
Accessible Smartphone Applications
for the Visually Impaired

Jasmina Pelivani

Kongens Lyngby 2012
IMM-BSc-2012-31

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

The main purpose of this project is to understand the needs of visually im-
paired users when using smartphone technology. Many of the applications that
are already developed do not have focus on accessibility. This thesis reviews the
possibilties which exist in order to add accessibility to smartphone applications
- what can be done in order to make them as useful as possible for the visually
impaired?

In the thesis I will consider the design of user interface for this kind of Android
applications, by working with problems of using a smartphone, problems pro-
vided by a visually impaired, who also suggested this project.
In order to evaluate if the user interface principles which I have come to are
useful, an example of an Android application is developed. The application,
TravelBuddy, helps the user to find information about the public transport in
Denmark, using Rejseplanen’s API. Android’s built-in function TalkBack is used
for better interaction between the user and smarthphone - TalkBack reads what
is going on on the screen.

Based on the information I got from the meetings with the client, I have estab-
lished the use cases for the program, designed the program structure and finally
implemented the application. The application, and ideas for this, have contin-
uously been reviewed by the client in order to make the application accessible
for the target group.

The study concludes that if developing with the focus on accessibility for visually
impaired, useful applications can be developed which actually make it possible
for a visually impaired to use them. The focus must stay on the accessibil-
ity when choosing between two solutions, otherwise it often result in unuseful
applications for the visually impaired.

ii

Preface

This project deals with a very serious problem - the problem of not being able
to see. The thesis is a research of using smartphone technology in making it
easier to travel and plan a trip using public transportation. The main focus is
to find out how to develop an application for the visually impaired, in terms of
learning to understand the user’s needs.

This thesis was prepared at the Institute for Informatics and Mathematical
Modeling at the Technical University of Denmark. It consists of a thorough
report on what I have accomplished and learned during this project.

Kongens Lyngby, August 2012

Jasmina Pelivani

iv

Acknowledgements

First of all, I would like to thank my supervisor Associate Professor Christian
W. Probst, who offered me this project. I also wish to express my gratitude to
Daniel Gartmann and IBOS (Institutet for blinde og svagsynede).
Both of you were abundantly helpful and offered invaluable assistance, support
and guidance.

Deepest gratitude to DTU for providing me an Android smartphone, enabeling
me to develop and making this project possible.

Last but not least, I wish to express my love and gratitude to my beloved family
and friends; for their understanding & endless support, through the duration of
my studies.

vi

Contents

Abstract i

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Target Group and Motivation . 2

1.2 Problem Definition . 3

1.3 Solving the problem . 3

2 Theory - Programming with Android 5

2.1 Android Components . 5

2.2 Internet and GPS Access . 7

2.3 Rejseplanen and XML . 7

2.4 Accessibility and Input . 8

3 Requirements and Project Analysis 9

3.1 Platform: Android versus iOS . 10

3.2 Approach . 11

3.3 Google Maps versus Rejseplanen 11

3.4 Development Choices and Approach 12

4 Design and Program Structure 15

4.1 Use Cases . 15

4.2 Flow chart . 18

4.3 Class Diagram . 20

viii CONTENTS

5 Design and Implementation 23
5.1 Accessibility and User Interface in general 23
5.2 Internet access and Rejseplanen 27
5.3 Use case: Next Departure . 28
5.4 Use case: Trip from A to B . 33
5.5 Use case: Trip Description . 36
5.6 Loading Screen . 36
5.7 Additional . 37
5.8 User Interface . 41

6 Test 51
6.1 Manual Testing . 51
6.2 Other forms of testing . 52

7 Further Development and Perspectivation 55
7.1 Your Friend’s Address . 55
7.2 Which bus is it? . 56
7.3 Updating During a Travel . 56
7.4 Security . 57
7.5 Applications for both Target Groups 58
7.6 Developing other Applications for the Visually Impaired 59

8 Conclusion 61

9 User Guide 63
9.1 Getting started . 63
9.2 How to use TravelBuddy . 63

Bibliography 67

Chapter 1

Introduction

Smart phones are becoming a part of our everyday life. A HTC-commercial
says: ”It’s the first thing you see in the morning, it’s the last thing you see
at night.” We use our smartphones for everything, googling a recipe, chatting,
finding directions, it follows us to work and school and much more. One of
the many things we use smartphones for are traveling, using travel applications,
helping us to get around.

