
Prototype implementation of a
social network application for the

Polidoxa Project

Antoine Chamot

Kongens Lyngby 2012

IMM-M.Sc.-2012-111

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2012-111

Summary

Nowadays with the development of media people have access to an huge �ow
of information coming from various sources. This gives to everyone a wide
range of viewpoints on a desired topic. However the streaming of information
is mostly unidirectional, i.e. there is no possibility for the audience to control
the process in any ways. Indeed with traditional media such as television or
radio news are �ltered step by step to ensure that only relevant information
will be displayed to the public. Although such process is necessary to guarantee
the information quality it is impossible for the receiver to give feedback or have
any active interactions like select the source of the information or choose topics
he/she wants to expand. This gives those media the power to in�uence publics
agendas by putting forward stories they consider as newsworthy and give them
prominence and space.

Internet o�ers an alternative since it is possible for each person to control the
information he/she accesses, to choose the content he/she reads, and to interact
with others. However people need some know-how to e�ciently access relevant
and trusted information they are looking for since the control is limited so it is
usual to �nd any kind of hoax or garbage. It requires to be active and can be
time consuming to get reliable news.

Taking account previously described limits and the fact that search engines like
Google or social networks like Twitter, Facebook are for most people the starting
point of much of their research emerged the idea carried by the Polidoxa project.
Polidoxa aims to merge qualities of a news search engine and information coming
from a trusted social network so as to o�er a new searching experience. This
would be done by putting user at the center and letting him in�uence the ranking
algorithm to get more results susceptible to interest him.

ii

Starting from this, the goal of this master is to design and implement a search
engine prototype to illustrate and prove the interest of some core concepts de-
scribed in Polidoxa. This application based on a chosen social network should
evaluates and take advantage of the user network activities to give priority to
links within a shorter relational distance. Moreover each user must be able
to in�uence the process leading to result displaying. This running application
would constitute a base for further investigations on the subject.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�llment of the require-
ments for acquiring an M.Sc. in Informatics.

This report consists of four parts : background and requirements, social network
choice, prototype implementation and conclusion.

• Background and Requirements is composed of the introduction of the Poli-
doxa project on which is based this master. The second part is the de-
scription of the requirements for the application.

• Social Network Choice contains the choice of the social network made for
the development. The chosen one is then described and some relevant
characteristics in the scope of this project are detailed.

• Prototype implementation is explained in three four chapters. The �rts
one details the database schema chosen for the application. The second
describes the part of the application which has no direct interaction with
the user so called back-end. The second part focuses on the user interaction
and graphical aspects. The last part is a lightweight functional test of the
prototype after successful deployment.

• The remaining chapters present conclusions and future work.

iv

Lyngby, 01-January-2012

Antoine Chamot

Acknowledgements

I am grateful to Manuel Mazzara for helpful discussions during those mounth.
I also thanks my supervisor Nicola Dragoni for his answers to few questions i
had .

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Projects Descriptions 1
1.1 Polidoxa Project . 1

1.1.1 Description . 1

1.1.2 Algorithm Principle . 3

1.2 Master Project Description . 4

2 Requirements 7
2.1 Overview Use Case Diagram . 7

3 Social Network Choice 11
3.1 Motivations . 11

3.2 Twitter . 14

3.2.1 Overview . 14

3.2.2 Vocabulary . 15

3.2.3 Application Registration 16

3.2.4 Existing Twitter Applications 17

3.2.5 Twitter as a news media 18

4 Database Design 21
4.1 Requirements . 21

4.2 Physical Database . 22

viii CONTENTS

5 Back-end 27
5.1 Requirements . 27
5.2 Data Collection . 28

5.2.1 Twitter REST API . 28
5.2.2 Task Queue . 30
5.2.3 Cron Tasks executions . 30
5.2.4 Cron Tasks Details . 32
5.2.5 Performance issue and parallel execution 35

5.3 Data Processing . 38
5.3.1 Daemon . 38

5.4 Conclusion . 39

6 Front-end 41
6.1 Symfony2 . 41
6.2 Controllers Structure . 43
6.3 User Section . 44

6.3.1 User Registration . 44
6.3.2 Friend Static Trust . 48
6.3.3 User Pro�le . 49
6.3.4 Tweets Search . 50

6.4 Administrator section . 55
6.5 Testing . 58

6.5.1 Deployment . 58
6.5.2 Functional Testing . 59

7 Future Work 65

8 Conclusion 67

A Source Code of the Prototype 69

Bibliography 71

Chapter 1

Projects Descriptions

The objective of this thesis is starting from ideas developed in Polidoxa project
to implement a prototype based on a social network. In order to have a clear
idea of what is proposed by the Polidoxa project and provides foundations of
this master thesis the �rst part details Polidoxa major concepts. In a second
part the master project description is given.

1.1 Polidoxa Project

1.1.1 Description

Polidoxa is a project driven by scientists (Manuel Mazzara, Antonio Marra�a,
Luca Biselli1,Luca Chiarabini...) from di�erent universities. In their presenta-
tion paper [7] Polidoxa is de�ned as `a Sinergic Approach of a Social Network
and a Search Engine to O�er Trustworthy News'. It starts from the observation
that people consume traditional media (Television, Radio...) passively. Basi-
cally they cannot have any interaction or mean to verify received information.
It gives media power to in�uence people agenda by selecting what they consider
as important and give it more space. Moreover since the control of the informa-

2 Projects Descriptions

tion becomes more and more centralized it can potentially poses problems on
the guarantee of impartiality.

Beside those media, the Internet has emerged as a new mean to access informa-
tion. For most people search engine as Google or social networks as Facebook
are the preferred means to search for news. These tools �x some problems by
letting the user freely choose what they are interesting in and select the source of
the information. However it still lack a mean for embed the notion of individual
trustworthiness of a source. Thus the user has to do this work itself which is
time consuming and required some know-how.

To solve this issue Polidoxa idea consists to combine the potential of both social
networks and search engines to o�er user new experience in document searching.

Figure 1.1: Polidoxa Platform

This new Polidoxa tool unlike Facebook or Google embed the notion of indi-
vidual trustworthiness of a source. Its philosophy mentioned in the paper is
the following : we believe �rst in what we can directly verify, then in what our
closest contacts have veri�ed. We doubt about what people we do not know say
about things we have never seen (it does not matter if this is coming from o�-
cial sources) until our network of trusted contacts allows us to trust it because

1.1 Polidoxa Project 3

it has been veri�ed directly by them. Somehow Polidoxa distributes the tasks of
source checking amongst your network. Trusted relations are considered to be
appropriate source of information. It reduce the work that a single user has to
do to �nd reliable news.

1.1.2 Algorithm Principle

The algorithm on which Polidoxa is based favorite sources that user trust. Thus
the user is implied in the process and is not simply passive consumer. The de-
tailed algorithm is beyond the scope of this thesis. However the basic algorithm
principles are following (algorithms comes from Polidoxa paper [7]):

The introduction of a static parameter representing the trust (static trust) en-
force user to have active part in the process.

Algorithm 1 Con�gurable Static parameters
1 : Evaluate Trustworthiness of Contacts: by creating a contact with another
user of Polidoxa, the user is asked to weight the trustworthiness of that contact.
2 : Evaluate Trustworthiness of a Web page: by con�guring the search engine,
the user is asked to weight the trustfulness of speci�c Web pages.

The introduction of a parameter taking advantage of the user activity. User or
web pages with a large amount of like will get more trust.

Algorithm 2 Dynamic Parameters depending on activities and degree of sep-
aration
1: Evaluate like and dislike: the more like an article gets the more important it
is 2: Evaluate comments in like thread
3: Evaluate amount and frequency of share function within a temporal interval:
a high frequency within a temporal interval is an indicator of a hot and impor-
tant news
4: Evaluate the number of comments of the post
5: Evaluate the number of private messages exchanged with the poster.
6: Evaluate keywords, labels match
7: Evaluate if the poster belongs to a shared group and the activities on that
group
8: Evaluate the freshness of a document/article/post

Altogether with those two parameters the notion of distance between users is

4 Projects Descriptions

also taken into account. The close contacts have more in�uence while the other
see a reduction of their in�uence. The way it can be done is still a point to
discuss. The aim of those algorithms is to embedded the notion of trust and
evaluate his value as precisely as possible.

1.2 Master Project Description

The objective of this project is not to implement the Polidoxa tool, it is beyond
a master work and would be premature considering early stage of the project.
Nevertheless the central principle of trustworthiness of a source developed in
Polidoxa is the object of this thesis. Indeed in order to illustrate how the con-
cept of trust can be introduce in the scope of social networks a running prototype
is developed and tested in this thesis.
The implemented application is based on a chosen social network which is the
object of an upcoming chapter. Once this choice is done the prototype is de-
signed to introduce the notion of trust in source. As for Polidoxa two type of
trust are introduced to involve the user in the process : static and dynamic ones.

