
Learning usage behavior based on
app feedback

Erik Bager Beuschau

Kongens Lyngby 2012
IMM-M.Sc.-2012-85

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2012-85

Abstract

As people spend more and more time with their smartphones, it is necessary to
have a solid understanding of modern smartphone users’ behaviour in order to
get a better indication of their needs in various situations and contexts.

In this project, an Android application has been build which continuously col-
lects data on the user’s active application. This data is sent to a server, which
has also been created during the project, and it is with background in this col-
lected data that further analysis have been conducted. Some of these analysis
have already been seen in other studies, while some are new to this area.

Some of the obtained results indicate a number of significant trends within
usage behaviour, and they give a vital insight into how users navigate and
operate within various contexts. For instance, a lot of games are used mostly
around and after midnight, social applications (e.g. Twitter and Facebook) will
most often be used right before a browser application, and it has been possible
to detect similar usage behaviour within specific distinguishable geographical
areas for single users. It has also been shown that more than 50% of users’
application usage is registered within a 500 metres radius.

ii

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

The supervisors of the thesis are Jakob Eg Larsen and Michael Kai Petersen from
the Department of Informatics and Mathematical Modelling at the Technical
University of Denmark.

Vanløse, 6 August 2012

Erik Bager Beuschau

iv

Acknowledgements

I would like to thank all of those who helped me collect the usage data by
installing my Android application. I could not have finished this thesis without
your help.

vi

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . 1
1.2 Project Goals . 1
1.3 Potential . 2
1.4 Contributions . 3

2 Related Work 5

3 Analysis 9
3.1 Mobile Application Analysis . 9

3.1.1 Non-functional Requirements 9
3.1.2 Functional Requirements 11

3.2 Recommendations . 12
3.3 Data Analysis . 12

3.3.1 Application Interactions 12
3.3.2 Categorisation . 13
3.3.3 Location Analysis . 13

4 Design 15
4.1 Mobile Application Development 15

4.1.1 Information Architecture 15
4.1.2 Visualisations . 17
4.1.3 Filtering . 17

viii CONTENTS

4.1.4 Data Collection . 18
4.2 Communication . 18

4.2.1 Web Services . 19
4.3 Recommendations . 20
4.4 Data Analysis . 21

4.4.1 Time Data . 21
4.4.2 Location Data . 21
4.4.3 Application sequences . 26

5 Implementation 27
5.1 Mobile Application Development 27

5.1.1 Android Development . 28
5.1.2 Application Monitoring 28
5.1.3 SQLite Database . 30

5.2 Server Development . 31
5.2.1 Server Set-up . 31
5.2.2 Database . 32

5.3 Visualisations and Data Analysis 33
5.3.1 Histograms . 33
5.3.2 Transitions . 35
5.3.3 Locations . 35
5.3.4 Asynchronous Data Processing 40

6 Experimental Work 41
6.1 Application Release . 41

6.1.1 Time Zone Compensation 42
6.1.2 Collected Data . 43

6.2 Application Feedback . 43
6.3 Known Issues . 44

6.3.1 Faulty Data . 44
6.3.2 Server Limitations . 44

7 Results 45
7.1 Application usage . 45
7.2 Transition Analysis . 47
7.3 Location Analysis . 49

7.3.1 Clustering Analysis . 49
7.3.2 Location Distribution . 51

8 Evaluation 53
8.1 Time Analysis . 53
8.2 Transition Analysis . 54
8.3 Location Analysis . 55

8.3.1 Location Distribution . 55

CONTENTS ix

8.3.2 Clusters . 55

9 Discussion 59
9.1 Data Collection . 59

9.1.1 Measurable Parameters 59
9.1.2 Data Correctness . 60
9.1.3 Data Quality . 61

9.2 Recommendations . 61
9.3 Prospects . 63

9.3.1 Area with Focus . 63
9.3.2 Reflections on Utilisation 65

10 Conclusion 67
10.1 Future Work . 67
10.2 What has been accomplished . 68

A Mobile Application Interface 71
A.1 Menu Layout and Interaction . 71

A.1.1 Asynchronous load of data 73
A.2 Data Visualisations . 74

A.2.1 “Stats” . 74
A.2.2 The Pie Chart . 74
A.2.3 The Map . 74

B Tests 75
B.1 Mobile Application . 75

B.1.1 Test Background . 75
B.1.2 Conducted Tests . 77

B.2 Server . 77
B.3 Data Analysis and Visualisation 77

Bibliography 79

x CONTENTS

Chapter 1

Introduction

1.1 Motivation

As my current job is developing Android applications, it is very important to me
how and when users utilise mobile applications. Smartphone users tend to use
a lot of different applications during a day, but knowledge about users’ usage
patterns is limited. By gaining knowledge on user behaviours, both application
developers and users can benefit. Application developers, as they will have a
better understanding of what the user needs in various situations, and users, as
they will get more clever applications which adapt to their specific needs and
the environment they are in. Furthermore, it is relevant to see if users tend to
have specific usage patterns related to their respective locations, as locations
often reflect the contexts users are in.

1.2 Project Goals

The overall goal of the project is to get a better understanding of mobile users’
usage patterns. That is, investigating the relationship between application usage
and users’ locations, examine transition patterns between applications, and look
into application usage over time.

2 Introduction

In order to achieve this, a number of sub-goals need to be accomplished. First of
all a mobile application prototype must be build, which continuously registers
the active application on an Android device. It must upload this data to a
server, which will store the data along with each user’s ID. This server must
also be created, and should be available for clients to connect to at all times.
This server should also provide individual application recommendations to each
user, based on their own and other users’ application usage behaviour, on a
user’s request. A recommendation, in this context, is considered as a relevant
suggestion of a new application which the user has not currently installed on
his/her device.

1.3 Potential

Potentially, there is a great number of areas where this kind of knowledge could
be interesting. First of all, access to the data set, and the conclusions made
on background of it, might be valuable to companies developing mobile appli-
cations. Both for developers who have already launched their application, but
also for developers who are in the process of building an application. Some of
the possibilities for developers are described below.

Advertising – The information could be used for putting intelligent advertise-
ments in mobile applications, based on a user’s location or context or based on
the time of the day1. This could turn out to be quite profitable, and ads could
be sold in real-time to the highest bidder; this is already seen with Google Ad
Auction2. The ads could include links to other applications which were in the
same category as either the user’s active application or one of the user’s most
popular applications within a certain context.

Links in an application to other applications or features, which are likely to
be launched in sequence with the given application, might give a better user
experience.

Categorisation – Finding trends for applications of similar type could make
developers aware of trends within specific categories. This could make it easier
to adapt applications to specific user needs based on users’ application usage
within each application category.

1This kind of advertising is already seen, however not with the proposed level of detail in
targeting, see for instance Google AdMob (for Android): https://developers.google.com/
mobile-ads-sdk/docs/android/intermediate#targeting

2http://support.google.com/adsense/bin/answer.py?hl=en&answer=160525#1

https://developers.google.com/mobile-ads-sdk/docs/android/intermediate#targeting
https://developers.google.com/mobile-ads-sdk/docs/android/intermediate#targeting
http://support.google.com/adsense/bin/answer.py?hl=en&answer=160525#1

1.4 Contributions 3

By benefiting application developers, users will ultimately get better applica-
tions. But applications could also be developed specifically for helping users in
various situations with background in the generated data set. A home screen
application or widget3 could, during the day, recommend different applications
(perhaps only installed applications) to a user based on the time of the day/week
and the user’s location and context. This would provide a clever shortcut solu-
tion to the most relevant applications in each specific situation during the day
or week.

An indication of the potential of this kind of knowledge is seen by the growing
competition within mobile application development. Recently, a German mobile
analytics firm claimed that only 1 of 3 published applications on Apple’s App
Store is ever used (downloaded or rated).4 This explains why multiple companies
(to name a few: Apptrace, keen.io, countly and flurry)5 start delivering full-scale
solutions with built-in analytics features for analysing how users utilise their
application and for tracking every development in the number of active users
and downloads in various ways.6 This is an area where there is an explicit need
for detailed information on how users utilise applications.

1.4 Contributions

A mobile application prototype, named “Appalyzer”, has been developed, tested
and published on Google Play7 which continuously registers the active appli-
cation on a device. The application communicates with a server which collects
and stores the registered user data. The server calculates internal relationships
between users, and maintains a large set of individual application recommenda-
tions which are available to users on request.

Another server has been build which runs a few web-pages where it is possible
to get insights into the collected data set through different visualisations. These
pages can be accessed here: http://89.233.45.28

3http://developer.android.com/guide/topics/appwidgets/index.html
4See: http://tiny.cc/pemiiw
5http://www.apptrace.com/, http://keen.io/, http://count.ly/ and

http://www.flurry.com/
6Some of this might also be caused by Apple’s ecosystem around their App Store, and

the trend is not necessarily the same for Google Play. However, with so many available
applications (around 500, 000 according to http://www.appbrain.com/stats/), it is evident
that the competition is intense.

7See: https://play.google.com/store/apps/details?id=com.dtu.appalyzer

http://89.233.45.28
http://developer.android.com/guide/topics/appwidgets/index.html
http://tiny.cc/pemiiw
http://www.apptrace.com/
http://keen.io/
http://count.ly/
http://www.flurry.com/
http://www.appbrain.com/stats/
https://play.google.com/store/apps/details?id=com.dtu.appalyzer

4 Introduction

Finally, data analysis have been carried out, with help from the web-pages
described above, in three major areas:

• Locations

• Application transitions

• Application usage over time

Chapter 2

Related Work

Previous, and much larger, studies have been carried out in this area [BHS+11,
Nok], where a lot of usage data has been collected. While it is hard to find a
lot of information on exactly what they collected in the Nokia Data Challenge
[Nok], it is more transparent in the first study [BHS+11].

What they did, was to create an application (called “Appazaar beta”) much like
the one proposed in this project, which continuously registered a lot of informa-
tion on users and their application usage. They measured several parameters,
even users’ velocity when they where using different applications. They also
looked at the length of a series of interactions, to see if there were any inter-
esting tendencies related to the number of applications used in one series of
application interactions (before the screen was turned off on the device). The
data set they describe in their article has more than 4.000 users and has reg-
istered more than 22.000 different applications. An attempt was made to gain
access to their data set, but the authors/administrators would only offer access
to this if one was at their site, within their firewalls (to make sure no data was
leaked publicly due to privacy issues).

The “Appazaar beta” also introduced a recommendation feature which could rec-
ommend new applications to users based on their own usage pattern. However,
based on the feedback on Google Play (previously Android Market), it seems
that this application has a number of challenges to overcome. It seems the

6 Related Work

Name Description Running Tasks
“Appazaar beta” Scientific application related to

[BHS+11] which with an advanced
approach based on application se-
quences and user behaviour tries to
recommend different applications

Yes

“One! Best Recom-
mendations”

recommends applications based on
user feedback and Android Market
analysis

No

“Appreciate” takes a social approach and lets you
see which applications your friends
use

No

“Appmom” This is not available in Denmark,
and therefore has not been tested

Yes

“Appolicious” Looks at installed applications and
gives recommendations based on a
huge database with information on
application categories, user ratings,
and applications which are consid-
ered alternatives to each other

No

“Best Apps Market” Recommends applications based on
expert reviews

No

Table 2.1: A subset of the recommendation applications available on
Google Play. The running tasks column indicates whether the application

uses information on a device’s running tasks.

recommendations are not very good, the application is quite unstable, and the
application consumes a lot of power1. Yet another scientific approach has been
presented in [LKKK11], where an attempt is made to recommend applications
in a social context using semantic relations.

Similar approaches have been made to develop applications which can recom-
mend applications to users on Android. A comprehensive list of the most pop-
ular ones can be seen in Table 2.1. A number of other applications exist, but
they all seem to use a recommendation feature based on an expert reviewer or
a similar approach.

Many popular recommendation systems exist in other contexts than application

1https://play.google.com/store/apps/details?id=net.appazaar.appazaar

https://play.google.com/store/apps/details?id=net.appazaar.appazaar

7

recommendation, for instance Last.fm2, Netflix3, Google Ads4 and Stumble-
Upon5. Some of these systems use interesting ways of recommending items to
users - some of which might be relevant to this project.

Other projects have tried analysing mobile users’ behaviour in other contexts
than application usage. For instance users’ music listening patterns in relation
to the respective situations they are in [ZHLP10]. This kind of study has also
been used to try and predict and recommend music for users based on their
context [PYC06].

Another study related to predicting user behaviour, has shown interesting re-
sults regarding the lack of randomness in mobile users’ movement, where the
predictability of the average user was more than 80% [SQBB10]. This is relevant
to this project, as the distribution of locations has a big impact on the number
of applicable techniques when performing location analysis.

2See: http://www.last.fm
3See: http://www.netflix.com
4See short description: www.google.com/adsense/
5See: http://www.stumbleupon.com/

http://www.last.fm
http://www.netflix.com
www.google.com/adsense/
http://www.stumbleupon.com/

8 Related Work

Chapter 3

Analysis

With background in the Related Work chapter, the requirements for the mobile
application will be outlined in this chapter. Furthermore, the recommendation
feature will be analysed and finally, the background for the data analysis of the
collected data will be described.

3.1 Mobile Application Analysis

The application prototype must fulfil certain requirements in order to support
the possibility for thorough data analysis later. The requirements will be de-
scribed below.

3.1.1 Non-functional Requirements

3.1.1.1 User Experience

Whenever doing a project which requires users to contribute, it is a good idea
to see if it is possible to give the users something in return. In this project,

10 Analysis

users’ usage data is collected, and in order to make this interesting to the users
they must benefit as well. If users do not gain anything from the application,
it seems unlikely that they will continue to use it or have it installed for that
matter.

First of all the proposed application must be able to recommend applications to
the user. This will give users a useful product of their benefit. The application
should also allow the user to investigate the data collected on the individual
user through relevant visualisations on the user’s own device. This should make
the application more attractive to use, encourage users to keep the applica-
tion installed on their device, and might even give users interesting and new
information on their own application usage patterns.

Since users might not be familiar with the type of this application, it is important
that users can get information on the purpose and usage of the application from
within the application.

3.1.1.2 Efficiency

It is important that the application does not drain the user’s battery by con-
stantly processing data, looking for new locations, or uploading data to the
server. Therefore, it must run in the background, only check for the location
when there is a transition (in the active application), and only periodically up-
load data to the server. This will preserve battery, give a better user experience,
and thereby make sure that users do not uninstall the application due to bad
performance. More information could be collected (as they did in [BHS+11])
but this might quickly lead to heavy computations and high battery consump-
tion. Some of these extra features might include accurate location estimations,
velocity calculations and registration of application usage with extremely high
frequency.

