
75 %%
76 parm . a = 0.7563006418 ; % [m] Hal f the t rack gauge
77 parm . b = 1 . 0 7 4 ; % [m] Hal f the d i s t a n c e between the two

axe l
78 parm . d1 = 0 . 6 2 0 ; % [m] Hor i zonta l d i s t a n c e from spr ing to

g rav i ty
79 parm . d2 = 0 . 6 8 0 ; % [m] Hor i zonta l d i s t a n c e from spr ing to

g rav i ty
80 parm . h1 = 0 . 0 7 6 2 ; % [m] V e r t i a c l d i s t a n c e from spr ing to

g rav i ty
81 parm . h2 = 0 . 6 5 8 4 ; % [m] V e r t i a c l d i s t a n c e from spr ing to

g rav i ty
82 parm .mw = 1022 ; % [kg] Mass o f the wheel ax l e
83 parm . Iwx = 678 ; % [kg∗m^2] M. o . i f o r the r o l l motions o f

the wheel around the x−a x i s

E.1. SOL.M 67

84 parm . Iwy = 80 ; % [kg∗m^2] M. o . i f o r the p i t ch motions
o f the wheel around the y−a x i s

85 parm . Iwz = 678 ; % [kg∗m^2] M. o . i f o r the yaw motions o f
the wheel around the z−a x i s

86 parm . mf = 2918 ; % [kg] Mass o f the frame
87 parm .mc = 44388 ; % [kg] Mass o f the car body
88 parm . I f x = 6780 ; % [kg∗m^2] M. o . i f o r the r o l l motions o f

the frame around the x−a x i s
89 parm . I f z = 6780 ; % [kg∗m^2] M. o . i f o r the yaw motions o f

the frame around the z−a x i s
90 parm . r0 = 0 .4248829 ; % [m] Nominal r o l i n g rad iu s o f the wheel
91 parm . k1 = 1823 e03 ; % [N/m] Hor i zonta l spr ing , wheel−frame ,

l a t e r a l
92 parm . k2 = 3646 e03 ; % [N/m] Hor i zonta l spr ing , wheel−frame ,

l o n g i t u d i n a l
93 parm . k3 = 3646 e03 ; % [N/m] V e r t i c a l spr ing , wheel−frame
94 parm . k4 = 182 .3 e03 ; % [N/m] Hor i zonta l spr ing , frame−carbody

, l a t e r a l
95 parm . k5 = 333 .3 e03 ; % [N/m] V e r t i c a l spr ing , frame−carbody
96 parm . k6 = 2710 e03 ; % [Nm] Tors ion spr ing , frame−carbody
97 parm . D1 = 20 e03 ; % [Ns/m] V e r t i c a l damper , frame−carbody
98 parm . D2 = 29 .2 e03 ; % [Ns/m] Hor i zonta l damper , frame−

carbody , l a t e r a l
99 parm . D3 = 500 e03 ; % [Ns/m] Hor i zonta l damper , frame−

carbody , l a t e r a l
100 parm . g = 9 . 8 2 ; % [m/ s ^2] G r a v i t a t i o n a l a c c e l e r a t i o n
101 parm . v = v e l ; % [m/ s] Ve loc i ty in the d i r e c t i o n o f

t r a v e l
102 parm . Fwfc = (parm .mw+1/2∗parm . mf+1/4∗parm .mc) ∗parm . g ; % [N]

G r a v i t a t i o n a l load f o r one wheel axe l
103 parm .Dm = 1.5 e05 ; % [Ns/m] Mater ia l damping f o r c e o f

wheel−r a i l contact
104 % Linear dec rea se / i n c r e a s o f f v e l o c i t y in creep_force .m:
105 parm . v0 = parm . v ; %
106 parm . a0 = 0 ;%−0.05; %
107 parm . t0 = 0 ; %
108
109 %%
110 % Mater ia l p r o p e r t i e s %
111 %%
112 parm .E = 2 .1 e11 ; % [N/m^2] Youngs modulus
113 parm . nu = 0 . 2 7 ; % [−] P o i s s i o n s r a t i o
114 parm .G = parm .E/(2∗(1+parm . nu)) ; % [N/m^2] Shear modulus
115 parm .mu = 0 . 1 5 ; % [−] Adhesions

c o e f f i c i e n t
116
117 %%
118 % Solv ing the system o f equat ions %
119 %%
120 % c a l l i n g func t i on system
121 t i c
122 % [T, q , in fo , per f , e r r] = erk (@bogie , tspan , qs tar t ,2^ −11 .5 ,0 , [] , parm

, r sgeo) ; % from Carsten , where you can d e f i n e the s t e p s i z e and
t o l

68 APPENDIX E. MATLAB CODE

123 [T, q] = ode45 (@bogie , tspan , qs tar t , opts , parm , r sgeo) ; % This should
be the f i r s t s o l v e r you try ~ erk with buttab = ’45DP’

Dormand Prince
124 % [T, q] = ode15s (@bogie , tspan , qs tar t , opts , parm , r sgeo) ; % I f ode45

i s s low because the problem i s s t i f f .
125 toc
126
127 %%
128 % Plot q %
129 %%
130 p l o t _ r e s u l t (T, q , ’ f r o n t ’)
131 p l o t _ r e s u l t (T, q , ’ r ea r ’)
132 p l o t _ r e s u l t (T, q , ’ frame ’)
133 plot_hyste
134 plot_normal
135 plot_creep
136 enve lope
137 compare_maxval

E.2 bogie.m

1 f unc t i on dq = bogie (t , q , parm , r sgeo)
2
3 % BOGIE
4 %
5 % Cal l : bog ie (t , q , parm , r sgeo)
6 %
7 % Input Parameters : t , i s the time .
8 % q , array conta ing the p o s i t i o n end the
9 % v e l o c i t y o f the wheels and the bog ie .

10 % parm , array conta in ing the p o s i t i o n and the
11 % v e l o c i t y o f both wheels and the bog ie .
12 % rsgeo , t a b l e conta in ing precomputed parameters
13 %
14 % Output Parameter : dq , the s o l u t i o n
15
16 % Authors : % Ul la Uldahl
17 % Date : % September 22 , 2011
18
19 i f t > c e i l (t) −0.001
20 di sp ([’Time : ’ , num2str (t)])
21 end
22
23 % Read parameters :
24 % mw = parm .mw; % [kg] Mass o f the wheel ax l e
25 % Iwx = parm . Iwx ; % [kg∗m^2] M. o . i . f o r the r o l l motions o f the

wheel around the x−a x i s
26 % Iwy = parm . Iwy ; % [kg∗m^2] M. o . i . f o r the p i t ch motions o f the

wheel around the x−a x i s
27 % Iwz = parm . Iwz ; % [kg∗m^2] M. o . i . f o r the yaw motions o f the