The static one is chosen directly by the user. Each user which has friends on the
selected network must be able to grant them a trust value based on their own
judgment. The second type is dynamic in the sense that it should evolve accord-
ing to the activity of the user on the network. For instance giving extra trust
to users for whom you have done many `like` action or other interactions that
characterize user interest for one particular source. The way those information
are collected partly depends of course on the type of the network.

These trust parameters introduced are then useful to help user in his searching
information process. This is done in the application by integrating trust pa-
rameters into a search engine. The search engine enable the user to search into
his friends documents posted on the social network. Those other account are
regarded as the sources of information that are more or less reliable. Thus the
result given by the search engine and display to the user will favorite document
provided by trustworthy friends (i.e have high trust value). To sum up (the
requirements are incremental) :

• Messages are visualized/ranked/ordered according to static trust values of
users' network

• Adding of swarm intelligence for dynamic trust : evolution of the trust
based on follower's activity on the network

1.2 Master Project Description 5

• Introduction of more complex mechanism for trust evolution such as hastags
association

So the project aims to illustrate the possibility of integrate trust concept in a
social network and use it while searching information.

6 Projects Descriptions

Chapter 2

Requirements

After a rough description of the project and in order to make proper imple-
mentation choices it is necessary to have a clear idea of what are the functional
requirements. The requirements are what is expected to be accomplish by the
application in interaction with external actors. For this project actors are the
user who is the application subscriber and the administrator which is an user
with special access rights. They must be able to perform actions describe in
this section.

2.1 Overview Use Case Diagram

According to the project description given in the previous chapter the actions
that must perform the application are represented in this use case diagram :

8 Requirements

Figure 2.1: Overview use case

This diagram contains following action :

User Actions

• Register Into Application : An non loged-in person can register to use
the application and become an user. So as to do that he has to get a valid

2.1 Overview Use Case Diagram 9

social network account which is used to authenticate each person during
the registration process. For more details the use case is the following :

� Description : The user register himself to use the application

� Actor : User

� Preconditions : User has a valid social network account

� Main Scenario :

1. User Identify himself using his social network account

2. User Fill out the registration form and post it

3. User receive con�rmation email with validation link

4. User validate his account

� Alternative Scenario :

2.1 The Social network account is not valid

2.1.1 The user is notify

2.1.2 The registration process is stopped

3.1 The Social network account is already used

3.1.1 The user is notify

3.1.2 The registration process is stopped

4.1 The Registration is not validate

4.1.1 The user account is removed after some time

• Login into application : user log-in using credentials. It includes the
possibility for the user to recover his password if it was lost.

• Show and Edit Pro�le : Each user has access to his pro�le and can
modify some parameters as email address or name.

• Change Password : A login user can change his password whenever he
wants by entering his old one.

• Change Static Trust : As specify in the project description users have
a static trust value associate to each of their friend. This value can be
modi�ed.

• Search into Friend Documents : The user can use search engine to
perform keyword search on his friends documents. The documents are the
ones posted by friends on the social network. Each search result ,if some,
is displayed ordered following friends trust.

• Edit Search Parameters : The search action previously described is
done according to some parameters which can be modi�ed. The way the
trust is calculated can be changed from static to dynamic (including user

10 Requirements

network interactions). The time range on which the searching is done
can be chosen. Eventually amongst all user friends it must be possible to
restrict the search to only some of them.

Admin Actions

• Show logs : The administrator should be able to see logs of tasks running
in background.

• Modify dynamic trust parameters : The dynamic trust is calculated
using a formula with coe�cients. The application administrator must have
the possibility to freely modify coe�cient values.

• Modify Number of documents stored per user : If some documents
must be store then the administrator should be able to set their quantity
to limit database size.

Altogether with those functional requirement some non-functional can be in-
cluded : The application should be intuitive and do not require any installation
process for people who want to use it.

Chapter 3

Social Network Choice

According to both description and requirement the thesis is based on a social
network. The choice of this network in�uences the design part and therefore
must be done carefully. In this chapter the selected network and the reasons
that lead to this choice are detailed. In the last part a speci�c consequence of
this choice on the nature of the application prototype is discussed.

3.1 Motivations

Currently there exists many di�erent kind of social networks on the Internet.
The two most popular of them are Facebook and Twitter but many others
exists such as LinkedIn, MySpace, Google Plus+, Ning etc. The application
developped in this project has to be based on one of those networks, so it is
important to know which one would be the best choice for a search engine
implementation.

The comparison between those networks is made taking into account both tech-
nical criterias such as provided programming interface (API) limits, content
structures and non-technical such as the number of active users which implies
more interaction between users and so better data collection by the application.
To achieve this objective pro an cons arguments for each of those social networks

12 Social Network Choice

have been listed so as to eventually choose the one that would best �t project
requirements. In order to avoid overloading this section, the comparison will
focus on three chosen examples. The �rst two are the most popular (Facebook
and Twitter) since it enables to reach more people active on these networks
and have quite well developed and documented API to access users data which
are two crucial points. The last one is a maybe less known alternative network
called Ning.

Facebook :

• Pro :

� Most Popular of the networks (over 900 million active users).

� Well documented client libraries to request twitter have available in
various languages

� Not very strict restriction on number of API calls (around 600 calls/600
sec)

• Cons :

� Search API limited to two weeks back

� Retrieve posts using Facebook Query Language is limited. Basically
it is only possible to retrieve data that are displayed to the user by
consulting their friends pro�le and clicking on the "get older infor-
mation".

� Information is contained into heterogeneous elements (post, com-
ment, messages...) and many of them contain only images.

� Facebook is not recent so it is more di�cult to be innovative

Twitter :

• Pro :

� On track for 250 millions active users at the end of 2012

� Quite new so more possibilities of innovation

� Available client libraries to request twitter in various languages

� Relatively uniform and light documents (tweets of up to 140 charac-
ters)

� Tweets messages contain tags and mentions that could be useful for
data mining

3.1 Motivations 13

� Essentially written information

• Cons :

� Twitter REST API limit number request per identi�ed user per hour
by around 350.

� Number or results return per call is often limited (no more than 200
result)

� Regarding the search API provided it is limited to the previous 6-9
days

� Timeline retrieve for each user is limited to 3200 tweets

� Provided API is often changing so need to keep up to date.

� Site Streaming still in beta version with restricted access

Ning :

• Pro :

� No explicit restriction on the number of call that can be addressed
(however it still exists)

� Less user than its competitors but still 32 million users of the 1.5
million Ning-built social networks.

• Cons :

� No so well documented client libraries as most popular networks

� Documentation speci�es that only "recent" posts are return.

� Information is contained into various element in which some are only
picture.

Conclusion :

The comparison between social networks to �t the project requirements puts
forward several relevant points. First most of them provide API to search trough
all documents exchanged between user, however due to the amount of data it
is quite limited in time. Therefore it is di�cult to use such API to search into
friends' documents for this project.
The second major restriction common to all networks is related to the restriction
on the number of call that can be addressed using API. Even if this limit is
not the same for each it leads to a common problem of retrieving data while
avoiding overload. To workaround this problem few social network as Facebook

14 Social Network Choice

or Twitter (in beta version) provides streaming API that enable developer to
open permanent stream to collect information.
The last point is related to the structure of exchanged data. On one side in �
traditional social networks � such as facebook the exchanged datas are composed
by various elements such as comment, post, messages, photos. On the other
side twitter users exchange homogeneously formated documents : tweets mainly
composed of text even if it is possible to attach photos or videos.
So it seems obvious that getting information on user activities and data mining
would be easier using such network as twitter because of both the nature of data
exchanged and the exchange rate which is generally higher than with other form
of network either personal (twitter, ning..) or professional (LinkedIn..). To sum
up the choice has been done in favor of twitter for the following reasons :

• Formated and textual data exchanged are easier to retrieve, store and
analyze. Moreover tweets contain special tags that could be use for data
mining.

• Numerous active users

• Relatively new network so open for innovations

• Well documented API and libraries available in various programming lan-
guages

• Higher exchange rate than other networks

• Many news are exchanged on this network (see section 3.2.5)

Now that the choice is done the following section investigates in greater detail
Twitter.

