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Summary (English)

Background: Radiation therapy is a technique used in the treatment of a number
of cancers. The radiation therapy planning process is currently based on a CT-
scan of the patient because these images are geometrically accurate and contain
the information of the electron densities required for calculating dose plans.

Radiation therapy based only on MRI would be advantageous in many aspects.
The superior soft tissue contrast would for example make the delineations of
tumours and organs at risk more accurate. It requires that the information from
CT can be estimated from MRI. Conventional MRI sequences lack the ability to
visualise compact bone, which hinders proper conversion of MR images into CT
images. Visualisation of compact bone is however made possible with a newly
installed MRI sequence where images are obtained with ultra short echo times
(UTE). The objective of this report is to explore the potential of this sequence
for enabling MRI based radiation therapy.

Materials and Methods: It should be established how UTE acquisitions should
be conducted at the department’s 1 Tesla open MR-scanner dedicated for radi-
ation therapy. A cut-off knee from a calf was scanned with a range of varying
parameters. Regions of muscle and bone tissue were manually annotated on the
images. Optimal parameters could be investigated by calculating a contrast-to-
noise ratio.

Strategies for estimation of CT from MRI should further be explored. The
overall chosen strategy was to segment the MRI into different tissue groups and
assign an appropriate bulk electron density to each of them with . Four different
approaches were investigated and compared to each other. The evaluation was
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based both on the geometric and dosimetric accuracy compared to CT, and was
tested on both data from the knee-phantom and on human head anatomy with
data from a single patient.

Results: It was shown that the first echo time should be minimized, the second
echo time should be placed close to 4 ms, and that the flip angle of the sequence
was optimal at 25 degrees.

A classification method based on Markov Random Fields was shown to have the
overall best performance of the compared methods.

Conclusion: Proper acquisition parameters for UTE imaging were established
and a relatively successful segmentation approach was implemented. There is
room for improvement both concerning image acquisition and segmentations,
but the results are promising and good enough for conducting further studies
into radiation therapy based only on MRI.



Summary (Danish)

Baggrund: Stråleterapi er en teknik der indgår i behandlingen af en række
kræftformer. Planlægningen af et stråleterapiforløb er i dag baseret på en CT-
skanning af patienten, fordi disse billeder er geometrisk præcise og indeholder
den information omkring vævets elektrondensitet der muliggør beregninger af
stråledosisplaner.

Stråleterapi baseret på MRI ville have en række fordele. F.eks. vil den overlegne
bløddelskontrast gøre indtegningen af tumor og risikoorganer mere præcis på
stråleplanerne. Det kræver dog, at man kan estimere CT-informationen fra MRI.
Konventionelle MRI sekvenser kan ikke visualisere kompakt knogle, hvilket gør
det svært at konvertere MR billeder om til CT-billeder på ordentligt vis. Det er
imidlertid blevet muligt med en nyligt installeret MRI sekvens, hvor der optages
med ultrakorte ekko tider (UTE). Denne sekvens’ potentiale for at kunne bruges
til MRI baseret stråleterapi skal afdækkes.

Materialer og Metoder: Det skulle undersøges hvordan optagelsen med UTE skal
foregå på afdelingens 1 Tesla åbne MR-skanner dedikeret til stråleterapi. Det
blev gjort ved at skanne et afskåret kalveknæ med en række varierende parame-
tre. Regioner af muskel og knoglevæv blev manuelt annoteret på billederne. Ved
beregning af et kontrast-støj forhold kunne det undersøges hvilke parametre der
er optimale.

Metoder til at estimere CT fra MRI skulle desuden undersøges. Den valgte
overordnede strategi gik ud på at MRI segmenteres ind i forskellige vævsgrupper
som tildeles en passende gennemsnitlig elektrondensitet. Fire forskellige måder
at gøre dette på blev undersøgt og vurderet i forhold til hinanden. Vurderingen
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var baseret både på den geometriske og dosimetriske akkurathed i forhold til CT-
billeder, og blev undersøgt på både data fra kalve-fantomet og på menneskelig
hoved anatomi med data fra en enkelt patient.

Resultater: Det blev vist at den første ekko tid bør vælges så kort som muligt,
den anden ekko tid bør placeres i omegnen af 4 ms og sekvensens flip vinkel bør
være på 25 grader.

En klassifikationsmetode baseret på Markov Random Fields viste sig at klare
sig bedre på alle punkter end de andre testede metoder.

Konklusion: Det blev etableret hvordan UTE kan optages på fornuftig vis og en
relativ god segmenteringsmetode blev implementeret. Der kan arbejdes på for-
bedringer både med hensyn til billedoptagelse og segmentering, men resultater-
ne er så lovende, at videre studier omkring stråleterapiplanlægning udelukkende
baseret på MRI kan foretages.
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Chapter 1

Introduction

Radiation Therapy (RT) is a common approach for the treatment of a variety
of cancers, and it can be a standalone treatment or a supplement to other
treatments. The principle is to damage cancer cells on a cellular level by the use
of ionizing radiation. In the western world the most common way of producing
and delivering the radiation is with linear accelerators (LINACs).

In principle, all cancer cells can be killed if the dose is high enough. Healthy
tissue will also be irradiated causing radiation damage with various side-effects
and increased risk of developing secondary cancers years after the treatment.
The goal is thus to maximize the dose to the tumour volume while minimizing
the dose to healthy tissue - in particular sparing organs at risk (OAR), which are
especially vulnerable tissues. To accomplish this goal, an individual treatment
plan is made. Currently, the planning process is based on a Computed Tomog-
raphy (CT) scan. The tumour volume and OARs are delineated on the images,
and advanced computer programs are employed to do dose calculations and find
optimal plans. Various technological improvements and techniques have been
developed to ensure more effective treatments and research constantly expands
the knowledge within this field.

One such improvement is to include Magnetic Resonance Imaging (MRI). The
soft-tissue contrast of MRI is superior compared to CT (Figure 1.1 left vs.
right). This allows for more accurate and precise delineations of the tumour
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and OARs[1]. MRI is further capable of a variety of imaging techniques that
could be valuable in for instance the assessment of treatment response [2].
To transfer the information gained from MRI to CT, the two volumes have to be
registered. This can potentially introduce a systematic error[3]. By increasing
the use of supplementary MRI in the RT work-flow, the seriousness of such reg-
istration errors will increase, especially if multiple MR images are taken during
the course of treatment for response evaluation. Further, it is costly and an
added burden for the patient to have them scanned with both modalities.

There is a clear incentive for moving towards RT based solely on MRI. A pre-
requisite for so-called MRI-only RT is that the information gained from CT
can be sufficiently extracted from MRI. This is troublesome to realize due to
some inherent MRI issues. First of all, MRI is geometrically less accurate and,
secondly, there is no relationship to electron density which then has to be esti-
mated. One approach is to deform a CT atlas to the MR image[4, 5]. Another
approach is to segment the MR image into different tissues and then assign them
a bulk electron density[6]. The most important part of this bulk strategy is to
correctly segment the bone structures. They have an impact on the accuracy
of the dose calculations due to their high attenuation compared to soft tissue.
Further, Digitally Reconstructed Radiographs (DRR) of the bones are used for
set-up verification at the LINACs. Bone segmentation is unfortunately also the
most challenging part of the bulk strategy, since signal from cortical bone can-
not be acquired with conventional MRI. Manual segmentations of the bone is a
possibility but not feasible in real clinical practice[7, 8].

Figure 1.1: Similar transaxial slice of human head. The challenges and objec-
tive for the project. 1: MR image acquisition, 2: Bulk segmenta-
tion of tissues, 3: Evaluation and comparison to true CT. Left:
MRI T1-weighted. Middle: Bulk segmented MRI/CT-estimate.
Right: CT.

A key element in realization of automatic MRI bone segmentation is to use a
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MRI sequence where images are obtained with Ultra short Echo Times (UTE).
The signal from fast relaxing tissues and materials, such as cortical bone, is re-
ceived with this sequence, which enable ways of auto-segmenting bone structures[9,
10, 11, 12, 13, 14]. The UTE sequence was provided and installed by Philips on
some of the MR-scanners at Herlev Hospital prior to this project.

1.1 Objectives

UTE imaging has not been available at Herlev Hospital until recently and there
are no protocols and procedures on how to use the sequence. The objective of
this report is explore the use of the sequence and test its potential for making
MRI-only RT treatment plans. More specifically its ability to automate bone
segmentations. This poses several questions that can be addressed as three
separate parts (Figure 1.1):

1. How should UTE images be acquired on a 1 Tesla open MR-scanner to
give the best bone segmentations? It is important to establish appropriate
settings, practical procedures, understand limitations etc.

2. Which bone segmentation approach should be used? How does the per-
formance of various methods compare?

3. How close is the estimation to true CT? In order to asses the clinical
potential it is important to evaluate the segmentation’s geometric accuracy
and the dosimetric agreement with CT-based treatment plans.

The objectives will be investigated mostly with phantom based studies but also
with a patient study. A bone segmentation strategy has been implemented, and
its performance will be compared to other proposed methods.

The report is structured in the following manner:
A theory chapter that introduces MRI and UTE, classification methods and
general concepts used throughout this report. The Materials & Methods in
Chapter 3 describe the data acquisition and processing that was done to in-
vestigate the objectives. The corresponding results are presented in Chapter
4 and then discusses in Chapter 5. Finally a conclusion in Chapter 6 and an
appendix containing three independent scientific projects that was done in re-
lation to and during the course of this project; An abstract accepted for the
American Society for Therapeutic and Radiation Oncology (ASTRO) annual
meeting 2012; A poster that was presented at the Visionday conference 2012 at
the Technical University of Denmark (DTU); And further an abstract accepted
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for the annual meeting at the European Society for Therapeutic Radiology and
Oncology (ESTRO) 2012.

1.2 Previous Work

A number of papers regarding the three specified objectives have already been
published. The work described below serves as the foundation for the strategies
pursued in this report.

1.2.1 UTE imaging

Although the UTE sequence is not readily available on a standard clinical MRI-
system, it has in fact been present in the literature for over a decade. Previously
it was just considered for the standard diagnostic purpose of visualising patho-
logical processes[15, 16]. However the images are generally of low quality com-
pared to other MRI sequences, and concerning the ability to visualise bone, then
x-ray and CT perform much better because of their direct visualisation of tissue
attenuation properties. Supposedly, it is the reason why UTE did not manage
to become part of the standard sequences available. However, the use of MRI
has developed since then. MRI is becoming increasingly important in RT[2].
Clinical Positron Emission Tomography (PET)/MRI systems are emerging, but
in order to do acceptable attenuation correction maps for PET reconstructions a
problem identical to the one in MRI-only RT is faced - how to do CT-estimates
from MRI[6]. Since UTE imaging shows a promising potential in this regard, a
great incentive for using it has risen.