wheel around the z−a x i s

E.2. BOGIE.M 69

28 % mf = parm . mf ; % [kg] Mass o f the frame
29 % I f x = parm . I f x ; % [kg∗m^2] M. o . i . f o r the yaw motions o f the

frame around the x−a x i s
30 % I f z = parm . I f z ; % [kg∗m^2] M. o . i . f o r the r o l l motions o f the

frame around the z−a x i s
31 % a = parm . a ; % [m] Hal f the t rack gauge
32 % b = parm . b ; % [m] Hal f the ax l e d i s t a n c e
33 % h1 = parm . h1 ; % [m] V e r t i a c l d i s t a n c e f r o sp r ing to

gravety
34 % h2 = parm . h2 ; % [m] V e r t i a c l d i s t a n c e f r o sp r ing to

gravety
35 % r0 = parm . r0 ; % [m] Nominal r o l i n g rad iu s o f the wheel
36 % Fwfc = parm . Fwfc;% [N] G r a v i t a t i o n a l load f o r one wheel

axel , Fwfc = (mw+1/2∗mf+1/4∗mc) ∗g
37
38 % Al lo ca t e space :
39 dq = z e r o s (26 ,1) ;
40
41 % Compute spr ing f o r c e s :
42 A = spr ing_force (t , q , parm) ;
43
44 % Compute damper f o r c e s :
45 D = damper_force (t , q , parm) ;
46
47 % Compute normal f o r c e s :
48 i f 1 % used debugging
49 [Nfl , Nzf l , qpenf l , Rwyfl , Rwzfl] = normal_force (t , q , parm , rsgeo , ’

f r o n t ’ , ’ l e f t ’) ;
50 [Nfr , Nzfr , qpenfr , Rwyfr , Rwzfr] = normal_force (t , q , parm , rsgeo , ’

f r o n t ’ , ’ r i g h t ’) ;
51 [Nrl , Nzrl , qpenrl , Rwyrl , Rwzrl] = normal_force (t , q , parm , rsgeo , ’

r ea r ’ , ’ l e f t ’) ;
52 [Nrr , Nzrr , qpenrr , Rwyrr , Rwzrr] = normal_force (t , q , parm , rsgeo , ’

r ea r ’ , ’ r i g h t ’) ;
53 e l s e
54 Nfl = z e r o s (3 , 1) ;
55 Nfr = z e r o s (3 , 1) ;
56 Nrl = z e r o s (3 , 1) ;
57 Nrr = z e r o s (3 , 1) ;
58 Rwyfl = parm . a ;
59 Rwyfr = −parm . a ;
60 Rwyrl = parm . a ;
61 Rwyrr = −parm . a ;
62 Rwzfl = −parm . r0 ;
63 Rwzfr = −parm . r0 ;
64 Rwzrl = −parm . r0 ;
65 Rwzrr = −parm . r0 ;
66 end
67
68 % Compute creep f o r c e s :
69 i f 1 % used debugging
70 FCfl = creep_force (t , q , parm , Nzf l , qpenf l , rsgeo , ’ f r o n t ’ , ’ l e f t ’) ;
71 FCfr = creep_force (t , q , parm , Nzfr , qpenfr , rsgeo , ’ f r o n t ’ , ’ r i g h t ’)

;

70 APPENDIX E. MATLAB CODE

72 FCrl = creep_force (t , q , parm , Nzrl , qpenrl , rsgeo , ’ r ea r ’ , ’ l e f t ’) ;
73 FCrr = creep_force (t , q , parm , Nzrr , qpenrr , rsgeo , ’ r ea r ’ , ’ r i g h t ’) ;
74 e l s e
75 FCfl = z e r o s (3 , 1) ;
76 FCfr = z e r o s (3 , 1) ;
77 FCrl = z e r o s (3 , 1) ;
78 FCrr = z e r o s (3 , 1) ;
79 end
80
81 i f 1 % used debugging
82 % Compute dynamics o f f r o n t wheel :
83 dq (1) = q (2) ; % [m] l a t e r a l p o s i t i o n (q1)
84 dq (2) = (−A(1)+FCfl (2)+FCfr (2)+Nf l (2)+Nfr (2)) /parm .mw; % [m/ s

] l a t e r a l v e l o c i t y (q1dot) −(A1) /mw
85 dq (3) = q (4) ; % [m] v e r t i c a l p o s i t i o n (q2)
86 dq (4) = (−A(2)+FCfl (3)+FCfr (3)+Nf l (3)+Nfr (3)−parm . Fwfc) /parm .

mw; % [m/ s] v e r t i c a l v e l o c i t y (q2dot) −(A2) /mw
87 dq (5) = q (6) ; % [rad] yaw angle (q3)
88 dq (6) = (−A(3)−Rwyfl ∗(FCfl (1)+q (5) ∗(FCfl (2)+Nf l (2)))−Rwyfr ∗(

FCfr (1)+q (5) ∗(FCfr (2)+Nfr (2)))) /parm . Iwz ; % [rad / s] yaw
ang le v e l o c i t y (q3dot) −(A3) /Iwz

89 dq (7) = q (8) ; % [rad] r o l l ang le (q4)
90 dq (8) = (−A(4)+Rwyfl ∗(FCfl (3)+Nf l (3)−q (7) ∗(FCfl (2)+Nf l (2)))+

Rwyfr ∗(FCfr (3)+Nfr (3)−q (7) ∗(FCfr (2)+Nfr (2))) . . .
91 −Rwzfl∗(−q (5) ∗ FCfl (1)+FCfl (2)+Nf l (2)+q (7) ∗(FCfl (3)+Nf l

(3)))−Rwzfr∗(−q (5) ∗FCfr (1)+FCfr (2)+Nfr (2)+q (7) ∗(
FCfr (3)+Nfr (3)))) /parm . Iwx ; % [rad / s] r o l l ang le
v e l o c i t y (q4dot) −(A4) /Iwx

92 dq (25) = (Rwzfr ∗(FCfr (1) +(FCfr (2)+Nfr (2)) ∗q (5))+Rwzfl ∗(FCfl (1)
+(FCfl (2)+Nf l (2)) ∗q (5))−A(13)) /parm . Iwy ; % [rad] Spin
pertubat ion f r o n t wheel

93 end
94 i f 1 % used debugging
95 % Compute dynamics o f r ea r wheel :
96 dq (9) = q (10) ; % [m] l a t e r a l p o s i t i o n (q5)
97 dq (10) = (−A(5)+FCrl (2)+FCrr (2)+Nrl (2)+Nrr (2)) /parm .mw; % [m/ s

] l a t e r a l v e l o c i t y (q5dot) −(A5) /mw
98 dq (11) = q (12) ; % [m] v e r t i c a l p o s i t i o n (q6)
99 dq (12) = (−A(6)+FCrl (3)+FCrr (3)+Nrl (3)+Nrr (3)−parm . Fwfc) /parm .

