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support file annotations.
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README

The src directory contains the source code of the l-MMAS and l-MMASib implementations. The included Makefile can be used on Linux/Unix systems on which Lua and pthreads are already available in standard location.

The experiments directory contains several example Lua scripts that have been used to gather experimental data. These can be executed with the stand-alone Lua interpreter, and assume the presense of the implemented simulator executable "aco" in the current working directory.

See Appendix A for detail concerning compilation requirements, graph format, and functions available to Lua scripts to interact with the simulator.






experiments/exp1.lua

if not SetPheromoneValue then
	local data, cycle = io.open("exp1.data", "a"), 0
	local tfname = os and os.tmpname() or "exp1.graph"

	local function iprint(s)
		io.stdout:write(s)
		io.stdout:flush()
	end

	for cycle=1, 100 do
		iprint("Iteration " .. cycle .. ":")
		for n=10, 200, 10 do
			local gf = io.open(tfname, "w")
			gf:write(("%d 1 %s\n0 %d\n0 1 1 1\n"):format(n, (" 2"):rep(n-2), n))
			for i=3,n-1 do
				gf:write("1 1 " .. (i-1) .. " 1\n")
			end
			gf:close()
			
			local h = assert(io.popen("./aco " .. tfname .. " " .. arg[0], "r"), "Cannot run simulator")
			local i = tonumber(h:read("*a"))
			h:close();
			data:write(n .. " " .. i .. "\n")
			iprint(" " .. n)
		end
		print("")
	end
	data:close()
	os.remove(tfname)
	return
end

SetNumThreads(4)

local N = GetGraphSize()

SetPheromoneValue(2, 0, 0)
SetPheromoneValue(2, 1, 1)
for i=3,N-1 do
	SetPheromoneValue(i, i-1, 0)
	SetPheromoneValue(i, 1, 1)
end

SetCallback("OnPathUpdate", function(iter)
	for i=N-1, 2, -1 do
		local dest, w, v = GetReinforcedArcInfo(i)
		if w ~= i - 1 then return end
	end
	print(iter)
	StopSimulation()
end)






experiments/exp2.lua

if not SetPheromoneValue then
	assert((tonumber(arg[1]) or 0) >= 1, "Specify number of ants >= 1 as the first argument")
	assert((tonumber(arg[2]) or 0) > 0, "Specify 1/rho_min")
	local numAnts, rhoMin = tonumber(arg[1]), tonumber(arg[2])
	
	local data, cycle = io.open("exp2.data" .. "-" .. numAnts, "a"), 0
	local tfname = os and os.tmpname() or "exp2.graph"
	local gf = io.open(tfname, "w")
	gf:write("3 1 2\n0 1\n0 0 1 0\n")
	gf:close()

	local function iprint(s)
		io.stdout:write(s)
		io.stdout:flush()
	end
	
	local command = "./aco " .. tfname .. " " .. arg[0] .. " " .. numAnts .. " "
	
	local granularity = tonumber(arg[3]) or 200
	local firstI = math.ceil(1/(rhoMin/granularity))

	for cycle=1,500 do
		iprint("Iteration " .. cycle .. ":")
		for i=firstI, granularity do
			local rhoInv = i == 0 and 1 or ((i*rhoMin)/granularity)
			local h = assert(io.popen(command .. (1/rhoInv), "r"), "Cannot run simulator")
			local fi = tonumber(h:read("*a"))
			h:close();
			data:write(numAnts .. " " .. rhoInv .. " " .. fi .. "\n")
			iprint(" " .. i)
		end
		print("")
	end
	data:close()
	os.remove(tfname)
	return
end

assert(tonumber(arg[3]) and tonumber(arg[4]), "Missing number of ants/evaporation rate");

SetNumThreads(1)
SetNumAnts(tonumber(arg[3]))
SetEvaporationRate(tonumber(arg[4]))

SetPheromoneBounds(0.05)
local cv = 1
SetArcWeight(1, 0, 1 - 2*cv)
SetCallback("OnIteration", 1, function(iter)
	local v = GetPheromoneValue(2, 1)
	if v < 0.1 or v > 0.9 then
		print(iter)
		StopSimulation()
	end
	cv = 1 - cv
	SetArcWeight(1, 0, 1 - 2 * cv)
end)






experiments/exp3.lua

if not SetPheromoneValue then
	local function iprint(s)
		io.stdout:write(s)
		io.stdout:flush()
	end

	assert((tonumber(arg[1]) or 0) >= 1, "Missing number of columns")
	assert((tonumber(arg[2]) or 0) > 0, "Missing number of ants")
	assert((tonumber(arg[3]) or 0) >= 1, "Missing oscillation frequency")
	local k, numAnts, oscPeriod = tonumber(arg[1]), tonumber(arg[2]), tonumber(arg[3])	
	local N, w1 = k * 2 + 1, 1 + (k-1)/k
	
	local rho = 1/(tonumber(arg[5]) or N)
	
	local data, cycle = io.open("exp3.data" .. "-" .. k .. "-" .. numAnts .. "-" .. oscPeriod .. (arg[5] and ("-" .. (1/rho)) or ""), "a"), 0
	local tfname = os and os.tmpname() or "exp3.graph"
	local gf = io.open(tfname, "w")

	gf:write(N .. (" 2"):rep(N - 1) .. "\n0 2 2 " .. w1 .. "\n0 0 1 " .. w1 .. "\n")
	for i=2,k do
		local wi = 1 + (k - i)/k
		gf:write((2*i-3) .. " 0 " .. (2*i) .. " " .. wi .. "\n")
		gf:write((2*i-2) .. " 0 " .. (2*i-1) .. " " .. wi .. "\n")
	end
	gf:close()

	local iterLimit = tonumber(arg[4]) or (math.ceil(8*N^2/oscPeriod)*oscPeriod)
	local command = ("./aco %s %s %d %f %d %d %d"):format(tfname, arg[0], numAnts, rho, oscPeriod, iterLimit, tonumber(arg[6]) or 25)

	for cycle=1,200 do
		iprint("Iteration " .. cycle .. ":")
		local h, lc = assert(io.popen(command, "r"), "Cannot run simulator"), 0
		for l in h:lines() do
			data:write(l:gsub("(%.%S%S%S%S)%S+", "%1") .. "\n")
			lc = lc + 1
			if lc % 250 == 0 then
				iprint(" " .. l:match("%d+"))
			end
		end
		print("")
		h:close()
	end
	data:close()
		
	os.remove(tfname)
	return
end

local numAnts = assert(tonumber(arg[3]), "Missing number of ants")
local rho = assert(tonumber(arg[4]), "Missing evaporation rate")
local oscPeriod = assert(tonumber(arg[5]), "Missing oscillation period")
local iterLimit = assert(tonumber(arg[6]), "Missing maximum number of iterations")
local reportPeriod = assert(tonumber(arg[7] or 25), "Invalid reporting period")

local N = GetGraphSize()
local k = (N-1)/2

SetNumThreads(4)
SetEvaporationRate(rho)
SetNumAnts(numAnts)

local curVariant
local function SetVariant(variant)
	SetArcWeight(1, 0, 2 - 2 * variant)
	SetArcWeight(2, 0, 2 * variant)
	curVariant = variant
end
SetVariant(0)

print("S", N, numAnts, rho, oscPeriod)

local t, w = {}, {}
SetCallback("OnIteration", 1, function(iter)
	if iter % reportPeriod == 0 then
		for i=1,k do
			local a, b, _ = i*2-1, i*2
			t[a], t[b] = GetPheromoneValue(a, b), GetPheromoneValue(b, a)
			_, w[a] = GetReinforcedArcInfo(a)
			_, w[b] = GetReinforcedArcInfo(b)
		end
		print("P", iter, table.concat(t, " "))
		print("W", iter, table.concat(w, " "))
	end
	if iter % oscPeriod == 0 then
		SetVariant(1 - curVariant)
	end
	if iter >= iterLimit then
		StopSimulation()
	end
end)






src/ant.c

#include "graph.h"
#include "ant.h"
#include <string.h>
#include <stdlib.h>

#define MT_GENERATE_CODE_IN_HEADER 0
#define MT_INLINE inline
#include "mtwist-1.1/mtwist.h"

struct AntScratchSpace {
	/* Size of the marks array in this scrach space */
	nodeid maxNodes;
	
	/* Random generator state */
	mt_state randState;
	
	/* Scratch space for storing that a particular node has been visited*/
	unsigned char marks[];
};

/* Selects an outgoing arc from a given source node leading to a node that hasn't been visited before.
   Returns the number of such arcs, and sets *outArc to the selected arc index. */
static inline nodeid select_outgoing_arc(AntColony * state, AntScratchSpace scratch, nodeid source, arcid * outArc) {
	arcid lastArc = state->graph->nodeOffsets[source];
	Arc * arcs = state->graph->arcs;
	nodeid outDegree = 0, head;
	pvalue pheromoneSum = 0, arcPheromone;
	
	for (arcid i = state->graph->nodeOffsets[source-1]; i < lastArc; i++) {
		head = arcs[i].head;
		if (scratch->marks[head] > scratch->marks[0] || arcs[i].weight == INFINITE_LENGTH) continue;
		pheromoneSum += (arcPheromone = arcs[i].pheromone);
		if ( outDegree++ == 0 || mts_drand(&scratch->randState) * pheromoneSum <= arcPheromone) {
			*outArc = i;
		}
	}
	
	return outDegree;
}

void ant_construct_path(AntColony * state, Path * path, AntScratchSpace scratch) {
	nodeid pos = path->nodes[0], pathLength = 0;
	arcid arcIndex;
	unsigned char visited;
	
	if (scratch->marks[0] == 255) memset(scratch->marks, 0, scratch->maxNodes);
	
	path->weight = 0;
	visited = scratch->marks[pos] = scratch->marks[0]+1;
	while (pos != 0) {
		if ( select_outgoing_arc(state, scratch, pos, &arcIndex) ) {
			pos = path->nodes[++pathLength] = state->graph->arcs[arcIndex].head;
			path->weight += state->graph->arcs[arcIndex].weight;
		} else {
			pos = path->nodes[++pathLength] = 0;
			path->weight = INFINITE_LENGTH;
		}
		scratch->marks[pos] = visited;
	}
}

void ant_reinforce_path(AntColony * state, Path * path) {
	nodeid source = path->nodes[0];
	if (source == 0 || source >= state->graph->numNodes) return;
	WeightFunction * g = state->graph;
	nodeid dest = path->nodes[1];
	
	for (arcid arc = g->nodeOffsets[source-1]; arc < g->nodeOffsets[source]; arc++) {
		pvalue v = g->arcs[arc].pheromone * (1 - state->opt.pEvaporation);
		if (g->arcs[arc].head == dest) v += state->opt.pEvaporation;
		if (v < state->opt.pMin) v = state->opt.pMin;
		else if (v > state->opt.pMax) v = state->opt.pMax;
		g->arcs[arc].pheromone = v;
	}
}

AntScratchSpace ant_scratch_space_alloc(nodeid maxNodes) {
	AntScratchSpace ret = calloc(1, sizeof(struct AntScratchSpace) + maxNodes * sizeof(unsigned char));
	if (ret != NULL) ret->maxNodes = maxNodes;
	mts_goodseed(&ret->randState);
	return ret;
}

AntColony * ant_colony_create(nodeid maxNodes, WeightFunction * initialGraph) {
	AntColony * state = calloc(1, sizeof(AntColony));
	Path ** bestPathArray = calloc(maxNodes, sizeof(Path *) + sizeof(Path) + sizeof(nodeid) * maxNodes);
	
	if (state == NULL || bestPathArray == NULL) {
		free(state);
		free(bestPathArray);
		return NULL;
	}

	nodeid maxDegree = 0;
	for (nodeid i = 1; i < initialGraph->numNodes; i++) {
		nodeid outDegree = initialGraph->nodeOffsets[i] - initialGraph->nodeOffsets[i-1];
		if (outDegree > maxDegree) maxDegree = outDegree;
	}
	
	state->maxNodes = maxNodes;
	state->graph = initialGraph;
	state->bestPath = bestPathArray;
	ant_colony_init_paths(state);
	state->opt.numAnts = 1;
	state->opt.numThreads = 1;
	state->opt.keepBestSoFarPaths = 1;
	state->opt.pEvaporation = 1.0/initialGraph->numNodes;
	state->opt.pMin = 1.0/initialGraph->numNodes/maxDegree;
	state->opt.pMax = 1.0 - state->opt.pMin;
	
	return state;
}

void ant_colony_init_paths(AntColony * colony) {
	char * pathBlock = (char*) (colony->bestPath + colony->maxNodes);
	for (nodeid i = 0; i < colony->maxNodes; i++) {
		colony->bestPath[i] = (Path *) (pathBlock + i*(sizeof(Path) + sizeof(nodeid) * colony->maxNodes));
		colony->bestPath[i]->weight = INFINITE_LENGTH;
		colony->bestPath[i]->nodes[0] = 0;
	}
}

void ant_colony_destroy(AntColony * colony) {
	free(colony->bestPath);
	free(colony);
}







src/ant.h

#ifndef ANT_H
#define ANT_H

#include "graph.h"


typedef struct AntScratchSpace * AntScratchSpace;

typedef struct {
	/* Current weight function */
	WeightFunction * graph;
	/* Current best-so-far paths */
	Path ** bestPath;
	
	/* Iteration counter */
	unsigned long long iteration;
	
	struct {
		/* Minimum pheromone bound */
		pvalue pMin;
		/* Maximum pheromone value */
		pvalue pMax;
		/* Pheromone evaporation rate */
		pvalue pEvaporation;
	
		/* Number of ants started at each vertex */
		unsigned int numAnts;
		/* Number of threads used to simulate the colony */
		unsigned int numThreads;
		
		/* Lua environment callback function information */
		int callbackSlot;
		int callbackArg;
		char callbackMode;
		
		/* Reinforcement type flag: non-0 for best-so-far reinforcement, 0 for iteration-best. */
		char keepBestSoFarPaths;

		/* Stop flag: 1 if the simulation should be halted, 0 otherwise. */
		char stopFlag;
		/* Graph changed flag: set to 1 whenever the weight function is changed. */
		char graphChangedFlag;
	} opt;
	
	/* Maximum number of nodes in graphs considered by this colony; used to indicate the size of the bestPath array */
	nodeid maxNodes;
} AntColony;

/* Allocates scratch space used for path construction for a specific maximum number of nodes. */
AntScratchSpace ant_scratch_space_alloc(nodeid maxNodes);

/* Constructs a simple path from the first vertex in *path. */
void ant_construct_path(AntColony * state, Path * path, AntScratchSpace scratch);

/* MMAS arc reinforcement: changes pheromone values on the arcs out of the first node of *path to favor the selected arc. */
void ant_reinforce_path(AntColony * state, Path * path);

/* Creates an ant colony structure based on the given initial graph and the maximum number of nodes. */
AntColony * ant_colony_create(nodeid maxNodes, WeightFunction * initialGraph);

/* Reinitializes the colony->bestPath array to default values. All best-so-far paths are forgotten. */
void ant_colony_init_paths(AntColony * colony);

/* Releases memory used by an AntColony. */
void ant_colony_destroy(AntColony * colony);

#endif







src/barrier.c

#include "barrier.h"
#include <stdlib.h>
#include <pthread.h>

struct barrier {
	pthread_mutex_t lock;
	pthread_cond_t wait;
	unsigned int token;
	unsigned int maxWaiting;
	unsigned int numWaiting;
};

barrier_p barrier_alloc(unsigned int threshold) {
	barrier_p ret = calloc(1, sizeof(struct barrier));
	pthread_mutex_init(&ret->lock, NULL);
	pthread_cond_init(&ret->wait, NULL);
	ret->maxWaiting = threshold - 1;
	
	return ret;
}

void barrier_free(barrier_p barrier) {
	if (barrier != NULL) {
		pthread_mutex_destroy(&barrier->lock);
		pthread_cond_destroy(&barrier->wait);
		free(barrier);
	}
}

int barrier_sync(barrier_p barrier) {
	if (barrier->maxWaiting == 0) return 1;
	pthread_mutex_lock(&barrier->lock);
	if (barrier->numWaiting == barrier->maxWaiting) {
		return 1;
	} else {
		barrier->numWaiting++;
		unsigned int token = barrier->token;
		while (barrier->token == token) {
			pthread_cond_wait(&barrier->wait, &barrier->lock);
		}
		pthread_mutex_unlock(&barrier->lock);
		return 0;
	}
}

void barrier_release(barrier_p barrier) {
	if (barrier->numWaiting > 0) {
		barrier->token++;
		barrier->numWaiting = 0;
		pthread_mutex_unlock(&barrier->lock);
		pthread_cond_broadcast(&barrier->wait);
	}
}







src/barrier.h

#ifndef _BARRIER_H
#define _BARRIER_H

#include <pthread.h>

typedef struct barrier * barrier_p;

/* Allocates a synchronization barrier; threshold specifies the number of threads that need
	to synchronize at the barrier before the execution can continue. */
barrier_p barrier_alloc(unsigned int threshold);

/* Deallocates a synchronization barrier. */
void barrier_free(barrier_p barrier);

/* Waits for the barrier's threshold threads to reach the barrier.
 * Returns 1 if this is the last thread that was needed to accomplish synchronization, 
 *  indicating that the thread should call barrier_release() to release the others, or
 *  0 otherwise. */
int barrier_sync(barrier_p barrier);

/* Allows the threads waiting at a synchronization barrier to continue execution. */
void barrier_release(barrier_p barrier);

#endif







src/conf.h

#ifndef ACONF_H
#define ACONF_H

#include <math.h>

typedef unsigned int nodeid; /* Node indices */
typedef unsigned int arcid; /* Arc indices */
typedef double pvalue; /* Pheromone values */
typedef double weight; /* Path weights */

#define INFINITE_LENGTH HUGE_VAL

#endif







src/graph.c

#include <stdio.h>
#include <stdlib.h>
#include "graph.h"

int graph_read_from_file(FILE * src, WeightFunction ** dst) {
	nodeid numNodes;
	int err = 0;
	arcid *nodeOffsets, numArcs;
	WeightFunction *wf;
	
	*dst = NULL;
		
	if (fscanf(src, "%u", &numNodes) != 1) return -1;
	nodeOffsets = calloc(numNodes, sizeof(arcid));
	if (nodeOffsets == NULL) return -2;
	
	for (nodeid i = 1; i < numNodes; i++) {
		if (fscanf(src, "%u", nodeOffsets+i) != 1) { err = -3; break; }
		if (nodeOffsets[i] == 0 || nodeOffsets[i] >= numNodes) { err = -4; break; }
		nodeOffsets[i] += nodeOffsets[i-1];
	}
	if (err == 0) {
		numArcs = nodeOffsets[numNodes-1];
		wf = calloc(1, sizeof(WeightFunction) + numArcs * sizeof(Arc));
		if (wf == NULL) err = -5;
	}
	if (err) { free(nodeOffsets); return err; }

	Arc *arc = wf->arcs, *prevArc = NULL;
	for (nodeid i = 1; i < numNodes && err == 0; i++) {
		arcid degree = nodeOffsets[i] - nodeOffsets[i-1];
		prevArc = NULL;
		for (arcid j = 0; j < degree && err == 0; j++, arc++) {
			if (fscanf(src, "%u %lf", &arc->head, &arc->weight) != 2) {
				err = -6;
			} else if (arc->head > numNodes) {
				err = -7;
			} else if (prevArc != NULL && prevArc->head >= arc->head) {
				err = -8;
			} else {
				arc->pheromone = 1.0 / degree;
				prevArc = arc;
			}
		}
	}
	
	if (err != 0) {
		free(nodeOffsets);
		free(wf);
		return err;
	}
	
	wf->numNodes = numNodes;
	wf->nodeOffsets = nodeOffsets;	
	*dst = wf;
	
	return 0;
}

weight * graph_compute_shortest_paths (WeightFunction * graph) {
	weight * ret = malloc(graph->numNodes * graph->numNodes * sizeof(weight));
	weight ** retTemp = calloc(graph->numNodes, sizeof(weight *));
	nodeid N = graph->numNodes;
	
	retTemp[0] = ret;
	for (nodeid i = 1; i < N; i++) retTemp[i] = retTemp[i-1] + N;
	
	weight * retSlot = ret;
	for (nodeid i = 0; i < N; i++) {
		for(nodeid j = 0; j < N; j++)
			*(retSlot++) = (i == j) ? 0 : INFINITE_LENGTH;
	}
	
	for (nodeid i = 1; i < N; i++) {
		for(arcid j = graph->nodeOffsets[i-1]; j < graph->nodeOffsets[i]; j++) {
			retTemp[graph->arcs[j].head][i] = graph->arcs[j].weight;
		}
	}
	
	for (nodeid k = 0; k < N; k++) {
		for (nodeid i = 0; i < N; i++) {
			for (nodeid j = 0; j < N; j++) {
				weight testWeight = retTemp[k][i] + retTemp[j][k];
				if (testWeight < retTemp[j][i]) {
					retTemp[j][i] = testWeight;
				}
			}
		}
	}
	
	free(retTemp);
	
	return ret;
}

static inline int find_arc_offset(WeightFunction * graph, nodeid src, nodeid dst, arcid * ofs) {
	if (src == 0 || src >= graph->numNodes || dst >= graph->numNodes) return 1;
	Arc * arcs = graph->arcs;
	arcid low = graph->nodeOffsets[src-1], high = graph->nodeOffsets[src];
	
	while (low < high) {
		arcid mid = (low + high) / 2;
		if (arcs[mid].head == dst) {
			*ofs = mid;
			return 0;
		} else if (arcs[mid].head > dst) {
			high = mid;
		} else {
			low = mid + 1;
		}
	}
	
	return 2;
}

int graph_find_arc(WeightFunction * graph, nodeid src, nodeid dst, arcid * arc) {
	return find_arc_offset(graph, src, dst, arc);
}

void path_update_weight(Path * path, WeightFunction * graph) {
	double weight = 0;
	nodeid pos = path->nodes[0], next = 1;
	arcid arc;
	
	while (pos != 0) {
		if (find_arc_offset(graph, pos, path->nodes[next], &arc)) {
			weight = INFINITE_LENGTH;
			break;
		} else {
			weight += graph->arcs[arc].weight;
			pos = path->nodes[next++];
		}
	}
	
	path->weight = weight;
}

void graph_free(WeightFunction * graph) {
	free(graph->nodeOffsets);
	free(graph);
}






src/graph.h

#ifndef GRAPH_H
#define GRAPH_H

#include <stdio.h>
#include "conf.h"

typedef struct {
	nodeid head;
	weight weight;
	pvalue pheromone;
} Arc;

typedef struct {
	weight weight;
	nodeid nodes[];
} Path;

typedef struct {
	nodeid numNodes;
	arcid * nodeOffsets;
	Arc arcs[];
} WeightFunction;

/* Unserializes a graph from a file. The file consists of whitespace-separated numbers:
 * * The number of vertices, N, in the graph.
 * * Out degrees of vertices 1 through N-1. Vertex 0 is the destination vertex and has no outgoing arcs.
 * * Arc Head vertex index, and Arc Weight for each arc in the graph, ordered by the tail vertex and head vertex indices, ascending. */
int graph_read_from_file(FILE * src, WeightFunction ** dst);

/* Computes and returns the weights of shortest paths in the graph from each vertex to vertex 0
 * using the Floyd-Warshall algorithm. */
weight * graph_compute_shortest_paths (WeightFunction * graph);

/* Recomputed cached path weight using the provided weight function; set to INFINITE_LENGTH if arcs no longer exist. */
void path_update_weight(Path * path, WeightFunction * graph);

/* Finds the index of a (src, dst) arc in the arcs[] array using binary search, and stores it in *arc.
 * Returns 0 if successful, non-0 otherwise. */
int graph_find_arc(WeightFunction * graph, nodeid src, nodeid dst, arcid * arc);

/* Deallocates memory used to store a weight function. */
void graph_free(WeightFunction * graph);

#endif







src/luaenv.c

#include <stdlib.h>
#include <stdio.h>

#include <lua.h>
#include <lauxlib.h>
#include <lualib.h>

#include "ant.h"

#define luaenv_addfunc(L, X) lua_register(L, #X, X)
#define luaenv_addlib(L, N, X) lua_pushcfunction(L, X); lua_pushliteral(L, N); lua_call(L, 1, 0)
#define luaenv_getstate(L, X) lua_getfield(L, LUA_REGISTRYINDEX, "aco.state"); X = (AntColony*) lua_touserdata(L, -1); lua_pop(L, 1)
#define luaenv_error(L, T) { lua_pushliteral(L, T); lua_error(L); }

int SetNumThreads(lua_State *L) {
	int numThreads = luaL_checkint(L, 1);
	if (numThreads < 1) luaenv_error(L, "At least one thread is required");
	
	AntColony * colony;
	luaenv_getstate(L, colony);
	if (colony->iteration != 0) luaenv_error(L, "Cannot alter the number of threads while the simulation is active");
	
	colony->opt.numThreads = numThreads;
	
	return 0;
}

int SetNumAnts(lua_State *L) {
	lua_Integer numAnts = luaL_checkinteger(L, 1);
	if (numAnts < 1) luaenv_error(L, "At least one ant must be started at each vertex");
	
	AntColony * colony;
	luaenv_getstate(L, colony);
	
	colony->opt.numAnts = numAnts;
	
	return 0;
}
int UseBestSoFarReinforcement(lua_State *L) {
	luaL_checkany(L, 1);
	AntColony * colony;
	luaenv_getstate(L, colony);
	
	colony->opt.keepBestSoFarPaths = lua_toboolean(L, 1);

	return 0;
}
int SetPheromoneBounds(lua_State *L) {
	double tmin = luaL_checknumber(L, 1);
	double tmax = luaL_optnumber(L, 2, 1 - tmin);
	
	if (tmin < 0 || tmax < tmin) luaenv_error(L, "Invalid pheromone bounds");
	
	AntColony * colony;
	luaenv_getstate(L, colony);
	
	colony->opt.pMin = tmin;
	colony->opt.pMax = tmax;
	
	return 0;
}
int SetEvaporationRate(lua_State *L) {
	pvalue r = luaL_checknumber(L, 1);
	
	if (r < 0 || r > 1) luaenv_error(L, "Evaporation rate must be within [0, 1] interval");
	
	AntColony * colony;
	luaenv_getstate(L, colony);
	
	colony->opt.pEvaporation = r;
	
	return 0;
}
int SetCallback(lua_State *L) {
	lua_pushliteral(L, "OnPathUpdate");
	lua_pushliteral(L, "OnIteration");

	int mode = lua_equal(L, 1, -1) ? 1 : (lua_equal(L, 1, -2) ? 2 : 0), arg = 0, ref = 0;
	lua_pop(L, 2);

	if (mode == 1) {
		arg = luaL_checkint(L, 2);
		luaL_checktype(L, 3, LUA_TFUNCTION);
		lua_pushvalue(L, 3);
	} else if (mode == 2) {
		luaL_checktype(L, 2, LUA_TFUNCTION);
		lua_pushvalue(L, 2);
	}
	if (mode > 0) {
		ref = luaL_ref(L, LUA_REGISTRYINDEX);
		lua_pop(L, 1);
	}

	AntColony * colony;
	luaenv_getstate(L, colony);
	
	if (colony->opt.callbackMode != 0) {
		luaL_unref(L, LUA_REGISTRYINDEX, colony->opt.callbackSlot);
	}
	colony->opt.callbackMode = mode;
	colony->opt.callbackSlot = ref;
	colony->opt.callbackArg = arg;
	
	return 0;
}

int GetIteration(lua_State *L) {
	AntColony * colony;
	luaenv_getstate(L, colony);

	lua_pushinteger(L, colony->iteration);
	
	return 1;
}
int GetGraphSize(lua_State *L) {
	AntColony * colony;
	luaenv_getstate(L, colony);
	
	lua_pushinteger(L, colony->graph->numNodes);
	
	return 1;
}
int GetPheromoneValue(lua_State *L) {
	lua_Integer src = luaL_checkinteger(L, 1);
	lua_Integer dst = luaL_checkinteger(L, 2);
	arcid arc;

	AntColony * colony;
	luaenv_getstate(L, colony);
	
	if (src < 0 || dst < 0 || graph_find_arc(colony->graph, src, dst, &arc)) {
		lua_pushnil(L);
	} else {
		lua_pushnumber(L, colony->graph->arcs[arc].pheromone);		
	}

	return 1;
}
int GetReinforcedArcInfo(lua_State *L) {
	nodeid src = luaL_checkinteger(L, 1);
	AntColony * colony;
	luaenv_getstate(L, colony);

	if (src == 0 || src >= colony->graph->numNodes) luaenv_error(L, "Invalid source vertex");
	
	if (colony->bestPath[src]->nodes[0] == src) {
		lua_pushnumber(L, colony->bestPath[src]->nodes[1]);
		lua_pushnumber(L, colony->bestPath[src]->weight);
		arcid arc, ret;
		if ( (ret = graph_find_arc(colony->graph, src, colony->bestPath[src]->nodes[1], &arc)) ) {
			lua_pushnil(L);
		} else {
			lua_pushnumber(L, colony->graph->arcs[arc].pheromone);
		}
	} else {
		lua_pushnil(L);
		lua_pushnumber(L, colony->bestPath[src]->weight);
		lua_pushnil(L);
	}

	
	return 3;
}
int SetPheromoneValue(lua_State *L) {
	lua_Integer src = luaL_checkinteger(L, 1);
	lua_Integer dst = luaL_checkinteger(L, 2);
	double tau = luaL_checknumber(L, 3);
	arcid arc;
	
	AntColony * colony;
	luaenv_getstate(L, colony);
	
	if (src <= 0 || dst < 0 || graph_find_arc(colony->graph, src, dst, &arc)) 
		luaenv_error(L, "Invalid source/destination vertex index");

	if (tau < colony->opt.pMin) tau = colony->opt.pMin;
	if (tau > colony->opt.pMax) tau = colony->opt.pMax;
	colony->graph->arcs[arc].pheromone = tau;
	
	return 0;
}
int SetArcWeight(lua_State *L) {
	lua_Integer src = luaL_checkinteger(L, 1);
	lua_Integer dst = luaL_checkinteger(L, 2);
	double w = luaL_checknumber(L, 3);
	
	AntColony * colony;
	luaenv_getstate(L, colony);
	
	arcid arc;
	int ret = (src <= 0 || dst < 0) ? 1 : graph_find_arc(colony->graph, src, dst, &arc);
	if (ret == 1) {
		luaenv_error(L, "Invalid source/destination vertex index");
	} else if (ret) {
		luaenv_error(L, "Arc must exist in the original graph to have its weight changed");
	} else {
		colony->graph->arcs[arc].weight = w;
		colony->opt.graphChangedFlag = 1;
	}
	
	return 0;
}

int StopSimulation(lua_State *L) {
	AntColony * colony;
	luaenv_getstate(L, colony);
	
	colony->opt.stopFlag = 1;
	
	return 0;
}

int luaenv_backtrace(lua_State *L) {
	lua_getfield(L, LUA_REGISTRYINDEX, "aco.traceback");
	lua_pushvalue(L, 1);
	lua_pushinteger(L, 2);
	lua_call(L, 2, 1);
	return 1;
}

lua_State* luaenv_create(AntColony * colony, const char * initScriptPath, int argc, const char * argv[]) {
	lua_State *L = lua_open();
	
	luaenv_addlib(L, "", luaopen_base);
	luaenv_addlib(L, LUA_TABLIBNAME, luaopen_table);
	luaenv_addlib(L, LUA_STRLIBNAME, luaopen_string);
	luaenv_addlib(L, LUA_MATHLIBNAME, luaopen_math);

	luaenv_addfunc(L, SetNumAnts);
	luaenv_addfunc(L, SetNumThreads);
	luaenv_addfunc(L, UseBestSoFarReinforcement);
	luaenv_addfunc(L, SetCallback);
	luaenv_addfunc(L, SetPheromoneBounds);
	luaenv_addfunc(L, SetPheromoneValue);
	luaenv_addfunc(L, GetPheromoneValue);
	luaenv_addfunc(L, SetArcWeight);
	luaenv_addfunc(L, StopSimulation);
	luaenv_addfunc(L, GetIteration);
	luaenv_addfunc(L, GetGraphSize);
	luaenv_addfunc(L, GetReinforcedArcInfo);
	luaenv_addfunc(L, SetEvaporationRate);
	
	lua_pushlightuserdata(L, colony);
	lua_setfield(L, LUA_REGISTRYINDEX, "aco.state");

	luaenv_addlib(L, "debug", luaopen_debug);
	lua_getglobal(L, "debug");
		lua_getfield(L, -1, "traceback");
		lua_setfield(L, LUA_REGISTRYINDEX, "aco.traceback");
		lua_pop(L, 1);
	lua_pushnil(L);
	lua_setglobal(L, "debug");

	lua_createtable(L, argc, 0);
	for (int i = 0; i < argc; i++) {
		lua_pushstring(L, argv[i]);
		lua_rawseti(L, -2, i);
	}
	lua_setglobal(L, "arg");
	
	if (initScriptPath != NULL) {
		int err = 0;
		if ((err = luaL_loadfile(L, initScriptPath)) == 0) {
			lua_pushcfunction(L, luaenv_backtrace);
			lua_insert(L, -2);
			err = lua_pcall(L, 0, 0, -2);
		}
		if (err != 0) {
			fprintf(stderr, "Error while loading configuration script:\n\t%s\n", lua_tostring(L, -1));
			lua_close(L);
			return NULL;
		}
	}
	lua_settop(L, 0);
	
	return L;
}

void luaenv_destroy(lua_State * env) {
	lua_close(env);
}

void luaenv_callback(lua_State * env, int ref, unsigned long long arg) {
	lua_pushcfunction(env, luaenv_backtrace);
	lua_rawgeti(env, LUA_REGISTRYINDEX, ref);
	lua_pushinteger(env, arg);
	if (lua_pcall(env, 1, 0, -3)) {
		fprintf(stderr, "Error in callback handler:\n\t%s\n", lua_tostring(env, -1));
		StopSimulation(env);
	}
	lua_settop(env, 0);
}







src/luaenv.h

#ifndef LUAENV_H
#define LUAENV_H

typedef struct lua_State lua_State;

/* Creates a Lua environment, loads and runs the script in *initScriptPath (if non-NULL), and pushes the argv array to Lua. */
lua_State* luaenv_create(AntColony * colony, const char * initScriptPath, int argc, const char * argv[]);

/* Deallocates a Lua environment, releasing used memory. */
void luaenv_destroy(lua_State * env);

/* Performs a callback to the Lua environment, calling the function specified by ref with an argument arg. */
void luaenv_callback(lua_State * env, int ref, unsigned long long arg);

#endif







src/main.c

#include <stdlib.h>
#include <stdio.h>
#include "ant.h"
#include "graph.h"
#include "luaenv.h"

void threadedStart(AntColony * colony, lua_State * env);

int main(int argc, const char * argv[]) {
	int rc;
	WeightFunction * g;
	FILE * f;
	
	f = argc >= 3 ? fopen(argv[1], "r") : NULL;
	if (f == NULL) {
		printf("Syntax: %s graph.wf script.lua ...\n", argv[0]);
		if (argc >= 3) puts("\tCould not open graph file.");
		exit(0);
	}
	
	if ( (rc = graph_read_from_file(f, &g)) ) {
		printf("Invalid input graph; validation error %d\n", rc);
		exit(-1);
	}
	fclose(f);
	
	/* Create the colony and lua environment */
	AntColony * colony = ant_colony_create(g->numNodes, g);
	lua_State * env = luaenv_create(colony, argv[2], argc, argv);

	if (env != NULL) {
		threadedStart(colony, env);
		luaenv_destroy(env);
	} else {
		/* Lua script caused an error, which was already output by luaenv_create(). 
		   Do not proceed with the simulation. */
	}

	ant_colony_destroy(colony);
	graph_free(g);
	
	return env != NULL ? 0 : -1;
}







src/Makefile

CC=gcc
COFLAGS=-I/usr/local/include
CFLAGS=${COFLAGS} -O2 -pedantic -Wall -Wextra -std=c99
LDFLAGS=-L/usr/local/lib -llua -lpthread -lm ${COFLAGS} 

aco : main.o graph.o ant.o threaded_runner.o barrier.o luaenv.o mtwist.o
	${CC} -o aco main.o graph.o ant.o threaded_runner.o barrier.o luaenv.o mtwist.o ${LDFLAGS}

clean: 
	rm -f aco *.o makefile.dep

mtwist.o: mtwist-1.1/mtwist.c Makefile
	${CC} ${CFLAGS} -c mtwist-1.1/mtwist.c

%.o : %.c Makefile
	${CC} ${CFLAGS} -c $<

makefile.dep : *.[ch] mtwist-1.1/mtwist.c
	for i in *.c; do gcc -MM "$${i}"; done > $@

include makefile.dep






src/makefile.dep

ant.o: ant.c graph.h conf.h ant.h mtwist-1.1/mtwist.h
barrier.o: barrier.c barrier.h
graph.o: graph.c graph.h conf.h
luaenv.o: luaenv.c ant.h graph.h conf.h
main.o: main.c ant.h graph.h conf.h luaenv.h
threaded_runner.o: threaded_runner.c ant.h graph.h conf.h barrier.h \
  luaenv.h







src/mtwist-1.1/CHANGELOG

MTWIST CHANGE LOG

VERSION 1.1, 11-Dec-2010

    - Fix inlining problems that prevented compilation under popular
      Windows compilers.
    - Rewrite empirical-distribution functions to use O(1) algorithm
      (incompatible change; old programs that used empirical
      distributions will need modification before they will compile).