3.2 Twitter

3.2.1 Overview

Twitter is an on-line social networking service and micro-blogging service that
enables its users to exchange text-based messages known as "tweets". It was
created only six years ago (March 2006). This web service is now very popular
with over 500 million active users in 2012 which exchange around 340 million
tweets daily. Unregistered users can read tweets whereas registered users can
also post new ones. Some statistics on the twitter usage have been published

3.2 Twitter 15

and notably by sysomos company[6] in which they analyzed data of 11.5 mil-
lion Twitters accounts. It underlines some point that can be relevant for the
application :

• 85.3 % of all Twitter users post less than one update/day

• 21 % of users have never posted a Tweet

• 93.6 % of users have less than 100 followers, while 92.4 % follow less than
100 people

Those information are interesting in the scope of our application. The fact that
most people have less than 100 friends and each of them post around 1 tweet
per day means that the application should not have to handle too much tra�c
per user.

3.2.2 Vocabulary

Twitter has a special vocabulary to nominate elements that are o�ered by the
service. These elements will appear all along this report so it is necessary to
describe them for those who are not familiar with this jargon.

• A tweet is a text based message exchanged between twitter users. In
contains up to 140 characters.

• A hashtag is a word or phrase contained in a tweet and pre�xed with the
symbol #.

• A mention is a twitter username contained in a tweet pre�xed with the
symbol @.

• A friday follow is the combination of the hash tag #� with mentions. It
is used every friday by user to suggest people to follow (those indicate by
the mention). Ex: #� @antoinecahmot

• The Home Timeline is the one user see when they login to twitter.com.
This is the place user receive most recent statuses posted by the authen-
ticating user and the users they follow. The most recent tweets appear at
the top.

16 Social Network Choice

Figure 3.1: Home Timeline

• A follower is another Twitter user who has followed you. To follow some-
one on Twitter is to subscribe to their tweets or updates.

• A friend on twitter can have several de�nitions. In this project users'
friends are the people you follow. A more restrictive de�nition could im-
pose that users have to follow each other which is not the case here.

3.2.3 Application Registration

To develop a twitter application it has to be �rst registered with Twitter. Indeed
before developing any application it is necessary to get a production URL. The
process begin by opening the link to the developers website (http://twitter.
com/apps) and click the Register a new application link. Once the registration
process is terminated consumer key and consumer secret are generated. These
unique credential are necessary for the application to interact with Twitter.
Thus they are a �xed parameters for the application.

http://twitter.com/apps
http://twitter.com/apps

3.2 Twitter 17

Figure 3.2: Application Registration Page

What is interesting to notice are the callback URL and the access type. The
callback URL must be the production address of the web application. During
the authentication process it is also used to redirect user after success. Access
type de�nes operations that the application needs to do (read and/or write).
For project purpose the read only access type is enough.

3.2.4 Existing Twitter Applications

Many applications have been developed since twitter provides API to access
data. It is di�cult and not relevant to describe all existing ones. Thus the focus
is done on applications which aim is to search through tweets like the project
application. This list is not exhaustive and introduce most popular examples :

• SnapBird SnapBird.org is an application that enables to search either
in someone timeline, friend's tweets, someone favorites, and some other
possibilities. This application is based on twitter REST API, thus this
search is restricted by the API limit (3200 tweets). It display tweets order
by time. The interface is easy to use and the access is free.

• Topsy Using Topsy.com's free Advanced Search, it is possible to search
in an user tweets and subscribe to the results via RSS. The display results
can be broken up into past hour, past week, past mount or all time. It
is also limited by the API to the last 3200 tweets. But it is not only for
twitter, indeed it is possible to search through Google plus. Moreover the

18 Social Network Choice

video and photos associated with tweets can be search within the entire
web.

• SocialSearching SocialSearching is designed for both Twitter and Face-
book. This application has a simple interface where user can enter the
account on which perform the keywords search.

• ThinkUp This tool capture all the user activity on an user network and
register them in a database. Then all information are display to the user
in various way (graphics, maps). It has a search function that enable the
user to search into his tweets, they are ordered by created time. This
application is restricted for experts since it has to be install on a web
server together with mysql.

So as one can see they are already di�erent applications that are available for
searching. However most of them are limited to the last 3200 tweets back in
time. ThinkUp is di�erent since it registers your own tweets in a local mysql
database but require user to do quite heavy installation. Moreover none of them
embed the notion of trust or use the network activity of the user to make more
than just a simple keyword search ordered by date.

3.2.5 Twitter as a news media

Twitter is a micro-blogging service which is regarded as a social network but
can it also be considered as a news media ?. This is the discussion of the paper
entitled What is twitter, a Social Network or a News Media ? [12]. In this
document the entire Twitter site has been crawled to obtain millions of user
data. By analyzing twitter space they underlines some point that are relevant
in the scope of this application. Indeed the Polidoxa project is made for people
to search news on the web while basing trust on social network. So a legitimate
question is to know if twitter is more than a social network or even further if
twitter is more a news media than a social network. The answer to this question
gives also an hint on the nature of the developped prototype. Is it a tool to only
search within friends' personal tweets or an e�cient mean to access news ?

According to the previously mentionned paper the twitter trending topics are
in majority (over 85%) headline news or persistent news in nature. Moreover
a close look at the reciprocity in twitter shows thats 67.6% of users are not
followed by any of their followings in Twitter. So one can conjecture that these
users regard twitter rather as an information source than a social network site.
Another characteristic describe in this paper is the degree of separation which
is the average length to connect any two people. According to the study it is

3.2 Twitter 19

around 4 which is quite short for such a big network as Twitter. This could bear
out the idea of Twitter's network other than only social network. An idea on
how the information is spread on twitter network is also available. The retweet
mechanism introduced by twitter seems to play a prominent part. Thanks
to retweet mechanism users can spread an information of their choice , which
gives the power of individual user to dictate which information is important.
Regardless the number of followers a user has, once tweets starts spreading via
retweets they are expected to reach a certain number of audience. Thus it can
be regarded as the rise of a collective intelligence that solves the problem of
traditional media dictating the headlines. The user is involved in the process in
a sense that you can choose to broadcast what is really important for you. In
conclusion all these aspects underlines that it is not senseless to see twitter as
a new news media.

Therefore an application for searching through his friends tweets is also a quick
mean for users to �nd some fresh news likely to interest them. It gives an
hint on the interest of a tool that could facilitate the search by putting forward
trustworthy news that have been relayed by your friends or directly created by
a news account that the user follow.

20 Social Network Choice

Chapter 4

Database Design

4.1 Requirements

In order to ful�ll application requirements a database is obviously necessary. To
design database schema correctly this section describes the data that should be
stored :

- Each person who want to use the application need to register using his/her
twitter account. This implies to get a table containing each user and containing
information to identify the associated twitter account (twitter id, twitter user-
name). Moreover each user friend (twitter accounts follow by the user) must be
stored.

- One of the requirements is to be able to search within friends' tweets. Un-
fortunately the provided twitter search API. imposes quite strict limitations on
how long back in time it is possible to perform searching. This restriction is not
suitable for this application if the objective is to get a quite large data set for
each user. So as to overcome this limit the choice of storing user friends tweets
in the database has been made. This implies that a table should contains tweets
associated to their sender.

- The possibility of choosing a static trust associated to his/her friend has to be

22 Database Design

integrate to the database schema. It is easily done by created a one to many
association with attribute between users.

- The dynamic trust calculation requires user activities to be tracked. Those
activities are relevant in terms of how user perceive his/her friends. For instance
if an user follows a newspaper account on twitter and regularly retweets news
delivered by this friend then it is an indication that show that he/she trusts this
source. The activities that have been chosen to be monitored and stored are the
following : retweet, favorite, mention and friday follow.

- Besides application requirement some other table are necessary to ensure app-
plication running according to choices made in terms of technology. That is
why one table is necessary to contain cron tasks that are executed. Another one
is devoted to sphinx and eventually a cache table to store rough tweets. The
reasons of those choices are detailed in the next chapters.

4.2 Physical Database

Following requirement the database schema created is the following :

4.2 Physical Database 23

Figure 4.1: Database Schema

This is composed of the following tables :

• User : This table contains the application users together with their twitter
friends. It is composed of the following rows :

� username, cononical_username, email, password : Those information
are provided by the user when he �lls the registration form to use
the application.

� twitter_username, twitter_name, twitter_id, pro�le_image_url :
Those information are collected during the registration process when
the user is identi�ed with his twitter account. The twitter id is unique
so an user can only be register one time with the same twitter account

� last_hometimeline_id, last_retweeted_id : Those two ids are used
to remember last data retrieve from twitter. It is usefull for cron jobs
to avoid useless call.

� enable : This boolean is used to check that the user con�rmed his
inscription by email

24 Database Design

� expires_date : The date when the user will be removed from the
system. The user can be removed because he didn't con�rm his ap-
plication subscription, he has been inactive for too long or he revoked
the application.