The experience with UTE imaging that was gathered earlier is valuable. A
review article from Robson et al.[17] from 2003 gives an insight into the basic
physics and technical aspects concerning the sequence. The paper also intro-
duces a couple of methods for visually enhancing bone in an image, one of which
is the difference UTE (dUTE). This strategy appears to be the most widely
adopted strategy for UTE imaging currently, and also the strategy employed in
this report. No specific parameter settings (echo times, flip angle etc.) can be
directly derived from the paper. Going through other papers that have adopted
the dUTE strategy[9, 10, 11, 12, 13, 14] there is no consistent choice of UTE
acquisition parameters.
We build upon this work by investigating the use of a quantitative Contrast-
to-Noise Ratio (CNR) to establish optimal acquisition parameters for our MRI-
scanner.
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1.2.2 Classification strategies

There are several methods in the literature for trying to estimate a CT image
from MRI. Getting correct classification of air and the soft-tissues is less chal-
lenging than segmentation of bone. The strategies can broadly be categorised
as either an atlas-based or voxel-based approach[6].

Atlas based strategies have been reported by Hofmann et al.[4] and Dowling et
al.[5] without using the UTE sequence. The basic principle is to generate both
a MRI-atlas and a co-registered CT-atlas from numerous patients. Given a new
patient the MRI is deformed to fit the MRI-atlas. The same deformation field
is applied to the CT-atlas which results in the desired CT-estimate (dubbed
pseudo-CT).
Dowling et al.[5] report results from a study with 26 prostate patients. Seg-
mentations of the pelvic bone with an average Dice coefficient around 0.8 was
achieved. However these strategies have difficulties coping with atypical patient
anatomy, which is observed in the same study. Two patients were excluded
from the study, one simply because of a Body Mass Index much lower than the
average.

In this project we consider a voxel-based strategy. The general principle is to
segment the MR image into different tissue groups (typically air, soft tissue and
bone) and assign them a bulk electron density. Several authors within the last
few years have reported various voxel-based strategies using UTE imaging[9, 10,
11, 12, 13, 14]. Prior to these papers UTE voxel-based strategies had not been
considered for bone segmentations according to a review article on PET/MRI
attenuation correction strategies from 2009 by Hofmann et al.[6].

Thörnqvist et al.[10] demonstrates an approach using standard image filter-
ing techniques combined with masks determined from manual set thresholds to
segment cortical bone using boolean logic. The project was made with RT ap-
plications in mind. Data was obtained from 4 human volunteers with a 3 Tesla
scanner. The focus was head anatomy and visual results were presented. By
missing CT information of the 4 volunteers no direct comparison to CT could be
done. The average segmented bone volume (530±157 cm3) were however found
to be comparable to a volume segmented from CT-data of 12 patients (555±84
cm3).

Keereman et al.[11], Catana et al.[12] and Berker et al.[14] use variations of
another strategy for bone classification. Berker et al. also include a MRI Dixon
sequence. They use various different image analysis techniques (filtering, mor-
phological operations, region growing) and a mathematical operation to calcu-
late a map where voxels with a fast intensity decay are enhanced. A threshold is
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used to determine when a decay is considered fast enough to be bone. The draw-
back of this approach is that intensity relaxation in MRI is not only governed by
tissue properties but also inhomogeneities and variations in the magnetic field.
These papers consider applications within PET/MRI and the use of 3 Telsa
scanners. They favour making their performance assessment in PET relevant
manners to demonstrate the clinical impact/feasibility. This makes sense but it
makes comparisons to RT approaches difficult. Other than PET relevant evalu-
ations, they employ visual and qualitative descriptions. Keereman et al. reports
5 patient cases where 85%-95% of voxels are correctly classified within a Vol-
ume of Interest (VOI) compared to CT. Similarly Berker et al. reports 81.1%
overall correct classification based on 6 patients. Details on the bone accuracy
are not specified, and the overall classification results are not useful numbers
for comparisons in this study.

Johansson et al.[13] use more advanced image analysis techniques for bone clas-
sification. A CT and two sets of dUTE MRI images are obtained for a number
of patients. The intensities in the MRI images are linked to the intensities of the
registered CT-images using a Gaussian mixture model. Given a new MRI im-
age the calculated model parameters are used for estimating a map of CT-values
(dubbed substitute-CT). The method appears to yield accurate and robust re-
sults, but the paper reports no numbers or values that other methods can easily
be compared to. The main drawback of this approach is that registered CT
images are required in training of the model. The consequence is a method that
lacks flexibility in the sense that the training can only be applied to images
acquired in a very specific way.

For a classification strategy in this report, we initially did something very similar
to Thörnqvist et al.[10]. This method was used and presented in the abstract for
ASTRO (Appendix A). In the final phase of our investigation we implemented
an approach with similarities to Johansson et al.[13], but without including the
CT information. We only employ UTE images, and consider CT images as
something to compare results to.
Here, we test a method that to our knowledge has not been reported previously.
In an effort to compare performance of various approaches, we have further im-
plemented versions of the logical masking method proposed by Thörnqvist et
al.[10], and the R2-mapping approach proposed by Keereman et al.[11]. These
approaches are based solely on UTE images as well, making it easy to do rela-
tively fair comparisons of performance.
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1.2.3 Dosimetric Evaluation

A prerequisite for pursuing MRI-only RT planning using bulk density assigned
MRI is to know that it can eventually result in clinical acceptable plans. Other
authors have already investigated this[7, 8, 18, 19] by comparing dosimetric
agreements between CT-based plans and CTUnit, CTBulk, MRIUnit, MRIBulk
plans. Here Unit means that all tissue is assigned a uniform density corre-
sponding to water, and Bulk refers to bulk assigned densities to soft-tissue and
bone. The bone segmentations on MR images have in these cases been manually
segmented or transferred from CT.
The conclusion from these studies is that MRI-based treatment plans can be
clinically acceptable, and that Bulk plans are generally more dosimetric accu-
rate than Unit plans.

Our contribution in this regard is to evaluate dosimetric agreement for bulk
MRI plans where bone has been automatically estimated. The expectation is
that the result will be more dosimetric accurate than MRIUnit plans, but less
accurate compared to MRIBulk.



8 Introduction



Chapter 2

Theory

2.1 Magnetic Resonance Imaging

A full description of general MRI theory is beyond the scope of this report.
However, the UTE sequence is a rather special kind of sequence, and there
are some important points that should be stated. For this report the work
of Nishimura[20] and Hanson[21] has served as the theoretical foundation for
understanding the basics of MRI.

Cortical bone has a T2 relaxation of ≈0.5 ms at 1.5 Tesla[17]. This is an ultra
fast decay rate compared to the echo times (time from excitation to signal
readout) employed with conventional MRI sequences. This is why cortical bone
is not normally seen on MR images, the bone signal is decayed before signal
readout. In order to achieve echo times short enough to pick up the signal from
cortical bone, all time consuming steps of the acquisition have to be considered.

• Excitation: The radio-frequency (RF) excitation pulse is normally assumed
to be instantaneous because the tissue relaxation is negligible during the pulse
duration. This assumption does not hold for imaging of tissues with short T2.
The increased signal gained by spending more time reaching a larger flip angle
is simply lost due to relaxation. The implication is that flip angles should be
kept small, which excludes the possibility of manipulating short T2 tissues with
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180◦ pulses required in Spin Echo sequences.

• Post-excitation: The signal should be sampled as quickly as possible after
excitation.
- There is a hardware lower limit called the coil tune delay. It is the time it
takes to switch coils form transmit to receive mode[22].
- There is no time to recall and sample an echo. Instead the Free Induction
Decay (FID) is sampled. Although the UTE sequence is not in principle a Gra-
dient Echo (GRE) sequence, it is still referred to as one[17], since it shares some
similarities and drawbacks of GRE sequences.
- The signal has to be sampled even during the ramp up of the readout gradi-
ents. Usually the ramp up shape is irrelevant and considered ideal. If the correct
shape and timing are not taken into account, the consequence is that samples in
k-space are slightly misplaced, which results in blurring and spatial distortions
of the image[23]. Adjustments are made with a mathematical correction during
image reconstruction. The correction is governed by a single parameter called
the trajectory delay, τ . It is affected by the echo time, the bandwidth and the
choice of Field of View (FOV). It is therefore necessary to calibrate the value of
τ for different settings.
- The fastest sampling of the k-space is achieved with a readout direction that
is radially outward from the centre of k-space. The consequence is that the
lower frequencies (centre of k-space) are more densely sampled than higher fre-
quencies. This corresponds to a low pass filtering of the image, which is further
enhanced due to signal loss during signal readout. When the higher frequencies
are sampled a degree of signal loss has already occurred[22].

• Artefacts: Similarly to GRE sequences the UTE sequence suffers from the
following artefacts.
- Susceptibility: UTE imaging concerns tissues that decay rapidly. However
the decay is not only governed by intrinsic tissue properties (T2) but also by
sources that de-phase the signal due to variations in the local magnetic field
(T2*). Such susceptibility artefacts are especially pronounced at air-to-tissue
boundaries.
- Chemical shift: Water and fat have slightly different Larmor frequencies. At
certain echo times (≈3.4 ms at 1 Tesla) the two signals are out of phase. Voxels
with a mix of water and fat will as a consequence have no measurable signal.

• Bandwidth should preferably be broad[17]. Although this lowers the Signal-
to-Noise ratio (SNR) it reduces chemical shift artefacts and read-out times.

• Other tissues have short T2s. Short T2 tissue is present as a minority in most
tissues, but is the majority in for example ligaments, tendons, cortical bone.
These tissues will show a similarly behaviour in UTE images[15].
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2.2 UTE imaging strategy

By acquiring a single UTE echo (Echo Time, TE≈ 0.1 ms) all tissues should have
a measurable signal. This allows a separation of cortical bone and air, which is
not possible using conventional echo times. A distinction between cortical bone
and other tissues is, however, difficult unless something extra is added to the
sequence. There are several approaches [17], but the one used for this project
is the difference UTE or dual UTE. A second echo (Echo 2) is acquired shortly
after the first (Echo 1). Because tissues with short T2 will have experienced a
larger signal loss in the time between the echoes, they will appear bright in a
subtraction image (Echo 1 - Echo 2). This principle is demonstrated in Figure
2.1, and the following can be observed:

Echo 1

(a)

Echo 2

(b)

Subtraction

(c)

Figure 2.1: UTE echoes and subtraction image of human knee joint

• Air has low intensity in both echoes. The intensity is not necessarily zero,
in particular close to the tissue interfaces. This can partly be contributed
to the partial volume effect, in the sense that signal is picked up from
a voxel that contains a mix of tissues and the recorded intensity is then
some kind of average.