VERSION 1.0, 24-Jun-2010

    - First production release.







src/mtwist-1.1/mtwist.3

.\"
.\" $Id: mtwist.3,v 1.7 2010-06-24 20:53:59+12 geoff Exp $
.\"
.\" $Log: mtwist.3,v $
.\" Revision 1.7  2010-06-24 20:53:59+12  geoff
.\" Change all documented declarations to use types from stdint.h.  Fix
.\" some restriction descriptions.  Remove bugs that are no longer bugs.
.\"
.\" Revision 1.6  2007-10-26 00:21:06-07  geoff
.\" Document the new mt_u32bit_t type (barely).
.\"
.\" Revision 1.5  2002/10/30 07:39:53  geoff
.\" Document the new seeding routines.
.\"
.\" Revision 1.4  2001/06/20 08:15:51  geoff
.\" Correct the documentation of the generator's period.
.\"
.\" Revision 1.3  2001/06/19 00:43:01  geoff
.\" Document the lack of a newline in the << operator
.\"
.\" Revision 1.2  2001/06/18 10:09:24  geoff
.\" Fix the manual section.
.\"
.\" Revision 1.1  2001/06/16 21:20:31  geoff
.\" Initial revision
.\"
.\" 
.TH mtwist 3 "June 14, 2001" "" "Linux Programmer's Manual"
.SH NAME
mts_seed32new, mts_seed32, mts_seedfull, mts_seed, mts_goodseed, mts_bestseed,
mts_savestate, mts_loadstate, mt_seed32new, mt_seed32, mt_seedfull, mt_seed,
mt_goodseed, mt_bestseed, mt_getstate, mt_savestate, mt_loadstate,
mts_lrand, mts_llrand, mts_drand, mts_ldrand, mt_lrand, mt_llrand,
mt_drand, mt_ldrand,
mt_prng \- generate uniformly distributed pseudo-random numbers
.SH SYNOPSIS
.nf
.IR "#defines" " (see below)"
.br
.B
#include "mtwist.h"
.sp
C interface:
.sp
.BI "void mts_seed32(mt_state* " state ", uint32_t " seed ");"
.sp
.BI "void mts_seed32new(mt_state* " state ", uint32_t " seed ");"
.sp
.BI "void mts_seedfull(mt_state* " state ","
.BI "                  uint32_t " seeds "[MT_STATE_SIZE]);"
.sp
.BI "void mts_seed(mt_state* " state ");"
.sp
.BI "void mts_goodseed(mt_state* " state ");"
.sp
.BI "void mts_bestseed(mt_state* " state ");"
.sp
.BI "int mts_savestate(FILE* " statefile ", mt_state* " state ");"
.sp
.BI "int mts_loadstate(FILE* " statefile ", mt_state* " state ");"
.sp
.BI "void mt_seed32(uint32_t " seed ");"
.sp
.BI "void mt_seed32new(uint32_t " seed ");"
.sp
.BI "void mt_seedfull(uint32_t " seeds "[MT_STATE_SIZE]);"
.sp
.B void mt_seed(void);
.sp
.B void mt_goodseed(void);
.sp
.B void mt_bestseed(void);
.sp
.B mt_state* mt_getstate(void);
.sp
.BI "int mt_savestate(FILE* " statefile ");"
.sp
.BI "int mt_loadstate(FILE* " statefile ");"
.sp
.BI "uint32_t mts_lrand(mt_state* " state ");"
.sp
.BI "uint64_t mts_llrand(mt_state* " state ");"
.sp
.BI "double mts_drand(mt_state* " state ");"
.sp
.BI "double mts_ldrand(mt_state* " state ");"
.sp
.B uint32_t mt_lrand(void);
.sp
.B uint64_t mt_llrand(void);
.sp
.B double mt_drand(void);
.sp
.B double mt_ldrand(void);
.sp
.B "C++ interface:"
.sp
.BI "mt_prng " rng ;
.sp
.BI "mt_prng " rng "(bool " pickseed " = false);"
.sp
.BI "mt_prng " rng "(uint32_t " seed );
.sp
.BI "mt_prng " rng "(uint32_t " seeds [MT_STATE_SIZE]);
.sp
.BI "void " rng ".seed32(uint32_t " seed ");"
.sp
.BI "void " rng ".seedfull(uint32_t seeds[MT_STATE_SIZE]);"
.sp
.BI "void " rng ".seed();"
.sp
.BI "void " rng ".goodseed();"
.sp
.BI "void " rng ".bestseed();"
.sp
.BI "uint32_t " rng ".lrand();"
.sp
.BI "uint64_t " rng ".llrand();"
.sp
.BI "double " rng ".drand();"
.sp
.BI "double " rng ".ldrand();"
.sp
.BI "double " rng "();"
.sp
.IB "stream" " << " rng ";"
.sp
.IB "stream" " >> " rng ";"
.SH DESCRIPTION
These functions generate pseudo-random numbers using Matsumoto and
Nishimura's Mersenne Twist algorithm (see:
.nf
.sp
        http://www.math.keio.ac.jp/~matumoto/emt.html
.sp
.fi
for full information).
The period of this pseudo random-number generator (PRNG) is 2^19337-1
which is vastly longer than the life of the universe
even if the random numbers are being generated at an impossible rate.
The generator also has excellent statistical properties.
.PP
The
.B mtwist
package assumes a 32-bit machine with a modern C or C++ compiler that
supports inline functions and the
.B inttypes.h
header file.
If these features are not present, the package must be modified.
.PP
All of the PRNG functions work from a
.IR "state vector" ,
which is of type
.B mt_state
in C and type
.B mt_prng
in C++.
The state vector stores everything that the PRNG needs to generate new
numbers in the proper sequence.
By using multiple state vectors, programs can draw random numbers from
independent sequences, which is important in applications such as
simulation (where each independent random variable should be drawn
from its own sequence to avoid unintentional correlations).
.PP
For convenience, the C interface also provides a built-in default
state vector that can be used in simple applications.
The
.BI mt_ xxx
functions use the default state vector to control their behavior,
while the
.BI mts_xxx
functions accept a user-provided state vector.
.PP
In C, a user-provided state vector has the following structure:
.PP
.nf
#define MT_STATE_SIZE 624

typedef struct {
.in +8
uint32_t statevec[MT_STATE_SIZE];
.in +16
/* Vector holding current state */
.in -16
int stateptr;   /* Next state entry to be used */
int initialized;
.in +16
/* NZ if state has been initialized */
.in -24
} mt_state;
.fi
.PP
An uninitialized PRNG is indicated by zeros in
.I both
.B stateptr
and
.BR initialized .
It is the programmer's responsibility to ensure that these fields are
zero before calling any of the
.BI mts_xxx
functions.
.PP
It is occasionally useful to directly access the default state vector, so
.B mt_getstate
will return a pointer to the default state.
.PP
In both C and C++, the functionality is divided into two categories:
seeding and pseudorandom-number generation.
If one of the generation functions is called on an unseeded generator,
a default seed (specified by Matsumoto and Nishimura) will be used.
Usually, the programmer will wish to override the default seed and
choose a more appropriate one.
The simplest way to seed a PRNG is by calling one of the
.B *seed32new
functions.
This will invoke Matsumoto and Nishimura's revised Knuth-style seed
generator.
.PP
The
.B *seed32
functions
will invoke Matsumoto and Nishimura's original Knuth-style seed
generator, which is now deprecated.
In C++, the same effect can be achieved by passing a 32-bit
.RB ( "uint32_t" )
seed to the constructor.
The original 32-bit seeder did not work correctly if the seed was zero,
so in that
case the default seed of 4357 will be substituted.
The original seeder is still supported so that older software will
continue to work in the same fashion without changes.
.PP
The
.B *seed32new
and
.B *seed32
functions are simple to use, but they have the drawback that only 4
billion distinct pseudorandom sequences can be generated using them.
To allow access to sequences beginning anywhere in the entire space of
possibilities, the
.B *seedfull
functions can be passed an initial state vector of 624 32-bit numbers,
or a C++ PRNG can be constructed with a 624-element array as an
argument.
The initialization vector must contain at least one nonzero value;
if this rule is violated, the program will be aborted (unfortunately
without a diagnostic message due to C/C++ portability issues).
.PP
The
.BR *seed32new ,
.BR *seed32 ,
and
.B *seedfull
functions allow fixed, reproducible seeds, which is useful for
simulation and experimentation.
For game-like applications, non-reproducible seeds are usually more
appropriate.
The
.BR mts_seed ,
.BR mt_seed ,
and
.B seed
functions use the system time to generate an argument to the
.B *seed32new
functions to satisfy this need.
The microseconds portion of the time is included in the seed to
enhance the probability that two programs will generate different
random sequences.
.PP
Since the various "plain"
.B seed
functions are also somewhat limited in the variety they can produce,
two other functions are available on systems that have support for the
.B /dev/random
device.
The
.B *goodseed
functions attempt to use
.B /dev/urandom
to get truly random values for use with
.BR *seedfull .
If
.B /dev/urandom
isn't available, these functions fall back to calling the equivalent "plain"
.B seed
function.
C++ programmers can also invoke
.B goodseed
at construction time by passing an argument of
.B true
to the constructor.
.PP
For the most random seed possible, the
.B *bestseed
functions attempt to use
.B /dev/random
to acquire values for
.BR *seedfull ,
falling back to
.B *seed
if
.B /dev/random
is unavailable.
The disadvantage of these functions is that it usually takes a
significant amount of (wall-clock) time before
.B /dev/random
can produce enough entropy to provide a seed.
Therefore, it is nearly always better to stick with the
.B *goodseed
functions.
.PP
Finally, it is often useful to be able to save and restore the PRNG
state for later use.
In C, the functions
.B *savestate
.B *loadstate
will save the current state into an open
.B stdio
.B FILE
as a single long line (in ASCII)
and later restore it such that the restored PRNG will pick up where
the saved one left off.
In C++, the same effect can be achieved by writing to or reading from
a C++
.B stream
using the usual
.B "<<"
and
.B ">>"
operators.
As with all well-behaved C++ types, the
.B "<<"
operator does not add a newline after the saved state.
.PP
Once a generator has been seeded,
uniformly distributed pseudorandom numbers can be produced in several
formats.
(The functions in the
.IR randistrs (3)
library can be used to produce other statistical distributions.)
The
.B *lrand
and
.B *llrand
generate 32-bit and 64-bit random integers uniformly distributed
between 0 and the maximum unsigned value.
(The
.B *llrand
functions are only available on machines that support a 64-bit
data type.
The
.B *drand
functions generate a double-precision number in the range [0,1)
(i.e., 0 is a possible value but 1 is not).
The number generated by
.B *drand
has 32 bits of precision.
For convenience, the C++ interface also defines a function operator
that returns the same result as
.BR drand ,
so that a PRNG can be called as if it were a function.
For applications that demand increased precision, the
.B *ldrand
functions generate a double-precision number in [0,1) with up to 64
bits of precision (usually 52 bits).
.SH "SEE ALSO"
.BR randistrs "(3), " drand48 "(3), " rand "(3), " random (3)







src/mtwist-1.1/mtwist.c

#ifndef lint
static char Rcs_Id[] =
    "$Id: mtwist.c,v 1.23 2010-12-11 00:28:18+13 geoff Exp $";
#endif

/*
 * C library functions for generating pseudorandom numbers using the
 * Mersenne Twist algorithm.  See M. Matsumoto and T. Nishimura,
 * "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform
 * Pseudo-Random Number Generator", ACM Transactions on Modeling and
 * Computer Simulation, Vol. 8, No. 1, January 1998, pp 3--30.
 *
 * The Web page on the Mersenne Twist algorithm is at:
 *
 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 *
 * These functions were written by Geoff Kuenning, Claremont, CA.
 *
 * IMPORTANT NOTE: this implementation assumes a modern compiler.  In
 * particular, it assumes that the "inline" keyword is available, and
 * that the "inttypes.h" header file is present.
 *
 * IMPORTANT NOTE: this software requires access to a 32-bit type.
 * The Mersenne Twist algorithms are not guaranteed to produce correct
 * results with a 64-bit type.
 *
 * This software is based on LGPL-ed code by Takuji Nishimura.  It has
 * also been heavily influenced by code written by Shawn Cokus, and
 * somewhat influenced by code written by Richard J. Wagner.  It is
 * therefore also distributed under the LGPL:
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public License
 * as published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.  You should have
 * received a copy of the GNU Library General Public License along
 * with this library; if not, write to the Free Foundation, Inc., 59
 * Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 * $Log: mtwist.c,v $
 * Revision 1.23  2010-12-11 00:28:18+13  geoff
 * Add support for GENERATE_CODE_IN_HEADER.  Fix the URL for the original
 * Web page.
 *
 * Revision 1.22  2010-06-24 20:53:59+12  geoff
 * Switch to using types and formats from inttypes.h.  Get rid of all
 * compilation options.
 *
 * Revision 1.21  2010-06-24 00:29:38-07  geoff
 * Correctly save and restore the state vector even if longs are wider
 * than 32 bits.
 *
 * Revision 1.20  2007-10-26 00:21:06-07  geoff
 * Use the new mt_u32bit_t type.
 *
 * Revision 1.19  2003/09/11 05:55:19  geoff
 * Get rid of some minor compiler warnings.
 *
 * Revision 1.18  2003/09/11 05:50:53  geoff
 * Don't #define inline to nothing, since that breaks standard include
 * files.  Instead, use MT_INLINE as a synonym.
 *
 * Revision 1.17  2002/10/31 22:07:10  geoff
 * Make WIN32 detection work with GCC as well as MS C
 *
 * Revision 1.16  2002/10/31 22:04:59  geoff
 * Fix a typo in the WIN32 option
 *
 * Revision 1.15  2002/10/31 06:01:43  geoff
 * Incorporate Joseph Brill's Windows-portability changes
 *
 * Revision 1.14  2002/10/30 07:39:53  geoff
 * Reintroduce the old seeding functions (so that old code will still
 * produce the same results), and give the new versions new names.
 *
 * Revision 1.13  2002/10/30 01:08:26  geoff
 * Switch to M&T's new initialization method
 *
 * Revision 1.12  2001/06/18 05:40:12  geoff
 * Prefix the compile options with MT_.
 *
 * Revision 1.11  2001/06/14 10:26:59  geoff
 * Invert the sense of the #define flags so that the default is the
 * normal case (if gcc is normal!).  Also default MT_MACHINE_BITS to 32.
 *
 * Revision 1.10  2001/06/14 10:10:38  geoff
 * Move the RNG functions into the header file so they can be inlined.
 * Add saving/loading of state.  Add a function that marks the PRNG as
 * initialized while also calculating critical constants.  Run the
 * refresh routine whenever seed32 is called.  Add functions to seed
 * based on /dev/random or the time.
 *
 * Revision 1.9  2001/06/11 10:00:04  geoff
 * Major changes to improve flexibility and performance, and to prepare
 * for inlining.  This code is about as fast as it can get without
 * inlining the various PRNG functions.  Add seed/goodseed/bestseed for
 * seeding from random start values.  Add the refresh routine a la Cokus,
 * but optimize it by unrolling loops.  Change getstate to return a
 * complete state pointer, since knowing the position in the state vector
 * is critical to restoring state.  Add more macros to improve
 * readability.  Rename certain macros in preparation for inlining.  Get
 * rid of leftover optimizer-bug stuff.  Stop using mtwist_guts.h;
 * instead use direct code (via macros) and the refresh function.
 *
 * Revision 1.8  2001/04/23 08:36:03  geoff
 * Move the #defined code into a header file to ease stepping with a debugger.
 *
 * Revision 1.7  2001/04/23 08:00:13  geoff
 * Add code to work around optimizer bug
 *
 * Revision 1.6  2001/04/14 01:33:32  geoff
 * Clarify the license
 *
 * Revision 1.5  2001/04/09 08:45:00  geoff
 * Rename default_state to mt_default_state, and make it global so that
 * the random-distribution code can use it.
 *
 * Revision 1.4  2001/04/07 23:24:11  geoff
 * My guess in the commentary for the last delta was right: it's faster
 * on a x86 to convert the two halves of the PRN to double, multiplying
 * them by the appropriate value to scale them, and then add them as
 * doubles.  I suspect the reason is that there is no instruction to
 * convert a 64-bit value directly to a double, so the work of building
 * the long long (which isn't easy anyway, without assembly access) is
 * worse than wasted.  So add support for MT_MACHINE_BITS, and only go
 * the via-long-long route on a true 64-bit machine.
 *
 * Revision 1.3  2001/04/07 23:09:38  geoff
 * Get rid of MT_INLINE.  Convert all of the code to use preprocessor
 * macros for the guts of the PRNG code.  Take advantage of the
 * conversion to get rid of unnecessary calls initialization tests.  Also
 * clean up the generation of long-double pseudorandom numbers on
 * machines that have the long long type (by converting first to a long
 * long, then to a double, saving one floating-point operation).  The
 * latter change might be a mistake on 32-bit machines.  The code is now
 * much faster as a result of macro-izing.
 *
 * Revision 1.2  2001/04/07 22:21:41  geoff
 * Make the long-double code a hair faster by always having a 64-bit
 * conversion constant.  Add commentary to the PRNG loop.
 *
 * Revision 1.1  2001/04/07 09:43:41  geoff
 * Initial revision
 *
 */

#ifdef _WIN32
#undef WIN32
#define WIN32
#endif /* _WIN32 */

#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#ifdef WIN32
#include <sys/timeb.h>
#else /* WIN32 */
#include <sys/time.h>
#endif /* WIN32 */

/*
 * Before we include the Mersenne Twist header file, we must do a bit
 * of magic setup.  The code for actual random-number generation
 * resides in that file rather than here.  We need to arrange for the
 * code to be compiled into this .o file, either because inlines
 * aren't supported or because somebody might want to take a pointer
 * to a function.  We do so with a couple of careful #defines.
 */
#define MT_INLINE			/* Disable the inline keyword */
#define MT_EXTERN			/* Generate real code for functions */
#undef MT_GENERATE_CODE_IN_HEADER
#define MT_GENERATE_CODE_IN_HEADER 1	/* Generate code when #including */

#include "mtwist.h"

/*
 * Table of contents:
 */
void			mts_mark_initialized(mt_state* state);
					/* Mark a PRNG state as initialized */
void			mts_seed32(mt_state* state, uint32_t seed);
					/* Set random seed for any generator */
void			mts_seed32new(mt_state* state, uint32_t seed);
					/* Set random seed for any generator */
void			mts_seedfull(mt_state* state,
			  uint32_t seeds[MT_STATE_SIZE]);
					/* Set complicated seed for any gen. */
void			mts_seed(mt_state* state);
					/* Choose seed from random input */
void			mts_goodseed(mt_state* state);
					/* Choose seed from more random */
					/* ..input than mts_seed */
static void		mts_devseed(mt_state* state, char* seed_dev);
					/* Choose seed from a device */
void			mts_bestseed(mt_state* state);
					/* Choose seed from extremely random */
					/* ..input (can be *very* slow) */
void			mts_refresh(mt_state* state);
					/* Generate 624 more random values */
int			mts_savestate(FILE* statefile, mt_state* state);
					/* Save state to a file (ASCII) */
int			mts_loadstate(FILE* statefile, mt_state* state);
					/* Load state from a file (ASCII) */

void			mt_seed32(uint32_t seed);
					/* Set random seed for default gen. */
void			mt_seed32new(uint32_t seed);
					/* Set random seed for default gen. */
void			mt_seedfull(uint32_t seeds[MT_STATE_SIZE]);
					/* Set complicated seed for default */
void			mt_seed(void);	/* Choose seed from random input */
void			mt_goodseed(void);
					/* Choose seed from more random */
					/* ..input than mts_seed */
void			mt_bestseed(void);
					/* Choose seed from extremely random */
					/* ..input (can be *very* slow) */
extern mt_state*	mt_getstate(void);
					/* Get current state of default */
					/* ..generator */
int			mt_savestate(FILE* statefile);
					/* Save state to a file (ASCII) */
int			mt_loadstate(FILE* statefile);
					/* Load state from a file (ASCII) */


/*
 * The following values are fundamental parameters of the algorithm.
 * With the exception of the two masks, all of them were found
 * experimentally using methods described in Matsumoto and Nishimura's
 * paper.  They are exceedingly magic; don't change them.
 */

/* MT_STATE_SIZE is defined in the header file. */
#define RECURRENCE_OFFSET 397		/* Offset into state space for the */
					/* ..recurrence relation.  The */
					/* ..recurrence mashes together two */
					/* ..values that are separated by */
					/* ..this offset in the state */
					/* ..space. */
#define MATRIX_A	0x9908b0df	/* Constant vector A for the */
					/* ..recurrence relation.  The */
					/* ..mashed-together value is */
					/* ..multiplied by this vector to */
					/* ..get a new value that will be */
					/* ..stored into the state space. */

/*
 * Width of an unsigned int.  Don't change this even if your ints are 64 bits.
 */
#define BIT_WIDTH	32		/* Work with 32-bit words */

/*
 * Masks for extracting the bits to be mashed together.  The widths of these
 * masks are also fundamental parameters of the algorithm, determined
 * experimentally -- but of course the masks themselves are simply bit
 * selectors.
 */
#define UPPER_MASK	0x80000000	/* Most significant w-r bits */
#define LOWER_MASK	0x7fffffff	/* Least significant r bits */

/*
 * Macro to simplify code in the generation loop.  This function
 * combines the top bit of x with the bottom 31 bits of y.
 */
#define COMBINE_BITS(x, y) \
			(((x) & UPPER_MASK) | ((y) & LOWER_MASK))

/*
 * Another generation-simplification macro.  This one does the magic
 * scrambling function.
 */
#define MATRIX_MULTIPLY(original, new) \
			((original) ^ ((new) >> 1) \
			  ^ matrix_decider[(new) & 0x1])

/*
 * Parameters of Knuth's PRNG (Line 25, Table 1, p. 102 of "The Art of
 * Computer Programming, Vol. 2, 2nd ed, 1981).
 */
#define KNUTH_MULTIPLIER_OLD \
			69069

/*
 * Parameters of Knuth's PRNG (p. 106 of "The Art of Computer
 * Programming, Vol. 2, 3rd ed).
 */
#define KNUTH_MULTIPLIER_NEW \
			1812433253ul
#define KNUTH_SHIFT	30		// Even on a 64-bit machine!

/*
 * Default 32-bit random seed if mts_seed32 wasn't called
 */
#define DEFAULT_SEED32_OLD \
			4357
#define DEFAULT_SEED32_NEW \
			5489ul

/*
 * Where to get random numbers
 */
#define DEVRANDOM	"/dev/random"
#define DEVURANDOM	"/dev/urandom"

/*
 * Many applications need only a single PRNG, so it's a nuisance to have to
 * specify a state.  For those applications, we will provide a default
 * state, and functions to use it.
 */
mt_state		mt_default_state;

/*
 * To generate double-precision random numbers, we need to divide the result
 * of mts_lrand or mts_llrand by 2^32 or 2^64, respectively.  The quickest
 * way to do that on most machines is to multiply by the inverses of those
 * numbers.  However, I don't trust the compiler to correctly convert the
 * corresponding decimal constant.  So we will compute the correct number at
 * run time as part of initialization, which will produce a nice exact
 * result.
 */
double			mt_32_to_double;
					/* Multiplier to convert long to dbl */
double			mt_64_to_double;
					/* Mult'r to cvt long long to dbl */

/*
 * In the recurrence relation, the new value is XORed with MATRIX_A only if
 * the lower bit is nonzero.  Since most modern machines don't like to
 * branch, it's vastly faster to handle this decision by indexing into an
 * array.  The chosen bit is used as an index into the following vector,
 * which produces either zero or MATRIX_A and thus the desired effect.
 */
static uint32_t	matrix_decider[2] =
			  {0x0, MATRIX_A};

/*
 * Mark a PRNG's state as having been initialized.  This is the only
 * way to set that field nonzero; that way we can be sure that the
 * constants are set properly before the PRNG is used.
 *
 * As a side effect, set up some constants that the PRNG assumes are
 * valid.  These are calculated at initialization time rather than
 * being written as decimal constants because I frankly don't trust
 * the compiler's ASCII conversion routines.
 */
void mts_mark_initialized(
    mt_state*		state)		/* State vector to mark initialized */
    {
    int			i;		/* Power of 2 being calculated */

    /*
     * Figure out the proper multiplier for long-to-double conversion.  We
     * don't worry too much about efficiency, since the assumption is that
     * initialization is vastly rarer than generation of random numbers.
     */
    mt_32_to_double = 1.0;
    for (i = 0;  i < BIT_WIDTH;  i++)
	mt_32_to_double /= 2.0;
    mt_64_to_double = mt_32_to_double;
    for (i = 0;  i < BIT_WIDTH;  i++)
	mt_64_to_double /= 2.0;

    state->initialized = 1;
    }

/*
 * Initialize a Mersenne Twist PRNG from a 32-bit seed.
 *
 * According to Matsumoto and Nishimura's paper, the seed array needs to be
 * filled with nonzero values.  (My own interpretation is that there needs
 * to be at least one nonzero value).  They suggest using Knuth's PRNG from
 * Line 25, Table 1, p.102, "The Art of Computer Programming," Vol. 2 (2nd
 * ed.), 1981.  I find that rather odd, since that particular PRNG is
 * sensitive to having an initial seed of zero (there are many other PRNGs
 * out there that have an additive component, so that a seed of zero does
 * not generate a repeating-zero sequence).  However, one thing I learned
 * from reading Knuth is that you shouldn't second-guess mathematicians
 * about PRNGs.  Also, by following M & N's approach, we will be compatible
 * with other implementations.  So I'm going to stick with their version,
 * with the single addition that a zero seed will be changed to their
 * default seed.
 */
void mts_seed32(
    mt_state*		state,		/* State vector to initialize */
    uint32_t		seed)		/* 32-bit seed to start from */
    {
    int			i;		/* Loop index */

    if (seed == 0)
	seed = DEFAULT_SEED32_OLD;

    /*
     * Fill the state vector using Knuth's PRNG.  Be sure to mask down
     * to 32 bits in case we're running on a machine with 64-bit
     * ints.
     */
    state->statevec[MT_STATE_SIZE - 1] = seed & 0xffffffff;
    for (i = MT_STATE_SIZE - 2;  i >= 0;  i--)
        state->statevec[i] =
          (KNUTH_MULTIPLIER_OLD * state->statevec[i + 1]) & 0xffffffff;

    state->stateptr = MT_STATE_SIZE;
    mts_mark_initialized(state);

    /*
     * Matsumoto and Nishimura's implementation refreshes the PRNG
     * immediately after running the Knuth algorithm.  This is
     * probably a good thing, since Knuth's PRNG doesn't generate very
     * good numbers.
     */
    mts_refresh(state);
    }

/*
 * Initialize a Mersenne Twist PRNG from a 32-bit seed, using
 * Matsumoto and Nishimura's newer reference implementation (Jan. 9,
 * 2002).
 */
void mts_seed32new(
    mt_state*		state,		/* State vector to initialize */
    uint32_t		seed)		/* 32-bit seed to start from */
    {
    int			i;		/* Loop index */
    uint32_t		nextval;	/* Next value being calculated */

    /*
     * Fill the state vector using Knuth's PRNG.  Be sure to mask down
     * to 32 bits in case we're running on a machine with 64-bit
     * ints.
     */
    state->statevec[MT_STATE_SIZE - 1] = seed & 0xffffffffUL;
    for (i = MT_STATE_SIZE - 2;  i >= 0;  i--)
	{
	nextval = state->statevec[i + 1] >> KNUTH_SHIFT;
	nextval ^= state->statevec[i + 1];
	nextval *= KNUTH_MULTIPLIER_NEW;
	nextval += (MT_STATE_SIZE - 1) - i;
	state->statevec[i] = nextval & 0xffffffffUL;
	}

    state->stateptr = MT_STATE_SIZE;
    mts_mark_initialized(state);

    /*
     * Matsumoto and Nishimura's implementation refreshes the PRNG
     * immediately after running the Knuth algorithm.  This is
     * probably a good thing, since Knuth's PRNG doesn't generate very
     * good numbers.
     */
    mts_refresh(state);
    }

/*
 * Initialize a Mersenne Twist RNG from a 624-int seed.
 *
 * The 32-bit seeding routine given by Matsumoto and Nishimura has the
 * drawback that there are only 2^32 different PRNG sequences that can be
 * generated by calling that function.  This function solves that problem by
 * allowing a full 624*32-bit state to be given.  (Note that 31 bits of the
 * given state are ignored; see the paper for details.)
 *
 * Since an all-zero state would cause the PRNG to cycle, we detect
 * that case and abort the program (silently, since there is no
 * portable way to produce a message in both C and C++ environments).
 * An alternative would be to artificially force the state to some
 * known nonzero value.  However, I feel that if the user is providing
 * a full state, it's a bug to provide all zeros and we we shouldn't
 * conceal the bug by generating apparently correct output.
 */
void mts_seedfull(
    mt_state*		state,		/* State vector to initialize */
    uint32_t		seeds[MT_STATE_SIZE])
					/* Seed array to start from */
    {
    int			had_nz = 0;	/* NZ if at least one NZ seen */
    int			i;		/* Loop index */

    for (i = 0;  i < MT_STATE_SIZE;  i++)
        {
        if (seeds[i] != 0)
	    had_nz = 1;
        state->statevec[MT_STATE_SIZE - i - 1] = seeds[i];
	}

    if (!had_nz)
	{
	/*
	 * It would be nice to abort with a message.  Unfortunately, fprintf
	 * isn't compatible with all implementations of C++.  In the
	 * interest of C++ compatibility, therefore, we will simply abort
	 * silently.  It will unfortunately be up to a programmer to run
	 * under a debugger (or examine the core dump) to discover the cause
	 * of the abort.
	 */
	abort();
	}

    state->stateptr = MT_STATE_SIZE;
    mts_mark_initialized(state);
    }

/*
 * Choose a seed based on some moderately random input.  Prefers
 * /dev/urandom as a source of random numbers, but uses the lower bits
 * of the current time if /dev/urandom is not available.  In any case,
 * only provides 32 bits of entropy.
 */
void mts_seed(
    mt_state*		state)		/* State vector to seed */
    {
    mts_devseed(state, DEVURANDOM);
    }

/*
 * Choose a seed based on some fairly random input.  Prefers
 * /dev/random as a source of random numbers, but uses the lower bits
 * of the current time if /dev/random is not available.  In any case,
 * only provides 32 bits of entropy.
 */
void mts_goodseed(
    mt_state*		state)		/* State vector to seed */
    {
    mts_devseed(state, DEVRANDOM);
    }

/*
 * Choose a seed based on a random-number device given by the caller.
 * If that device can't be opened, use the lower 32 bits from the
 * current time.
 */
static void mts_devseed(
    mt_state*		state,		/* State vector to seed */
    char*		seed_dev)	/* Device to seed from */
    {
    int			bytesread;	/* Byte count read from device */
    int			nextbyte;	/* Index of next byte to read */
    FILE*		ranfile;	/* Access to device */
    union
	{
	char		ranbuffer[sizeof (uint32_t)];
					/* Space for reading random int */
	uint32_t	randomvalue;	/* Random value for initialization */
	}
			randomunion;	/* Union for reading random int */
#ifdef WIN32
    struct _timeb	tb;		/* Time of day (Windows mode) */
#else /* WIN32 */
    struct timeval	tv;		/* Time of day */
    struct timezone	tz;		/* Dummy for gettimeofday */
#endif /* WIN32 */

    ranfile = fopen(seed_dev, "rb");
    if (ranfile != NULL)
	{
	for (nextbyte = 0;
	  nextbyte < (int)sizeof randomunion.ranbuffer;
	  nextbyte += bytesread)
	    {
	    bytesread = fread(&randomunion.ranbuffer[nextbyte], 1,
	      sizeof randomunion.ranbuffer - nextbyte, ranfile);
	    if (bytesread == 0)
		break;
	    }
	fclose(ranfile);
	if (nextbyte == sizeof randomunion.ranbuffer)
	    {
	    mts_seed32new(state, randomunion.randomvalue);
	    return;
	    }
	}