� populated : This boolean is used when an user is created. The value
changed from 0 to 1 when �rst 3200 tweets are recovered from twitter
and stored in the database. It enables to pre-populate database with
tweets sent by this user.

• FriendShip : This table contains friendship relations between two users.
This enables to store one to many relations between the users contained
in the database. The trust attribute represents the static trust granted by
an user to his friend.

• Tweets : This table contains users tweets retrieved from twitter.The
information stored are voluntarily minimized to keep only what is really
necessary for the application and prevent database from being overloaded.
It is composed of the following columns :

� sender : It contains the id uniquely identifying the user who sent this
tweet and thus is its owner.

� twitter_id : This big integer is a unique number given to identify
each tweet and prevent duplicate data.

� tweet_content : Textual content of the tweet, it can contains up to
140 char.

� created_at : Creation date of the tweet.

• Retweet : Table containing retweets associated to each friendship rela-
tion.

� friendship_id : Foreign key references the friendship associated to
the retweet.

� created_at : Creation date of the retweet

• Favorite : Table containing favorites associated to each friendship rela-
tion.

� friendship_id : Foreign key references the friendship associated to
the favorite.

� created_at : Creation date of the favored tweet

• Mention : Table containing mentions associated to each friendship rela-
tion.

� friendship_id : Foreign key references the friendship associated to
the mention.

4.2 Physical Database 25

� created_at : Creation date of the tweet containing the mention

• Friday Follow : Table containing friday follows associated to each friend-
ship relation.

� friendship_id : Foreign key references the friendship associated to
the friday follow.

� created_at : Creation date of the tweet containing the friday follow

• Application : Table containing only one row with some application pa-
rameters i.e the coe�cients used to compute dynamic trust and the number
of tweets to store per user.

• Queue : Table containing tasks to be executed by the cron

� period : De�ne the execution period of the corresponding task by the
cron

� next_release_time : The next date when the task can be executed

� processing : boolean variable used to lock the task and avoid multiple
instance running at the same time

� completed : Indicate if the task is completed or should be executed
again by the cron

� created_by : Identify the user that created this task. It is used to
restart completed tasks.

• sph_counter : This table is necessary for the sphinx search engine. This
component is evoked in the front-end chapter.

The relational database management system used in this project is mysql and
the storage engine is InnoDB.

26 Database Design

Chapter 5

Back-end

To ful�ll overall requirements the application needs to collect, process and store
information from twitter. This is basically what is done by the application
and which is not visible by the user. That is why those functions have been
grouped in a piece called Back-end. Di�erent aspects and challenges regarding
the implementation of such processes are discussed in this section.

5.1 Requirements

Before exposing the implemented solutions it is necessary to clarify which are
the requirement speci�c to this part based on the global ones.
First, as the main function o�ered by the application is to be able for the user
to search through its friends tweets it is necessary to get the list of friends for
each user together with a piece of information on them (names, pro�le image...)
an then of course obtain their tweets content to perform searching on it.
Regarding the second aspect of the application which is the analyze of the
interactions between the user and its friends to provide dynamic trust, extra
collects are necessary : favorites and retweets. For more advance analyze of
user activity data mining on tweets content is also expected.
Eventually the database need to be cleaned by removing inactive user or checking

28 Back-end

validity of stored credentials for instance. Altogether the requirements are the
following :

• Retrieve friends tweets

• Register Application users with associated data (tokens,username,..)

• Collect information on twitter user friends (names,twitter id ..)

• Collect and process data on user network activity (retweets,favorites)

• Perform some data mining on tweets.

• Clean database (remove users,check tokens validity...)

5.2 Data Collection

5.2.1 Twitter REST API

So as to perform search within tweets posted by friends the �rst option would be
to use the provided twitter search API. However according to the documentation
The Search API is not complete index of all Tweets, but instead an index of
recent Tweets. At the moment that index includes between 6-9 days of Tweets.
It means that with such tool it is impossible to search within a large number
of tweets or period which is quite restrictive. To workaround this problem the
chosen solution is to use a local storage.
A MYSQL database setup on the server is feed with friends user tweets, so the
limitation is transfered from twitter to the database storage capacity.
This database is �lled by resources gained from twitter using one of the two
existing API :

• The REST API enable to periodically query twitter databases.

• The Site Streaming API which open a permanent data stream with each
user.

The second solution would be the more practical because it does not su�er from
limitations and is a real time solution. However the site streaming API is still in
beta version an therefore its usage is limited and requires special authorizations.
So the �rst option has been chosen and implemented in this project.

5.2 Data Collection 29

The REST service is available by sending GET requests containing parameters.
In response JSON data are returned. Moreover to perform twitter calls several
client libraries are available in various languages. The one chosen for this project
is Twitter-async written in PHP.
Numerous resources are o�ered to the developers. Amongst them the ones useful
for the project have been selected and listed as following :

• GET statuses/home_timeline : Returns the most recent statuses,
posted by the authenticating user and the users they follow

• GET statuses/retweeted_by_me : Returns the most recent retweets
posted by the authenticating user.

• GET statuses/user_timeline : Returns the most recent statuses posted
by the authenticating user

• GET friends/ids : Returns an array of numeric IDs for every user the
speci�ed user is following.

• GET users/lookup : Return up to 100 users worth of extended infor-
mation, speci�ed by either ID, screen name, or combination of the two

• GET favorites : Returns the 20 most recent favorite statuses for the
authenticating or speci�ed

• GET account/verify_credentials : Returns an HTTP 200 OK re-
sponse code and a representation of the requesting user if authentication
was successful; returns a 401 status code and an error message if not

Each of those request return formated JSON object as the extract below :

{

``name'' : ``Matt Harris'',

``id_str'':``777925'',

``followers_count'':1025,

``profile_background_tile'':false

...

}

It contains high quantity of information which need to be �lter to keep only
relevant ones. It is also possible for the request to fail, in such case an error
code is return. Those previous function are partly implemented by the Twitter-
RestApi class which is used as interface between the external library and the
rest of components :

30 Back-end

This class is in charge of making successive GET
requests to retrieve information from twitter. In
case it fails the exception is caught and the error
logged in a �le. It doesn't prevent the execution
from continuing and perform other calls. The di�er-
ent methods return arrays build by parsing JSON
format.

5.2.2 Task Queue

The major issue using REST API is to stay below the limit imposed by twitter
of 150 request per non identi�ed user or 350 for an identi�ed one (i.e using
identi�cation tokens). To keep control on the number of request an e�cient
stategy is necessary. First the identi�cation tokens speci�c to each user need to
be stored in the database during the registration process. This way they can
be reused later to identify the user making the call to twitter and give him an
higher credit. Secondly, as the limitations are made based on a period of one
hour, a good practical to optimize the given credit is to spread requests over
this period. This is done using periodic tasks and choosing appropriate period
to avoid overloading. This solution has been implemented by combining a cron
table together with a task queue represented as a table in the database.

This queue table contains for each task the name
of the associated scripts together with a list of in-
formation necessary to their executions. Thus for
each run of the cron task ready to be executed in
the table are identi�ed and started. This �ow is
detailed in the following section.

5.2.3 Cron Tasks executions

As mention in the previous section each cron task is created by adding a row
in the queue table. Once this is done a cron will periodically execute a script
which perform actions represented in the following activity diagram :

5.2 Data Collection 31

Figure 5.1: cron Activity

First the pending task are selected from the queue table. A task is considering
as pending when it is ready to be executed which means that it is in an idle
state and its next release time is greater or equal to the current time. To check
that a process is in an idle state two boolean are used. The �rst one processing
enable to lock the task when its is currently executed by one process, it prevents
the same task to have several instances running at the ame time. The second
variable completed is set to 1 when the task is �nished. So a task is ready if

32 Back-end

those two columns processing and completed are both 0.
Then if some tasks have been selected they are locked (i.e processing equal to
one) before being executed in parallel. The PHP script fork the main process
into as many child processes as it is necessary. They are executed independently
because they can have very various execution time. Some of the task are them-
selves forked again to reduce waiting time during twitter call (This point is
discussed further in a next section).
Once one task �nishs its execution two case are possible. Either the task is com-
pleted which means that its doesn't need to be executed again in the future.
This is for instance the case of the script in charge of populated friends with
�rst 3200 tweets. In this case the task is marked as completed (i.e completed
equal to 1) and the execution terminate.
Otherwise the task is not completed which is the case of the ones that should
run periodically forever. In such case the next release time is calculated using
the period column value and the processing value is reset.