mw; % [m/ s] v e r t i c a l v e l o c i t y (q6dot) −(A6) /mw
100 dq (13) = q (14) ; % [rad] yaw angle (q7)
101 dq (14) = (−A(7)−Rwyrl ∗(FCrl (1)+q (13) ∗(FCrl (2)+Nrl (2)))−Rwyrr ∗(

FCrr (1)+q (13) ∗(FCrr (2)+Nrr (2)))) /parm . Iwz ; % [rad / s] yaw
ang le v e l o c i t y (q3dot) −(A3) /Iwz

102 dq (15) = q (16) ; % [rad] r o l l ang le (q8)
103 dq (16) = (−A(8)+Rwyrl ∗(FCrl (3)+Nrl (3)−q (15) ∗(FCrl (2)+Nrl (2)) ∗q

(15))+Rwyrr ∗(FCrr (3)+Nrr (3)−q (15) ∗(FCrr (2)+Nrr (2))) . . .
104 −Rwzrl∗(−q (13) ∗FCrl (1)+FCrl (2)+Nrl (2)+q (15) ∗(FCrl (3)+

Nrl (3)))−Rwzrr∗(−q (13) ∗FCrr (1)+FCrr (2)+Nrr (2)+q
(15) ∗(FCrr (3)+Nrr (3)))) /parm . Iwx ; % [rad / s] r o l l
ang le v e l o c i t y (q4dot) −(A4) /Iwx

105 dq (26) = (Rwzrr ∗(FCrr (1) +(FCrr (2)+Nrr (2)) ∗q (13))+Rwzrl ∗(FCrl
(1) +(FCrl (2)+Nrl (2)) ∗q (13))−A(14)) /parm . Iwy ; % [rad] Spin
pertubat ion r ea r wheel

E.3. SPRING_FORCE.M 71

106 end
107 i f 1 % used debugging
108 % Compute dynamics o f bog ie frame
109 dq (17) = q (18) ; % [m] l a t e r a l p o s i t i o n (q9)
110 dq (18) = (A(1)+A(5)+A(9)+D(1)) /parm . mf ; % [m/ s] l a t e r a l

v e l o c i t y (q9dot) (A1+A5+A9+D1) /mf
111 dq (19) = q (20) ; % [m] v e r t i c a l p o s i t i o n (q10)
112 dq (20) = (A(2)+A(6)−A(10)−D(2)) /parm . mf ; % [m/ s] v e r t i c a l

v e l o c i t y (q10dot) (A2+A6−A10+D2)) /mf
113 dq (21) = q (22) ; % [rad] yaw angle (q11)
114 dq (22) = (parm . b∗A(1)+A(3)−parm . b∗A(5)+A(7)−A(11)−D(3)) /parm .

I f z ; % [rad / s] yaw ang le v e l o c i t y (q11dot) (bA1+A3−bA5+A7
−A11) / I f z

115 dq (23) = q (24) ; % [rad] r o l l ang le (q12)
116 dq (24) = (parm . h1∗A(1)+A(4)+parm . h1∗A(5)+A(8)−parm . h2∗A(9)−A

(12)−D(4)−D(5)) /parm . I f x ; % [rad / s] r o l l ang le v e l o c i t y (
q12dot) (h1A1+h1A5−h2A9−A12−D3+D4) / I f x

117 end
118 end

E.3 spring_force.m

1 f unc t i on A = spr ing_force (t , q , parm)
2 % SPRING_FORCE used f o r c a l c u l a t i n g the cur rent spr ing f o r c e
3 %
4 % Cal l : sp r ing_force (t , q , parm)
5 %
6 % Input Parameters : t , i s the time
7 % q , array conta ing the p o s i t i o n end the
8 % v e l o c i t y o f the wheels and the bog ie
9 % parm , array conta in ing the p o s i t i o n and the

10 % v e l o c i t y o f both wheels and the bog ie
11 %
12 % Output Parameter : Array with cur rent sp r ing f o r c e
13
14 % Authors : % Ul la Uldahl
15 % Date : % September 24 , 2011
16
17 % Read parameters :
18 % b = parm . b ; % [m] Hal f the d i s t a n c e between the two a x e l s
19 % d1 = parm . d1 ; % [m] Hor i zonta l d i s t a n c e f r o spr ing to

gravety
20 % d2 = parm . d2 ; % [m] Hor i zonta l d i s t a n c e f r o spr ing to

gravety
21 % h1 = parm . h1 ; % [m] V e r t i a c l d i s t a n c e f r o sp r ing to gravety
22 % h2 = parm . h2 ; % [m] V e r t i a c l d i s t a n c e f r o sp r ing to gravety
23 % k1 = parm . k1 ; % [N/m] Spring c o e f f i c i e n t wheel / frame l a t e r a l
24 % k2 = parm . k2 ; % [N/m] Spring c o e f f i c i e n t wheel / frame track−

d i r e c t i o n
25 % k3 = parm . k3 ; % [N/m] Spring c o e f f i c i e n t wheel / frame v e r t i c a l

72 APPENDIX E. MATLAB CODE

26 % k4 = parm . k4 ; % [N/m] Spring c o e f f i c i e n t frame / carbody
l a t e r a l

27 % k5 = parm . k5 ; % [N/m] Spring c o e f f i c i e n t frame / carbody
v e r t i c a l

28 % k6 = parm . k6 ; % [Nm] Spring c o e f f i c i e n t frame / carbody yaw (
t o r s i o n)

29
30 % Al lo ca t e space :
31 A = z e r o s (14 ,1) ;
32
33 % Compute spr ing f o r c e s :
34 A(1) = 2∗parm . k1 ∗(q (1)−q (17)−parm . b∗q (21)−parm . h1∗q (23)) ; % [N]
35 A(2) = 2∗parm . k3 ∗(q (3)−q (19)) ; % [N]
36 A(3) = 2∗parm . k2∗parm . d1∗parm . d1 ∗(q (5)−q (21)) ; % [Nm]
37 A(4) = 2∗parm . k3∗parm . d1∗parm . d1 ∗(q (7)−q (23)) ; % [Nm]
38 A(5) = 2∗parm . k1 ∗(q (9)−q (17)+parm . b∗q (21)−parm . h1∗q (23)) ; % [N]
39 A(6) = 2∗parm . k3 ∗(q (11)−q (19)) ; % [N]
40 A(7) = 2∗parm . k2∗parm . d1∗parm . d1 ∗(q (13)−q (21)) ; % [Nm]
41 A(8) = 2∗parm . k3∗parm . d1∗parm . d1 ∗(q (15)−q (23)) ; % [Nm]
42 A(9) = 2∗parm . k4 ∗(parm . h2∗q (23)−q (17)) ; % [N]
43 A(10) = 2∗parm . k5∗q (19) ; % [N]
44 A(11) = parm . k6∗q (21) ; % [Nm]
45 A(12) = 2∗parm . k5∗parm . d2∗parm . d2∗q (23) ; % [Nm]
46 A(13) = 2∗parm . k3∗parm . d1∗parm . d1∗q (5) ∗q (23) ; % [Nm]
47 A(14) = 2∗parm . k3∗parm . d1∗parm . d1∗q (13) ∗q (23) ; % [Nm]
48 end