    /*
     * The device isn't available.  Use the time.  We will
     * assume that the time of day is accurate to microsecond
     * resolution, which is true on most modern machines.
     */
#ifdef WIN32
    (void) _ftime (&tb);
#else /* WIN32 */
    (void) gettimeofday (&tv, &tz);
#endif /* WIN32 */

    /*
     * We just let the excess part of the seconds field overflow
     */
#ifdef WIN32
    randomunion.randomvalue = tb.time * 1000 + tb.millitm;
#else /* WIN32 */
    randomunion.randomvalue = tv.tv_sec * 1000000 + tv.tv_usec;
#endif /* WIN32 */
    mts_seed32new(state, randomunion.randomvalue);
    }

/*
 * Choose a seed based on the best random input available.  Prefers
 * /dev/random as a source of random numbers, and reads the entire
 * 624-int state from that device.  Because of this approach, the
 * function can take a long time (in real time) to complete, since
 * /dev/random may have to wait quite a while before it can provide
 * that much randomness.  If /dev/random is unavailable, falls back to
 * calling mts_goodseed.
 */
void mts_bestseed(
    mt_state*		state)		/* State vector to seed */
    {
    int			bytesread;	/* Byte count read from device */
    int			nextbyte;	/* Index of next byte to read */
    FILE*		ranfile;	/* Access to device */

    ranfile = fopen("/dev/random", "rb");
    if (ranfile == NULL)
	{
	mts_goodseed(state);
	return;
	}

    for (nextbyte = 0;
      nextbyte < (int)sizeof state->statevec;
      nextbyte += bytesread)
	{
	bytesread = fread((char *)&state->statevec + nextbyte, 1,
	  sizeof state->statevec - nextbyte, ranfile);
	if (bytesread == 0)
	    {
	    /*
	     * Something went wrong.  Fall back to time-based seeding.
	     */
	    fclose(ranfile);
	    mts_goodseed(state);
	    return;
	    }
	}
    }

/*
 * Generate 624 more random values.  This function is called when the
 * state vector has been exhausted.  It generates another batch of
 * pseudo-random values.  The performance of this function is critical
 * to the performance of the Mersenne Twist PRNG, so it has been
 * highly optimized.
 */
void mts_refresh(
    register mt_state*	state)		/* State for the PRNG */
    {
    register int	i;		/* Index into the state */
    register uint32_t*
			state_ptr;	/* Next place to get from state */
    register uint32_t
			value1;		/* Scratch val picked up from state */
    register uint32_t
			value2;		/* Scratch val picked up from state */

    /*
     * Start by making sure a random seed has been set.  If not, set
     * one.
     */
    if (!state->initialized)
	{
	mts_seed32(state, DEFAULT_SEED32_OLD);
	return;				/* Seed32 calls us recursively */
	}

    /*
     * Now generate the new pseudorandom values by applying the
     * recurrence relation.  We use two loops and a final
     * 2-statement sequence so that we can handle the wraparound
     * explicitly, rather than having to use the relatively slow
     * modulus operator.
     *
     * In essence, the recurrence relation concatenates bits
     * chosen from the current random value (last time around)
     * with the immediately preceding one.  Then it
     * matrix-multiplies the concatenated bits with a value
     * RECURRENCE_OFFSET away and a constant matrix.  The matrix
     * multiplication reduces to a shift and two XORs.
     *
     * Some comments on the optimizations are in order:
     *
     * Strictly speaking, none of the optimizations should be
     * necessary.  All could conceivably be done by a really good
     * compiler.  However, the compilers available to me aren't quite
     * smart enough, so hand optimization needs to be done.
     *
     * Shawn Cokus was the first to achieve a major speedup.  In the
     * original code, the first value given to COMBINE_BITS (in my
     * characterization) was re-fetched from the state array, rather
     * than being carried in a scratch variable.  Cokus noticed that
     * the first argument to COMBINE_BITS could be saved in a register
     * in the previous loop iteration, getting rid of the need for an
     * expensive memory reference.
     *
     * Cokus also switched to using pointers to access the state
     * array and broke the original loop into two so that he could
     * avoid using the expensive modulus operator.  Cokus used three
     * pointers; Richard J. Wagner noticed that the offsets between
     * the three were constant, so that they could be collapsed into a
     * single pointer and constant-offset accesses.  This is clearly
     * faster on x86 architectures, and is the same cost on RISC
     * machines.  A secondary benefit is that Cokus' version was
     * register-starved on the x86, while Wagner's version was not.
     *
     * I made several smaller improvements to these observations.
     * First, I reversed the contents of the state vector.  In the
     * current version of the code, this change doesn't directly
     * affect the performance of the refresh loop, but it has the nice
     * side benefit that an all-zero state structure represents an
     * uninitialized generator.  It also slightly speeds up the
     * random-number routines, since they can compare the state
     * pointer against zero instead of against a constant (this makes
     * the biggest difference on RISC machines).
     *
     * Second, I returned to Matsumoto and Nishimura's original
     * technique of using a lookup table to decide whether to xor the
     * constant vector A (MATRIX_A in this code) with the newly
     * computed value.  Cokus and Wagner had used the ?: operator,
     * which requires a test and branch.  Modern machines don't like
     * branches, so the table lookup is faster.
     *
     * Third, in the Cokus and Wagner versions the loop ends with a
     * statement similar to "value1 = value2", which is necessary to
     * carry the fetched value into the next loop iteration.  I
     * recognized that if the loop were unrolled so that it generates
     * two values per iteration, a bit of variable renaming would get
     * rid of that assignment.  A nice side effect is that the
     * overhead of loop control becomes only half as large.
     *
     * It is possible to improve the code's performance somewhat
     * further.  In particular, since the second loop's loop count
     * factors into 2*2*3*3*11, it could be unrolled yet further.
     * That's easy to do, too: just change the "/ 2" into a division
     * by whatever factor you choose, and then use cut-and-paste to
     * duplicate the code in the body.  To remove a few more cycles,
     * fix the code to decrement state_ptr by the unrolling factor, and
     * adjust the various offsets appropriately.  However, the payoff
     * will be small.  At the moment, the x86 version of the loop is
     * 25 instructions, of which 3 are involved in loop control
     * (including the decrementing of state_ptr).  Further unrolling by
     * a factor of 2 would thus produce only about a 6% speedup.
     *
     * The logical extension of the unrolling
     * approach would be to remove the loops and create 624
     * appropriate copies of the body.  However, I think that doing
     * the latter is a bit excessive!
     *
     * I suspect that a superior optimization would be to simplify the
     * mathematical operations involved in the recurrence relation.
     * However, I have no idea whether such a simplification is
     * feasible.
     */
    state_ptr = &state->statevec[MT_STATE_SIZE - 1];
    value1 = *state_ptr;
    for (i = (MT_STATE_SIZE - RECURRENCE_OFFSET) / 2;  --i >= 0;  )
	{
	state_ptr -= 2;
	value2 = state_ptr[1];
	value1 = COMBINE_BITS(value1, value2);
	state_ptr[2] =
	  MATRIX_MULTIPLY(state_ptr[-RECURRENCE_OFFSET + 2], value1);
	value1 = state_ptr[0];
	value2 = COMBINE_BITS(value2, value1);
	state_ptr[1] =
	  MATRIX_MULTIPLY(state_ptr[-RECURRENCE_OFFSET + 1], value2);
	}
    value2 = *--state_ptr;
    value1 = COMBINE_BITS(value1, value2);
    state_ptr[1] =
      MATRIX_MULTIPLY(state_ptr[-RECURRENCE_OFFSET + 1], value1);

    for (i = (RECURRENCE_OFFSET - 1) / 2;  --i >= 0;  )
	{
	state_ptr -= 2;
	value1 = state_ptr[1];
	value2 = COMBINE_BITS(value2, value1);
	state_ptr[2] =
	  MATRIX_MULTIPLY(state_ptr[MT_STATE_SIZE - RECURRENCE_OFFSET + 2],
	    value2);
	value2 = state_ptr[0];
	value1 = COMBINE_BITS(value1, value2);
	state_ptr[1] =
	  MATRIX_MULTIPLY(state_ptr[MT_STATE_SIZE - RECURRENCE_OFFSET + 1],
	    value1);
	}

    /*
     * The final entry in the table requires the "previous" value
     * to be gotten from the other end of the state vector, so it
     * must be handled specially.
     */
    value1 = COMBINE_BITS(value2, state->statevec[MT_STATE_SIZE - 1]);
    *state_ptr =
      MATRIX_MULTIPLY(state_ptr[MT_STATE_SIZE - RECURRENCE_OFFSET], value1);

    /*
     * Now that refresh is complete, reset the state pointer to allow more
     * pseudorandom values to be fetched from the state array.
     */
    state->stateptr = MT_STATE_SIZE;
    }

/*
 * Save state to a file.  The save format is compatible with Richard
 * J. Wagner's format, although the details are different.  Returns NZ
 * if the save succeeded.  Produces one very long line containing 625
 * numbers.
 */
int mts_savestate(
    FILE*		statefile,	/* File to save to */
    mt_state*		state)		/* State to be saved */
    {
    int			i;		/* Next word to save */

    if (!state->initialized)
	mts_seed32(state, DEFAULT_SEED32_OLD);

    for (i = MT_STATE_SIZE;  --i >= 0;  )
	{
	if (fprintf(statefile, "%" PRIu32 " ", state->statevec[i]) < 0)
	    return 0;
	}

    if (fprintf(statefile, "%d\n", state->stateptr) < 0)
	return 0;

    return 1;
    }

/*
 * Load state from a file.  Returns NZ if the load succeeded.
 */
int mts_loadstate(
    FILE*		statefile,	/* File to load from */
    mt_state*		state)		/* State to be loaded */
    {
    int			i;		/* Next word to load */

    /*
     * Set the state to "uninitialized" in case the load fails.
     */
    state->initialized = state->stateptr = 0;

    for (i = MT_STATE_SIZE;  --i >= 0;  )
	{
	if (fscanf(statefile, "%" SCNu32, &state->statevec[i]) != 1)
	    return 0;
	}

    if (fscanf(statefile, "%d", &state->stateptr) != 1)
	return 0;

    /*
     * The only validity checking we can do is to insist that the
     * state pointer be valid.
     */
    if (state->stateptr < 0  ||  state->stateptr > MT_STATE_SIZE)
	{
	state->stateptr = 0;
	return 0;
	}

    mts_mark_initialized(state);

    return 1;
    }

/*
 * Initialize the default Mersenne Twist PRNG from a 32-bit seed.
 *
 * See mts_seed32 for full commentary.
 */
void mt_seed32(
    uint32_t		seed)		/* 32-bit seed to start from */
    {
    mts_seed32(&mt_default_state, seed);
    }

/*
 * Initialize the default Mersenne Twist PRNG from a 32-bit seed.
 *
 * See mts_seed32new for full commentary.
 */
void mt_seed32new(
    uint32_t		seed)		/* 32-bit seed to start from */
    {
    mts_seed32new(&mt_default_state, seed);
    }

/*
 * Initialize a Mersenne Twist RNG from a 624-int seed.
 *
 * See mts_seedfull for full commentary.
 */
void mt_seedfull(
    uint32_t		seeds[MT_STATE_SIZE])
    {
    mts_seedfull(&mt_default_state, seeds);
    }

/*
 * Initialize the PRNG from random input.  See mts_seed.
 */
void mt_seed()
    {
    mts_seed(&mt_default_state);
    }

/*
 * Initialize the PRNG from random input.  See mts_goodseed.
 */
void mt_goodseed()
    {
    mts_goodseed(&mt_default_state);
    }

/*
 * Initialize the PRNG from random input.  See mts_bestseed.
 */
void mt_bestseed()
    {
    mts_bestseed(&mt_default_state);
    }

/*
 * Return a pointer to the current state of the PRNG.  The purpose of
 * this function is to allow the state to be saved for later
 * restoration.  The state should not be modified; instead, it should
 * be reused later as a parameter to one of the mts_xxx functions.
 */
extern mt_state* mt_getstate()
    {
    return &mt_default_state;
    }

/*
 * Save state to a file.  The save format is compatible with Richard
 * J. Wagner's format, although the details are different.
 */
int mt_savestate(
    FILE*		statefile)	/* File to save to */
    {
    return mts_savestate(statefile, &mt_default_state);
    }

/*
 * Load state from a file.
 */
int mt_loadstate(
    FILE*		statefile)	/* File to load from */
    {
    return mts_loadstate(statefile, &mt_default_state);
    }







src/mtwist-1.1/mtwist.h

#ifndef MTWIST_H
#define MTWIST_H

/*
 * $Id: mtwist.h,v 1.20 2010-12-11 00:28:18+13 geoff Exp $
 *
 * Header file for C/C++ use of the Mersenne-Twist pseudo-RNG.  See
 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for full
 * information.
 *
 * Author of this header file: Geoff Kuenning, March 18, 2001.
 *
 * IMPORTANT NOTE: this implementation assumes a modern compiler.  In
 * particular, it assumes that the "inline" keyword is available, and
 * that the "stdint.h" header file is present.
 *
 * The variables above are defined in an inverted sense because I
 * expect that most modern compilers will support these features.  By
 * inverting the sense, this common case will require no special
 * compiler flags.
 *
 * IMPORTANT NOTE: this software requires access to a 32-bit type.
 * The Mersenne Twist algorithms are not guaranteed to produce correct
 * results with a 64-bit type.
 *
 * The executable part of this software is based on LGPL-ed code by
 * Takuji Nishimura.  The header file is therefore also distributed
 * under the LGPL:
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public License
 * as published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.  You should have
 * received a copy of the GNU Library General Public License along
 * with this library; if not, write to the Free Foundation, Inc., 59
 * Temple Place, Suite 330, Boston, MA 02111-1307 USA
 *
 * $Log: mtwist.h,v $
 * Revision 1.20  2010-12-11 00:28:18+13  geoff
 * Add support for GENERATE_CODE_IN_HEADER.  Fix the URL for the original
 * Web page.
 *
 * Revision 1.19  2010-06-24 20:53:59+12  geoff
 * Switch to using types from stdint.h.  Get rid of all compilation
 * options.
 *
 * Revision 1.18  2010-06-24 00:29:38-07  geoff
 * Do a better job of auto-determining MT_MACHINE_BITS.
 *
 * Revision 1.17  2007-10-26 00:21:06-07  geoff
 * Introduce, document, and use the new mt_u32bit_t type so that the code
 * will compile and run on 64-bit platforms (although it does not
 * currently use the 64-bit Mersenne Twist algorithm).
 *
 * Revision 1.16  2005/11/11 08:21:39  geoff
 * If possible, try to infer MT_MACHINE_BITS from limits.h.
 *
 * Revision 1.15  2003/09/11 23:56:20  geoff
 * Allow stdio references in C++ files; it turns out that ANSI has
 * blessed it.  Declare the various functions as external even if they're
 * inlined or being compiled directly (in mtwist.c).  Get rid of a #ifdef
 * that can't ever be true.
 *
 * Revision 1.14  2003/09/11 05:50:53  geoff
 * Don't allow stdio references from C++, since they're not guaranteed to
 * work on all compilers.  Disable inlining using the MT_INLINE keyword
 * rather than #defining inline, since doing the latter can affect other
 * files and functions than our own.
 *
 * Revision 1.13  2003/07/01 23:29:29  geoff
 * Refer to streams from the standard library using the correct namespace.
 *
 * Revision 1.12  2002/10/30 07:39:54  geoff
 * Declare the new seeding functions.
 *
 * Revision 1.11  2001/06/19 00:41:16  geoff
 * For consistency with other C++ types, don't put out a newline after
 * the saved data.
 *
 * Revision 1.10  2001/06/18 10:09:24  geoff
 * Fix some places where I forgot to set one of the result values.  Make
 * the C++ state vector protected so the random-distributions package can
 * pass it to the C functions.
 *
 * Revision 1.9  2001/06/18 05:40:12  geoff
 * Prefix the compile options with MT_.
 *
 * Revision 1.8  2001/06/14 10:26:59  geoff
 * Invert the sense of the #define flags so that the default is the
 * normal case (if gcc is normal!).  Also default MT_MACHINE_BITS to 32.
 *
 * Revision 1.7  2001/06/14 10:10:38  geoff
 * Move the critical-path PRNG code into the header file so that it can
 * be inlined.  Add saving/loading of state.  Add functions to seed based
 * on /dev/random or the time.  Add the function-call operator in the C++
 * code.
 *
 * Revision 1.6  2001/06/11 10:00:04  geoff
 * Add declarations of the refresh and /dev/random seeding functions.
 * Change getstate to return a complete state pointer, since knowing the
 * position in the state vector is critical to restoring the state.
 *
 * Revision 1.5  2001/04/23 08:36:03  geoff
 * Remember to zero the state pointer when constructing, since otherwise
 * proper initialization won't happen.
 *
 * Revision 1.4  2001/04/14 01:33:32  geoff
 * Clarify the license
 *
 * Revision 1.3  2001/04/14 01:04:54  geoff
 * Add a C++ class, mt_prng, that makes usage more convenient for C++
 * programmers.
 *
 * Revision 1.2  2001/04/09 08:45:00  geoff
 * Fix the name in the #ifndef wrapper, and clean up some outdated comments.
 *
 * Revision 1.1  2001/04/07 09:43:41  geoff
 * Initial revision
 *
 */

#include <stdio.h>
#ifdef __cplusplus
#include <iostream>
#endif /* __cplusplus */

#define __STDC_LIMIT_MACROS
#include <stdint.h>

/*
 * The following value is a fundamental parameter of the algorithm.
 * It was found experimentally using methods described in Matsumoto
 * and Nishimura's paper.  It is exceedingly magic; don't change it.
 */
#define MT_STATE_SIZE	624		/* Size of the MT state vector */

/*
 * Internal state for an MT RNG.  The user can keep multiple mt_state
 * structures around as a way of generating multiple streams of random
 * numbers.
 *
 * In Matsumoto and Nishimura's original paper, the state vector was
 * processed in a forward direction.  I have reversed the state vector
 * in this implementation.  The reason for the reversal is that it
 * allows the critical path to use a test against zero instead of a
 * test against 624 to detect the need to refresh the state.  on most
 * machines, testing against zero is slightly faster.  It also means
 * that a state that has been set to all zeros will be correctly
 * detected as needing initialization; this means that setting a state
 * vector to zero (either with memset or by statically allocating it)
 * will cause the RNG to operate properly.
 */
typedef struct
    {
    uint32_t		statevec[MT_STATE_SIZE];
					/* Vector holding current state */
    int			stateptr;	/* Next state entry to be used */
    int			initialized;	/* NZ if state was initialized */
    }
			mt_state;

#ifdef __cplusplus
extern "C"
    {
#endif

/*
 * Functions for manipulating any generator (given a state pointer).
 */
extern void		mts_mark_initialized(mt_state* state);
					/* Mark a PRNG state as initialized */
extern void		mts_seed32(mt_state* state, uint32_t seed);
					/* Set random seed for any generator */
extern void		mts_seed32new(mt_state* state, uint32_t seed);
					/* Set random seed for any generator */
extern void		mts_seedfull(mt_state* state,
			  uint32_t seeds[MT_STATE_SIZE]);
					/* Set complicated seed for any gen. */
extern void		mts_seed(mt_state* state);
					/* Choose seed from random input. */
					/* ..Prefers /dev/urandom; uses time */
					/* ..if /dev/urandom unavailable. */
					/* ..Only gives 32 bits of entropy. */
extern void		mts_goodseed(mt_state* state);
					/* Choose seed from more random */
					/* ..input than mts_seed.  Prefers */
					/* ../dev/random; uses time if that */
					/* ..is unavailable.  Only gives 32 */
					/* ..bits of entropy. */
extern void		mts_bestseed(mt_state* state);
					/* Choose seed from extremely random */
					/* ..input (can be *very* slow). */
					/* ..Prefers /dev/random and reads */
					/* ..the entire state from there. */
					/* ..If /dev/random is unavailable, */
					/* ..falls back to mt_goodseed().  */
					/* ..Not usually worth the cost.  */
extern void		mts_refresh(mt_state* state);
					/* Generate 624 more random values */
extern int		mts_savestate(FILE* statefile, mt_state* state);
					/* Save state to a file (ASCII). */
					/* ..Returns NZ if succeeded. */
extern int		mts_loadstate(FILE* statefile, mt_state* state);
					/* Load state from a file (ASCII). */
					/* ..Returns NZ if succeeded. */

/*
 * Functions for manipulating the default generator.
 */
extern void		mt_seed32(uint32_t seed);
					/* Set random seed for default gen. */
extern void		mt_seed32new(uint32_t seed);
					/* Set random seed for default gen. */
extern void		mt_seedfull(uint32_t seeds[MT_STATE_SIZE]);
					/* Set complicated seed for default */
extern void		mt_seed(void);	/* Choose seed from random input. */
					/* ..Prefers /dev/urandom; uses time */
					/* ..if /dev/urandom unavailable. */
					/* ..Only gives 32 bits of entropy. */
extern void		mt_goodseed(void);
					/* Choose seed from more random */
					/* ..input than mts_seed.  Prefers */
					/* ../dev/random; uses time if that */
					/* ..is unavailable.  Only gives 32 */
					/* ..bits of entropy. */
extern void		mt_bestseed(void);
					/* Choose seed from extremely random */
					/* ..input (can be *very* slow). */
					/* ..Prefers /dev/random and reads */
					/* ..the entire state from there. */
					/* ..If /dev/random is unavailable, */
					/* ..falls back to mt_goodseed().  */
					/* ..Not usually worth the cost.  */
extern mt_state*	mt_getstate(void);
					/* Get current state of default */
					/* ..generator */
extern int		mt_savestate(FILE* statefile);
					/* Save state to a file (ASCII) */
					/* ..Returns NZ if succeeded. */
extern int		mt_loadstate(FILE* statefile);
					/* Load state from a file (ASCII) */
					/* ..Returns NZ if succeeded. */

#ifdef __cplusplus
    }
#endif

/*
 * Functions for generating random numbers.  The actual code of the
 * functions is given in this file so that it can be declared inline.
 * For compilers that don't have the inline feature, mtwist.c will
 * incorporate this file with some clever #defining so that the code
 * actually gets compiled.  In that case, however, "extern"
 * definitions will be needed here, so we give them.
 */
#ifdef __cplusplus
#endif /* __cplusplus */

extern uint32_t		mts_lrand(mt_state* state);
					/* Generate 32-bit value, any gen. */
#ifdef UINT64_MAX
extern uint64_t		mts_llrand(mt_state* state);
					/* Generate 64-bit value, any gen. */
#endif /* UINT64_MAX */
extern double		mts_drand(mt_state* state);
					/* Generate floating value, any gen. */
					/* Fast, with only 32-bit precision */
extern double		mts_ldrand(mt_state* state);
					/* Generate floating value, any gen. */
					/* Slower, with 64-bit precision */

extern uint32_t		mt_lrand(void);	/* Generate 32-bit random value */
#ifdef UINT64_MAX
extern uint64_t		mt_llrand(void);
					/* Generate 64-bit random value */
#endif /* UINT64_MAX */
extern double		mt_drand(void);
					/* Generate floating value */
					/* Fast, with only 32-bit precision */
extern double		mt_ldrand(void);
					/* Generate floating value */
					/* Slower, with 64-bit precision */

/*
 * Tempering parameters.  These are perhaps the most magic of all the magic
 * values in the algorithm.  The values are again experimentally determined.
 * The values generated by the recurrence relation (constants above) are not
 * equidistributed in 623-space.  For some reason, the tempering process
 * produces that effect.  Don't ask me why.  Read the paper if you can
 * understand the math.  Or just trust these magic numbers.
 */
#define MT_TEMPERING_MASK_B 0x9d2c5680
#define MT_TEMPERING_MASK_C 0xefc60000
#define MT_TEMPERING_SHIFT_U(y) \
			(y >> 11)
#define MT_TEMPERING_SHIFT_S(y) \
			(y << 7)
#define MT_TEMPERING_SHIFT_T(y) \
			(y << 15)
#define MT_TEMPERING_SHIFT_L(y) \
			(y >> 18)

/*
 * Macros to do the tempering.  MT_PRE_TEMPER does all but the last step;
 * it's useful for situations where the final step can be incorporated
 * into a return statement.  MT_FINAL_TEMPER does that final step (not as
 * an assignment).  MT_TEMPER does the entire process.  Note that
 * MT_PRE_TEMPER and MT_TEMPER both modify their arguments.
 */
#define MT_PRE_TEMPER(value)						\
    do									\
	{								\
	value ^= MT_TEMPERING_SHIFT_U(value);				\
	value ^= MT_TEMPERING_SHIFT_S(value) & MT_TEMPERING_MASK_B;	\
	value ^= MT_TEMPERING_SHIFT_T(value) & MT_TEMPERING_MASK_C;	\
	}								\
	while (0)
#define MT_FINAL_TEMPER(value) \
			((value) ^ MT_TEMPERING_SHIFT_L(value))
#define MT_TEMPER(value)						\
    do									\
	{								\
	value ^= MT_TEMPERING_SHIFT_U(value);				\
	value ^= MT_TEMPERING_SHIFT_S(value) & MT_TEMPERING_MASK_B;	\
	value ^= MT_TEMPERING_SHIFT_T(value) & MT_TEMPERING_MASK_C;	\
	value ^= MT_TEMPERING_SHIFT_L(value);				\
	}								\
	while (0)

extern mt_state		mt_default_state;
					/* State of the default generator */
extern double		mt_32_to_double;
					/* Multiplier to convert long to dbl */
extern double		mt_64_to_double;
					/* Mult'r to cvt long long to dbl */

/*
 * In gcc, inline functions must be declared extern or they'll produce
 * assembly code (and thus linking errors).  We have to work around
 * that difficulty with the MT_EXTERN define.
 */
#ifndef MT_EXTERN
#ifdef __cplusplus
#define MT_EXTERN			/* C++ doesn't need static */
#else /* __cplusplus */
#define MT_EXTERN	extern		/* C (at least gcc) needs extern */
#endif /* __cplusplus */
#endif /* MT_EXTERN */

/*
 * Make it possible for mtwist.c to disable the inline keyword.  We
 * use our own keyword so that we don't interfere with inlining in
 * C/C++ header files, above.
 */
#ifndef MT_INLINE
#define MT_INLINE	inline		/* Compiler has inlining */
#endif /* MT_INLINE */

/*
 * Try to guess whether the compiler is one (like gcc) that requires
 * inline code to be available in the header file, or a smarter one
 * that gets inlines directly from object files.  But if we've been
 * given the information, trust it.
 */
#ifndef MT_GENERATE_CODE_IN_HEADER
#ifdef __GNUC__
#define MT_GENERATE_CODE_IN_HEADER 1
#endif /* __GNUC__ */
#if defined(__INTEL_COMPILER)  ||  defined(_MSC_VER)
#define MT_GENERATE_CODE_IN_HEADER 0
#endif /* __INTEL_COMPILER || _MSC_VER */
#endif /* MT_GENERATE_CODE_IN_HEADER */

#if MT_GENERATE_CODE_IN_HEADER
/*
 * Generate a random number in the range 0 to 2^32-1, inclusive, working
 * from a given state vector.
 *
 * The generator is optimized for speed.  The primary optimization is that
 * the pseudorandom numbers are generated in batches of MT_STATE_SIZE.  This
 * saves the cost of a modulus operation in the critical path.
 */
MT_EXTERN MT_INLINE uint32_t mts_lrand(
    register mt_state*	state)		/* State for the PRNG */
    {
    register uint32_t	random_value;	/* Pseudorandom value generated */

    if (state->stateptr <= 0)
	mts_refresh(state);

    random_value = state->statevec[--state->stateptr];
    MT_PRE_TEMPER(random_value);
    return MT_FINAL_TEMPER(random_value);
    }

#ifdef UINT64_MAX
/*
 * Generate a random number in the range 0 to 2^64-1, inclusive, working
 * from a given state vector.
 *
 * According to Matsumoto and Nishimura, such a number can be generated by
 * simply concatenating two 32-bit pseudorandom numbers.  Who am I to argue?
 *
 * Note that there is a slight inefficiency here: if the 624-entry state is
 * recycled on the second call to mts_lrand, there will be an unnecessary
 * check to see if the state has been initialized.  The cost of that check
 * seems small (since it happens only once every 624 random numbers, and
 * never if only 64-bit numbers are being generated), so I didn't bother to
 * optimize it out.  Doing so would be messy, since it would require two
 * nearly-identical internal implementations of mts_lrand.
 */
MT_EXTERN MT_INLINE uint64_t mts_llrand(
    register mt_state*	state)		/* State for the PRNG */
    {
    register uint32_t	random_value_1;	/* 1st pseudorandom value generated */
    register uint32_t	random_value_2;	/* 2nd pseudorandom value generated */

    /*
     * For maximum speed, we'll handle the two overflow cases
     * together.  That will save us one test in the common case, at
     * the expense of an extra one in the overflow case.
     */
    if (--state->stateptr <= 0)
	{
	if (state->stateptr < 0)
	    {
	    mts_refresh(state);
	    random_value_1 = state->statevec[--state->stateptr];
	    }
	else
	    {
	    random_value_1 = state->statevec[state->stateptr];
	    mts_refresh(state);
	    }
	}
    else
	random_value_1 = state->statevec[--state->stateptr];

    MT_TEMPER(random_value_1);

    random_value_2 = state->statevec[--state->stateptr];
    MT_PRE_TEMPER(random_value_2);

    return ((uint64_t) random_value_1 << 32)
      | (uint64_t) MT_FINAL_TEMPER(random_value_2);
    }
#endif /* UINT64_MAX */

/*
 * Generate a double-precision random number between 0 (inclusive) and 1.0
 * (exclusive).  This function is optimized for speed, but it only generates
 * 32 bits of precision.  Use mts_ldrand to get 64 bits of precision.
 */
MT_EXTERN MT_INLINE double mts_drand(
    register mt_state*	state)		/* State for the PRNG */
    {
    register uint32_t	random_value;	/* Pseudorandom value generated */

    if (state->stateptr <= 0)
	mts_refresh(state);

    random_value = state->statevec[--state->stateptr];
    MT_TEMPER(random_value);

    return random_value * mt_32_to_double;
    }

/*
 * Generate a double-precision random number between 0 (inclusive) and 1.0
 * (exclusive).  This function generates 64 bits of precision.  Use
 * mts_drand for more speed but less precision.
 */
MT_EXTERN MT_INLINE double mts_ldrand(
    register mt_state*	state)		/* State for the PRNG */
    {
#ifdef UINT64_MAX
    uint64_t		final_value;	/* Final (integer) value */
#endif /* UINT64_MAX */
    register uint32_t	random_value_1;	/* 1st pseudorandom value generated */
    register uint32_t	random_value_2;	/* 2nd pseudorandom value generated */

    /*
     * For maximum speed, we'll handle the two overflow cases
     * together.  That will save us one test in the common case, at
     * the expense of an extra one in the overflow case.
     */
    if (--state->stateptr <= 0)
	{
	if (state->stateptr < 0)
	    {
	    mts_refresh(state);
	    random_value_1 = state->statevec[--state->stateptr];
	    }
	else
	    {
	    random_value_1 = state->statevec[state->stateptr];
	    mts_refresh(state);
	    }
	}
    else
	random_value_1 = state->statevec[--state->stateptr];

    MT_TEMPER(random_value_1);

    random_value_2 = state->statevec[--state->stateptr];
    MT_TEMPER(random_value_2);

#ifdef UINT64_MAX
    final_value = ((uint64_t) random_value_1 << 32) | (uint64_t) random_value_2;
    return final_value * mt_64_to_double;
#else /* UINT64_MAX */
    return random_value_1 * mt_32_to_double + random_value_2 * mt_64_to_double;
#endif /* UINT64_MAX */
    }

/*
 * Generate a random number in the range 0 to 2^32-1, inclusive, working
 * from the default state vector.
 *
 * See mts_lrand for full commentary.
 */
MT_EXTERN MT_INLINE uint32_t mt_lrand()
    {
    register uint32_t	random_value;	/* Pseudorandom value generated */

    if (mt_default_state.stateptr <= 0)
	mts_refresh(&mt_default_state);

    random_value = mt_default_state.statevec[--mt_default_state.stateptr];
    MT_PRE_TEMPER(random_value);

    return MT_FINAL_TEMPER(random_value);
    }

#ifdef UINT64_MAX
/*
 * Generate a random number in the range 0 to 2^64-1, inclusive, working
 * from the default state vector.
 *
 * See mts_llrand for full commentary.
 */
MT_EXTERN MT_INLINE uint64_t mt_llrand()
    {
    register uint32_t	random_value_1;	/* 1st pseudorandom value generated */
    register uint32_t	random_value_2;	/* 2nd pseudorandom value generated */

    /*
     * For maximum speed, we'll handle the two overflow cases
     * together.  That will save us one test in the common case, at
     * the expense of an extra one in the overflow case.
     */
    if (--mt_default_state.stateptr <= 0)
	{
	if (mt_default_state.stateptr < 0)
	    {
	    mts_refresh(&mt_default_state);
	    random_value_1 =
	      mt_default_state.statevec[--mt_default_state.stateptr];
	    }
	else
	    {
	    random_value_1 =
	      mt_default_state.statevec[mt_default_state.stateptr];
	    mts_refresh(&mt_default_state);
	    }
	}
    else
	random_value_1 =
	  mt_default_state.statevec[--mt_default_state.stateptr];

    MT_TEMPER(random_value_1);

    random_value_2 = mt_default_state.statevec[--mt_default_state.stateptr];
    MT_PRE_TEMPER(random_value_2);

    return ((uint64_t) random_value_1 << 32)
      | (uint64_t) MT_FINAL_TEMPER(random_value_2);
    }
#endif /* UINT64_MAX */