5.2.4 Cron Tasks Details

In the previous section the tasks execution strategy by the cron have been
presented. This part focuses on the task content and the design of the php
classes associated. Indeed the �rst part deals with the functional description of
the scripts associated to each tasks before entering into more technical discussion
in the second part.

5.2.4.1 Description

The tasks that must be executed by the application can be divided into two
group : the one twhere tasks have to be executed one or several times before
completion and the one with periodic tasks that are executed inde�nitely.
The �rst group is composed of :

• SetupUserAccountTask : This task is executed one time right after
the registration of a new user. It �rst recovers user's friends information
from twitter to created relationships in the database. Then it executes
in parallel the following actions. Populate the database with �rst tweets
from the user home timeline and retrieve both retweets and favorites from
twitter. Eventually another task called RetrieveUTTask associated to the
newly created user is inserted in the queue.

5.2 Data Collection 33

• RetrieveUTTask : This job generated by the previous one is executed
one time per hour until completion. It is associated to one user and is in
charge of pre-populate friends with the maximum number of tweets it is
possible to get (i.e 3200). Since each friends required until 16 requests the
number of friends pre-populated for each run is limited to around 10 to
respect the API quota. The task is completed when all friends have been
populated.

The second group is composed of :

• RetrieveRTTask : This job is in charged to periodically request new
retweets made by the application users. For each of them identi�cation
tokens contained in the database are used to ask twitter retweets made
from the last_retweeted_id of the user. If some are return then they are
stored in the cache table and the last_retweeted_id is updated for the
next execution.

• RetrieveHTTask : This job is in charge to periodically request users
plus friends new tweets. For each of them identi�cation tokens con-
tained in the database are used to ask twitter tweets made from the
last_home_timeline_id of the user. If some are return then they are
stored in the cache table and the last_home_timeline_id is updated for
the next execution.

• RetrieveFVTask : This job request application users favorites. The user
favorites contained in the database are updated with the new ones.

• RetrieveNTTask : The goal of this script is to update user friendships to
keep database synchronized with twitter. Indeed the relationships created
during the user registration can evolve. For instance if a new friend is
added on the twitter account it must be re�ected in the application.

• DatabaseCheckOutTask : This task is executed only one or two time
per day. It is is charge of various things. Firstly removing expired users
from the system by correctly cleaning all associated tables in the database.
Secondly checking if the access rights were revoked by an user (it is possible
for each user to revoke access to his twitter account) or if the user was
inactive for more than one year. In both case a email is send to notify
him that his account will be removed within one day if he doesn't log in
the application before. Moreover the retweets, mentions and friday follow
older than one year are removed from the data tables.

34 Back-end

5.2.4.2 Database Access Class Diagram

As it is mentioned in the above tasks description each of them needs to interact
with the mysql database. So as to facilitate this the DAO Pattern have been
implemented using following classes :

Figure 5.2: DAO class diagram

The data access object (DAO) is an abstract interface to database, providing
some speci�c operations without exposing details of the database. These op-
erations are the methods of class whose names have DAO pre�x in the above
schema. This isolation separates data the application has to access and data
types from how these needs are be satis�ed with the database schema. Thus
those DAO classes make all SQL request necessary to perform operations on
the database, in case of failure of one request the error in reported in a speci�c
Mysql log �le.

5.2 Data Collection 35

5.2.4.3 Cron Tasks Class Diagram

The DAO describe previously is speci�cally useful for classes representing the
di�erent tasks described in the �rst part. Altogether those elements can be
represented as follows :

Figure 5.3: DAO class diagram

In the �gure above is represented the CronTask which is associate to both the
TwitterRestAPI and DAOFactory classes which realize the interface between
respectively twitter and mysql. This abstract class contains an execute method
which is rede�ned by each of its inheritors. This method is the one which launchs
each task execution from the TaskQueue class. A instance of this class is indeed
used by the script started each minutes by the cron. This instance simply
executes the executeQueueTasks method witch run all queue tasks following the
activity diagram presented in the Cron Tasks execution section 5.2.3.

5.2.5 Performance issue and parallel execution

Since the tweets are retrieved by querying periodically twitter, the application
will not be real time. The user will experience a delay between the time a tweet
is send and the time when it is actually taken into account by the application.
This delay is directly related to the frequency with which task are executed.

36 Back-end

This is especially critical with RetrieveHTTask which is supposed to recover
user and friends tweets. So it is important to launch it with quite small period.
However each execution of this task consume twitter calls which are limited to
350. That is why it has been decided to use a period of 5 minutes. Knowing that
the maximum number of request per execution per user is 4, it gives a number
of request up to 48 (12*4) for one hour. It leaves more than 300 request for
other jobs which is enough. However this reduction of the period raises another
issue which is the following : the execution time of the task must not exceed his
period. This is not a problem for a single user but becomes an issue when their
number increase. Indeed assuming that the elapse time between the sending of
the request to twitter and the response reception is at most of 2 second (time
measured with php) then for 4 calls it leads to at most 8 second of time exe-
cution. This calculation is independant of the material used and implies that
in a sequential process RetrieveHTTask can be executed for at most 37 users
(60*5/8) to keep below 5 minutes.
The solution chosen to overcome this problem is to execute some process con-
currently within task that needs higher execution speed. This is represented
with the following petri-net :

5.2 Data Collection 37

Figure 5.4: Petri net diagram

Instead of making complete sequential call to twitter as represented on the
left side of the picture, it is transformed in a mixed architecture. The list of
application users is divided in several chunks. Each chunk sequence is then
executed in parallel. Moreover so as to limit the number of connection with the
database the connection is open at the beginning and then shared between each
process. This behavior is not handle by mysql so it is necessary to introduce
an element to prevent errors that can occur when two process perform database
operations at the same time. This element is a semaphore, it will prevent
several processes to access database resource at the same time. It introduces a

38 Back-end

delay when the process waits for the semaphore, however the database operation
performed on cache table are minimal and really fast so it can be neglected
compare to the time require to request twitter.

5.3 Data Processing

In the previous section the way twitter API is used to perform a bunch of
cron tasks that recover critical information was detailed. This collect is done
independently of the processing according to twitter recommendation. It enables
to avoid bottleneck problem in case data processing is time consuming. This is
precisely this data treatment which is discussed in this part.

5.3.1 Daemon

As described in the cron section the raw tweets are stored in mysql cache table
by the di�erent tasks. Then they are retrieve and treated before the insertion
in the �nal database as represented in the following �gure :

Figure 5.5: Data collect and process

5.4 Conclusion 39

A daemon is in charge of the data processing. This daemon is started by the
cron and runs forever. This process retrieve raw tweets that have been collected
in the tweet cache table. So these tweets are available for the extraction of
interesting data which are then formated accorded to database schema to be
inserted in corresponding tables.
So daemon job consists of :

• Keeping only essentials information inside tweets (sender,content,date)
and discard all other to reduced size to store.

• Analyze if a given tweet is a retweet. In such case the identity of the mes-
sage sender and the one who retweeted it are retrieve and this information
is used to feed the retweet table.

• Analyze the content if each tweets. If it contains mentions then this is
register in the mention database. A combination of the hashtag #� of
#FF with mentions is also detected. In such case, based on the identity
of sender and receiver a new row is added in the friday_follow table.

So as to clarify the way this is done lets take the example of a retweet. Assuming
that one user A has retweeted a tweet send by one of his friends B. This retweet
will be stored in the cache table by one of the cron tasks.
Once this is done, the daemon process will select this tweet from the cache
table and analyze its data contents (JSON format returned by twitter). Those
data contain a �eld 'retweeted_status' which specify that this tweet is a retweet
and another �eld 'created_at' contains the datatime of this retweet creation .
Apart from that the two other �elds 'retweeted_status' and 'user' identify users
B and A respectively. Knowing those information the daemon will recover the
friendship link between A and B stored in the database and associate a new
retweet to it.

5.4 Conclusion

The back-end implementation ensure the collect of data using twitter API. This
collect is separate from the processing to avoid bottleneck problems and get
more �exibility. On one side the retrieving is done by associating a cron table
with a tasks queue. Moreover most critical tasks are optimized by using forks to
address simultaneous requests to twitter. On the other side collected tweets are
analysed by a deamon. It extracts and formats relevant information following
database schema before they insertion in appropriate tables. Now the model is

40 Back-end

ready and available for intregration in a structure ensuring the interaction with
each user. It is precisely the subject of the next chapter.

Chapter 6

Front-end

Thanks to the back-end the application gets the necessary data model which
constitute its foundation. Now the implementation of the rest of the application
is still lacking. This is the part that must interact with users and thus is called
Front-end.

