
Policy Invalidation
in System Models

Tobias Stig Lindø
s072461

Kongens Lyngby 2012
IMM-PhD-2012-89

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-PhD-2012-89

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

Lyngby, 9-August-2012

Tobias Stig Lindø
s072461

ii

Abstract

We live in a world becoming increasingly complex, and it is equally difficult
to ensure safety and security in such systems, especially against insiders. For-
malising and analysing these systems can prove beneficial in order to specify
or verify any threats or vulnerabilities. In this project, we formalise real-world
systems and subsequently perform static analysis to investigate these systems,
and check whether they can invalidate any pre-defined system policies. The
results show us that policy invalidation, based on static analysis, is useful on
the battleground of modern security measures, as it can help to discover vulner-
abilities and threats when designing or improving systems. Multiple extensions
can yield a more life-like system-modelling tool, increasing both functionality
and quality of the threat assessment.

iv

Contents

Preface i

Abstract iii

1 Introduction 1
1.1 Project Description . 2
1.2 Goals . 3
1.3 Report Structure . 4

2 Background 7
2.1 Access Control and Policies . 7

2.1.1 Discretionary Access Control 8
2.1.2 Mandatory Access Control 9
2.1.3 Role-Based Access Control 10

2.2 Insider Threats . 10
2.3 acKlaim . 11
2.4 ANTLR . 12

2.4.1 In Practice . 13
2.4.2 An Example . 13

3 Design 17
3.1 System Model Design . 17

3.1.1 Locations and Edges . 18
3.1.2 Actor . 19
3.1.3 Action . 20
3.1.4 Data . 20
3.1.5 Access Policy . 20
3.1.6 System Policy . 21

3.2 Modelling Language . 21

vi CONTENTS

3.3 Policy Invalidation Tool Design 23
3.3.1 Location . 23
3.3.2 Actor . 24
3.3.3 Action . 24
3.3.4 Data . 24
3.3.5 Access Policy . 24
3.3.6 System Policy . 25
3.3.7 Analyser . 25
3.3.8 Helper . 25
3.3.9 Class Diagram . 26

3.4 Pseudo-Algorithm for Analysis 27
3.5 Pseudo-Algorithm for Policy Invalidation 28
3.6 Scenarios . 29

3.6.1 Scenario 1 . 30
3.6.2 Scenario 2 . 30
3.6.3 Scenario 3 . 33

4 Implementation 37
4.1 Tool . 37

4.1.1 Main . 38
4.1.2 Location . 38
4.1.3 Actor . 38
4.1.4 Action . 39
4.1.5 Data . 39
4.1.6 AccessPolicy . 40
4.1.7 SystemPolicy . 40
4.1.8 Helper . 40
4.1.9 Analyser . 40

4.2 Modelling Language Grammar 42
4.2.1 Locations . 43
4.2.2 Edges . 44
4.2.3 Actors . 45
4.2.4 Data . 45
4.2.5 System Policies . 46
4.2.6 Access Policies . 47
4.2.7 Basic Rule Set . 48

5 Results 49
5.1 Scenario 1 . 49
5.2 Scenario 2 . 50
5.3 Scenario 3 . 52

CONTENTS vii

6 Discussion 55
6.1 Evaluation . 55

6.1.1 Scenarios . 55
6.1.2 The Tool . 56

6.2 The Tool in Practice . 57
6.3 Formalising Problems . 58
6.4 Future Work . 59

7 Conclusion 61

A Appendix 63
A.1 Using the Tool . 63
A.2 Modelling Language Grammar 64
A.3 Scenario 1 . 67

Bibliography 69

viii CONTENTS

List of Figures

3.1 Overview of the system . 18

3.2 Modelling Language Syntax . 22

3.3 Class Diagram for the Tool . 26

3.4 Scenario 1 . 31

3.5 Scenario 2 . 32

3.6 Scenario 3 . 34

x LIST OF FIGURES

List of Tables

5.1 Results for the actor U scenario 1 50

5.2 Results for the actor J scenario 1 51

5.3 Results for the actor U1 scenario 2 51

5.4 Results for the actor U2 scenario 2 52

5.5 Results for the actor U3 in scenario 2 52

5.6 Results for the actor U in scenario 3 53

xii LIST OF TABLES

Chapter 1

Introduction

As the structures in the world have grown more complex, be it physical or
virtual, the need for controlling this has grown along side it. The airline company
needs to ensure the safety of passengers and the robustness of the airplanes, just
like a large cooperation needs to safe-guard company secrets or high-value data.
But as the airplanes grow more complex, and the buildings grow taller, the
methods of control need to grow smarter, as the amount of permutations and
possible combinations increase dramatically.

This growth is especially noticed in the fields of Access Control, as the tech-
nology available for actors will cover a wider area of technology for each day
passed. Thinking about it in practical terms doesn’t make it more managable
- an office building with dozens of floors, thousands of employees , hundreds of
roles, hundreds of thousands of electronic devices... How can one enforce the
policies of protecting confidential data in scenes like this? Static analysis.

Static analysis is a method of examining a system without actually running
it. An example could be a computer programmer, examining his code without
actually executing. But by using static analysis, he can investigate the pattern of
his code, ensure that it behaves within the pre-determined boundaries and find
possible weaknesses in the structure. Thus, applying static analysis to larger
system models, be it buildings or networks, can prove to be very beneficial when
searching for possible security breaches, weak links or unintended behavior.

2 Introduction

So why is it relevant to search for these weak links in systems? Very often, an
intruder will have very limited knowledge of the system, limiting the impact. But
one must not forget the existence of insider attacks. An insider has numerous
advantages over intruders; he is more trusted, he has better access and his
knowledge of the system exceeds by far that of an intruder. This opens up
a whole new world of possibilities in terms of circumventing the security of a
system, and it is thus critical to measure and analyse these possibilities in order
to prepare and improve the systems.

You can get very far with the proper access control model, but at the end of the
day, you have to place your trust somewhere, and due to insider threats; this
choice is crucial and critical for the security of your system. This is where a
tool may come in handy; a tool for defining policies to test the validity of your
access policies, the amount of trust in your subjects, and the confidentiality of
crucial objects.

This inspired the project by yours truly, as this project concerns itself with
implementing and evaluating a tool for performing static analysis on system
models with the purpose of gaining knowledge about the involved actors and
their behavior, and ultimately try to invalidate pre-defined system policies. This
allows discovering weak links in system security, or marking actors possessing
disputed priviliges.

1.1 Project Description

This project is inspired by the need for analysis in regards to access control,
intrusion detection and policy invalidation. The project concerns modelling
complete systems, referred to as system models, with locations, actors, data,
actions, access policies and system policies, and how this information can be
used to invalidate system policies. This type of analysis can be utilized to profile
certain scenarios based on the appertaining system policies; is it possible to
circumvent the intended behavior and act against the system policies, breaking
them? This is the main objective of the tool.

In order to define a language for describing the system models, a process calculus
will be utilized. This calculus is called acKlaim, and it is used to model real-
world systems, such as organisations, buildings or networks. The modelling
language used to describe the system models will be based on the languages
used in [CWPN] [CWP08] [CWP]. However, several changes has to be made
in order to tailor it for the current tool and appertaining policy invalidation.
acKlaim is explained in the Theory chapter, section 2.3 on page 11.

1.2 Goals 3

In order to build an interpreter for reading the input system models (also referred
to as scenarios in this project), we will utilize ANTLR. Since ANTLR yields a
framework for creating recognizers, interpreters, compilers and translators, it is
well-suited for the needs of this project [ANT]. ANTLR is described thoroughly
in the Theory chapter, section 2.4 on page 12.

We will be using ANTLRWorks as the platform for writing ANTLR grammars,
as it provides a grammar development environment for ANTLR v3 grammars.
ANTLRWorks combines an excellent grammar-aware editor with an interpreter
for prototyping, as well as a language-agnostic debugger for isolating grammar
errors [Bov].

The underlying structure responsible for maintaining the scenarios in datastruc-
tures, as well as the algorithms performing the analysis and policy invalidation,
will be programmed in Java on the Eclipse platform. Java was chosen due to
its simple syntax and good performance, as well as it rich standard library.

1.2 Goals

Here, the scope of this project will be underlined in terms of goals. These goals
are presented in the order of the project flow.

We will investigate and utilize the acKlaim calculus in order to formalise the
semantics of our system models. These semantics will later be used to create an
interpreter for system models.

In parallel with investigating acKlaim, we will create a number of system mod-
els and subsequently analyse them by hand. These system models, and the
manually-achieved solutions, will guide the rest of the project, as they state
what the analysis should yield.

When the calculus language is determined and the system models are in place,
we are ready to build our interpreter for system models in ANTLR. This in-
terpreter is created using ANTLRWorks platform and will follow the already-
developed system model semantics.

The next objective is to implement the tool performing the actual analysis and
policy invalidation of system models. Using the ANTLR interpreter, the tool
will read system models and fill them into appertaining data structures. Once
the system model data reside in the tool itself, it will perform the analysis,
collecting useful information about actors and their deeds.

4 Introduction

The actor results gathered during the analysis aim to describe what locations
and data the actor can reach, and under what restrictions. Using this informa-
tion, the tool will subsequently try to invalidate any defined system policy.

Then, based on the performance of the tool, we will consider the problems
and limitations of invalidating policies in system models. Furthermore, we will
discuss the benefits of formalising problems in terms of intrusion detection, as
well as explain how acKlaim and the developed techniques can be used for
modelling and analysing workflows.

1.3 Report Structure

Here follows the report structure.

• TheAbstract chapter will briefly cover the overall experience and findings
of the project.

• The Introduction chapter (chapter 1) will cover the basics of the project;
the motivation, the overall goals, and finally the report structure.

• The Backgorund chapter (chapter 2) will explain the aspects of access
control, insider threats, acKLAIM and ANTLR.

• The Design chapter (chapter 3) will describe how system models are to
be structured, as well as presenting the modelling language used to specify
these. This chapter will also describe how the tool was designed, covering
both the structure itself and the algorithms for performing analysis and
policy invalidation.

• The Implementation chapter (chapter 4) will cover how the design was
implemented, including practical implementation choices. This includes
both the modelling language grammar, as well as the policy invalidation
tool.

• The Results chapter (chapter 5) will comment on the results gathered
from the analysis and policy invalidation. This will include whether the
results actually reflected what was expected, or if the tool didn’t perform.

• The Discussion chapter (chapter 6) will discuss the experience gathered
from all phases in the project, as well as cover the results for implement-
ing policy invalidation for acKlaim. Furthermore, the tool itself and the
appertaining scenarios are evaluated. This chapter will also explain the
usefulness and future of this field of technology.

1.3 Report Structure 5

• The Conclusion chapter (chapter 7) will wrap things up; did we achieve
the goals for the project?; what did we learn?

6 Introduction

Chapter 2

Background

In this chapter, we will cover the theory necessary for understanding the crucial
aspects of the project. This includes an introduction to Access Control and
Policies, Insider Threats, acKlaim and ANTLR.