/*
 * Generate a double-precision random number between 0 (inclusive) and 1.0
 * (exclusive).  This function is optimized for speed, but it only generates
 * 32 bits of precision.  Use mt_ldrand to get 64 bits of precision.
 */
MT_EXTERN MT_INLINE double mt_drand()
    {
    register uint32_t	random_value;	/* Pseudorandom value generated */

    if (mt_default_state.stateptr <= 0)
	mts_refresh(&mt_default_state);

    random_value = mt_default_state.statevec[--mt_default_state.stateptr];
    MT_TEMPER(random_value);

    return random_value * mt_32_to_double;
    }

/*
 * Generate a double-precision random number between 0 (inclusive) and 1.0
 * (exclusive).  This function generates 64 bits of precision.  Use
 * mts_drand for more speed but less precision.
 */
MT_EXTERN MT_INLINE double mt_ldrand(void)
    {
#ifdef UINT64_MAX
    uint64_t		final_value;	/* Final (integer) value */
#endif /* UINT64_MAX */
    register uint32_t	random_value_1;	/* 1st pseudorandom value generated */
    register uint32_t	random_value_2;	/* 2nd pseudorandom value generated */

    /*
     * For maximum speed, we'll handle the two overflow cases
     * together.  That will save us one test in the common case, at
     * the expense of an extra one in the overflow case.
     */
    if (--mt_default_state.stateptr <= 0)
	{
	if (mt_default_state.stateptr < 0)
	    {
	    mts_refresh(&mt_default_state);
	    random_value_1 =
	      mt_default_state.statevec[--mt_default_state.stateptr];
	    }
	else
	    {
	    random_value_1 =
	      mt_default_state.statevec[mt_default_state.stateptr];
	    mts_refresh(&mt_default_state);
	    }
	}
    else
	random_value_1 =
	  mt_default_state.statevec[--mt_default_state.stateptr];

    MT_TEMPER(random_value_1);

    random_value_2 = mt_default_state.statevec[--mt_default_state.stateptr];
    MT_TEMPER(random_value_2);

#ifdef UINT64_MAX
    final_value = ((uint64_t) random_value_1 << 32) | (uint64_t) random_value_2;
    return final_value * mt_64_to_double;
#else /* UINT64_MAX */
    return random_value_1 * mt_32_to_double + random_value_2 * mt_64_to_double;
#endif /* UINT64_MAX */
    }
#endif /* MT_GENERATE_CODE_IN_HEADER */

#ifdef __cplusplus
/*
 * C++ interface to the Mersenne Twist PRNG.  This class simply
 * provides a more C++-ish way to access the PRNG.  Only state-based
 * functions are provided.  All functions are inlined, both for speed
 * and so that the same implementation code can be used in C and C++.
 */
class mt_prng
    {
	friend class mt_empirical_distribution;
    public:
	/*
	 * Constructors and destructors.  The default constructor
	 * leaves initialization (seeding) for later unless pickSeed
	 * is true, in which case the seed is chosen based on either
	 * /dev/urandom (if available) or the system time.  The other
	 * constructors accept either a 32-bit seed, or a full
	 * 624-integer seed.
	 */
			mt_prng(	// Default constructor
			    bool pickSeed = false)
					// True to get seed from /dev/urandom
					// ..or time
			    {
			    state.stateptr = 0;
			    state.initialized = 0;
			    if (pickSeed)
				mts_seed(&state);
			    }
			mt_prng(uint32_t seed)
					// Construct with 32-bit seeding
			    {
			    state.stateptr = 0;
			    state.initialized = 0;
			    mts_seed32(&state, seed);
			    }
			mt_prng(uint32_t seeds[MT_STATE_SIZE])
					// Construct with full seeding
			    {
			    state.stateptr = 0;
			    state.initialized = 0;
			    mts_seedfull(&state, seeds);
			    }
			~mt_prng() { }

	/*
	 * Copy and assignment are best left defaulted.
	 */

	/*
	 * PRNG seeding functions.
	 */
	void		seed32(uint32_t seed)
					// Set 32-bit random seed
			    {
			    mts_seed32(&state, seed);
			    }
	void		seed32new(uint32_t seed)
					// Set 32-bit random seed
			    {
			    mts_seed32new(&state, seed);
			    }
	void		seedfull(uint32_t seeds[MT_STATE_SIZE])
					// Set complicated random seed
			    {
			    mts_seedfull(&state, seeds);
			    }
	void		seed()		// Choose seed from random input
			    {
			    mts_seed(&state);
			    }
	void		goodseed()	// Choose better seed from random input
			    {
			    mts_goodseed(&state);
			    }
	void		bestseed()	// Choose best seed from random input
			    {
			    mts_bestseed(&state);
			    }
	friend std::ostream&
			operator<<(std::ostream& stream, const mt_prng& rng);
	friend std::istream&
			operator>>(std::istream& stream, mt_prng& rng);

	/*
	 * PRNG generation functions
	 */
	uint32_t	lrand()		// Generate 32-bit pseudo-random value
			    {
			    return mts_lrand(&state);
			    }
#ifdef UINT64_MAX
	uint64_t	llrand()	// Generate 64-bit pseudo-random value
			    {
			    return mts_llrand(&state);
			    }
#endif /* UINT64_MAX */
	double		drand()		// Generate fast 32-bit floating value
			    {
			    return mts_drand(&state);
			    }
	double		ldrand()	// Generate slow 64-bit floating value
			    {
			    return mts_ldrand(&state);
			    }

	/*
	 * Following Richard J. Wagner's example, we overload the
	 * function-call operator to return a 64-bit floating value.
	 * That allows the common use of the PRNG to be simplified as
	 * in the following example:
	 *
	 *	mt_prng ranno(true);
	 *	// ...
	 *	coinFlip = ranno() >= 0.5 ? heads : tails;
	 */
	double		operator()()
			    {
			    return mts_drand(&state);
			    }
    protected:
	/*
	 * Protected data
	 */
	mt_state	state;		// Current state of the PRNG
    };

#if MT_GENERATE_CODE_IN_HEADER
/*
 * Save state to a stream.  See mts_savestate.
 */
MT_INLINE std::ostream& operator<<(
    std::ostream&	stream,		// Stream to save to
    const mt_prng&	rng)		// PRNG to save
    {
    for (int i = MT_STATE_SIZE;  --i >= 0;  )
	{
	if (!(stream << rng.state.statevec[i] << ' '))
	    return stream;
	}

    return stream << rng.state.stateptr;
    }

/*
 * Restore state from a stream.  See mts_loadstate.
 */
MT_INLINE std::istream& operator>>(
    std::istream&	stream,		// Stream to laod from
    mt_prng&		rng)		// PRNG to load
    {
    rng.state.initialized = rng.state.stateptr = 0;
    for (int i = MT_STATE_SIZE;  --i >= 0;  )
	{
	if (!(stream >> rng.state.statevec[i]))
	    return stream;
	}

    if (!(stream >> rng.state.stateptr))
	{
	rng.state.stateptr = 0;
	return stream;
	}

    /*
     * If the state is invalid, all we can do is to make it uninitialized.
     */
    if (rng.state.stateptr < 0  ||  rng.state.stateptr > MT_STATE_SIZE)
	{
	rng.state.stateptr = 0;
	return stream;
	}

    mts_mark_initialized(&rng.state);

    return stream;
    }
#endif /* MT_GENERATE_CODE_IN_HEADER */
#endif /* __cplusplus */

#endif /* MTWIST_H */
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.\"
.\" $Id: randistrs.3,v 1.5 2010-12-11 00:28:19+13 geoff Exp $
.\"
.\" $Log: randistrs.3,v $
.\" Revision 1.5  2010-12-11 00:28:19+13  geoff
.\" Document the new empirical-distribution interface.
.\"
.\" Revision 1.4  2010-06-24 20:53:59+12  geoff
.\" Change all documented declarations to use types from stdint.h.  Fix
.\" some restriction descriptions and a misplaced header.  Clarify the
.\" widths of the "l" versions for integer outputs.
.\"
.\" Revision 1.3  2010-06-09 13:19:10-07  geoff
.\" Fix the notation for open and closed intervals.
.\"
.\" Revision 1.2  2001-06-18 17:41:17-07  geoff
.\" Add documentation of the new "l" versions of all the functions.
.\"
.\" Revision 1.1  2001/06/18 10:04:20  geoff
.\" Initial revision
.\"
.\" 
.TH randistrs 3 "June 18, 2001" "" "Linux Programmer's Manual"
.SH NAME
rds_iuniform, rds_liuniform, rds_uniform, rds_luniform,
rds_exponential, rds_lexponential, rds_erlang, rds_lerlang,
rds_weibull, rds_lweibull, rds_normal, rds_lnormal, rds_lognormal,
rds_llognormal, rds_triangular, rds_ltriangular, rds_int_empirical,
rds_double_empirical, rds_continuous_empirical,
rd_iuniform, rd_liuniform, rd_uniform, rd_luniform,
rd_exponential, rd_lexponential, rd_erlang, rd_lerlang, rd_weibull,
rd_lweibull, rd_normal, rd_lnormal, rd_lognormal, rd_llognormal,
rd_triangular, rd_ltriangular, rd_empirical_setup, rd_empirical_free,
rd_int_empirical, rd_double_empirical, rd_continuous_empirical
\- generate
pseudo-random numbers in various distributions
.SH SYNOPSIS
.nf
.IR "#defines" " (see below)"
.br
.B
#include "randistrs.h"
.sp
.sp
C interface:
.sp
.BI "int32_t rds_iuniform(mt_state* " state ", int32_t " lower ", int32_t " upper ");"
.sp
.BI "int64_t rds_liuniform(mt_state* " state ","
.BI "                  int64_t " lower ", int64_t " upper ");"
.sp
.BI "double rds_uniform(mt_state* " state ", double " lower ", double " upper ");"
.sp
.BI "double rds_luniform(mt_state* " state ", double " lower ", double " upper ");"
.sp
.BI "double rds_exponential(mt_state* " state ", double " mean ");"
.sp
.BI "double rds_lexponential(mt_state* " state ", double " mean ");"
.sp
.BI "double rds_erlang(mt_state* " state ", int " p ", double " mean ");"
.sp
.BI "double rds_lerlang(mt_state* " state ", int " p ", double " mean ");"
.sp
.BI "double rds_weibull(mt_state* " state ", double " shape ", double " scale ");"
.sp
.BI "double rds_lweibull(mt_state* " state ", double " shape ", double " scale ");"
.sp
.BI "double rds_normal(mt_state* " state ", double " mean ", double " sigma ");"
.sp
.BI "double rds_lnormal(mt_state* " state ", double " mean ", double " sigma ");"
.sp
.BI "double rds_lognormal(mt_state* " state ", double " shape ", double " scale ");"
.sp
.BI "double rds_llognormal(mt_state* " state ", double " shape ", double " scale ");"
.sp
.BI "double rds_triangular(mt_state* " state ", double " lower ","
.BI "                      double " upper ", double " mode ");"
.sp
.BI "double rds_ltriangular(mt_state* " state ", double " lower ","
.BI "                      double " upper ", double " mode ");"
.sp
.BI "size_t rds_int_empirical(mt_state* " state ","
.BI "                     rd_empirical_control* " control ");"
.sp
.BI "double rds_double_empirical(mt_state* " state ","
.BI "                     rd_empirical_control* " control ");"
.sp
.BI "double rds_continuous_empirical(mt_state* " state ","
.BI "                     rd_empirical_control* " control ");"
.sp
.BI "int32_t rd_iuniform(int32_t " lower ", int32_t " upper ");"
.sp
.BI "int64_t rd_liuniform(int64_t " lower ", int64_t " upper ");"
.sp
.BI "double rd_uniform(double " lower ", double " upper ");"
.sp
.BI "double rd_luniform(double " lower ", double " upper ");"
.sp
.BI "double rd_exponential(double " mean ");"
.sp
.BI "double rd_lexponential(double " mean ");"
.sp
.BI "double rd_erlang(int " p ", double " mean ");"
.sp
.BI "double rd_lerlang(int " p ", double " mean ");"
.sp
.BI "double rd_weibull(double " shape ", double " scale ");"
.sp
.BI "double rd_lweibull(double " shape ", double " scale ");"
.sp
.BI "double rd_normal(double " mean ", double " sigma ");"
.sp
.BI "double rd_lnormal(double " mean ", double " sigma ");"
.sp
.BI "double rd_lognormal(double " shape ", double " scale ");"
.sp
.BI "double rd_llognormal(double " shape ", double " scale ");"
.sp
.BI "double rd_triangular(double " lower ", double " upper ", double " mode ");"
.sp
.BI "double rd_ltriangular(double " lower ", double " upper ", double " mode ");"
.sp
.BI "void rd_empirical_setup(size_t " n_probs ", double* " probs ","
.BI "                     double* " values ");"
.sp
.BI "void rd_empirical_free(rd_empirical_control* " control ");"
.sp
.BI "size_t rd_int_empirical(rd_empirical_control* " control ");"
.sp
.BI "double rd_double_empirical(rd_empirical_control* " control ");"
.sp
.BI "double rd_continuous_empirical(rd_empirical_control* " control ");"
.sp
.sp
C++ interface:
.sp
.BI "mt_distribution " rng ;
.sp
.BI "int32_t " rng ".iuniform(int32_t " lower ", int32_t " upper ");"
.sp
.BI "int64_t " rng ".liuniform(int64_t " lower ", int64_t " upper ");"
.sp
.BI "double " rng ".uniform(double " lower ", double " upper ");"
.sp
.BI "double " rng ".luniform(double " lower ", double " upper ");"
.sp
.BI "double " rng ".exponential(double " mean ");"
.sp
.BI "double " rng ".lexponential(double " mean ");"
.sp
.BI "double " rng ".erlang(int " p ", double " mean ");"
.sp
.BI "double " rng ".lerlang(int " p ", double " mean ");"
.sp
.BI "double " rng ".weibull(double " shape ", double " scale ");"
.sp
.BI "double " rng ".lweibull(double " shape ", double " scale ");"
.sp
.BI "double " rng ".normal(double " mean ", double " sigma ");"
.sp
.BI "double " rng ".lnormal(double " mean ", double " sigma ");"
.sp
.BI "double " rng ".lognormal(double " shape ", double " scale ");"
.sp
.BI "double " rng ".llognormal(double " shape ", double " scale ");"
.sp
.BI "double " rng ".triangular(double " lower ", double " upper ", double " mode ");"
.sp
.BI "double " rng ".ltriangular(double " lower ", double " upper ", double " mode ");"
.sp
.sp
.BI "mt_empirical_distribution " emp " (const vector<double> " probs ");"
.sp
.BI "mt_empirical_distribution " emp " (const vector<double> " probs ","
.BI "                     const vector<double> " values ");"
.sp
.BI "size_t " emp ".int_empirical(mt_prng& " rng ");"
.sp
.BI "double " emp ".double_empirical(mt_prng& " rng ");"
.sp
.BI "double " emp ".continuous_empirical(mt_prng& " rng ");"
.SH DESCRIPTION
These functions generate pseudo-random numbers in various
distributions using the Mersenne Twist algorithm described in
.BR mtwist (3).
.PP
The C interface provides four flavors of each function:
.BI rds_ xxx\fR,\fP
.BI rds_l xxx\fR,\fP
.BI rd_ xxx\fR,\fP
and
.BI rd_l xxx\fR.\fP
The "\fBrds\fP" versions
accept an explicit Mersenne Twist state vector, as
described in
.BR mtwist (3).
The "\fBrd\fP" versions use the default global state vector;
in general these functions should be avoided except for unimportant
applications.
The versions with no "\fBl\fP" after the underscore use the 32-bit
version of the PRNG, while the "\fBl\fP" versions generate more bits
(53 for floating-point values, 64 for integers) to increase the
accuracy of the generated distribution at
the expense of speed.
.PP
In the C++ interface, the
.B mt_distribution
class is derived from
.B mt_prng
(see
.BR mtwist (3)),
and provides all the functionality of that class as well as the
extended functions for generating specific distributions.
.PP
With the exception of the
.B *iuniform
functions, all functions return a double-precision result.
The range of the result depends on the distribution and the
parameters.
However, in all cases the precision of the result of non-"\fBl\fP"
functions is limited to 32
bits, or about 1 part in 4 billion.
.PP
The
.B *iuniform
functions generate integers selected from a uniform distribution in
the range
.RI [ lower ,
.IR upper ).
If the total range given to the non-"\fBl\fP" functions is less than
429497 (2^32 / 10^4), a fast but slightly
inaccurate method is used; the bias in this case will never exceed
.01%.
If the range exceeds that value, a slightly slower but precise method
is used.
.PP
The
.B *liuniform
functions also generate uniformly distributed integers, but they will
support a range greater than 4294967295.
The
.B *liuniform
functions should never be used unless a large range is required.
.PP
The
.B *uniform
functions generate double-precision numbers selected from a uniform
distribution in the range
.RI [ lower ,
.IR upper ).
This function should
.I not
be used to generate uniformly distributed random integers.
Use the
.I *iuniform
family instead.
.PP
The
.B *exponential
functions generate an exponential distribution with the given mean.
The
.B *erlang
functions generate a
.IR p -Erlang
distribution with the given mean.
The
.B *weibull
functions generate a Weibull function with the given shape and scale
parameters.
.PP
The
.B *normal
functions generate a normal (Gaussian) distribution with the given
mean and a standard deviation equal to
.IR sigma .
The
.B *lognormal
functions generate a lognormal distribution with the given shape and
scale parameters.
.PP
The
.B *triangular
functions generate a triangular distribution in the range 
.RI [ lower ,
.IR upper )
and with the given mode.
.PP
The
.B *empirical
functions generate empirically determined distributions.
The caller must supply a control structure that has been created by
.BR rd_empirical_setup ,
which accepts an array
.I probs
that contains
.I n_probs
weights specifying the relative frequencies of the various output values.
(The weights do not need to sum to 1.0; they are normalized if they do
not.)
The
.B values
array, if not
.BR NULL ,
must contain
.IR n_probs "+ 1"
values; see below.
The control structure can be freed by
.B rd_empirical_free
when it is no longer needed.
.PP
The
.B rd_int_empirical
function generates empirically distributed integers in the range
[0,
.IR n_probs ).
This function ignores the values given to
.BR rd_empirical_setup .
.PP
The
.B rd_double_empirical
function uses the results of
.B rd_int_empirical
as an index into the
.I values
array; in this case
.IR values [ n_probs "+1]"
entry is ignored (but must nevertheless be provided).
If no
.I values
were provided to
.B rd_empirical_setup, the output values will be evenly spaced on [0, 1).
.PP
The
.B rd_continuous_empirical
function generates continuous empirically determined distributions.
It is similar to
.I rd_double_empirical
except that it chooses a result that is uniformly
.IR values [ i ]
and
.IR values [ i "+1]"
for some randomly chosen
.I i
in [0,
.IR n_probs "]."
The net effect is a piecewise linear approximation to the underlying
CDF of the empirically observed distribution.
.SH C++ INTERFACE
.PP
The C++ interface to the functions is based on a class derived from
.BR mt_prng ;
as such, the PRNG state is implied by the derived class.
Otherwise, the C++ functions behave exactly like the similary named C
functions.
.PP
The sole exception is empirical distributions;
here, an auxiliary class is used to support the internal state needed
to track the distribution.
Since the generating functions require an
.B mt_prng
as an argument, an
.B mt_distribution
can also be used for this purpose.
.SH NOTES
.PP
It would be helpful if the package supported even more distributions.
Please e-mail the author (geoff@cs.hmc.edu) with suggestions for other
distributions and (if possible) algorithms for generating them.
.PP
The
.B *iuniform
functions keep internal state in an attempt to speed up their
performance when the range is large.
This internal state makes them non-reentrant.
.PP
When the range is small,
.B *iuniform
functions exhibit a very slight bias in favor of some values.
This bias isn't significant for any application less demanding than
gambling.
To eliminate the bias, compile
.B randistrs.c
with
.B RD_MAX_BIAS
set to zero.
.PP
The state-saving optimization in the
.B *iuniform
functions doesn't help when they are called with varying ranges, even
if a different state vector is used for each range.
.PP
The naming of the C++ empirical-distribution is redundant, since
"empirical" is implied by the class name.
However, dropping that string would create conflicts with C++ type
names, so the suffix was kept for consistency.
.SH "SEE ALSO"
.BR mtwist (3)
.PP
Any good statistics or simulation textbook for descriptions of the
distributions.
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#ifndef lint
static char Rcs_Id[] =
    "$Id: randistrs.c,v 1.10 2010-12-11 00:28:19+13 geoff Exp $";
#endif

/*
 * C library functions for generating various random distributions
 * using the Mersenne Twist PRNG.  See the header file for full
 * documentation.
 *
 * These functions were written by Geoff Kuenning, Claremont, CA.
 *
 * Unless otherwise specified, these algorithms are taken from Averill
 * M. Law and W. David Kelton, "Simulation Modeling and Analysis",
 * McGraw-Hill, 1991.
 *
 * IMPORTANT NOTE: By default, this code is reentrant.  If you are
 * certain you don't need reentrancy, you can get a bit more speed by
 * defining MT_CACHING.
 *
 * Copyright 2001, 2002, 2010, Geoffrey H. Kuenning, Claremont, CA.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All modifications to the source code must be clearly marked as
 *    such.  Binary redistributions based on modified source code
 *    must be clearly marked as modified versions in the documentation
 *    and/or other materials provided with the distribution.
 * 4. The name of Geoff Kuenning may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY GEOFF KUENNING AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL GEOFF KUENNING OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $Log: randistrs.c,v $
 * Revision 1.10  2010-12-11 00:28:19+13  geoff
 * Rewrite the empirical-distribution interface to run in O(1) time and
 * to provide a continuous approximation to empirical distributions.
 *
 * Revision 1.9  2010-06-24 20:53:59+12  geoff
 * Switch to using types from stdint.h.  Make reentrancy the default.
 *
 * Revision 1.8  2008-07-25 16:34:01-07  geoff
 * Fix notation for intervals in commentary.
 *
 * Revision 1.7  2005/05/17 21:40:10  geoff
 * Fix a bug that caused rds_iuniform to generate off-by-one values if the
 * lower bound was negative.
 *
 * Revision 1.6  2002/10/30 00:50:44  geoff
 * Add a (BSD-style) license.  Fix all places where logs are taken so
 * that there is no risk of unintentionally taking the log of zero.  This
 * is a very low-probability occurrence, but it's better to have robust
 * code.
 *
 * Revision 1.5  2001/06/20 09:07:57  geoff
 * Fix a place where long long wasn't conditionalized.
 *
 * Revision 1.4  2001/06/19 00:41:17  geoff
 * Add the "l" versions of all functions.  Add the MT_NO_CACHING option.
 *
 * Revision 1.3  2001/06/18 10:09:24  geoff
 * Add the iuniform functions to generate unbiased uniformly distributed
 * integers.
 *
 * Revision 1.2  2001/04/10 09:11:38  geoff
 * Make sure the Erlang distribution has a p of 1 or more.  Fix a serious
 * bug in the Erlang calculation (the value returned was completely
 * wrong).
 *
 * Revision 1.1  2001/04/09 08:39:54  geoff
 * Initial revision
 *
 */

#include "mtwist.h"
#include "randistrs.h"
#include <math.h>
#include <stdlib.h>

/*
 * Table of contents:
 */
int32_t			rds_iuniform(mt_state * state, int32_t lower,
			  int32_t upper);
					/* (Integer) uniform distribution */
#ifdef INT64_MAX
int64_t			rds_liuniform(mt_state * state, int64_t lower,
			  int64_t upper);
					/* (Integer) uniform distribution */
#endif /* INT64_MAX */
double			rds_uniform(mt_state * state,
			  double lower, double upper);
					/* (Floating) uniform distribution */
double			rds_luniform(mt_state * state,
			  double lower, double upper);
					/* (Floating) uniform distribution */
double			rds_exponential(mt_state * state, double mean);
					/* Exponential distribution */
double			rds_lexponential(mt_state * state, double mean);
					/* Exponential distribution */
double			rds_erlang(mt_state * state, int p, double mean);
					/* p-Erlang distribution */
double			rds_lerlang(mt_state * state, int p, double mean);
					/* p-Erlang distribution */
double			rds_weibull(mt_state * state,
			  double shape, double scale);
					/* Weibull distribution */
double			rds_lweibull(mt_state * state,
			  double shape, double scale);
					/* Weibull distribution */
double			rds_normal(mt_state * state,
			  double mean, double sigma);
					/* Normal distribution */
double			rds_lnormal(mt_state * state,
			  double mean, double sigma);
					/* Normal distribution */
double			rds_lognormal(mt_state * state,
			  double shape, double scale);
					/* Lognormal distribution */
double			rds_llognormal(mt_state * state,
			  double shape, double scale);
					/* Lognormal distribution */
double			rds_triangular(mt_state * state,
			  double lower, double upper, double mode);
					/* Triangular distribution */
double			rds_ltriangular(mt_state * state,
			  double lower, double upper, double mode);
					/* Triangular distribution */
size_t			rds_int_empirical(mt_state* state,
			  rd_empirical_control* control);
					/* Discrete integer empirical distr. */
double			rds_double_empirical(mt_state* state,
			  rd_empirical_control* control);
					/* Discrete float empirical distr. */
double			rds_continuous_empirical(mt_state* state,
			  rd_empirical_control* control);
					/* Continuous empirical distribution */
int32_t			rd_iuniform(int32_t lower, int32_t upper);
					/* (Integer) uniform distribution */
#ifdef INT64_MAX
int64_t			rd_liuniform(int64_t lower, int64_t upper);
					/* (Integer) uniform distribution */
#endif /* INT64_MAX */
double			rd_uniform(double lower, double upper);
					/* (Floating) uniform distribution */
double			rd_luniform(double lower, double upper);
					/* (Floating) uniform distribution */
double			rd_exponential(double mean);
					/* Exponential distribution */
double			rd_lexponential(double mean);
					/* Exponential distribution */
double			rd_erlang(int p, double mean);
					/* p-Erlang distribution */
double			rd_lerlang(int p, double mean);
					/* p-Erlang distribution */
double			rd_weibull(double shape, double scale);
					/* Weibull distribution */
double			rd_lweibull(double shape, double scale);
					/* Weibull distribution */
double			rd_normal(double mean, double sigma);
					/* Normal distribution */
double			rd_lnormal(double mean, double sigma);
					/* Normal distribution */
double			rd_lognormal(double shape, double scale);
					/* Lognormal distribution */
double			rd_llognormal(double shape, double scale);
					/* Lognormal distribution */
double			rd_triangular(double lower, double upper, double mode);
					/* Triangular distribution */
double			rd_ltriangular(double lower, double upper, double mode);
					/* Triangular distribution */
rd_empirical_control*	rd_empirical_setup(size_t n_probs,
			  double* probs, double* values);
					/* Set up empirical distribution */
void			rd_empirical_free(rd_empirical_control* control);
					/* Free empirical control structure */
size_t			rd_int_empirical(rd_empirical_control* control);
					/* Discrete integer empirical distr. */
double			rd_double_empirical(rd_empirical_control* control);
					/* Discrete float empirical distr. */
double			rd_continuous_empirical(rd_empirical_control* control);
					/* Continuous empirical distribution */

/*
 * The Mersenne Twist PRNG makes it default state available as an
 * external variable.  This feature is undocumented, but is useful to
 * use because it allows us to avoid implementing every function
 * twice.  (In fact, the feature was added to enable this file to be
 * written.  It would be better to write in C++, where I could control
 * the access to the state.)
 */
extern mt_state		mt_default_state;

/*
 * Threshold below which it is OK for uniform integer distributions to make
 * use of the double-precision code as a crutch.  For ranges below
 * this value, a double-precision random value is generated and then
 * mapped to the given range.  For a lower bound of zero, this is
 * equivalent to mapping a 32-bit integer into the range by using the
 * following formula:
 *
 *	final = upper * mt_lrand() / (1 << 32);
 *
 * That formula can't be computed using integer arithmetic, since the
 * multiplication must precede the division and would cause overflow.
 * Double-precision calculations solve that problem.  However the
 * formula will also produce biased results unless the range ("upper")
 * is exactly a power of 2.  To see this, suppose mt_lrand produced
 * values from 0 to 7 (i.e., 8 values), and we asked for numbers in
 * the range [0, 7).  The 8 values uniformly generated by mt_lrand
 * would be mapped into the 7 output values.  Clearly, one output
 * value (in this case, 4) would occur twice as often as the others
 *
 * The amount of bias introduced by this approximation depends on the
 * relative sizes of the requested range and the range of values
 * produced by mt_lrand.  If the ranges are almost equal, some values
 * will occur almost twice as often as they should.  At the other
 * extreme, consider a requested range of 3 values (0 to 2,
 * inclusive).  If the PRNG cycles through all 2^32 possible values,
 * two of the output values will be generated 1431655765 times and the
 * third will appear 1431655766 times.  Clearly, the bias here is
 * within the expected limits of randomness.
 *
 * The exact amount of bias depends on the relative size of the range
 * compared to the width of the PRNG output.  In general, for an
 * output range of r, no value will appear more than r/(2^32) extra
 * times using the simple integer algorithm.
 *
 * The threshold given below will produce a bias of under 0.01%.  For
 * values above this threshold, a slower but 100% accurate algorithm
 * will be used.
 */
#ifndef RD_MAX_BIAS
#define RD_MAX_BIAS		0.0001
#endif /* RD_MAX_BIAS */
#ifndef RD_UNIFORM_THRESHOLD
#define RD_UNIFORM_THRESHOLD	((int)((double)(1u << 31) * 2.0 * RD_MAX_BIAS))
#endif /* RD_UNIFORM_THRESHOLD */

/*
 * Generate a uniform integer distribution on the open interval
 * [lower, upper).  See comments above about RD_UNIFORM_THRESHOLD.  If
 * we are above the threshold, this function is relatively expensive
 * because we may have to repeatedly draw random numbers to get a
 * one that works.
 */
int32_t rds_iuniform(
    mt_state *		state,		/* State of the MT PRNG to use */
    int32_t		lower,		/* Lower limit of distribution */
    int32_t		upper)		/* Upper limit of distribution */
    {
    uint32_t		range = upper - lower;
					/* Range of requested distribution */

    if (range <= RD_UNIFORM_THRESHOLD)
	return lower + (int32_t)(mts_ldrand(state) * range);
    else
	{
	/*
	 * Using the simple formula would produce too much bias.
	 * Instead, draw numbers until we get one within the range.
	 * To save time, we first calculate a mask so that we only
	 * look at the number of bits we actually need.  Since finding
	 * the mask is expensive, we optionally do a bit of caching
	 * here (note that the caching makes the code non-reentrant;
	 * set MT_CACHING to turn on this misfeature).
	 *
	 * Incidentally, the astute reader will note that we use the
	 * low-order bits of the PRNG output.  If the PRNG were linear
	 * congruential, using the low-order bits wouuld be a major
	 * no-no.  However, the Mersenne Twist PRNG doesn't have that
	 * drawback.
	 */
#ifdef MT_CACHING
	static uint32_t	lastrange = 0;	/* Range used last time */
	static uint32_t	rangemask = 0;	/* Mask for range */
#else /* MT_CACHING */
	uint32_t	rangemask = 0;	/* Mask for range */
#endif /* MT_CACHING */
	register uint32_t
			ranval;		/* Random value from mts_lrand */

#ifdef MT_CACHING
	if (range != lastrange)
#endif /* MT_CACHING */
	    {
	    /*
	     * Range is different from last time, recalculate mask.
	     *
	     * A few iterations could be trimmed off of the loop if we
	     * started rangemask at the next power of 2 above
	     * RD_UNIFORM_THRESHOLD.  However, I don't currently know
	     * a formula for generating that value (though there is
	     * probably one in HAKMEM).
	     */
#ifdef MT_CACHING
	    lastrange = range;
#endif /* MT_CACHING */
	    for (rangemask = 1;
	      rangemask < range  &&  rangemask != 0;
	      rangemask <<= 1)
		;

	    /*
	     * If rangemask became zero, the range is over 2^31.  In
	     * that case, subtracting 1 from rangemask will produce a
	     * full-word mask, which is what we need.
	     */
	    rangemask -= 1;
	    }

	/*
	 * Draw random numbers until we get one in the requested range.
	 */
	do
	    {
	    ranval = mts_lrand(state) & rangemask;
	    }
	    while (ranval >= range);
	return lower + ranval;
	}
    }

#ifdef INT64_MAX
/*
 * Generate a uniform integer distribution on the half-open interval
 * [lower, upper).
 */
int64_t rds_liuniform(
    mt_state *		state,		/* State of the MT PRNG to use */
    int64_t		lower,		/* Lower limit of distribution */
    int64_t		upper)		/* Upper limit of distribution */
    {
    uint64_t		range = upper - lower;
					/* Range of requested distribution */

    /*
     * Draw numbers until we get one within the range.  To save time,
     * we first calculate a mask so that we only look at the number of
     * bits we actually need.  Since finding the mask is expensive, we
     * optionally do a bit of caching here.  See rds_iuniform for more
     * information.
     */
#ifdef MT_CACHING
    static uint32_t	lastrange = 0;	/* Range used last time */
    static uint32_t	rangemask = 0;	/* Mask for range */
#else /* MT_CACHING */
    uint32_t		rangemask = 0;	/* Mask for range */
#endif /* MT_CACHING */
    register uint32_t	ranval;		/* Random value from mts_lrand */

#ifdef MT_CACHING
    if (range != lastrange)
#endif /* MT_CACHING */
	{
	/*
	 * Range is different from last time, recalculate mask.
	 */
#ifdef MT_CACHING
	lastrange = range;
#endif /* MT_CACHING */
	for (rangemask = 1;
	  rangemask < range  &&  rangemask != 0;
	  rangemask <<= 1)
	    ;

	/*
	 * If rangemask became zero, the range is over 2^31.  In
	 * that case, subtracting 1 from rangemask will produce a
	 * full-word mask, which is what we need.
	 */
	rangemask -= 1;
	}

    /*
     * Draw random numbers until we get one in the requested range.
     */
    do
	{
	ranval = mts_llrand(state) & rangemask;
	}
	while (ranval >= range);
    return lower + ranval;
    }
#endif /* INT64_MAX */

/*
 * Generate a uniform distribution on the half-open interval [lower, upper).
 */
double rds_uniform(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		lower,		/* Lower limit of distribution */
    double		upper)		/* Upper limit of distribution */
    {
    return lower + mts_drand(state) * (upper - lower);
    }

/*
 * Generate a uniform distribution on the half-open interval [lower, upper).
 */
double rds_luniform(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		lower,		/* Lower limit of distribution */
    double		upper)		/* Upper limit of distribution */
    {
    return lower + mts_ldrand(state) * (upper - lower);
    }