6.1 Symfony2

The prototype is implemented using the Model View Controller (MVC)
Pattern . This is a oriented object pattern used to dissociate the representation
of information from the interactions users have with it. It is composed of three
distinct parts :

• A model contains the business logic. It provides an interface to manipu-
late and retrieve its state and it can send noti�cations of state changes.

• A view is a visualization of the state of the model. It is responsible only
for rendering the UI elements

• A controller is responsible for interacting between the view and the
model. It takes the user input to change the state of the model.

42 Front-end

In order to build this pattern symfony2 framework is used. This powerful tool
get the following architecture for each project :

Figure 6.1: Symfony2 structure

The represented �ow is the following :
1 - A visitor ask for a page
2 - The front controller catch the request, load the kernel and transmit the url.
3 - The kernel asks the router for the controller to execute the action corre-

6.2 Controllers Structure 43

sponding to the given URL.
4 - The given controller action is executed. The controller can interact with the
model through the data access layer to retrieve
some data. Then those data are used by the view so as to build an HTML page.
5 - The controller return the entire html page to the visitor.

6.2 Controllers Structure

The di�erent controllers integrated in the symfony2 architecture as presented
in the previous chapter are grouped by bundle. A symfony2 bundle is a whole
of �les and directories implementing one or several functionalities. For the
application the functions have been grouped in three bundles as represented
below :

Figure 6.2: Application Bundles

44 Front-end

The AdminBundle is in charge of actions performed by the administrator (see
overview requirements).
The SearchBundle contains functions related to the search engine (search and
modify searching parameters).
The UserBundle is in charge of all that is directly related to user such as regis-
tration process, login, modify pro�le...

Those three bundles need to use external bundles that have been developped
by the symfony2 community. They are represented in the �gure under names
SphinxSearchBundle,BBCCronManagerBundle, MopaBundle, FOSUserBundle
and FOSTwitterBundle.

6.3 User Section

After the focus on the symfony2 structure the di�erent functions and the graph-
ical user interface are presented in the next sections. It was devided into two
parts according to the requirements. The functionnalities designed for the user
and the ones for the administrator. This part focus on what is o�ered to the
users.

6.3.1 User Registration

So as to use the application each user must �rst register using their twitter
account and then �ll a form to complete the operation. Those steps are managed
by one Controller called RegistrationController. This controller will make the
necessary veri�cations and implement the registration �ow represented below :

6.3 User Section 45

Figure 6.3: Authentication process

46 Front-end

The represented �ow is the following :

1. First the user visualize a page where he/she is asked to authenticate using
his twitter account by clicking on the provided link.

Figure 6.4: User Registration start

2. On user click the controller then use the application keys stored in the
paramaters.ini to query oauth tokens from twitter. Once those tokens are
received, they are stored in session variables and used to build a redirection
link. Therefore the user is redirected to authenticate with his twitter
account.

Figure 6.5: Twitter Authentication

3. After successful twitter authentication the oauth token contained in the

6.3 User Section 47

callback URL is compared to the one in session. This is done to check if
the oauth_token in session is an old one. If it is not the case the second
token contained in the URL (oauth_veri�er) is used to get the two �nal
access tokens. Those tokens are speci�c to each couple application-user
and don't change within time so they are store in the database as user
attributes.

4. The second part of the registration starts at this point when the user is
redirected to the registration form. It is composed of four �eld, one for
the username, one for the user email and the last two for the password.
Once �lled it is posted to the controller.

Figure 6.6: User Registration Form

5. It checks that the provided twitter account have not been used by another
user and the correctness of the provided information (email,username and
password). In case of success a validation email is send to the user with a
link to validate is account.

48 Front-end

Figure 6.7: Con�rmation Email

6. After validation the registration is completed and the user can log-in.

6.3.2 Friend Static Trust

One of the requirement is for each user to have a static parameter associ-
ated to each friend that can be modi�ed and represents the trust granted by
the user to this source. This is implemented by the FriendSettingsController.
This is done using AJAX (Asynchronous JavaScript and XML) technology.

Unlike classic web model, with Ajax it
is possible to execute some JavaScript
that send a request to the server. The
server compute it and return the re-
sult to the client. There is no need to
reload the page to display the changes.
This is what is used in the Friend Set-
tings section.

6.3 User Section 49

As shown in the print screen of the Friend Settings section below each user has
access to the list of his friends. For each of them a static trust is displayed, this
trust is a percentage with a default value of 50 %. Using a slider user can easily
enter a new value and save it. This value is in the scope 0-100%.

Figure 6.8: Static Trust Modi�cation

6.3.3 User Pro�le

The next functionality o�ered to users is the possibility to consult his/her pro�le.
The user pro�le section of the web application is displayed as following :

50 Front-end

Figure 6.9: User Pro�le

This pro�le contains a bunch of useful information. Amongst them the user-
name, email and password can be changed. It uses the same principle as for the
static trust change (i.e AJAX requests). The network loading point gives infor-
mation on which number of tweets are available for the user search. It matches
the number of friend tweets stored in the database. The associated percentage
is obtained by divided this value per the max number of tweets that can be
stored in the database (the number of tweets to store per user can be modify
by the administrator).

6.3.4 Tweets Search

In this section is described all that is related to the search section of the appli-
cation.

6.3.4.1 Sphinx Data Indexing

According to the requirements the user can search into its friends tweets. As de-
scribed in back-end section, the tweets for each friends are stored in the database.

6.3 User Section 51

However the databases are of type InnoDB which doesn't currently provide an
e�cient mean to search through text.
Thus to overcome this issue a search engine is used. Many exists but the two
most popular are Sphinx and Lucene. Those two engine are quite similar in
terms of performance but Sphinx unlike Lucene natively supports direct im-
ports from MySQL. So the choice has been made in favor of Sphinx.

The running process is then the following : sphinx index the database table
on which the search must be done and then a client can be used to get indexes
corresponding to a search query. The indexed database table here is tweet which
contains all users' tweets. So as to keep up to date a reindexing need to be done
frequently. When indexing small data-sets, a full reindex can be used. But as
size grows, so does the index, and with it the time it takes to index.

To work around this problem the delta indexing method is used. It consists is
in fact to introduce two indexes. One main index that is design to index all
the tweets in database and a second index called delta containing indexes for
only the tweets that changed since the last main index run. So a full indexing
is done on the main index (containing most of tweets) only one time per day
during the night. Beside that the delta index is rebuild frequently to keep
synchronized with the database. Once that tweets are indexed and sphinx is
correctly parameterized then the service is ready for use. The consuming process
is the following :

1. The search controller sends query to the sphinx service using a php client.

2. The tweet ids corresponding to the result are returned.

3. The tweets are retrieve from the database using given ids.

This process is usually very fast (less than 1 second) which is much better than
any query done on full text . The third point is necessary since sphinx doesn't
store the text content so result return is only composed of tweet ids whereas the
application need the whole content of tweets.

6.3.4.2 Search Principles

Thanks to sphinx it is possible to perform a keywork search function. All the
tweets containing keywords entered by the user are returned. However according
to the overall requirement they need to be ordered to be displayed to the user.
It is here that the embedded trust is taken into account. Indeed so as to order
the tweets two options are available :

52 Front-end

• Ordered By Static Trust : As speci�ed previously in the report each
user assigned a static trust to his friends in the scope 0-100. When this
option is selected the tweets are ordered according to this value �rst. The
sub-ordering is done using sphinx ranking mode
SPH_RANK_PROXIMITY_BM25 which combine proximity and BM25
ranking. This point is discussed longer below. In case those two val-
ues (trust and SPH_RANK_PROXIMITY_BM25 rank) are equal newest
tweets are displayed at the top.

• Ordered By Dynamic Trust : A dynamic trust value is calculated
following the formula explained in the next section. This value correspond
to the static trust value corrected using user activities on the network.
More clearly some user activities on the network such as retweet, favorite
give boost to the static trust because they are indications on how close
two user are. The sub-ordering modes are the same as for the static trust.

6.3.4.3 Dynamic Trust :

The dynamic trust is used to order result using information on the user network
activities. These network activity information have been collected and stored
in the database by the back-end. It corresponds in the database model to the
tables retweets, mentions, favorites and fridayfollow.

The dynamic trust is calculated for each user's friend using the formula:

Dynamic_Trust = Static_Trust+αF ∗Nbr_favorites+αR∗Nbr_retweets+
αM ∗Nbr_mentions+ αFF ∗Nbr_FridayFollows+ αC ∗Results_count

The formula contains the following terms :

• Static_Trust : Value between 0 and 100 freely chosen by each user
representing the trust granted to each friend.

• Nbr_favorites : Number of tweets sent by the friend and favored by
the user. This number is multiply by a coe�cient αF chosen by the ad-
ministrator.