3.1.1.3 Privacy

When logging user interactions, it is important to be aware of any privacy
related issues. To ensure that users’ identities are kept safe, there must be no
way of tracking a registered user back to an identity or device. This means that
no data should be collected which is not related to the specific task at hand -
this means phone number, zip code, age, date of birth etc. The only necessary
information which must be transferred between client and server is a unique ID
which represents each device. This is in order to register continuous interactions

3.1 Mobile Application Analysis 11

related to the right person/device. Besides that the ID might be stolen during
server-client communication, this seems as a sufficient1 solution which hides the
user’s identity.

However, as location data is collected it might be possible to detect a specific
registered user if one knows the locations where this user usually stays (e.g.
where he/she works, lives etc.). This is inevitable if the relation between a
bunch of location data and a specific user needs to be ensured. However, by
lowering the accuracy of the locations collected, using this data to identify a user
will be a lot harder. Furthermore, as more users become active, it will make
it more difficult to distinguish a single user’s movement pattern compared to
others. This sort of de-anonymisation has been seen before [NS08], and it should
be a major concern for every project (or company/organisation) collecting this
kind of data to minimise this risk.

3.1.2 Functional Requirements

Following the requirements described above, the functional requirements will
now be outlined. The application should be able to perform the following:

• Continuously collect data of the running application

• Periodically upload the data to a server

• Present the user with visualisations and key figures on the user’s applica-
tion usage

• Allow the user to receive application recommendations, and review previ-
ously received recommendations

• Allow the user to disable/enable the collection of data as well as the upload
of data

• Allow the user to choose for how long the collected data should be stored

• Give the user information on what the application does and how it works

These requirements should cover the basis for the mobile application - an appli-
cation which is called “Appalyzer”.

1Sufficient for the scope of the project. To avoid that the ID is stolen during this transac-
tion, one should use a secure connection and possibly encrypt the ID.

12 Analysis

3.2 Recommendations

Recommendation systems exist in many different contexts, and are used for
all kinds of recommendations [AEK00, PB07]. A lot of research is done on
recommendation systems in order to improve their accuracy and the quality of
their predictions [AT05]. Well-known types of recommendations include music-2
and film-recommendations3, but recommendations are also seen within all kinds
of e-commerce sites and search engines.

Recommending (Android) applications is comparable to recommending films or
music - based on the user’s taste in applications, he/she will be presented with
similar applications based on other users’ reviews. The reviews/ratings of the
applications will, for this project, be considered as the number of interactions
with each application. The choice of recommendation approach for this project
is outlined in Section 4.3.

3.3 Data Analysis

A thorough analysis of the collected data has been conducted, and can be seen
in Chapter 7 on page 45. Some of the underlying reasoning for the focus of these
analysis will now be presented.

3.3.1 Application Interactions

The differences in application usage first of all tells something about application
popularity, but by analysing when and how much each application is used, it
is possible to tell something about usage patterns during a day or a week. By
accumulating application usage over time it is possible to see indications and
trends occurring periodically. These analysis can be used in various ways and
are able to reflect a high level of detail if presented properly.

The transitions between applications is also very relevant to investigate. This
tells something about the relationships between individual applications, and al-
lows for further analysis of applications popular as either predecessors or succes-
sors, predecessor being the application from which the successors is “launched”.

2For instance Last.fm and iTunes Genius, see: http://www.apple.com/itunes/features/
3For instance Netflix and jinni, see: http://www.jinni.com/

http://www.apple.com/itunes/features/
http://www.jinni.com/

3.3 Data Analysis 13

3.3.2 Categorisation

By categorising the different applications, trends within each category can be
found. This will add yet a layer of information to the collected data, and can
make conclusions even more powerful by generalising them on multiple appli-
cations under the same category. On Google Play categories already exist,
describing each application’s type. However, these categories are quite general
and might not prove detailed enough for the purpose of this project. Moreover,
the application category is not chosen by an authority but selected by the devel-
oper(s) when publishing an application, leading to subjective and inconsistent
categorisations.

3.3.3 Location Analysis

According to [ZHLP10], it seems that there is a correlation between users’ music
listening patterns and the respective context they are in (at least whether a user
is static or moving). These observations indicate that users tend to use their
device differently in different contexts. Assuming that mobile users use different
applications in different contexts and that these contexts exist at different loca-
tions, it is interesting to analyse the collected data in this project to see how a
user’s location and application usage correlates.

These results can benefit application developers adapt their applications to spe-
cific situations or environments and ultimately improve the user experience.
These optimisations might include built-in shortcuts to other applications, bat-
tery preserving functionalities or explicit information which might be of interest
to users using an application in a certain context. A good example of an ap-
plication which has already tried to provide users with one of these shortcuts is
“Endomondo Sports Tracker”4. An illustration of this kind of shortcut can be
seen in Figure 3.1. They benefit from the fact, that users of sports applications
are likely to use some sort of music application simultaneously while exercising.
Similarly, the social Android application Foursquare5 utilises the built-in map
functionality for visualising their different locations where people can check in
(illustrated in Figure 3.2). This kind of intelligent shortcuts should be easier for
developers to add to their applications with background in this project.

4See: https://play.google.com/store/apps/details?id=com.endomondo.android&hl=en
5See: https://play.google.com/store/apps/details?id=com.joelapenna.foursquared

https://play.google.com/store/apps/details?id=com.endomondo.android&hl=en
https://play.google.com/store/apps/details?id=com.joelapenna.foursquared

14 Analysis

Figure 3.1: Shortcut to music applications from “Endomondo Sports
Tracker”

Figure 3.2: Shortcut to map applications from “Foursquare”

3.3.3.1 Location Distribution

As mentioned in Chapter 2, a study shows that mobile users’ movement patterns
are 80% predictable. Moreover, it seemed that users spend 70% of their time
within their most popular location [SQBB10]. The study was based on a large
number of users who had their location determined, with use of the mobile tower
they were connected to, whenever they called someone.

By investigating the distribution within the data of this project, it is possible to
see if it follows the same tendency or if the pattern is different when locations
are registered more frequently (every 2 seconds instead of when a user calls
someone).

Chapter 4

Design

In this chapter the different design choices for the implementation will be de-
scribed, and the background for the data analysis in Chapter 6 will be outlined.

4.1 Mobile Application Development

Many of the considerations related to the mobile application development will
be described below.

4.1.1 Information Architecture

The features outlined in Section 3.1.2 can be collected into three categories:
Settings, Statistics, and Recommendations. This makes it obvious to choose a
navigation infrastructure in the application witch contains 3 different menus,
each accessible from a 4th menu which connects the navigation. A diagram of
the proposed navigation can be seen in Figure 4.1. The choice on sub-menus in
each of the 3 menus are based on the requirements earlier mentioned. The fact

16 Design

Settings Statistics Recommendations

Main Menu

Visualisation3Visualisation1 Visualisation2
Get

Recommend-
ation

Old
Recommend-

ations
AboutDatabase

Settings
Upload
Settings

Monitoring
Settings

Menus

Custom views
and dialogs

Figure 4.1: Navigation structure in “Appalyzer”

Button 1 Button 2

Button 3

Background

Background

Figure 4.2: Mock-up of the proposed design.

that the “About”-sub-menu is in the “Recommendations”-menu is not necessarily
intuitive, except for the fact that it explains the basis for the recommendations.1.

The navigation set-up described above is achievable in various ways. Even
though guidelines exist for implementing Android user interfaces2, a radical
interface is proposed which emphasises the fact that the application handles
statistics. This is achieved by letting each menu (in Figure 4.1) consist of a pie
chart-looking area in the centre of the screen, which holds the 3 relevant buttons
for each menu. A mock-up of this layout can be seen in Figure 4.2

1The default way of presenting a menu such as an About-menu (on Android) would be
putting it in an “Options Menu”, see: http://developer.android.com/guide/topics/ui/
menus.html#options-menu

2http://developer.android.com/design/index.html

http://developer.android.com/guide/topics/ui/menus.html#options-menu
http://developer.android.com/guide/topics/ui/menus.html#options-menu
http://developer.android.com/design/index.html

4.1 Mobile Application Development 17

4.1.2 Visualisations

In order to provide the user with some feedback on his/her application usage,
some different visualisations will need to be implemented in the Android appli-
cation. Based on the data collected it is obvious to create a list of the different
applications, which the user has interacted with, and an indication of how much
time he/she has spent on each of these. This will give a good overview of where
the user spends most time, and the relations between application usage time. In
this overview, it should also be possible to see which applications that are most
often used as predecessors for each application. This option should be possible
when clicking an application in the list.

A graphical overview of the relations mentioned above can be achieved using a
pie chart. This will give the user an even better insight into his/her application
usage and provide a visually comparable illustration of the application usage
time.

Finally, the fact that location data is collected makes it obvious to display this
information on a map. Therefore, a map visualisation should be implemented,
making it possible to see where in the world each application is used the most.
This could be done by adding coloured dots on top of a map, where each colour
represented a specific application used.

4.1.3 Filtering

Instead of listing all the used applications in each of the proposed visualisations,
a user should be able to select/deselect specific applications in order to get a
better insight in differences among certain applications. This filtering mecha-
nism should be used throughout the different visualisations, such that a change
in selection in one visualisation, must be reflected in the other visualisations as
well. This will allow the user to better customise the visualisations.

18 Design

4.1.4 Data Collection

The parameters chosen for the data collection should cover the requirements
presented earlier. Below, the necessary parameters to acquire the desired level
of detail are outlined:

• Name of the application

• The location where the application was used

• The name of the previously used application (that opened this one)

• The duration of the interaction with this application (start- and end-time)

These parameter should suffice, as they cover the basic interactions between
applications, their duration, and location. Information on the nearby wireless
networks, phone state (e.g. roaming), battery levels etc. could also be collected
to see if there was a trend within this data. However, to limit battery use and
focus the project, the number of collected parameters was kept low.

4.2 Communication

This section describes the technical background and different decisions made
for the implementation of the server-client communication. Furthermore, the
design choices for the server implementation will be described.

The data collection must be stable, continuous and the transfer of data from
client to server should happen regularly. Furthermore, the same data should
never be uploaded twice from a client. The communication flow includes col-
lecting, storing, transferring, and processing the data. This flow can be seen in
Figure 4.3.

The basic idea is to have the client collect data continuously and to let the server
update itself regularly (each server update should update the recommendations
for clients). A client should be able to get an ID to identify itself, it should
be possible for a client to upload collected data to the server and it should be
possible for the client to ask for a recommendation.

This communication flow requires a few functionalities from the server set-up
which will now be described.

4.2 Communication 19

Loop

Client Server Database

Data Collection

update

Loop

id(locale)
getID

ID

ID

alldata(id)

success

storeData

recommendation(id)
getRecommendation(id)

appId, appName

appId, appName

Figure 4.3: Flow-chart of the data flow between client, server, and
database

4.2.1 Web Services

Following the illustration in Figure 4.3, a few web services, related to the com-
munication between client and server, can be identified:

• id - this must take one argument, the user’s “locale”3, create a new user,
and reply with the new user’s id. The locale might be useful later on.

• allApps - this must take three arguments: the user id, all apps installed
on the user’s device4, and the interactions performed since last upload.
This data should be stored in the database.

• recommendation - must take one argument, the user’s id, and reply with
either a recommendation or an error message that no recommendations
exist.

In order to update the recommendations regularly, yet another web service must
be created. This should be invoked periodically to ensure up-to-date recommen-
dations and similarity measures of users in-between. This web service, called

3See: http://developer.android.com/reference/java/util/Locale.html
4This is necessary in order to avoid recommendations of applications which a user has

already installed

http://developer.android.com/reference/java/util/Locale.html

20 Design

update, must initialise an update process which re-calculates all recommen-
dations for all users. Optimally, this calculation should be performed during
off-peak hours in order to ensure fast response time to clients when they are
most likely to connect. When a new client connects however, he/she will have
no recommendations available until the calculations have been made. This sug-
gests that calculations should also be done after a new client has uploaded
his/her first data.

4.3 Recommendations

For recommending applications to users, a recommendation algorithm needs to
be chosen. As this part of the project is not the primary focus, a basic, yet
commonly used (for recommendations)5, algorithm has been chosen based on
the correlation coefficient. This is also known as the Pearson Correlation Coef-
ficient [Seg07, Ch. 2] and will be outlined below. It is based on the principle of
collaborative filtering [RRS11], taking similar users and their “rating” patterns
into account when recommending items for a particular user. An item-based
approach could also have been used, looking at the similarity between items
(applications) instead of users [SKKR01], or a completely different recommen-
dation algorithm could have been used, e.g. Slope One [LM08].

The Pearson Correlation Coefficient (r), describes the linear dependency be-
tween two variables X and Y . It can be computed as follows:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ)2

Where X̄ and Ȳ are the means of the populations X and Y respectively and n
is the number of common items in X and Y . In relation to this project, X and
Y each represent a user’s “rating” of different applications.

Having calculated r, it is possible to calculate a predicted rating/popularity for
the user a for a specific item i. This is denoted pa,i:

pa,i = X̄a +

∑n
u=1(Xu,i − X̄u) · ra,u∑n

u=1 ra,u

All users having rated (used) the item i contribute with their rating scaled by
their similarity (ra,u) to the user at hand. This gives a weighted prediction of

5Example implementation of a Pearson recommendation system for the Netflix data set, de-
veloped by Billy McCafferty: http://devlicio.us/blogs/billy_mccafferty/archive/2006/
11/07/netflix-memoirs-using-the-pearson-correlation-coefficient.aspx

http://devlicio.us/blogs/billy_mccafferty/archive/2006/11/07/netflix-memoirs-using-the-pearson-correlation-coefficient.aspx
http://devlicio.us/blogs/billy_mccafferty/archive/2006/11/07/netflix-memoirs-using-the-pearson-correlation-coefficient.aspx

4.4 Data Analysis 21

the user’s rating, and the item with the highest rating is then an obvious choice
for a recommendation to this user.

4.4 Data Analysis

This section covers the background for the data analysis, and outlines the tools
for data analysis and visualisations. The details of the implementation of this
part is found in Section 5.3.

4.4.1 Time Data

Following the analysis in Section 3.3.1, histograms are chosen as the primary
visualisation method, as they are useful for displaying accumulated data over
time. The visualisations will prove as a vital element in the data analysis,
and could potentially be useful for users or developers who want to investigate
tendencies within application usage over time.

In order to properly investigate the collected data, an interactive implementation
of these histograms is necessary. The implementation must support the selection
of a single user or all users. It must be possible to display the accumulated data
over a week and over a day. A category-based selection should also be available,
and it should also be possible to display the most used applications within each
of the described selections.

4.4.2 Location Data

Since users’ location data is collected, it is vital to see how this information can
be utilised. First of all the data must be visualised on a map in order to make
it easy to detect patterns and tendencies. Furthermore, when analysing the
location data, it is essential to look at the distinction between different locations.
Firstly, a naive algorithm will be outlined which filters the locations at hand
and only leaves the distinct ones. Secondly a more sophisticated algorithm will
be discussed.