E.4 damper_force.m

1 f unc t i on D = damper_force (t , q , parm)
2 % DAMPER_FORCE used f o r c a l c u l a t i n g the cur rent damper f o r c e
3 %
4 % Cal l : damper_force (t , q , parm)
5 %
6 % Input Parameters : t , i s the time
7 % q , array conta ing the p o s i t i o n end the
8 % v e l o c i t y o f the wheels and the bog ie
9 % parm , array conta in ing the p o s i t i o n and the

10 % v e l o c i t y o f both wheels and the bog ie
11 %
12 % Output Parameter : Array with cur rent damper f o r c e
13
14 % Authors : % Ul la Uldahl
15 % Date : % September 24 , 2011
16
17 % Read parameters :
18 % d2 = parm . d2 ; % [m] Hor i zonta l d i s t a n c e from spr ing to

gravety
19 % h2 = parm . h2 ; % [m] V e r t i a c l d i s t a n c e from spr ing to

gravety

E.5. NORMAL_FORCE.M 73

20 % D1 = parm . D1 ; % [N∗ s /m] Damper c o e f f i c i e n t frame / carbody
v e r t i c a l

21 % D2 = parm . D2 ; % [N∗ s /m] Damper c o e f f i c i e n t frame / carbody
l a t e r a l

22 % D3 = parm . D3 ; % [N∗ s /m] Damper c o e f f i c i e n t frame / carbody
l a t e r a l

23
24 % Al lo ca t e space :
25 D = z e r o s (5 , 1) ;
26
27 % Compute damper f o r c e (l a t e r a l) :
28 D(1) = 2∗parm . D2∗(parm . h2∗q (24)−q (18)) ; % [N]
29 % Compute damper f o r c e (v e r t i c a l) :
30 D(2) = 2∗parm . D1∗q (20) ; % [N]
31 % Compute yaw damper (l a t e r a l) :
32 D(3) = parm . D3∗q (22) ;
33 % Compute damper f o r c e (r o l l) :
34 D(4) = 2∗parm . D1∗q (24) ∗parm . d2 ^2 ; % [Nm] (c o n t r i b u t i o n

from v e r t i c a l damper D1)
35 D(5) = 2∗parm . D2∗(parm . h2∗q (24)−q (18)) ∗parm . h2 ; % [Nm] (

c o n t r i b u t i o n from l a t e r a l damper D2)
36 end

E.5 normal_force.m

1 f unc t i on [Ntrack , Nz , qpen ,Rwy,Rwz] = normal_force (t , q , parm , rsgeo ,
whee lset , s i d e)

2
3 % NORMAL_FORCE used f o r c a l c u l a t i n g the cur rent normal f o r c e
4 %
5 % Cal l : normal_force (t , q , parm , rsgeo , ’ rear ’ , ’ r i ght ’)
6 %
7 % Input Parameters : t , i s the time .
8 % q , array conta ing the p o s i t i o n end the
9 % v e l o c i t y o f the wheels and the bog ie .

10 % parm , array conta in ing the p o s i t i o n and the
11 % v e l o c i t y o f both wheels and the bog ie .
12 % rsgeo , t a b l e conta in ing precomputed parameters
13 % wheelset , f r o n t or r ea r .
14 % side , l e f t or r i g h t .
15 %
16 % Output Parameter : Ntrack , array conta ing the normal f o r c e in the
17 % track co r idna t e system .
18 % Nz , normal f o r c e in wheel−r a i l contact system .
19 % qpen , dynamic pene t ra t i on depth in wheel−r a i l
20 % contact system .
21 % Rwy, l a t e r a l p o s i t i o n o f the contact po int on
22 % the wheel in the body system .
23 % Rwz, ac tua l r o l i n g rad iu s (v e r t i c a l p o s i t i o n
24 % of the contact po int on the wheel in the
25 % body system)

74 APPENDIX E. MATLAB CODE

26
27 % Authors : % Ul la Uldahl
28 % Date : % September 22 , 2011
29
30 % rsgeo (: , 1) : La t e ra l diplacement , {q1 , q9} [m]
31 % rsgeo (: , 2) : S t a t i c normal f o r ce , N0 [N]
32 % rsgeo (: , 3) : Angle between the ax l e and the contact plane ,

d e l t a [rad]
33 % rsgeo (: , 4) : B igges t semi axis , a0 [m]
34 % rsgeo (: , 5) : Smal l e s t semi axis , b0 [m]
35 % rsgeo (: , 6) : La t e ra l p o s i t i o n o f the contact po int on the wheel

in the body system , Rwy [m]
36 % rsgeo (: , 7) : Actual r o l i n g rad iu s (v e r t i c a l p o s i t i o n o f the

contact po int on the wheel in the body system) , Rwz [m]
37 % rsgeo (: , 8) : Kalkers creepage , C11 [−]
38 % rsgeo (: , 9) : Kalkers creepage , C22 [−]
39 % rsgeo (: , 1 0) : Kalkers creepage , C23 [−]
40 % rsgeo (: , 1 1) : V e r t i c a l p o s i t i o n o f the contact po int on the r a i l

in the t rack system , Rrz [m]
41 % rsgeo (: , 1 2) : S t a t i c penetrat ion , qpen0 [m]
42 % rsgeo (: , 1 3) : La t e ra l p o s i t i o n o f the contact po int on the r a i l

in the t rack system , Rry [m]
43
44 %%
45 % Normal f o r c e s c a l c u l a t i o n %
46 %%
47
48 % Choose whee l se t :
49 i f strcmp (wheelset , ’ f r o n t ’)
50 y = q (1) ;
51 ydot = q (2) ;
52 z = q (3) ;
53 zdot = q (4) ;
54 p s i = q (5) ;
55 phi = q (7) ;
56 phidot = q (8) ;
57 e l s e % rea r whee l se t
58 y = q (9) ;
59 ydot = q (10) ;
60 z = q (11) ;
61 zdot = q (12) ;
62 p s i = q (13) ;
63 phi = q (15) ;
64 phidot = q (16) ;
65 end
66
67 % Choose s i d e :
68 i f strcmp (s ide , ’ l e f t ’)
69 s l r = 1 ;
70 e l s e % r i g h t s i d e
71 s l r = −1;
72 end
73
74 % I n t e r p o l a t e RSGEO va lues :

E.6. CREEP_FORCE.M 75

75 rsgeo_in = [r sgeo (: , 2) , s l r ∗ r sgeo (: , 3) , s l r ∗ r sgeo (: , 6) ,− r sgeo (: , 7) ,
r sgeo (: , 1 1) , r sgeo (: , 1 2) , s l r ∗ r sgeo (: , 1 3)] ;