• Nbr_retweets : Number of tweets sent by the friend and retweeted
by the user. This number is multiply by a coe�cient αR chosen by the
administrator.

6.3 User Section 53

• Nbr_mentions : Number of tweets sent by the user containing mentions
referring this friend. This number is multiply by a coe�cient αM chosen
by the administrator.

• Nbr_FridayFollows : Number of tweets sent by the user containing
friday follows referring this friend. This number is multiply by a coe�cient
αFF chosen by the administrator.

• Results_count : Number of tweets belonging to the friend matching
the given search.This number is multiply by a coe�cient αC chosen by
the administrator.

Amongst the previous variable four (Nbr_favorites, Nbr_retweets, Nbr_mentions
and Nbr_FridayFollows) are related to the activity between the user performing
the search and each of his/her friends. The aim is to give more importance to
the people with whom user have more interaction and thus he/she is closer to.
The underlying principle is considering that the closer you are to someone the
more reliable source he/she is.
The last parameter (Results_count) is not speci�c to a `person' but to a re-
search. It correspond to the number of matching documents when a query is
performed.

For instance assuming that user A have a friend B that is a fan of bikes and has
sent many tweets containing #BMW and another friend C that has only few
tweets containing this keyword. It will result on an extra trust granted to friend
B proportional to the number of tweets containing #BMW. This information is
not free and requires to perform two search execution. The �rst one is devoted
to gives the Results_count for each friends by grouping results by sender.

Once this value has been collected the dynamic trust is calculated for the search
request. If a trust value go beyond 100, values are rescaled to keep in a scope
between 0 and 100.

So as to decrease the dynamic trust value, the network activity of each user
are not taking into account if they are older than one year. So if you have less
interaction with some of your friends they will lose trust in favor of others. In
other word if you stop to interact with one of your friends he/she will not be
regarded as a reliable source.

The di�erent coe�cients that appears in the formula can be freely modi�ed by
the administrator. The choice has been made to restrict this possibility to only
this super user to avoid confusing user. Indeed it would be quite di�cult to
understand and adjust coe�cient for lambda person.

54 Front-end

Beside this dynamic trust there is two sub-ordering modes. They play a role in
case two tweets have the same trust.
The �rst sub-ordering is made using Sphinx SPH_RANK_PROXIMITY_BM25
ranking mode. This mode is a combination of phrase proximity and BM_25
calculated as : weight = doc_phrase_weight∗1000+integer(doc_bm25∗999).
The �rst factor doc_phrase_weight is a number of keywords that occurred in
the document in exactly the same order as they did in the query. Here is the
example from the documentation :

- query = one two three, �eld = one and two three �eld_phrase_weight = 2
(because 2-keyword long "two three" sub-phrase matched)

- query = one two three, �eld = one and two and three �eld_phrase_weight =
1 (because single keywords matched but no sub-phrase did)

- query = one two three, �eld = nothing matches at all �eld_phrase_weight =
0

The second factor doc_bm25 depends on frequencies of the matched keywords.
Altogether it gives a quite precise indication on the tweet relevance according
to the query performed. So it is used to sort tweet with the same trust.
The second sub-ordering is by date. If some tweet result have both same trust
and relevance then the most recent are displayed before.

The result of a search is displayed as below to the user :

Figure 6.10: Search Result

6.4 Administrator section 55

The number of results is given at the top just before the list of tweets. This list
is composed of ordered tweets. For each of them the trust is given at the top
right corner. So as to facilitate the loading, a JQuery in�nite scroll mechanism
is used. Only the �rst 50 results are loaded. If the user scroll down then the
next 50 are added and son on until no more results are available.

Moreover search can be parametrized using the parameter search menu :

Figure 6.11: Search parameters

This menu addresses the requirement which imposes that the application users
must be able to change some search parameters as they desire. Indeed one �eld
allow to switch between static and dynamic trust to order tweets. The second
option specify on which time range perform the search.
The last option gives the possibility to restrict the search to only some speci�c
friends.

6.4 Administrator section

The application provides an administrative section that can be access by login
as administrator using correct credentials. It is composed of two parts the �rst
one lets the possibility for administrator to modify some application parameters
:

56 Front-end

Figure 6.12: Application Parameters

The available parameters are the �ve coe�cients used to calculate the dynamic
trust. Moreover the number of tweets stored per user can be changed. The
greater this number is the heavier is the database but the longer back in time a
search will give results.

The other section displayed to the administrator is the cron manager. This
manager is based on an external Bundle BBCCronManager. It represents cron
table as follow :

Figure 6.13: Cron Table UI

6.4 Administrator section 57

For each programmed task it is possible for the user to see task status. In case
of error logs �les can be read.

Figure 6.14: Cron Task details

58 Front-end

6.5 Testing

6.5.1 Deployment

The application developed during this master project is a web application. Thus
a php web server is required together with a mysql database. Moreover Sym-
fony2 framework requires some speci�c characteristics to run :

• PHP version >= 5.3.2

• Sqlite3, JSON, ctype extension must be activate

• The date.timezone parameter must be speci�ed in php.ini

The application has been deployed on a virtual private server (vps). This has
been chosen because the deployment on mutualized hosting is di�cult due to
the necessity to setup sphinx daemon which is most of the time not allowed on
this kind of host. The characteristics are :

• Ubuntu Server 10.04 LTS "Lucid Lynx" - 64 bits

• Hard drive 50 Go

• CPU 1.5 Ghz

Symfony2 is delivered with a script to check the server compatibility (see Sym-
fony2 documentation). After having install all the necessary extensions the
database has to be generated. The generation process is automated thanks to
the symfony2 console. By running the two commands doctrine:database:create
and doctrine:schema:update �force the database and tables are created. This
operation assume of cource that suitable parameters for the given database have
been previously �lled in the symfony2 parameter �le.
The next step is to install sphinx daemon. So the sources are download and
compiled following instructions given on the website. Then the con�guration
�le has to be replaced with the one associated to this project. Before it is done
the sphinx daemon can be started. Regarding the cron setup the following op-
erations are done :
Some task that should run periodically and forever are added in the queue :
DatabaseCheckOutTask with 24 hours period, RetrieveFVTask with 2 hours pe-
riod, RetrieveRTTask with 2 hour period, RetrieveNTTask with 5 hours period
and RetrieveHTTask with 5 minutes period. The given periods have been cho-
sen according to the expected data �ow paying attention to keep below the limit

6.5 Testing 59

of 350 call per hour.
Then the cron table is created using the admin graphical interface. The table
is composed of three tasks :
- one task which is executed each minute and is used to launch queue tasks.
- one task executed each 5 minuted is responsible to start and monitor (restart
if crashed) the daemon.
- one task to index the delta sphinx index each 5 minutes
- one task to index the main phinx index during the night (at 1.55 am)

The last step is to register a new application on twitter developer website and
add generated tokens into symfony parameter �le. Now that it is done the web
application is ready. The administrator should periodically look at the log �les
so as to ensure that everything run properly.

6.5.2 Functional Testing

So as to test the application a twitter account was created :

Figure 6.15: Twitter Account

This account follow 19 other accounts which are regarded as friends. Using this

60 Front-end

account the user follow the registration procedure. According to the require-
ments the user his friends information must be register in the database. So as to
check that it has been correctly done the di�erent databases content are verify
using php myadmin. The user database table contains indeed correct data :

Figure 6.16: User table

As it can be seen on the screen-shot all the users have the same �elds but user
and his friends are di�erentiate by their content. Indeed the friends have most
of their �eld null except those related to the twitter accounts which are the
twitter Ids, twitter usernames, twitter names and twitter pro�le image URLs.
The authenticated users which are those who subscribed for the application (in
this case Antoine Chamot) have extra information relative to the application
account itself (username,email,password...). Altogether with those users the
corresponding relationships have been created and store in the friendship table
:

Figure 6.17: FriendShip table

Those are the one sided relation between the user and its friends. Those rela-
tionships ids are the foreign keys for data in retweet, mentions, favorites and

6.5 Testing 61

friday follow tables as it can be seen here :

Figure 6.18: Retweet table

It has been verify that twitter data corresponding to retweets, favorites, men-
tions and friday follow have been correctly stored. Then together with that, �rst
home timeline statuses are stored. After letting the application running for some
hours all the friends has been pre-populated with their last 3200 tweets (API
limit) and the database contains several tens of thousands tweets corresponding
to all friends and stored in the table :

Figure 6.19: Tweet table

Now that the account his setup correctly. The user change trust value granted
to his friends.