22 Design

function filterLocations(S)
deleted← []
d← 0.5 . Threshold in kilometres
for i = 0→ length(S)− 1 do

for j = i+ 1→ length(S)− 1 do
if !j in deleted then

if dist(S[i], S[j]) < d then deleted.append(j)

deleted← sort(deleted) . Sort descending
for k = length(deleted)− 1→ 0 do

S.delete(k)

Algorithm 4.1: Naive location filtering algorithm

4.4.2.1 Simple Noise Reduction

Assume a number of different locations exist in the set S. These are sorted de-
scending according to the number of application interactions on each location,
meaning that the location S[0] is the location with most application interac-
tions. Now these locations will be filtered by the following rule:

For each location l which has not been removed, starting with the most popular
one, remove all locations from the set S which are within the distance d of l.

This approach is outlined in pseudo-code in Algorithm 4.1, and will greatly re-
duce the amount of “noise” in the location data by reducing several locations
close to each other to a few (or even 1) locations. The bad thing about this algo-
rithm however, is that the locations which it leaves untouched do not necessarily
represent good estimations of the centre of a dense area. It will rather focus
on the most popular locations, which might lie in the border region of such an
area. Furthermore, it will not preserve information about a user’s transporta-
tion route (with bus or train for instance), as only some of the intermediate
locations will be left untouched.

The naive algorithm has its advantages, but to introduce a more sophisticated
approach, the next section will present a method based on clustering.

4.4.2.2 Clustering

A common way of determining distinct location groups, is to use clustering
[XZL10]. Many clustering algorithms exist, but to find the most suitable one

4.4 Data Analysis 23

function DBSCAN(S, ε,MinPts)
clusterID ← nextID()
for i = 1→ length(S) do

p← S[i]
if p.clusterID = UNCLASSIFIED then

if expandCluster(S, p, clusterID, ε,MinPts) then
clusterID ← nextID()

Algorithm 4.2: DBSCAN algorithm (from [EpKSX96])

for the data at hand, the data needs to be described in more details.

It can be assumed that the location data on a single user/device will be dis-
tributed among a number of different locations. Some areas will have a high
density of registered locations (e.g. at home, school or work), and some areas
will probably only have a few registered locations (when a user visits a new place
he/she will not return to). It is plausible, that the areas with high density will
have more or less the same density, as users will normally be static whenever
they are at home/school/work.6

This behaviour is well fit for density-based clustering algorithm, as there will
be areas with varying densities, and no predetermined number of clusters
[KKSZ11]. One density-based clustering algorithm is the “DBSCAN” algorithm
(described in details in [EpKSX96]). This algorithm uses two parameters to
separate points into either clusters or noise. The ε parameter indicates the min-
imum radius in which at least MinPts points must lie. If less than MinPts
points are within the radius ε of a point, this point will be considered as noise.

The algorithm takes a set of points S all having their clusterID set to
UNCLASSIFIED. The pseudo-code can be seen in Algorithm 4.2 and Al-
gorithm 4.3. The latter relies on the method regionQuery, which finds the
points within the distance ε of p over the set of points S. This method is the
part of the algorithm which takes up most of the running time. However, this
can be dramatically reduced (from O(n2) to O(n · log n)) by using a R*-tree
structure instead of a linear structure when searching for points within a given
radius [EpKSX96].

This algorithm fits to the problem of this data, and will be used to identify
patterns in users’ locations.

6The density will become higher around these places even though the user’s location does
not necessarily change during a whole day’s static presence at one location, since the Android
location determination will sometimes change slightly even though the device has not moved.

24 Design

function expandCluster(S, p, clusterID, ε,MinPts)
seeds← regionQuery(S, p, ε)
if length(seeds) < MinPts then

p.clusterID ← NOISE
return false

else . All points in seeds are reachable from p
for i = 1→ length(seeds) do

seeds[i].clusterID ← clusterID

seeds.delete(p)
while length(seeds) > 0 do

newP ← seeds.first()
newSeeds← regionQuery(S, newP, ε)
if length(newSeeds) > MinPts then

for j = 1→ length(newSeeds do
resultP ← newSeeds[j]
id← resultP.clusterID
if id = UNCLASSIFIED or id = NOISE then

if id = UNCLASSIFIED then
seeds.append(resultP)

resultP.clusterID ← clusterID
seeds.delete(newP)

return true

Algorithm 4.3: expandCluster algorithm (from [EpKSX96])

4.4.2.3 Clustering Processing

Once a user’s locations have been processed, vital features can be extracted from
the clusters. Firstly, a number of visual interpretations can be made, which can
outline and explain how locations are connected. Secondly, it is possible to
process the clusters even furtherer and see if any characteristics can be found.
The approach chosen here, will try to enlighten whether the application usage
within a cluster follows a specific pattern - meaning that the usage pattern
within a cluster is different from the overall trend. This can be calculated by
using the Pearson Correlation Coefficient (described in Section 4.3), and see if
this coefficient is larger within a specific cluster than when comparing to the
locations outside the cluster, and to the average coefficient.

4.4 Data Analysis 25

The calculation of Pearson Correlation Coefficients for each pair of locations is
quite demanding, especially with regards to memory consumption. The runtime
is O(n2), and can be calculated like this:

Calculation of averages: O(n)

Calculation of correlation coefficients: O(n2−n
2) = O(n2)

In total: O(n2).

Note that only one coefficient is needed for each set of locations, therefore only
half of n2 − n needs to be calculated - the subtraction of n is due to the fact
that all coefficients between a location and itself is 1, making these calculations
irrelevant.

Comparing locations and the usage pattern at each location reveals new possibil-
ities for clustering analysis. This actually makes it possible to run the clustering
algorithm, described above, with a different distance measuring algorithm based
on Pearson Correlation Coefficients. If implemented properly, this might show
indications of new trends within users’ behaviour. However, this approach also
heavily depends on parameter estimation, and it might be harder, visually, to
decide on the quality of a certain set of parameters.

4.4.2.4 Clustering Validity

A number of different techniques exist for validating and evaluating results of
a clustering algorithm’s output. Basically, assessing the validity of a clustering
results is often done visually in order to decide on the number of clusters for
instance. For a density-based clustering algorithm it is not possible (directly) to
adjust the number of clusters. However, the clusters generated will be affected by
the input parameters and indirectly this will affect the number of clusters as well
as the shapes and sizes of these. More advanced analysis can also be conducted,
looking at a clustering result’s external, internal and relative criteria. Here, the
external criteria tests for randomness in the data, and it is necessary to have
some knowledge about the cluster structures. The internal criteria evaluates the
result of a clustering in terms of the data in the clusters. Finally, the relative
criteria (for an algorithm where the number of clusters is not a parameter),
seeks to find the best set of parameters by adjusting these parameters within a
wide range, providing a stable number of clusters and choose the middle of this
range [HBV01].

In the clustering analysis in this report, the emphasis will be on the visual
validation of clusters. As there is no preceding knowledge of the clusters’ shapes

26 Design

the external criteria analysis will not be conducted. The internal criteria will
be evaluated based on the Pearson Correlation Coefficient (this could also be
done using the Cophenetic Correlation Coefficient) and the relative criteria will
be used to define the best set of parameters for the DBSCAN algorithm.

4.4.3 Application sequences

The relationship between applications is interesting, since it reveals if there are
indications of one transition being more likely to happen than another.

A transition from one application to another is considered as two dependent
events - one being that the first application must be the successor, the other
that the second application must be the predecessor. They are assumed to
be dependent, as it is not random which application will be opened, once you
have another application open. By making this assumption, it is possible to
treat transitions with conditional probability [Seg07, Appendix 3, p. 319]. This
makes it possible to calculate a probabilistic guess of how often a transition will
take place, and also to see if some successors are more dependent on specific
successors than others. This makes it possible to detect tendencies and relations
between applications.

In general, the probability of event B given event A is denoted: P (B|A), and
can be calculated like this:

P (B|A) =
P (A ∩B)

P (A)

The probability of event B given any event is denoted: P (B), and is calculated
like this:

P (B) =
occurrences of B as successor

the number of transitions

Putting it into context, the probability of application B being launched after
application A has been opened is:

P (B|A) =
occurences of A→ B

occurences of A as predecessor

To investigate whether application B is opened more frequently by application
A than regularly, P (B|A) and P (B) can be compared. If P (B|A) > P (B) it
means that there is a (positive) dependency between application A and B, and
the magnitude of the difference indicates the level of dependency. This difference
can be compared between a number of different transitions to get an indication
of strong and weak dependencies across different application sequences.

Chapter 5

Implementation

This chapter describes the technical choices and challenges related to the imple-
mentation. Firstly, the mobile application (client) development will be described
and secondly, the server will be outlined. The client-server communication fol-
lows the proposed design from Section 4.2. Finally, the details on the visualisa-
tions and data analysis will be described.

The description of the tests for the implementation, as well as the background
for these, can be found in Appendix B on page 75.

5.1 Mobile Application Development

A brief overview of the different important components in Android application
development will be covered in this section. Furthermore, the development of
the application, “Appalyzer”, will be described with regards to the monitoring
itself. For more technical details on the application development, please refer
to Appendix A on page 71.

28 Implementation

5.1.1 Android Development

The most common component in an Android application is an Activity1, which
most often represents a single screen in an application which the user can inter-
act with. Activities communicate with Intents2, which can parse arguments,
values, and basically intentions.

Another important component is the Service3, which is designed to run long
running processes (as a music player for instance), or to provide functionality
to other applications on the device.

A BroadcastReceiver4 is designed to receive all kinds of Intents from both
the operating system, and from other applications5. This means that once
registered, it does not necessarily need to be running to receive a notification
that an event occurred. For instance, it might be notified if a text message
is received, if the wifi state changes, or if the battery charge level changes. It
is possible to register for several events at a time, using an IntentFilter6.
BroadcastReceivers can be registered in the Manifest of the application, or
programatically (for instance in an Activity or Service). The latter, however,
requires that the component which registered it, is still active – otherwise the
Intent will not be received. The registration for some events can only happen
programatically.

5.1.2 Application Monitoring

Monitoring which application the user is currently using on an Android device
involves several steps. When knowing the Android framework, it might lead
one to believe that it is possible to “listen” for a change in the currently active
application. This is a relevant consideration, based on the previous description
of the BroadcastReceiver. However, there exists no Intent which indicates
that the application in use has changed. Therefore, the task of continuously
registering the active application quickly gets quite complicated.

1http://developer.android.com/reference/android/app/Activity.html
2http://developer.android.com/reference/android/content/Intent.html
3http://developer.android.com/reference/android/app/Service.html
4http://developer.android.com/reference/android/content/BroadcastReceiver.html
5For a comprehensive list of possible intents, see http://developer.android.com/

reference/android/content/Intent.html
6http://developer.android.com/reference/android/content/IntentFilter.html

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/IntentFilter.html

5.1 Mobile Application Development 29

5.1.2.1 Finding the active application

Finding the currently active application on an Android device requires only a
few lines of code, and can be seen in the code listing in Figure 5.1. It fetches
the ActivityManager7, requests a list (of 1) of RunningTaskInfo7, pulls the
first element, and returns the package name of this task’s base activity.

1 public static String getCurrentlyRunningApp(Context context) {
2 ActivityManager m = (ActivityManager)context.getSystemService(

Context.ACTIVITY_SERVICE);
3 if(m!=null) {
4 List <RunningTaskInfo > tasks = m.getRunningTasks (1);
5 if(tasks!=null && tasks.size() >0) {
6 String latest = tasks.get(0).baseActivity.getPackageName ();
7 return latest;
8 }
9 }

10 return null;
11 }

Figure 5.1: Code for getting the currently running application/task in
Android

This package name will represent the “active” application - meaning the appli-
cation which the user sees, and therefore currently uses, on the device.

5.1.2.2 Continuously register the active application

There are several different ways of running a process for a longer period of
time. The Service is, as described, designed for this situation, but as the
registration should not really happen “continuously”, rather every other sec-
ond, this might be too heavy a task. Therefore, the chosen solution is to
use a BroadcastReceiver, which is triggered with a given interval by the
AlarmManager8. The AlarmManager is particularly useful for this task, since
the registration of the application in use should also happen when the applica-
tion (“Appalyzer”) is not running cf.:

“The AlarmManager is intended for cases where you want to have
your application code run at a specific time, even if your application
is not currently running.”8

7http://developer.android.com/reference/android/app/ActivityManager.html
8http://developer.android.com/reference/android/app/AlarmManager.html

http://developer.android.com/reference/android/app/ActivityManager.html
http://developer.android.com/reference/android/app/AlarmManager.html

30 Implementation

This approach is straightforward and utilises the operating system’s built in
mechanisms for running a part of an application continuously at given intervals.
However, for the purpose of this project, it is not relevant to register the appli-
cation running when the screen of the device is off. This means that the user
is not actively interacting with an application9, and the BroadcastReceiver
should be stopped in this situation. When the screen is turned off/on - either by
the user or by the operating system, an Intent will be broadcasted. These two
Intents (Intent.ACTION_SCREEN_ON and Intent.ACTION_SCREEN_OFF) cannot
be registered in the application’s Manifest file10, meaning that they will only
be triggered as long as the application is running. Therefore, a Service is im-
plemented, with the sole purpose of registering a BroadcastReceiver for when
the screen turns on/off.

5.1.3 SQLite Database

The continuous registration of the running application was stored locally on
each device in a SQLite11 database. Instead of logging data every other second,
a row in the database was only created once the application in use changed.
The data stored for each interaction with an application was the following:

• Title – Package name of this application

• Latitude – the latitude registered (if any) when the use of the application
ended

• Longitude – the longitude registered (if any) when the use of the applica-
tion ended

• Predecessor – The application used right before this application (if any
was used)

• Start time – when the use of this application started

• End time – when the use of this application ended

9However he/she might listen to music from an application running either as a foreground or
background application. However, as background applications (Services) are not considered
for application monitoring, this would not give an accurate measure of the consumption of
e.g. the music player anyway.

10Also mentioned here:
http://thinkandroid.wordpress.com/2010/01/24/handling-screen-off-and-screen-on-intents/

11A smaller version of a full SQL implementation. It is a built-in component in the Android
framework, and provides easy access to a powerful database integrations, see: http://www.
sqlite.org/

http://thinkandroid.wordpress.com/2010/01/24/handling-screen-off-and-screen-on-intents/
http://www.sqlite.org/
http://www.sqlite.org/

5.2 Server Development 31

• Uploaded – initially false, indicating that this row has not been uploaded
to the server yet

As more and more application interactions are registered, the size of the
database will grow. Therefore, the database is “cleaned up” once in a while
to remove old data (default is to remove data older than 14 days). This ensures
that the application will not use too much storage; especially as the stored data
takes up very little space in an optimised database environment such as SQLite.

5.2 Server Development

In order to collect the data from the different devices, a server was set up.
The server was a machine running Centos12, provided kindly by Adapt A/S13.
An early attempt to use Amazon Elastic Compute Cloud (Amazon EC2)14 was
made with little success, due to poor performance and limited resources provided
by Amazon.