2.1 Access Control and Policies

The main purpose of access control is to control who can interact with a certain
resource. This type of control is something we see everyday; the lock to your
front door, the PIN-code in your local ATM, or your car keys. Access control
can be used to secure confidential, or in another way sensitive, information or
devices.

In the physical world, access control focuses on who is accessing, where is he
trying to go, and when is he going. A undisputed example of this is a simple
cipher-lock to an office building. A subject with the correct code may enter,
but despite this, the cipher-lock may be programmed to only allow entrance in
certain time spans.

In the virtual world of computers, access control covers a much wider field.

8 Background

Here, authorization, authentication and accountability are vital for ensuring
proper access control; authentication states which subject can enter or log-on
in a system, authorization determines what the subject are allowed to do, and
accountability identifies what actions the subject performed. Furthermore, one
should strive to the following approaches in protecting objects [FP]:

Check every access Even though a subject may gain access to an object,
this ma not be the case at every enquiry. In some cases, we may want to
prevent further access immediately after authorization. Thus, every access
should be checked.

Enforce least privilege The principle of least privilege states that a subject
should possess the smallest amount of objects necessary to perform his
tasks. As knowledge is power, allowing subjects to possess more vital in-
formation than needed will increase the negative impact of insider threats
or feeble-minded accidents.

Verify acceptable usage Allowing access is one thing, but allowing specific
actions is another. For example, a subject may be allowed to access a
computer, but he may not be allowed to change this system, only read
information. Thus, it is equally important to authorize the appertaining
actions as to authorize access.

Here follows some of the most recognized access control policies; Discretionary
Access Control (DAC), Mandatory Access Control (MAC) and Role-Based Ac-
cess Control (RBAC). Note that both MAC and RBAC are non-discretionary.

2.1.1 Discretionary Access Control

Discretionary access control, known as DAC, is an access policy restricting access
to files, or other objects, based on the identity of the subject and/or the groups
to which they belong [RG91]. DAC is discretionary in the way that it is applied
at your own discretion, i.e. with DAC, it’s your choice whether or not to give
away your data. For non-discretionary access control models such as MAC; this
is not an option. DAC does not only let you define which subject can access
your data, it also lets you specify what type of access is allowed. This is an
important feature, as you can allow a group of users to read a file but only allow
for the group leader to alter it.

In most systems, the following three basic types of access are supported [RG91]:

2.1 Access Control and Policies 9

Read Reads a file.

Write Change or replace a file.

Execute Execute a program file.

2.1.2 Mandatory Access Control

Mandatory Access Control, known as MAC, is an access policy for systems
processing sensitive data, where each subject (actors, users, etc.) and objects
(files, directories, sockets, etc.) are assigned a sensitivity label. For a subject,
this label represents the level of trust associated with this subject, meaning it
specifies his clearance. For an object, the label states what level of trust or
clearance a subject must own to interact with this object.

In MAC, all access decisions are made by the system [RG91], unlike in DAC,
where you, at your own discretion, can specify, who can share your files.

Labeling and MAC as a whole implement a multi-level security policy for han-
dling multiple information classifications at a number of different security levels
within a system. Despite the benefits of multi-level security systems, it may
yield some frustrations as well. For example, you may experience being able to
write a file, yet you can’t read it. This is due to MAC’s principle of write-up
and read-down [RG91], and it is explained in the rules for reading and writing:

Read In order to read an object, the subject’s sensitivity level must dominate
(equal to or higher) that of the object. This is seen as a read-down.
Furthermore, the subject may need to be part of certain categories to
access an object. Thus, despite having the appropriate sensitivity level,
you need to be in the relevant category as well.

Write In order to write an object, the object’s sensitivity level must dominate
(again, equal or higher) the subject’s sensitivity level. This rule seems
odd, since you can actually be too trusted to write to a file. The reason
is that one should avoid downgrading information - known as write-down.
A subject with maximum clearance could copy contents from an object
with maximum sensitivity level to another object with a lesser sensitivity
level - this would be a downgrade of the information. In order to avoid
this, only upgrades (write-up) of information is allowed.

Furthermore, when using MAC, controlling the imports of information from
other systems and export to other system is critical, as every subject and object

10 Background

have a properly maintained sensitivity label, such that sensitive information
remains well-protected.

2.1.3 Role-Based Access Control

In larger companies or institutions with many employees, it’s complicated to
treat each employee individually in terms of access control, as many of them
will have the same privileges. Role-Based Access Control (RBAC) addresses
this issue, as it lets us associate privileges with groups (aka. roles) [FP]. For
example, the group of administrators may have many privileges, whereas the
group of janitors might have significantly lesser privileges. Also, if a new janitor
joins the crew, all the system needs is to assign this janitor with the privileges
of the janitor group, and he is ready to interact with the system.

In RBAC, access in controlled at the system level, as opposed to DAC, where
actors are allowed to control access to their own resources. Even though RBAC
is non-discretionary, it handles permissions differently than the MAC; MAC
controls read and write actions based on the actor’s clearance or sensitivity
level, while RBAC controls collections of permissions that may include a simple
read or write operation, or more complex operations.

Three rules specify the nature of RBAC:

1. A subject can only execute an action, if he has selected or has been selected
a role.

2. A subject’s role must be authorized. Together with the first rule, this
ensures that subjects can only be associated with roles for which they are
authorized.

3. A subject can only perform an action if this transaction is authorized for
the role of the subject. Together with the first and second rule, this ensures
that subjects can only perform actions for which they are authorized.

2.2 Insider Threats

An insider threat is usually hacker (aka. cracker or black hat) with malicious
intent. The insider is an employee at some type of cooperation or institution,
where he has some form of clearance. What makes an insider dangerous is

2.3 acKlaim 11

the trust in him, which is given, as well as his motivation for sabotaging the
company from within.

The motivation of an insider come in many forms;

Revenge He may have been fired recently but still has clearance, and now he’s
looking for revenge.

Financial He is in the need of money, and his trust level in the company can
allow him to steal the funds he needs.

Competition He may be working for a competing company and is trying to
leak or steal company secrets.

Anarchism He has a desire to perform harmful and destructive actions towards
others.

The damage implications of the insider can vary; he can steal secret documents,
he can pour water in the servers, or he can inject viruses, worms or trojan
horses into office computers. The damage he can cause is directly proportional
to the amount of trust, which he possesses, as this yields more ways for him to
sabotage the company.

As opposed to an outsider, the insider usually has much better knowledge about
the internal system. Although an outsider is suspected to gain some amount of
knowledge about the target system, an insider will in most cases be superior in
this attribute. This also makes it very hard to protect against insider attacks.

To summarize; insiders have vast information about the target system, their
motivation may vary but is always destructive, and the cooperation of the target
system trusts them in various degrees. So how can you protect yourself from
them? The principle of least privilege is beneficial to follow in this case, as it
helps reduce the amount of trust given to any employee, insider or not. Said
in another way, having a secure internal and robust structure is one of the best
defences against insiders. You cannot directly counter-act the insiders, as you
do not know their true identity.

2.3 acKlaim

Process algebras are used to formalise systems. By formalising the semantics of
systems using process algebras, one can enable the use of tools and techniques
for forensic analysis of the systems.

12 Background

acKlaim is a process algebra, and it is a member of the Klaim family, designed
around the tuple space paradigm, where a system contains a set of distributed
nodes. These nodes interact through shared tuple spaces by reading and writing
tuples. Also inherited from the Klaim family, the acKlaim calculus possesses
three layers: nets, processes, and actions. While nets yield the overall structure
with processes and tuple spaces, processes perform actions [CWPN].

acKlaim is a variation of the µKlaim calculus, enhanced with access-control
primitives and equipped with a reference monitor semantics, ensuring compli-
ance with a system’s access-control policy [CWP08]. The reference monitor
semantics mentioned ensures that the semantics only performs actions that are
specifically allowed, based on the factors; type of action to be performed, iden-
tity of the actor performing the action, data in possession of the actor, and any
locations involved in the action. The addition of name-annoted processes allows
modelling actors moving in systems, which is a major difference to standard
Klaim calculi.

To summarize, these enhancements enables acKlaim to be used for static analy-
ses for computing approximations of the consequences of insider attacks [CWPN].

2.4 ANTLR

ANTLR (ANother Tool for Language Recognition) is a powerful and flexible
language tool with support for many popular programming languages, such
as C#, Java, C Python and Ruby. It provides a framework for constructing
recognizers, compilers, and translators from grammatical descriptions [ANT].
What is beneficial about ANTLR is that it automates and eases the construction
of language recognizers. This is what makes it attractive to use for this project -
we need a language recognizer for reading in system models, such that the data
can be interpreted for analysis and policy invalidation.

You will need to feed ANTLR with a formal grammar. From this grammar,
ANTLR creates a program with the purpose of recognizing input in regards to
the target language. Furthermore, by including code in the actual grammar,
the recognizer can be evolved to a more sophisticated interpreter.

ANTLR can also provide support for intermediate-form tree construction, tree
walking, and error- recovery and reporting.

2.4 ANTLR 13

2.4.1 In Practice

ANTLR will read in your grammar file and generate several source code files,
along with other auxiliary files. Most uses of ANTLR will generate either one
or both of the following tools [ANT]:

A Lexer reads an input character or byte stream, divides it into tokens using
the patterns specified, and generates a token stream as output.

A Parser reads a token stream (as the one generated by the Lexer), and
matches the phrases in your language wit the patterns earlier specified.

Under most circumstances, a Lexer and Parser are used together in series to
check the word-level and phrase-level structure of the input, hence ensuring
that the specified language is followed in the input. Then, they will create an
intermediate tree representation, like an Abstract Syntax Tree, and create the
final output using a Tree Parser to process the final tree representation. Simpler
language tools may skip the intermediate tree and build the actions or output
stage directly into the parser [ANT]

2.4.2 An Example

This sub-section will present and discuss a small ANTLR example [ANT]. In
listing 2.1 on page 13, you can see the entire grammar file.

Listing 2.1: ex

grammar SimpleCalc ;

tokens {
PLUS = '+ ' ;
MINUS = '− ' ;
MULT = ' ∗ ' ;
DIV = ' / ' ;

}

@members {
pub l i c s t a t i c void main (String [] args) throws Exception {

SimpleCalcLexer lex = new SimpleCalcLexer (new ANTLRFileStream (←↩
args [0])) ;

CommonTokenStream tokens = new CommonTokenStream (lex) ;

SimpleCalcParser parser = new SimpleCalcParser (tokens) ;

t ry {
parser . expr () ;

14 Background

} catch (RecognitionException e) {
e . printStackTrace () ;

}
}

}

/∗−−
∗ PARSER RULES
∗−−∗/

expr : term ((PLUS | MINUS) term) ∗ ;

term : factor ((MULT | DIV) factor) ∗ ;

factor : NUMBER ;

/∗−−
∗ LEXER RULES
∗−−∗/

NUMBER : (DIGIT)+ ;

WHITESPACE : (' \ t ' | ' ' | ' \ r ' | ' \n ' | ' \u000C ')+ { $channel = ←↩
HIDDEN ; } ;

fragment DIGIT : ' 0 ' . . ' 9 ' ;

The first line simply states the name of the grammar file. Normally, you would
also define the target programming language here, but as the default language
is Java, we need not change that.