Along with smartphones and applications, traveling has become easier in many
ways. You can plan a trip long before you need it, from anywhere in the world.
All you need are three things - a smartphone, battery and internet connection.

So how do we travel?
First of all, we need to find the possibilities of how to get to our destination.
To plan a trip, we either use a homepage or an application. In Denmark, for
example, Rejseplanens application is used to plan a trip using public transport.
There are many applications for this purpose and the way they compete is based
on functionality and design. The smarter and fancier the design is, the more
popular the application gets. With the first applications of this kind, the user
had to provide his location, destination, time of the travel, etc. - basically ev-
erything. This has changed. The applications use the GPS to find the users
location and usually there are instant results based on this location, giving the
nearest bus stops and destination possibilities as a result.

2 Introduction

The one thing that all these applications have in common is that they expect
that the user can use these smart designs, which are based on graphics and need
visual exploration. A thing which not every person is lucky enough to be able
to provide - a blind or a visually impaired person.

Besides the challenges of planning a trip, we also need to physically find the
stops and transport vehicles, also a thing which is quite a challenge for visually
impaired.
Traveling; some of us consider it a routine and it is a thing we need to do every
day, but still, some of us have to struggle to do this every day thing.

The visually impaired also use smartphones and applications. There is a possi-
bility of a large market consisting of applications which are not yet made. There
is a lot of motivation here, because there is the unique possibility to help make
a group of people’s life easier in many ways.

The challenge of this project is to understand and get acquainted with the
problems which occur when programming for the visually impaired - what re-
strictions are there, how to make the program user friendly and especially how
to make it useful?

1.1 Target Group and Motivation

This project was suggested by Daniel Gartmann from the Institute for Blinde
and Visually Impaired (IBOS), a blind himself. I have been in contact with him
during the project, getting his assistance and opinions at various choices I will
have to make. Further on in this thesis, he will be referred to as ”the client”.
The visually impaired are the target group of this project, but I will continually
compare my design choices with the choices of developing for a target with no
visual disability.

I was drawn to this project both because of a personal wish of learning about a
new technology, smartphones, the interesting aspects of working on an uncovered
field - programming applications for the visually impaired, but the motivation
also comes from that this is a needed application and is requested by an indi-
vidual and also IBOS.

1.2 Problem Definition 3

1.2 Problem Definition

Design and implement an Android application for the visually impaired. The
main focus is to understand the user’s needs and design the application in an
accessible manner. The function the application should offer the user is to pro-
vide information about public transport in Denmark and the ability of planning
a trip, including the possibility of getting the trip description.

1.3 Solving the problem

During this project I will study and analyze how to make a general user inter-
face for an application with the visually impaired as the target group and finally
make an example of such an application.
The application I will focus on will be a travel application, to help the user
get from point A to point B, using directions, where the route also uses public
transport. This can be done by using data from for example Google Maps or
Rejseplanen, the Danish travel plan.

As I wrote before, there are many examples of applications for this purpose.
But when used by a visually impaired, smart graphics are confusing instead of
smart. Without being able to see, it is difficult to imagine the way of using the
many options and functions or their purpose, when sometimes their purpose lies
in their position, their size or other design choices.
There are very specific user needs for an application for visually impaired - to
make the application as accessible as possible and thereby take input and rep-
resent output in a useful way.

The technical aspect of the project is to program an Android application,
with Java as the programming language. This contains functionality as well
as (graphical) user interface.

One of the outcomes of this project will be to learn to listen to the user’s
needs and translate it to a product that is useful and satisfying.

The application developed during this project is developed for Android smart-
phones and is developed on a Samsung Galaxy Nexus, with Android IceCream
4.0 as the operative system.

This is a 15 ECTS point project and also my first larger programming project
which I will work on alone. I hope it will show what I have learned during my

4 Introduction

2 and a half year of studies at the Technical University of Denmark.
I hope to achieve important knowledge about programming for the visually im-
paired and end up with a suggestion for a helpful and useful application.