Below, the overall structure of the implementation will be described.

5.2.1 Server Set-up

For implementing the web services described in Section 4.2.1, Node.js15 is cho-
sen as the server language. Node.js has many usefull features, is fast to imple-
ment, and is a modern way of writing a web server [TV10].

The implementation can basically be divided into two parts: The communication
part which allows access from clients, and the processing part which interacts
with the database and makes calculations. The communication part creates the
server and listens for connections. Once a connection is made, it determines
whether the incoming request is a htttp-get or http-post request, and makes
sure that the appropriate method handles the request. All communication be-
tween this server and the clients are done with JSON16, which is easily parsed

12http://www.centos.org/
13http://www.adapt.dk
14http://aws.amazon.com/ec2/
15Platform for building scalable network applications written in Javascript: http://nodejs.

org/
16http://www.json.org/

http://www.centos.org/
http://www.adapt.dk
http://aws.amazon.com/ec2/
http://nodejs.org/
http://nodejs.org/
http://www.json.org/

32 Implementation

on an Android device – even though it might be a bit slower and consume more
memory than XML data [Abl].

The communication interface to the server is pretty basic, and the complications
lie solely in the data processing part of the server. Here, the fact that node.js is
a non-blocking system, means that most function calls need a callback method
in order to return any feedback to the caller-function. This in itself is not
complicated, but once further calculations depend on a lot of nested calls, this
means that a lot of callback will be involved. Therefore, the Step17 library is
used extensively when performing more complex tasks on the server.

To run the server, and make sure it keeps running, a node.js module called
forever18 was used. This allowed automatic reboots of the server on errors and
maintained error- and output-logs.

To ensure that the correlation coefficients were computed continuously, a cron-
job19 was setup to call the server’s update service once every 10 minutes.

5.2.2 Database

The choice of database system ended on MongoDB20, as this has a straightfor-
ward integration with Node.js, for instance through the module used in the
implementation, called mongojs21. When building a database in MongoDB, the
structure consists of collections - each representing a set documents. The choice
of collections is important in order to ensure fast lookup times and minimal data
duplication. Below, the different collections chosen for the implementation are
listed:

• users - holding information on all users (id and locale)

• apps - holding information on all applications (id, package name and alias)

• interactions - all interactions are stored here with user id, application
id, start time, end time and predecessor application

• pearsons - holding all Pearson Correlation Coefficients between users
(user id1, user id2, and pearson correlation)

17Control-flow library for node.js, which enables serial execution: https://github.com/
creationix/step

18Simple tool ensuring a script runs continuously: https://github.com/nodejitsu/forever
19Scheduler which allows running tasks periodically on a machine.
20See:http://www.mongodb.org/
21Module which emulates the official MongoDB API, see: https://github.com/gett/mongojs

https://github.com/creationix/step
https://github.com/creationix/step
https://github.com/nodejitsu/forever
See: http://www.mongodb.org/
https://github.com/gett/mongojs

5.3 Visualisations and Data Analysis 33

• recommendations - holding all recommendations for all users (user id,
application id, calculated rating, and whether the recommendation has
been given (sent to the client) or not)

• stats - holding the accumulated “rating” of each application for each user

The above collections support all the operations needed to perform the different
calculations, and ensure that key figures are easy to extract - for instance a
user’s “rating” of a specific application. The interactions collection hold the
raw data, and all the other collections’ data can be reproduced from this one.

5.3 Visualisations and Data Analysis

In order to implement some intuitive and fast visualisations of the collected data,
a few web-pages were build on a different server than the one used for data collec-
tion22. This server was also written in Node.js, as it would have to interact very
closely with the database, and particularly the collection interactions. The
front-end was written in HTML and Javascript using D3.js23 and Polymaps24.

The emphasis of the web pages has been on functionality, and little effort has
been made to optimise the visual impression by any of the pages. Furthermore,
there is no cross-browser compatibility, and the implementation has only been
tested in Google Chrome25.

The web services utilised by the pages are outlined in Table 5.1.

5.3.1 Histograms

The histograms have been implemented using the D3.js-library, and supports
all of the customisations presented in Section 4.4.1. It uses a minimum number
of calls to web services in order to ensure fast and smooth transitions between
states. Only when changing category or from one user to another (or to all
users), a web service is used.

22To ensure that one server did not impact the other.
23Upcoming DOM-manipulating JS-based visualisation tool, good for working with SVG-

files, see: http://d3js.org/
24JavaScript library for making dynamic, interactive maps, see: http://polymaps.org/
25https://www.google.com/chrome

http://d3js.org/
http://polymaps.org/
https://www.google.com/chrome

34 Implementation

Name Description Used by
dayinteractions?userid Fetches all interactions per-

formed by the selected user
Histograms

allinteractions Fetches all interactions per-
formed by all users

Histograms

categoryInteractions
?category

Returns all interactions per-
formed by all users in the given
category

Histograms

all_users Fetches all users available Histograms
and Map

locations?userid Fetches all registered locations
on the selected user

Map

popular_apps_location
?userid+latitude+longitude

Fetches the applications used by
the selected user at the specific
location

Map

locationAnalysis?userid Fetches the applications used
by the selected user for all of
his/her registered locations

Map

all_apps Fetches all registered applica-
tions

Interactions

interaction?appid Sends all the interactions on the
specified application

Interactions

Table 5.1: Web services used for visualisations

5.3 Visualisations and Data Analysis 35

The categories are fetched from Google Play, and all of the applications which
are not available on Google Play26 are categorised as “Uncategorised”. As Google
Play has no public available API, these categories are collected with basic HTML
scraping.

The implementation supports viewing application usage accumulated over a
week or a day, and also has an option of showing the most used applications.
These options are available when investigating a single user or all users. For
both selections, it is possible to investigate a single application or all the used
applications.

By default, the implementation displays accumulated usage, but it is also pos-
sible to select a normalised visualisation, where the area under the histogram
sums up to 1 (100%). If this visualisation is selected, while investigating all
users, every user’s contribution to the overall count is divided by the total num-
ber of interactions by this user, in order to eliminate too big contributions from
users with a lot of interactions.

5.3.2 Transitions

For the transition analysis, the method mentioned in Section 4.4.3 is used. This
part of the project does not have a finished GUI27, but has still been imple-
mented as a web page where it is possible to pick an application. The output
of the transition calculations is written as a html table on the page, in a format
ready for further processing in Excel. The results of this processing is seen in
Section 7.2.

The implementation can be found at:
http://89.233.45.28/interactions.html

5.3.3 Locations

The implementation of the map visualisation was done by adding svg-
elements28 (circles) on top of a Polymap29. The map data was provided by

26Either because the application is a system application, or is an application which has not
been released but only tested by a developer.

27Graphical User Interface
28Scalable Vector Graphics, see: http://www.w3.org/Graphics/SVG/
29See: http://polymaps.org/

http://89.233.45.28/interactions.html
http://www.w3.org/Graphics/SVG/
http://polymaps.org/

36 Implementation

OpenStreetMaps30 through CloudMade31.

All locations collected by the Android application are recorded with at least 7
decimals. However, since the locations have not been obtained through each de-
vice’s GPS, but only requesting locations with “coarse accuracy”32, the accuracy
cannot be considered to be this high33.

Therefore, the locations are rounded to 4 decimals34, and colliding locations and
their application usage are merged (on the server-side). This greatly reduces
the number of locations, but also provides more realistic estimates of the actual
locations. The locations given from the server to the client however, are provided
with 8 decimals for practical reasons in the client implementation.

The processing of locations and calculations of cluster similarity follows the
procedure presented in Section 4.4.2.3, and the output of this processing is
written as a html table on the page when finished.

Below, the algorithms used to process the locations and some of the difficulties
doing so will be outlined.

The implementation can be found at http://89.233.45.28/locations.html

5.3.3.1 DBSCAN

The implementation of the DBSCAN algorithm follows the approach outlined in
Section 4.4.2.2. It is implemented on the client side, as the client has already
all of the locations on a user at hand. In order to ensure the best performance,
the regionQuery35-method is implemented using an R-tree implementation36.
This unfortunately means that the distance measuring method is not 100%
accurate, as it relies on rectangles instead of circles around a given point. Nev-
ertheless, it also means a huge performance improvement when searching for
locations near a given point. This performance improvement outweighs the
drawbacks, since it lowers the overall running time of DBSCAN from O(n2) to
O(n · log n). It would have been preferable to use an R*-tree implementation

30See: http://www.openstreetmap.org/
31See: http://cloudmade.com/
32See: ACCURACY_COARSE on http://developer.android.com/reference/android/

location/Criteria.html
33The accuracy seems more likely to be below 200 ft ≈ 61 meters, see:

http://developerlife.com/tutorials/?p=1375
34Approximately 11 meters precision in latitude and 6 meters precision in longitude
35Method which finds locations near a given point.
36Developed by Jon-Carlos Rivera, see: https://github.com/imbcmdth/RTree/

http://89.233.45.28/locations.html
http://www.openstreetmap.org/
http://cloudmade.com/
http://developer.android.com/reference/android/location/Criteria.html
http://developer.android.com/reference/android/location/Criteria.html
http://developerlife.com/tutorials/?p=1375
https://github.com/imbcmdth/RTree/

5.3 Visualisations and Data Analysis 37

Figure 5.2: Comparison of results obtained by implemented DBSCAN
method (on the left), and results from the “ELKI” tool (on the right).

instead of the R-tree implementation as it has a few advantages, but considering
the straightforward implementation of the R-tree, this suffices.

To validate the implementation of the DBSCAN algorithm, the obtained (visual)
results were compared to results produced by a project called “ELKI”37, which
incorporates a lot of clustering algorithms. In order to compare the results prop-
erly, the regionQuery method was implemented using a standard “haversine”38
distance measure. The comparison can be seen in Figure 5.2, and shows that the
obtained clusters match 100% given identical parameters (ε,minPts) = (1, 2).

As mentioned, the distance measure used by the R-tree implementation is not
as accurate as the haversine measure, and the differences in cluster findings is
illustrated in Figure 5.3. Even though the two methods agree on most clusters
(for the given set of locations), a difference worth mentioning is the introduction
of a new cluster when using the R-tree implementation.

5.3.3.2 Memory Optimisations

When calculating Pearson Correlation Coefficients between different locations,
they all have to be stored in memory in order to access them later for calculations
of individual cluster averages. First of all, each set of locations is only calculated

37Environment for Developing KDD-Applications Supported by Index-Structures developed
and maintained by developers at Ludwig-Maximilians-Universität in München, see:
http://elki.dbs.ifi.lmu.de/wiki

38See: http://www.movable-type.co.uk/scripts/latlong.html

http://elki.dbs.ifi.lmu.de/wiki
http://www.movable-type.co.uk/scripts/latlong.html

38 Implementation

Figure 5.3: Illustration of the differences between using a haversine
distance measure (on the left) and a rectangular distance measure for the

DBSCAN algorithm (on the right).

once (following the discussion in Section 4.4.2.3). Furthermore, in order to
ensure a quick lookup time of each coefficient, these had to be indexed based on
the two locations they represented. The most intuitive way of doing this was to
generate a key (the key was for an associative array39 in Javascript) consisting
of a string concatenation of both locations, e.g.:

key = 55.69106710 + 12.51429970 + 55.69104490 + 12.51432740

Unfortunately, this quickly leads to a large memory consumption as the key itself
takes up a relatively big amount of memory, considering that the number being
stored at a specific key is a Pearson Correlation Coefficient rounded to four
decimal places. The solution was to reduce the key size with a simple hash
function, which multiplies the latitudes and longitudes of the two locations
together40, and uses the last 10 decimals of this number as the key. Using
this hash function greatly reduced the memory consumed by the keys (from
40 characters to 10 for each key), and is still relatively robust against hash
collisions. The probability that two sets of locations (2x2 locations) produce
the same hash key can be calculated using the birthday paradox. In general,
the probability that at least two numbers are the same when drawing n random

39See: http://blog.xkoder.com/2008/07/10/javascript-associative-arrays-demystified/
40It sorts the latitudes and longitudes respectively before multiplying to ensure that the

calculated hash key is the same no matter which order the two sets of locations were given in.
Otherwise rounding errors might give different hash keys.

http://blog.xkoder.com/2008/07/10/javascript-associative-arrays-demystified/

5.3 Visualisations and Data Analysis 39

numbers from a distribution from [1, d] is41:

p(n, d) ≈ 1− (
d− 1

d
)n(n−1)/2

With the hash function described above, this means drawing n sets of loca-
tions from a distribution from [1, 1010].42 The user with most locations (at
the moment) has registered 671 different locations.43 This makes the number
of combinations of locations: 6712−671

2 = 224, 785 ≈ 2.2 · 105 This makes the
probability for collision:

p(n, d) ≈ 1− (
1010 − 1

1010
)2.2·10

5(2.2·105−1)/2 ≈ 0.92

This means that a collision is almost inevitable. The fact that there are hash
collisions however, is not necessarily a problem if only these are handled prop-
erly and are not too great in numbers. Running the algorithm for the user
with most registered locations, it turns out that there are “only” 5 collisions
(out of 2.2 · 105 insertion attempts), and at most 2 different sets of locations
collide on a single hash key. Utilising this fact, the indexed Pearson Correlation
Coefficients are still stored as numbers - however, when a collision is detected,
the new set of locations are stored under the same key but with information
on the latitudes and longitudes of this colliding set as elements in a list.44 The
resulting code for inserting a coefficient in the indexed list can be seen in List-
ing 5.1. The lookup of a coefficient also gets a bit more complicated, since it
has to be checked whether the entry is a list or a number. The code for the
lookup can be seen in Listing 5.2. This makes the lookup a bit slower, but as
long as there are not too many entries with the same key, it is not significant.