Below, the tokens are being declared. These tokens represent the relation
between key-words and their textual representation. Thus, a ’+’ will be related
to the PLUS, and so forth.

In the @members, a main method has been added. This method will create the
lexer, the tokens, and the parser. Finally, it will call the expr defined in the
grammar file.

Below the mainmethod, you will find the parser rules. These rules are a recursive
way of handling arithmetic expressions. expr states that an expr may consist
of two terms, with either an PLUS or MINUS in between. The ’*’ in the end states
that this can occur any number of times. The term defines itself as two factors,
with either a MULT or DIV in between. The term too can occur any number of
times. Finally, factor is presented as a NUMBER.

In the lexer rules, a NUMBER is one or more DIGITs. These DIGITs are represented
by a number between ’0’ and ’9’.

The WHITESPACE declares how the grammar will handle whitespaces. Without
this, we will receive complaints from the program about spaces, tabs, returns

2.4 ANTLR 15

and similar. But it’s not enough to simply define the WHITESPACE, as the tool
will still recognize them in the input. We have to hide it from the parser. This
is done by adding the $channel flag as HIDDEN. The addition of this flag moves
the WHITESPACEs from the default channel to the hidden channel, letting the
parser ignore these occurrences.

16 Background

Chapter 3

Design

In this chapter, we shall cover the system model design and the modelling lan-
guage, which later scenarios are to follow. Subsequently, we present the design
of the tool, including an UML diagram to show how the tool components shall
interact. Then, the design of the algorithms for analysis and policy invalidation
is explained, before finally describing the three scenarios that are to be fed into
the tool.

Before all this, however, we present a figure of the entire system in order to give
you, as the reader, an understanding of how all the different components, files
and programs interact. This overview can be viewed in figure 3.1 on page 18.

As figure 3.1 on page 18 shows, the grammar is fed to ANTLRWorks, which
returns an Lexer and a Parser. Using this output from ANTLRWorks, the
policy invalidation tool reads in a scenario and performs the analysis and policy
invalidation, before finally returning the result.

3.1 System Model Design

This section we introduce the systems, onto which we are applying our model.
Here, we touch upon each component; what are their functions and how do they

18 Design

Figure 3.1: Overview of the system

work? This view on system models are inspired by An extensible analysable
system model [CWP08].

We will now look at each of the following components, and how they are to
interact with each other in a system model:

• Locations

• Edges

• Actors

• Actions

• Data

• Access Policy

• System Policy

The design of these components shall guide how they are designed in accordance
to the tool. The tool is described in section 3.3 on page 23.

3.1.1 Locations and Edges

The most important components of the system model are the locations. The
locations represent the actual rooms in a system model, be it a janitor’s closet

3.1 System Model Design 19

or a server room. A location can be seen as a node in a graph, where the
actor can move to and from. A location contains its own name, a list of access
policies and a domain name. The domain name is to be used to classify a
collection of locations. For instance, computer locations may belong to the
virtual domain, while other locations may be a part of the office-, customer -,
or executive domain. Apart from rooms, a location can also represent a door,
as this may also contain a list of access policies.

Every system model should contain a location labelled Outside. This location
node will represent the world outside of the system itself, and it simplifies mod-
elling threats coming from the outside.

If a location is seen as a node in a graph, then the edges can be viewed as the
directed edges in this graph, meaning they connect locations in a system model.
Thus, actors, with the privileges of being able to move to a target location, can
move from the original location to the target location, if there exists an edge
between the original- and target location.

It’s important to note that any movement from a building domain into a virtual
domain (fx from the server room to the actual server) is one-way, meaning
there should be no returning edges. The reason is that the system should only
allow for actors to enter the virtual domain, and move around in the shape of a
process, but it should not allow for this process to become part of the “physical”
realm again. For instance, if an actor interacts with PC1 in the virtual domain,
there’s no harm in allowing him to return to the room from where he came, but
if he moves through PC1 to PC2 as a process, he should not be allowed to move
from PC2 to its originating location, as this would allow actors to actually move
through wires and circumvent access policies.

3.1.2 Actor

An actor is a core component of the system model. Its goal is to simulate
the movement and behavior of certain individuals or roles. An actor should
possess a name, as well as a starting location. From this starting location, the
actor will move throughout the system model, visiting all possible locations
and performing all possible actions. These actions may differ in reality, but in
a system model, it may for example involve picking up certain data. For the
purpose of analysis, an actor should also keep track of what locations he visits,
what data he picks up, or what restrictions he passes through access policies.

20 Design

3.1.3 Action

An action incarnates an entity that an actor can perform to change his own
state or a state of an object near him. An action may be to pick up (read)
a document in an office, evaluate a computer system, or move to a adjacent
location. The collection of available actions is as follows:

• Input

• Output

• Evaluate

• Read

• Move

The Move action will allow an actor to move from this location to appertaining
exit locations, if the actor can pass their access policies. Locations in the virtual
domain may also yield the Move action for actors, allowing them to move from
one virtual location to another as a process.

The Read action lets an actor read a piece of data, in case the data contains
one or more access policies.

3.1.4 Data

A data object is seen as a container for information. This information can differ
in its form, be it an actual document of company secrets, a physical key used to
unlock the janitor’s, or a little note with the access code of a careless employee
on it. Data can reside at a location or with an actor.

But data are not necessarily available for an actor, just because the actor can
reach it. Thus, data may own a list of access policies, which define what actors
are able to perform which actions on this piece of data.

3.1.5 Access Policy

An access policy is a rule. It states an accessor and appertaining actions, which
the accessor are allowed to perform. An access policy can reside with any kind
of object in the need of access control, be it a location or data.

3.2 Modelling Language 21

For example, an access policy may state that only the administrator is allowed
to venture on, or only someone in possession of the janitor’s key can pass, or
only the user ’Carl’ is allowed to read this document. Furthermore, if data is
situated in a safe, its access policies can state that only actors possessing the
data object that is the right combination can interact with it.

3.1.6 System Policy

Like with the access policies, a system policy can be seen as a rule, yet its
implications differ dramatically. While the purpose of an access policy was to
apply access control, the purpose of a system policy is to apply after-the-math
policy invalidation. Said in another way, system policies are the type of
policies that this tool aims to invalidate to yield useful information about
insider threats.

A system policy is simple in nature; it contains the name of the accesser and
the name of the placement. Combining this results in a policy stating:

OBJECT must not be at PLACEMENT

The object can point to either data or an actor, while the placement may de-
scribe either a location or an actor. Despite this, not all combinations should
be allowed - this is explained in section 3.2 on page 21.

3.2 Modelling Language

This section cover the Modelling Language used. As noted in the Introduction
chapter, 1 on page 1, this language is inspired from previous intrusion detection
projects [CWP08] [CWPN], and it is based on acKlaim. Its syntax is based on
the actual system model design, which is described in section 3.1 on page 17.
The syntax of this language can be seen in figure 3.2 on page 22.

The system model, or scenario, consists of locations, edges, actors, data and
system policies. A location is represented by a location name, a list of access
policies of that location, and a domain name. An access policy contains an
accesser name and a list of appertaining actions. An action can be any of the
four following actions;

22 Design

Scenario ::= locations : {Locations}
edges : {Edges}
actors : {Actors}
data : {Data}
systemPolicies : {SystemPolicies}

Locations ::= Location ∗
Location ::= LocationName{AccessPolicies}(DomainName);

AccessPolicies ::= AccessPolicy ∗
AccessPolicy ::= AccesserName : Actions;

Actions ::= Action ∗
Action ::= i

|o
|e
|r
|m

Edges ::= Edge ∗
Edge ::= LocationName− > LocationNames;

Actors ::= Actor ∗
Actor ::= ActorName@StartLocationName;

Data ::= DataItem ∗
DataItem ::= DataName{DataPolicies}?@ActorName;

|DataName{DataPolicies}?@LocationName;
DataPolicies ::= AccessPolicy ∗

SystemPolicies ::= SystemPolicy ∗
SystemPolicy ::= DataName!@ActorName;

|DataName!@LocationName;
|ActorName!@LocationName;

Figure 3.2: Modelling Language Syntax

3.3 Policy Invalidation Tool Design 23

i Input

o Output

e Evaluate

r Read

m Move

An edge contains a location name and a comma-seperated list of location names,
defining all the exits of this location, while an Actor contains an actor name and
the name of the starting location. A Data item owns a name, possibly a list of
data policies, and the name of its placement (an actor or a location). If data
does not contain any data policies, it means that anyone can manipulate with
the data item.

The basic form of a system policy is an object name and a placement name. In
reality, this can construct three valid combinations:

• A data name and an actor name

• A data name and a location name

• An actor name and a location name

3.3 Policy Invalidation Tool Design

Here, we explain how the tool itself was designed to match the system model
design, covered in section 3.1 on page 17. We will also present a class diagram
of the tool as a showcase of the different classes to be implemented, and how
they should interact.

3.3.1 Location

A location should, beside its name and domain name, contain a list of exit
locations. When an actor visits a location, he will thus be able to view its exit
locations and investigate whether he can move to any of them. An actor should
also be aware of any access policies at this location, as this will allow him to
check his rights at this location; am I allowed to move from this location, or am
I allowed to read information at this location? Finally, a location should present
an actor of what data are available.

24 Design

3.3.2 Actor

Basic attributes of an actor include his name and his starting location. But
an actor also needs to keep track of various analysis results. His owned data
contains the data in possession when entering the system mode, while known
data consists of data discovered during the scenario. A list of locations will
incarnate what locations the actor can reach in the scenario, and the actor will
also keep track of the restrictions of reaching his reachable locations and the
restrictions for reaching and picking up known data.

3.3.3 Action

An action instantiates what an actor can perform. The type of action should
vary from a pre-defined set of available actions, as the ones mentioned in section
3.1.3 on page 20.

3.3.4 Data

Every data component should have a name and a list of access policies. These
access policies define the restrictions of interacting with the data. An actor
should be able to ask a piece of data, if he is allowed to read it; if his name
matches an accessor in a access policy, or if he possesses the necessary data
(i.e. a key or code). If a data component doesn’t contain any access policies,
everybody can interact with it.

3.3.5 Access Policy

An access policy should follow a very simple design while offering the necessary
functionality, as stated in its system model design, section 3.1.5 on page 20. An
access policy contain an accessor, pointing either to an actor name or a specific
data item, allowing access. The accessor name is paired up with a list of allowed
actions, should the accessor be confirmed. An actor should be able to ask an
access policy whether everybody can pass, i.e. the accessor matches the ANY
actor.

3.3 Policy Invalidation Tool Design 25

3.3.6 System Policy

The system policy in the tool closely follow the design of a system policy in
system models, section 3.1.6 on page 21. It should have an object name and a
placement name, where the object name can refer to an actor or data, and the
placement name can refer to a location or an actor.