76 % rsgeo_out = in t e rp1 (r sgeo (: , 1) , rsgeo_in , s l r ∗y , ’ l i n e a r ’) ;
77 rsgeo_out = l i n e a r _ i n t e r p ([r sgeo (: , 1) , rsgeo_in] , s l r ∗y) ;
78 N0 = rsgeo_out (1) ;
79 d e l t a = rsgeo_out (2) ;
80 Rwy = rsgeo_out (3) ;
81 Rwz = rsgeo_out (4) ;
82 Rrz = rsgeo_out (5) ;
83 qpen0 = rsgeo_out (6) ;
84 Rry = rsgeo_out (7) ;
85
86 % Equi l ibr ium p o s i t i o n o f the body (whee l s e t) in r e f e r e n c e to the

t rack system :
87 yeq = 0 ;
88 zeq = parm . r0 ;
89
90 % Compute cente r o f mass o f body in t rack system :
91 Rcy = yeq+y ;
92 Rcz = zeq+z ;
93
94 % Compute dynamic pene t ra t i on depth :
95 c o s d e l t a = cos (d e l t a) ;
96 s i n d e l t a = s i n (d e l t a) ;
97 qpen = −(Rry−Rcy+phi ∗(Rrz−zeq)−Rwy) ∗ s i n d e l t a +(Rrz−Rcz−phi ∗(Rry−yeq

)−Rwz) ∗ c o s d e l t a ;
98
99 % Compute dynamic pene t ra t i on v e l o c i t y :

100 vpen = (ydot−phidot ∗(Rrz−zeq)) ∗ s i n d e l t a −(zdot+phidot ∗(Rry−yeq)) ∗
c o s d e l t a ;

101
102 % Compute s i z e o f normal f o r c e in wheel−r a i l contact system (

s c a l a r) :
103 Nz_spring = N0∗(qpen/qpen0) ^(3/2) ;
104
105 % Compute the mate r i a l damping f o r c e :
106 Nz_damper = parm .Dm∗vpen ;
107
108 % Compute normal f o r c e with damping f o r c e :
109 Nz = Nz_spring + Nz_damper ;
110
111 i f ~ i s r e a l (Nz) | | Nz < 0
112 Nz = 0 ;
113 end
114
115 % Transform normal f o r c e vec to r from contact to t rack system :
116 s i n p h i d e l t a = s i n (phi+d e l t a) ;
117 Ntrack = [p s i ∗ s i n p h i d e l t a ;− s i n p h i d e l t a ; cos (phi+d e l t a)] ∗ Nz ;
118 end

E.6 creep_force.m

76 APPENDIX E. MATLAB CODE

1 f unc t i on [Ftrack , Fx , Fy] = creep_force (t , q , parm , Nz , qpen , rsgeo ,
whee lset , s i d e)

2
3 % CREEP_FORCE used f o r c a l c u l a t i n g the cur rent normal f o r c e
4 %
5 % Cal l : c reep_force (t , q , parm , Nz , qpen , rsgeo , ’ rear ’ , ’ r i ght ’)
6 %
7 % Input Parameters : t , i s the time
8 % q , array conta ing the p o s i t i o n end the
9 % v e l o c i t y o f the wheels and the bog ie

10 % parm , array conta in ing the p o s i t i o n and
11 % the v e l o c i t y o f both wheels and the bog ie
12 % rsgeo , t a b l e conta in ing precomputed parameters
13 % wheelset , f r o n t or r ea r .
14 % side , l e f t or r i g h t .
15 %
16 % Output Parameter : Ftrack , array conta ing the creep f o r c e in
17 % the track co r idna te system .
18 % Fx , the l o n g i t u d i n a l creep f o r c e s in contact
19 % system
20 % Fy , the l a t e r a l c reep f o r c e s in contact system
21
22 % Authors : % Ul la Uldahl
23 % Date : % September 22 , 2011
24
25 % rsgeo (: , 1) : La t e ra l diplacement , {q1 , q9} [m]
26 % rsgeo (: , 2) : S t a t i c normal f o r ce , N0 [N]
27 % rsgeo (: , 3) : Angle between the ax l e and the contact plane ,

d e l t a [rad]
28 % rsgeo (: , 4) : B igges t semi axis , a0 [m]
29 % rsgeo (: , 5) : Smal l e s t semi axis , b0 [m]
30 % rsgeo (: , 6) : La t e ra l p o s i t i o n o f the contact po int on the wheel

in the body system , Rwy [m]
31 % rsgeo (: , 7) : Actual r o l i n g rad iu s (v e r t i c a l p o s i t i o n o f the

contact po int on the wheel in the body system) , Rwz [m]
32 % rsgeo (: , 8) : Kalkers creepage , C11 [−]
33 % rsgeo (: , 9) : Kalkers creepage , C22 [−]
34 % rsgeo (: , 1 0) : Kalkers creepage , C23 [−]
35 % rsgeo (: , 1 1) : V e r t i c a l p o s i t i o n o f the contact po int on the r a i l

in the t rack system , Rrz [m]
36 % rsgeo (: , 1 2) : S t a t i c penetrat ion , qpen0 [m]
37 % rsgeo (: , 1 3) : La t e ra l p o s i t i o n o f the contact po int on the r a i l

in the t rack system , Rry [m]
38
39 %%
40 % Creep f o r c e s c a l c u l a t i o n %
41 %%
42
43 % Choose whee l se t :
44 i f strcmp (wheelset , ’ f r o n t ’)
45 y = q (1) ;
46 ydot = q (2) ;
47 zdot = q (4) ;

E.6. CREEP_FORCE.M 77

48 p s i = q (5) ;
49 ps ido t = q (6) ;
50 phi = q (7) ;
51 phidot = q (8) ;
52 betadot = q (25) ; % Spin pertubat ion f r o n t wheel , [rad]
53 e l s e % rea r whee l se t
54 y = q (9) ;
55 ydot = q (10) ;
56 zdot = q (12) ;
57 p s i = q (13) ;
58 ps ido t = q (14) ;
59 phi = q (15) ;
60 phidot = q (16) ;
61 betadot = q (26) ; % Spin pertubat ion r ea r wheel , [rad]
62 end
63
64 % Choose s i d e :
65 i f strcmp (s ide , ’ l e f t ’)
66 s l r = 1 ;
67 e l s e % r i g h t s i d e
68 s l r = −1;
69 end
70
71 % I n t e r p o l a t e RSGEO va lues :
72 rsgeo_in = [s l r ∗ r sgeo (: , 3) , r sgeo (: , 4) , r sgeo (: , 5) , s l r ∗ r sgeo (: , 6) ,−