• Cortical bone behaves as expected. Signal is present in the first echo
due to the ultrashort TE, but it is gone in the second. This results in a
high intensity in the subtraction image, which is visible as a thin bright
contour around the bone.

• Spongy bone has high intensity in both echoes. A significant signal loss
is still observed resulting in a bright appearance in the subtraction image
as well.
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• Muscle tissue appear with very similar intensity in both echoes and is
clearly suppressed in the subtraction image. Notice that voxels at the in-
terface with other tissues have lost most of their intensity in echo 2. This
can be caused by chemical shift or susceptibility artefacts, and results in
bright contours at tissue interfaces - similar to cortical bone. Distinguish-
ing between signal loss due to intrinsic tissue properties (T2) or T2* effects
is not possible using dUTE.

• Other soft tissues such as ligaments and the skin behave much like
spongy bone. Tendons will show the same behaviour [15]. Distinguishing
between these tissues is expected to be difficult.

• Noise: Although not shown, some voxels have a greater intensity in echo
2 which would result in a negative intensity in the subtraction image. Only
noise and artefacts can cause such a gain in intensity.

The information can also be displayed in an intensity map (Figure 2.2). A
specific voxel is interpreted as a 2-D point (x,y) using the intensities from the
echoes (IE1, IE2). The spatial information in the images is lost, but the different
tissue species are expected to occupy different regions in accordance with the
above stated observations. The degree of separation between tissue groups has
an impact on the performance of the classification methods and the accuracy
of the CT-estimates. The actual scaling and appearance of the intensity map
is influenced by almost everything - the magnetic field strength, choice of coil,
acquisition parameters and imaged anatomy.

The intensity map, the color coding and the straight line showing no signal loss
between echoes in Figure 2.2 will be used throughout the theory chapter.
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Figure 2.2: UTE intensity map. Distinction between air and cortical bone is
only possible due to the UTE. Color coding: Air (dark blue), corti-
cal bone (yellow), muscle tissue (red), other soft tissues (ligament,
tendons etc) (green) and spongy bone (light blue).
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2.3 Contrast to Noise Ratio

The acquisition parameters have an impact on the separation of the different
tissue classes on the intensity map in Figure 2.2. A metric is needed for a
quantitative evaluation of how well the tissue types are distinguished. The
ability to identify a certain tissue group is dependent on two things - how well
is the group defined and how different is it from other groups.

The former is typically defined as the Signal-to-Noise Ratio (SNR). In image
analysis the SNR is often defined as the ratio of the mean pixel intensity to the
standard deviation of a region of interest (ROI). There are variations to this
depending on the application. However, just because an image has a high SNR,
it does not imply that different tissue regions are easily distinguished between.
This is illustrated in Figure 2.3 with an artificial image containing two separate
rectangular ROIs. The image to the left has high SNR in both regions, however
the contrast is much better in the image to the right in spite of low SNR. When
the contrast is also an important aspect of the metric, then the contrast-to-noise
ratio (CNR) is more appropriate. This metric takes the signal difference of the
ROIs into account:

CNR =
|SA − SB |

σ
(2.1)

where SA and SB are the signal strength of the two regions, and σ is the noise.
For the remainder of this report the signal strength is defined as the median pixel
intensity and the noise is defined as the root of the added squared interquartile

ranges (IQR) of the two regions (σ =
√

IQR2
A + IQR2

B).

SNR
(A,B)

 = (36,38) while CNR = 3 SNR
(A,B)

 = (5,14) while CNR = 6

Figure 2.3: Two images each containing two homogeneous regions (A and B)
with added noise of identical strength.



2.4 Classification 15

2.4 Classification

The output of the MRI dUTE sequence is two image volumes as illustrated in
Figure 2.4. The task is to create a volume where all voxels are assigned to a
group that represents a specific Hounsfield Units (HU). A minimum of 3 groups
are considered - air (-1000 HU), soft tissue (0 HU) and bone (500-2000 HU).
This image volume is the CT estimate, C̃T .
C̃T is obtained by using a voxel classifier. Given the information in the image
and perhaps some a priori knowledge, the classifier is a method for assigning
each voxel into one of K different classes. This will be referred to as the label
image/volume. Each class or label corresponds to a tissue type that appears
distinctively different in the MR images. The main differences between the C̃T
and the label image is that the soft tissue class in the C̃T may be comprised of
several different tissue classes in the label image. For instance, white and grey
matter can appear very different on MRI, and it may be most appropriate to
have a separate label for each of them. Their CT-numbers are, however, similar
and should appear identical on the C̃T .

There are many different classification approaches that could be considered. The
methods that are tested in this project are described in the following sections.
The various strategies are applied to the artificial UTE images and intensity
map shown in Figure 2.4.

Figure 2.4: Illustration of the classification process. Color coding as in Fig.
2.2. The decision boundaries (thick black lines) of the classifier
divides the intensity map into regions and each voxel is assigned
the corresponding label of that tissue group. Each label is then
assigned an appropriate electron density (or CT-number).
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2.4.1 Classification using R2-mapping

The approach with this strategy is to estimate the relaxation time constant, T2,
for each voxel. The strategy was proposed by Keereman et al.[11] and developed
for head anatomy. The intensity in a voxel should ideally drop exponentially:

I(t) = I0 exp(−R2 · t)

where R2 = 1/T2. The intensities of a voxel in the two echo images (IE1, IE2)
can be considered two measurements of the function. The solution for R2 is
then:

R2 =
ln(IE1)− ln(IE2)

TE2 − TE1
(2.2)

This calculation can be done for every voxel and plotted as an image with
R2 values (R2-map). R2 is a tissue dependent factor and cortical bone has a
higher R2 than soft tissues since it decays much faster. A threshold based on
measurements of the T2 of cortical bone is used to determine when the decay
has been fast enough to be classified as cortical bone.
Echo 1 is used for classification of air. A region growing algorithm is applied to
define all air around the scanned object based on a manual set threshold, Th1.
Voxels within the object are classified as air only if the intensity is lower than
another manual set threshold, Th2 (Th1 > Th2).
In comparison to the UTE intensity map from Figure 2.4, this method defines
its decision boundaries as shown in Figure 2.5.
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Figure 2.5: R2 classifier boundaries. Color coding as in Figure 2.2.
.
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2.4.2 Classification using masks and boolean logic

This approach is based on the a priori knowledge regarding the echo images as
described earlier. The method was proposed by Thörnqvist et al.[10] and was
developed for head anatomy.

• Only voxels of air will ideally have zero intensity in echo 1 .
- Lemma 1: Everything above a relatively low threshold is tissue.

• The signal from the cortical bone has ideally decayed to nothing in echo 2.
- Lemma 2: Everything above a threshold is not cortical bone.

• The short T2 of the bone results in a high intensity in the subtraction image.
- Lemma 3: Everything below a relatively high threshold is not bone.

The three appropriate thresholds are found manually and defines three masks
(M1, M2, M3). Classification is done using boolean logic as follows:

• Air = ¬M1.

• Soft tissue = M1 ∧ M2 ∧ M3.

• Bone = M1 ∧ ¬M2 ∧ ¬M3.

where ¬ is negation and ∧ is the conjunction. In an effort to reduce the noise
from air-tissue interfaces an edge detection filter is applied to echo 2. The
detected edges are widened and used for a reduction of the mask that defines
bone. In relation to the intensity map from Figure 2.4, the decision boundaries
of this approach are placed as illustrated in Figure 2.6.
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Figure 2.6: Logic classifier boundaries. Color coding as in Figure 2.2.
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2.4.3 Classification using Bayesian statistics

Bayes’ theorem is a very generalized statement that has found applications in
a variety of fields. It basically states that when confronted with some new
objective information, the initial (the prior) state of knowledge or belief should
be updated to a new and improved state (the posterior). It is contributed to
Thomas Bayes, but was mostly developed by Laplace[24]. The concept has
also found its way into image analysis and image classification as described
below[25, 26].

The basic assumption is that the acquired intensities in an image volume actu-
ally comes from a mixture of K normal distributions. The measured intensity
in each voxel is interpreted as a random sample drawn from one these distribu-
tions. Samples are drawn with different frequencies which represents the prior
probabilities. If the image contains, for example, 38% background/air, then
38% of the voxels would have been random samples from that distribution.

The K Guassian distributions are described by a n-dimensional mean value,
µk, and a n-by-n covariance matrix, Σk. The dimensionality is 2 in this report,
since only intensities from the two UTE echoes are ever considered. However,
this method is easily expanded to include intensities from other MR images as
well.
Suppose that the parametric properties (µk and Σk) of the K Gaussian dis-
tributions and the priors are somehow known. Given a voxel with intensity,
x = [x1, . . . , xn], it is then possible to estimate the posterior probability, P (k|x),
that it was drawn from the k’th distribution using Bayes’ rule:

P (k|x) =
P (x|k)P (k)

P (x)
(2.3)

On the right hand side the term P (k) is the prior probability as mentioned
above. It is independent of the intensity, and in its most basic form it serves
as a scaling. The term P (x) is a normalising constant. The term P (x|k) is
the conditional probability and it states the probability that the intensity value
x is in the k’th class. Still assuming that the classes are normally distributed
the conditional probability is approximated by evaluating the intensity in the
Probability Density Function (PDF):

fx(x1, . . . , xn) =
1

(2π)n/2|Σk|1/2
exp

(
−1

2
(x− µk)TΣk

−1(x− µk)

)
(2.4)

The posterior probability is evaluated for each of the K classes, and the voxel is
classified according to the class with the highest posterior probability. The nor-
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malising term in Equation 2.3 ensures that the sum of the posterior probabilities
equals to one.

The process is repeated for all voxels, and the resulting intensity map can be
seen in Figure 2.7(b).

(a) Manual training
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(b) Bayes classifier

Figure 2.7: Manual training of the classifier (left) and the labelled inten-
sity map and estimated Gaussian distributions representing tissue
classes (right). Color coding as in Figure 2.2.

2.4.3.1 Training

Previously, it was assumed that the properties of the Guassian distributions
were somehow known. Training is the process where the parametric properties
are defined and it can either be manual (supervised) or automatic.