1 i f (indexedPearsons [hashKey] != undef ined) { // Collision
2 i f (type (indexedPearsons [hashKey])==’ Array ’) // Not first collision
3 indexedPearsons [hashKey] . push ({ l a : l a t , l o : lon , l a1 : lat2 , l o1 :

lon2 , p : myround(pearson , 2) }) ;
4 else // First collision with hashKey
5 indexedPearsons [hashKey] = [indexedPearsons [hashKey] , { l a : l a t , l o :

lon , l a1 : lat2 , l o1 : lon2 , p : myround (pearson , 2) }] ;
6 } else { // No Collision
7 indexedPearsons [hashKey] = myround(pearson , 2) ;
8 }

Listing 5.1: Procedure for inserting a Pearson Correlation Coefficient in
indexed list

41See: http://en.wikipedia.org/wiki/Birthday_problem
42Technically 0 is also a possibility, but is ignored in this discussion in order to use the

described formula.
43After rounding locations to 4 decimals. With 8 decimals precision, the user with most

locations has 3772 locations.
44This technique is also known as “hashing with chaining” [CLRS09, Ch. 11]

http://en.wikipedia.org/wiki/Birthday_problem

40 Implementation

1 function getPearson (la t , lon , lat1 , lon1) {
2 var v = indexedPearsons [hash (la t , lon , lat1 , lon1)] ; // Read the entry
3 i f (v==undef ined) {
4 conso l e . l og (’ Pearson error ... ’) ;
5 return v ;
6 }
7 i f (type (v) !=’ Array ’) return v ; // v is just the coefficient
8 i f (v . length>maxPLength) maxPLength = v . l ength ;
9 f o r (var i = 1 ; i<v . l ength ; i++) {

10 i f (v [i] . l a==l a t && v [i] . l o==lon && v [i] . l a1==la t 1 && v [i] . l o1==
lon1

11 | | v [i] . l a==la t 1 && v [i] . l o==lon1 && v [i] . l a1==l a t && v [i] . l o1
==lon) {

12 return v [i] . p ; // The list item matched
13 }
14 }
15 return v [0] ; // No match - the coefficient must be the first entry
16 }

Listing 5.2: Procedure for reading a Pearson Correlation Coefficient
from indexed list

5.3.4 Asynchronous Data Processing

All interactions with web services are done asynchronously using jQuery45. This
however only makes the client-server interaction asynchronous. In order to en-
sure that the browser remains responsive while performing heavy computations
on the client side, a popular pattern is used for making these calculations more
or less asynchronous.[Lec07]

This pattern is used extensively for the DBSCAN-algorithm, the calculation of
Pearson Correlation Coefficients and for the post-processing of these. The pat-
tern utilises the asynchronous setTimeout method in javascript in order to give
the browser periodic intervals for responding to user events. The setTimeout
method is called between loop iterations in the heavy algorithms, with an inter-
val of 0 and recursively continues the loop. Even though the interval is 0, this
gives the browser a chance to remain responsive.

For most users (in the database) the use of this pattern is really not necessary,
as their number of registered locations is quite small (below 200). However,
some users have more than 3000 different registered locations, and this takes a
lot of time to process - potentially blocking the browser for minutes.

45See: http://jquery.com/

http://jquery.com/

Chapter 6

Experimental Work

In this chapter the experimental work and some of the challenges within this
work will be described.

6.1 Application Release

After finishing the implementation of the Android application and the server
solution, the application: “Appalyzer”1 (screenshot in Figure 6.1) was released
on Google Play on 9 May 2012 - 3 months (and 3 days) after the development had
started. In order to get people to download (and use) the application, friends
and co-workers were encouraged to install it through various social media. It
quickly had more than 20 active installations, and now (1 August 2012) has 17
active installations with a total number of installations (over time) of 46.

More work could have been done in order to promote the application and thereby
get more downloads. However, the number of users seemed adequate for the
project scope, especially since the server at hand only had 10 gigabytes of mem-
ory for user data, and is presently already half full.

1See: https://play.google.com/store/apps/details?id=com.dtu.appalyzer

https://play.google.com/store/apps/details?id=com.dtu.appalyzer

42 Experimental Work

Figure 6.1: Screenshot of “Appalyzer”

6.1.1 Time Zone Compensation

When the application was released it was assumed that only a few friends would
download and use it, and therefore the system was not ready to handle different
time zones. It turned out however, that some users were from Asia, Canada
and the United States. As the times registered on each device is the local time,
this meant that the registered times for these distant devices had to be handled
when displaying histograms in order to generate correct results. But as the
system was not initially prepared for handling time zones other than the Danish
(UTC+1), this meant that the time zone had to be calculated on basis of the
locations registered along with each time registration. Unfortunately, this meant
that data generated by users, who had not allowed the registration of locations
(on their device), was no longer valid for generating histograms, as there was
no knowledge of the time zone of these registrations.

Actually the locale of each user was recorded when users started using the
application, but this merely indicates the language and country of the device
owner, and does not necessarily reflect if the user is travelling.

For the implementation of this compensation, two files with locations2 and time
zone offsets3 respectively were used in combination with the earlier mentioned
R-Tree implementation to estimate offsets for the registered interactions.

2See: https://raw.github.com/gist/1769458/dc79733325f9b468ff2d44ff3813924d6d1e6382/
lat,lng,timezone

3See: http://download.geonames.org/export/dump/timeZones.txt

https://raw.github.com/gist/1769458/dc79733325f9b468ff2d44ff3813924d6d1e6382/lat,lng,timezone
https://raw.github.com/gist/1769458/dc79733325f9b468ff2d44ff3813924d6d1e6382/lat,lng,timezone
http://download.geonames.org/export/dump/timeZones.txt

6.2 Application Feedback 43

6.1.2 Collected Data

During the period from release up until the delivery of this report, more than
200, 000 interactions were collected (169, 000 after time zone compensation),
where each interaction represents a single user’s transition from one application
to another with a timestamp and location attached. Furthermore, 1468 unique
applications (1272 after time zone compensation) and 11, 774 unique locations
(11, 064 after time zone compensation) were recorded. This dataset represents
the data used for further analysis in Chapter 7 and Chapter 8.

6.2 Application Feedback

The overall feedback has been positive but sparse. One user mentioned, that
application names on system applications, such as the native launcher applica-
tion on Samsung mobiles (“TwLauncher”), might not be that meaningful when
presented to the average user. This is something which should be dealt with
for future work, as some system application names might be confusing to some
users.

One user reported that the application had registered his browser being in use
all night, even though he turned of his device. This is a known issue and is
described below.

Feedback was also received from a user who enjoyed the application, and sug-
gested a new feature where it was possible to categorise applications in order to
make it possible to see how much time was spent on games, browsing etc. This
feature was actually implemented at an early stage, but was left out since it was
considered to be too confusing and complex to some users.

Some users mentioned that they registered a small change in their battery con-
sumption after installing “Appalyzer”, but none of these were sure that it was
because of this. Furthermore, the application was not visible under the listed
applications when investigating each device’s battery consumption. The battery
consumption by “Appalyzer” might also be device specific.

44 Experimental Work

6.3 Known Issues

6.3.1 Faulty Data

When developing the Android application, work was done to ensure that if a
device was shut down, the application would be notified in order to register the
end time of the current application use. However, it seems that some devices had
issues related to registering the end time of an application use, as the application
or device had been shut down in the mean time. When the application was
started again, this meant that the previous application use was ended, leading
to wrong end times. The start time however, should be valid as well as the
number of interactions (number of registered application starts) and transitions
between applications.

6.3.2 Server Limitations

The server implementation ran into some memory limitations related to the big
number of registered users and applications. The server kept running, but was
occasionally not able to calculate user recommendations and similarity scores. It
also meant that users trying to receive a recommendation either did not succeed
or had to wait quite some time. As this was not the primary focus for the
project, work was not done to fix this issue, and after collecting a sufficient
amount data, the recommendation feature has been discontinued (the server
will respond with “no recommendations available”).

Chapter 7

Results

Results and illustrations from the data analysis will be described and presented
during this chapter. More thorough analysis and reflections on these results will
be conducted in Chapter 8.

7.1 Application usage

A normalised histogram of all users’ application usage (each use of an applica-
tion counts as 1) accumulated over a week and a day can be seen in Figure 7.1.
It gives a clear overview of users’ behaviour over time, and indicates an increas-
ing application interaction activity during the day, with the most application
interactions seen during afternoons and evenings. Furthermore, it seems that
the number of application interactions is lower during the weekend.

When considering interaction counts for all users, only users with registered
interactions on at least 2 different days are considered. This is to avoid having
users with few interactions disturb the overall picture.

Looking at individual users, the results vary a lot, as some users have registered
a lot of interactions and some only a few, but for some users it is possible to

46 Results

Figure 7.1: Accumulated normalised application usage over a week (on
the left) and over a day (on the right) for all users

Figure 7.2: Accumulated normalised application usage over a week (on
the left) and over a day (on the right) for a single user

(4fc95b060806783e16014003)

see the same tendencies as in Figure 7.1. This is illustrated in Figure 7.2, and
even though some days and time periods differ from the overall picture, it is
evident that the pattern (for the daily usage at least) is similar. The weekly
usage pattern seems to be more individual.

Next, the use of single applications by all users is investigated. This can be
seen in Figure 7.3, where two applications are visualised. The application on
the left is a popular multi-player puzzle game, which seems to be rather popular
- even after midnight. Looking at other games1, the tendency seems to be the
same: playing games is a late evening activity. The application on the right is
a weather application, and is very popular in the morning and evening.

Looking into Google Play’s application categories, it is interesting to see if dif-
ferent categories are used differently over time (as with the games mentioned
above). In Figure 7.4 two different categories are illustrated, indicating that
communication applications follow the overall trend described earlier with lit-
tle activity during weekends, and shopping applications are used mostly during
noon and afternoon.

More histograms can be generated and customised at: http://89.233.45.28

1“Angry Birds Rio” (com.rovio.angrybirdsrio), “ETERNITY WARRIORS”
(com.glu.android.warriors), “GUN BROS MULTIPLAYER” (com.glu.android.gunbros_free),
and “Rule the Kingdom” (com.gameinsight.kingdom)

http://89.233.45.28

7.2 Transition Analysis 47

Figure 7.3: Accumulated normalised application usage of “Wordfeud
Free” (on the left) and “Danish City Weather from DMI” (on the right)

over a day.

Figure 7.4: Weekly and daily accumulated normalised application usage
respectively of the categories “Communication” (on the left) and

“Shopping” (on the right).

7.2 Transition Analysis

Using the implementation described in Section 5.3.2, a number of popular appli-
cations are investigated to present their relation with other applications. Note,
that for each investigated application, a few successors have been removed, as
these applications did not seem interesting for the investigation at hand, and
would confuse more than enlighten things. The majority of these were home
screen applications. In all the figures used, the red horizontal line indicates a
neutral dependency between the predecessor and successor. All markers above
the red line indicate a positive dependency, and those below indicate a negative
dependency.

In Figure 7.5, “Facebook for Android” (com.facebook.katana), denoted Facebook,
is investigated, and the package names of its successors (the applications which
it has launched) are listed. It is clear that there is a large positive dependency
between Facebook and the built in video player (as this is utilised for play-
back of videos in the Facebook application), and a positive dependency between
Facebook and some of the popular browsers. Furthermore, it seems that there
is a very weak dependency between Facebook and most of the communication
applications (with exception of a built-in conversation application from Sony

48 Results

0	

2	

4	

6	

8	

10	

co
m.
an
dro
id.
co
nta
cts
	 	

co
m.
do
lph
in.
bro
ws
er	
	

co
m.
an
dro
id.
ca
me
ra	
	

co
m.
an
dro
id.
ph
on
e	 	

co
m.
sp
o9
fy.
mo
bil
e.a
nd
roi
d.u
i	 	

co
m.
op
era
.br
ow
ser
	 	

co
m.
an
dro
id.
mm

s	 	

co
m.
vib
er.
vo
ip	
	

co
m.
ha
nd
ce
nt.
ne
xts
ms
	 	

co
m.
an
dro
id.
htc
dia
ler
	 	

co
m.
go
og
le.
an
dro
id.
gm
	 	

co
m.
htc
.an
dro
id.
ma
il	 	

co
m.
hb
wa
res
.w
ord
feu
d.f
ree
	 	

co
m.
go
og
le.
an
dro
id.
bro
ws
er	
	

co
m.
so
ny
eri
css
on
.co
nv
ers
a9
on
s	 	

co
m.
an
dro
id.
ch
rom

e	 	

co
m.
wh
ats
ap
p	 	

co
m.
an
dro
id.
bro
ws
er	
	

co
m.
op
era
.m
ini
.an
dro
id	
	

co
m.
sec
.an
dro
id.
ap
p.v
ide
op
lay
er	
	

co
m.
tw
i@e
r.a
nd
roi
d	 	

De
pe

nd
en

cy
	

Facebook	 for	 Android	 Successors	

Misc	

Communica9on	

Browsers	

Figure 7.5: Investigation of Facebook’s successors

0	

2	

4	

6	

8	

10	

12	

14	

co
m.
an
dro
id.
mm

s	 	

co
m.
fac
eb
oo
k.k
ata
na
	 	

co
m.
go
og
le.
an
dro
id.
gm
	 	

co
m.
an
dro
id.
bro
ws
er	
	

co
m.
an
dro
id.
ch
rom

e	 	

De
pe

nd
en

cy
	

Twi,er	 Successors	

Misc	

Communica>on	

Browsers	

Figure 7.6: Investigation of Twitter’s successors

Ericsson and a custom text messaging application called What’s App2).

Looking at the most common Twitter-application for Android: “Twit-
ter” (com.twitter.android) and its successors, the trends from the Facebook-
investigation seem to recur. This can be seen in Figure 7.6. However, the
number of successors to this application is limited, and therefore the validity of
the trends can be hard to determine. It is interesting however, that some of the
text messaging applications listed in Figure 7.5 are not seen at all in Figure 7.6,
as these have not been launched (enough) by the “Twitter” application.

Looking at a different genre than social applications, the most popular mail ap-
2See: https://play.google.com/store/apps/details?id=com.whatsapp

https://play.google.com/store/apps/details?id=com.whatsapp

7.3 Location Analysis 49

0	

1	

2	

3	

4	

5	

6	

co
m.
an
dro
id.
ph
on
e	 	

co
m.
an
dro
id.
co
nta
cts
	 	

co
m.
go
og
le.
an
dro
id.
ap
ps
.m
ap
s	 	

co
m.
jb.
go
sm
s	 	

co
m.
an
dro
id.
ca
me
ra	
	

co
m.
tw
i<e
r.a
nd
roi
d	 	

co
m.
an
dro
id.
mm

s	 	

co
m.
fac
eb
oo
k.k
ata
na
	 	

co
m.
go
og
le.
an
dro
id.
tal
k	 	

co
m.
p1
.ch
om
ps
ms
	 	

co
m.
an
dro
id.
ve
nd
ing
	 	

co
m.
go
og
le.
an
dro
id.
yo
utu
be
	 	

co
m.
an
dro
id.
em
ail
	 	

co
m.
an
dro
id.
htc
co
nta
cts
	 	

co
m.
an
dro
id.
ch
rom

e	 	

co
m.
go
og
le.
an
dro
id.
ca
len
da
r	 	

co
m.
joe
lap
en
na
.fo
urs
qu
are
d	 	

co
m.
an
dro
id.
bro
ws
er	
	

co
m.
go
og
le.
an
dro
id.
bro
ws
er	
	

co
m.
go
og
le.
an
dro
id.
em
ail
	 	

co
m.
op
era
.br
ow
ser
	 	

co
m.
do
lph
in.
bro
ws
er	
	

De
pe

nd
en

cy
	

Gmail	 Successors	

Misc	

Social	

Browsers	

CommunicaGon	

Figure 7.7: Investigation of Gmail’s successors (com.dolphin.browser
actually has a dependency of 15, but is capped to 6 in order to make the

plot more readable.)

plication on Android devices, “Gmail” (com.google.android.gm), is investigated in
Figure 7.7. From the figure, it is clear that there is a strong dependency between
“Gmail” and the different browsers, low dependency with the most popular so-
cial applications (investigated earlier), and overall low dependency with other
communication applications (with exception of another mail application).