In the tool, system policies are per nature negative, meaning when a system
policy is defined with an object name and placement name, it will always state
that the object must not be at the placement. The reason is that it reduces the
complexity of system policies greatly, and extending the system policy design
with a true/false flag may still be possible.

3.3.7 Analyser

The main purpose for the analyser is to contain the algorithms for performing
system model analysis and policy invalidation. Thee algorithms are covered
below in section 3.4 on page 27.

Aside from containing these algorithms, the analyser shall have the actual sys-
tem model in the tool’s data structures; a collection of locations, a collection of
actors and a collection of system policies. These data structures yield all the
information needed to perform the system model analysis and policy invalida-
tion.

3.3.8 Helper

The purpose of the helper is to, as the name implies, assist the analyser. The
helper will contain pre-defined expressions, determining how to recognise the
ANY actor. It will also have the key-words for identifying the available domain
names, in regards to locations.

The helper can easily be extended with further functionality or key-word infor-
mation, in parallel with the tool itself being improved or extended.

26 Design

3.3.9 Class Diagram

In this subsection, we present a class diagram of the tool’s structure. The
purpose is to show which classes utilizes each other. The class diagram can be
seen in figure 3.3 on page 26.

Figure 3.3: Class Diagram for the Tool

The class diagram shown in figure 3.3 on page 26 presents the associations
between different classes in the tool. The numbers situated on the edges explain
the quantitative relationship between the source- and target class.

The Analyser can contain zero or more SystemPolicys, while one or more
Locations or Actors are needed for a proper scenario. An Actor should be as-
sociated with one or more Locations, but not necessarily any data. A Location
may contain any amount of Data and AcccessPolicys, while an AccessPolicy
should always possess on or more Actions.

3.4 Pseudo-Algorithm for Analysis 27

3.4 Pseudo-Algorithm for Analysis

This section contains the pseudo algorithm for the analysis and the appertaining
thoughts to its nature, behavior and complexity. The pseudo-algorithm can be
viewed in listing 3.1 on page 27.

Listing 3.1: Pseudo-algorithm for performing system model analysis

Stack<Location> stack ;

Restrictions currenRestrictions ;

Actor currentActor ;
Location currentLoc ;

f o r each actor a
Set currentActor to a ;
Push the starting location of currentActor to stack ;
Add the starting location of currentActor to his list of reachable←↩

locations

whi le (stack is not empty)
Set currentLoc to the latest entry in the stack (pop it)
Set currentRestrictions to that of currentLoc ;

i f (currentLoc has any restrictions)
Add restrictions to currentRestrictions ;

i f (currentLoc has any data)
i f (currentActor has permission to interact with the data)
Set restriction of data to currentRestrictions ;
currentActor picks up data ;

i f (currentActor has gained new knowledge)
Push all his reachable locations to the stack ;

i f (currentActor has permission to move from currentLoc)
f o r each exit location in currentLoc
i f (currentActor can reach exit location)

Set restrictions of exit location to currentRestrictions ;
Push exit location to stack ;
Add exit location to reachable locations of currentActor ;

The algorithm iterates through each actor. For each actor, set him to currentAc-
tor and add his starting location to the stack, as well to his list of reachable
locations. From here on, it continues to pop locations from the stack and onto
the currentLoc, while the stack is not empty. For each iteration in the while-
loop, it:

• Sets currentLoc to the popped location

• Sets currentRestrictions to those of currentLoc

28 Design

• If currentLoc has any restrictions add these to currentRestrictions

• If currentLoc has any data, try to pick them up. If this succeeds, data
should inherit the currentRestrictions.

• If currentActor has gained new knowledge, push all his reachable locations
to the stack

• If currentActor has permission to move, iterate through each exit of cur-
rentLoc. If the currentActor can move to any of these, push it to the stack,
as well as adding it to the reachable locations of currentActor.

The way this pseudo-algorithm moves is quite beneficial for simplicity. Every
location is only visited once by the actor, unless the actor has learned new
knowledge (i.e. data). The reason for pushing all reachable locations to the
stack again, if the actor gains new knowledge, is to allow him to try and put
this new knowledge into usage. The actor might have got a hold on the key,
which he can use to open up the server room. Thus, by re-pushing all reachable
locations to the stack in this case, the order of which rooms the actor visits or
which data he picks up is not crucial, as he will eventually visit all locations
again, if he picks up new data.

The pseudo-algorithm in 3.1 on page 27 also confirms what kind of data, we are
gathering as results. The actor will possess a list of reachable locations. The
restrictions added these location tells what data are needed for the actor to reach
and enter this location. The restrictions of data states what data are needed
to reach and pick up this data. All these recorded results are actor-specific, as
actors shall have individual data and thus rights. The user may reach the server
room using different data than the janitor.

3.5 Pseudo-Algorithm for Policy Invalidation

This section presents the pseudo algorithm for the policy invalidation. This
section shall also house the thoughts behind the design of this algorithm. The
pseudo-algorithm can be viewed in listing 3.2 on page 28.

Listing 3.2: Pseudo-algorithm for performing policy invalidation

f o r each system policy sysPol
i f the sysPol . ObjectName is an Actor a
//By po l i c y ru l e s , the PlacementName i s then a l o c a t i o n
i f a . reachableLocations contains PlacementName

POLICY INVALIDATED ;

3.6 Scenarios 29

e l s e //By po l i c y ru l e s , ObjectName matches Data d
i f PlacementName matches Actor a

i f a . knowsData (d)
POLICY INVALIDATED ;

e l s e i f PlacementName matches Location l
f o r each actor a
i f a . knowsData (d) && a . hasReachable (l)

POLICY INVALIDATED ;

The pseudo-algorithm iterates through each system policy in the system model.
Then, using if-conditions, it checks the nature of the system policy and looks
for any breaches of the system policy:

• If the object name matches an actor

– By policy rules, the placement will match a location

– If the actor can reach the location, the policy is invalidated

• Else, by policy rules, the object name matches a data name

– If the placement name matches an actor

∗ If the actor knows the data, the policy is invalidated

– Else if the placement name matches a location

∗ For each actor
· If the actor knows the data and can reach the location, the
policy is invalidated

Due to the design of actors, it is trivial to look up his list of reachable locations.
Thus, if the object name is an actor, the algorithm looks through the actors
reachable locations for the location with the placement name. Likewise, if the
accessor does not match an actor, policy rules dictate that the object is a data
component. From there on, it’s easy to check whether the placement actor knows
this data, or if any actor both knows the data and can reach the placement
location.

3.6 Scenarios

Based on the model design (section 3.1 on page 17) and modelling language
(section 3.2 on page 21), we will now present three different system models,
also referred to as scenarios. These scenarios help define what we expect from

30 Design

the implemented solution. Each of the scenarios represent a distinct situation
of access control conflicts, which the implemented solution should be able to
handle. While we discuss and analyse each scenario here, the real scenario text
files can be viewed in the appendix, section A.3 on page 67.

In the scenarios, access policies are in black boxes, data objects are in blue
boxes, and system policies are in read boxes.

3.6.1 Scenario 1

The first scenario is adopted fromAn extensible analysable system model [CWP08].
This was utilized, since it yields a case with a broad scope of both opportunities
and several kinds of actors. This scenario was altered due to the scope of the
tool, and it doesn’t support logging or locations with special actions available
(printers or similar). Scenario 1 can be viewed in figure 3.4 on page 31.

In scenario 1, a user U and a janitor J starts in the Out node. While U possesses
a the code code_U, the janitor has both code_J and key_J. The user can, using
his code_U, reach both Svr and Usr, while the janitor, using his code_J and
key_J, can reach both Svr and Jan. However, the user can also interact with
PC 1 and 2, and even pick up the secret_file in PC2.

The system policies in this scenario simulate a company with concern of the
secret_file, i.e. it must not exit the building or fall into the wrong hands. Thus,
two system policies are defined; one states that the secret_file must not reach
Out, and the other states that the janitor must not be in possession of the
secret_file. While the janitor cannot get a hold on the secret_file, the user can,
and he is also able to carry it to the Out node, breaking the system policy!
But “oh no” is not the correct response to this, as the purpose of this tool is to
actually invalidate policies and yield beneficial information about the restrictions
appended to the actors, as well as any data. To summarize, the user will break
a policy by carrying the secret_file to the Out node, but it only proves him to
be a trusted, or in some perspective the weakest, link, as the integrity of the
secret_file stands or falls with his reliability.

3.6.2 Scenario 2

The second scenario was created with the motive of showing how the tool be-
haves when access policies in the virtual domain are crucial for invalidating a
policy or not. Scenario 2 can be seen in figure 3.5 on page 32.

3.6 Scenarios 31

Figure 3.4: Scenario 1

32 Design

Figure 3.5: Scenario 2

3.6 Scenarios 33

The thought behind scenario 2 is that while the actor U3 may have direct access
to the server, other users may be able to access it through virtual locations,
bypassing the server room’s access control, and thus relying solely on the access
control of the server itself. The actors U1 and U2 have each their own PC,
which is linked to the Server. Yet, only U1 is allowed to access the server of
the two.

This scenario simulates how a company may have changed the physical access
policies but have forgotten to alter the virtual access policies as well, allowing
an actor to access the Server. In reality, this could’ve been a demotion of
an administrator, who then could access the server and sabotage it as an act
of revenge. The system policies only look for actors beside the administrator
(U3), to access the server. This scenario will invalidate the policy stating that
U1 must not be at the Server. Although U2 ’s PC is linked with the Server, he
is missing the necessary rights to access it and can thus be ruled out as a threat.

3.6.3 Scenario 3

The third scenario was created to show of a more complex twist; namely how an
actor can sequentially gain more and more new knowledge, which finally allows
him to break a system policy. Scenario 3 can be viewed in figure 3.6 on page
34.

Scenario 3 offers a case with only one actor; U, yet several branches demanding
for different codes. The motivation behind this scenario is to show how the tool
can handle how the state of an actor changes, when he picks up new data. The
system policy in this scenario states that the actor U must not reach the storage
room Sto. That system policy can be broken, but only if U picks up both the
code_B and the code_C key, as both of these are needed to reach Sto. Because
of this, scenario 3 also yields a perfect example of how the tool can handle data
restrictions, as the flow of breaking the system policy will be along the lines of:

• U uses facial-recognition to enter the hall.

• U uses code_A to enter USR and picks up code_B.

• U uses code_B to enter Office and picks up code_C.

• U enters Svr using code_B.

• U moves to Sto using code_C -> system policy invalidated.

34 Design

Figure 3.6: Scenario 3

3.6 Scenarios 35

This scenario presents a case, where a company may be relying on spreading out
crucial information in order to increase security of the storage facility. Despite
this tactic, the tool can point out how an actor can gain access to the necessary
keys and enter the forbidden storage room.