Supervised The manual training approach is illustrated in Figure 2.7(a). A
representative ROI for each tissue class is annotated, the µk and Σk are calcu-
lated and an appropriate electron density is assigned to the class.

The annotation of a bone ROI on UTE images would for example contain Nk
voxels providing the observations:

xk = (IE1, IE2) =



IE1−1 IE2−1

...
...

IE1−Nk
IE2−Nk
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The mean point or class centre is then calculated as

µk = (µE1, µE2) = (E[IE1],E[IE2])

The covariance is a 2-by-2 matrix whose element (i,j) is defined as

Σi,j
k = cov(IEi, IEj) = E[(IEi − µEi)(IEj − µEj)]

Nk
Nk − 1

(2.5)

and Σi,j
k should be evaluated for i = 1 : 2 and j = 1 : 2.

Automatic There are different algorithms that can automatically estimate
the underlying Gaussian distributions of a set of points. For this report an
implementation of the Expectation Maximization algorithm[27] for Matlab was
found. A detailed explanation of the algorithm is beyond the scope of this
report, but it should be stated that this particular implementation uses a random
sampled subset of the points. The consequence is that two separate trainings
can end up with two different results. The algorithm will converge to similar
results if enough points are included and if the convergence criterion is small
enough.
Using an automatic training presents another challenge. There is no immediate
way of knowing what tissue is represented by which class, and therefore no
knowledge of the correct electron density. The assignment of electron densities
is done separately after the training is completed. The established class centres,
µk, are evaluated according to the a priori knowledge presented earlier. A class
is assigned a density corresponding to air if µk is smaller than some threshold.
A class is defined as spongy bone if µk is larger than a threshold in echo 1
intensity. Similarly, if µk has a R2-value (Equation 2.2) larger than a threshold
it is considered cortical bone. Otherwise classes are assumed to be soft-tissues.

2.4.4 Classification using Markov Random Fields

Markov Random Fields (MRF) is a very general term with applications in a
variety of fields. The term Markov originates from probability theory where
it is used to characterise a certain type of stochastic process or system. The
system contains multiple states, and if the transition from the current state to
the next is dependent only the current state - it is said to full-fill the Markov
property. The concept of Markov Random Fields is the same, just expanded
into multiple dimensions, and in image analysis it is thus a way of incorporating
that pixels/voxels are spatially dependent on each other.

The approach chosen in this project can be seen as an expansion of the Bayesian
classifier. In the Bayes approach all voxels were treated independently. It is a
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(a) Medical image (b) Bayes (c) MRF

Figure 2.8: Left: A artificial medical image showing the bone tissue as high
intensity, the muscle as tissue mid level intensity and the dark
background represents air. Middle: The result of Bayes classifi-
cation. The two encircled pixels have identical intensities. Right:
The result with the MRF prior added to the classifier. The marked
pixel in bone has changed classification due to the influence of the
local neighbourhood.

simplifying and naive assumption considering the nature of medical images. A
certain tissue type will always be part of a smaller or larger connected region
(organ). The concept of using MRF is shown in Figure 2.8. An artificial medical
image containing air, muscle and bone tissue is shown in Figure 2.8(a). Figure
2.8(b) shows the result of Bayes classification. The two encircled pixels share
the same intensity, giving them a [0, 51, 49]% posterior probability of belonging
to respectively air, muscle and bone. Hence they are both classified as muscle
tissue, but when considering the neighbourhood it is most reasonable to assume
that the pixel embedded in bone is not classified correctly. The MRF approach
provides a method for changing the posterior probability of each individual pixel
by looking at the surrounding neighbourhood. If many neighbours belong to the
same tissue type it would strengthen the posterior probability and vice versa.
The result of using MRF is shown in Figure 2.8(c), and the posterior probability
of the two encircled pixels are now respectively [0, 99, 1]% and [0,1,99]%.

In a more mathematical sense, the knowledge of spatial dependency is incor-
porated into the prior, P (k), of Bayes’ theorem as an energy function, E(k):

P (k) =
1

Z
exp(−E(k))

Where Z is a normalising term. The energy function can be specified in many
ways. For this report the chosen energy function favours labels which are spa-
tially clustered, in the sense that E(k) → 0 if a high number of neighboring
voxels are classified in the same manner, and E(k) → ∞ otherwise. Because
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voxels can now influence each other the prior is no longer considered on a global
scale. It can be shown that it is possible to define the prior for the k’th class
for each individual voxel, i[26]:

Pi(k) =
πk exp

(
−β∑j∈<i

(1− qj(k))
)

∑
k′ πk′ exp

(
−β∑j∈<i

(1− qj(k′))
) (2.6)

The first term, πk, is the constant frequency prior from the Bayes classifier. The
denominator is for normalising the prior probabilities to ensure that

∑
k Pi(k) =

1. The constant β is the weighting of neighbourhood influence. If β = 0 then
the equation will reduce to the constant prior used in Bayes. The term qj(k) is
the current posterior probability of voxel j belonging to class k. The summation
is then the summing of probabilities of not belonging (1− qj(k)) to class k over
the voxels, j, in a neighbourhood, <i, around voxel i. In a soft-sense it is the
counting of the number of neighbours current classified as something else. In
2-D images the neighbourhood is considered as the 4 or 8 nearest pixels. In 3-D
volumes the nearest 6, 18 or 26 voxels can be defined as the neighbourhood.

Every time the posterior probability of the voxel i is updated using the MRF
prior it will have an impact on the neighbouring voxels are vice versa. All
voxels should be updated several times to ensure convergence, and neighbouring
voxels cannot be updated simultaneously. Further, the order of which voxels are
updated can affect the final result. This iterative nature of the approach has a
drawback. The computational time is significantly increased compared to the
other methods. The principle on Markov Random Fields can also be illustrated
on the intensity map (Figure 2.9) previously introduced.
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Figure 2.9: The principle of Markov Random Fields. Three pixels and their
eight spatial neighbours are linked. A voxel can be assigned to
another class based on how its spatial neighbours are defined.
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2.5 Geometric Evaluation

The performance of the classifiers can be evaluated on how correctly the bone
was segmented compared to a corresponding CT-scan. Geometric evaluation
is in this report done quantitatively with the Dice similarity coefficient and
qualitatively with Digitally Reconstructed Radiographs (DRRs).

2.5.1 Dice coefficient

The Dice similarity coefficient originates from ecology studies[28], but is a gen-
eral method, that in this case is used for comparison of segmented volumes.
Given the intersection volume (A ∩ B) and the individual volumes A and B,
the Dice coefficient is calculated as:

DICE =
2(A ∩B)

A+B
(2.7)

The coefficient can be anything between 0 (no overlap) to 1 (perfect overlap).
In the specific case for this report A would be the bone volume from a CT
image, while B would be the bone volume from the segmented MR image. CT
is considered the ground truth, and the interpretation is that the higher the Dice
coefficient the better the MRI segmentation. Failing to get a Dice coefficient of
1, which is always the case, the Dice coefficient itself does not reveal whether this
is caused by a low intersection volume or by over-segmentation of bone on the
MRI. This is illustrated in Figure 2.10, where two very different segmentations
have the same Dice coefficient. Therefore a further clarification to the geometric
evaluation can be to report the fractions of CT missed and MRI falsely classified
volume.

2.5.2 Digitally Reconstructed Radiograph

The 2-D x-ray image of an object from a given angle can be approximated from
a CT-scan of the object. The so-called DRR (Figure 2.11) is used for set-up
verification at the LINACs prior to the treatments. A corresponding image can
be obtained with the LINAC. A manual registration between the two images
can fine tune the position of the patient to match the expected position in
the dose plan. Two orthogonal DRRs are acquired in order to cover for all
three dimensions. Only high dense materials are seen on these x-ray images, so
matching is most often based on bone structures.
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DICE = 1 DICE = 0

DICE = 0.45 DICE = 0.45

Figure 2.10: Illustration of Dice coefficient. The same Dice coefficient can
have different causes.

It is crucial that decent DRRs can be generated from MRI-scans in order to real-
ize MRI-only RT. This requires truthful bone segmentations. A visual compar-
ison of the DDR generated from CT and from bulk segmented MRI is therefore
a clinical relevant evaluation method.

Figure 2.11: Illustration of DRR generation
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2.6 Dosimetric Evaluation

The performance of the classifier can further be evaluated by comparing dose
plans calculated on CT- and on bulk segmented MR images. Realization of
MRI-only RT requires minimal deviation from the CT based dose plan, and it
is further important to evaluate if the segmented Bulk plans are more accurate
than the MRI Unit plans. A full description the of dose planning process is be-
yond the scope of this report, but some relevant concepts are shortly introduced
below.

2.6.1 Dose Volume Histograms

The output of a dose plan (Figure 2.12) is a rather complex set of 3-D infor-
mations. Visual browsing through slices can reveal hot-spots or other regions
that require special attention. It is, however, a large amount of spatial informa-
tion, and in order to do a more quantitative evaluation and make comparisons
to other plans the information is reduced to something simpler. The dose vol-
ume histogram (DVH) is a way of representing the 3-D dose distributions in
2-D graphs[29]. Similar to standard image histograms, the DVH is created by
counting the number of voxels in a defined structure (target volume for exam-
ple) that receive a dose that falls within a small dose-range (bin). It is most
common to show the DVH in its cumulative form (Figure 2.12 top right), so
that the bin-height represents how many voxels that receive that dose or higher.
Unless otherwise stated DVH refers to the cumulative DVH in this report.

Although the spatial information is lost in the DVH, analysis of the 2-D graphs
can reveal other useful information. The gradient of the slope in the DVH
represents the dose homogeneity in the volume. Specific DVH points have been
shown to be of clinical relevance for the outcome of the treatment and the
occurrence of side-effects.

The comparisons in this report are based on the similarity of the DVHs and
deviations in specific DVH points. The CT based plan is considered the truth
and as such the MRI bulk segmented plans should get as close as possible to
the CT plan.
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Figure 2.12: Illustration of dose plan and DVH. Color coding of structures:
Hippocampus (pink), Eyes (blue) and Brain(light blue)
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2.6.2 Equivalent dose in 2 Gy fraction

The doses presented in clinical dose plans are rarely given in a single treatment.
RT is more effective when it is fractionated, but the fractioning makes inter-
comparisons of dose plans a bit troublesome. A 20 Gy dose delivered in 4
fractions of 5 Gy is not biologically equivalent to a 20 Gy dose delivered from
10 fractions of 2 Gy. An approach for standardising reported doses is to use a
mathematical model of isoeffective dose relationships to calculate the equivalent
dose in 2 Gy fractions (EQD2)[30, p. 126]:

EQD2 = D
d+ α/β

2 + α/β
(2.8)

Where D is the total dose, d the dose rate and α/β is a tissue dependent
parameter that describe the sensitivity to the dose rate. A lower α/β equals
a higher sensitivity. The unit of EQD2 is Gy, but for clarification it can be
reported as Gyα/β .