62 Front-end

Figure 6.20: Static trust setup

Once this is done the application is ready for searching. Let's search for example
new on `apple' keyword. The following result appear :

Figure 6.21: Result with static trust

As it can be seen on the screen-shot the results coming from the newspaper
twitter account `ouest-france' are the �rst displayed because the source is con-
sidered are the most reliable by the user itself (55% of trust). Indeed the default
parameter for search is static so the result are ordered according to the static
trust previously modi�ed. But if the user switch to dynamic trust in the search
parameters and make the same search again then the result is di�erent :

6.5 Testing 63

Figure 6.22: Result with dynamic trust

Now the �rst results that appear are the one belonging to `TechCrunch' with
a trust of 56.02 %. This is due to the fact that the twitter account associated
to the user had more interaction with this account and thus has gained extra
trust. So despite the fact that the user gets the impression that `ouest-france' is
more reliable than `TechCrunch' its activities on the network show the contrary.
This is all the interest of such parameter : correct user biased judgement.

64 Front-end

Chapter 7

Future Work

This section lay out possible directions of future work. It proposes improvements
and recalls of issues left open.

During the implementation stage the choice has been made to use twitter rest
API. This was not a deliberate choice but rather a solution in absentia of alter-
native. Indeed such a choice imposes limitations that has been workaround as
better as possible but still exists. The alternative would be to use the streaming
API. Unfortunately this streaming API is still at his beta version. This implies
that is access is restricted and must be granted by twitter. The application for
access has been made during this master, however regarding the time constraint
it was not possible to get positive answer. Thus it is expected that sooner or
later the user site stream API will be release. At that time the cron tasks would
be advantageously replaced by permanent open stream. This has several major
advantages, the application becomes real-time and users doesn't su�er from de-
lays due to cron periods. Moreover high tra�c can be handle easier since there
is no more need to make parallel calls to twitter. By getting rid of limitations
data collection could be extended to include other clues on the proximity be-
tween two users. For instance the direct messages exchanged by the user could
to be included in the dynamic trust formula.

The application has been intentionally restricted in term of functionalities ac-
cording to time given for this thesis. However one can imagine further devel-

66 Future Work

opment so as to extend the prototype step by step. For instance the network
analysis is now limited to the closest friends (i.e those with one degree separa-
tion). Taking into account impact on the database load the prototype could be
extended to one or more degree further. For instance the friends of user friends
can become also source of information with a trust degree reduced. The way
the separation degree between users in�uence the decrease of the trust have to
be investigate. A second step could be to integrate the possibility to access
information on the whole web. For instance users would be allow to mark a
news on the web that they consider as interesting and thus making it available
to their relationships.

Another line of future work may be oriented to improve the formula used to
calculate the dynamic trust. Indeed the formula was created in a test purpose
to include various parameters. However it is not optimize to truly re�ect the
correlation between the user activity and the expected gain in term of trust.
Determine the optimal coe�cient values together with the appropriate formula
would require a study on numerous twitter user account to show the correlation
between their activity for instance favorite a tweets and the quality of informa-
tion given by those sources. The developed application can play a role in this
process. Indeed it is easy to modify the formula used by the application so as
to verify hypothesis.

Chapter 8

Conclusion

Information access has known a revolution with the emergence of the Inter-
net. It o�ers an alternative to traditional media for accessing news. User can
freely choose their agenda by searching subject they are interested in and select
sources. Thus it guarantees diversity of information since Internet with nu-
merous sources is less susceptible to su�er from control than traditional media.
However this abundance requires to get rid of garbage and keep only relevant
news. This process is done by search engine like Google by �ltering step by step
data. This guaranty good quality but is not su�cient to fully trust the receive
documents. This lack of embedded trust is the main issue that Polidoxa intends
to solve.

So as to visualize and test the idea of embedded trust an application prototype
has been conceived implemented and deployed during this master. This appli-
cation is based on one of the main tool that people favor when they search for
news on Internet i.e. a social network. The one selected is twitter which has the
advantage to be more than a simple social network but a e�cient tool to share
news. Following Polidoxa idea the prototype includes trust notion divided into
two parts static and dynamic. The static trust is a value chosen by the user
and can be modi�ed at any time. It provides a way for user to in�uence the
information retrieving. It is also a mean to give a feedback by adjusting value
in case result is not considered satisfactory.

68 Conclusion

The dynamic trust is a parameter recalculate for each search action. It takes
advantage of the activities that user share with his/her closest contact. Indeed
favor or retweet a friend tweets is regarded as a sign of interest not only in
the document itself but also in its source and thus gives it a trust boost. This
mechanism corrects the user judgment that can sometimes be biased by mak-
ing the trust evolved according to facts (retweets,mentions ets) and not only
impression.

This prototype enable to puts forward news via tweets that are regarded as
trustworthy. However this constitute only a �rst step to show the interest of
embedded trust for news searching. Further investigations are required to �nd
optimal way for trust to be calculated.

Appendix A

Source Code of the

Prototype

The current appendix contains the source code of the prototype implemented.

Since it is very large to include in the appendices, the code of the implementation
of the prototype can be found in the CD attached to the report.

It contains an compressed archive composed of two elements. They are the
symfony2 project folder named `TwitterPolidoxa' together with the con�gura-
tion �le for sphinx. This needs to be adapted according to the con�guration of
the web server on which the project is deployed.
Moreover sphinx sources can be download at the address http://sphinxsearch.
com/downloads/.

http://sphinxsearch.com/downloads/
http://sphinxsearch.com/downloads/

70 Source Code of the Prototype

Bibliography

[1] Doctrine 2 documentation. http://docs.doctrine-project.org/en/

latest/index.html. 2012.

[2] Mysql reference manual. http://dev.mysql.com/doc/. 2012.

[3] Symfony documentation book. http://symfony.com/pdf/Symfony_book_
2.0.pdf?v=2. 2012.

[4] Twitter api documentation. https://dev.twitter.com/docs. 2012.

[5] Twitter bootstrap documentation. http://twitter.github.com/

bootstrap/. 2012.

[6] Alex Cheng and Mark Evans. An in-depth look inside the twitter world.
http://www.sysomos.com/insidetwitter/. 2009.

[7] M. Mazzara A. Marra�a L. Biselli L. Chiarabini. Approach of a social
network and a search engine to o�er trustworthy news. 2011.

[8] jQuery Community Experts. Query Cookbook: Solutions and Examples for
jQuery Developers. O'Reilly Media, December 2009.

[9] Kevin Makice. Twitter API: Up and Running. O'Reilly Media, March 2009.

[10] M. Mccombs. Setting the agenda: the mass media and public opinion.
2004.

[11] M. Mazzara A. Marra�a L. Biselli S. De Nicola. Social networks and collec-
tive intelligence for trustworthy news...and how polidoxa �xes the problem.
30 November 2011.

http://docs.doctrine-project.org/en/latest/index.html
http://docs.doctrine-project.org/en/latest/index.html
http://dev.mysql.com/doc/
http://symfony.com/pdf/Symfony_book_2.0.pdf?v=2
http://symfony.com/pdf/Symfony_book_2.0.pdf?v=2
https://dev.twitter.com/docs
http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/
http://www.sysomos.com/insidetwitter/

72 BIBLIOGRAPHY

[12] Haewoon Kwak Changhyun Lee Hosung Park and Sue Moon. What is
twitter, a social network or a news media? pages 591�600, 2010.

	Summary
	Preface
	Acknowledgements
	1 Projects Descriptions
	1.1 Polidoxa Project
	1.1.1 Description
	1.1.2 Algorithm Principle
	1.2 Master Project Description
	2 Requirements
	2.1 Overview Use Case Diagram

	3 Social Network Choice
	3.1 Motivations
	3.2 Twitter
	3.2.1 Overview
	3.2.2 Vocabulary
	3.2.3 Application Registration
	3.2.4 Existing Twitter Applications
	3.2.5 Twitter as a news media
	4 Database Design
	4.1 Requirements
	4.2 Physical Database

	5 Back-end
	5.1 Requirements
	5.2 Data Collection
	5.2.1 Twitter REST API
	5.2.2 Task Queue
	5.2.3 Cron Tasks executions
	5.2.4 Cron Tasks Details
	5.2.5 Performance issue and parallel execution

	5.3 Data Processing
	5.3.1 Daemon

	5.4 Conclusion
	6 Front-end
	6.1 Symfony2
	6.2 Controllers Structure
	6.3 User Section
	6.3.1 User Registration
	6.3.2 Friend Static Trust
	6.3.3 User Profile
	6.3.4 Tweets Search

	6.4 Administrator section
	6.5 Testing
	6.5.1 Deployment
	6.5.2 Functional Testing

	7 Future Work
	8 Conclusion
	A Source Code of the Prototype
	Bibliography