36 Design

Chapter 4

Implementation

This chapter contains the implementation. Here, we will cover the implemen-
tation of the tool for analysis and policy invalidation. Subsequently, the imple-
mentation of the grammar for creating a system model interpreter using ANTLR
will be explained.

Please note that in this chapter and onwards, any methods or classes from
the tool are written with typewriter, while any method or entity from the
modelling language grammar is written with italic.

4.1 Tool

In this section, we will explain how the tool was implemented in Java. This
section will not contain any code snippets, but investigating the code in par-
allel may yield a better understanding, if need be. Each class will be covered,
including note-worthy methods.

38 Implementation

4.1.1 Main

In the Main class, we use the Lexer and Parser generated by ANTLRWorks to
read in the input scenario and create the Analyser. Once the Analyser has
been created, we call its public methods:

analyze performs the scenario analysis.

policyInvalidation checks whether any SystemPolicy has been invalidated.

printActorResults prints the results gathered for each Actor.

If getting the Analyser, or any of the above-mentioned public methods, fails,
we print the caught exception.

4.1.2 Location

A location keeps track of its name and domain by two String fields. It has an
ArrayList<Location> to contain any exit locations, to which an visiting Actor
may try to move to. It also possesses its own HashSet<AccessPolicy>, which
is used by the Location when an Actor asks for permission to move to here.
Finally, an ArrayList<Data> incarnates the Location’s available data.

One public method, boolean actorCanAccess, checks whether an input Actor
should be allowed to reach this Location. For starters, if the Location has no
AccessPolicys, it simply allows him to pass. If any AccessPolicys are present,
it iterates through them, checking for any case of allowance.

Another public method, AccessPolicy getActorAccess, fetches the AccessPolicy,
which allows an input Actor to pass. If more than one AccessPolicy may allow
access, the first one encountered by the iterator is returned.

These methods will allow an Actor to investigate, and if possible, get the
AccessPolicy, which allows him to access. This AccessPolicy is needed by
the Actor, since it will be added to his restriction results.

4.1.3 Actor

An Actor contain numerous associations with other classes, as it not only must
maintain the needed information to iterate through a scenario, but it should

4.1 Tool 39

also keep track of its own results.

The Actor possesses a name and the name of his starting location, both rep-
resented by a String. While the ArrayList<Data> knownData contains the
Data learned during the scenario iteration, the ArrayList<Data> ownedData
contains the Data, which the Actor starts with. An ArrayList<Location>
keeps track of any visited Location. This is later shown as a result, but it may
also be used by the tool, if the Actor has learned new knowledge and needs
to back-track to previously-visited Locations. Finally, two HashMap<String,
ArrayList<String» incarnate the Data restrictions and the Location restric-
tions, which tell what restrictions the Actor has passed to reach a Location or
reach and interact with Data.

The public method void setLocationRestrictions(String locationName,
ArrayList<String> restrictions) is an important method, as it will add the
Actor’s current restrictions to the appertaining current Location in locationRestrictions.
Together with the reachableLocations, it will ultimately yield a list over all
the Locations reachable, as well as the constraints of getting there.

Another public method, pickUpData(Data data, ArrayList<String> restrictions),
is used by the Actor to pick up new Data. It adds the Data to knownData, and
sets its corresponding restriction in the proper hash map: dataRestrictions.

4.1.4 Action

The simple Action class contains a single action, which may be any of the
defined enum Actions {READ, EVAL, IN, OUT, MOVE}. For each of these, it
possesses a static constructor.

4.1.5 Data

The Data class has a name, represented by a String, and a HashSet<AccessPolicy>
to represents its access policies.

It contains the public method boolean actorCanReadData(String actorName),
which is used by Actors in the Analyser to ask whether he can interact with this
Data component or not. If the method has no AccessPolicys, he is allowed ac-
cess right away. If it does, a while loop will iterate through each AccessPolicy,
until one letting the Actor pass is met. If none matches the criteria, the Actor
will be denied interaction with the Data.

40 Implementation

4.1.6 AccessPolicy

An AccessPolicy uses a String to represent the allowed accesser name, and a
HashSet<Action> as the set of Actions.

The public method boolean allCanAccess checks whether the accesser name
equals the anyActor, and that the set of actions contains the Move Action. If
both these hold true, all Actors are allowed to access.

The allCanAccessmethod utilizes another public method; containsMoveAction.
This method is used to check for the occurrence of the Move Action in the set
of actions, and it is used not only by the allCanAccess method, but also by
the Analyser, where it functions as a flag for whether an Actor can move from
a Location or not.

4.1.7 SystemPolicy

The SystemPolicy class only contains two String fields; one for the object
name and one for the placement name. These fields are used to identify one of
the valid combinations presented in the design chapter, section 3.2 on page 21.

Having these fields as Strings makes it painless to identify the nature of the
SystemPolicy, as one only needs to match the object- and placement names
with the corresponding Actor-, Data-, or Location names.

4.1.8 Helper

The Helper class assists the Analyser by containing and offering methods for
returning three String identifiers. These identifiers include the anyActor, the
building and the virtual. While the first is used in an AccessPolicy, when
all Actors are allowed to pass, the latter two denote possible domain names for
a Location.

4.1.9 Analyser

The Analyser is where it all goes down, as this contains all the data structures
representing the input scenario, as well as the algorithms for performing the

4.1 Tool 41

analysis and policy invalidation. The behavior of these algorithms are explained
in the design chapter, section 3.4 on page 27.

The Analyser has the following fields; a HashMap<String, Location> locations
for the scenario locations, an ArrayList<Actor> actors for the active actors,
and an ArrayList<SystemPolicy> systemPolicies for the system policies to
be trialled.

The public analyze method performs the system model analysis. It iterates
through the actors and performs the appertaining analysis. During this analy-
sis, the locations hash map is used for fetching any Location given its String
name, as this is the key of the hash map. A Stack<Location> stack is used
to keep track of the Locations to visit. Thus, whenever an Actor encounters
a not-before-visited Location, which he is allowed to reach, it will be added to
the stack. When reaching a Location, the Actor will inherit the restrictions of
that Location. Whenever the Actor finds a Location, which he can reach, it is
added to the stack and inherits the Actor’s current restrictions. As the current
restrictions are based on the AccessPolicys passed, at the end of the analysis
each Location will possess the restrictions for the current Actor to reach it.
Likewise with Data; these objects inherit the current restrictions of an Actor
when picked up, and will ultimately yield the restrictions necessary for reach-
ing and picking the Data up. These restrictions, together with the reachable
locations, are the results gathered from the analyze method.

The public method policyInvalidation iterates through each SystemPolicy,
using a for-loop, and uses if conditions to identify the nature of the SystemPolicy.
It looks up the object name and placement name in the locations- and actors
datastructures to find a match, and when identified, tries to invalidate the pol-
icy:

• If a Actor !@ Location is encountered, it loops through the reachable
Locations of the Actor. If the corresponding Location is met, the
SystemPolicy has been invalidated.

• If a Data !@ Actor is met, it iterates trying to find the Actor with
the matching name, who also knows the Data. If this is fulfilled, the
SystemPolicy has been invalidated.

• If a Data !@ Location is met, the algorithm looks for Actors in possession
of the Data. If any of these Actors can also reach the policy Location,
the SystemPolicy has been invalidated.

42 Implementation

4.2 Modelling Language Grammar

In this section, we will cover how the grammar file, used by ANTLR to cre-
ate a system model interpreter, was implemented. We will approach this by
segmenting the grammar into several bits and explain them individually. The
un-segmented grammar can be found in the appendix chapter, section A.2 on
page 64. The grammar file follows the language specified in the design chapter,
section 3.2 on page 22.

Listing 4.1: Grammar file setuup

1 grammar PolicyInval ;

3 @header {
package output ;

5 import java . util . HashMap ;
import java . util . List ;

7 import java . util . ArrayList ;
import java . util . Set ;

9 import java . util . HashSet ;
import dom . ∗ ;

11 }

13 @lexer : : header
{

15 package output ;
}

17
@members

19 {
p r i va t e Analyser analyser ;

21 }

Listing 4.1 on page 42 shows the setup in the grammar file. Here, the name of
the grammar file itself is declared. Furthermore, the package name, imported
java data structures, and the tool’s data structure itself is imported. Finally,
the Analyser is declared as a private member.

Listing 4.2: Grammar file Analyser setup

1 getAnalyser returns [Analyser an] :
{

3 HashMap<String , Location> locations = new HashMap<String ,
Location >() ;

5
List<Actor> actors = new ArrayList<Actor >() ;

7
List<SystemPolicy> systemPolicies = new

9 ArrayList<SystemPolicy >() ;
}

11
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

4.2 Modelling Language Grammar 43

13 // Intermediate methods are placed here
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 {
// Creates a new s p e c i f i c a t i o n ana ly s e r with input l o ca t i on s , ←↩

ac to r s and
17 // system p o l i c i e s

an = new Analyser (locations , actors , systemPolicies) ;
19 }

;

In listing 4.2 on page 42, the grammar method for retrieving the Analyser is
shown; getAnalyser returns [Analyser an]. Initially, it declares the data struc-
tures needed to create an Analyser, namely a HashMap<String, Location>
for locations, a List<Actor> for actors, and a List<SystemPolicy> for system-
Policies. Hereafter follows a series of operations to retrieve the information from
the input system model file. These operations are explained individually later
on. When all the system model data has been read into the data structures,
the Analyser is created. As the attribute of the getAnalyser method states,
it returns the Analyser after creating it.

Now follows the explanations of methods and supportive operations for retriev-
ing locations, edges, actors, data and system policies.

4.2.1 Locations

In the getAnalyser method, the operations in listing 4.3 on page 43 are used
to retrieve a Location and place it in the appertaining data structure. In this
code-snippet, we define a repeated process inside of the ’{’ and ’}’ brackets,
exceeding locations. For each process, we enter the location operation seen in
listing 4.4 on page 44. This is the actual code interpreting a line of an location.
It divides every single line according to the modelling language, creates a new
location, and returns it to the caller, being the getAnalyser method.

Listing 4.3: Retrieve a location and place in data structure

' l o c a t i o n s '
2 ' { '

(
4 l = location

{
6 locations . put (l . getName () , l) ;

}
8 ' ; '

) ∗
10 ' } '

44 Implementation

Listing 4.4: Create a location from line contents

location returns [Location l] : // a l o c a t i o n
2 LOCNAME = NAME

(' { '
4 policies = accessPolicies

' } ')
6 ' ('

DOMAINNAME = NAME
8 ') '

{
10 // A l o c a t i o n i s c r eated with ID , s e t o f a t t r i b u t e s and s e t o f ←↩

p o l i c i e s
l = new Location ($LOCNAME . text , policies , $DOMAINNAME . text) ;

12 }
;

4.2.2 Edges

For interpreting edges, the getAnalyser first divides the line by the occurrence
of ’->’; the name before this is the target location, and the list of names after
that yield its exit locations. For each exit location, it fetches the actual location
from the data structure and adds it to the target location’s list of exit locations.
To manipulate with the exit locations, they are processed by the exitLocations.
This operation, viewable in listing 4.6 on page 44, interprets the exit locations
as a comma-seperated collection and adds each exit location to a list. This list
is returned to level of getAnalyser.