Chapter 2

Theory - Programming with
Android

This chapter contains overall theory about the important components used in
this project - Android components as well as general information about Rejse-
planen.
I will not cover theory about Java programming in general, but special design
choices will be discussed continually instead.
This theory chapter is based on web research and mostly uses the official An-
droid developers home page[2], Lars Vogels blog on Android programming[4]
and other blogs and internet research.

2.1 Android Components

This section is an overview of the basic Android Components that are used in
this project.

6 Theory - Programming with Android

2.1.1 Activities and threads

Every screen in an Android application is based on an Activity, meaning that
an application can have many activities, each representing the different screens
of the application.

Whenever an application is started, so is a thread. This is the main thread,
also called the UI (user interface) thread. All the activities of the application
run on this thread and the UI is modified by this one thread.

If you need your application to do something which takes a long time, you
will have to run it on a different thread, otherwise, the main thread will be
blocked untill the time consuming code is done running. This would result in a
very slow application and bad user experience.
Therefore, slow or time consuming operations need to run asynchronously with
the main thread.

2.1.2 AsyncTask

In order to run methods asynchronously, the AsyncTask[6] class can be used.
The AsyncTask class has three important methods, which describe its purpose.

• doInBackGround() The code you want to run asynchronously to the main
thread is executed by this method. It is done in background through
another thread than the main thread and thereby does not block the main
thread.

• onPreExecute() This method takes care of code which needs to be run
before running the code in doInBackground().

• onPostExecute() If anything needs to be done after doInBackground(),
it is coded here. Also, if you need to use the outcome of doInBackground(),
which you probably do, here is where you handle it. The AsyncTask
thread synchornizes itself with the main thread again while executing
onPostExecute().

2.1.3 Views and Layouts

Interfaces like buttons, imagefields, textfields etc. are called Views. They
occupy areas on the screen and are responsible for event handling, such as touch

2.2 Internet and GPS Access 7

and other user events.
The views can be seen on the screen and are mostly defined in XML-files, which
are the layout files of the application. Views can also be created with Java
code, but the creation is most commonly done together with the layouts of the
activity it belongs to.

2.1.4 Intent

Intents are used when starting a new activity, as a kind of link from one activity
to another. For instance, if you desire to exchange data between two activities,
you would use intents.

2.1.5 Android Manifest

The Android Manifest is an XML file, which holds the essential information
about the application.
This file holds the name of all the activities, application information and various
permissions the application needs in order to function, like for instance internet
or GPS access.

2.2 Internet and GPS Access

If you would like to have internet access or to get GPS information in your
application, for downloading information, checking in with your location or other
things, you need permission to do it.
To get internet permission in your application, you have to add the permission
in the Android Manifest file, which is an XML file.
This is done by adding the following line:

<uses-permission android:name="android.permission.INTERNET" />

2.3 Rejseplanen and XML

In order to use Rejseplanens API, I only need internet acces and Rejseplanens
API documentation. The documentation is not public, so I gained it by con-

8 Theory - Programming with Android

tacting Rejseplanen and therefore it is not to be found in this rapport.

After adding internet access, with a HTTP client, one sends an HTTP request
with a specified URL to Rejseplanens API. When this is answered, we gain ac-
cess to a XML file, holding the needed information.

An XML file consists of tags, elements and attributes. A tag can have both
element and attributes, leaving various possibilities in constructing an XML file.

Different HTTP requests return different HTTP response and in this case dif-
ferent XML files. This means that an XML parser for all the different outcomes
is needed.
I will cover used Rejseplanen API calls continuosly, when I encounter them while
implementing the services.

2.4 Accessibility and Input

Accessibility is an embedded function in the newer Android smartphones.[7] Its
purpose is to allow users to use their smartphone eyes-free, which is essential
for visually impaired users.

Enabling the Talk-Back and Explore-By-Touch functions, the user can explore
the smartphone by touch. The smartphone reads out loud what view is touched.
This way the user knows which application he is at, before starting it.
When developing for Accessibility, one has to add in the program what should
be read by the smartphone when the different views of the application are acti-
vated by user events.