The dosimetric evaluation in this project involves a head patient. One of the
OARs in the brain is the hippocampus, and a study has shown that a EQD2

greater than 7.3Gy2 to 40% of hippocampus correlates with long-term memory
impairment[31]. The doses from the calculated dose plans are converted to
EQD2 by measuring the hippocampus DVH pointD = D40%. Given the number
of fractions, n, the dose rate can be calculated (d = D/n). α/β is assumed to
be 2, and the EQD2 can then be calculated using Equation 2.8.
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Chapter 3

Methods & Materials

The details concerning data acquisition and processing are described in the
following sections. Unless otherwise stated all MR images were acquired with a
Philips Panorama 1 Tesla open MRI-system, which is shown in Figure 3.1(a).
All CT-scans were obtained with a Philips Brilliance Big Bore CT.

(a) Panorama (b) Bovine phantom

Figure 3.1: MRI system and bovine phantom

All obtained data is logistically considered as belonging to three separate studies.

The first study referred to as UTE calibration concerns the measurements
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required for establishing appropriate values for the trajectory delay, τ , which
was introduced in Chapter 2. The scanned object was a 3-D Philips phantom
that is otherwise used for measurements of geometric distortions.

The objective of the parameter study is to determine which parameters UTE
images should be obtained with on the 1T open MRI. This is done by measuring
a CNR for UTE images acquired with varying parameters. The study is based
on images of a bovine phantom. The phantom (Figure 3.1(b)) is a cut-off knee
of a calf, vacuum packed and set-up in a vacuum fixation.

Some of the bovine data was further used in the classification study. The
purpose here is manifold. First of all, it must be investigated if the CNR measure
correlates with the performance of the classifier and the dosimetric accuracy of
the segmentations. Secondly, the performance of various segmentation methods
is investigated both on bovine data and images of a patient. The compared
methods are the Bayesian classifier (Bayes), the Bayesian classifier with Markov
Random Fields (MRF ), classification based on measured R2-values[11] (R2map)
and finally the classifier using logical masks[10] (Logic).

3.1 Image Acquisition

Table 3.1 presents an overview of the various scanning parameters used for the
UTE scans in the three studies. The Field of View (FOV) and voxel size are both
isotropic meaning that the listed values are identical in all three dimensions.
The Number of Signal Acquisitions (NSA) is a parameter that control how
many times the same measurement is obtained, and the final outcome is then
an average of the acquisitions. It is a way of increasing the SNR but also the
total scan time. The bandwidth was kept as wide as possible throughout all
scans.

3.1.1 Phantom

The phantom used for UTE trajectory delay calibration was primarily imaged
using the Head-coil. The Large-coil was employed when large FOVs (>300
mm) were investigated, and the Flex-coil was the only coil able to test for the
currently lowest achievable TE1. Only the first UTE echo is of interest and the
second echo was therefore not obtained. The trajectory delay was investigated
for FOV sizes of 190:10:250 (from 190 mm to 250 mm with increments of 10
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Table 3.1: MRI UTE acquisition parameters for various scans. * represents a
parameter variation

Calibration Bovine phantom Patient
phantom TE1 TE2 α Cross Head

TE1[ms] 0.14 * 0.11 0.11 0.11 0.09
TE2 [ms] – 3.6 * 3.2 * 3.6
α [◦] 15 25 10 * * 25
TR [ms] 6 6.9 9.3 6.5 9 9
FOV [mm] * 220 220 220 220 220
Voxel size 1.5 1.6 1.6 1.6 1.6 1.5
[mm]
NSA 2 1 1 1 1 1
Coil * Head Flex

mm) and additionally 350 mm and 450 mm. The effect of changing the first
echo time was further investigated with TE1 of 0.09, 0.11 and 0.14 ms.

3.1.2 Bovine phantom

The bovine phantom was scanned only once with CT. The MRI data included
in this report contains variations of the first echo time (TE1), the second echo
time (TE2), the flip angle (α) and variation of both flip angle and second echo
time (Cross). Each of the 4 data sets were obtained at four separate sessions.
The head coil was used because the phantom fitted nicely into it and because
it allowed for a quick and very reproducible set-up. Except for the TE2-session
each measurement was repeated a few times to get a sense of the reproducibil-
ity and the acquisition order was randomized to negate unforeseen sources of
variation such as gradual heating.

• TE1: Echo times of [0.11, 0.16, 0.21, 0.26] ms were investigated with four
repetitions.

• TE2: Only a single measurement of the echo times [1.74, 2.1, 2.5, 2.8, 3.1,
3.4, 3.7, 4.0, 4.3, 4.5, 5.0, 6.0] ms.

• α: Flip angles of 10:5:50◦ was obtained with three repetitions.

• Cross: Corresponding measurements of [10,17,25]◦ and [1.74, 2.7, 3.6, 4.6,
5.6] ms was made with 2 repetitions.
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3.1.3 Patient

Patients were scanned in accordance with in-house protocols. Appropriate fix-
ation devices were used in both MRI and CT. All data was anonymized using
Conquest DICOM server version 1.4.16.

• Head patient was scanned using the Flex-coil and with the following
sequences: A T1-weighted, a T2-weighted and an UTE sequence. The
details concerning the non-UTE sequences are irrelevant in this project
and therefore not stated.

3.2 Image Processing

An overview of the data processing step are shown in Figure 3.2.

Figure 3.2: Data processing overview
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3.2.1 UTE Calibration

A qualitatively visual assessment of each phantom scan was made in order to
find an acceptable trajectory delay value, τ , for the given FOV & TE1.

The raw data was saved allowing reconstructions with other τ -values than those
used during image acquisition. Reconstructions was tested with a precision of
0.5 µs. An example of an image with non-optimal and correct τ -value are shown
in Figure 3.3 for comparison. When τ is non-optimal blurred artefacts appear
especially at the four elongated radial markers. When τ is too large the blur
appears towards to the centre and vice versa. The effect is only present on the
first echo.

(a) Echo 1, τ = 5 µs (b) Echo 1, τ = -1 µs

Figure 3.3: Example of visual assessment of τ -values. Clear blurring is ob-
served with τ = 5 µs.

3.2.2 Parameter study

The echo images were loaded and the subtraction image calculated. All voxels in
the subtraction image with values below zero were truncated to zero, since voxels
can only have a higher intensity in the second echo due to noise or artefacts.

One dataset from each of the four sessions was randomly selected. Bone and
soft tissue ROIs were drawn manually on multiple slices, as illustrated in Figure
3.4, and the CNR was calculated (Equation 2.1). The ROIs could be transferred
to all the other datasets from the same session, since they were registered to
each other.
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Figure 3.4: Illustration of a manually drawn muscle ROI (green) and bone
ROI (red) in one slice.

3.2.3 Classification study

The following is applicable to all the classification studies. The specific details
are described in the individual sections below. All classifications was done using
Matlab. For geometric and dosimetric evaluation data was exported in DICOM
format and imported into Eclipse v10.0 (Varian Medical Systems) treatment
planning system (TPS). The CT-data is considered to be the truth. The regis-
tration of CT and MR was done using an initial manual rigid alignment, which
was fine tuned (still rigidly) using an iterative algorithm.

Geometric evaluation was performed on all datasets by defining and measuring
the following volumes:

• BoneAgree = BoneCT ∩ BoneMR

• BoneMiss = BoneCT - BoneAgree

• BoneFalse = BoneMR - BoneAgree

BoneCT refers to the bone volume defined on the CT images, and that was then
transferred to the MR images. The BoneMR was the volume that was classified
as bone on the segmented MRI.

Dosimetric evaluation was done by copying a CT-based plan onto the bulk seg-
mented MR datasets. Relevant structures defined on the MRI were assigned an
appropriate CT-number (the standard calibration curve of the TPS was used for
converting CT-numbers into electron densities). The plan was then recalculated
using the fixed monitor units (MU) noted from the CT-plan. Relevant DVHs
were exported and specific DVH points of interest were noted.
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3.2.3.1 Classification performance vs. CNR

The data considered here are all the bovine phantom images from the session
with varying flip angles (total of 27 data sets - 9 different flip angles with 3
repetitions of each).
Each data set was segmented into air, soft tissue, compact bone and spongy
bone using the MRF -classifier (β = 0.2, 5 iterations). A automatic separate
training (8 classes) was performed for each data set.
The registration was performed between the original echo 1 MRI (flip angle 30◦)
and the CT. All MRI datasets share the same registration.
The structures used for geometric and dosimetric evaluation were defined as:

• BodyMR: All segmented tissue. Was assigned to 0 HU.

• BoneMR: The segmented bone tissue. Was assigned to 501 HU, which was
a rough representative estimate based on the CT image.

• TissueCT: CT voxels [0 HU to 241 HU], cropped to the MR body.

• BoneCT : CT voxels [241 HU to 2005 HU].

The CT-based treatment plan consisted of two opposing fields. An Anterior-
Posterior and a Posterior-Anterior (APPA) field. A 2 Gy dose should be de-
livered in 1 fraction to the isocenter of the phantom which required a LINAC
output of 109/109 Monitor Units (MU). Beside calculating dose plans for all
the bulk segmented MRIs, an additional plan was evaluated where the entire
BodyMR volume was assigned to 0 HU corresponding to a MRIUnit plan.

3.2.3.2 Comparison of classification methods using bovine data

The data considered here are 6 datasets from the session with varying flip angles
that had similar CNR scores (the data with flip angles 25 and 30◦).

Each data set was segmented into air, soft tissue and cortical bone using both
Bayes, MRF, R2map and Logic classifiers (a total of 24 datasets). A separate
automatic training (8 classes) was done for each data set, but was applied to
both Bayes and MRF (β = 0.2, 5 iterations). Thresholds for the Logic classifier
was set manually on one dataset and afterwards applied to all the others.

The registration was performed between one MRF bulk segmented image and
the CT. All the MRI datasets share the same registration.
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The structures used for geometric evaluation was defined as:

• BoneCT: CT voxels [700 HU to 2005 HU]. The lower limit of cortical bone
was a visual estimate.

• BoneMR: The segmented (cortical) bone tissue.