Listing 4.5: Add exits to locations

1 ' edges '
' { '

3 (
CURLOC = NAME

5 '−> '
exits = exitLocations

7 //Add e x i t s to the CURLOC
{

9 Location tempLoc ;
f o r (i n t i = 0 ; i < exits . size () ; i++)

11 {
tempLoc = locations . get (exits . get (i)) ;

13 locations . get ($CURLOC . text) . addExit (tempLoc) ;
}

15 }
' ; '

17) ∗
' } '

Listing 4.6: Create and return list of exit locations

4.2 Modelling Language Grammar 45

exitLocations returns [ArrayList<String> ex] :
2 {ex = new ArrayList<String >() ; }

firstLoc = NAME
4 {ex . add ($firstLoc . text) ; }

(
6 ' , '

otherLoc = NAME
8 {ex . add ($otherLoc . text) ; }

) ∗
10 ;

4.2.3 Actors

In listing 4.7 on page 45, it is presented how actors are read from file. For each
occurrence, it defines an Actor with a name and a starting location, and adds
him to the appertaining data structure.

Listing 4.7: Add actor to list of actors

' ac to r s '
2 ' { '

{ Actor a ; }
4 (

ACTORNAME = NAME
6 '@ '

STARTLOC = NAME
8

{
10 a = new Actor ($ACTORNAME . text , $STARTLOC . text) ;

actors . add (a) ;
12 }

' ; '
14) ∗

' } '

4.2.4 Data

Here we explain how data are interpreted from the input file. In listing 4.8
on page 45, it shows how data are processed by first identifying its name, and
then where it should reside. Since data can be placed at either a location or an
actor, we have to check for the occurrence of the DATALOCATION name in
either of these data structures. If we meet a match, we append the data to the
appropriate component.

Listing 4.8: Create data from line contents and place accordingly

46 Implementation

1 ' data '
' { '

3 { Data tempData ; }
(

5 DATANAME = NAME
(

7 ' { '
dataPolicies = accessPolicies

9 ' } '
) ?

11 { tempData = new Data ($DATANAME . text , dataPolicies) ; }
'@ '

13 DATALOCATION = NAME
{

15 // I f the Data i s p laced at a Locat ion
i f (locations . containsKey ($DATALOCATION . text))

17 {
locations . get ($DATALOCATION . text) . addData (tempData) ;

19 }
e l s e //Else , the data i s p laced at an Actor

21 {
f o r (i n t i = 0 ; i < actors . size () ; i++)

23 {

25 i f (actors . get (i) . getName () . equals ($DATALOCATION . text))
{

27
actors . get (i) . addOwnedData (tempData) ;

29 }
}

31 }
}

33 ' ; '
) ∗

35 ' } '

4.2.5 System Policies

In listing 4.9 on page 46, we see how a system policy is recognized as a sys-
temPolicy and added to the appropriate data structure. How the system policy
is actually interpreted from line contents is shown in listing 4.10 on page 47,
where each line is separated by ’ !@’, and the object name and placement name
is identified and used to create and return a system policy.

Listing 4.9: Add system policy to data structure

1 ' s y s t emPo l i c i e s '
' { '

3 (
sysPol = systemPolicy

5 {
systemPolicies . add (sysPol) ;

7 }
' ; '

4.2 Modelling Language Grammar 47

9) ∗
' } '

Listing 4.10: Create a system policy from line contents

systemPolicy returns [SystemPolicy sys] :
2 OBJECTNAME = NAME

' !@ '
4 PLACEMENTNAME = NAME

{ sys = new SystemPolicy ($OBJECTNAME . text , $PLACEMENTNAME . text) ; }
6 ;

4.2.6 Access Policies

Access policies are created both for locations (4.4 on page 44) and data objects
(4.8 on page 45). The methods for creating these access policies can be viewed
below in listing 4.11 on page 47. The flow works as follows;

accessPolicies creates a HashSet of one or more accessPolicys, and returns
it.

accessPolicy Divides the line contents into a name and a list of policyActions,
and creates a new AccessPolicy.

policyActions Identifies each action in a comma-seperated list

action Returns the appropriate Action.

Listing 4.11: Methods for creating and return a list of access policies

accessPolicies returns [HashSet<AccessPolicy> policies] :
2 { policies = new HashSet<AccessPolicy >() ; }

policy1=accessPolicy { policies . add ($policy1 . ap) ; }
4 (

policy_other = accessPolicy
6 { policies . add ($policy_other . ap) ; }

) ∗
8 ;

10 accessPolicy returns [AccessPolicy ap] :
ACCESSER = NAME ' : ' actions = policyActions ' ; '

12 {
ap = new AccessPolicy ($ACCESSER . text , actions) ;

14 }
;

16
policyActions returns [HashSet<Action> actionSet] :

48 Implementation

18 { actionSet = new HashSet<Action >() ; }
action1= action { actionSet . add ($action1 . act) ; }

20 (
' , '

22 action_other = action
{ actionSet . add ($action_other . act) ; }

24) ∗
;

26
action returns [Action act] :

28 ' i '
{ act = Action . in ; }

30 | ' o '
{ act = Action . out ; }

32 | 'm '
{ act = Action . move ; }

34 | ' e '
{ act = Action . eval ; }

36 | ' r '
{ act = Action . read ; }

38 ;

4.2.7 Basic Rule Set

We have defined the basic rule set in listing 4.12 on page 48. Here, we define
the following.

A NAME can contain any letter, as well as the underscore, the asterix or even
numbers.

An INT can be one or more of numbers between zero and nine.

Spaces, tabs, returns and newlines are all marked for the HIDDEN channel.
This way, they shall not be interpreted by the parser.

Listing 4.12: Basic Rule Set

NAME : (' a ' . . ' z ' | 'A ' . . 'Z ' | '_ ' | ' ∗ ') (' a ' . . ' z ' | 'A ' . . 'Z ' | ' 0 ' . . ' 9 ' | '_←↩
' | ' ∗ ') ∗ ;

2
INT : ' 0 ' . . ' 9 '+ ;

4
WS : (' ' | ' \ t ' | ' \ r ' | ' \n ')+ { $channel=HIDDEN ; } ;

Chapter 5

Results

In this chapter, we will cover the results gathered from the analysis and policy
invalidation done by the tool on three different scenarios. These system models
are explained in the design chapter, section 3.6 on page 29. For each of these
scenarios, we will document and evaluate the results; is it what we expected?

5.1 Scenario 1

The scenario 1 results for the user, U, can be seen in table 5.1 on page 50. We see
that no restrictions for reaching the outside location exist. This makes sense, as
it is the user’s starting location. Entering and passing the entry node requires
facial recognition, meaning the user’s own identity, U, is set as a restriction.
Any actor can reach the hall, adding no new restrictions. This holds for the exit
location as well, as U is already in the restrictions. Moving to either the svr
or usr will cross a lock requiring the code_U, which is added to the restrictions
for any branches of this. As the secret_file is situated on the pc2, reaching
and picking this up will have the restriction [U, code_U]. In addition to these
results, the user has also broken a policy, as shown in listing 5.1 on page 50.

These results yield no surprise for us, as we expect the U to invalidate this
policy. Furthermore, the restrictions for each location harmonize with the access

50 Results

policies in the scenario - the actor correctly gains the proper restrictions, when
passing through locks.

Listing 5.1: U invalidated policy

grammar PolicyInval ;
Policy with ;
Object name : secret \ _file
Placement name : outside
has been proven invalid by actor U

Locations Restrictions
outside null
entry U
hall U

lock_usr U, code_U
lock_svr U, code_U

exit U
svr U, code_U
pc2 U, code_U
usr U, code_U
pc1 U, code_U

Known Data Restrictions
secret_file U, code_U

Table 5.1: Results for the actor U scenario 1

The janitor ’s results for scenario 1 can be viewed in 5.2 on page 51. As with the
user, we can see that the janitor J correctly inherits restrictions when moving
between locations with access policies. Furthermore, he doesn’t intrude any-
where, which he isn’t supposed to reach, based on his knowledge. As opposed
to the user, the janitor doesn’t break any system policy, as he, despite being able
to reach svr, doesn’t have the permission to access pc2 and read the secret_file.

5.2 Scenario 2

The scenario 2 results for the user U1 can be viewed in table 5.3 on page 51.
As with U ’s results from scenario 1, in section 5.1 on page 49, U1 starts up
with no restrictions in the starting location outside, but sequentially picks up
restrictions when passing through entry and the lock_usr. The user U1 is also

5.2 Scenario 2 51

Locations Restrictions
outside null
entry J
hall J

lock_jan J, key_J
lock_svr J, code_J

exit U
svr J, code_J
jan J, key_J

Table 5.2: Results for the actor J scenario 1

able to pass through pc1 to the server in the virtual domain, invalidating the
system policy in 5.2 on page 51.

Locations Restrictions
outside null
entry U1
hall U1

lock_usr U1, code_U1
exit U1
usr U1, code_U1
pc1 U1, code_U1

server U1, code_U1

Table 5.3: Results for the actor U1 scenario 2

Listing 5.2: U1 invalidated policy

Policy with ;
Object name : U1
Placement name : server
has been proven invalid by actor U1

In table 5.4 on page 52, the results for the user U2 in scenario 2 are shown.
These are very similar to those of U1, except that U2 interacts with pc2 instead
of pc1 and isn’t allowed to reach the server, which would break a system policy.

Table 5.5 on page 52 shows the results for the user U3 in scenario 2. As opposed
to U1, U3 is permitted to physically gain access to the server through the svr.
As with the previous users, the restrictions are as expected.

52 Results

Locations Restrictions
outside null
entry U2
hall U2

lock_usr U2, code_U2
exit U2
usr U2, code_U2
pc2 U2, code_U2

Table 5.4: Results for the actor U2 scenario 2

Locations Restrictions
outside null
entry U3
hall U3

lock_svr U3, code_U3
exit U3
svr U3, code_U3

server U3, code_U3

Table 5.5: Results for the actor U3 in scenario 2

5.3 Scenario 3

This section contains the results from scenario 3. Here, only one user, U, is
active, but the scenario is a bit more complicated, as U needs to pick up several
data objects to invalidate the system policy. From the results in table 5.6 on page
53, we see that U correctly has the restriction U, code_A, when reaching usr
and picking up code_B, and also giving this data element the proper restriction.
When picking up the code_C in the off, we see that the tool has successfully
carried the restrictions of, not only the location, but also of the data code_B.
Thus, we have the restriction of picking up code_C as U, code_B, code_A.
From here on, the restrictions are all passed down correctly, as U moves into
sto and invalidates the policy shown in listing 5.3 on page 52. Again, the tool
performed well, even when facing a more complicated scenario.