By interviewing a couple of visually impaired, I have found out that they lately
have startet to use touch-screen keyboards - untill now, they felt it was easier
to use a physical keyboard.
Now, the touch-screen keyboards are more user friendly. With Explore-By-
Touch, anything you touch is read out loud. When touching the keyboard,
the letters are read out loud, but are written when released. So you can skate
through the keys and find the key you were looking for - then you release the
key and its corresponding character will be written.
There are various other downloadable touch-screen keyboards, designed for this
purpose exactly, which can be customized by many different settings.

Chapter 3

Requirements and Project
Analysis

The working done on this project, is with hope to result in TravelBuddy - an
application which helps the visually impaired to move in the traffic.
Before the programming can start, this project needs a lot of researching - first
of all I need to find out what problems need to be solved, pick what problems I
am going to work with and last but not least, find out what possibilities I have
in order to solve them. I have done a lot of web researching, but there is not
much material available for accessibility programming, because it is a rather
uncovered field.

Therefore I turned to my main source, the client and other potential users of the
application and asked what kind of problems they are facing when traveling, or
in general when using their smartphones. Some of the problems I found were:

• The smartphone applications aren’t strictly designed for the visually im-
paired, so the accessibility isn’t the first priority

• The user doesn’t know the difference between an input field or just an
ordinary information label

• Physically find the nearest stop

10 Requirements and Project Analysis

• Finding what direction the transport vehicle at the stop is headed

• The next transport vehicle from a stop

• Planning a trip using public transport

• When to get off of a transport vehicle

• When and which vehicle is at the stop

Along with problems, there are various ways to solve them. I need to analyze
the possibilities and find the most suitable for this specific project. First of all,
the general choices needed to be considered - how to approach the programming.
My considerations on several topics, i.e. platform, choices of problems to solve,
are following.

3.1 Platform: Android versus iOS

The first important choice to be made is what platform is the application going
to be developed for. My choice stands between Android and iOS.
Given that the Android developer tool kit is open-source and the client has an
Android smartphone, the choice was quite obvious for me. Although develop-
ing for iOS could be interesting, sources say that one needs to have an Apple
computer, in order to program for iOS. Additionally, the software development
kit isn’t open-source, one needs to register and pay annually in order to be an
iOS developer. [5]
Another advantage with Android is the embedded function Accessibility, which
is shortly described in chapter 2, Theory. A Accessibility funtction which can
be turned on is TalkBack, which ”talks back to the user” and reads what is
going on on the screen. This will be covered later in this thesis.

Based on these facts, I choose to develop TravelBuddy for Android, and there-
fore have done very little research on whether or not iOS has a similiar function
to Accessibility. The iOS Accessibility has the function VoiceOver[?] which is
the equvalent to Android’s TalkBack. So the oppertunity to develop this appli-
cation for iOS is also there.

3.2 Approach 11

3.2 Approach

This being my first program for Android, I have to find out how to approach
our client’s interesting problem.

It is very important for me, that the client feels that I have treated his needs
as the most important thing, mostly because if I don’t do that, this application
will be one of the many travel applications - and then there would be no purpose
making it.
Therefore, I will try to solve the problems in the order as he prioritized them,
but at the same time I will try to get the most out of the project.
Given there are two parts to this project, accessible user interface being one
and getting information from the internet in order to travel being the other, I
divided the whole project and thereby the application in two parts.

So in order to do the first part, I decided to do a small application with only
user interface as main focus. I need to gain insight in Accessibility programming
- what possibilities are there and how much help can I get from the embedded
functions versus what I need to implement and design myself, in order to make
the application useful for the visually impaired.

The second part is finding out how to get the needed information, in order to
program the application which can help one to travel using the public transport.
So without thinking about this specific application, I want to get information
about departures, arrivals, stops and how to get to the stops.

This way divide and conquer is used, by solving small parts of the problems
independently and afterwards assemble them to be one functional program.

3.3 Google Maps versus Rejseplanen

In order to get the needed information about the public transport, there are two
obvious possibilities - Google Maps API(short for Application Programming In-
terface) or Rejseplanen’s API.

Google Maps is a technolgy provided by Google, and is a web service appli-
cation, which offers route planning.
Rejseplanen is a Danish webpage, which distributes departure and arrival times
for Danish public transport. It is held by Rejseplanen A/S.