7.3 Location Analysis

7.3.1 Clustering Analysis

The results of the clustering processing will now be presented along with some
results on the cluster analysis.

Since the clustering algorithm (DBSCAN) takes two parameters (ε and minPts),
it is clear that these two parameters have a big impact on the outcome of the
clustering analysis. This is illustrated in Figure 7.8. Note that the radius of
each coloured circle represents ε, and that the black/grey circles are locations
categorised as noise cf. Algorithm 4.2.

It is difficult to determine the optimal parameter setting, and for some dis-
tributions (users), one setting might prove better than for other distributions,
following the discussion in Section 4.4.2.4. Therefore, the parameter setting for
each user follows the proposed technique for the relative criteria.

50 Results

Figure 7.8: Examples of the parameters’ influence on the outcome of
DBSCAN (for user: 4faa5ced9eeb21e307000178).

On the left: (ε,minPts) = (1, 2), on the right: (ε,minPts) = (0.5, 4)

Looking at specific users, the first one investigated is user:
“4ffa3bd76eb92cff1f000005”. Running DBSCAN with minPts = 2 seems to
generate the most meaningful results, and hence this parameter is kept
static. Varying the ε parameter, a range between ε = [0.6, 1] seems to
keep the number of clusters stable, and the final parameter set is therefore:
(ε,minPts) = (0.8, 2). The Pearson Correlation Coefficients between the re-
sulting clusters is seen in Figure 7.9 in the table on the left, with an illustration
of the visual interpretation of the clusters on a map on the right.

Cluster ID Internal Pearson External Pearson
Noise 0.54 0.58
1 0.9 0.64
2 0.48 0.55
3 0.75 0.61
4 0.97 0.7
5 0.3 0.48
6 0.1 0.31

Figure 7.9: Clustering analysis results for user: “4ffa3bd76eb92cff1f000005”
using (ε,minPts) = (0.8, 2) Some locations did not fit in the map.

7.3 Location Analysis 51

Cluster ID Internal Pearson External Pearson
Noise 0.07 0.12
1 0.31 0.19
2 0.16 0.15
3 0.37 0.23
4 0.56 0.25
5 0 -0.02
6 0 0.02

Figure 7.10: Clustering analysis results for user:
“4fb4a1f50806783e160067ac” using (ε,minPts) = (1.85, 3)

Cluster ID Internal Pearson External Pearson
Noise 0.37 0.07
1 0.02 0.07
2 0.32 0.09
3 0.56 0.14
4 0.21 0.08
5 0.1 0.04

Figure 7.11: Clustering analysis results for user:
“4fb29efa0806783e16004f2b” using (ε,minPts) = (0.85, 3)

The same procedure has been used to determine parameters for two other users,
and these results are outlined in Figure 7.10 and Figure 7.11. The discussion of
the results is found in Section 8.3.2.2.

7.3.2 Location Distribution

To see how users’ locations are distributed, the most popular location for each
user is investigated. The number of interactions at the most popular location
gives an indication of each user’s tendency to be within the same area. Sum-
ming up these interaction counts, the global trend for all users can be analysed.
Looking at the location distribution for all users, it is necessary to be aware
of users having very few locations. Therefore, the results presented here, are
shown for users with at least 3 registered locations and at least 10 registered
locations respectively. Furthermore, the most popular location for each user is
investigated with different radii, in order to determine the density around the
most popular location. The results can be seen in Table 7.12.

52 Results

Radius Amount
0.0 km 22.11%
0.5 km 52.63%
1.0 km 57.40%
1.5 km 61.28%
2.0 km 64.29%
2.5 km 67.54%
3.0 km 69.79%
3.5 km 70.24%
4.0 km 71.64%
4.5 km 72.53%
5.0 km 73.10%

Radius Amount
0.0 km 20.02%
0.5 km 50.74%
1.0 km 54.89%
1.5 km 59.00%
2.0 km 62.19%
2.5 km 65.63%
3.0 km 68.02%
3.5 km 68.49%
4.0 km 69.96%
4.5 km 70.91%
5.0 km 71.51%

Figure 7.12: Investigation of users’ most popular locations for users
with at least 3 (on the left) and 10 (on the right) registered locations.

Note that the radius of 0.0 km corresponds to the most popular location. All
locations are rounded to 4 decimals as discussed in Section 5.3.3.

Chapter 8

Evaluation

This chapter discusses and evaluates the results described in Chapter 7.

8.1 Time Analysis

The presented results give an overall good indication of the daily and weekly ap-
plication usage, and thereby of users’ usage patterns. For instance, the weather
application (on the right in Figure 7.3) is most popular in the morning and
evening - probably since this is when people need their daily weather forecast.

The fact that it is possible to generate histograms based on Google Play cat-
egories, makes it possible to see how similar applications are utilised. The
illustrations in Figure 7.4 illustrate some of the differences among categories,
and the fact that shopping applications are primarily used during noon and
afternoon might not be obvious to everybody.

Some of these observations might seem obvious, but are nevertheless extremely
important to application developers. It is not always obvious when a user will
use a particular application - or a specific type of application.

The validity of the results can be hard to determine, however it seems that

54 Evaluation

Figure 8.1: Comparison of the results on all users’ accumulated
application interactions over a day with the results from this project on

the left and [BHS+11, p. 51, fig. 3] on the right

many of the basic results are comparable to the results obtained in [BHS+11]
- in particular when comparing all users’ accumulated application interactions
over a day, as seen in Figure 8.1. The small differences between these two
distributions most likely relate to the relative small number of users contributing
to this project, and perhaps also a difference in demography between the users
in the two projects.

8.2 Transition Analysis

The results on application transitions indicate a number of trends applications
and application categories in between. The fact that some application categories
are more closely related than others is also supported by [BHS+11].

It is evident that both the two social applications (“Facebook” and “Twitter”)
as well as the mail application (“Gmail”) are quite often used as predecessors to
browser applications. This is important, as it tells something about how people
use these applications, and how often a web page is actually visited because of
a link found in one of these applications.

The data seems to be very sensitive to single users’ usage patterns. For instance,
when investigating the successors to “Gmail”, “Twitter” is listed as a successor.
However, investigating this relationship, it turns out that the particular tran-
sition has only occurred 4 times, making the validity of statistical conclusions
based on this transition very low.

The conducted transition analysis is a good tool for finding trends but has it
weaknesses. One user can affect the results a lot, and the amount of data means
that the number of conclusions which can be made are limited.

8.3 Location Analysis 55

8.3 Location Analysis

8.3.1 Location Distribution

The most popular location for each user seems to cover around 20% on average
for all users. In order to cover 70% of the registered interactions, it seems
that the radius on the most popular location need to be increased to around
3.5 kilometres and 4.5 kilometres respectively for the two thresholds on the
number of registered locations. Comparing to the results obtained in [SQBB10],
there were no indication of the accuracy they used to determine user’s location.
However, it seems unlikely that it was as high as 3.5 kilometres. Nevertheless,
the data used in this project does not indicate how much time users spend
at each location, but only how many times they interact with an application.
Therefore, the results cannot be directly compared.

The results obtained do show, however, that users tend to utilise their phone
mostly within one specific region, and at least 50% of their interactions are
within a 500 metres radius. This gives a clear indication of the location density
in the the average user’s utilisation of his/her phone. The 70% of the application
usage within the 3.5 to 4.5 kilometres radius underline this fact. The majority
of all application interaction is within a relatively small area.

8.3.2 Clusters

8.3.2.1 Cluster Creation

For most users, the created clusters seemed to visually fit an expected distinction
between their most popular locations - for instance at school and at home.
For users with many registered locations however, it is clear that with only
two adjustable parameters (for the algorithm) it is hard to separate the many
locations properly. In order to build a dynamic solution (which could find the
best fit automatically), only data over a limited period should be used.

When users have been travelling it is difficult for the algorithm to consider the
transportation route as one cluster, as it is often “connected” to other registered
locations particularly at the beginning/end of a route. Using users’ velocity as
an extra parameter or comparing the locations to actual public transportation
lines and roads might prove necessary in order to create this distinction.

56 Evaluation

8.3.2.2 Cluster Analysis

The results of the few examples which were described (in Figure 7.9 - 7.11), will
now be discussed.

For 2 of 3 selected users, the number of clusters with higher internal than ex-
ternal correlation was 4/6 and 3/5 (ignoring noise-categorised locations as a
cluster). For the third user, this number was only 3/6. For most of these clus-
ters, the difference between the internal and external correlation was significant.
The three users were not picked at random, since some users were simply not
fit for the cluster based analysis, as they either had too many (as discussed in
the previous section) or too few registered locations.

The internal correlation coefficient does not tell anything about whether the
unique number of applications used within a cluster is high or low, or whether the
locations in that particular cluster share many applications1. It only indicates
how well the applications which the locations have in common match in relative
usage count.

Based on the results described above, it seems clear that some users’ applica-
tion usage is more alike within certain location based clusters than outside these
regions. However, it has not been possible to generate results which indicate
this trend for all the clusters created for any user. Either this is not possi-
ble with the applied method and the amount of data available, or this means
that users’ application usage do simply not always follow their physical loca-
tion. After investigating a large number of users’ application usage very closely,
looking particularly at the relationship between the number of uses of specific
applications, the latter seems most plausible .

The fact that each cluster analysis was performed with different parameters (for
the DBSCAN algorithm) does not change the validity of the results, as they must
merely indicate whether it is possible to find a correlation between distinguish-
able locations and usage patterns, not whether it is possible over all users with
one set of parameters.

8.3.2.3 Method Discussion

Using Pearson Correlation Coefficients as a tool for comparing clusters has its
advantages, as it gives a valuable similarity measure which is easy to interpret.

1However, two locations needed to have at least two common applications to receive a
Pearson Correlation Coefficient higher than 0.

8.3 Location Analysis 57

However, it does have some disadvantages. First of all, as it is only common
elements (applications used) which determine how alike two locations are, loca-
tions with almost no interactions might get a relatively high similarity measure
to the most visited locations, as there is a good chance these locations share
elements. Furthermore, two popular locations have a bigger chance of getting a
lower similarity score, since they have a bigger chance of sharing many elements
which might vary a lot in usage count.

8.3.2.4 System Performance

Based on the description of the location visualisation implementation and the
overall performance of this visualisations, it is clear that as the amount of data
increases, new optimisations need to be implemented. As of now the perfor-
mance is tolerable and sufficed for generating the necessary results, but if the
server had to serve multiple clients and ensure a certain level of performance,
more data processing should be done server-side and optimisations would have
to be implemented on both the client- and server-side.

58 Evaluation

Chapter 9

Discussion

This chapter describes some of the issues with the collected data, and reflects
on some of the perspectives within the experimental work.

9.1 Data Collection

9.1.1 Measurable Parameters

The collected data allowed extensive analysis of individual application usage,
even though the implemented solution only takes the active application into ac-
count. This means that information on the application history is neglected, with
exception of the latest application. However, longer sequences of applications
have already been investigated in [BHS+11], and was not the primary target of
investigation in this project.

The information on the running application only gives an indication of which
application context the user currently operates in. It does not reveal what the
user is currently using an application for (this is not accessible on an Android
device), and one application might solve several different tasks. One example
of this is the browser, where a web-page can be related to almost any task (it

60 Discussion

might even be a web app1) and some might run for longer time than others. To
investigate users’ detailed interactions within an application, it is necessary to
embed code in each application and use Google Analytics2 or similar approaches
to track users.

Since information about each user’s device was not collected, it is not possible to
spot trends within specific kinds of devices (tablets and smartphones isolated).
This could have been interesting to investigate, since it can be assumed that
tablets are used differently than smartphones.3

9.1.2 Data Correctness

Some of the collected data turned out to be faulty, or at least the registered end
time of each application usage was not necessarily correct. Nevertheless, the
data collected proved significant for several analysis based on application usage
count instead of application usage duration. An attempt to remove the faulty
data could have been made (e.g. by neglecting all single usage times above half
an hour), but this would only remove some of the “noise” as well as potentially
removing valid data, and would therefore give little guaranty for the overall
validity of the data. This means that all end times have been neglected, and
application usage time has not been considered for the different analysis - only
the start time and the application usage count have been used.

In order to solve the issues with faulty end times, several things could be done4.
One solution would be to use an existing technology for all of the data collection
process. One such technology is “funf”5, which is a framework for building An-
droid applications which uses the built-in sensors to monitor user behaviour; this
includes logging the running application(s). If this technology had been avail-
able (in its current condition) earlier in the process of this project, this would
surely had been taken into consideration when implementing the application
monitoring solution. It seems that a lot of the work done with implementing
the Android application, as well as building the server solution could have been
done much faster using this technology instead of building everything from the
bottom up.

1Online accessible application, see: http://www.meddb.be/webapplications.aspx
2http://www.google.com/intl/en_uk/analytics/
3See for instance: http://blog.nielsen.com/nielsenwire/online_mobile/

double-vision-global-trends-in-tablet-and-smartphone-use-while-watching-tv/
4For instance this implementation:

http://android-random.googlecode.com/svn-history/r219/trunk/TestKeepAlive/src/
org/devtcg/demo/keepalive/KeepAliveService.java

5http://funf.media.mit.edu/index.html

http://www.meddb.be/webapplications.aspx
http://www.google.com/intl/en_uk/analytics/
http://blog.nielsen.com/nielsenwire/online_mobile/double-vision-global-trends-in-tablet-and-smartphone-use-while-watching-tv/
http://blog.nielsen.com/nielsenwire/online_mobile/double-vision-global-trends-in-tablet-and-smartphone-use-while-watching-tv/
http://android-random.googlecode.com/svn-history/r219/trunk/TestKeepAlive/src/org/devtcg/demo/keepalive/KeepAliveService.java
http://android-random.googlecode.com/svn-history/r219/trunk/TestKeepAlive/src/org/devtcg/demo/keepalive/KeepAliveService.java
http://funf.media.mit.edu/index.html

9.2 Recommendations 61

9.1.3 Data Quality

Looking into the number of launches of individual applications, it seems that
the daily and weekly usage patterns are quite vulnerable to noise; particularly
to single users with a specific usage pattern or a relatively high registration of
application usage. This is why the normalised histograms have been used for
the results. If more users had been part of the data collection, most of this noise
would be neutralised. This would also mean that the validity of the conclusions
made on basis of the collected data would be higher, as they would rely on a
bigger statistical foundation.

The trends found within the data, however, indicate that the collected data does
in fact reflect real usage patterns, especially when comparing it to other sources.