r sgeo (: , 7) , r sgeo (: , 8) , r sgeo (: , 9) , r sgeo (: , 1 0) , r sgeo (: , 1 2)] ;
73 % rsgeo_out = in t e rp1 (r sgeo (: , 1) , rsgeo_in , s l r ∗y , ’ l i n e a r ’) ;
74 rsgeo_out = l i n e a r _ i n t e r p ([r sgeo (: , 1) , rsgeo_in] , s l r ∗y) ;
75 d e l t a = rsgeo_out (1) ;
76 a0 = rsgeo_out (2) ;
77 b0 = rsgeo_out (3) ;
78 Rwy = rsgeo_out (4) ;
79 Rwz = rsgeo_out (5) ;
80 C11 = rsgeo_out (6) ;
81 C22 = rsgeo_out (7) ;
82 C23 = rsgeo_out (8) ;
83 qpen0 = rsgeo_out (9) ;
84
85
86 i f t > parm . t0 && parm . a0 ~= 0
87 parm . v = parm . v0 + parm . a0 ∗(t−parm . t0) ;
88 end
89 c o s d e l t a = cos (d e l t a) ;
90 s i n d e l t a = s i n (d e l t a) ;
91
92 % Read parameters :
93 omega = parm . v/parm . r0 ; % Nominal sp in o f wheel , [1/ s]
94
95 % Compute the l o n g i t u d i n a l creepage :
96 xix = 1+(p s i ∗ydot+Rwz∗(omega+betadot)−Rwy∗ ps ido t) /parm . v ;
97
98 % Compute the l a t e r a l creepage :
99 xiy = (ydot−p s i ∗parm . v+phi ∗ zdot−phidot ∗Rwz) /(parm . v∗ c o s d e l t a) ;

100

78 APPENDIX E. MATLAB CODE

101 % Compute the sp in creepage :
102 x i sp = (− s i n d e l t a ∗(omega+betadot)+c o s d e l t a ∗ ps ido t) /parm . v ;
103 x i = [x ix ; x iy ; x i sp] ;
104
105 % Compute dynamic contact e l l i p s e :
106 ab = a0∗b0 ∗(qpen/qpen0) ; % = a0∗b0∗(1+(qpen−qpen0) /qpen0) ;
107
108 % Def ine the Kalkers creepage matrix :
109 Kalk = [C11 , 0 , 0 ;
110 0 ,C22 , s q r t (ab) ∗C23] ;
111
112 % Compute the f o r c e along the contact plane :
113 F t i l d e = −parm .G∗ab∗Kalk∗ x i ;
114 normFti lde = norm(F t i l d e) ; % = s q r t (F t i l d e (1)^2+ F t i l d e (2) ^2)
115 normF = parm .mu∗Nz ;
116 u = normFtilde /normF ;
117 i f u < 3
118 normF = normF∗(u−1/3∗u^2+1/27∗u^3) ;
119 end
120
121 % Compute the adjustment f a c t o r :
122 e p s i l o n = normF/ normFtilde ;
123
124 % Compute the l o n g i t u d i n a l and the l a t e r a l c reep f o r c e s in contact

system :
125 Fx = e p s i l o n ∗ F t i l d e (1) ;
126 Fy = e p s i l o n ∗ F t i l d e (2) ;
127
128 % Transform creep f o r c e vec to r from contact to t rack system :
129 c o s p h i d e l t a = cos (phi+d e l t a) ;
130 Ftrack = [Fx−p s i ∗ c o s p h i d e l t a ∗Fy ;
131 p s i ∗Fx+c o s p h i d e l t a ∗Fy ;
132 s i n (phi+d e l t a) ∗Fy] ;
133 end

E.7 erk.m

1 f unc t i on [tout , yout , in fo , per f , e r r] = erk (fun , tspan , y0 , h0 ,
varstep , to l , va ra rg in)

2 di sp (’−−−−−−−−−− ERK −−−−−−−−−−− ’)
3
4 i f isempty (t o l)
5 t o l = 1e −4;
6 end
7
8 % vars tep : 1 : on , use v a r i a b l e s tep s i z e , 2 : o f f , f i x e d step s i z e
9

10 % c |A
11 % −−−−
12 % 0 | b
13 % 0 | bt

E.7. ERK.M 79

14
15 % Authors : % Carsten Vølcker
16 % Date : % 27 .08 .2008 by cv (a)imm. dtu . dk
17
18 % To s i m p l i f y Input , the opt ions AbsTol and RelTol are r ep laced by

the
19 % opt ion opts (2) . And i f we choose AbsTol = opts (2) ^2 and RelTol =

opts (2) ,
20 % then AbsTol + RelTol ∗norm(x , i n f) = opts (2) ^2 + opts (2) ∗norm(x ,

i n f) =
21 % opts (2) ∗(opts (2) + norm(x , i n f)) .
22
23 %%
24 % Butcher Tableau %
25 %%
26
27 %buttab = ’23BS ’
28 %buttab = ’45F’
29 buttab = ’ 45DP’ %ode45
30 %buttab = ’21HE’ %e x p l i c i t Euler
31 switch buttab
32 case ’ 21HE ’ % Heun−Euler (2− s tage)
33 B = [0 0 0 ;
34 1 1 0 ;
35 2 1/2 1/2 ;
36 1 1 0] ;
37 case ’ 32BS ’ % Bogacki ?Shampine (4− s tage)
38 B = [0 0 0 0 0 ;
39 1/2 1/2 0 0 0 ;
40 3/4 0 3/4 0 0 ;
41 1 2/9 1/3 4/9 0 ;
42 3 2/9 1/3 4/9 0 ;
43 2 7/24 1/4 1/3 1 / 8] ;
44 case ’ 23BS ’ % Bogacki ?Shampine (4− stage , interchanged d and dt

)
45 B = [0 0 0 0 0 ;
46 1/2 1/2 0 0 0 ;
47 3/4 0 3/4 0 0 ;
48 1 2/9 1/3 4/9 0 ;
49 2 7/24 1/4 1/3 1/8 ;
50 3 2/9 1/3 4/9 0] ;
51 case ’ 45F ’ % Fehlberg (6− s tage)
52 B = [0 0 0 0 0 0

0 ;
53 1/4 1/4 0 0 0 0

0 ;
54 3/8 3/32 9/32 0 0 0

0 ;
55 12/13 1932/2197 −7200/2197 7296/2197 0 0

0 ;
56 1 439/216 −8 3680/513 −845/4104 0

0 ;
57 1/2 −8/27 2 −3544/2565 1859/4104

−11/40 0 ;

80 APPENDIX E. MATLAB CODE

58 4 25/216 0 1408/2565 2197/4104
−1/5 0 ;

59 5 16/135 0 6656/12825 28561/56430
−9/50 2 / 5 5] ;