12 Requirements and Project Analysis

There are pros and cons for both technologies. Rejseplanen is Danish, while
Google Maps is used internationally and thereby is used more than Rejsepla-
nen, meaning there is more documentation and help to be found on the internet
for Google’s API.

Rejseplanen’s API offers information about the various transport vehicles, like
their direction, name, route and information about stop locations, but not walk-
ing directions to the stop. When using Rejseplanen’s homepage on the other
hand, there are directions, but these are provided by NAVTEQ, another com-
pany and therefore these information can’t be accessed by the API. This is of
course a problem, because I would like to add directions from and to bus stops.
This would be avalible by using Google Maps API - but I evaluate using Google
Maps to be a risk and this is why. While Rejseplanen only uses Danish loca-
tions and public transport, I reckon that there would be less misleadings, or
in a smaller scale, then using the whole world as a potential location. For a
regular user, it wouldn’t be that confusing and could easily be changed if the
found location is in another country, but it would create big problems for users
who only have their hearing to navigate by.
Having the user in mind, I choose to use Rejseplanen’s API as the primary
source to the needed information.

3.4 Development Choices and Approach

As earlier described, I have some clear goals with the application - to provide
help to solve the problems described in the first part of this chapter. These
goals are my client’s wishes and therefore I have prioritized in the same order
as he has. After some meetings with him, I found out what functions are most
important for him.
They are as follows: firstly the function to find the nearest stop and the depar-
tures from there. The second function he requested was to be able to plan a
trip to a specific destination. I have to find out how to tackle the assignment -
whether I want to do things in order to be more challenging for me or to answer
his whishes.
Being inexperienced in using API’s and getting information from the internet
to use it in programs, I decided to incorporate the easiest parts first and then
build more and more to the program, I wouldn’t like to risk it and get nowhere
with the application.

Therefore, first of all I want to implement the Next Departure function, which
returns the nearest stop and its departures and afterwards the Trip from A to
B function, which finds a trip from one location to another.

3.4 Development Choices and Approach 13

Having no information about the directions to and from a stop when using Re-
jseplanen’s API as the solution for finding the public transport, it is difficult
to provide them. They can be provided by using Google Maps, but since the
client hasn’t prioritized this, it is something I hope to implement, but it isn’t
the main priority.

14 Requirements and Project Analysis

Chapter 4

Design and Program
Structure

In order to end up with a successfull program, one needs to consider the design
and program structure before starting the actual programming.
In this chapter I will analyse the use cases, to get an idea of a fitting program
structure and end up with a class diagram, which will be used when program-
ming.

4.1 Use Cases

The use cases in this project are simple to find. They are based on the difficulties
a user has, when using a smartphone to be his travel guide. IBOS and our client
gave me an insight to their problems and I will formulate them in this section.
It is important to keep in mind that the use cases are for visually impaired
people, so the actor in every of them is a visually impaired user.

16 Design and Program Structure

4.1.1 Use Case: NextDepartures

Description:
The user wants to know the next departures from a nearby stop.

Main Scenario:

1. The user presses the Next Departures button on the main screen.

2. The user enters his location and specifies time and date if he desires to
know the departures at a certain point in time.

3. The user presses Search.

4. (a) The program represents the found departures.

(b) The program can not find any departures.

Alternative Scenario:

1. The user presses the Next Departures button on the main screen.

2. The user presses Search without specifying anything.

3. (a) The program represents the found departures using the current time
and date and the GPS location.

(b) The program cannot find any departures for the specified input.

What this use case allows is to give the user the opportunity to just search for
the departures from a stop, based on his current position and time of the search
or provide specified information for the search.

After analyzing this use case, I know that I will need three activities. Trav-
elBuddy needs a starting screen in order to choose the Next Departures option,
a search screen and a result screen. In order to get the results, I will need
internet access, a XML-parser and possibly the GPS position.

4.1.2 Use Case: TripFromAtoB

Description:
The user is interested in a trip from either a provided location or his position

4.1 Use Cases 17

to another point.