The accuracy of the collected data could have been improved by increasing
the frequency of checking for the active application on each device (as of now
this is checked every 2 seconds). This however, would have increased the CPU
usage time in “Appalyzer”, and hence the battery consumption. Every 2 seconds
seemed adequate to provide a sufficient level of details in the collected data;
especially since the average time for a single application use is known to lie
somewhere above 30 seconds, depending on the type of application [BHS+11,
p. 50 table 2].

9.2 Recommendations

The recommendation feature of the solution could have been improved a lot,
but as this was not the focus of the project, little effort was done on this part.
Below follows a discussion of how this could be improved.

First of all, using Pearson correlation as similarity measure has some disadvan-
tages in the given scenario. When finding a recommendation, the item is found
based on the highest ratings among users similar to the user at hand. This
means that the applications that will be recommended most frequently, will be
the most popular applications - being the home screen applications. Since there
are many different kinds of home screen applications, a user might be recom-
mended this kind of application several times in a row - which is not desirable.

Moreover, a user does not necessarily want a recommendation for an application
which is too similar to an application recently used. On smart phones, applica-
tions are small individual components - each of them solving a simple dedicated

62 Discussion

task. Therefore, a recommendation of an application too similar to an existing
application might not be very popular with the user.

Implementing a more clever algorithm which could take application category
into account, and look at previously recommended application categories would
be preferable.

To properly recommend applications to users, it is also necessary to have some
more information on the device (at least on the Android platform):

• The country the device is located in

• The version of Android the device is running

• The screen size or model number of the device

Accordingly, the following information must be available on every application
in the database (for the recommendation system):

• Is the application available on Google Play, or is it a developer version of
an application?

• In which countries is this application available?

• Which devices does this application support?

• What is the “Content Rating”6 of the application? - assumed that a single
user (perhaps a child) must only receive recommendations of low maturity

All of this information is necessary to ensure that when recommending an ap-
plication, this application is actually applicable with the specific user’s device.
This is the case, since when publishing an application on Google Play, it is pos-
sible to limit it to specific API levels (Android versions), specific countries or
certain device screen sizes (e.g. only tablet sizes).

The best recommendation experience seemed to be with the “Appolicious” ap-
plication mentioned in Chapter 2 on page 5. This particular application looks
at all the installed applications on a device, and recommends alternatives to the
installed applications based on user ratings of the different applications. A com-
bination of this approach combined with a more scientific approach, as the one

6Indicates if an application includes sexual or violent references, or if it uses the user’s
location, see: http://support.google.com/googleplay/android-developer/support/bin/
answer.py?hl=en&answer=188189

http://support.google.com/googleplay/android-developer/support/bin/answer.py?hl=en&answer=188189
http://support.google.com/googleplay/android-developer/support/bin/answer.py?hl=en&answer=188189

9.3 Prospects 63

proposed in [LKKK11], would seem as the most likely to succeed as a serious
application recommender. However, it needed to ensure knowledge of all the
prerequisites mentioned above, in order to recommend applicable applications
only.

To sum up, it seems that in order to build an optimal recommendation system,
a proper analysis of the required prerequisites along with a close connection
to Google Play should be conducted. Building a complete system would have
to take the limitations on locale, device screen size etc. into account from the
very beginning in order to avoid unavailable recommendations. Furthermore,
the choice of recommendation system should be a category-based system with
emphasis on finding similar applications, which can replace each other. The
choice of recommendation algorithm should probably be an item-based algo-
rithm with lower memory consumption and where the runtime is not affected
by an increasing number of users, as the one proposed in [SKKR01].

9.3 Prospects

9.3.1 Area with Focus

Analysing users’ behaviour in different contexts have recently received a lot of
attention from some of the biggest companies within mobile application devel-
opment. Below is a description of some of the different initiatives. Google Play7

Figure 9.1: Personalised application recommendations from Google
Play. From the web-version on the left and from their widget on the right

(the bottom widget).

7https://play.google.com/store

https://play.google.com/store

64 Discussion

recently started recommending applications for (Android) users based on vari-
ous parameters (see Figure 9.1 to the left) on their web-site. Since Google have
information on users from various contexts and media (e.g. mail, installed An-
droid applications, +1-indications8, friend’s +1-indications, users’ location etc.)
they have a solid base for recommending applications. Until recently they only
utilised this information for recommendations on their web-based Play Store9,
but with the new version of Android (Jelly Bean, 4.1) they also start recom-
mending applications on their Android-based Play Store cf. the quote below.

A new set of recommendations widgets use a variety of signals —
content that people with similar tastes have purchased, stuff that’s
popular around where you live, content people in your Google+ cir-
cles have +1’ed, and more — to recommend new content like apps,
games, music, and movies.10

A screenshot of the way they currently utilise this (with a widget) is seen in
Figure 9.1 on the right. It is very likely that this development will eventually
remove the need for other dedicated recommendation applications (on Android).

Apple and Facebook have started focusing on some of the social contexts within
users’ application usage. Apple have recently integrated Facebook in their app-
store, making it possible to “like” apps.11 This shows that they are trying to put
users’ application preferences into a social context which might possibly allow
them (or other developers) to come up with application recommendations based
on social relations.

Facebook are planning allowing companies to put in advertisements (for instance
for other mobile applications) in the official Facebook application. These ads
should apparently be based on users’ individual application usage, making them
as well-fit for the particular user as possible.12 Furthermore, they try to be a
part of the growing mobile application industry by launching “the App Center”,
giving application developers a new platform for application marketing.13

One of the reasons why these companies need to use custom measures to get
indications of users’ appreciation of applications, is due to the fact that only
a small subset of users actually rate applications (in Apple’s App Store and
on Google Play). A few users might represent the majority when they rate

8Similar to Facebook’s “like” feature - see: http://www.google.com/+1/button/
9http://tiny.cc/41ouhw

10http://www.android.com/about/jelly-bean/
11See: http://marketingland.com/apple-integrates-facebook-into-ios6-13847
12See: http://tiny.cc/xgmiiw
13See: http://tiny.cc/7fmiiw

http://www.google.com/+1/button/
http://tiny.cc/41ouhw
http://www.android.com/about/jelly-bean/
http://marketingland.com/apple-integrates-facebook-into-ios6-13847
http://tiny.cc/xgmiiw
http://tiny.cc/7fmiiw

9.3 Prospects 65

applications, but if the users who rate are always the same, the ratings might
not reflect the average opinion. As an example, at most 0.4% of the users having
installed the GMail application from Google Play have actually rated it.14 For
developers of some of the most popular applications 0.4% might suffice, but for
developers of applications with a smaller potential number of users, this might
not be adequate as they would only start getting ratings once they reached
250 users (assuming a linear tendency in ratings compared to the number of
downloads). By utilising several other ways of measuring application popularity
(Facebook likes, Google +1’s, etc.), users, as well as developers, will potentially
get better estimates of application similarity, popularity, and quality.

9.3.2 Reflections on Utilisation

Based on the results obtained in this project and the tendencies within the area
described above, a number of potential uses of the presented approach can be
identified.

First of all, the data collected would, as earlier mentioned, be useful to many
developers when developing new mobile applications. It would be relevant to
consider building a publicly available API for these developers to connect to,
which could present statistics on specific applications, specific categories, and
application usage within regions or specific time periods. This could be used by
developers to gain insight into usage patterns, but might also be used directly
as back-end web services to certain kinds of applications.

More advanced applications similar to “Appalyzer” could also be build with even
more emphasis on presenting the user with personal statistics and visualisations,
and also include the possibility for categorisation and more customisation. This
would not necessarily have to recommend new applications (as it seems the
Google Play approach will be quite powerful), and could work without ever
having to connect to the internet.

As mentioned in Section 1.3, it would be interesting to implement a widget
which was able to recommend installed applications with background in the data
collected by “Appalyzer”. Such a widget might use several measures to calculate
the most plausible application which the user would launch, based on time of the
day/week, the user’s location and the previously opened application(s). This
would also allow an exploration of the area of predicting users’ behaviour and
not only their locations, investigated in [SQBB10].

14See: https://play.google.com/store/apps/details?id=com.google.android.gm. As of
July 23rd 2012: 378, 698 ratings and at least 100, 000, 000 downloads

https://play.google.com/store/apps/details?id=com.google.android.gm

66 Discussion

Finally, as earlier mentioned, there is a great potential for using this kind of
information for advertising in applications, as it would be possible to estimate
the most likely transitions to the next application, and therefore present an ad
with a similar application.

Chapter 10

Conclusion

10.1 Future Work

As mentioned in Section 1.3 and Section 9.3.2, this project has some interesting
aspects for application developers. In order to build a publicly available API as
suggested, several things would have to be done; these are listed below.

• A server with more memory should be used

• The stability of the server should be optimised as well as the database
performance

• A requirements analysis should be conducted, revealing the actual num-
bers which developers would need

• More data would have to be collected

In order to collect more data, the Android application would also have to be
improved. The following things would be relevant to optimise.

• Remove the recommendation feature

68 Conclusion

• Add a categorisation features, allowing users to collect applications in
custom groups and perhaps to categorise locations as “home”, “work” etc.

• Resolve the issues regarding end times which are not registered correctly

• Base the application on the “funf” framework

• Provide users with even more visualisations and insights in their applica-
tion usage, for instance by using clustering, and transition analysis on the
phone

• Emphasize privacy even more, and encrypt the collected data as well as
the connection to the server

Accordingly the application would also have to be promoted in various ways in
order to reach a higher number of potential users.

Together, these steps would form an interesting approach which could build a
better and bigger data set with more correct data. This would also allow an
analysis of the application interaction duration, as the end time registrations
would be correct.

10.2 What has been accomplished

A number of significant trends within users’ mobile usage patterns have been
obtained. First of all, using location based clustering, it has been possible to
verify that application usage patterns are more similar within distinguishable
regions than outside of these. Furthermore, the distribution of users’ locations
seem to follow a pattern, where more than 50% of all interactions on average
are within 500 metres of the location with most registered interactions.

Daily and weekly trends have also been found and validated within specific
application categories, and it has been possible to detect frequently occurring
interactions between single applications and application categories.

These findings have been made possible through the implementation of a mobile
application prototype as well as a server, receiving data. The mobile application
was able to collect users’ application usage without impacting each device’s
performance or battery consumption significantly.

A thorough analysis of a recommender system for mobile applications has been
conducted and, to conclude, the different measures presented in this project are

10.2 What has been accomplished 69

not well fit for recommending new applications without building a large system
similar to Google Play. However, they provide a solid base for recommending
already installed applications to users, as it is possible to utilise trends within
a user’s location, application transitions and application usage history.

Some of the results, especially regarding application usage over time, could
be collected on individual applications by developers themselves if they used
Google Analytics or similar approaches in their applications. However, when
developing a new application it might not be intuitive when different application
types are used during a day. This is why a publicly available API, making all
of this data available, has been suggested as the next step. This would allow
developers to benefit from data on multiple application and application types
before implementing a new feature or a completely new application.

Based on the above, the overall goals of this project have been fulfilled, and a
better understanding of users’ usage pattern has been achieved through various
kinds of data analysis.

70 Conclusion

Appendix A

Mobile Application
Interface

Detailed description of the implementation of the interface on the Android ap-
plication “Appalyzer”.

A.1 Menu Layout and Interaction

As described in Section 4.1.1, an experimental layout was chosen for the menu
navigation in the application. A pie-chart-looking button with three “pies”,
each representing a single button, was chosen. This decision however, led to one
big issue: Standard Android buttons are rectangular (see Figure A.1). This both
meant that the bounding box of each part of the pie-chart would not correspond
to the visual interpretation, and that the three buttons would overlap when
placed in a View component. The overlap itself was not a big issue, visually,
since transparent backgrounds of the three parts would make it look just fine;
the bounding box issue was more difficult to handle, as a press on on button
might mean that another button had been pressed.

The solution was to build a custom View1 component which extended the
1http://developer.android.com/reference/android/view/View.html

http://developer.android.com/reference/android/view/View.html

72 Mobile Application Interface

Figure A.1: Illustrating difficulties with non-rectangular buttons in
Android

Button2 class, and took care of touch events for all three buttons in the pie-
chart. One could also have used one custom Button-object for each button, but
as earlier described, this would mean that one button would have to invoke an
event on another button. The implemented class (MyButton) handles multiple
tasks:

• It changes the visible Drawable to reflect a press

• It recognises which button was pressed

• It fires the corresponding event when a button is pressed

• It can have its set of drawables changed to a new set of drawables, to show
a new menu

To identify which (part of the) button is pressed, the class overrides the
onTouchEvent()-method, and, if the pressed point is within the circle’s ra-
dius, calculates the angle between the vector from the centre of the circle to the

pressed point and a unit vector
(

0
−1

)
. As the circle is divided into three parts

(each filling 120◦), it is easy to calculate in which part the pressed point was
intercepted.

If the MotionEvent3 is of the type ACTION_DOWN, the Drawable of the button
must be changed to a drawable reflecting that the corresponding part of the
button is pressed. If the type is ACTION_UP and the up-event happened within

2http://developer.android.com/reference/android/widget/Button.html
3http://developer.android.com/reference/android/view/MotionEvent.html

http://developer.android.com/reference/android/widget/Button.html
http://developer.android.com/reference/android/view/MotionEvent.html

A.1 Menu Layout and Interaction 73

the same button-part as the down-event, the event is recognised as a button
press.

If an event is recognised as a button press, the class will fire a custom Event. The
implementation of custom events and EventListeners (the observer pattern4),
is a powerful way of communicating between view components in an Android
application, and it maintains a good relationship between observer(s) and an
Object, where the object (MyButton) does not need any information or other
relationship to the observer (MenuActivity)5.

The specific implementation is quite simple, and must only handle a single
observer, which will then check the Tag of the View at hand to see which state it
is in. Therefore, the implementation does not need handling of listener removals
or thread safety which might otherwise be of concern for the specific pattern
[Goe].

Finally, a button press might mean that the custom button should display a
new set of drawables. This is done by passing it the four new drawables, after
which it will update itself with an animation to indicate a change in the menu
state.

A.1.1 Asynchronous load of data

Everywhere when data has to be loaded from the database, it must be done
asynchronously in order to give the user the best possible experience. Therefore,
when either of the three main visualisations (in the activities: StatsActivity,
PieActivity and MyCustomMapActivity) have to access the relevant data, they
make use of an AsyncTask6 to load the data in the background while displaying
a ProgressDialog7 to let the user know that the application is actually busy.
This is usually a good idea, in order to keep the user well informed and avoid
impatient users [Tid05, Ch. 5, pp. 149–150].