60 case ’ 54CK’ % Cash−Karp (6− s tage)
61 B = [0 0 0 0 0

0 0 ;
62 1/5 1/5 0 0 0

0 0 ;
63 3/10 3/40 9/40 0 0

0 0 ;
64 3/5 3/10 −9/10 6/5 0

0 0 ;
65 1 −11/54 5/2 −70/27 35/27

0 0 ;
66 7/8 1631/55296 175/512 575/13824 44275/110592

253/4096 0 ;
67 5 37/378 0 250/621 125/594

0 512/1771;
68 4 2825/27648 0 18575/48384 13525/55296

277/14336 1/4] ;
69 case ’ 45DP’ % Dormand? Prince (7− s tage)
70 B = [0 0 0 0 0 0

0 0 ;
71 1/5 1/5 0 0 0 0

0 0 ;
72 3/10 3/40 9/40 0 0 0

0 0 ;
73 4/5 44/45 −56/15 32/9 0 0

0 0 ;
74 8/9 19372/6561 −25360/2187 64448/6561 −212/729 0

0 0 ;
75 1 9017/3168 −355/33 46732/5247 49/176

−5103/18656 0 0 ;
76 1 35/384 0 500/1113 125/192

−2187/6784 11/84 0 ;
77 4 5179/57600 0 7571/16695 393/640

−92097/339200 187/2100 1/40 ;
78 5 35/384 0 500/1113 125/192

−2187/6784 11/84 0] ;
79 end
80
81 A = B(1 : end − 2 , 2 : end) ’ ;
82 b = B(end − 1 , 2 : end) ’ ;
83 bt = B(end , 2 : end) ’ ;
84 c = B(1 : end − 2 , 1) ;
85 d = b − bt ;
86 k = B(end , 1) ; % order o f e r r o r c o n t r o l
87
88 % i n i t i a l va lue . . .
89 t = tspan (1) ;
90 y = y0 (:) ;
91 f = f e v a l (fun , t , y , vararg in { : }) ;
92

E.7. ERK.M 81

93 % i n i t i a l step−s i z e (l o c a l t runcat i on e r r o r o f e x p l i c i t Euler
method) . . .

94 i f isempty (h0)
95 J = numjac (fun , t , y , f , to l , va ra rg in { : }) ;
96 h = 0 .8∗ (2∗ t o l ∗(t o l + norm(y , i n f)) /norm(J∗ f , i n f)) ^(1/2) ;
97 e l s e
98 h = h0 ;
99 end

100
101 % c o n t r o l l e r parameters (PI c o n t r o l l e r) . . .
102 kI = 0.3/ k ;
103 kP = 0.4/ k ;
104 racc = t o l ∗(t o l + norm(y , i n f)) ;
105
106 % i n i t i a l i z e conta ine r s , counters , e t c
107 m = length (y) ; % no . o f ODE’ s
108 s = length (c) ; % no . o f s t a g e s
109 N = round ((tspan (2) − tspan (1)) /h) ; % c o n t a i n e r s in chunks N
110 tout = repmat (t , [1 N]) ; yout = repmat (y , [1 N]) ;
111 t r a c e = (nargout > 3) ; i f t r a c e
112 p e r f = repmat ([0 ; 0 ; 0] , [1 N]) ;
113 e r r = repmat (z e r o s (l ength (y) ,1) , [1 N]) ;
114 end
115 F = z e r o s (m, s) ; % f o r s t o r i n g s t a g e s
116 ntot = 0 ; % no . o f s t ep s in t o t a l
117 nacc = 0 ; % no . o f accepted s t ep s
118 n r e j = 0 ; % no . o f r e j e c t e d steps , saved in p e r f −> as (t , n r e j)
119 nfun = 1 ; % no . o f f unc t i on e v a l u a t i o n s
120
121 % i n t e g r a t e . . .
122 %w = waitbar (0 , ’ In t eg ra t ing , p l e a s e wait . . . ’) ;
123 whi le t < tspan (2)
124 ntot = ntot + 1 ;
125 % show pro g r e s s . . .
126 %waitbar (t / tspan (2))
127 % stage 1 . . .
128 T = t ;
129 Y = y ;
130 F (: , 1) = f ;
131 % stage 2−s . . .
132 f o r j = 2 : s
133 nfun = nfun + 1 ;
134 i = j ;
135 T = t + h∗c (i) ;
136 Y = y + h∗F (: , 1 : j − 1) ∗A(1 : j − 1 , i) ;
137 F (: , i) = f e v a l (fun , T, Y, vararg in { : }) ;
138 end
139 % est imate l o c a l t runcat i on e r r o r . . .
140 e = h∗F∗d ;
141 r = norm(e , i n f) ;
142 % accept s tep i f r <= t o l ∗(t o l + norm(y , i n f)) . . .
143 step_accepted = 0 ;
144 i f r <= t o l ∗(t o l + norm(y , i n f)) | | ~ vars tep
145 step_accepted = 1 ;

82 APPENDIX E. MATLAB CODE

146 nacc = nacc + 1 ;
147 nfun = nfun + 1 ;
148 % update cur rent po int . . .
149 t = t + h ;
150 y = y + h∗F∗b ; % us ing advancing method
151 %y = y + h∗F∗bt ; % us ing embedded method
152 f = f e v a l (fun , t , y , vararg in { : }) ;
153 % save output and performance . . .
154 tout (nacc + 1) = t ;
155 yout (: , nacc + 1) = y ;
156 i f t r a c e
157 p e r f (: , nacc + 1 , :) = [h ; r ; n r e j] ;
158 e r r (: , nacc + 1 , :) = e ;
159 end
160 % expand c o n t a i n e r s in chunks o f N . . .
161 i f ~mod(nacc + 1 , N)
162 tout = cat (2 , tout , repmat (t , [1 N])) ;
163 yout = cat (2 , yout , repmat (y , [1 N])) ;
164 i f t r a c e
165 p e r f = cat (2 , per f , repmat (p e r f (: , end) , [1 N])) ;
166 e r r = cat (2 , err , repmat (e r r (: , end) , [1 N])) ;
167 end
168 end
169 n r e j = 0 ;
170 end
171 %%%%%%%%%% v a r i a b l e s tep s i z e BEGIN %%%%%%%%%%
172 i f var s tep
173 % update s t e p s i z e (assymptot ic c o n t r o l l e r) . . .
174 %h = h∗max(0 . 1 , min ((0 . 8 ∗ t o l ∗(t o l + norm(y , i n f)) / r) ^(1/k)

, 10)) ;
175 % update s t e p s i z e (PI c o n t r o l l e r) . . .
176 i f step_accepted
177 h = h∗max(0 . 1 , min ((0 . 8 ∗ t o l ∗(t o l + norm(y , i n f)) / r)^kI

∗(racc / r)^kP , 10)) ;
178 racc = r ;
179 e l s e
180 n r e j = n r e j + 1 ;
181 h = h∗max(0 . 1 , min ((0 . 8 ∗ t o l ∗(t o l + norm(y , i n f)) / r)