Listing 5.3: U invalidated policy

Policy with ;
Object name : U
Placement name : sto

5.3 Scenario 3 53

has been proven invalid by actor U

Locations Restrictions
outside null
entry U
hall U

lock_usr U, code_A
exit U
usr U, code_A

lock_off U, code_B, code_A
lock_svr U, code_B, code_A

svr U, code_B, code_A
off U, code_B, code_A

lock_sto U, code_B, code_A, code_C
sto U, code_B, code_A, code_C

Known Data Restrictions
code_B U, code_A
code_C U, code_B, code_A

Table 5.6: Results for the actor U in scenario 3

54 Results

Chapter 6

Discussion

In this chapter, we evaluate each scenario and their results, as well as the tool
for policy invalidation itself. Then, we will give real-life examples of how the
tool can be used, followed by a small discussion on formalising problems. At
the end of the chapter, we will cover the possible extensions to the tool.

6.1 Evaluation

In this section, we shall evaluate the scenario results in chapter 5 on page 49,
as well as evaluate the tool as a whole, covering its behavior and limitations.

6.1.1 Scenarios

The results from scenario 1, section 5.1 on page 49, confirm that the tool can
correctly analyse and invalidate policies in a basic scenario. We see that the U
actor can pass through appropriate access policies and eventually pick up the
secret_file, allowing him to break the system policy. The janitor, J, on the other
hand, does not break the system policy, despite being able to enter the svr.

56 Discussion

In scenario 2, section 5.2 on page 50, we see how the tool handles a system model
with three different actors, where one is able to break the system policy. The U3
actor can physically reach the server, while neither U1 or U2 can. Nevertheless,
U1 can move through the virtual domain from PC1 to the server, thus breaking
the system policy. U2 cannot break this policy, as he lacks permission to enter
the server.

We see a more sophisticated case in scenario 3, section 5.3 on page 52, where the
actor U starts up with one code and has to discover new codes to reach the sto
location to invalidate the system policy. Again the tool performs as intended,
as U, after gaining new knowledge, revisits previously-covered locations to see
if any new ’doors’ may be opened.

These results confirm the tool performs correctly analyses the scenarios at hand.
But now we need to ask ourselves, what do these scenarios actually cover? Sce-
nario 1 yields a simple scenario, where we want to prove the basic functionality
of the tool. Scenario 2 was a different kind of scenario, as we sought to in-
vestigate the movement in the virtual domain. The third and final scenario,
scenario 3, was a more complex scenario, where multiple data pick-ups was in-
volved, which also tested the tool’s ability to reset the actors behavior when
getting new knowledge. But something in common for all these scenarios is
their size, as none of them involve bigger systems. The reason is that we want
to keep things less complex and yield a proof-of-concept of the tool’s validity,
but it still limits how much the tool can display its potency. Furthermore, any
misbehavior only present in larger system models may thus not be caught in
this stage. To summarize; even though the chosen scenarios yield good cases for
proof-of-concept, any future work on this tool would benefit greatly on applying
the tool on larger and more complex scenarios.

6.1.2 The Tool

The results, chapter 5 on page 49, showed us that the tool performed correctly
and returned the expected results for each of the three scenarios. The restric-
tions of locations and data items identified what kind of clearance each actor
used to reach or pick-up these, while any system policy was properly declared
invalid.

In terms of speed, the tool does not use much time to process any of the scenar-
ios - about the time it takes for you to blink. As mentioned before, the scenarios
are not large, but it is estimated that larger scenarios with more branches and
opportunities for learning new data will require significantly longer time to pro-
cess. One of the reasons is that an actor will have to revisit his reachable

6.2 The Tool in Practice 57

locations every time, he learns new data. If the scenario contains hundreds
of locations with dozens of data items, the amount of re-iterations suddenly
increase dramatically.

Despite the usefulness of the implemented tool, it possesses numerous limita-
tions. These limitations occur, because the main goal of the project was to
implement a tool to perform system model analysis and policy invalidation, and
sub-concepts were less prioritised. We will now cover each of these limitations
and explain, what their implications mean for the tool.

The domain name of the class Location was never utilised in the Analyser’s
algorithm. The idea was to support system policies of the form ACTORNAME
!@ DOMAINNAME, which would translate into restricting the actor from en-
tering any location of that domain.

Of the actions defined in the Action class, only the MOVE and READ ac-
tions are acted upon in the analysis algorithm. Even though the most
important actions are thus covered, it would make the scenarios, and thus
the tool, more life-like, if these commands and appertaining consequences
were included in the tool.

The current Analyser cannot guarantee a reachable location to be annotated
with the least restriction in a system model with cyclic paths for an ac-
tor. The reason is that an actor’s reachable location is annotated with
a restriction the first time, he reaches it. Since the Analyser by nature
only revisits locations, when an actor learns new knowledge, it is not able
to guarantee a location its least possible restriction, if multiple adjacent
paths can reach it. Furthermore, an actor’s reachable location may only
be annotated with one restriction, which would also prove diminishing
for the results, if the system model is cyclic. A solution to this could be
allowing an actor’s reachable location to have more than one restriction.

6.2 The Tool in Practice

In this section, we will devote ourselves to present real-life examples, where this
tool will be able to help. These examples are listed below.

A company has just expanded, hiring dozens of new employees. Suddenly,
the infrastructure of the company has exploded with new access policies
and employees with different sets of rights. Now, they want to make sure

58 Discussion

that the infrastructure is as safe as possible after the new expansion, as
they seek to follow the principle of least privilege. They use the policy
invalidation tool, creating numerous system policies tailored to ensure the
safety of the company secrets, and reducing the amount of weak links in
the infrastructure.

A company has just got crucial information leaked, and they are determined
to discover the source of this. The problem is that the company contains
thousands of employees in different departments with this crucial infor-
mation, so person interviews and investigations will take a lot of time and
resources. The company learns about the useful tool, which can provide
analysis and policy invalidation of system models. Using this tool, they
define the appropriate system policies to monitor which actors can inter-
act with the leaked information, and how. Eventually, the tool has helped
the company to narrow down the search for the suspect employees.

A couple of friends have just graduated from DTU, and they have planned to
start up their own company. They have a great idea for a product, and
they have already got the necessary sponsor money to create a depart-
ment of a dozen of programmers and other employees. They have already
created a template for the company’s infrastructure, including all newly-
hired employees, as well as the basic access control mechanisms, but now
they want to evaluate this structure before constructing it physically. The
policy invalidation tool helps them test their template infrastructure, as
it shows them how it handles different situations of renegade insiders or
oblivious managers. This information is used to improve their template
infrastructure, and they ultimately create the foundation of their company.

6.3 Formalising Problems

In this project, we have worked on formalising the problem of insider threats
and in-secure infrastructures inspired by the acKlaim calculus. In the right
hands, and in the appropriate cases, formalisation of methods can be used to
analyse and verify systems, be it software, hardware or physical systems, as
in this project. Despite this being true, it doesn’t come without a price [But].
The complexity of today’s systems makes the appertaining formalisation equally
complex, which is why formalisation of problems are mostly used in safety-
critical or high-integrity systems, such as airplanes, where an error may results
in human casualties or huge financial losses.

As the systems of today become larger and more complex, it will be exciting to
see how this field of technology will adapt for the sake of analysing and verifying

6.4 Future Work 59

the safety in such systems.

6.4 Future Work

In this section, we talk about the future work on this project and the field of
technology as a whole. We start of presenting a list of possible extensions to
boost the usefulness and precision of the policy invalidation tool:

Extending the tool with logging information would not only make it more
precise, but also more realistic. In many modern systems, you have logging
on some joins in a system model, for example when passing certain locks
or on computers. This can prove useful in after-the-math investigations,
especially if combined with the element of time.

Adding the element of time to the tool would be a massive extension. This
would involve adding time estimation attributes to actions, and even allow
for system policies to indicate a certain time spam, where the policy would
be invalidated. Combining the element of time with logging would improve
the quality of the tool even further.

A more trivial, but beneficial, extension would be utilising the domain at-
tribute of a location for policy invalidation. This is mentioned in the
evaluation of the tool, section 6.1.2 on page 56.

Another improvement in the category of system policies would be to allow
ANYACTOR !@ LOCATION, meaning that no actor must be allowed to enter
that location.

A limitation to the tool is the narrow use of available actions, also men-
tioned in section 6.1.2 on page 56. By adding support for EVAL, IN, and
OUT, the larger range of available actions would increase the precision
and results of the tool.

A more complex extension is the addition of encryption/decryption. With
this extension, one would be able to investigate the effectiveness of different
encryption protocols, as well as simulate how insiders would go about to
break these.

As the policy invalidation tool is inspired by the process calculus, acKlaim, it
would be beneficial to harness the syntax in order to model workflows. In the
current implementation, actors already behave as a process; they move around,
perform actions and modify the environment. Due to the similarities, we can

60 Discussion

treat an actor like we would treat, for example, a package moving from the
entrance of an office building to the appropriate receiver. With the addition of
the extensions above, this would make the tool very powerful, as it would not
only simulate and analyse the movement of actors, but also the flow of items.

These are just some of many possible extensions to the tool, which would in-
crease functionality and precision. If this tool was to be used in real life sce-
narios, it would, not only have to implement several of the above-mentioned
extensions, but constantly keep with with the development of the field of se-
curity. That is the eternal battle; the struggle between those who secure, and
those who break. As we find new ways to secure ourselves and close the leaks,
hackers may find another way to circumvent and disrupt our security measures.
It is thus the goal of this type of tool to keep up with the changes in the realm
of security, be it in terms of access control, cryptography or cryptoanalysis.

Chapter 7

Conclusion

We have presented the semantics of an analysable system model, formalised
using acKlaim, capable of modelling real-world systems. In order to represent
these real-world systems, we have designed three different system model sce-
narios, each with the purpose of showing how various cases are handled. To to
read in these scenarios, an interpreter was created in ANTLRWorks, following
the system model semantics. On top of this interpreter, we have built a tool
for performing analysis and policy invalidation any input scenario read with the
interpreter.

The results from the analysis and policy invalidation confirmed what we ex-
pected of the tool; it correctly handled several different cases by appending
the right restrictions to an actor’s reachable locations, as well as invalidating
any system policy when appropriate. Despite this success, we argued that the
chosen input scenarios may be enough for proof of concept, but larger and far
more complicated scenarios should be analysed, if this tool is to be used for
academic or professional analysis. In respect to this, several extensions were
listed and argued to resolve the current limitations of the tool, making the tool
able to analyse far more realistic system models, where such things as encryp-
tion/decryption, the time aspect, more available actions, and logging would be
beneficial. Even more, due to the nature of our semantics, inherited from acK-
laim, the tool can be extended to model workflows, which also would yield a
tool capable of modelling far more components in daily life.

62 Conclusion

As long as systems exist, we will have to deal with the threat of insiders. But as
systems grow more complex and insiders become smarter and more innovative,
we have to focus on keeping up to par with the latest movement in access control
and other types of security measures. Preventive measures, such as building
more robust systems and analysing them before-hand using static analysis, have
become increasingly popular in order to reduce the potential damage sustained
in a system.