4See: http://www.dofactory.com/Patterns/PatternObserver.aspx
5“When an object should be able to notify other objects without making assumptions

about who these objects are. In other words, you don’t want these objects tightly coupled.”
[GHJV94, p. 327]

6http://developer.android.com/reference/android/os/AsyncTask.html
7http://developer.android.com/reference/android/app/ProgressDialog.html

http://www.dofactory.com/Patterns/PatternObserver.aspx
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/app/ProgressDialog.html

74 Mobile Application Interface

A.2 Data Visualisations

All of the three visualisations support the filtering mechanism presented in Sec-
tion 4.1.1, which allows an intuitive way of showing only a subset of applications
for each visualisation. The filtering in one visualisation is reflected in the other
two whenever a change is made. Below is a brief presentation of some of the
most important details from each of the three visualisations.

A.2.1 “Stats”

The Activity handling this visualisation, presents the user with a list of apps,
and the time consumption of each application. This is done in a ListView
with a custom adapter extending the ArrayAdapter. The data is fetched (asyn-
chronously) from the database.

A.2.2 The Pie Chart

The pie chart has been implemented, using the AchartEngine8, which provides
an easy way of building various charts. Technically, a .jar-file from achartengine
had to be included in the Android project, after which it was possible to use a
ChartFactory from this library to build the chart. The data for the chart is
extracted from the database, and all applications with a total rate below 0.7 %
are put into one group of applications called “Other” to make the visualisation
free of too much noisy information.

A.2.3 The Map

The map activity has been implemented following the basic rules for a
MapActivity9, and the data displayed (as coloured dots) is extracted from the
database and put on the map in an ItemizedOverlay10.

8A charting software library for Android applications, capable of building various visual-
isations of data, including: pie charts, graphs, and bar charts developed by “The 4ViewSoft
Company”. See: http://www.achartengine.org/

9https://developers.google.com/maps/documentation/android/reference/com/
google/android/maps/MapActivity

10https://developers.google.com/maps/documentation/android/reference/com/
google/android/maps/ItemizedOverlay

http://www.achartengine.org/
https://developers.google.com/maps/documentation/android/reference/com/google/android/maps/MapActivity
https://developers.google.com/maps/documentation/android/reference/com/google/android/maps/MapActivity
https://developers.google.com/maps/documentation/android/reference/com/google/android/maps/ItemizedOverlay
https://developers.google.com/maps/documentation/android/reference/com/google/android/maps/ItemizedOverlay

Appendix B

Tests

Below, the background for the conducted tests as well as these tests is described.

B.1 Mobile Application

A full-blown test of an Android application requires several steps. Not all of
them have been conducted, considering the scope and focus of the project, but
here follows a general overview of testing Android applications, and a summary
of how “Appalyzer” was tested before release.

B.1.1 Test Background

There are different ways of testing an Android application, and the ultimate test
is most often to have end-users test the application. The general rules for testing
an application have been given by the Android Development Team, and describe

76 Tests

both what to test1 and how to test this2. But several other testing techniques
exist. Several frameworks for black-box testing exist (e.g. “Robolectric”3 and
“Robotium”4), and among these, some even make it easy to test an application
on multiple different devices at once, for instance “Lesspainful”5.

Since Android applications are written in Java, unit testing6 is also easy to do,
using the standard “JUnit”7 tool. The most thorough and intuitive test of an
application however, is to operate it manually on a real device to test different
things such as:

• Screen resolution – Does the UI look as expected on the specific device?

• Screen orientation – How does the application correspond to orientation
changes, and where they handled properly in the application Manifest/-
code?

• Touch screen operation – Does the interaction on a touch screen feel nat-
ural/intuitive?

• CPU and network performance – When the application is not run in an
emulator, how well does it perform on a smaller CPU, and how (well) does
it handle network changes?

[RLMM09, Ch. 7.1]

For deeper analysis on the application behaviour, it is relevant to use a debug-
ging tool such as DDMS8, which allows advanced debugging, memory allocation
analysis, and network traffic investigation. This is especially good for testing
for memory leaks in an application.

1Short list of general rules for what to test in an Android application. See: http://
developer.android.com/guide/topics/testing/what_to_test.html

2Testing fundamentals for an Android application, describing best practises and how to
use JUnit and monkeyrunner in Eclipse. See: http://developer.android.com/guide/topics/
testing/testing_android.html

3Black-box testing framework, allowing test of application features without having to
deploy the application to an actual device/emulator. See: http://pivotal.github.com/
robolectric/

4Black-box testing framework, allowing test of application features on device, see: http:
//code.google.com/p/robotium/

5Automated application testing for Android and iOS on multiple real devices. See: https:
//www.lesspainful.com/

6IEEE Standards Board: http://aulas.carlosserrao.net/lib/exe/fetch.php?media=
0910:1008-1987_ieee_standard_for_software_unit_testing.pdf

7http://junit.sourceforge.net/
8http://developer.android.com/guide/developing/debugging/ddms.html

http://developer.android.com/guide/topics/testing/what_to_test.html
http://developer.android.com/guide/topics/testing/what_to_test.html
http://developer.android.com/guide/topics/testing/testing_android.html
http://developer.android.com/guide/topics/testing/testing_android.html
http://pivotal.github.com/robolectric/
http://pivotal.github.com/robolectric/
http://code.google.com/p/robotium/
http://code.google.com/p/robotium/
https://www.lesspainful.com/
https://www.lesspainful.com/
http://aulas.carlosserrao.net/lib/exe/fetch.php?media=0910:1008-1987_ieee_standard_for_software_unit_testing.pdf
http://aulas.carlosserrao.net/lib/exe/fetch.php?media=0910:1008-1987_ieee_standard_for_software_unit_testing.pdf
http://junit.sourceforge.net/
http://developer.android.com/guide/developing/debugging/ddms.html

B.2 Server 77

B.1.2 Conducted Tests

In “Appalyzer”, only a subset of the mentioned tests were conducted. As launch-
ing the application as soon as possible was the number one priority it was not
tested thoroughly on all devices, screen resolutions etc. However, it was tested
on 4 different devices. On-hand tests were carried out by multiple users, and
the feedback was used to improve the design and performance of the application
even more. For deeper debugging, the built-in debugging tool in Eclipse9 was
used extensively, and the previously mentioned DDMS-tool was also used to
profile the applications memory consumption.

B.2 Server

Testing a web server is often about testing the performance of the server, once
the number of connections increases [Kil02, Ch. 3]. Testing the server perfor-
mance has not really been a priority, as it was assumed that the server used
would only have to serve a relatively small number of users (less than 100).

The correctness of the server however, has been tested thoroughly to ensure
data integrity and meaningful application recommendations for clients. The
recommendation part was tested with dummy data from a completely different
context, namely movie ratings. The recommendations are based on the users’
“ratings” (usage counts) of applications, and this feature is comparable to a
movie rating.

B.3 Data Analysis and Visualisation

The data visualisations have been tested in Chrome on a 2.4GHz Macbook
Pro running Mac OS X 10.7.4 and there has been no testing of the resulting
appearance on different devices or screen sizes. The primary debugging tool has
been outputting to the console.

The validity of the data used for the visualisations has been checked through
database investigation as well as thorough testing of the database lookups.

9http://eclipse.org/

http://eclipse.org/

78 Tests

Bibliography

[Abl] Frank Ableson. http://www.ibm.com/developerworks/web/
library/x-andbene1/index.html?ca=drs-. Introduction to, and
analysis of XML- and JSON-parsing in Android.

[AEK00] Asim Ansari, Skander Essegaier, and Rajeev Kohli. Internet recom-
mendation systems. Journal of Marketing Research, 37(3):363–375,
2012/06/17 2000.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Towards the next
generation of recommender systems: A survey of the state-of-the-
art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17, no. 6, 2005.

[BHS+11] Matthias Böhmer, Brent Hecht, Johannes Schöning, Antonio
Krüger, and Gernot Bauer. Falling asleep with angry birds, face-
book and kindle: a large scale study on mobile application usage. In
Proceedings of the 13th International Conference on Human Com-
puter Interaction with Mobile Devices and Services, MobileHCI ’11,
pages 47–56, New York, NY, USA, 2011. ACM.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009.

[EpKSX96] Martin Ester, Hans peter Kriegel, Jörg S, and Xiaowei Xu. A
density-based algorithm for discovering clusters in large spatial
databases with noise. pages 226–231. AAAI Press, 1996.

http://www.ibm.com/developerworks/web/library/x-andbene1/index.html?ca=drs-
http://www.ibm.com/developerworks/web/library/x-andbene1/index.html?ca=drs-

80 BIBLIOGRAPHY

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1st edition, 1994.

[Goe] Brian Goetz. http://www.ibm.com/developerworks/java/
library/j-jtp07265/index.html. Discussion on the observer pat-
tern and discussion of different thread safety issues.

[HBV01] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On
clustering validation techniques. Journal of Intelligent Information
Systems, 17:107–145, 2001. 10.1023/A:1012801612483.

[Kil02] P. Killelea. Web Performance Tuning. O’Reilly Series. O’Reilly,
2002. A book on optimising web performance, both regarding web
servers, web content, and browsers.

[KKSZ11] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek.
Density-based clustering. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 1(3), 2011.

[Lec07] Julien Lecomte. http://www.julienlecomte.net/blog/2007/10/28/,
2007. Description and discussion of pattern from javascript-
development, ensuring browser responsiveness while performing in-
tense computations.

[LKKK11] Yujin Lim, Hak-Man Kim, Sanggil Kang, and Tai-hoon Kim. Rec-
ommendation algorithm of the app store by using semantic rela-
tions between apps. In Tai-hoon Kim, Hojjat Adeli, Rosslin John
Robles, and Maricel Balitanas, editors, Ubiquitous Computing and
Multimedia Applications, volume 151 of Communications in Com-
puter and Information Science. Springer Berlin Heidelberg, 2011.
10.1007/978-3-642-20998-7_18.

[LM08] Daniel Lemire and Anna Maclachlan. Slope One Predictors for
Online Rating-Based Collaborative Filtering. September 2008.

[Nok] Nokia. http://research.nokia.com/page/12000. The nokia data
challenge, which was a project where a lot of students got access to
data collected over more than a year by more than 200 devices.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-
anonymization of large sparse datasets. In IEEE Symposium on
Security and Privacy, pages 111–125, 2008.

[PB07] Michael Pazzani and Daniel Billsus. Content-based recommenda-
tion systems. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang
Nejdl, editors, The Adaptive Web, volume 4321 of Lecture Notes

http://www.ibm.com/developerworks/java/library/j-jtp07265/index.html
http://www.ibm.com/developerworks/java/library/j-jtp07265/index.html
http://research.nokia.com/page/12000

BIBLIOGRAPHY 81

in Computer Science, pages 325–341. Springer Berlin / Heidelberg,
2007. 10.1007/978-3-540-72079-9_10.

[PYC06] Han-Saem Park, Ji-Oh Yoo, and Sung-Bae Cho. A context-aware
music recommendation system using fuzzy bayesian networks with
utility theory. In Lipo Wang, Licheng Jiao, Guanming Shi, Xue
Li, and Jing Liu, editors, Fuzzy Systems and Knowledge Discovery,
volume 4223 of Lecture Notes in Computer Science, pages 970–979.
Springer Berlin / Heidelberg, 2006. 10.1007/11881599_121.

[RLMM09] Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike.
Android Application Development: Programming with the Google
SDK. O’Reilly Media, Inc., 1st edition, 2009.

[RRS11] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to
recommender systems handbook. Recommender Systems Handbook,
Springer, 2011.

[Seg07] T. Segaran. Programming Collective Intelligence: Building Smart
Web 2.0 Applications. O’Reilly Series. O’Reilly, 2007.

[SKKR01] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John
Reidl. Item-based collaborative filtering recommendation algo-
rithms. In World Wide Web, pages 285–295, 2001.

[SQBB10] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László
Barabási. Limits of Predictability in Human Mobility. Science,
327(5968):1018–1021, February 2010.

[Tid05] J. Tidwell. Designing Interfaces. O’Reilly Series. O’Reilly, 2005.

[TV10] Stefan Tilkov and Steve Vinoski. Node.js: Using javascript to build
high-performance network programs. IEEE Internet Computing,
2010.

[XZL10] G. Xu, Y. Zhang, and L. Li. Web Mining and Social Networking:
Techniques and Applications. Web Information Systems Engineer-
ing and Internet Technologies Book Series. Springer, 2010.

[ZHLP10] Nima Zandi, Rasmus Handler, Jakob Eg Larsen, and Michael Kai
Petersen. People, places and playlists: modeling soundscapes in a
mobile context. 2010.

	Abstract
	Preface
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Project Goals
	1.3 Potential
	1.4 Contributions

	2 Related Work
	3 Analysis
	3.1 Mobile Application Analysis
	3.1.1 Non-functional Requirements
	3.1.2 Functional Requirements

	3.2 Recommendations
	3.3 Data Analysis
	3.3.1 Application Interactions
	3.3.2 Categorisation
	3.3.3 Location Analysis

	4 Design
	4.1 Mobile Application Development
	4.1.1 Information Architecture
	4.1.2 Visualisations
	4.1.3 Filtering
	4.1.4 Data Collection

	4.2 Communication
	4.2.1 Web Services

	4.3 Recommendations
	4.4 Data Analysis
	4.4.1 Time Data
	4.4.2 Location Data
	4.4.3 Application sequences

	5 Implementation
	5.1 Mobile Application Development
	5.1.1 Android Development
	5.1.2 Application Monitoring
	5.1.3 SQLite Database

	5.2 Server Development
	5.2.1 Server Set-up
	5.2.2 Database

	5.3 Visualisations and Data Analysis
	5.3.1 Histograms
	5.3.2 Transitions
	5.3.3 Locations
	5.3.4 Asynchronous Data Processing

	6 Experimental Work
	6.1 Application Release
	6.1.1 Time Zone Compensation
	6.1.2 Collected Data

	6.2 Application Feedback
	6.3 Known Issues
	6.3.1 Faulty Data
	6.3.2 Server Limitations

	7 Results
	7.1 Application usage
	7.2 Transition Analysis
	7.3 Location Analysis
	7.3.1 Clustering Analysis
	7.3.2 Location Distribution

	8 Evaluation
	8.1 Time Analysis
	8.2 Transition Analysis
	8.3 Location Analysis
	8.3.1 Location Distribution
	8.3.2 Clusters

	9 Discussion
	9.1 Data Collection
	9.1.1 Measurable Parameters
	9.1.2 Data Correctness
	9.1.3 Data Quality

	9.2 Recommendations
	9.3 Prospects
	9.3.1 Area with Focus
	9.3.2 Reflections on Utilisation

	10 Conclusion
	10.1 Future Work
	10.2 What has been accomplished

	A Mobile Application Interface
	A.1 Menu Layout and Interaction
	A.1.1 Asynchronous load of data

	A.2 Data Visualisations
	A.2.1 ``Stats''
	A.2.2 The Pie Chart
	A.2.3 The Map

	B Tests
	B.1 Mobile Application
	B.1.1 Test Background
	B.1.2 Conducted Tests

	B.2 Server
	B.3 Data Analysis and Visualisation

	Bibliography