3.2.3.3 Comparison of methods using the head patient data

The UTE images were segmented into air, soft-tissue and bone using both Bayes,
MRF, R2map and Logic classifier. The same automatic training (7 classes) was
shared for Bayes and MRF (β = 0.7, 10 iterations). The three thresholds for
Logic was determined manually.

The CT volume and the MR volume did not cover the same field of view. CT
extended to include several vertebrae and most of the mouth, while MRI covered
less. Combined with the more complex anatomy the definitions of structure
volumes were then a bit more comprehensive:

• BodyMR: All voxels classified as tissue, including all air cavities. The outer
contour expanded to include ear canal and nasal cavities. Was assigned
to 0 HU.

• CavityMR: All voxels classified as air within BodyMR and part of a con-
nected component larger than 0.5 cm3. Was assigned a CT-number cor-
responding to air.

• BoneMR: All voxels classified as bone. Was assigned to 971 HU [32].

• BoneCT: CT bone voxels, but cropped to be within BodyMR. This was
to exclude the excess CT volume from the geometric evaluation.

• Brain: The planned target volume (PTV) segmented from the T1 weighted
MR image

• Hippocampus: Planned Risk Volume (PRV) segmented from the T1 weighted
MR image.

• Eyes: PRV segmented from the T1 weighted MR image.

The CT-based plan used for dosimetric evaluation was a pre-clinical Volumetric
Modulated Arc Therapy (VMAT) plan. A dose of 25 Gy should be delivered
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in 10 fractions using two arcs. The LINAC output was 142 and 323 MUs re-
spectively. Beside calculating dose plans for the four bulk segmented MRIs, an
additional plan was evaluated where the entire BodyMR volume was assigned
to 0 HU.
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Chapter 4

Results

4.1 UTE Calibration

Purpose: Establish appropriate trajectory delay, τ , values to avoid blurring
artefacts.

Observation: The relative small changes in TE1 that were tested showed not to
have a markedly effect on τ . Decent values for a range of FOVs are listed in
Table 4.1. It is noted that τ decreases with increasing FOV. It was found that
the amount of blurring in images were not sensitive to small deviations of τ . For
example, a choice of τ = −1 µs for at FOV of 210 mm would also keep blurring
at a minimum. With this kind of tolerance it is reasonable to linear interpolate
trajectory delays for FOVs not listed.

FOV [mm] 190 200 210 220 230 240 250 350 450
τ [µs] -1 -1 -1.5 -1.5 -1.5 -2 -2 -3 -4

Table 4.1: Trajectory delay settings
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4.2 Parameter study

Purpose: Investigate how controlled variations of acquisition parameters influ-
ence the CNR. Parameters that maximize CNR are considered optimal.

Observation: CNR scores plotted against imaging parameters are displayed in
Figure 4.1. The CNR score of each individual repetition is further shown on
Figure 4.1(a) and 4.1(c), to give an impression of the variation between mea-
surements. The following is observed from the figures:

• CNR drops linearly when the first echo time is increased.

• Variations of the second echo time results in a parabolic-like behaviour
with a maximum around 4 ms.

• CNR increases with an almost logarithmic behaviour until 25− 30◦ where
it begins to drop of.

• The CNR behaves similarly for all combinations of flip angle and second
echo time. No cross-effect is observed.

When the cross effect measurements were acquired the phantom had markedly
decayed. This resulted in a slightly different CNR behaviour concerning varia-
tions in TE2. Qualitatively the "parabolic" shape is reproduced, but the max-
ima were observed at lower TE2 than previously.
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Figure 4.1: a: Varied first echo time with 4 repetitions for each setting.
b: Varied second echo time with 1 repetitions.
c: Varied flip angle with 3 repetitions.
d: Variations of both flip angles and second echo time with 2
repetitions for each set of parameters values. Points of the red
curves are the mean of the green points.
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4.3 Classification study

4.3.1 Classification performance vs. CNR

Purpose: Having observed that flip angles of 25− 30◦ yields the highest CNR,
it should be explored if the high CNR correlates with higher geometric and
dosimetric agreement.

The results of geometric evaluation are shown in Figure 4.2. The Dice coefficient
peaks in accordance with the flip angles that yielded high CNR (Figure 4.1(c)).
It is further observed that the fraction of falsely classified MR volume steadily
drops for increasing flip angles. The fraction of missed bone drops significantly
at the optimal flip angles.

The dosimetric evaluation is shown in Figure 4.3 and 4.4. All the data points
were calculated as the average of the three datasets with same flip angle. A
single MRIUnit plan was also evaluated. The absolute difference from the cor-
responding data points in the CT-based plan are plotted. A similar shape is
observed in all figures - the deviation is minimized when CNR is high. The effect
is less clear with the soft-tissue median dose and DVH, but still observable. The
MRIUnit plan deviates more than any of the bulk segmented plans, regardless
of the flip angle.
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Figure 4.2: The geometric evaluation correlated with flip angles (CNR). The
shown points are the average of the three measurements with half
a standard deviation on both sides.
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Figure 4.3: The median and isocenter point dose deviation from CT-based
plan correlated with flip angle (CNR). The horizontal lines shows
the corresponding deviation between CT and MRIUnit plan
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(b) Soft tissue DVH

Figure 4.4: All DVHs subtracted from their corresponding DVH in CT-based
plan. The MRIUnit plan is marked as flip angle ’H20’.
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4.3.2 Comparisons of methods using bovine phantom

Purpose: Compare the ability of the four classifiers to segment cortical bone
from the bovine phantom data that was observed to have to highest CNR.

Six datasets were classified and geometrically evaluated. The data presented
in Table 4.2 is the measured volume averaged over the six datasets. The data
is further presented graphically in Figure 4.5. The Dice coefficient and bone
miss/false fractions were calculated for each data set separately and then aver-
aged, and not based on the average reported volumes.

It is observed that MRF segmentation performs slightly better than Bayes.
Logic masking performs better than R2-mapping, but is still worse than the
Bayes.

Method Bayes MRF R2map Logic
CT Bone [cm3] 165.30 165.30 165.30 165.30
MR Bone [cm3] 143.94 145.56 157.79 89.23
Bone Agree [cm3] 58.49 63.20 26.64 33.06
Bone Miss [cm3] 94.43 92.81 129.22 124.51
Bone False [cm3] 80.31 77.81 127.29 52.61
Dice coef. 0.38 0.41 0.16 0.26

Table 4.2: The averaged structure volumes and Dice coefficients for bovine
phantom (6 datasets)
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Figure 4.5: The geometric evaluation of bovine phantom data segmented with
four different approaches.



4.3 Classification study 45

4.3.3 Comparisons of methods using patient data

Purpose: The performance of the four classifiers were tested on head anatomy
data of a single patient.

The geometric evaluation is presented in Table 4.3 and Figure 4.6. Compared
to the segmentation of the phantom a similar result is observed. MRF per-
forms slightly better than Bayes which in turn is slightly better than the Logic
approach. The DRRs are shown in Figure 4.8. The apparent size difference
between CT and MR images is not due geometric distortions. The CT DRRs
are viewed with a different scaling because they cover a larger anatomical area.

The dosimetric evaluation is presented in Figure 4.7. The DVH is shown for
the CT-plan, the bulk segmentation plan from each of the four methods and
the MRIUnit plan. The deviation from the CT-plan for each structure is shown
below the figure for better visual assessment of the differences. Specific DVH
dose points are further presented in Table 4.4. The percentage difference from
the corresponding CT point, ∆CT, are also listed.

The largest difference between the CT-plan and the MRI-based plans is observed
for the hippocampus. All the methods overestimate the dose, but do so in a
similar behaviour.
For the PTV, MRF and Bayes show a performance close to CT and markedly
better than the other plans both concerning median dose and DVH deviation.
It is noted that R2map behaves closely to Water (MRIUnit plan).
The most degree of different behaviour in between the MRI-plans is observed
at the Eyes volume. The median dose for MRF, Bayes and R2map is in good
agreement with CT. However, R2map has a very different DVH behaviour and
the D2% dose is underestimated with 11%.

Method Bayes MRF R2map Logic
CT Bone [cm3] 695.37 694.04 688.71 692.91
MR Bone [cm3] 561.91 615.93 208.00 476.51
Bone Agree [cm3] 334.75 376.45 134.77 292.48
Bone Miss [cm3] 333.01 299.59 534.11 376.67
Bone False [cm3] 206.35 221.30 63.70 168.09
Dice coef. 0.53 0.57 0.30 0.50

Table 4.3: The measured structure volumes and calculated Dice coefficients
for patient data.
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Figure 4.6: The geometric evaluation of patient data segmented with four dif-
ferent approaches.

Plan CT Bayes MRF R2map Logic Water
PTV, DMedian [Gy] 30.07 30.05 30.10 30.44 30.29 30.41

∆CT [%] - 0.07 -0.10 -1.23 -0.73 -1.13
PTV, DD2% [Gy] 34.24 34.36 34.42 34.74 34.60 34.69

∆CT [%] - -0.35 -0.53 -1.46 -1.05 -1.31
Eyes, DMedian [Gy] 15.22 15.24 15.26 15.27 15.36 15.34

∆CT [%] - -0.13 -0.26 -0.33 -0.92 -0.79
Eyes, DD2% [Gy] 18.76 18.39 18.45 16.68 18.62 18.62

∆CT [%] - 1.97 1.65 11.09 0.75 0.75
Hippocampus, 7.82 8.56 8.56 8.46 8.49 8.43EQD240% [Gy2]

∆CT [%] - -9.46 -9.46 -8.18 -8.57 -7.80

Table 4.4: Notable dosimetric points for patient data, and the percentage de-
viation from CT.
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Figure 4.7: The DVHs from pre-clinical plan belonging to head patient. The
deviation from CT DVH in percent of structure of volume receiving
a given dose are shown below.
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Chapter 5

Discussion

5.1 UTE Calibration

Values for trajectory delays were established for a range of clinical useful FOVs.
It deserves to be restated that also the bandwidth and TE1 has an impact on
τ . It seems reasonable to keep the bandwidth as wide as possible in UTE scans,
and this parameter was therefore never changed in this report, eliminating the
need for exploring the bandwidth effect on τ . A small interval of TE1s were
investigated (0.09 to 0.14 ms), and it was found not to have an impact on the
amount of blurring. Results from the parameter study showed that TE1 should
be minimized, thus negating the need for investigating appropriate τ -values for
higher TE1. Should it be possible to decrease TE1 below 0.09 ms in the future,
it might be appropriate to investigate the effect on τ .