/*
 * Generate an exponential distribution with the given mean.
 */
double rds_exponential(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		mean)		/* Mean of generated distribution */
    {
    double		random_value;	/* Random sample on [0,1) */

    do
	random_value = mts_drand(state);
    while (random_value == 0.0);
    return -mean * log(random_value);
    }

/*
 * Generate an exponential distribution with the given mean.
 */
double rds_lexponential(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		mean)		/* Mean of generated distribution */
    {
    double		random_value;	/* Random sample on [0,1) */

    do
	random_value = mts_ldrand(state);
    while (random_value == 0.0);
    return -mean * log(random_value);
    }

/*
 * Generate a p-Erlang distribution with the given mean.
 */
double rds_erlang(
    mt_state *		state,		/* State of the MT PRNG to use */
    int			p,		/* Order of distribution to generate */
    double		mean)		/* Mean of generated distribution */
    {
    int			order;		/* Order generated so far */
    double		random_value;	/* Value generated so far */

    do
	{
	if (p <= 1)
	    p = 1;
	random_value = mts_drand(state);
	for (order = 1;  order < p;  order++)
	    random_value *= mts_drand(state);
	}
    while (random_value == 0.0);
    return -mean * log(random_value) / p;
    }

/*
 * Generate a p-Erlang distribution with the given mean.
 */
double rds_lerlang(
    mt_state *		state,		/* State of the MT PRNG to use */
    int			p,		/* Order of distribution to generate */
    double		mean)		/* Mean of generated distribution */
    {
    int			order;		/* Order generated so far */
    double		random_value;	/* Value generated so far */

    do
	{
	if (p <= 1)
	    p = 1;
	random_value = mts_ldrand(state);
	for (order = 1;  order < p;  order++)
	    random_value *= mts_ldrand(state);
	}
    while (random_value == 0.0);
    return -mean * log(random_value) / p;
    }

/*
 * Generate a Weibull distribution with the given shape and scale parameters.
 */
double rds_weibull(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		shape,		/* Shape of the distribution */
    double		scale)		/* Scale of the distribution */
    {
    double		random_value;	/* Random sample on [0,1) */

    do
	random_value = mts_drand(state);
    while (random_value == 0.0);
    return scale * exp(log(-log(random_value)) / shape);
    }
					/* Weibull distribution */
/*
 * Generate a Weibull distribution with the given shape and scale parameters.
 */
double rds_lweibull(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		shape,		/* Shape of the distribution */
    double		scale)		/* Scale of the distribution */
    {
    double		random_value;	/* Random sample on [0,1) */

    do
	random_value = mts_ldrand(state);
    while (random_value == 0.0);
    return scale * exp(log(-log(random_value)) / shape);
    }
					/* Weibull distribution */
/*
 * Generate a normal distribution with the given mean and standard
 * deviation.  See Law and Kelton, p. 491.
 */
double rds_normal(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		mean,		/* Mean of generated distribution */
    double		sigma)		/* Standard deviation to generate */
    {
    double		mag;		/* Magnitude of (x,y) point */
    double		offset;		/* Unscaled offset from mean */
    double		xranval;	/* First random value on [-1,1) */
    double		yranval;	/* Second random value on [-1,1) */

    /*
     * Generating a normal distribution is a bit tricky.  We may need
     * to make several attempts before we get a valid result.  When we
     * are done, we will have two normally distributed values, one of
     * which we discard.
     */
    do
	{
	xranval = 2.0 * mts_drand(state) - 1.0;
	yranval = 2.0 * mts_drand(state) - 1.0;
	mag = xranval * xranval + yranval * yranval;
	}
    while (mag > 1.0  ||  mag == 0.0);

    offset = sqrt((-2.0 * log(mag)) / mag);
    return mean + sigma * xranval * offset;

    /*
     * The second random variate is given by:
     *
     *     mean + sigma * yranval * offset;
     *
     * If this were a C++ function, it could probably save that value
     * somewhere and return it in the next subsequent call.  But
     * that's too hard to make bulletproof (and reentrant) in C.
     */
    }

/*
 * Generate a normal distribution with the given mean and standard
 * deviation.  See Law and Kelton, p. 491.
 */
double rds_lnormal(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		mean,		/* Mean of generated distribution */
    double		sigma)		/* Standard deviation to generate */
    {
    double		mag;		/* Magnitude of (x,y) point */
    double		offset;		/* Unscaled offset from mean */
    double		xranval;	/* First random value on [-1,1) */
    double		yranval;	/* Second random value on [-1,1) */

    /*
     * Generating a normal distribution is a bit tricky.  We may need
     * to make several attempts before we get a valid result.  When we
     * are done, we will have two normally distributed values, one of
     * which we discard.
     */
    do
	{
	xranval = 2.0 * mts_ldrand(state) - 1.0;
	yranval = 2.0 * mts_ldrand(state) - 1.0;
	mag = xranval * xranval + yranval * yranval;
	}
    while (mag > 1.0  ||  mag == 0.0);

    offset = sqrt((-2.0 * log(mag)) / mag);
    return mean + sigma * xranval * offset;

    /*
     * The second random variate is given by:
     *
     *     mean + sigma * yranval * offset;
     *
     * If this were a C++ function, it could probably save that value
     * somewhere and return it in the next subsequent call.  But
     * that's too hard to make bulletproof (and reentrant) in C.
     */
    }

/*
 * Generate a lognormal distribution with the given shape and scale
 * parameters.
 */
double rds_lognormal(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		shape,		/* Shape of the distribution */
    double		scale)		/* Scale of the distribution */
    {
    return exp(rds_normal(state, scale, shape));
    }

/*
 * Generate a lognormal distribution with the given shape and scale
 * parameters.
 */
double rds_llognormal(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		shape,		/* Shape of the distribution */
    double		scale)		/* Scale of the distribution */
    {
    return exp(rds_lnormal(state, scale, shape));
    }

/*
 * Generate a triangular distibution between given limits, with a
 * given mode.
 */
double rds_triangular(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		lower,		/* Lower limit of distribution */
    double		upper,		/* Upper limit of distribution */
    double		mode)		/* Highest point of distribution */
    {
    double		ran_value;	/* Value generated by PRNG */
    double		scaled_mode;	/* Scaled version of mode */

    scaled_mode = (mode - lower) / (upper - lower);
    ran_value = mts_drand(state);
    if (ran_value <= scaled_mode)
	ran_value = sqrt(scaled_mode * ran_value);
    else
	ran_value = 1.0 - sqrt((1.0 - scaled_mode) * (1.0 - ran_value));
    return lower + (upper - lower) * ran_value;
    }

/*
 * Generate a triangular distibution between given limits, with a
 * given mode.
 */
double rds_ltriangular(
    mt_state *		state,		/* State of the MT PRNG to use */
    double		lower,		/* Lower limit of distribution */
    double		upper,		/* Upper limit of distribution */
    double		mode)		/* Highest point of distribution */
    {
    double		ran_value;	/* Value generated by PRNG */
    double		scaled_mode;	/* Scaled version of mode */

    scaled_mode = (mode - lower) / (upper - lower);
    ran_value = mts_ldrand(state);
    if (ran_value <= scaled_mode)
	ran_value = sqrt(scaled_mode * ran_value);
    else
	ran_value = 1.0 - sqrt((1.0 - scaled_mode) * (1.0 - ran_value));
    return lower + (upper - lower) * ran_value;
    }

/*
 * Generate a discrete integer empirical distribution given a set of
 * probability cutoffs.  See rd_empirical_setup for full information.
 */
size_t rds_int_empirical(
    mt_state *		state,		/* State of the MT PRNG to use */
    rd_empirical_control* control)	/* Control from rd_empirical_setup */
    {
    double		ran_value;	/* Value generated by PRNG */
    size_t		result;		/* Result we'll return */

    ran_value = mts_ldrand(state);
    ran_value *= control->n;		/* Scale value to required range */
    result = (size_t)ran_value;		/* Integer part MIGHT be result */
    if (ran_value < control->cutoff[result]) /* Correct probability? */
	return result;			/* Done! */
    else
	return control->remap[result];	/* Nope, remap to correct result */
    }

/*
 * Generate a discrete floating-point empirical distribution given a
 * set of probability cutoffs.  Use the result of rds_int_empirical to
 * choose a final value.
 */
double rds_double_empirical(
    mt_state *		state,		/* State of the MT PRNG to use */
    rd_empirical_control* control)	/* Control from rd_empirical_setup */
    {
    return control->values[rds_int_empirical(state, control)];
    }

/*
 * Generate a continuous floating-point empirical distribution given a
 * set of probability cutoffs.  Use the result of rds_int_empirical to
 * choose a pair of values, and then return a uniform distribution
 * between those two values.
 */
double rds_continuous_empirical(
    mt_state *		state,		/* State of the MT PRNG to use */
    rd_empirical_control* control)	/* Control from rd_empirical_setup */
    {
    size_t		index;		/* Index into values table */

    index = rds_int_empirical(state, control);
    return control->values[index]
      + mts_ldrand(state)
	* (control->values[index + 1] - control->values[index]);
    }

/*
 * Generate a uniform integer distribution on the half-open interval
 * [lower, upper).  See comments on rds_iuniform.
 */
int32_t rd_iuniform(
    int32_t		lower,		/* Lower limit of distribution */
    int32_t		upper)		/* Upper limit of distribution */
    {
    return rds_iuniform(&mt_default_state, lower, upper);
    }

#ifdef INT64_MAX
/*
 * Generate a uniform integer distribution on the open interval
 * [lower, upper).  See comments on rds_iuniform.
 */
int64_t rd_liuniform(
    int64_t		lower,		/* Lower limit of distribution */
    int64_t		upper)		/* Upper limit of distribution */
    {
    return rds_liuniform(&mt_default_state, lower, upper);
    }
#endif /* INT64_MAX */

/*
 * Generate a uniform distribution on the open interval [lower, upper).
 */
double rd_uniform(
    double		lower,		/* Lower limit of distribution */
    double		upper)		/* Upper limit of distribution */
    {
    return rds_uniform (&mt_default_state, lower, upper);
    }

/*
 * Generate a uniform distribution on the open interval [lower, upper).
 */
double rd_luniform(
    double		lower,		/* Lower limit of distribution */
    double		upper)		/* Upper limit of distribution */
    {
    return rds_luniform (&mt_default_state, lower, upper);
    }

/*
 * Generate an exponential distribution with the given mean.
 */
double rd_exponential(
    double		mean)		/* Mean of generated distribution */
    {
    return rds_exponential (&mt_default_state, mean);
    }

/*
 * Generate an exponential distribution with the given mean.
 */
double rd_lexponential(
    double		mean)		/* Mean of generated distribution */
    {
    return rds_lexponential (&mt_default_state, mean);
    }

/*
 * Generate a p-Erlang distribution with the given mean.
 */
double rd_erlang(
    int			p,		/* Order of distribution to generate */
    double		mean)		/* Mean of generated distribution */
    {
    return rds_erlang (&mt_default_state, p, mean);
    }

/*
 * Generate a p-Erlang distribution with the given mean.
 */
double rd_lerlang(
    int			p,		/* Order of distribution to generate */
    double		mean)		/* Mean of generated distribution */
    {
    return rds_lerlang (&mt_default_state, p, mean);
    }

/*
 * Generate a Weibull distribution with the given shape and scale parameters.
 */
double rd_weibull(
    double		shape,		/* Shape of the distribution */
    double		scale)		/* Scale of the distribution */
    {
    return rds_weibull (&mt_default_state, shape, scale);
    }

/*
 * Generate a Weibull distribution with the given shape and scale parameters.
 */
double rd_lweibull(
    double		shape,		/* Shape of the distribution */
    double		scale)		/* Scale of the distribution */
    {
    return rds_lweibull (&mt_default_state, shape, scale);
    }

/*
 * Generate a normal distribution with the given mean and standard
 * deviation.  See Law and Kelton, p. 491.
 */
double rd_normal(
    double		mean,		/* Mean of generated distribution */
    double		sigma)		/* Standard deviation to generate */
    {
    return rds_normal (&mt_default_state, mean, sigma);
    }

/*
 * Generate a normal distribution with the given mean and standard
 * deviation.  See Law and Kelton, p. 491.
 */
double rd_lnormal(
    double		mean,		/* Mean of generated distribution */
    double		sigma)		/* Standard deviation to generate */
    {
    return rds_lnormal (&mt_default_state, mean, sigma);
    }

/*
 * Generate a lognormal distribution with the given shape and scale
 * parameters.
 */
double rd_lognormal(
    double		shape,		/* Shape of the distribution */
    double		scale)		/* Scale of the distribution */
    {
    return rds_lognormal (&mt_default_state, shape, scale);
    }

/*
 * Generate a lognormal distribution with the given shape and scale
 * parameters.
 */
double rd_llognormal(
    double		shape,		/* Shape of the distribution */
    double		scale)		/* Scale of the distribution */
    {
    return rds_llognormal (&mt_default_state, shape, scale);
    }

/*
 * Generate a triangular distibution between given limits, with a
 * given mode.
 */
double rd_triangular(
    double		lower,		/* Lower limit of distribution */
    double		upper,		/* Upper limit of distribution */
    double		mode)
    {
    return rds_triangular (&mt_default_state, lower, upper, mode);
    }

/*
 * Generate a triangular distibution between given limits, with a
 * given mode.
 */
double rd_ltriangular(
    double		lower,		/* Lower limit of distribution */
    double		upper,		/* Upper limit of distribution */
    double		mode)
    {
    return rds_ltriangular (&mt_default_state, lower, upper, mode);
    }

/*
 * Set up to calculate an empirical distribution in O(1) time.  The
 * method used is adapted from Alastair J. Walker, "An efficient
 * method for generating discrete random variables with general
 * distributions", ACM Transactions on Mathematical Software 3,
 * 253-256 (1977).  Walker's algorithm required O(N^2) setup time;
 * this code uses the O(N) setup approach devised by James Theiler of
 * LANL, as documented in commentary ini the Gnu Scientific Library.
 * We also use a modification suggested by Donald E. Knuth, The Art of
 * Computer Programming, Volume 2 (Seminumerical algorithms), 3rd
 * edition, Addison-Wesley (1997), p120.
 *
 * The essence of Walker's approach is to observe that each empirical
 * probabilitiy is either above or below the uniform probability by
 * some amount.  Suppose the probability pi of the i-th element is
 * smaller than the uniform probability (1/n).  Then if we choose a
 * uniformly distributed random integer, i will appear too often; to
 * be precise, it will appear 1/n - pi too frequently.  Walker's idea
 * is that there must be some other element, j, that has a probability
 * pj that is above uniform.  So if we "push" the 1/n - pi "extra"
 * probability of element i onto element j, we will decrease the
 * probability of i appearing and increase the probability of j.  We
 * can do this by selecting a "cutoff" value which is to be compared
 * to a random number x on [0,1); if x exceeds the cutoff, we remap to
 * element j.  The cutoff is selected such that this happens exactly
 * (1/n - pi) / (1/n) = 1 - n*pi of the time, since that's the amount
 * of extra probability that needs to be pushed onto j.
 *
 * For example, suppose there are only two probabilities, 0.25 and
 * 0.75.  Element 0 will be selected 0.5 of the time, so we must remap
 * half of those selections to j.  The cutoff is chosen as 1 - 2*0.25
 * = 0.5.  Presto!
 *
 * In general, element j won't need precisely the amount of extra
 * stuff remapped from element i.  If it needs more, that's OK; there
 * will be some other element k that has a probability below uniform,
 * and we can also map its extra onto j.  If j needs *less* extra,
 * then we'll do a remap on it as well, pushing that extra onto yet
 * another element--but only if j was selected directly in the initial
 * uniform distribution.  (All of these adjustments are done by
 * modifying the calculated difference between j's probability and the
 * uniform distribution.)  This produces the rather odd result that j
 * both accepts and donates probability, but it all works out in the
 * end.
 *
 * The trick is then to calculate the cutoff and remap arrays.  The
 * formula for the cutoff values was given above.  At each step,
 * Walker scans the current probability array to find the elements
 * that are most "out of balance" on both the high and low ends; the
 * low one is then remapped to the high.  The loop is repeated until
 * all probabilities differ from uniform by less than predetermined
 * threshold.  This is an O(N^2) algorithm; it can also be troublesome
 * if the threshold is in appropriate for the data at hand.
 *
 * Theiler's improvement involves noting that if a probability is
 * below uniform ("small"), it will never become "large".  That means
 * we can keep two tables, one each of small and large values.  For
 * convenience, the tables are organized as stacks.  At each step, a
 * value is popped from each stack, and the small one is remapped to
 * the large one by calculating a cutoff.  The large value is then
 * placed back on the appropriate stack.  (For efficiency, the
 * implementation doesn't pop from the large stack unless necessary.)
 *
 * Finally, Knuth's improvements: Walker's original paper suggested
 * drawing two uniform random numbers when generating from the
 * empirical distribution: one to select an element, and a second to
 * compare to the cutoff.  Knuth points out that if the random numbers
 * have sufficient entropy (which is certainly true for the Mersenne
 * Twister), we can use the upper bits to choose a slot and the lower
 * ones to compare against the cutoff.  This is done by taking s = n*r
 * (where r is the double-precision random value), and then using
 * int(s) as the slot and frac(s) as the cutoff.  The final
 * improvement is that we can avoid calculating frac(s) if, when
 * setting the cutoff c, we store i + c instead of c, where i is the
 * slot number.
 */
rd_empirical_control* rd_empirical_setup(
    size_t		n_probs,	/* Number of probabilities provide */
    double*		probs,		/* Probability (weight) table */
    double*		values)		/* Value for floating distributions */
    {
    rd_empirical_control* control;	/* Control structure we'll build */
    size_t		i;		/* General loop index */
    size_t		j;		/* Element from stack_high */
    size_t		n_high;		/* Current size of stack_high */
    size_t		n_low;		/* Current size of stack_low */
    size_t*		stack_high;	/* Stack of values above uniform */
    size_t*		stack_low;	/* Stack of values below uniform */
    double		prob_total;	/* Total of all weights */

    control = (rd_empirical_control*)malloc(sizeof *control);
    if (control == NULL)
	return NULL;
    control->n = n_probs;
    control->cutoff = (double*)malloc(n_probs * sizeof (double));
    control->remap = (size_t*)malloc(n_probs * sizeof (size_t));
    control->values = (double*)malloc((n_probs + 1) * sizeof (double));
    if (control->cutoff == NULL  ||  control->remap == NULL
      ||  control->values == NULL)
	{
	rd_empirical_free(control);
	return NULL;
	}
    if (values != NULL)
	{
	/*
	 * We could use memcpy here, but doing so is kind of
	 * ugly...and a smart compiler will do it for us.
	 *
	 * Note that we're snagging one extra value, regardless of
	 * whether it'll actually be needed.  This can cause segfaults
	 * if the caller isn't careful.
	 */
	for (i = 0;  i <= n_probs;  i++)
	    control->values[i] = values[i];
	}
    else
	{
	/*
	 * Generate values in the range [0,1).
	 */
	for (i = 0;  i <= n_probs;  i++)
	    control->values[i] = (double)i / n_probs;
	}
    stack_high = (size_t*)malloc(n_probs * sizeof (size_t));
    if (stack_high == NULL)
	{
	rd_empirical_free(control);
	return NULL;
	}
    stack_low = (size_t*)malloc(n_probs * sizeof (size_t));
    if (stack_low == NULL)
	{
	free(stack_high);
	rd_empirical_free(control);
	return NULL;
	}
    n_high = n_low = 0;

    /*
     * We're done with memory allocation, and we've snagged the values
     * array.  Now it's time to generate the probability cutoffs and
     * the remap array, which form the heart of the algorithm.  First,
     * we initialize the cutoffs array to the difference between the
     * desired probability and a uniform distribution.  Elements that
     * are less probable than uniform go on stack_low; the rest go on
     * stack_high.
     */
    for (i = 0, prob_total = 0.0;  i < n_probs;  i++)
	prob_total += probs[i];
    for (i = 0;  i < n_probs;  i++)
	{
	control->remap[i] = i;
	control->cutoff[i] = probs[i] / prob_total - 1.0 / n_probs;
	if (control->cutoff[i] >= 0.0)
	    stack_high[n_high++] = i;
	else
	    stack_low[n_low++] = i;
	}
    /*
     * Now we adjust the cutoffs.  For each item on stack_low,
     * generate a probabilistic remapping from it to the top element
     * on stack_high.  Then adjust the top element of stack_high to
     * reflect that fact, if necessary moving it to stack_low.
     */
    while (n_low > 0)
	{
	i = stack_low[--n_low];		/* i is the guy we'll adjust */
	j = stack_high[n_high - 1];
	/*
	 * The cutoff for i is negative, and represents the difference
	 * between the uniform distribution and how often this element
	 * should occur.  For example, if n_probs is 4, a uniform
	 * distribution would generate each value 1/4 of the time.
	 * Suppose element i instead has a probability of 0.20.  Then
	 * cutoffs[i] is -0.05.  If a random choice picked us, we must
	 * remap to some higher-probability event 0.05/0.25 = 0.05 /
	 * (1/4) = 0.05 * n_probs = 20% of the time.  This is done by
	 * setting the cutoff to 1.0 + (-0.05) * n_probs = 1.0 - 0.20
	 * = 0.8.
	 *
	 * We also use a trick due to Knuth, which involves adding an
	 * extra integer "i" to the cutoff.  This saves us one step in
	 * the random-number generation because we won't have to
	 * separate out the fractional part of the result of
	 * rds_ldrand (see rds_int_empirical).
	 *
	 * Because we are "transferring" part of the probability of i
	 * to the top of stack_high, we must also adjust its
	 * probability cutoff to reflect that fact.  In the example
	 * above, we are transferring 0.05 of the probability of i
	 * onto stack_high, so we must subtract that amount from
	 * stack_high.  Since the cutoff is negative, "subtract" means
	 * "add" here.
	 */
	control->cutoff[j] += control->cutoff[i];
	control->cutoff[i] = i + 1.0 + control->cutoff[i] * n_probs;
	control->remap[i] = j;
	/*
	 * If the stack_high cutoff became negative, move it to stack_low.
	 */
	if (control->cutoff[j] < 0.0)
	    {
	    stack_low[n_low++] = j;
	    --n_high;
	    }
	}
    /*
     * We're done; the cutoffs are all prepared.  Note that there may
     * still be elements on stack_high; that's not a problem because
     * they're all (effectively) zero.  Go through them and set their
     * cutoffs such that they'll never be remapped.
     */
    for (i = 0;  i < n_high;  i++)
	{
	j = stack_high[i];
	control->cutoff[j] = j + 1.0;
	}
    free(stack_high);
    free(stack_low);
    return control;
    }

/*
 * Free an empirical-distribution control structure.
 */
void rd_empirical_free(
    rd_empirical_control* control)	/* Structure to free */
    {
    if (control == NULL)
	return;
    if (control->cutoff != NULL)
	free(control->cutoff);
    if (control->remap != NULL)
	free(control->remap);
    if (control->values != NULL)
	free(control->values);
    free(control);
    }

/*
 * Generate a discrete integer empirical distribution given a set of
 * probability cutoffs.  See rd_empirical_setup for full information.
 */
size_t rd_int_empirical(
    rd_empirical_control* control)	/* Control from rd_empirical_setup */
    {
    return rds_int_empirical(&mt_default_state, control);
    }

/*
 * Generate a discrete floating-point empirical distribution given a
 * set of probability cutoffs.  See rds_double_empirical.
 */
double rd_double_empirical(
    rd_empirical_control* control)	/* Control from rd_empirical_setup */
    {
    return rds_double_empirical(&mt_default_state, control);
    }

/*
 * Generate a continuous floating-point empirical distribution given a
 * set of probability cutoffs.  See rds_continuous_empirical.
 */
double rd_continuous_empirical(
    rd_empirical_control* control)	/* Control from rd_empirical_setup */
    {
    return rds_continuous_empirical(&mt_default_state, control);
    }
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#ifndef RANDISTRS_H
#define RANDISTRS_H

/*
 * $Id: randistrs.h,v 1.7 2010-12-11 00:28:19+13 geoff Exp $
 *
 * Header file for C/C++ use of a generalized package that generates
 * random numbers in various distributions, using the Mersenne-Twist
 * pseudo-RNG.  See mtwist.h and mtwist.c for documentation on the PRNG.
 *
 * Author of this header file: Geoff Kuenning, April 7, 2001.
 *
 * All of the functions provided by this package have three variants.
 * The rd_xxx versions use the default state vector provided by the MT
 * package.  The rds_xxx versions use a state vector provided by the
 * caller.  In general, the rds_xxx versions are preferred for serious
 * applications, since they allow random numbers used for different
 * purposes to be drawn from independent, uncorrelated streams.
 * Finally, the C++ interface provides a class "mt_distribution",
 * derived from mt_prng, with no-prefix ("xxx") versions of each
 * function.
 *
 * The summary below will describe only the rds_xxx functions.  The
 * rd_xxx functions have identical specifications, except that the
 * "state" argument is omitted.  In all cases, the "state" argument
 * has type mt_state, and must have been initialized either by calling
 * one of the Mersenne Twist seeding functions, or by being set to all
 * zeros.
 *
 * The "l" version of each function calls the 64-bit version of the
 * PRNG instead of the 32-bit version.  In general, you shouldn't use
 * those functions unless your application is *very* sensitive to tiny
 * variations in the probability distribution.  This is especially
 * true of the uniform and empirical distributions.
 *
 * Random-distribution functions:
 *
 * rds_iuniform(mt_state* state, long lower, long upper)
 *		(Integer) uniform on the half-open interval [lower, upper).
 * rds_liuniform(mt_state* state, long long lower, long long upper)
 *		(Integer) uniform on the half-open interval [lower, upper).
 *		Don't use unless you need numbers bigger than a long!
 * rds_uniform(mt_state* state, double lower, double upper)
 *		(Floating) uniform on the half-open interval [lower, upper).
 * rds_luniform(mt_state* state, double lower, double upper)
 *		(Floating) uniform on the half-open interval [lower, upper).
 *		Higher precision but slower than rds_uniform.
 * rds_exponential(mt_state* state, double mean)
 *		Exponential with the given mean.
 * rds_lexponential(mt_state* state, double mean)
 *		Exponential with the given mean.
 *		Higher precision but slower than rds_exponential.
 * rds_erlang(mt_state* state, int p, double mean)
 *		p-Erlang with the given mean.
 * rds_lerlang(mt_state* state, int p, double mean)
 *		p-Erlang with the given mean.
 *		Higher precision but slower than rds_erlang.
 * rds_weibull(mt_state* state, double shape, double scale)
 *		Weibull with the given shape and scale parameters.
 * rds_lweibull(mt_state* state, double shape, double scale)
 *		Weibull with the given shape and scale parameters.
 *		Higher precision but slower than rds_weibull.
 * rds_normal(mt_state* state, double mean, double sigma)
 *		Normal with the  given mean and standard deviation.
 * rds_lnormal(mt_state* state, double mean, double sigma)
 *		Normal with the  given mean and standard deviation.
 *		Higher precision but slower than rds_normal.
 * rds_lognormal(mt_state* state, double shape, double scale)
 *		Lognormal with the given shape and scale parameters.
 * rds_llognormal(mt_state* state, double shape, double scale)
 *		Lognormal with the given shape and scale parameters.
 *		Higher precision but slower than rds_lognormal.
 * rds_triangular(mt_state* state, double lower, double upper, double mode)
 *		Triangular on the closed interval (lower, upper) with
 *		the given mode.
 * rds_ltriangular(mt_state* state, double lower, double upper, double mode)
 *		Triangular on the closed interval (lower, upper) with
 *		the given mode.
 *		Higher precision but slower than rds_triangular.
 * rds_int_empirical(mt_state* state, rd_empirical_control* control)
 *		Unsigned integer (actually a size_t) in the range [0, n)
 *		with empirically determined probabilities.  The
 *		"control" argument is the return value from a previous
 *		call to rd_emprical_setup; see documentation on that
 *		function below for more information.
 * rds_double_empirical(mt_state* state, rd_empirical_control* control)
 *		Double empirically selected from a list of values
 *		given to rd_empirical_setup (q.v.).
 * rds_continuous_empirical(mt_state* state, rd_empirical_control* control)
 *		Continuous empirical distribution.  See rd_empirical_setup.
 * rd_iuniform(long lower, long upper)
 * rd_liuniform(long long lower, long long upper)
 *		As above, using the default MT-PRNG.
 * rd_uniform(double lower, double upper)
 * rd_luniform(double lower, double upper)
 *		As above, using the default MT-PRNG.
 * rd_exponential(double mean)
 * rd_lexponential(double mean)
 *		As above, using the default MT-PRNG.
 * rd_erlang(int p, double mean)
 * rd_lerlang(int p, double mean)
 *		As above, using the default MT-PRNG.
 * rd_weibull(double shape, double scale)
 * rd_lweibull(double shape, double scale)
 *		As above, using the default MT-PRNG.
 * rd_normal(double mean, double sigma)
 * rd_lnormal(double mean, double sigma)
 *		As above, using the default MT-PRNG.
 * rd_lognormal(double shape, double scale)
 * rd_llognormal(double shape, double scale)
 *		As above, using the default MT-PRNG.
 * rd_triangular(double lower, double upper, double mode)
 * rd_ltriangular(double lower, double upper, double mode)
 *		As above, using the default MT-PRNG.
 * rd_empirical_setup(int n_probs, double* probs, double* values)
 *		Set up the control table for an empirical
 *		distribution.  Once set up, the returned control table
 *		can be used with multiple independent generators, and
 *		can be used with any of the three empirical
 *		distribution functions; usage can even be intermixed.
 *		In all cases, n_probs is the size of the probs array,
 *		which gives relative weights for different empirically
 *		observed values.  The weights do not need to sum to 1;
 *		if they do not, they will be normalized.  (In the
 *		following descriptions, normalized weights are assumed
 *		for simplicity.)
 *		    For calls to int_empirical, the values array is
 *		ignored.  In this case, the return value is in the
 *		range [0, n), where 0 is returned with probability
 *		probs[0], 1 with probability probs[1], etc.
 *		    For calls to double_empirical, the value
 *		calculated by int_empirical is used as an index into
 *		the values array, so that values[0] is returned with
 *		probability probs[0], values[1] with probability
 *		probs[1], etc.
 *		    For calls to continuous_empirical, the values
 *		array must contain n_probs+1 entries.  It is best for
 *		the values array to be sorted into ascending order;
 *		however, this condition is not enforced.  The return
 *		value is uniformly distributed between values[0] and
 *		values[1] with probability probs[0], between values[1]
 *		and values[2] with probability probs[1], etc.  The
 *		effect will be to generate a piecewise linear
 *		approximation to the empirically observed CDF.
 *		    If "values" is NULL, the setup function will
 *		automatically generate an array of uniformly spaced
 *		values in the range [0.0,1.0].  However, if a values
 *		array is provided, n_probs+1 entries must be supplied
 *		EVEN IF only double_empirical will be called.  This is
 *		because the setup function will be copying n_probs+1
 *		values, and there is a (small) possibility of a
 *		segfault if fewer are provided.
 * rd_empirical_free(rd_empirical_control*  control)
 *		Free a structure allocated by rd_empirical_setup.
 * rd_int_empirical(rd_empirical_control* control)
 * rd_double_empirical(rd_empirical_control* control)
 * rd_continuous_empirical(rd_empirical_control* control)
 *		As above, using the default MT-PRNG.
 *
 * $Log: randistrs.h,v $
 * Revision 1.7  2010-12-11 00:28:19+13  geoff
 * Support the new empirical_distribution interface.
 *
 * Revision 1.6  2010-06-24 20:53:59+12  geoff
 * Switch to using types from stdint.h.
 *
 * Revision 1.5  2008-07-25 16:34:01-07  geoff
 * Fix notation for intervals in commentary.
 *
 * Revision 1.4  2001/06/20 09:07:58  geoff
 * Fix a place where long long wasn't conditionalized.
 *
 * Revision 1.3  2001/06/19 00:41:17  geoff
 * Add the "l" versions of all functions.
 *
 * Revision 1.2  2001/06/18 10:09:24  geoff
 * Add the iuniform functions.  Improve the header comments.  Add a C++
 * interface.  Clean up some stylistic inconsistencies.
 *
 * Revision 1.1  2001/04/09 08:39:54  geoff
 * Initial revision
 *
 */

#include "mtwist.h"
#ifdef __cplusplus
#include <stdexcept>
#include <vector>
#endif

/*
 * Internal structure used to support O(1) generation of empirical
 * distributions.
 */
typedef struct
    {
    size_t		n;		/* Number of probabilities given */
    double*		cutoff;		/* Table of probability cutoffs */
					/* ..this is NOT probabilities; see */
					/* ..comments in the code */
    size_t*		remap;		/* Table of where to remap to */
    double*		values;		/* Float values to return */
    }
			rd_empirical_control;

#ifdef __cplusplus
extern "C"
    {
#endif

/*
 * Functions that use a provided state.
 */
extern int32_t		rds_iuniform(mt_state* state, int32_t lower,
			  int32_t upper);
					/* (Integer) uniform distribution */
#ifdef INT64_MAX
extern int64_t		rds_liuniform(mt_state* state, int64_t lower,
			  int64_t upper);
					/* (Integer) uniform distribution */
#endif /* INT64_MAX */
extern double		rds_uniform(mt_state* state,
			  double lower, double upper);
					/* (Floating) uniform distribution */
extern double		rds_luniform(mt_state* state,
			  double lower, double upper);
					/* (Floating) uniform distribution */
extern double		rds_exponential(mt_state* state, double mean);
					/* Exponential distribution */
extern double		rds_lexponential(mt_state* state, double mean);
					/* Exponential distribution */
extern double		rds_erlang(mt_state* state, int p, double mean);
					/* p-Erlang distribution */
extern double		rds_lerlang(mt_state* state, int p, double mean);
					/* p-Erlang distribution */
extern double		rds_weibull(mt_state* state,
			  double shape, double scale);
					/* Weibull distribution */
extern double		rds_lweibull(mt_state* state,
			  double shape, double scale);
					/* Weibull distribution */
extern double		rds_normal(mt_state* state,
			  double mean, double sigma);
					/* Normal distribution */
extern double		rds_lnormal(mt_state* state,
			  double mean, double sigma);
					/* Normal distribution */
extern double		rds_lognormal(mt_state* state,
			  double shape, double scale);
					/* Lognormal distribution */
extern double		rds_llognormal(mt_state* state,
			  double shape, double scale);
					/* Lognormal distribution */
extern double		rds_triangular(mt_state* state,
			  double lower, double upper, double mode);
					/* Triangular distribution */
extern double		rds_ltriangular(mt_state* state,
			  double lower, double upper, double mode);
					/* Triangular distribution */
extern size_t		rds_int_empirical(mt_state* state,
			  rd_empirical_control* control);
					/* Discrete integer empirical distr. */
extern double		rds_double_empirical(mt_state* state,
			  rd_empirical_control* control);
					/* Discrete float empirical distr. */
extern double		rds_continuous_empirical(mt_state* state,
			  rd_empirical_control* control);
					/* Continuous empirical distribution */