We believe that the type of tool developed in this project, formalising real-world
systems and using static analysis to extract security-evaluations, will continue
to develop, as the need for these kind of measures will increase in parallel with
the world itself becoming more complex, and people need to ensure the integrity
and validity of their safety-critical products and structures now, more than ever.

Appendix A

Appendix

Here in the appendix, we will cover subjects not crucial for the report. This
includes an undisrupted version of the grammar language, as well as the pure
textual representation of scenario 1.

A.1 Using the Tool

In order to use the tool, execute the following command in the bin directory:

Unix java -cp .:antlr-3.2.jar Main ../input/scenario1.txt

Windows java -cp .;antlr-3.2.jar Main ../input/scenario1.txt

This command runs the Main class, appended with the appropriate ANTLR
jar, and scenario 1 as the input system model. One can choose between sce-
nario1.text, scenario2.txt, and scenario3.text, or even alter any of these to a
slightly different scenario. When altering the scenarios, one must ensure that
the syntax can still be confirmed by the modelling language, section 3.2 on page
21.

64 Appendix

A.2 Modelling Language Grammar

In this section, we introduce the whole, undisrupted grammar file, see listing
A.1 on page 64.

Listing A.1: Grammar file

grammar PolicyInval ;

@header {
package output ;
import java . util . HashMap ;
import java . util . List ;
import java . util . ArrayList ;
import java . util . Set ;
import java . util . HashSet ;
import dom . ∗ ;
}

@lexer : : header
{

package output ;
}

@members
{

p r i va t e Analyser analyser ;
}
//Method f o r c r e a t i ng and re tu rn ing the Analyser
getAnalyser returns [Analyser an] :

{
HashMap<String , Location> locations = new HashMap<String ,

Location >() ;

List<Actor> actors = new ArrayList<Actor >() ;

List<SystemPolicy> systemPolicies = new
ArrayList<SystemPolicy >() ;

}
' l o c a t i o n s '
' { '

(
l = location
{

locations . put (l . getName () , l) ;
}
' ; '

) ∗
' } '
' edges '
' { '

(
CURLOC = NAME
'−> '
exits = exitLocations
//Add e x i t s to the CURLOC
{

Location tempLoc ;
f o r (i n t i = 0 ; i < exits . size () ; i++)
{

A.2 Modelling Language Grammar 65

tempLoc = locations . get (exits . get (i)) ;
locations . get ($CURLOC . text) . addExit (tempLoc) ;

}
}
' ; '

) ∗
' } '
' ac to r s '
' { '

{ Actor a ; }
(

ACTORNAME = NAME
'@ '
STARTLOC = NAME

{
a = new Actor ($ACTORNAME . text , $STARTLOC . text) ;
actors . add (a) ;

}
' ; '

) ∗
' } '
' data '
' { '

{ Data tempData ; }
(

DATANAME = NAME
(

' { '
dataPolicies = accessPolicies

' } '
) ?
{ tempData = new Data ($DATANAME . text , dataPolicies) ; }
'@ '
DATALOCATION = NAME
{

// I f the Data i s p laced at a Locat ion
i f (locations . containsKey ($DATALOCATION . text))
{

locations . get ($DATALOCATION . text) . addData (tempData) ;
}
e l s e //Else , the data i s p laced at an Actor
{

f o r (i n t i = 0 ; i < actors . size () ; i++)
{

i f (actors . get (i) . getName () . equals ($DATALOCATION . text))
{

actors . get (i) . addOwnedData (tempData) ;
}

}
}

}
' ; '

) ∗
' } '
' s y s t emPo l i c i e s '
' { '

(
sysPol = systemPolicy
{

systemPolicies . add (sysPol) ;
}

66 Appendix

' ; '
) ∗

' } '
{

// Creates a new s p e c i f i c a t i o n ana ly s e r with input l o ca t i on s , ←↩
ac to r s

and system policies
an = new Analyser (locations , actors , systemPolicies) ;

}
;

//−−−
// Support ive methods goes here

location returns [Location l] : // a l o c a t i o n
LOCNAME = NAME
(' { '

policies = accessPolicies
' } ')
' ('

DOMAINNAME = NAME
') '
{

// A l o c a t i o n i s c r eated with ID , s e t o f a t t r i b u t e s and s e t o f ←↩
p o l i c i e s

l = new Location ($LOCNAME . text , policies , $DOMAINNAME . text) ;
}

;

accessPolicies returns [HashSet<AccessPolicy> policies] :
{ policies = new HashSet<AccessPolicy >() ; }
policy1=accessPolicy { policies . add ($policy1 . ap) ; }
(

policy_other = accessPolicy
{ policies . add ($policy_other . ap) ; }

) ∗
;

accessPolicy returns [AccessPolicy ap] :
ACCESSER = NAME ' : ' actions = policyActions ' ; '

{
ap = new AccessPolicy ($ACCESSER . text , actions) ;

}
;

policyActions returns [HashSet<Action> actionSet] :
{ actionSet = new HashSet<Action >() ; }
action1= action { actionSet . add ($action1 . act) ; }
(

' , '
action_other = action
{ actionSet . add ($action_other . act) ; }

) ∗
;

exitLocations returns [ArrayList<String> ex] :
{ex = new ArrayList<String >() ; }
firstLoc = NAME
{ex . add ($firstLoc . text) ; }
(

' , '
otherLoc = NAME
{ex . add ($otherLoc . text) ; }

) ∗
;

A.3 Scenario 1 67

action returns [Action act] :
' i '
{ act = Action . in ; }
| ' o '
{ act = Action . out ; }
| 'm '
{ act = Action . move ; }
| ' e '
{ act = Action . eval ; }
| ' r '
{ act = Action . read ; }
;

systemPolicy returns [SystemPolicy sys] :
OBJECTNAME = NAME
' !@ '
PLACEMENTNAME = NAME
{ sys = new SystemPolicy ($OBJECTNAME . text , $PLACEMENTNAME . text) ; }
;

//−−−
// Basic r u l e s e t goes here

NAME : (' a ' . . ' z ' | 'A ' . . 'Z ' | '_ ' | ' ∗ ') (' a ' . . ' z ' | 'A ' . . 'Z ' | ' 0 ' . . ' 9 ' | '_←↩
' | ' ∗ ') ∗ ;

INT : ' 0 ' . . ' 9 '+ ;

//NEWLINE: '\ r '? '\n ' ;

WS : (' ' | ' \ t ' | ' \ r ' | ' \n ')+ { $channel=HIDDEN ; } ;

A.3 Scenario 1

Here, we present scenario 1 in pure text form, as it is given to the interpreter,
in listing A.2 on page 67. The purpose is to give the reader an understanding
of the raw input, which we feed to the interpreter.

Listing A.2: Scenario 1 system model as text

locations {
outside {∗ : m ; } (building) ;
entry {U : m ; J : m ; } (building) ;
exit {U : m ; J : m ; } (building) ;
hall {∗ : m ; } (building) ;
lock_jan { key_jan : m ; } (building) ;
jan {∗ : m ; } (building) ;
lock_usr { code_U : m ; } (building) ;
usr {∗ : m ; } (building) ;
pc1 {U : m ; } (virtual) ;
lock_svr { code_U : m ; code_J : m ; } (building) ;
svr {∗ : m ; } (building) ;
pc2 {U : m ; U : r ; } (virtual) ;

}

68 Appendix

edges {
outside −> entry ;
entry −> hall ;
exit −> outside ;
hall −> lock_jan , lock_usr , lock_svr , exit ;
lock_jan −> jan ;
jan −> hall ;
lock_usr −> usr ;
usr −> hall , pc1 ;
pc1 −> pc2 ;
pc2 −> pc1 ;
lock_svr −> svr ;
svr −> hall , pc2 ;

}

actors {
U @ outside ;
J @ outside ;

}

data {
code_U @ U ;
code_J @ J ;
key_jan @ J ;
secret_file {U : r ; } @ pc2 ;

}

systemPolicies {
secret_file ! @ outside ;
secret_file ! @ J ;

}

Bibliography

[ANT] ANTLR. Antlr. http://www.antlr.org/.

[Bov] Jean Bovet. Antlrworks.

[But] R. W. Butler. What is formal methods?

[CWP] Rene Rydhof Hansen Christian W. Probst. Analysing access control
specifications.

[CWP08] Rene Rydhof Hansen Christian W. Probst. An extensible analysable
system model. 2008.

[CWPN] Rene Rydhof Hansen Christian W. Probst and Flemming Nielson.
Where can an insider attack?

[FP] Charles P. Fleeger and Shari Lawrence Pfleeger. Security in Comput-
ing. Prentice Hall, 4 edition.

[RG91] Deborah Russell and G.T. Gangemi. Computer Security Basics.
O’Reilly, 1991.

http://www.antlr.org/

	Preface
	Abstract
	1 Introduction
	1.1 Project Description
	1.2 Goals
	1.3 Report Structure

	2 Background
	2.1 Access Control and Policies
	2.1.1 Discretionary Access Control
	2.1.2 Mandatory Access Control
	2.1.3 Role-Based Access Control

	2.2 Insider Threats
	2.3 acKlaim
	2.4 ANTLR
	2.4.1 In Practice
	2.4.2 An Example

	3 Design
	3.1 System Model Design
	3.1.1 Locations and Edges
	3.1.2 Actor
	3.1.3 Action
	3.1.4 Data
	3.1.5 Access Policy
	3.1.6 System Policy

	3.2 Modelling Language
	3.3 Policy Invalidation Tool Design
	3.3.1 Location
	3.3.2 Actor
	3.3.3 Action
	3.3.4 Data
	3.3.5 Access Policy
	3.3.6 System Policy
	3.3.7 Analyser
	3.3.8 Helper
	3.3.9 Class Diagram

	3.4 Pseudo-Algorithm for Analysis
	3.5 Pseudo-Algorithm for Policy Invalidation
	3.6 Scenarios
	3.6.1 Scenario 1
	3.6.2 Scenario 2
	3.6.3 Scenario 3

	4 Implementation
	4.1 Tool
	4.1.1 Main
	4.1.2 Location
	4.1.3 Actor
	4.1.4 Action
	4.1.5 Data
	4.1.6 AccessPolicy
	4.1.7 SystemPolicy
	4.1.8 Helper
	4.1.9 Analyser

	4.2 Modelling Language Grammar
	4.2.1 Locations
	4.2.2 Edges
	4.2.3 Actors
	4.2.4 Data
	4.2.5 System Policies
	4.2.6 Access Policies
	4.2.7 Basic Rule Set

	5 Results
	5.1 Scenario 1
	5.2 Scenario 2
	5.3 Scenario 3

	6 Discussion
	6.1 Evaluation
	6.1.1 Scenarios
	6.1.2 The Tool

	6.2 The Tool in Practice
	6.3 Formalising Problems
	6.4 Future Work

	7 Conclusion
	A Appendix
	A.1 Using the Tool
	A.2 Modelling Language Grammar
	A.3 Scenario 1

	Bibliography