The listed values in Table 4.1 were used for all subsequent UTE scans. The
values appears to work fine, but are only based on a visual assessment of blurring
in a single or few slices and only with an accuracy of 0.5 µs. The importance
of this parameter should however not be understated. Spatial distortions and
blurring is the consequence of using an incorrect τ , which was demonstrated in
Figure 3.3 and in Figure 5.1.

Spatial distortions between the two echoes are clearly visible (Figure 5.1) .
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Figure 5.1: Effect of wrong τ -value. Echo 1 (left) and echo 2 (right).

The segmentation methods assume that the voxel position in the echo images
are identical. By using the correct τ -values distortions will be minimal and will
probably cause a little noise at worst, but if τ is wrong it can potentially be a
serious problem for the classifiers.

Blurring is apparent in certain voxels in echo 1, but it is gone in echo 2. The
blurred voxels have a behaviour identical to the expected behaviour of cortical
bone and thus a potential source of misclassifications.

A more thoughrough study of trajectory delays could be considered. Perhaps
using a quantitative metric instead of a subjective visual assessment. This could
potentially allow τ -values to be established with a higher accuracy than 0.5 µs.
Further is should be considered to use a larger phantom when testing large
FOVs. It can be seen from Figure 5.1 that the blur increase with radial distance
from centre. With the relatively small phantom used, it was not possible to see
blur far from the centre when the largest of the FOVs were tested.

5.2 UTE Parameters

First Echo Time The results from the CNR measurements on the bovine
phantom suggest that TE1 should be minimized. The TE1 effect on CNR can
easily be demonstrated on an intensity map with some artificial UTE (Figure
5.2). The data was created similarly to the data used in Figure 2.4. Here it can
be seen how a larger TE1 compresses the intensity map towards the y-axis, and
thus ruins the contrast between tissues.

The CNR curve in Figure 4.1(a) is approximately linear. Extrapolating the
curve to TE1 = 0 ms will result in a CNR very close 1, which theoretically
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Figure 5.2: The effect of TE1 shown on intensity maps of artificial data

would be the optimum. Linear extrapolation to higher TE1s is however not
appropriate. This would suggest that bone contrast remains adequate even to
rather large TE1 values. This is because the CNR measure primarily reflects the
contrast between spongy bone and muscle tissue, since the ROIs mainly con-
sisted of these tissues. The most important aspect of choosing TE1, is to ensure
that cortical bone can be separated from air. Although this is not reflected in
the current CNR measure, minimizing TE1 is the result that is in accordance
with theory.

The lower limit to TE1 is due to hardware limitations. The coils are manufac-
tured with a time delay from switching between transmit to receive mode. The
delay is there to let remaining energy of the RF excitation pulse ring down and
to tune the coil to receive mode[22]. From a UTE point of perspective it would
be interesting to see if this delay could be decreased even further.

Second Echo Time The results suggest that there is an optimum second echo
time around 4 ms. This can again be demonstrated using the UTE intensity
map (Figure 5.3). The T2 (or T2*) determines how fast a tissue group will
descend towards the x-axis. Naturally, this will result in the existence of an
optimum. If the CNR measure was based only on cortical bone and muscle
tissue, this optimum would likely had been found at the point when cortical
bone intensities approach zero in echo 2. The CNR measure in this study is
based largely on spongy bone, and overall best separation was found with an
echo time of ≈4 ms for the 1-T scanner.

This result presents a dilemma. The chemical shift of water-fat at 1 Tesla is
strongest at ≈3.4 ms. Signal from voxels with a mix of water and fat will cancel
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Figure 5.3: The effect of TE2 shown on intensity maps of artificial data

out to a large degree. In effect, they have a short T2* and will behave like
cortical bone voxels resulting in misclassifications. However, the first in-phase
echo time for water and fat is 6.9 ms, which is found to be much too long in the
sense of optimal CNR (Figure 4.1(b)). The chemical shift issue appears to be
lesser of two evils. By including other MRI sequences into the classifier in the
future it might be possible to make a distinction between water-fat cancelled
voxels and cortical bone voxels.

Flip angle The observed result can be visualised with the intensity maps of
the actual measured bovine data in Figure 5.4. Choosing the flip angle too
low brings spongy bone and soft tissue too close to each other. Increasing the
flip angle appears to shift the spongy bone group outwards, but at the cost of
an increase in the variance. The ideal (high CNR in equation 2.1) is to have
spatially separated clusters (large difference in the nominator), with as little
variance as possible (low denominator). An optimum flip angle was found to be
25-30◦.

5.3 Classification

5.3.1 Classification performance vs. CNR

Having established a set of parameters that yield a high CNR, it should be
shown than it in fact correlates with the classifiers’ ability to perform better
segmentations. It was observed that the Dice coefficient was highest for 20-25◦,
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Figure 5.4: The effect of flip angle shown on intensity maps of bovine phantom
data. Approximate regions of spongy bone (yellow) and muscle
tissue (red) are marked

mostly due to a much lower miss fraction. The fraction of false classification
steadily decreases with increasing flip angles. This behaviour can be explained
with the observations from Figure 5.4. Spongy bone clearly separates itself
more from other tissues with increasing flip angle which results in fewer false
classifications. However, the increased variance results in a lot more missed
bone.

A high variance in the geometric results was observed regarding flip angles 30-
35◦. This is contributed to the variability of the training used. The randomness
has probably caused it to place the Gaussian distributions differently. However,
the tendency is clear, a higher CNR gives better segmentations (higher Dice
coefficient). The same conclusion was reached in the abstract in Appendix A,
where the datasets and segmentation strategy was different.

The remaining thing that should be established is whether higher Dice coefficient
correlates with better dosimetric accuracy. The results suggest that it does. All
investigated points and DVHs deviated less from CT-based plan when flip angles
were 20-25◦. This conclusion is also in accordance with the one presented in
the abstract in Appendix A. Further, it was observed that all segmentations
regardless of α deviated less from CT than the MRIUnit plan.

The above stated behaviour was only shown for the MRF classifier, but is rea-
sonable to assume that it would be similar for the other classifiers used in this
report. The R2map and Logic classifiers have very similar decision boundaries
and the approach used in the abstract (Appendix A) are very similar to the
Logic classifier.
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Figure 5.5: Bovine phantom, comparison of CT, MRI, and CT estimates of
MRF and Logic classifiers. Color coding: Air (dark blue), cortical
bone (yellow), soft tissue (dark red), spongy bone (blue), more
soft tissues (brown and purple) and more air (red and green).
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5.3.2 Comparisons of methods

The bovine phantom Datasets with the highest CNR were used to test
the performance of the 4 classification strategies. Only geometric results were
compared. A dosimetric comparison seems more meaningful with the data from
the head patient. Especially because the Logic and R2map classifiers were
developed for this particular anatomy. They were not designed to deal with
spongy bone, which is what a high percentage of the bovine phantom consists
of.

A visual presentation of the CT-estimates from the MRF and Logic classifier
are shown in Figure 5.5. The susceptibility artefacts at air-tissue boundaries
clearly causes misclassifications. The edge reduction scheme in the Logic clas-
sifier appears to reduce this to a great extent, and it is the reason why some
voxels are labelled with a different colour in the intensity map (Figure 5.5 lower
left) than the decision boundaries would otherwise determine.
Ligaments/tendons are easily identified on the MR image, and appears to be
misclassified as either spongy bone or cortical bone on the CT-estimates. This
was expected since these tissues behave similarly according to theory. If a larger
percentage of the phantom had been ligaments or tendons, then the MRF/Bayes
training might had been able to classify it as a separate tissue group. This
flexible training is clearly an advantage that MRF/Bayes has over the other
methods, however it is dependent on the imaged anatomy. Cortical bone is
something that is never present in large amounts, which means that the train-
ing of the MRF/Bayes classifier sometimes fails to recognise it as a separate
tissue.

The results showed that MRF had the best performance (Dice = 0.41), but
only slightly better than Bayes (Dice = 0.38). The drawback of using MRF is
illustrated by comparing the computational time of the classifiers (Figure 5.6).
The test was done on square artificial UTE 2-D images. The R2map classifier
shows long computation times due to the region growing algorithm used for
defining the air outside the object. The MRF classifier is shown for seven full
iterations using 5 classes. Better implementations could increase speed for both
algorithms, which is something that would be valuable to explore with studies
in the future.

Patient data The geometric comparison comes to the same conclusion as with
the bovine phantom, MRF has the best performance with a Dice coefficient of
0.57. The atlas-based approach presented by Dowling et al.[5] gave segmenta-
tions of the pelvic bone with a Dice coefficient of 0.79 ± 0.12. Results from
different anatomies are not directly comparable but it provides a perspective on
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Figure 5.6: Comparison of computation times (excluding time spent on train-
ing and defining thresholds).

bulk segmentation strategies versus atlas-based approaches. Improvements to
the current UTE bulk segmentation strategy are required.

A visual inspection of the classifications (Figure 5.7) show how MRF suffers
from susceptibility artefacts, especially in the nasal cavity. The skull is generally
segmented nicely, but there are areas of misclassification in the back of head,
the neck and nose area. This can be contributed to signal loss due to a limited
range of Flex-coils.

The generated DRRs (Figure 4.8) support the general picture. CT-estimates
based on MRF are closer to the true CT. The advantage of MRF in comparison
to Bayes is clearly seen in the DRRs. MRF is capable of reducing much of the
noise that is seen outside of the skull. Further studies are required to investigate
if the DRRs are accurate enough to be used for treatment set-up verification.

The dosimetric comparison was performed using the PTV (the whole brain) and
two important OARs - the eyes and the hippocampus.
For the most part, the investigated DVHs showed a dose overestimation (Figure
4.7). This can be explained by the consequent low MR bone volume on seg-
mented MRI (Table 4.3). Too little bone results in less attenuation and allows
more radiation to reach the brain and hippocampus.
• PTV: Given that the overall segmentation is more accurate for MRF and
Bayes, it is seen that the DHV deviates less from the CT-plan than with the
other methods. The R2map plan is observed to behave much like the MRIUnit
plan. This is easily explained by the fact that R2map has a BoneMiss fraction
of 0.78. All the missed bone is instead assigned an electron density equal to
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water. The noted DVH points (Table 4.4) show small (<1.5%) dose differences
from CT.

• Eyes: The R2map plan deviates markedly from the rest of the plans. The
cause is inspected in Figure 5.7. It is observed that a part of the eyes is treated as
air. It suggests that the threshold for defining air with R2map was set too high
in this case. It would have been easy to fix, but it illustrates a weakness of the
manual thresholding strategies. Tweaking of threshold can be difficult, especially
when tissue groups tend to overlap on the intensity maps shown previously. Once
a threshold has been chosen it is only valid for a specific set of parameters, coil,
anatomy etc.
Dose difference on the noted DVH points were small (<2%) except for the
R2map.