^(1/k) , 10)) ;
182 end
183 end
184 %%%%%%%%%% v a r i a b l e s tep s i z e END %%%%%%%%%%
185 % ensure t + h <= tend . . .
186 h = min (h , tspan (2) − t) ;
187 end
188 %c l o s e (w)
189 % bui ld in format ion , s o l u t i o n and performace . . .
190 i n f o = [ntot ntot−nacc nfun] ;
191 tout = tout (1 : nacc + 1) ’ ;
192 yout = yout (: , 1 : nacc + 1) ’ ;
193 i f t race , p e r f = p e r f (: , 1 : nacc + 1) ; e r r = e r r (: , 1 : nacc + 1) ;

end
194
195 f unc t i on J = numjac (fun , t , y , f , to l , va ra rg in)

E.8. LINEAR_INTERP.M 83

196 % Approximate Jacobian by forward d i f f e r e n c e , needs n + 1 func t i on
197 % e v a l u a t i o n s (f (t , y) though i s a l l r e a d y given as input) .
198 n = length (y) ;
199 J = z e r o s (n) ;
200 yp = y ;
201 % r e l a t i v e pe r turbat i on . . .
202 %p = t o l ∗(t o l + y) ; % hvor fo r ikke goere saadan ???
203 p = s q r t (eps) ∗max(y , 1) ;
204 % approximate Jacobian . . .
205 f o r i = 1 : n
206 yp (i) = y (i) + p(i) ; % perturbate d i r e c t i o n i
207 %p(i) = yp (i) − y (i) ; % hvor fo r goere det her ???
208 fp = f e v a l (fun , t , yp , vararg in { : }) ;
209 J (: , i) = (fp − f) /p(i) ;
210 yp (i) = y (i) ; % r e s e t d i r e c t i o n i
211 end

E.8 linear_interp.m

1 f unc t i on [y , dydx] = l i n e a r _ i n t e r p (S , x)
2
3 % Cal l :
4 % [y , dydx] = l i n e a r _ i n t e r p (S , x)
5 % Input :
6 % S : Set o f m equaly d i s t r i b u t e d des ign s i t e s S (: , 1) with

r e sponse s
7 % S (: , 2 : n) , matrix o f s i z e mxn .
8 % x : Sample po int .
9 % Output :

10 % y : Linear i n t e r p o l a t i o n o f r e sponse s at sample po int x .
11 % dydx : Gradients o f r e sponse s (1 . order approx .) at sample

po int x .
12
13 % Authors : % Carsten Vølcker
14
15 % Distance between des ign s i t e s :
16 dx = S (2 , 1) − S (1 , 1) ;
17
18 % Index o f nea r e s t des ign s i t e S(i , 1) < x :
19 i = f l o o r (1 + (x − S (1 , 1)) /dx) ;
20 i f i < s i z e (S , 1)
21 %disp (’ i < s i z e (S , 1) ’)
22 i f x < S (1 , 1)
23 e r r o r ([’ x must be l a r g e r than ’ , num2str (S (1 , 1))])
24 end
25 % Gradient o f r e sponse s between des ign s i t e s S(i , 1) and S(i

+1 ,1) :
26 %dydx = (S(i +1 ,2: end) − S(i , 2 : end)) /dx ; % dydx = (y2 − y1) /(x2

− x1)
27 dydx = (S(i +1 ,2: end) − S(i , 2 : end)) /(S(i +1 ,1) − S(i , 1)) ; % dydx

= (y2 − y1) /(x2 − x1)

84 APPENDIX E. MATLAB CODE

28 % Linear i n t e r p o l a t e d re sponse s at sample po int x :
29 y = S(i , 2 : end) + (x − S(i , 1)) ∗dydx ;
30 e l s e
31 %disp (’ i >= s i z e (S , 1) ’)
32 i f x > S(end , 1)
33 e r r o r ([’ x must be sma l l e r than ’ , num2str (S(end , 1))])
34 end
35 % Gradient o f r e sponse s between des ign s i t e s S(end −1 ,1) and S(

end , 1) :
36 %dydx = (S(end , 2 : end) − S(end −1 ,2: end)) /dx ; % dydx = (y2 − y1)

/(x2 − x1)
37 dydx = (S(end , 2 : end) − S(end −1 ,2: end)) /(S(end , 1) − S(end −1 ,1))

; % dydx = (y2 − y1) /(x2 − x1)
38 % Linear i n t e r p o l a t e d re sponse s at sample po int x :
39 y = S(end , 2 : end) ;
40 end

Bibliography

[1] Kaas-Petersen, Chr.: Chaos in a Railway Bogie, Acta Mechanica 61, (p.
89-107) Springer-Verlag 1986.

[2] Engbo Christensen, Lasse.: The Dynamics of a Railway Vehicle on a
Disturbed Track, Master project, IMM - DTU, DK, June 2001

[3] Personal communication with professor Hans True, IMM - DTU, DK,
2012

[4] Personal communication with professor Allan Peter Engsig-Karup, IMM
- DTU, DK, 2012

[5] Christian Jensen, Jens.: Teoretiske og eksperimentelle dynamiske under-
søgelser af jernbanekøretøjer, Ph.D., IMM - DTU, DK, 1995

[6] Hoffmann, Mark.: Dynamics of European two-axle freight wagons,
Ph.D., IMM - DTU, DK, September 2006

[7] Anderson, Berg and Stichel.: Rail Vehicle Dynamics, Railway group
KTH, 2005

[8] Bigoni, Daniele.: Curving Dynamics in High Speed Trains PUBLIC
VERSION, Master project, IMM - DTU, DK, 2011

[9] Garg, V. K. and Dukkipati, R. V.: Dynamics of railway vehicle systems,
Acedemic Press, 1984

[10] Völcker, Carsten.: Dynamics and Stability of a Railway Vehicle with
Realistic Nonlinear Dampers, Midterm Project, IMM - DTU, DK, June
2004.

85

	Contents
	Introduction
	The bogie model
	Views of the model
	The constants of the model
	System of equations
	Differential equations

	Mathematical model
	Coordinate system
	Rotation matrices
	Wheel/rail interaction
	RSGEO - contact table

	Numerical implementation
	Known numerical issues of the Cooperrider model
	Verification strategy
	Simplifying the code
	Test and evaluation of different numerical time integration methods
	Verification of the implementation of the bogie model
	Verification of the implementation of the normal and the creep forces
	Testing the system at different velocities
	Comparing two different models

	Finding the critical velocities
	The bifurcation diagram
	Critical Velocity
	Supercritical Hopf bifurcation
	Finding the subcritical symmetry breaking bifurcation

	Conclusion
	Appendix
	List of symbols
	Rotation matrices
	Data from RSGEO table
	Test of components separately
	Matlab code
	sol.m
	bogie.m
	spring_force.m
	damper_force.m
	normal_force.m
	creep_force.m
	erk.m
	linear_interp.m

	Bibliography