/*
 * Functions that use the default state of the PRNG.
 */
extern int32_t		rd_iuniform(int32_t lower, int32_t upper);
					/* (Integer) uniform distribution */
#ifdef INT64_MAX
extern int64_t		rd_liuniform(int64_t lower, int64_t upper);
					/* (Integer) uniform distribution */
#endif /* INT64_MAX */
extern double		rd_uniform(double lower, double upper);
					/* (Floating) uniform distribution */
extern double		rd_luniform(double lower, double upper);
					/* (Floating) uniform distribution */
extern double		rd_exponential(double mean);
					/* Exponential distribution */
extern double		rd_lexponential(double mean);
					/* Exponential distribution */
extern double		rd_erlang(int p, double mean);
					/* p-Erlang distribution */
extern double		rd_lerlang(int p, double mean);
					/* p-Erlang distribution */
extern double		rd_weibull(double shape, double scale);
					/* Weibull distribution */
extern double		rd_lweibull(double shape, double scale);
					/* Weibull distribution */
extern double		rd_normal(double mean, double sigma);
					/* Normal distribution */
extern double		rd_lnormal(double mean, double sigma);
					/* Normal distribution */
extern double		rd_lognormal(double shape, double scale);
					/* Lognormal distribution */
extern double		rd_llognormal(double shape, double scale);
					/* Lognormal distribution */
extern double		rd_triangular(double lower, double upper, double mode);
					/* Triangular distribution */
extern double		rd_ltriangular(double lower, double upper,
			  double mode);	/* Triangular distribution */
extern rd_empirical_control*
			rd_empirical_setup(size_t n_probs,
			  double* probs, double* values);
					/* Set up empirical distribution */
extern void		rd_empirical_free(rd_empirical_control* control);
					/* Free empirical control structure */
extern size_t		rd_int_empirical(rd_empirical_control* control);
					/* Discrete integer empirical distr. */
extern double		rd_double_empirical(rd_empirical_control* control);
					/* Discrete float empirical distr. */
extern double		rd_continuous_empirical(rd_empirical_control* control);
					/* Continuous empirical distribution */

#ifdef __cplusplus
    }
#endif

#ifdef __cplusplus
/*
 * C++ interface to the random-distribution generators.  This class is
 * little more than a wrapper for the C functions, but it fits a bit
 * more nicely with the mt_prng class.
 */
class mt_distribution : public mt_prng
    {
    public:
	/*
	 * Constructors and destructors.  All constructors and
	 * destructors are the same as for mt_prng.
	 */
			mt_distribution(
					// Default constructor
			    bool pickSeed = false)
					// True to get seed from /dev/urandom
					// ..or time
			    : mt_prng(pickSeed)
			    {
			    }
			mt_distribution(uint32_t seed)
					// Construct with 32-bit seeding
			    : mt_prng(seed)
			    {
			    }
			mt_distribution(uint32_t seeds[MT_STATE_SIZE])
					// Construct with full seeding
			    : mt_prng(seeds)
			    {
			    }
			~mt_distribution() { }

	/*
	 * Functions for generating distributions.  These simply
	 * invoke the C functions above.
	 */
	int32_t		iuniform(int32_t lower, int32_t upper)
					/* Uniform distribution */
			    {
			    return rds_iuniform(&state, lower, upper);
			    }
#ifdef INT64_MAX
	int64_t	liuniform(int64_t lower, int64_t upper)
					/* Uniform distribution */
			    {
			    return rds_liuniform(&state, lower, upper);
			    }
#endif /* INT64_MAX */
	double		uniform(double lower, double upper)
					/* Uniform distribution */
			    {
			    return rds_uniform(&state, lower, upper);
			    }
	double		luniform(double lower, double upper)
					/* Uniform distribution */
			    {
			    return rds_luniform(&state, lower, upper);
			    }
	double		exponential(double mean)
					/* Exponential distribution */
			    {
			    return rds_exponential(&state, mean);
			    }
	double		lexponential(double mean)
					/* Exponential distribution */
			    {
			    return rds_lexponential(&state, mean);
			    }
	double		erlang(int p, double mean)
					/* p-Erlang distribution */
			    {
			    return rds_erlang(&state, p, mean);
			    }
	double		lerlang(int p, double mean)
					/* p-Erlang distribution */
			    {
			    return rds_lerlang(&state, p, mean);
			    }
	double		weibull(double shape, double scale)
					/* Weibull distribution */
			    {
			    return rds_weibull(&state, shape, scale);
			    }
	double		lweibull(double shape, double scale)
					/* Weibull distribution */
			    {
			    return rds_lweibull(&state, shape, scale);
			    }
	double		normal(double mean, double sigma)
					/* Normal distribution */
			    {
			    return rds_normal(&state, mean, sigma);
			    }
	double		lnormal(double mean, double sigma)
					/* Normal distribution */
			    {
			    return rds_lnormal(&state, mean, sigma);
			    }
	double		lognormal(double shape, double scale)
					/* Lognormal distribution */
			    {
			    return rds_lognormal(&state, shape, scale);
			    }
	double		llognormal(double shape, double scale)
					/* Lognormal distribution */
			    {
			    return rds_llognormal(&state, shape, scale);
			    }
	double		triangular(double lower, double upper, double mode)
					/* Triangular distribution */
			    {
			    return rds_triangular(&state, lower, upper, mode);
			    }
	double		ltriangular(double lower, double upper, double mode)
					/* Triangular distribution */
			    {
			    return rds_ltriangular(&state, lower, upper, mode);
			    }
    };

/*
 * Class for handing empirical distributions.  This is necessary
 * because of the need to allocate and initialize extra parameters.
 *
 * BUG/WARNING: this code will only work on compilers where C
 * malloc/free can be freely intermixed with C++ new/delete.
 */
class mt_empirical_distribution
    {
    public:
		mt_empirical_distribution(const std::vector<double>& probs,
		  const std::vector<double>& values)
		    : c(NULL)
		    {
		    if (values.size() != probs.size() + 1)
			throw std::invalid_argument(
			  "values must be one longer than probs");
		    c = rd_empirical_setup(probs.size(),
			  (double*)&probs.front(),
			  (double*)&values.front());
		    }
		mt_empirical_distribution(const std::vector<double>& probs)
		    : c(rd_empirical_setup(probs.size(),
			(double*)&probs.front(), NULL))
		    {
		    }
		~mt_empirical_distribution()
		    {
		    rd_empirical_free(c);
		    }

	size_t	int_empirical(mt_prng& rng)
				/* Discrete integer empirical distr. */
		    {
		    return rds_int_empirical(&rng.state, c);
		    }
	double	double_empirical(mt_prng& rng)
				/* Discrete double empirical distr. */
		    {
		    return rds_double_empirical(&rng.state, c);
		    }
	double	continuous_empirical(mt_prng& rng)
				/* Continuous empirical distribution */
		    {
		    return rds_continuous_empirical(&rng.state, c);
		    }
    private:
	/*
	 * Copying and assignment are not supported.  (Implementing
	 * them would either require reconstructing the
	 * original weights, which is ugly, or doing C-style
	 * allocation, which is equally ugly.)
	 */
		mt_empirical_distribution(
		  const mt_empirical_distribution& source);
		mt_empirical_distribution& operator=(
		  const mt_empirical_distribution& rhs);

	/*
	 * Private Data.
	 */
	rd_empirical_control*
		c;		/* C-style control structure */
    };

#endif /* __cplusplus */

#endif /* RANDISTRS_H */
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This is an implementation of the Mersenne Twist pseudorandom number
generator, including both C and C++ interfaces and a set of functions
for generating random variates from common distributions.

The full documentation for the package is in the manual pages,
mtwist.3 and randistrs.3.

For more information, see the Web page for the package, at:

	http://www.cs.hmc.edu/~geoff/mtwist.html

BRIEF SUMMARY OF FUNCTIONS:

All functions come in two forms: mt_xxx and mts_xxx.  The difference
is that the mts_xxx functions accept an additional parameter, "state",
which encapsulates the entire PRNG state.  This allows multiple
independent PRNG streams to be used.  The mt_xxx versions use a single
shared state provided by the implementation.  Only the most commonly
used mt_xxx versions are mentioned here; see mtwist(3) for more
information.  There is also a C++ interface; again, see the manual
page for information.

void mt_seed32new(uint32_t seed)
    Seeds the generator from a 32-bit constant

void mt_seed(void)
    Automatically seeds from /dev/urandom or system time

void mt_goodseed(void)
    Automatically seeds from /dev/random or system time (can be slow)

void mt_bestseed(void)
    Automatically seeds from /dev/random with high entropy (very slow)

uint32_t mt_lrand(void)
    Return a 32-bit pseudorandom value

uint64_t mt_llrand(void)
    Return a 64-bit pseudorandom value

double mt_drand(void)
    Return a pseudorandom double in [0,1) with 32 bits of randomness

double mt_ldrand(void)
    Return a pseudorandom double in [0,1) with 64 bits of randomness







src/threaded_runner.c

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include "ant.h"
#include "graph.h"
#include "barrier.h"
#include "luaenv.h"

typedef struct {
	AntColony * colony;
	lua_State * luaenv;
	
	pthread_mutex_t	lock;
	barrier_p barrier;
	
	unsigned int numThreads;
	nodeid nextNode;
	char solutionChangedFlag;
} ACOThreadRun;

typedef struct {
	ACOThreadRun * shared;
	
	Path * localPath;
	Path * localPath2;
	void * scratch;
} ACOThread;

/* Swaps two path pointers. */
static inline void path_swap(Path ** a, Path ** b) {
	Path * t = *a;
	*a = *b;
	*b = t;
}

/* Allocates a chunk of nodes to a thread for processing; returns 1 if the chunk is non-empty, 0 otherwise. */
int next_node_id(ACOThreadRun * shared, nodeid * outNode, nodeid * chunkSize, nodeid numNodes) {
	if (shared->nextNode == numNodes) {
		return 0;
	} else if (shared->numThreads == 1) {
		*outNode = shared->nextNode;
		*chunkSize = numNodes - shared->nextNode;
		shared->nextNode = numNodes;
		return 1;
	}
	pthread_mutex_lock(&shared->lock);
	if (shared->nextNode == numNodes) {
		pthread_mutex_unlock(&shared->lock);
		return 0;
	}
	*outNode = shared->nextNode;
	shared->nextNode += (*chunkSize = (numNodes - shared->nextNode)/(shared->numThreads+1) + 1);

	pthread_mutex_unlock(&shared->lock);
	return 1;
}

/* Main simulation loop:
 * 1. Constructs random paths through the graph, guided by the pheromone values
 * 2. Reinforces the best of the constructed paths (either using best-so-far or iteration-best reinf.)
 * 3. Executes the Lua callbacks if needed.
 * 4. Repets steps 1-4 until the simulation is halted by colony->opt.stopFlag.
 *
 * Syncrhonication barriers are used to ensure that all threads are executing the same step, where relevant.
*/
void * ant_loop(void * arg) {
	ACOThread * tinfo = (ACOThread *) arg;
	ACOThreadRun * shared = tinfo->shared;
	AntColony * colony = shared->colony;
	Path * newPath = tinfo->localPath, * ibPath = tinfo->localPath2;
	nodeid source, chunk;
	
	while (!colony->opt.stopFlag) {
		while ( next_node_id(shared, &source, &chunk, colony->graph->numNodes) ) {
			for (; chunk--; source++) {
				for (unsigned int i = 0; i < colony->opt.numAnts; i++) {
					newPath->nodes[0] = source;
					ant_construct_path(colony, newPath, tinfo->scratch);
					if (i == 0 || newPath->weight < ibPath->weight) {
						path_swap(&newPath, &ibPath);
					}
				}
			
				if (colony->iteration > 0 && colony->opt.keepBestSoFarPaths) {
					if (colony->opt.graphChangedFlag) path_update_weight(colony->bestPath[source], colony->graph);
					if (colony->bestPath[source]->weight < ibPath->weight) continue;
				}
			
				if (ibPath->weight != colony->bestPath[source]->weight || colony->iteration == 0) {
					shared->solutionChangedFlag = 1;
				}
			
				path_swap(&ibPath, &colony->bestPath[source]);
			}
		}
		if (barrier_sync(shared->barrier)) {
			shared->nextNode = 1;
			barrier_release(shared->barrier);
		}
		while ( next_node_id(shared, &source, &chunk, colony->graph->numNodes) ) {
			for (; chunk--; source++) {
				ant_reinforce_path(colony, colony->bestPath[source]);
			}
		}
		
		if (barrier_sync(shared->barrier)) {
			colony->iteration++;
			colony->opt.graphChangedFlag = 0;
			if ( (colony->opt.callbackMode == 1 && colony->iteration % colony->opt.callbackArg == 0) ||
			     (colony->opt.callbackMode == 2 && shared->solutionChangedFlag == 1)
			   ) {
					luaenv_callback(shared->luaenv, colony->opt.callbackSlot, colony->iteration);
			}
			shared->solutionChangedFlag = 0;
			shared->nextNode = 1;
			barrier_release(shared->barrier);
		}
	}
	
	return NULL;
}

/* Creates and starts a threaded simulation with parameters specified by the AntColony.
 * The calling thread is also used in the simulation, so this function blocks until the simulation is halted.
 */
void threadedStart(AntColony * colony, lua_State * env) {
	int numThreads = colony->opt.numThreads;
	ACOThread * threadInfo = calloc(numThreads, sizeof(ACOThread));
	pthread_t * threads = calloc(numThreads-1, sizeof(pthread_t));
	ACOThreadRun * tRun = calloc(1, sizeof(ACOThreadRun));
	tRun->colony = colony;
	tRun->luaenv = env;
	tRun->nextNode = 1;
	tRun->numThreads = numThreads;
	tRun->barrier = barrier_alloc(numThreads);
	pthread_mutex_init(&tRun->lock, NULL);
	
	for (int i = numThreads; i --> 0;) {
		threadInfo[i].shared = tRun;
		threadInfo[i].localPath = calloc(1, sizeof(Path) + sizeof(nodeid)*colony->maxNodes);
		threadInfo[i].localPath2 = calloc(1, sizeof(Path) + sizeof(nodeid)*colony->maxNodes);
		threadInfo[i].scratch = ant_scratch_space_alloc(colony->maxNodes);
		
		if (i == 0) {
			ant_loop(&threadInfo[i]);
		} else if (pthread_create((pthread_t *restrict) &threads[i-1], NULL, ant_loop, &threadInfo[i])) {
			fputs("Thread creation failed.", stderr);
			exit(-1);
		}
	}
	
	// Wait for everything to exit before releasing memory
	for (int i = 1; i < numThreads; i++) pthread_join(threads[i-1], NULL);
	
	/* Because ant_loop swaps locally-allocated Path pointers and AntColony-allocated Path pointers,
	 * the best-so-far Path array at the end of the optimisation is a mix of the two types. As the
	 * local storage is about to be freed, these pointers need now need to point to AntColony-allocated 
	 * Paths.
	 *
	 * IMPORTANT: this clobbers the best-so-far paths, which is only okay as long as simulation
	 * of this AntColony is not going to be resumed (or will not use best-so-far reinforcement). */
	ant_colony_init_paths(colony);
	
	for (int i = 0; i < numThreads; i++) {
		free(threadInfo[i].scratch);
		free(threadInfo[i].localPath);
		free(threadInfo[i].localPath2);
	}

	pthread_mutex_destroy(&tRun->lock);
	barrier_free(tRun->barrier);
	
	free(tRun);
	free(threads);
	free(threadInfo);
}





Implementation source code, zip archive
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Summary

Combinatorial optimisation problems have traditionally been solved by special-
ized algorithms. Such problems also occur abundantly in nature, where they
are solved without requiring excessive amounts of computing power or explicit
algorithm design. Nature-inspired algorithms are based on behavior observed in
nature, and are able to solve a wide variety of combinatorial optimisation prob-
lems without requiring much adaptation to a particular problem. Ant Colony
Optimisation (ACO) is a metaheuristic encompassing a family of nature-inspired
algorithms that are based on the foraging behavior of ants – using simulated
pheromone trails to influence construction of random solutions to a problem,
and updating the pheromone values to favor constructing good solutions over
time.

This thesis considers how variants of the Max-Min Ant System algorithm,
based on the ACO metaheuristic, are able to solve dynamic shortest path prob-
lems. Known results bounding its expected run time on static shortest path
problems are presented and applied to rediscovering the shortest paths after a
one-time change is made to the graph, showing O(n3) and Ω(n3) upper and lower
bounds (where n is the number of vertices in the graph) on the expected number
of iterations to rediscover the shortest paths after specific one-time changes to
the weight function.

It is then shown that the λ-MMAS algorithm, which constructs λ solutions
in a single iteration in expectation requires fewer iterations to find the short-
est paths, and, if parallel computation resources are available, also requires less
running time. This approach is shown to reduce the expected number of iter-
ations to O(n) while only requiring a polynomial number of ants (with respect
to n) to be started at each vertex. Using additional ants is also shown to allow
iteration-best pheromone reinforcement, where the colony reinforces the best
paths constructed in the current iteration only.

Patterns of periodic changes to the graph are then considered, and it is shown
that when the changes to the shortest paths specified by the weight functions
are relatively minor (adding or removing few arcs), λ-MMAS is able to keep
track of the shortest paths reliably when log2 n ants are started at each vertex
as long as the pheromone evaporation rate is not too high. When the changes
to the shortest paths are more significant, it is shown that log2 n ants are no
longer sufficient.

The considered algorithms are implemented in C. This implementation is
used to perform experiments to supplement the analytical results with more
detailed empirical data for small problem sizes.
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1 Introduction

Optimisation problems are omnipresent in both nature and human civilization.
In the latter, where they might touch upon technological, economic or social
aspects of our lives, they are typically solved using specialized algorithms, tra-
ditionally designed by analyzing the underlying mathematical properties of spe-
cific problems. Such algorithms are then formally evaluated to ensure that they
produce correct solutions to the the problem they’re designed to solve within
desired time and memory constraints.

In nature, optimisation problems are just as prevalent – living organisms
adapt to new environments through genetic mutation and natural selection, fish
swim in schools to conserve energy, and ants construct efficient routes to food
sources using pheromone trails. In all of these examples no algorithms have been
formally designed and verified, and yet a reasonable solution to an optimisation
problem allows life to thrive. These examples have been used as inspiration in al-
gorithm design: Evolutionary Algorithms adapt random mutation and selection,
Particle Swarm Optimisation algorithms are based on flocking behaviors, and
Ant Colony Optimisation algorithms mimic the implicit memory of pheromone
trails to guide random walks through a graph towards the optimal solution.
Some of these examples of nature-inspired algorithms, as well as many others,
are described in further detail in [10] and [12].

Nature-inspired algorithms are often popular due to relative ease of imple-
mentation, wide applicability and reasonable quality of solutions produced for
many optimisation problems. Algorithms inspired by ant behavior have been
proposed as early as 1992 in [2], and were formalized as the Ant Colony Op-
timisation metaheuristic in [3]. The metaheuristic has since been shown to be
applicable to a wide variety of practical combinatorial optimisation problems,
see e.g. [4]. More formal theoretical evaluations of ACO-based algorithms have
been developed recently, an overview of which can be found in [8] and [13], and
formal analysis of nature-inspired algorithms is still a relatively new subfield of
computer science. This thesis examines the performance of several algorithms
based on the ACO metaheuristic on dynamic shortest path problems.

The problem of finding an optimal way to reach a particular goal occurs in
many natural contexts, and is perhaps most familiar when framed as a naviga-
tion problem: finding the shortest, quickest, simplest, safest, or cheapest way to
travel between two physical locations using some mode of transport. Shortest
path problems also occur in non-navigational contexts, like solving a Rubik’s
cube, devising the fastest way to prepare a three-course dinner, or forwarding
messages in communication networks to minimize delivery time, information
loss, or chance of eavesdropping.
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In general, a shortest path problem involves a finding a path between two
vertices s and t in a weighed directed graph G = (V,A) with the minimum total
weight according to a weight function w : A → R. More complex variations
of the problem require finding the shortest path to all vertices from a given
source vertex s (single-source shortest path problems), or from all vertices to a
given destination vertex t (single-destination shortest path problems), or even
between all pairs of vertices in the graph (all-pairs shortest path problems).
Notably, the single-source and single-destination variations are equivalent: a
single-source shortest path problem can be solved by reversing the direction
of all arcs in G and using a single-destination shortest path algorithm on the
resulting graph, and vice versa.

While the weight function w may assign any real weight to any arc in the
graph, G should not have cycles where the sum of arc weights is negative. This
constraint is a consequence of the defining a shortest path as the path with the
minimum total weight. If cycles of negative weight exist in the graph, and v is
a vertex in such a cycle, then any path from v to any other vertex w can be
“shortened” by prefixing it with the negative-weight cycle from v to v. Thus,
if negative-weight cycles are permitted, the shortest paths between some pairs
of vertices may have both infinite length (number of arcs in the path), and
infinitely negative total weight.

There are well-known deterministic algorithms capable of solving shortest
path problems in a directed graph with n vertices and m arcs. The single-
source variant (and hence also the single-destination) with negative arc weights
can be solved using the Bellman–Ford algorithm in O(nm) time (i.e. O(n3)
for complete graphs), while the all-pairs variant can be solved using the Floyd–
Warshall algorithm in O(n3) time.

Dynamic variants of shortest path problems allow the weight function to be
changed while the shortest paths are being computed, or after they have been
computed. This might occur in shortest path problems dealing with navigation
when the weight function reflects travel time (which may be affected by traffic),
or travel cost (where prices may fluctuate based on demand). There exist algo-
rithms that are able to re-use some of the already computed shortest paths to
speed up the processing of the updated graph, as discussed in [7].

The performance of ACO-based algorithms on single-destination and all-
pairs variants of shortest path problems has been analyzed in [18]. Results

include O (∆`max(`, lnn) + `/ρ) and O
(
n log n+ log(`) log(∆`)

ρ

)
bounds on the

expected number of iterations to solve the single-destination and the all-pairs
variants respectively, where ∆ is the maximum vertex out-degree and ` is the
maximum length of any shortest path. Notably, the latter bound achieves an
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improvement over simply running n single-destination instances in parallel by
allowing those instances to share information.

Ant colony optimisation algorithms are able to continue the optimisation
process even after the graph changes, potentially benefitting from some of the
progress made previously – and for minor changes in the graph, they may achieve
better performance than algorithms that have to start from scratch whenever
the graph is modified.

The remainder of this section introduces the MMASSDSP ACO algorithm,
as well as considerations about the choice of parameters that influence further
analysis. Section 2 proves upper and lower bounds on the number of itera-
tions required for MMASSDSP to recompute the shortest paths after a one-time
change to the graph, demonstrating that the number of arcs changed, and the
magnitude of the arc weight change do not necessarily predict the amount of
additional iterations required. Section 3 examines the effects of simulating in-
creased number of ants per iteration of the algorithm. Section 4 explores how
well ACO-based algorithms handle periodic changes to the weight function. Sec-
tion 5 discusses the implementation of an ACO-based single-destination shortest
path solver and presents some experimental results, shedding further light on
the effects of parameter choice in various situations. Finally, Section 6 presents
a summary of the analytical and experimental results, as well as a discussion of
topics that could be further expanded upon.

1.1 Max-Min Ant System

Ant Colony Optimisation algorithms are based on the observed behavior of ants
foraging for food. Upon locating a food source, an ant returns to the colony
while leaving a pheromone trail leading towards the food source. Other ants
can sense these pheromone trails, and, upon returning from the food source,
can reinforce the trail further, potentially improving the found path through
random variations. Pheromone trails that are not reinforced will eventually
evaporate, ensuring that if a source of food is exhausted, ants will no longer be
attracted to it.

The MMASSDSP algorithm considered in [18], shown as Algorithm 1 below
emulates this behavior by associating a pheromone τa value with each arc a in
the graph, and simulating a number of virtual ants. For dynamic shortest path
problems, the fitness value f (i)(x) of any path x ending at t is simply the sum
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of the arc weights in the path per the iteration-determined weight function w(i):

f (i)(x) =

{ ∑
a∈x w

(i)(a) if x ends at t
∞ otherwise

Algorithm 1 The MMASSDSP algorithm on a directed graph G = (V,A), with
pheromone bounds τmin and τmax, and evaporation rate ρ. The functions tail(a)
and head(a) denote the start and end vertices of an arc a, while deg+(v) denotes
the out-degree of a vertex.

Initialize τa ← 1
/

deg+(tail(a)) for all a ∈ A
for i← 1, 2, . . . do

for each v ∈ V do
Let xv be a new path starting at v
p← v, S ←

{
a ∈ A | tail(a) = p ∧ head(a) 6∈ xv

}
while S is not empty and p 6= t do

Select an arc a from S, with probability:
pa = τa

/∑
s∈S τs

Append a to xv
p← head(a), S ←

{
a′ ∈ A | tail(a′) = p ∧ head(a′) 6∈ xv

}
if i = 1 or f (i)(xv) < f (i)(x∗v) then

x∗v ← xv . Update the best-so-far path

for each a ∈ A do

τa ←
{

min(τmax, (1− ρ)τa + ρ) if a ∈ x∗tail(a)

max(τmin, (1− ρ)τa) otherwise

The pheromones values are initialized such for each vertex in the graph, the
sum of the pheromone values on outgoing arcs is 1, and all outgoing arcs have
equal pheromone values.

In an iteration of the algorithm, a virtual ant is started at each vertex v of
the graph, and constructs a simple path through the graph randomly, until it
either reaches the destination vertex t or is unable to continue further. For each
vertex v, the colony keeps track of the best-so-far path x∗v: the shortest path
from v to t it has constructed in the past.

Once all ants in a given iteration have been simulated, and potentially up-
dated x∗v paths, the pheromone values are updated in order to make future ants
visiting each vertex v more likely to choose to follow the arc belonging to x∗v. In
dynamic shortest paths problems, the fitness value f (i)(x∗v) needs to be reeval-
uated whenever the weight function of the graph is altered, or the algorithm is
no longer correct. This is easily illustrated by altering the weight function so
as to change the first arc on the shortest path from a given vertex, and making
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the new shortest path have a larger weight than the old shortest path – if the
fitness value is not reevaluated, the new shortest path will never replace the old
x∗v. Reevaluating the fitness values of the best-so-far paths is also common in
other contexts, for instance when dealing with stochastic fitness functions, as
examined further in [14] and [15].

The evaporation of natural pheromone trails is modeled in the algorithm by
the parameter 0 < ρ ≤ 1, which controls the speed with which the pheromone
values τ are updated. Setting ρ = 1 would enable the ant colony to instantly
change the pheromone values to their bounds upon discovering a new shortest
path. Lower values allow information about previous shortest paths to persist
in pheromone values for some number of iterations, which may be useful if the
weight function changes in a periodic manner, as discussed further in Section 4.

To analyze the performance of this ACO algorithm, we consider the number
of expected iterations of the outer loop required for all of the best-so-far paths
x∗v to be set to an actual shortest path from their starting vertices. This is
somewhat different from the traditional running-time analysis of deterministic
algorithms; for ACO, the inner loop is considered to take O(1) time, as the ants
are independent and can be simulated in parallel, and, traditionally, the cost
of evaluating the fitness function is considered to dominate that of the other
operations. These considerations make the bounds on expected running time
not directly comparable to the run-time bounds of deterministic algorithms.
In the worst case, each iteration of the algorithm involves 2n fitness function
evaluations, or O(n3) basic operations in total, as all but one of the n simulated
ants may need to examine the pheromone value on each one of m = O(n2) arcs
in the graph in order to construct a path to the destination vertex.

MMASSDSP solves the single-destination shortest path variant of the problem
– the virtual ants keep track of the best-so-far path from each vertex, and will
eventually find the shortest path from each starting vertex. However, the |V |
ants are actually required even to solve the simpler single shortest path variant,
as illustrated in [18] using the graph shown in Figure 1.

s . . .

t′

t

Figure 1: When the (t′, t) arc has weight n, and all other arcs have weight 1,
the shortest path from s to t in this graph avoids t′.
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Proof If a single ant were to start in the vertex s, it would follow an arc to
t′ with probability 1/2 from each vertex it visits. The real shortest path from
s to t involves visiting n − 2 vertices with an outgoing arc to t′, and never
visiting t′ itself. With probability 1 − 2−n/2, the ant will deviate from the
correct shortest path after no more than n/2 arcs. In future iterations, only
paths with less weight than this original path will be reinforced – so unless
all of the remaining n/2 − 2 arcs are selected simultaneously, a solution still
passing through t′ will be reinforced. Thus, the ant must pick at least those
n/2 − 2 arcs in a single iteration in order to discover the shortest path, which
occurs with probability at most 2−n/2+2 = 2−Ω(n). The probability that an
outcome that occurs with probability p occurs for the first time after k trials is
described by the geometric distribution, the expectation of which is 1/p – thus,
the expected number of iterations for the correct shortest path to be discovered
is at least 2Ω(n). This shows that with only a single ant, finding the shortest
path in the graph shown in Figure 1 will require 2Ω(n) iterations in expectation.
In addition, a union bound can used to show that 2n/4 iterations are insufficient
with overwhelming probability – the shortest path will be found with probability
at most 2n/4 · 2−n/2+2 = 2−n/4+2 = 2−Ω(n). �

Starting an ant at each vertex addresses this problem by ensuring that a
shortest path can eventually be discovered by ants constructing a path with no
more than one arc with a low pheromone value at a time.

1.1.1 Choosing pheromone bounds

The pheromone bounds τmin and τmax serve to bound the total pheromone value,
τsum, on outgoing arcs from any vertex in the graph. This ensures that there
is always a positive probability for an ant to select any specific outgoing arc,
or construct any simple path through the graph, guaranteeing that MMASSDSP

will eventually discover any shortest path. In particular, τsum ≤ 1 + ∆τmin is
shown in [18] using induction: τsum = 1 initially, and the most τsum can increase
is as a consequence of ρ being added to some arc and none of outgoing arcs
being affected by pheromone evaporation due to being bounded by τmin:

(1− ρ)(1 + ∆τmin) + ρ+ ρ∆τmin = 1 + ∆τmin

thus, τsum will never exceed 1 + ∆τmin.

I will now show that this bound on τsum can be refined by examining the
pheromone update rules more closely. For instance, the pheromone value on
a single arc can never exceed 1, as the evaporation exactly cancels out the
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reinforcement at that value. Additionally, the pheromone sum will not increase
from its initial value of 1 until some of the pheromones start being affected
by the τmin lower bound, at which point reinforcing the arcs not affected by
the lower bound would increase the sum further. This leads to a strategy that
maximizes τsum by continuously reinforcing a single arc, letting the pheromones
on the other ∆ − 1 arcs evaporate down to τmin, which yields a tighter bound
bound:

τsum ≤ 1 + (∆− 1)τmin

This bound holds regardless of the which pheromone reinforcement strategy is
chosen.

Proof Suppose for a contradiction that a different strategy exists that does in-
crease τsum further. Observe that reinforcing the arc with the highest pheromone
value will never reduce τsum if the pheromone value on that arc does not ex-
ceed 1 (which is necessarily the case). By repeatedly reinforcing the highest
pheromone value arc after performing that strategy, the pheromone values on
all other arcs will eventually converge to τmin – and therefore τsum will be no
greater than the above bound, but also no less than it would’ve been after per-
forming that strategy. This is a contradiction – τsum was initially claimed to
be greater than the bound, but may not be greater after a number of iterations
that do not reduce it. Therefore, the above bound on τsum holds regardless of
how the reinforced arcs are selected. �

The pheromone values are chosen so as to control the probabilities of select-
ing specific arcs with different pheromone values. Let pmax be the probability
of an ant selecting an outgoing arc with pheromone value τmax (a reinforced
arc), and let pmin be the probability of an ant selecting an outgoing arc with
pheromone value τmin. This also makes pmin a lower bound on the probabil-
ity of selecting an arbitrary non-reinforced arc, which has the pheromone value
τmin ≤ τ < τmax.

In particular, pmax should be large enough to allow an ant to construct
any shortest path in the graph, with at least constant probability when all of
its arcs are reinforced (i.e. have pheromone value τmax). Let the length of a
path refer to the number of arcs in the path (as opposed to the sum of their
weights), and ` < n be the length of the longest shortest path to t in the
graph. The requirement is then that (pmax)` is at least a positive constant,
which can be achieved by exploiting (1 − 1/n)n−1 ≥ e−1, or (1 − 1/`)` ≥ 1/4
(for ` ≥ 2). Conventionally, bounds are chosen such that τmin + τmax = 1, and
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using pmax ≥ τmax/τsum yields:

τmax/τsum ≥ 1− 1/`

1− τmin ≥ (1− 1/`)(1 + (∆− 1)τmin)

1/` ≥ τmin(∆− (∆− 1)/`)

τmin ≤ 1/(`∆) < 1/(`∆− (∆− 1))

Picking τmin = 1/(`∆) ensures τmax/τsum ≥ 1 − 1/`, and ants are therefore
able to follow every pheromone-reinforced shortest path with constant proba-
bility. In situations when ` or ∆ are not known in advance, the upper bounds
` < n and ∆ < n (in graphs without multiple edges) can be used instead,
so τmin = n−2 would be sufficient to ensure the desired property for any such
graph. The effects of this choice of pheromone bounds are summarized in the
following Lemma, which is similar in purpose to Corollaries 2 and 3 in [18].

Lemma 1 The pheromone bounds τmin ≤ 1/(`∆) and τmax = 1 − τmin ensure
that the probability pmax of selecting a reinforced arc, with pheromone value
τmax, is at least (1 − 1/`), and the probability pmin of selecting an arbitrary
non-reinforced arc, is between τmin/2 and τmin.