•Hippocampus: The D40% dose to the hippocampus should not exceed 7.3
EQD2 Gy2[31]. The final treatment plan was within this dose constraint, but
the pre-clinical CT plan used in the this report was not. The dose difference
from CT at this DVH point was generally high (7.5-10%). There is no immediate
explanation for this behaviour. No gross misclassifications could be observed in
the area around the hippocampus. It is something that should be considered
and investigated in future studies.

Summary For the most part, the dose distributions from UTE bulk seg-
mented MRI are similar to the CT-based plan. The observations fit the ex-
pectations gained from similar studies using bulk segmented MRI [18, 19]. The
dose differences are in the same order of magnitude (a few percent) and it is
confirmed that the Bulk plans tend to be more accurate than Unit plans. This
study is only based on a single patient and further studies are required to explore
the reproducibility of the results. It is reasonable to conclude that this UTE
bulk segmented images can potentially provide clinical acceptable dose plans.

The MRF classifier gives the most accurate CT-estimates based on the images
acquired on the 1-T open MRI-scanner. Currently a maximum Dice coefficient
of 0.57 was obtained for head anatomy. The approach is closely followed by
Bayes as expected. The more advanced way of defining tissue classes have
some advantages. The flexibility of the training is very useful for imaging other
anatomies than the head. MRF suffers from very long computational times, and
the automatic training could be further improved. These are technical issues
that can be addressed in future studies.

The performance of R2map and Logic classifiers are possibly not the optimal.
Tweaking of the manual thresholds and filter settings might improve the results.
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Figure 5.7: Comparison of CT, R2map(Left) and MRF (Right) segmentations
of the head. The structures of true CT bone (yellow), the MR
Bone (blue), the Eyes (pink) and Hippocampus (red) are shown.
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It is, however, unlikely that they would suddenly perform markedly better. The
linear decision boundaries that these method have, are too simple given the
UTE images that can currently be acquired.

The performance of the classifiers are heavily influenced by the quality of the
acquired images. In RT applications fixation devices in some cases prevents the
use of the most optimal coil. Using the Large-coil instead of the Flex-coil for
the head patient would for instance solve some of signal issues observed at the
nose and the neck, but would result in a general higher noise level in the image.
If UTE images in the future can be acquired in such a way that tissue groups are
better separated on the intensity map, then all the tested classifiers could show
increased performance. It might be more valuable to do research into better
image acquisition rather than implementing more advanced classifiers. One way
of improving the performance could be to include additional MR images, and
thus expanding the intensity maps into higher dimensions. A promising example
of this could be the Dixon sequence[14].
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Chapter 6

Conclusion

The MRI UTE sequence shows a strong potential for making accurate CT-
estimates of bone structures and the sequences will therefore play an important
role in the realisation in radiation therapy planning based solely on MRI.

During the course of this project, the UTE sequence was tested on a 1 Tesla
open MR-scanner dedicated for radiation therapy. The important trajectory
delay values were found for a range of clinical useful field of views, but further
studies could potentially be considered.

A bovine phantom was scanned with varying acquisition parameters and by
using a contrast-to-noise ratio as a quantitative metric a set optimal parameters
were found. The first echo time should be minimized, the second echo time is
optimal close to 4 ms, and the ideal flip angle is 25◦.

The performance of four different classification strategies was tested on data
from a bovine phantom and a head patient. A classifier using Markov Ran-
dom Fields gave the most accurate segmentations in all tested cases. For the
patient a Dice coefficient of 0.57 was obtained for segmented bone volume. It
would be preferable to use the Markov Random Field classifier, although it is
computationally expensive.

It was shown that acquisitions with the optimal parameters provided the most
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accurate bulk segmented MR images concerning both a geometric and a dosi-
metric comparison. It was further established that plans based on the bulk
segmented MRI images were more accurate than uniform density assigned MRI
plans.

While there is room for improvements on both classification and on the image
acquisition side, the results are close enough to CT, that it is not unreasonable
to consider further studies into MRI-only therapy.
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Optimized Acquisition Parameters for MRI Only RT Using Ultrashort Echo Times

H.M. Kjer, R.H. Hansen, R.R. Paulsen, J.M. Edmund

Purpose/Objective

RT based on MRI only shows a promising potential if the information of electron-density from CT
can be replaced with bulk density regions of tissue, bone and air in MRI. For this to be feasible,
automatic bone segmentation is needed. This is troublesome on standard MRI sequences since no
bone signal is available. The ultrashort echo time (UTE) sequence solves this issue and gives contrast
between bone and tissue. We present a method for optimizing the UTE acquisition parameters using
the contrast-to-noise ratio (CNR) and correlating the influence of this to bone segmentation and
dosimetric agreement.

Materials/Methods

A cut-off bovine knee-joint phantom was CT scanned and scanned in a 1T open MR with a head
coil.

With the UTE sequence, two images at echo times TE1 and TE2 were acquired. The contrast
between bone and soft tissue recorded in a subtraction image (∆TE = TE1-TE2), and an isotropic
FOV/voxel size (200/1.6 mm) and flip angle 10◦ was used. The CNR dependence on TE1 and TE2
was explored. First, TE2 was varied from 1.6 to 6 ms with TE1/TR fixed at 0.11/6.5 ms. Secondly,
TE1 was varied from 0.11 ms to 0.2 ms with TE2/TR fixed to 3.2/9.3 ms.

The image usability was quantified using a robust measure of CNR defined as

|MB −MT |/
√

IQR2
B + IQR2

T , where Mb,MT and IQRB , IQRT were the medians and interquartile

ranges of the bone and tissue signals defined in regions of interest (ROI) on the ∆TE slices.

Segmentation was done using a two-step intensity classifier. First, the TE1 and TE2 images were used
for a coarse logical segmentation of ∆TE. Voxels above a low threshold on TE1 can be considered
non-air, and voxels below a threshold on TE2 to be air or bone. Secondly, ∆TE voxels were classified
as bone if the intensity fell within a range defined as the mean ± 2 standard deviations of the bone
ROI. Classified soft tissue was set to 0 HU and bone to 501 HU (CT average).

The bulk MR images were registered with those of CT in Eclipse which allowed comparisons of MR
and true CT bone volume. A CT-based treatment plan was created giving 2 Gy at the isocenter
using two opposing APPA fields. The plan was copied to the MR images and recalculated with fixed
MUs.

Results

For the CNR, an almost inverse linear relationship with increasing TE1 was seen. When varying
TE2, the CNR displays an almost parabolic behavior having a maximum CNR with TE2 between
3.5-4 ms.

Comparisons of low and high CNR segmentations showed the following: A significant increase of
13% (from 65 to 78%) more accurate bone classification, and a slightly lower dosimetric deviation of
0.3% and 1.2% from the CT based treatment plan at the isocenter and D98% (bone DVH).

Conclusion

UTE acquisition parameters that maximize the CNR was shown to improve the bone segmentation
and minimize the dosimetric differences between CT and MR based treatment plans. A maximum
of the defined CNR is obtained with the minimum possible TE1 and a TE2 around 3.5 ms.

1
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Auto-segmentation of bone in MRI-only based radiotherapy using ultra short echo time. 
 

J.M. Edmund
1
, H.M. Kjer

2
, R.H. Hansen

3 

 

1)  Purpose/Objective 

 

Treatment planning based on MRI-only has shown a promising potential if bulk density assignment 

for tissue, air and bone are taken into consideration. A major issue is the need to auto-segment these 

bulk tissue structures in the MRI image to make the approach feasible. This is, however, 

complicated by an extremely short T2 relaxation time (~ 1 ms) of the bone resulting in no signal 

using conventional MRI sequences. Here, we present an approach adapted from PET/MRI 

attenuation maps to automatically segment the bone using MRI sequences based on ultra short echo 

times (UTE).    

 

(2) Material/methods 

A cutaway from the front leg of a calf including the knee-joint was used as a phantom. The MR 

images were acquired on a 3.0-T MRI scanner (Philips Achieva) using a cardiac coil to cover the 

entire phantom. The UTE sequence applies two different echo times, TE1 and TE2, which were 0.2 

and 1.9 ms, respectively, a flip angle of 10
o
, and a TR of 4.0 ms. An isotropic voxel dimension of 

1,8 mm was obtained with a FOV of 240mm A reference CT scan (Philips Big Bore CT) was also 

acquired for comparison. 

 

Processing of the TE1 and TE2 MR images was done in MatLab using the DICOM toolbox. First, a 

TE1-2 image is created by subtracting TE2 from TE1 (figure, row 1). This image is then masked 

with a binary image of TE2 creating a TE1-2* image with a more well defined outer contour and 

discrimination between air and tissue (figure, row 2). Two different filters based on the most 

insensitive pixel (MIP) were applied to auto-segment TE1-2* into tissue and bone. Method 1 (M1): 

tissue (outer contour) > MIP/2.4 > bone > MIP/5 > tissue > 0. Method 2 (M2): bone > MIP/5 > 

tissue > 0 (figure, row 3). 

 

The TE1-2* and segmented M1 and M2 scans were registered with the reference CT scan in Eclipse 

v.10 (Varian Medical Systems). A structure set containing (auto-segmented) bone and tissue (auto-

segmented body - bone) were created for the CT-, M1- and M2-scan (figure, row 3). A CT based 

treatment plan containing two opposing APPA fields giving 2 Gy to the iso-center (middle of 

phantom) was created and re-calculated on M1 and M2 using tissue = 0 HU and bone = 362 HU 

(CT average). 

 

(3) Results  

87 % and 72 % of the M1 and M2 bone agreed with the CT reference (intersection of volumes). 

Non-bone was 13% and 28 % for M1 and M2 bone (M1/M2 volume-intersection). Bone-miss was 

28% and 15% for M1 and M2 (CT volume-intersection). 

 

The dosimetric differences were less than 1.5 % in the iso-center. The DVHs of the bone and tissue 

(figure, row 4) show good agreement between M1 and CT, ∆D98% = 2/-4 % (tissue/bone) while M2 

shows a distinct deviation from CT, ∆D98% = 12/-18 % (tissue/bone). 

 

(4) Conclusion.  



Although there’s able room for improvement, the use of UTE sequences to create contrast for bone 

in MRI images was demonstrated. From a geometric and dosimetric point of view, it seems 

important to correct for the outer contour when combining the two UTE images. This can, however, 

result in a larger bone-miss and a compromise has to be found with the presented MIP approach.  

 

Figure. 
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