Proof The first part of the Lemma, handling pmax, stems directly from the
bound imposed on τmin by the considerations above. The case for pmin is simpler,
as subsequent proofs do not rely on an ant following a path composed of non-
reinforced arcs, so a simple bound based on pmin ≥ τmin/τsum is enough:

pmin = τmin/τsum ≥ τmin/2

pmin ≤ τmin

as for τmin ≤ 1/(`∆), τsum ≤ 1 + (∆− 1)τmin < 2, and τsum ≥ 1 for any vertex
with multiple outgoing arcs. �

1.1.2 Freezing time

When x∗v is updated to follow a different arc from of v, pheromone values on arcs
leaving v will change over time, governed by the pheromone evaporation rate
ρ. If enough iterations pass without a new x∗v being discovered, the pheromone
values will reach the pheromone bounds, becoming frozen: they will not be
altered further unless x∗v changes. The concept of freezing time, the number of
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iterations until the pheromones become frozen, occurs frequently in literature
analyzing performance of ACO, as reasoning about the probability of making
progress is easier when the pheromones are bounded. The following Lemma from
[6] can be used to bound the number of iterations required for the pheromones
to become frozen.

Lemma 2 If the path x∗v remains unchanged for O(log(τmax/τmin)/ρ) itera-
tions, the pheromones on arcs leaving v become frozen.

Proof Consider a situation when pheromone values are already frozen, but a
new x∗v is discovered requiring them to change. The change will be limited to
pheromone values on two arcs: the old τmax arc being reduced to τmin, and first
arc in x∗v, being increased from τmin to τmax. As pheromone bounds are chosen
such that τmax + τmin = 1, the sum of pheromone values on the two arcs is
initially 1, and this property is preserved by the pheromone update mechanism.
It is therefore sufficient to consider the number of iterations required to reduce
the τmax pheromone value to τmin by multiplying with (1 − ρ); for instance
ln(τmax/τmin)/ρ, as suggested by the proof in [6]:

τmax(1− ρ)ln(τmax/τmin)/ρ < τmaxe
− ln(τmax/τmin) = τmin

by noting that (1− x)x ≤ 1 < e for x ≤ 1.

Altering the pheromone values from one bound to the is the maximum
amount of change that might be required – if the pheromone values were not
frozen when a new x∗v is discovered, the pheromone values on old/new arcs are
no further from their goal values than they would be if the old values were
frozen. Therefore, ln(τmax/τmin)/ρ iterations without discovering a new x∗v are
sufficient to ensure that pheromones on arcs leaving v are frozen. �
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2 Updating after a one-time change to the graph

In a dynamic system, the weights assigned to the arcs of the graph might change
– for example, the weights might represent travel times between various desti-
nations in a road network affected by traffic, or the delivery time of packets
between various destinations in a computer network. This part of the report ex-
amines how a one-time modification of the weight function affects MMASSDSP,
and establishes upper and lower bounds on the amount of time needed to com-
pute the new shortest paths after a change to the weight function is made.

An interesting result that will be demonstrated is that the magnitude of
the change in the weight function (from both the perspective of the number
of arcs affected and the total weight change) does not predict the amount of
iterations required to rediscover the shortest paths – just as the entire weight
function may change without changing any of the computed shortest paths,
a small change in a single weight may require almost all shortest paths to be
rediscovered. Additionally, the number of modified shortest paths also does not
provide a clear indication of the number of iterations it might take MMASSDSP

to recompute them, as a large number of paths may or may not be updated in
parallel depending on the new weight function.

One of the mentioned cases – changing the weights of all arcs while not
changing any of the shortest paths – is trivial to imagine: simply multiply the
weights of all arcs by a constant k > 0. This alters all non-zero arc weights, yet
preserves the shortest paths, as the total weight of any path is also simply mul-
tiplied by k, so if a path is shorter than another path after the transformation,
it would also have been shorter before this transformation. Thus, there’s a way
to change all arc weights in a graph (as long as they were initially non-0), by
an arbitrarily large amount, without changing any of the shortest paths.

The other cases can be illustrated by using the graph used to demonstrate
the need for using an ant colony, repeated in Figure 2, and the two weight
functions w1 and w2 shown in (1) below, where ε > 0 is a small constant. The
shortest paths through the graph using the w1 weight function avoid taking
any arcs to t′, while the shortest paths through the graph using the w2 weight
function always immediately visit t′.

w1(a) =

{
n · ε if a = (t′, t)
ε otherwise

w2(a) =

{
−ε if a = (t′, t)
ε otherwise

(1)
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Figure 2: Increasing or decreasing the weight of the wavy (t′, t) arc in the above
graph results in different optimisation times for MMASSDSP.

2.1 An upper bound on expected optimisation time

The worst-case update performance occurs when a change in the weight function
alters a large number of shortest paths, and MMASSDSP is unable to rediscover
many paths in parallel. The situation is similar to the pessimistic assumptions
used to prove an upper bound on the expected optimisation time after the
pheromone values have been initialized, and (pessimistically) frozen without
discovering any shortest paths. The following theorem states an upper bound
result, which is then proven using the same approach as Theorem 4 in [18],
which shows an upper bound on expected optimisation time after pheromone
initialization1.

Theorem 3 The expected number of iterations required by MMASSDSP to re-
discover all shortest paths after a one-time change to the weight function is
O(`/τmin + ` log(τmax/τmin)/ρ), where ` is the maximum number of arcs in any
shortest path to t in the new graph. This also bounds the expected number of
iterations required to discover all shortest paths initially.

Proof It is sufficient to demonstrate that there is a mechanism that would
optimise the graph within this expected time. The vertices of the graph can be
divided into classes according to the number of arcs on the actual shortest path
to the destination vertex t from a given vertex: t itself is in class 0; vertices from
which the shortest path to t involves taking a single arc are in class 1, and so
on, up to class ` < n. A mechanism that satisfies the theorem’s bound simply
processes the classes sequentially: it first finds the shortest paths for vertices in
class 1, waits for the pheromone values to freeze, then continues to class 2, and
eventually up to class n.

1The result is further improved in Theorem 7 of [18] by observing that the pheromones
do not need to be completely frozen to make progress, which eliminates the log(τmax/τmin)
factor from the freezing time term. This refinement is omitted here to keep the presentation
relatively concise.
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As the classes are optimized by this process in order, when class i is being
processed, the shortest path from any vertex in class i can be discovered by
following a single arc with pheromone value at least τmin to the correct vertex
in class i − 1, and then following the already-known shortest path from that
vertex, where all pheromone values have already been frozen to τmax. Thus, the
probability of a shortest path for a vertex in class i being discovered once all
classes j < i have been processed is at least pmin · pmax

i−1. As the pheromone
bounds are chosen in accordance with Lemma 1, pmax

i−1 is lower-bounded by
a positive constant (as i − 1 < `), and pmin > τmin/2. Using the expectation
of a geometric distribution with probability p = Ω(τmin), the expected number
of iterations before a shortest path from a vertex in class i is discovered is
O(1/τmin). After all the shortest paths in a given class are discovered, the
pheromone values need to be frozen before beginning work on the next shortest
class, which requires O(log(τmax/τmin)/ρ) waiting time per Lemma 2.

MMASSDSP would need to optimize exactly ` classes to discover all shortest
paths in this fashion, so the total expected optimisation time is:

E(Total optimisation time) ≤
∑̀
i=1

E(Time to optimise class i)

≤
∑̀
i=1

O(1/τmin) +O(log(τmax/τmin)/ρ)

≤ O(`/τmin + ` log(τmax/τmin)/ρ)

which proves the theorem. �

Inserting τmin and τmax, and the upper bounds ` < n and ∆ < n yields a
few potentially simplified expressions:

τmin = 1/(`∆) : O(`2∆ + ` log(`∆)/ρ)
τmin = 1/(n∆) : O(n2∆ + n log(n∆)/ρ)
τmin = 1/n2 : O(n3 + n log(n)/ρ)

A notable consequence of this theorem is that if ` is low after the weight
function update, MMASSDSP will rediscover the shortest paths quickly. For a
practical example of this, consider MMASSDSP finding the shortest paths for
the Figure 2 graphs using the w1 weight function of (1), and a one-time change
changing the weight function to w2. In that case, the shortest paths would be
rediscovered in O(1/ρ) iterations, as ∆ = 2 and ` = 2 using w2.

On the other hand, if MMASSDSP initially found the shortest paths for the
w2 function, and then a one-time change switched the weight function to w1,
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the upper-bound on the expected optimisation time is O(n2 + n log(n)/ρ) (by
observing that ∆ = 2). A lower-bound on the optimisation time is needed to
assert that MMASSDSP actually requires that many iterations in this situation.

2.2 A lower bound on expected optimisation time

To demonstrate a lower bound on the expected optimisation time, we will show
that the mechanism described in the upper bound proof is responsible for making
most of the progress during in the optimisation process. This is accomplished by
showing that with at least constant probability, MMASSDSP will only discover
shortest paths with only one non-reinforced arc during the optimisation process.

Theorem 4 Certain one-time changes to the weight function may require an
expected Ω(`/τmin) iterations for MMASSDSP to rediscover all shortest paths,
where ` is the maximum number of arcs in any shortest path to t in the new
graph.

Proof Assume for the moment that the optimisation process really does pro-
ceed by finding the shortest paths in the order of increasing number of arcs, as
in Theorem 3, and consider the number of iterations required to find the new
shortest paths.

As before, there are ` classes of vertices for which a shortest path needs to be
discovered, and thus ` optimisation phases. In each phase, a specific ant needs
to pick a specific arc with pheromone value τmin, and then follow a path of at
most ` arcs where all pheromone values are τmax. For a lower bound on the
waiting time, consider the correct shortest path discovered once an ant selects
the correct non-reinforced arc. Per Lemma 1, the probability pmin of selecting
an arbitrary arc is at most τmin, so a lower bound on the expected number of
iterations Ti required to complete optimisation phase i is 1/τmin.

By assuming that pheromones are frozen immediately after a new shortest
path is found (i.e. ρ = 1), ` phases of waiting for an event occurring with
at most 1/τmin probability result in an Ω(`/τmin) lower-bound on the expected
optimisation time for the entire process, assuming the shortest paths are found
in this order. It can then be shown that Ω(`/τmin) iterations are required with
overwhelming probability.

First, consider Ti, the number of iterations spent waiting for the shortest
path in class i to be discovered. The path can be discovered with probability at
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most 1/τmin in each iteration, so Ti is geometrically distributed. Assuming the
graph is non-trivial, i.e. ∆ ≥ 2, and hence τmin ≤ 1/2, yields:

P (Ti ≥ 1/(2τmin)) = (1− τmin)1/(2τmin) ≥ (0.25)0.5 ≥ 1/2

so with probability at least 1/2, Ti is at least Ω(1/τmin) iterations.

To find all shortest paths, the shortest paths for vertices in ` different classes
need to be found, and per the previous assumption specifying that the shortest
paths must be found in order, this means that ` phases, each lasting at least
Ω(1/τmin) iterations with probability at least 1/2 must be performed. Chernoff
bounds can be used to bound the combined run time of the algorithm.

Let Ii be the indicator event that Ti ≥ 1/(2τmin) – i.e. Ii is 1 with probability

at least 1/2, and 0 otherwise. Then, N =
∑`
i=1 Ii is the number of phases

that require more than 1/(2τmin) iterations, and, per the binomial distribution,
E(N) ≥ `/2: at least half the phases are expected to last at least that long.
Using Chernoff bounds, it can then be shown that at least a quarter of the phases
will require more than that number of iterations with overwhelming probability:

P (N < (1− δ) · E(N)) < e−E(N)·δ2/3

P (N < `/4) < e−`/24

P (N > `/4) > 1− e−Ω(`)

so with overwhelming probability, at least Ω(`/τmin) iterations (or, as ` = Θ(n)
in the worst case, Ω(n2∆) iterations) are needed before all the shortest paths are
found, assuming no shortest path is ever found before all of its shorter subpaths
are found.

Is the considered order reasonable? In order to deviate from it, a shortest
path containing at least two non-reinforced arcs needs to be discovered by some
ant. The risk of this is greatest at the very beginning of the optimization process,
when there exist undiscovered shortest paths with 2, 3, . . . , ` non-reinforced arcs.
Using the same best-case considerations as before (following the desired number
of non-reinforced arcs means finding the shortest path with probability 1), the
probability p of an iteration discovering any of these undesirable paths can be
bounded using a union bound:

p < τmin
2
(
1 + τmin + τmin

2 + . . .+ τmin
`−2
)
< 2 · τmin

2 as τmin ≤ 1/2

The probability of no such paths being discovered in 0.5τmin
−2 − 1 iterations is

at least:

(1− p)0.5τmin
−2−1

=
(
1− 1/(0.5τmin

2)
)0.5τmin

−2−1 ≥ e−1



2.2 A lower bound on expected optimisation time 15

Thus, with constant probability, the simulated ant colony discovers no paths
with more than one non-reinforced arc in `2∆2/2− 1 iterations; and if no such
paths are discovered within Ω(`2∆) iterations, the ant colony is not done. There-
fore, the expected number of iterations required to find all shortest paths after
the weight function is changed in a way that invalidates all ` shortest paths and
does not allow those paths to be rediscovered in parallel, is at least Ω(`2∆).

This approach assumes that paths in all classes are invalidated, so MMASSDSP

has to optimize each vertex class in sequence. It is possible to change the
weight function to accomplish this invalidation – for instance, changing from
weight function w2 to weight function w1 of (1) on the graph shown in Figure 2
does invalidate the shortest paths from all vertices except t and t′, requiring
re-discovery of shortest paths from length 1 up to length ` = n− 2. �

This example serves to illustrate that even relatively minor changes to the
weight function can cause the expected number of iterations for MMASSDSP

to rediscover the shortest path to be asymptotically equal to the upper bound.
While Theorem 4 does not consider choices of ρ when freezing phases are non-
instant, it has been shown in Theorem 12 of [18] that the freezing time also
affects the lower bound on the expected number of iterations.
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3 Using multiple ants

The previous section showed that MMASSDSP solves the single destination short-
est path problem in expected polynomial time by randomly constructing paths
through the graph, and then updating the pheromones to make construction of
shortest paths consisting of increasing number of arcs more likely. Essentially,
the optimisation process consists of two types of phases – discovery phases, and
freezing phases – which alternate until all shortest paths are found. This section
examines how simulating additional ants can shorten the discovery phases. For
the remainder of this section, assume that ` = n − 1 – i.e. there are shortest
paths to t with 1, 2, . . . , n− 1 arcs, depending on the starting vertex.

During discovery phases, the pheromone values on the shortest paths already
known by the ant colony are set to τmax, allowing the construction of shortest
paths with one additional non-reinforced arc in expected Θ(τmin

−1) time. The
colony can be thought of as “waiting” for an ant to randomly construct the
“next” shortest path in order to continue the optimisation process. This does not
necessarily mean that all pheromone values remain unchanged during discovery
phases, as MMASSDSP may still update the best-so-far paths x∗v by discovering
a shorter, but not the shortest path from v to t.

Once the real shortest path is constructed from a vertex v, the pheromone
values on v’s outgoing arcs are updated to favor the “correct” outgoing arc in
a freezing phase. After no more than log(τmax/τmin)/ρ iterations (as shown in
Lemma 2), the pheromone value on the first arc of the discovered shortest path
is set to τmax, and future discovery phases can build upon this path as a known
path.

Freezing phases can be avoided by setting ρ = 1, which ensures that the
pheromone values are set to τmin and τmax immediately upon discovering a new
best-so-far path. With the freezing phases shortened to requiring no iterations,
MMASSDSP is able to find the shortest paths through any graph in expected
O(n3) iterations (for τmin ≥ n−2). However, only n of these are “useful” in the
sense of advancing the optimisation process – so the colony spends the majority
of its expected running time waiting.

The n ants used by the MMASSDSP algorithm are completely independent
of each other, and can be simulated on n machines in parallel to improve the
performance of the algorithm. This independence property also makes it possible
to simulate additional ants if additional machines are available, starting multiple
ants at each vertex, which increases the probability of discovering a new shortest
path during any iteration, which in turn decreases the expected number of
iterations before all shortest paths are found.
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In some ways, this modification is similar to expanding the number of off-
spring individuals produced by the (1+1) EA to create a (1+λ) and (1, λ) EAs2

to increase the amount of exploration performed by the algorithm before making
a choice affecting the next iteration. In the case of the (1 + λ) EA, the extra
offspring individuals may make a difference between exponential and polynomial
expected running times on some fitness functions, such as those examined in [5].
However, as the upper bound of the n-ant variant of MMASSDSP is polynomial
to begin with, the performance improvements achieved by starting λ ants from
each vertex are less dramatic.

3.1 Multiple ants in best-so-far reinforcement

The λ-MMAS algorithm, shown as Algorithm 2 below, is a simple modification of
MMASSDSP that starts λ ants at each vertex in each iteration. This modification
increases the amount of exploration performed in a single iteration – making
each iteration roughly equivalent to λ iterations of MMASSDSP in terms of the
probability of discovering new shortest paths with only a single non-reinforced
edge.

Algorithm 2 The λ-MMAS algorithm on a directed graph G = (V,A), with
pheromone bounds τmin and τmax, and evaporation rate ρ.

Initialize τa ← 1
/

deg+(tail(a)) for all a ∈ A
for i← 1, 2, . . . do

for each v ∈ V do
for j = 1, 2, . . . , λ do

Let xv,j be a new path starting at v
p← v, S ←

{
a ∈ A | tail(a) = p ∧ head(a) 6∈ xv,j

}
while S is not empty and p 6= t do

Select an arc a from S, with probability:
pa = τa

/∑
s∈S τs

Append a to xv,j
p← head(a), S ←

{
a′ ∈ A | tail(a′) = p ∧ head(a′) 6∈ xv,j

}
xv ← arg minxv,j f(xv,j)
if i = 1 or f(xv) < f(x∗v) then

x∗v ← xv

for each a ∈ A do

τa ←
{

min(τmax, (1− ρ)τa + ρ) if a ∈ x∗tail(a)

max(τmin, (1− ρ)τa) otherwise

2The (1 + λ) and (1, λ) EAs create λ randomly mutated offspring before selecting the best
one; the former includes the “parent” individual in the selection, while the latter does not.
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Recall that the expected number of iterations for MMASSDSP to discover
the next shortest path after the pheromones are frozen is O(1/τmin). Until
such a path is discovered, the pheromones along that path remain at the same
values as they were in the first iteration after the pheromones were frozen,
making the probability of discovering a new shortest path in λ iterations of
MMASSDSP identical to the probability of discovering a new shortest path in
a single iteration of λ-MMAS. Thus, by picking λ = Ω(1/τmin), λ-MMAS
can discover new shortest paths in expected O(1) iterations, reducing the total
expected optimisation time to O(`+ ` log(τmax/τmin)/ρ).

Notably, the freezing time remains unaffected by the modifications in λ-MMAS,
and may even overtake the number of iterations required to discover shortest
paths in the upper bound, as illustrated by the bound above.

The amount of ants can also be increased further, increasing the probability
that the colony discovers paths with more non-reinforced edges in any given
iteration. This approach is summarized by Theorem 5.

Theorem 5 A single iteration of λ-MMAS has at least constant probability of
discovering a new shortest path with k non-reinforced arcs if λ = Ω

(
(2n2)k

)
.

Proof The probability that a single ant follows k non-reinforced arcs is at
least pmin

k, and the probability pc of following the remaining reinforced arcs to
the destination vertex is at least a constant (and with the typical choice of τmin

and τmax, pc ≥ 1/e), so the probability pk of λ-MMAS discovering a shortest
paths with k non-reinforced edges in a single iteration is (2), and by picking an
appropriately large λ, pk can be made at least a constant (3) regardless of input
graph:

pk = 1−
(
1− pmin

kpc
)λ ≥ 1−

(
1− 1/(2n2)k · pc

)λ
(2)

λ = (2n2)k/pc ⇒ pk ≥ 1− e−1 (3)

which proves the theorem. �

If λ-MMAS proceeds by discovering paths of length k in a constant number
of iterations, it’ll need to perform no more than `/k discovery phases, reducing
the expected number of iterations to find all shortest paths to O(`/k + `/k ·
log(τmax/τmin)/ρ). Taken to the extreme, starting 2nn2n/pc ants at each ver-
tex will allow λ-MMAS to discover all shortest paths in a constant number of
iterations.
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While the constant expected number of iterations requires an exponential
increase in the amount of parallel computation, making such an approach im-
practical, picking a constant value of k only requires a polynomial increase in
the amount of parallel computation as the graph size increases, which may be
more practical. This conclusion is similar to that reached in [5] for the (1 + λ)
EA: a choice of λ that is roughly reciprocal to the probability of improvement in
a single iteration usually provides a reasonable tradeoff between the increased
number of fitness function evaluations in a single iteration and the decrease in
the total expected number of iterations.

3.2 Iteration-best reinforcement

The λ-MMASib algorithm, adapted to the shortest path problem from the ver-
sion analyzed on OneMax3 in [11], is shown as Algorithm 3 below. Similar to
λ-MMAS, it starts λ ants at each vertex, but unlike the algorithms considered
previously, it only keeps track of he best-so-far path x∗v within a given iteration,
relying on the implicit memory in pheromone values to ensure that the best-
so-far paths are likely to be reproduced in the next iteration, making it more
similar to a (1, λ) EA4.

[11] shows that, with a sufficiently low evaporation rate and a surprisingly
small number of ants, OneMax can be solved by an ant colony in expected
O(n log n) iterations. The approach used demonstrates that there is a positive
pheromone drift to the correct arcs in the construction graph. Unfortunately,
this does not directly apply to single destination shortest path problems, which
are more akin to LeadingOnes5, as there’s only guaranteed to be one shortest
path at a time that is easily discoverable by an ant. Nevertheless, the number
of ants required for iteration-best reinforcement to succeed may be surprisingly
low.

Running the algorithm with a high evaporation rate, ρ = 1, simplifies the
analysis of λ-MMASib, as pheromone values are always frozen at the pheromone

3OneMax is a fitness function that maps n-bit strings to the number of 1 bits they contain,
and is frequently used as an example function while analyzing performance of evolutionary
algorithms. ACO can be used on OneMax in conjunction with a construction graph (the
paths through which are mapped to bit strings), see e.g. [13].

4The behavior of the (1, λ) EA is further examined in [17], which demonstrates that there
is a sharp threshold at which the expected optimisation time for the (1, λ) EA on a simple
fitness function transitions from polynomial running time (similar to the (1 + λ) EA) – to
exponential running time. This provides an intuition that additional ants might be required
for λ-MMASib to be effective.

5Another common pseudo-boolean fitness function, mapping n-bit strings to the number
1-bits before the first 0-bit. Optimizing it is more difficult than OneMax, as only one bit
(namely, the first 0-bit) can be changed to improve the fitness value.
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Algorithm 3 The λ-MMASib algorithm on a directed graph G = (V,A), with
pheromone bounds τmin and τmax, and evaporation rate ρ.

Initialize τa ← 1
/

deg+(tail(a)) for all a ∈ A
for i← 1, 2, . . . do

for each v ∈ V do
for j = 1, 2, . . . , λ do

Let xv,j be a new path starting at v
p← v, S ←

{
a ∈ A | tail(a) = p ∧ head(a) 6∈ xv,j

}
while S is not empty and p 6= t do

Select an arc a from S, with probability:
pa = τa

/∑
s∈S τs

Append a to xv,j
p← head(a), S ←

{
a′ ∈ A | tail(a′) = p ∧ head(a′) 6∈ xv,j

}
x∗v ← arg minxv,j

f(xv,j)

for each a ∈ A do

τa ←
{

min(τmax, (1− ρ)τa + ρ) if a ∈ x∗tail(a)

max(τmin, (1− ρ)τa) otherwise

bounds, with τmax pheromone value assigned to the first arc of each of the
previous iteration’s best paths x∗v. This removes the need to consider freezing
phases of the optimisation process, leaving just two probabilities to consider:
the probability of an ant discovering a new shortest path (with exactly one arc
with pheromone value τmin), and the probability of the previous iteration’s x∗v
path being forgotten – not being constructed by any ant started at v in the next
iteration. Forgetting a path with ρ = 1 can prove disastrous for the optimisation
process, as any longer paths that contain the forgotten path as a subpath might
with high probability not be constructed in the next iteration (depending on
the choice of λ). The following theorems approach the problem by attempting
to make forgetting any shortest paths during the entire process unlikely.

Theorem 6 Starting λ = Ω(log n) ants at each vertex allows λ-MMASib with a
high evaporation rate (ρ = 1) to find all shortest paths in O(n3) iterations with
high probability.

Proof λ-MMASib’s discovery phases are identical to those of λ-MMAS. In
the worst case, with λ = 1 and τmin = n−2, the probability of new shortest
path being discovered in one iteration is at least n−2/(2e), so each discovery
phase lasts an expected 2e · n2 iterations. Assuming progress made during the
discovery phases is never undone by the iteration-best reinforcement, the n− 1
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discovery phases finish in expected O(n3) iterations. Chernoff bounds can be
used to show that this result holds with overwhelming probability.

Let Ii be the indicator event of λ-MMAS discovering a new shortest path
in iteration i (i.e. Ii = 1 if a new shortest path is discovered in iteration i,
and 0 otherwise). The probability of a new path being discovered is always at
least pi = n−2/(2e) while the pheromones are frozen and there are undiscovered
shortest paths remaining, so the Ii events can be considered independent for
the purpose of this proof6. Then Nk =

∑k
i=1 Ii is the number of discoveries in

k iterations; setting k = 4e · n3 yields E(nk) = 2n, and per Chernoff bounds:

P (Nk < (1− δ)E(Nk)) < e−E(Nk)δ2/3

P (Nk < n) < e−n/6 = e−Ω(n)

so at least n discoveries occur in 4en3 = O(n3) iterations with overwhelming
probability for any choice of λ, as long as no shortest paths are forgotten.

The second element to consider is the probability of forgetting a discovered
shortest path. Any shortest path we are concerned about forgetting contains
at most ` arcs with pheromone value τmax, and can therefore be constructed
by a single ant with probability at least e−1 per the usual choice of pheromone
bounds. Pessimistically, assume that the shortest path is forgotten if it is not
reconstructed by any ant in an iteration7; this occurs with probability at most
pf:

pf ≤ (1− e−1)λ

There are at most n shortest paths that can be forgotten by λ-MMASib in
any single iteration, so the probability of failure in a single iteration is at most
n · pf, and the probability of failure in k iterations is at most nk · pf using union
bounds. Let k = c ·n3, where c is a constant such that k iterations complete the
optimisation process with overwhelming probability (c = 4e from above), and
select a λ such that the probability of failure is o(1):

λ =
log(n−5/c)

log(1− e−1)
= O(log n) ⇒

cn3 · n · (1− e−1)λ = cn4 · n−5/c = 1/n = o(1)

6This may lead to situations where the indicator events suggest that more discoveries have
occurred during the considered iterations than is actually possible. The extraneous discoveries
may simply be ignored, and the combined outcome interpreted as the colony having discovered
all shortest paths.

7In order to negatively affect the optimisation process, not only must the correct shortest
path x∗v not be constructed by any ant started at v, but the constructed path with the best
fitness value must start with a different arc out of v – otherwise, the pheromones will not be
altered.
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Starting Ω(log n) ants at each vertex ensures that with high probability no
shortest path is forgotten in 4e · n3 iterations, and given that no shortest path
is forgotten during that number of iterations, all shortest paths are found with
overwhelming probability. Therefore, choosing λ = Ω(log n) ensures that all
shortest paths are found in at most O(n3) iterations with probability approach-
ing 1. �

Imposing the requirement that no paths are forgotten during the entire op-
timisation process may seem overly pessimistic. Intuitively, λ-MMASib might
able to find all shortest paths in polynomial time if forgetting occurs infrequently
enough for the colony to be able to rediscover the paths it forgets before forget-
ting more. Suppose for a moment that this intuition is correct, and is accurately
reflected by the requirement in (4)8: the probability of forgetting a path is must
be lower than the probability of discovering a new shortest path.

Bernoulli’s inequality, (1 + x)r ≥ 1 + x · r can be used to upper-bound the
right side of the requirement inequality (5). Rearranging the equation yields
(7), where c is a positive constant:

(1− e−1)λ < 1− (1− 1/(2n2))λ (4)

(1− e−1)λ < λ/(2n2) (5)

log λ− λ log(1− e−1) > log 2 + 2 log n (6)

c · λ+ log λ > log 2 + 2 log n (7)

Picking λ = Ω(log n) would satisfy this optimistic requirement. Asymptotically,
this is the same lower bound on the number of ants as proved by Theorem 6, so
the requirement that no shortest paths are forgotten is reasonable.

3.2.1 Constant evaporation rate

Per Theorem 6, Ω(log n) ants are sufficient if the evaporation rate is 1, in which
the freezing phases do not exist. When the evaporation rate ρ is a constant, it
is possible for the ant colony to fail to reconstruct the newly discovered shortest
paths during their freezing phases, where the probability of reconstructing them
is lower than the probability of reconstructing an already frozen path. This

8This formulation is too optimistic with respect to making progress – it reflects a model
where the number of arcs in the longest shortest path known to the colony may be altered by
at most 1 in either direction through forgetting/discovery, and optimisation completes if this
number ever reaches `. This neglects to consider that sub-paths of the longest known shortest
paths may also be forgotten, which can undo large amounts of progress.
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section will show that this failure probability is adequately controlled by starting
Ω(log n) ants at each vertex, as stated by the following theorem.

Theorem 7 Starting λ = Ω(log n) ants at each vertex allows λ-MMASib with
a constant evaporation rate ρ > 0 to find all shortest paths in O(n3) iterations
with high probability.

Proof If the ant colony keeps reinforcing the same arc, a freezing phase is
completed in no more than log(τmax/τmin)/ρ (or 2 log(n)/ρ for the usual choice
of pheromone bounds) iterations per Lemma 2. In λ-MMASib, it is possible
that the discovered shortest path will not be constructed by any ant during
an iteration, and hence will not be reinforced. The pheromone value on the
relevant arc during an iteration phase is always at least ρ (following the initial
reinforcement after the discovery iteration), so the probability of selecting that
arc, and then following the reinforced shortest path to t is always at least ρ/(2e).

A sufficient (but not necessary) requirement to complete a freezing phase
successfully is to always reinforce the relevant arc in 2 log(n)/ρ sequential iter-
ations. Consider the probability pf of any ant failing to construct shortest path
being frozen in a single iteration; if λ = c1 log n, this probability is small. As
ρ is a constant, c1 can be chosen based on ρ (and remain independent of n) to
make this probability at most n−2, as shown in (8):

pf ≤ (1− ρ/(2e))λ =

(
2e− ρ

2e

)c1 logn

= n−c1(log(2e)−log(2e−ρ))

c1 =
2

log(2e)− log(2e− ρ)
⇒ pf ≤ n−2 (8)

Assuming that no shortest paths are forgotten at any stage of the process,
λ-MMASib needs to perform at most n freezing phases of 2 log(n)/ρ iterations
each. With probability approaching 1, no shortest path is forgotten during
the freezing phases, as shown by applying a union bound to the probability pf

derived above:

(1− pf)
(n·2 log(n)/ρ) ≤ 1− pf · n · 2 log(n)/ρ ≤ 1− n log(n)

ρn2
= 1− o(1)

Thus, starting Ω(log n) at each vertex ants is sufficient to ensure a high proba-
bility of completing all freezing phases successfully when ρ is constant.

This can then be combined with the proof of Theorem 6. The number of it-
erations required to discover all shortest paths with overwhelming probability is
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unchanged, though now the discovery events are followed by the freezing phases
before discovery is resumed. The bound on the probability of not forgetting any
known (frozen) paths can easily be extended to cover any polynomial number
iterations while preserving Ω(log n) ant requirement, though this is not needed,
as for constant ρ, the number of freezing phase iterations is subsumed by the
number of discovery phase iterations allotted by the Theorem. Therefore, all
shortest paths are discovered in O(n3) iterations when ρ > 0 is constant and
λ = Ω(log n) ants are started at each vertex with probability approaching 1 as
n increases. �

3.2.2 Low evaporation rates

Starting Ω(log n) ants at each vertex is sufficient for λ-MMASib to have a high
probability of successfully finding all shortest paths withinO(n3) iterations when
the evaporation rate is at least constant. If the evaporation rate depends on
n, the freezing phases become more difficult to analyze, as there is no longer a
positive constant lower bound on the probability of a single ant reconstructing
the path.

If the failure to reconstruct a path cannot be prevented entirely, the ef-
fects of pheromone evaporation would have to be considered more closely. No-
tably, the relative effect of pheromone evaporation increases with the increase
in pheromone value: while pheromone values are low, it would take many un-
successful iterations to undo the effects of a single successful iteration, but as
the pheromone value increases, this tolerance for failure is reduced. Balancing
these effects is difficult.

A simple alternative, albeit a potentially inefficient one, is to start enough
ants at each vertex to ensure that every iteration a sufficiently high probability
of constructing the “next” shortest path if all shortest paths with fewer arcs are
already known.

Let p1 be the probability that a single ant constructs a shortest path by
selecting a single non-reinforced arc and then following reinforced arcs to the
destination. Following the approach of Theorem 7, the pheromone value on the
first arc of a newly-discovered shortest path after the initial reinforcement is
at least max(ρ, τmin): for low evaporation rates ρ (e.g. ρ < n−2), the bound
imposed by τmin is better.

pc is then the probability that one of λ ants started at a vertex will construct



3.2 Iteration-best reinforcement 25

the shortest path in this manner:

p1 ≥ 1/(2e ·max(ρ, τmin))

pc ≥ 1− (1− 1/(2e ·max(ρ, τmin)))
λ

Picking λ = Ω(max(ρ, τmin)−1 log n), or λ = Ω(n2 log n) (which works for
any choice of ρ) or λ = Ω(ρ−1 log n) (which is a tighter bound for ρ > τmin)
makes pc approach 1 as the problem size increases, giving each iteration a high
probability of constructing the relevant shortest path. Intuitively, this should
allow the optimisation process to finish in expected polynomial time with respect
to n and 1/ρ.
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4 Periodic changes

The previous sections established upper and lower bounds on the number of
iterations needed by various ACO algorithms to find all shortest paths to a
particular vertex following a one-time change in the weight function of the graph.
This section examines the conditions under which λ-MMAS may be able to keep
up with regular changes to the weight function.

If the changes are sufficiently infrequent, i.e. occurring less often than the
bounds derived for rediscovering shortest paths after a one-time change as found
in Section 2, they are not particularly interesting – λ-MMAS will be able to
rediscover the shortest paths within a polynomial number of iterations, which
will then remain correct until the weight function changed again. Thus, this
section is concerned with periodic changes that are more frequent than that.

When dealing with periodic changes, it is the implicit memory of the previous
shortest paths stored in pheromone values that may allow ACO algorithms to
adapt to some forms of period changes in the weight function, and find the
new shortest paths relatively quickly after each change is made. For instance,
[16] demonstrates that an ACO algorithm is able to follow a particular series
of periodic changes to the fitness function (on a pseudo-boolean optimisation
problem) while an EA is not, essentially relying on a period of fast oscillation
between two variants of the fitness function, where the “new” variant is used
more often than the one being switched away from, to guide the ACO pheromone
values to favor the “new” variant before it is switched to completely.

Notably, oscillation between different fitness functions can be captured by
the pheromone values if the evaporation rate is low enough to allow non-frozen
pheromone values to persist during the oscillation. In [16], this ensures that
even if a solution is constructed for the fitness function unfavored during the
oscillation, the results of the pheromone reinforcement will not be able to undo
the effects of a large number of successful previous iterations.

The following subsections examine how a low evaporation rate can be useful
to ensure that λ-MMAS is able to consistently find shortest paths while the
weight function is switched after every iteration; how setting the evaporation
rate too low may hinder λ-MMAS in following a slower series of permanent
changes; and demonstrate that ACO is not able to efficiently track fitness func-
tions that switch between some weight functions regardless of the choice of
evaporation rate.
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4.1 Tracking a fast oscillation

The graph shown in Figure 3 can be used to illustrate the effects of selecting
the evaporation rate ρ, using the two weight functions shown in (9). Under w1,
the shortest path from s to t does not visit b; under w2, it does.

w1(a) =

{
1 if a = (b, c)
0 otherwise

w2(a) =

{
−1 if a = (b, c)
0 otherwise

(9)

Consider λ-MMAS, λ = log2 n, running on the graph in Figure 3, with the
weight function alternating between w1 and w2 every iteration.

s

b

c
. . .

t

Figure 3: The weight of the wavy (b, c) arc can be adjusted to control whether
b will be visited on the shortest path from s to t.

Using these weight functions, the subgraph that follows from c to t serves
only to present the ants started at s with ` = Ω(n) choices, justifying a non-
constant τmin (and thus also pmin). Whether the ant started at s manages to
find a shortest path to t depends only on whether it selects the correct arc
out of s, as any path from c to t has weight 0 using either weight function.
Notably, because both arcs out of s have equivalent weight, heuristics9 based on
arc weight may not be effective in this situation. As λ-MMAS reevaluates the
fitness value of the shortest path for each comparison, it is possible to switch
between these two weight functions without concern that the colony would not
accept the proper w1 shortest path after finding the w2 shortest path, which
has a lower weight.

If the evaporation rate is large, the pheromone values will be eventually
frozen by λ-MMAS; for ρ = 1, the pheromones will be frozen immediately
after the first iteration. Once the pheromone values are frozen, and the weight
function is changed such that they no longer reflect the true shortest path,
one of the log2 n ants starting at s will need to make a single pheromone-
defying arc selection in order to find the new shortest path. A single single ant
makes this selection with probability pmin = τmin ≥ 1/(2n) (using ∆ = 2 and

9ACO algorithms may be adapted to use both the pheromone information and exter-
nal heuristic information to influence arc selection during the construction of random paths
through the graph. For more details, see e.g. [4].
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pessimistically ` ≤ n). Applying a union bound, the probability of any of the
log2 n ants starting at s discovering the new shortest path in an iteration where
one exists is at most:

log2 n

2n
= O(n−1 log2 n) = o(1)

Therefore, with probability approaching 1, λ-MMAS will not discover the correct
arc out of s when the weight function changes, and will therefore be wrong
approximately half the time if the pheromones freeze.

The following theorem shows that if the evaporation rate is not overly high,
pheromone values can be prevented from freezing for any polynomial number
of iterations – and therefore each iteration maintains a high probability of con-
structing the correct shortest path from s.

Theorem 8 Starting λ = Ω(log2 n) ants at s is sufficient is sufficient to en-
sure that the pheromone values are not frozen by λ-MMAS within a polynomial
number of iterations when ρ = 1/n.

Proof If ρ = 1/n, the pheromone values will not be frozen immediately. As-
suming that the pheromone values are within the range [1/10, 9/10], the log2 n
ants starting at s will be able to discover the shortest path from s with at least
the following probability, even if the pheromones currently favor the longer path:

1− (1− 1/10)log2 n = 1− n− log(10/9) log(n) = 1− o(1) (10)

So with probability approaching 1, as long as the pheromones are within the
above range, λ-MMAS will be able to discover the new shortest path and there-
fore adjust pheromone values towards 1/2.

How long does λ-MMAS manage to keep the pheromone values within this
range? Without loss of generality, consider a situation when, after the pheromones
were updated using the w1 weight function, the pheromone value τ0 on the (s, c)
arc satisfies (1/10)/(1 − ρ) ≤ τ0 < 1/2. Pessimistically, the next iteration will
decrease the pheromone value further, but the iteration after that, if successful,
will update the pheromone value to τ2:

τ2 = (1− ρ)2τ0 + ρ = τ0 + ρ(1− 2τ0) + ρ2τ0 > τ0

Thus as long as the next iteration is successful, the pheromone values are
adjusted in the right direction and the process can continue. If log2 n ants are
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started at each vertex, the pheromone values will stay within the [1/10, 9/10]
range with high probability for any polynomial number of iterations nk for a
sufficiently high n. For instance, for n such that log(10/9) log(n) ≥ k + 1, the
probability of all considered pairs of iterations in nk iterations adjusting the
pheromone values towards 1/2 approaches 1:

(1− n− log(10/9) log(n))n
k

≥ 1− nk · n− log(10/9) log(n)

= 1− nk−(k+1) = 1− o(1)

Therefore, starting log2 n ants is enough, for sufficiently high n, to keep the
pheromone values on outgoing arcs from s from being frozen for any polynomial
number of iterations. �

This in turn allows the shortest paths from s to be constructed with high
probability in each iteration per equation (10).

4.2 Low evaporation rates

The previous section demonstrated an example where using low evaporation
rates enables λ-MMAS to keep the pheromone values from being frozen, and
therefore reliably able to find the shortest path despite the weight function
oscillation. Setting an evaporation rate to a low value is not always beneficial,
however.

s

u1 u2

...

uk

t

Figure 4: The weights of the wavy arcs from ui vertices can be adjusted to
control whether the ui vertex is visited on the shortest path from s to t.

Consider a graph of k triangles on the path from s to t (in total, n = 2k+ 1
vertices), as shown in Figure 4, and the family of weight functions wi for 0 ≤
i ≤ k, such that the shortest path from s to t under wi includes the vertices
u1, . . . , ui, but not ui+1, . . . , uk:

wi(a) =

 −1 if tail(a) = uj and j ≤ i
1 if tail(a) = uj and j > i
0 otherwise



4.2 Low evaporation rates 30

Choose τmin = 1/(2n), reflecting the maximum vertex degree and a pes-
simistic assumption about maximum shortest path length. On this graph, with
a sufficiently high n, λ-MMAS with λ = 1 ants finds all shortest paths in
4n2 + log(τmax/τmin)/ρ iterations with overwhelming probability (this can be
shown using Chernoff bounds on the number of discoveries of shortest paths,
similar to the approach used in proving Theorem 6).

Suppose that λ-MMAS is allowed to run with the w0 weight function for
t0 = 4n2 + log(2n)/ρ iterations. This is enough to allow it to discover and
freeze all shortest paths with overwhelming probability. Then, the next weight
functions are used in ascending order for t = 4n2 + n log(2n) iterations each
– adding the vertices u1, . . . , uk to the shortest path each time. If ρ ≥ 1/n,
λ-MMAS is able to discover and freeze the new shortest paths with overwhelming
probability (regardless of the choice of λ); this process is easily repeated k < n
times while maintaining overwhelming probability of having successfully frozen
the pheromone values of the shortest paths at the end.

If ρ is too low, e.g. ρ = 1/n4, λ-MMAS will fail to find the correct shortest
paths at the end of the t iterations after switching to wk with overwhelming
probability, as long as λ is at most polynomial with respect to n.

Proof Recall that the initial t0 iterations are sufficient to freeze the correct
shortest paths for w0 with overwhelming probability, so when the weight func-
tion is first switched to wi, the pheromone value on the arc leading to ui is τmin.
Consider the last k/2 triangles: the pheromone values on the arcs leading to
their u vertices is at most the pheromone value on the arc to uk/2.

Optimistically (with respect to the optimisation progress) assume that the
correct shortest path including ui is discovered immediately upon switching to
wi. Thus, after switching to wk/2, at most (k/2) · t iterations elapse before the
t iterations with wn are over. The pheromone value on the uk/2 arc at the end
of this process is not more than:

τmin + ρ · (k/2) · t < 1/(2n) + n−4 · (n/4) · (4n2 + n log(2n))

=
1

2n
+

1

n
+

log(2n)

4n2
= o(1)

As correct shortest path from s to t includes k/2 ≈ n/4 arcs with at most this
pheromone value, the probability of constructing it within the t operations after
switching to wk is overwhelmingly small, even if a polynomial number of ants
are started at s. �

This example illustrated that a low evaporation rate may negatively impact
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the ability of ACO-based algorithms to track permanent changes in the fitness
function.

4.3 Impact of oscillating component size

The previous sections have examined periodic changes that only have a minor
impact on the shortest paths in the graph – more specifically, only the value of a
single “choice” (of whether to visit b and ui) was altered at a time. It has been
shown that if the evaporation rate is chosen appropriately, λ-MMAS is able to
track these repeated changes reliably, by either keeping the pheromones close to
0.5 if the oscillation between weight functions is fast, or by correctly adapting to
the new shortest paths if the change is permanent. Thus, if the weight functions
produce similar shortest paths (as characterized by a low, constant Hamming
distance), the implicit memory in pheromones is useful.

Let us consider a situation where the weight functions the fitness function
oscillates between do not produce similar shortest paths. For instance, consider
the graph in Figure 5, which has k columns of 2 vertices, and an additional
destination vertex t. For this graph, there exist pairs of weight functions which
specify shortest paths with no arcs in common, resulting in a large Hamming
distance between shortest paths that also increases with graph size. When the
fitness function oscillates between such a pair of functions, it is difficult for
λ-MMAS to track the shortest paths correctly.

ak

. . .

a2 a1

bk
. . .

b2 b1

t

ak

. . .

a2 a1

bk
. . .

b2 b1

t

Figure 5: Shortest paths specified by the weight functions in equation (11) are
shown in thick arcs. Oscillating between weight functions that specify these
shortest paths may make it difficult for ACO algorithms to reliably find the
shortest paths.

The following two weight functions can be used to ensure that the shortest
paths from any vertex do not share any arcs; here, Ci = {(ai, bi), (bi, ai)} is the
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set of arcs within column i:

w1(a) =


2 if a = (a1, t)
2k−i
k if a ∈ Ci

0 otherwise
w2(a) =


2 if a = (b1, t)
2k−i
k if a ∈ Ci

0 otherwise
(11)

Under either weight function, there is a unique shortest path to t from any
vertex in the graph: it either follows the non-Ci arcs all the way to t, or takes
the Ci arc from the starting vertex and then follows the non-Ci arcs all the way
to t. The shortest paths under w1 and w2 are shown in Figure 5 on the left and
right graph respectively.

Section 4.1 demonstrated that λ-MMAS is able to handle a fast oscillation
between two weight functions by keeping the pheromone values close to 0.5,
preserving its ability to explore both options being oscillated between with high
probability if λ = log2 n ants are started at each vertex. Even if λ-MMAS is able
to keep pheromones on all arcs of Figure 5 close to 0.5, it will fail to construct
the shortest path from ak with overwhelming probability:

(1− 2−k)log2 n ≥ 1− log2 n

2(n−1)/2
> 1− 22−(n−1)/2 = 1− 2−Ω(n)

On the other hand, if any pheromone values are frozen, then, with high
probability, none of the log2 n ants started at a vertex will construct a path
containing the arc with pheromone value τmin. Thus, λ = Ω(log2 n) ants will
not discover the shortest paths at least half the time if the oscillation is fast.

If the oscillation is slower, the pheromone values vertices close to t can freeze
to favor the correct shortest path arcs. When the pheromone values are frozen
and the weight function is changed, the situation is similar to that considered
in Theorem 4: due to the choice of weight functions, only one column at a time
is able to construct correct shortest paths with exactly one non-reinforced arc.
For an example, consider pheromone values being frozen per w1, and the weight
function switched to w2: the (b20, a20) arc can only be reinforced after the full
shortest path from b20 is constructed, as the weight of any two Ci arcs is greater
than the penalty on the (b20, t) arc, which is the weight of the w1’s shortest path
from b20 according to w2, so the pheromones on the (a19, b19), ..., (a1, b1) arcs
will need to be reduced to make it easier to construct the shortest path from
b20.

If the weight function changes less often than the time it takes to rediscover
all of the shortest paths per Theorem 4 (i.e. less often than every Ω(` · τ−1

min/λ)
iterations), the shortest paths may be correct some fraction of the time; other-
wise, there will, intuitively, almost always be a vertex on which the pheromones
favor the wrong arc.
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Thus, unless the oscillation is sufficiently slow for λ-MMAS to rediscover all
shortest paths before the fitness function changes again, λ-MMAS is not able to
keep track of the shortest paths from ak and bk reliably, even if using λ = log2 n
ants as in the previous sections. The exact behavior of alternating these weight
functions on this graph is examined experimentally in Section 5.2.3.
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5 Implementation and Experiments

In order to examine the effectiveness of algorithms based on the ant colony opti-
misation metaheuristic from a practical viewpoint in addition to the theoretical
analyses presented in the previous sections, λ-MMAS and λ-MMASib algorithms
have been implemented in a multithreaded C program. While a variety of im-
plementations of algorithms based on the ACO metaheuristic are available on
the Ant Colony Optimisation Public Software list10 for solving various combi-
natorial optimisation problems, none are targeted at shortest path problems,
so a new implementation was necessary to allow experimental evaluation of the
algorithms’ behavior.

This section describes overall design of the implementation, and presents
experimental results that provide additional detail concerning the behaviors
predicted by theoretical analyses.

5.1 Implementation overview

The algorithms were implemented in C (C99), using the POSIX threads library
(pthreads) for multithreading primitives, the Mersenne Twist pseudorandom
number generator11 for random number generation, and Lua12 to allow cus-
tomization of optimisation parameters, graph updates, and output logic.

The initial weight function specifying the graph is read from a user-specified
text file, which encodes information about the graph as a series of whitespace-
separated numbers. The text file consists of the number of vertices in the graph
n, followed by the out-degrees of vertices 1 through n − 1 (vertex 0 is by con-
vention the destination vertex and has no outgoing arcs), and finally the pairs
of head vertex indices and arc weights specifying the arcs in the graph, sorted
such that the arc (a, b) appears before (c, d) if a < c or a = c ∧ b < d. Multiple
arcs and self-loops are disallowed.

A user-specified number of threads is then used to perform the path con-
struction and pheromone updates. To minimize the number of synchronization
calls required to ensure that work is performed correctly, all λ ants started from
a vertex are simulated by the same thread, and vertices are allocated to threads

10http://www.aco-metaheuristic.org/aco-code/public-software.html
11C/C++ implementation by Geoff Kuenning, http://www.cs.hmc.edu/~geoff/mtwist.

html
12Lua is a powerful, fast, lightweight, embeddable scripting language; http://www.lua.org/

about.html

http://www.aco-metaheuristic.org/aco-code/public-software.html
http://www.cs.hmc.edu/~geoff/mtwist.html
http://www.cs.hmc.edu/~geoff/mtwist.html
http://www.lua.org/about.html
http://www.lua.org/about.html
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in chunks – if a thread is available to do work, will get assigned a chunk of⌈
number of remaining vertices to process

total number of threads used + 1

⌉
vertices to compute/reinforce the shortest paths for. This work allocation
scheme reduces the size of the allocated chunks as the path construction /
reinforcement phase nears completion, in an attempt to minimize the chances
that a large number of threads will be waiting for a single thread to finish work
on a large assigned chunk. Notably, there is a tradeoff between finer allocation
granularity (which may distribute the work more evenly across threads, result-
ing in less idle time towards the end of the phase) and the number of mutex
lock/unlock calls required to allocate vertices to unique threads. The selected
strategy performs best for graphs with a relatively large number of vertices n,
and a relatively small number of ants λ.

A synchronization barrier is used to ensure that the implementation waits
for the construction of all shortest paths to finish before beginning pheromone
updates, and vice versa. While the POSIX threads specification includes barri-
ers as an optional component, they are not available on all platforms, so barrier
synchronization is implemented using the pthreads mutex and conditional vari-
able primitives that are more widely supported.

Performing path construction requires access to random numbers in order
to determine which outgoing arc is selected. The random number generators
included in C’s standard library are problematic for two reasons: the default
granularity of rand is relatively low (the standard only guarantees generation
of a random integer between 0 and 32767), and the generators often use global
state, so multiple threads using the built-in PRNGs will either not get indepen-
dent random numbers, or will have to contend for access to the PRNG state
variables, reducing performance. The Mersenne Twist random number gen-
erator solves these issues, providing access to high-granularity pseudorandom
numbers and allowing each thread to have a separate PRNG state.

Finally, in order to allow the algorithm parameters to be customized, and to
allow the weight functions to be updated dynamically, the implementation runs
user-specified scripts written in the Lua language. The scripts can control the
number of threads started for the simulation, as well as alter the weight function,
pheromone bounds and evaporation rate, pheromone values, and reinforcement
mode (best-so-far or iteration-best) while the algorithm is running. This can
be used to output the desired information about the current best-so-far path
weights or pheromone values, depending on the situation being examined.

Further detail regarding the implementation is available in Appendix A
(page 47).
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5.2 Experiments

This section presents the results of experiments performed using the implemen-
tation. We first verify that the implementation produces expected results in a
situation that has been thoroughly analyzed13: considering the expected number
of iterations to recover from a one-time change, as analyzed in Section 2.

Then, the impact of additional ants on ACO’s ability to track a fast oscilla-
tion in a fitness function, as discussed in Section 4.1 is examined experimentally.
Finally, the implementation is used to demonstrate the behavior of λ-MMAS
when the difference between the weight functions being oscillated between is
significant, as discussed in Section 4.3.

5.2.1 Recovering from a one-time change

As a basic test case for the implementation, the situation considered in Section 2
can also be simulated using the implementation. The simulation is run on the
graph shown in Figure 2 (page 11), with the initial pheromone values set to
frozen values so as to favor all arcs leading to t′, while the weight function
ensures that the shortest paths avoid t′ if possible.
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Figure 6: Average number of iterations before all shortest paths in a graph with
n vertices are rediscovered by λ-MMAS; error bars indicate the 95% confidence
interval based on sample variance.

13This is used as a test case for the implementation: if the results do not follow the predicted
values, it is likely that the implementation contains an error of some type.
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Figure 6 shows the average (over 100 simulations) number of iterations be-
fore all shortest paths are discovered by λ-MMAS, with ρ = 1/n and τmin =
1/(n∆) = 1/(2n) for λ = 1, 2, 4. These results are consistent with those of
Section 2: the increase in the number of iterations is approximately quadratic
with relation to n (which is expected given the choice of τmin), and doubling
the number of ants does not quite halve the number of iterations required (also
expected, as freezing phases are not shortened by increasing λ).

5.2.2 Tracking a fast oscillation

Consider the situation of Section 4.1: the weight function changes every iteration
in such a fashion that the shortest path changes by a single choice (of whether
to visit the vertex b in Figure 3, page 27).

The situation as described in that section can be simulated by considering
only three vertices: s, b and c, using c as the destination, and altering the
evaporation rate ρ and pheromone bounds to reflect an increase in the number
of vertices in the original graph. Because all paths from c to t have weight 0,
this simplification is equivalent to the original: if the shortest path from s to c
is found, a shortest path from s to t is also found.

Figure 7 shows the average number of iterations (over at least 400 simula-
tions) before the pheromone on the (s, b) arc exits the [1/10, 9/10] range for
various values of 1/ρ and λ = 2, 3, 4. Notably, while the λ = 2 graphs appear
linear with respect to 1/ρ, the λ > 2 graphs are definitely not, illustrating that
even a few additional ants can make a significant difference for ACO algorithms.

5.2.3 Effects of oscillating component size

Section 4.3 considered a situation where the Hamming distance between the
shortest paths of the weight functions oscillated between is large. The exam-
ple illustrated that it is difficult for ACO to track repeated changes that alter
shortest paths significantly, but was sufficiently complex to make it difficult
to predict how exactly the ant colony would behave. In this section, we con-
sider the behavior of λ-MMAS on the graph of Figure 5 (page 31) with k = 50
columns, λ = 5 ants started at each vertex, and evaporation rate ρ = 1/n. The
results presented in this section are averages over 200 simulations of each set of
parameters.

When the oscillation is fast – the weight functions are changed every iteration
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Figure 7: Average number of λ-MMAS iterations before the pheromone val-
ues on an arc that’s only in the shortest path every other iteration exit the
[1/10, 9/10] range.

– λ-MMAS may be able to keep some of the pheromone values from being frozen,
and thereby maintain a high probability that both arcs out of a given vertex
will be explored by at least one ant. Figure 8 shows how the pheromone values
on the (ai, bi) arcs develop in these circumstances.

While λ-MMAS is able to keep the pheromone values close to 1/2 in the
columns close to t (where the 5 ants can construct the new shortest paths
with high probability), the pheromones do become frozen in columns further
away from t. Recall that encountering any frozen pheromone value means that
log2 n ants started at each vertex will with high probability not explore the
non-reinforced arc, and therefore will not construct the shortest paths in at
least half the iterations. Thus, λ-MMAS is indeed unable to reliably construct
the shortest paths from a50 and b50 in this case.

When the oscillation is slower – for instance, when the weight functions are
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Figure 8: Average observed pheromone deviation from 0.5 on (ai, bi) arcs in
various columns i, with the weight functions changing every iteration.

changed every 3030 iterations (15 × τmin
−1 iterations); the pheromone values

on arcs close to t will be frozen to favor the correct shortest paths. Figure 9
illustrates how the pheromone values develop with this oscillation frequency.
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Figure 9: Average observed pheromone value on the (ai, bi) arcs when the weight
function is changed every 3030 iterations.

Notably, while the pheromone values on the (a1, b1) arc are reliably frozen to
favor the correct shortest path within relatively few iterations after the weight
function is changed, pheromone values on arcs further away from t are slower
to adapt – even to the point of changing to favor a particular path after the
weight function changes. The behavior is perhaps best characterized as waves
propagating through the graph – pheromones on arcs close to t are likely to
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reflect the current shortest paths, while those on more distant arcs reflect older
shortest paths.

Figure 10 shows the probability that the best-so-far path x∗v is actually the
correct shortest path from v in a given iteration, as measured by diving the
number of simulations where that was the case by the total number of simu-
lations performed. With this choice of parameters and oscillation frequency,
λ-MMAS is able to reliably construct the shortest paths for approximately the
first 20 columns before the weight function changes again, and does not appear
to be able to construct the shortest paths for the last 15 columns at all before
the weight function is changed again.
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Figure 10: Probability that the best-so-far path x∗v is the shortest path from v
to t when the weight function is changed every 3030 iterations.

Figure 11 shows how many of the best-so-far paths x∗v are correct shortest
paths in a given iteration, as an average over 200 simulations. From it, it
can be concluded that λ-MMAS will on average construct less than 50 correct
shortest paths (i.e. from the 25 columns closest to t) before the weight function
is changed.

From these experiments, it is clear that the original assertion that λ-MMAS
with λ = log2 n ants is unable to reliably construct the shortest paths from the
ak and bk vertices of the graph is correct. The presented experimental data
also revealed non-obvious details about the behavior of pheromones when the
oscillation is relatively slow, which could serve as a starting point for future
theoretical analysis of the conditions under which ACO algorithms may be able
to efficiently handle oscillation between weight functions with significant changes
to the shortest paths.
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weight function is changed every 3030 iterations.
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6 Discussion

This final section presents a summary of the topics discussed and results pre-
sented in the previous sections of this thesis, and provides an outlook over the
possible topics for future related work.

6.1 Resume

This thesis examined how variants of the Max-Min Ant System algorithm, based
on the Ant Colony Optimization metaheuristic, can be applied to dynamic short-
est path problems. It began by demonstrating that an ant colony is needed to
solve shortest path problems in an expected polynomial number of iterations (as
performance of ACO algorithms is typically measured in iterations, not basic
operations). The choice of parameters in the MMASSDSP algorithm was ana-
lyzed, and it was shown that choosing the pheromone bounds τmin ≤ 1/(`∆)
and τmax = 1 − τmin, where ` is the maximum length (in arcs) of any shortest
path to the destination vertex t and ∆ is the maximum vertex degree in the
graph, allows construction of a specific path with one arc with pheromone value
τmin, and up to ` arcs with pheromone value τmax with probability Ω(1/τmin).
Construction of paths of this type is then shown to be the primary source of
progress during the optimisation, which yielded O (`/τmin + ` log(τmax/τmin)/ρ)
and Ω (`/τmin) upper and lower bounds on the expected number of iterations
to rediscover all shortest paths after a specific one-time change to the weight
function was made.

The optimisation process was then characterized as a series of discovery and
freezing phases, and the effects of starting λ ants at each vertex in the λ-MMAS
and λ-MMASib algorithms were examined. It was shown that λ = Ω(1/τmin)
allows the discovery phases to be completed in expectation in a constant number
of iterations, significantly reducing the expected number of iterations required
to rediscover the shortest paths. While starting even more ants could allow
λ-MMAS to discover shortest paths with up to k non-reinforced arcs, it was
shown that doing so would require simulating a number of ants exponential
with respect to k. Finally, it was also shown that starting Ω(log n) ants at
each vertex is sufficient to allow λ-MMASib, using iteration-best reinforcement
(where the paths x∗v are only track the best path constructed during the current
iteration), to rediscover the shortest paths in expected polynomial time if the
evaporation rate ρ was at least a constant.

Finally, performance of λ-MMAS was examined in several situations where
the weight function was changed regularly. It was shown that λ-MMAS with
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λ = log2 n is able to maintain a high probability of constructing the correct
shortest path in each iteration, for any polynomial number of iterations, when
a fitness function alternates between two weight functions every iteration, as
long as the difference between the shortest paths of the two weight function is
relatively minor, and the evaporation rate ρ is not too high. This is accom-
plished by keeping the pheromone values on the oscillated arcs close to 1/2. It
was then shown that if the fitness function switches between weight functions
permanently, rather than oscillating between function, evaporation rates that
are too low may hinder the optimisation process, causing λ-MMAS to lose track
of the correct shortest paths for any choice of λ that is polynomial with respect
to n. Finally, it was demonstrated that λ-MMAS with λ = log2 n ants is not
able to keep track of a fitness function that quickly oscillates between two weight
functions when the Hamming distance between their shortest paths is large, by
showing a particular example where, even if the pheromone values were kept
close to 1/2, log2 n ants would not be able to construct the shortest paths with
overwhelming probability.

The λ-MMAS and λ-MMASib algorithms were then implemented in C, and
the implementation was used to provide additional empirical detail to the results
predicted in the theoretical analyses by simulating specific scenarios using small
graphs. It was shown that using λ-MMAS with λ = 3 ants is able to the
pheromones on an oscillated arc from freezing for significantly longer than with
λ = 2 ants (for which the number of iterations seems to scale reciprocally with
the evaporation rate ρ). A more detailed view of the λ-MMAS behavior when
the fitness function oscillates between weight functions with shortest paths that
have no arcs in common was presented, revealing that if the oscillation is slow
enough to allow some of the pheromone values to freeze to favor the correct
shortest path arcs, this freezing behavior propagates in waves through the graph
– with some pheromone values having been observed to freeze in counter-phase
to the actual shortest paths.

6.2 Future work

Some of the bounds presented in the theorems in this thesis could likely be
refined further. In particular, it may well be the case that log n ants are sufficient
for the results of Theorem 8, which could be approached using the negative drift
theorem (see e.g. [10, Theorem 4.9] or [12, Theorem 2.12]), demonstrating that
there exists a drift towards pheromone value 1/2, that at least a linear number
of double-steps away from 1/2 are required for pheromone values to exit the
desired range, and that no large jumps in pheromone value are possible – then,
per the theorem, the expected time before the pheromone values first exit the
desired range is exponential with high probability.
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Theorem 8 could be investigated for fitness functions that switch between
k different weight functions (which all differ by one choice) every iteration to
determine the influence of k on the required number of ants λ.

The effects of having a large Hamming distance between shortest paths in an
oscillation could be examined more closely – in particular, the nature of a wave-
like propagation of pheromone values through the graph shown by experimental
results is interesting. It would be interesting to consider theoretical basis for
this behavior, considering it sometimes updates pheromones in a non-intuitive
fashion (changing to favor precisely the wrong arc), as well as experimentally
check whether the “waves” continue to exist in larger graphs, or for other pairs
of weight functions with the same property of not having the shortest paths
share any arcs.

It may also be interesting to consider whether the MMASSDSP algorithm
could be improved in any way that affects the expected optimisation time: as
presented in Algorithm 1, the algorithm ignores additional information that is
available for shortest path problems (e.g. the weights of the subpaths of the
constructed path from each vertex), and uses a particularly simple pheromone
reinforcement method, which only alters the pheromone values on arcs leaving
a vertex v based on the path x∗v, and not any of the other paths that might pass
through v.

Finally, the structure of the MMASSDSP algorithm makes it relatively easy
to adapt it to handle multi-objective shortest path problems, where each arc
might have several different types weights associated with it, simply by adjusting
how fitness functions map the solutions to fitness values (and how those are
compared). However, the key property that allowed polynomial expected time
optimisation in the single-objective setting no longer applies – shortest paths
cannot always be built by adding a single non-reinforced arc to an already known
shortest path14. Furthermore, multi-objective shortest path problems are known
to be NP-hard (per [1]), so efficient optimisation might not be possible using any
algorithm. Yet multi-objective optimisation problems are common in nature,
and it can be argued that even ant food gathering is one such problem, balancing
the distance to food source with the amount of available food and other factors.
It may therefore be worth examining if a pheromone-based approach can also
be applied to some multi-objective shortest path problems, in a fashion similar
to how the performance of a simple evolutionary algorithm on a multi-objective
shortest path problem was analyzed in [9].

14For an example, consider the problem of finding the cheapest flight connection to reach
Reykjav́ık by midnight: each arc would have both a time and a cost weight. It is not possible
to extend already known cheapest connections that satisfy the arrival time requirement by
adding additional flights, as doing so might violate the arrival time requirement.
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A Implementation details

This appendix provides more detailed instructions on how the implementation
described in this thesis can be compiled and used to obtain experimental data.

A.1 Using the implementation

The implementation is written in C99, and has been tested to compile with
GCC or LLVM/CLANG.

1. The POSIX threads (pthreads) library is required.
This is typically available on any Linux/Unix operating system. Pthreads-
w32 may be useful on Windows: http://sources.redhat.com/pthreads-win32/

2. Lua shared libraries must be available to the C compiler and linker.
Lua source code can be downloaded form http://www.lua.org/ftp/, and
includes Makefiles to compile and install the required libraries for most
platforms. The implementation has been tested against Lua 5.1.5.

3. The included C source code should be compiled and linked against Lua,
pthreads, and the standard math libraries.
A Makefile is included in the implementation to automate this on some
systems.

4. The simulator is invoked by specifying a path to a serialized initial graph
and a path to the Lua script to control the simulation:
$ ./aco graph.wf script.lua

Output is then controlled by the specified Lua script file.
A number of sample Lua scripts for the experiments presented in Sec-
tion 5.2 is included. These create their own graph files, and can be started
by running them with the standalone Lua interpreter:
$ ./lua exp1.lua

A.2 Graph format example

The initial graph is always read from a serialized representation stored in a file.
The Lua script can subsequently modify this graph by altering any existing arc
weights, but cannot insert new arcs.

http://sources.redhat.com/pthreads-win32/
http://www.lua.org/ftp/
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The graph files consist of whitespace-separated numbers: N , the number of
vertices in the graph, ∆1,∆2, . . . ,∆N−1 the out-degrees of vertices 1 through
N−1 (vertex 0 is by convention the destination vertex and has no outgoing arc),
and pairs of numbers HiWi, specifying the head vertex index and arc weight for
each arc in the graph. The Hi,Wi pairs are sorted in ascending order of the tail
and head vertex indices. This encoding scheme is illustrated by the example in
Figure 12
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Figure 12: A simple graph and its serialization.

A.3 Functions available to the Lua environment

Standard Lua table, string, and math libraries are available. The command line
arguments to the simulator are accessible through the global arg table, indexed
such that the simulator executable file path is in arg[0], and the remaining
ascending integer indices reflect command line arguments (the first of which is
the path to the graph, and the second the path to the Lua script).

The following functions can be used to control algorithm parameters:

SetNumAnts(numAnts)

Sets the number of ants λ started at each vertex.

SetNumThreads(numThreads)

Sets the number of parallel threads used to perform the simulation.

UseBestSoFarReinforcement(useBF)

If useBF is truthy, best-so-far reinforcement is used; otherwise, iteration-
best reinforcement is used (i.e. the paths x∗v only reflect the best path of
the current iteration).

SetPheromoneBounds(min[, max])

Sets the pheromone bounds to provided values; does not alter existing
pheromone values until the next pheromone update. If max is omitted, it
defaults to τmax = 1− τmin.
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SetEvaporationRate(rho)

Sets the evaporation rate ρ.

SetCallback("OnPathUpdate", func)

Sets func to be called after any iteration in which any of the best-so-far
paths x∗v changed. Only one callback can set at a time.

SetCallback("OnIteration", iterval, func)

Sets func to be called whenever (iteration mod interval) = 0. Only one
callback can set at a time.

The following functions return information about the current state of the
simulation:

iteration = GetIteration()

Returns the total number of iterations performed.

numVertices, numArcs = GetGraphSize()

Returns the number of vertices and the number of arcs in the current
graph.

dst, weight, pheromone = GetReinforcedArcInfo(src)

Returns information about the reinforced arc from vertex with index src:
index of the destination vertex, total weight of the reinforced path, and
the current pheromone value on the reinforced arc. If no such path exists,
dst and pheromone are nil.

value = GetPheromoneValue(src, dst)

Returns the pheromone value on the (src, dst) arc, or nil if no (src, dst)
exists.

The following functions modify the current state of the simulation:

SetPheromoneValue(src, dst, value)

Sets the pheromone value on the (src, dst) arc to min(τmax,max(τmin, value)).

SetArcWeight(src, dst, weight)

Sets the weight on the (src, dst) arc to weight.

StopSimulation()

Halts the simulation; no further iterations will be performed, and the
program will exit after the Lua callback completes.
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