Main Scenario:

1. The user presses Trip from A to B from the main screen.

2. The user enters his location, destination and specifies time and date if he
desires to know the departures at a certain point in time.

3. The user presses Search.

4. (a) The program represents the found departures.

(b) The program cannot find any departures.

Alternative Scenario 1:

1. The user presses Trip from A to B from the main screen.

2. The user presses Search with only specifying the destination.

3. (a) The program represents the found trips using the standard time and
date and the GPS location.

(b) The program cannot find any trips for the specified input.

Alternative Scenario 2:

1. The user presses Trip from A to B from the main screen.

2. The user presses Search without specifying anything.

3. The user is alerted that a destination in needed in order to perform the
search.

In addition to what the analysis of the first use case showed, we need two more
activities, namely another search and a result screen. Once again an API call
will be needed, but this could possibly be done with the same methods.

18 Design and Program Structure

4.1.3 Use Case: TripDescription

Description:
The user needs a description of one of the recently found trips.

Main Scenario:

1. User chooses a trip from the trip results.

2. A trip description screen appears.

If a trip is found, there must be a description to it. Therefore there can not
be an alternate scenario. We only need to add another activity, namely the
description screen.

4.2 Flow chart

After looking at the use cases, I have an idea of what activities are needed for
making the user interface. Figure 4.1 is a flowchart showing the flow of the
program and therefore only the activities are shown. 1

The arrows show the natural flow of the application, but there is of course the
possibility of going back and forth between the activities.

The flowchart is mainly based on the previous use cases. The TravelBuddy-
Activity on the top od the flowchart represents the main screen - there are two
possibilities from here, representing the two main use cases - NextDeparture
and TripFromAToB. Both of these return a result screen, corresponding to the
PossibleDepartureActivity and PossibleTripsActivity like the arrows show.

1The flow chart has been revised to reflect the final program.

4.2 Flow chart 19

Figure 4.1: TravelBuddy - Flowchart

It can be observed that there are two cycles in the flowchart. One from TripDe-
scriptionActivity to GoogleMapsActivity and one from TripDescriptionActivity
to ReachedStopActivity.

A trip can have several steps, which either is to walk to the stop or take a
ride with the public transport - meaning the user will need to go back and forth
between these.

When in TripDescriptionActivity, the user takes the first step of the trip - to
walk to the stop, using GoogleMapsActivity. When he has arrived, he returns
to TripDescriptionActivity and then takes the next step with a public transport

20 Design and Program Structure

- thereby comes to ReachedStopActivity. When the stop is reached he returns
to TripDescription. This continues until the final destination is reached and this
is illustrated by the cycles. 2

4.3 Class Diagram

Based on the use cases I have come up with a class diagram for the application.3

The diagram, figure 4.2, shows the relations between the classes. The col-
ored boxes divide the classes in three parts - activity classes to the left, data
classes to the right and the upper box holds the classes which are responsible for
making the API calls, internet connection and running the code asynchronously.

RejseplanenRest is the class holding Rejseplanen’s API services and it extends
the BasicRest class - which takes care of internet connection and performing the
API call.

2ReachedStopActivity and GoogleMapsActivity are two functions which I decided to imple-
ment later on in the project and can be read about in chapter 5, Design and Implementation.

3The class diagram has been revised to reflect the final program.

4.3 Class Diagram 21

Figure 4.2: TravelBuddy - Class diagram

22 Design and Program Structure

Chapter 5

Design and Implementation

After considering the program structure and design, the programming can be-
gin.
This chapter covers the design and implementation choices I have made, based
on the former chapter on program structure.
As described while analyzing the requirements, the project is divided in two
parts, designing the user interface and retrieving information from the internet,
in order to make it easier to develop.

First of all, I will describe my experience of programming a general user interface
for the visually impaired, how it is to work with Accessibility and TalkBack.
Later in this chapter, I will describe the second part of the project, namely get-
ting connection to Rejseplanen and retrieving data. After reviewing the design
and implementation of this, I will comment on the UI choices for this specific
application, TravelBuddy and show the associated screen shots of the user in-
terface.

5.1 Accessibility and User Interface in general

This section is about the first part of the project, UI in general. The challenge
here is to keep the user in mind constantly and find out what are the best design

24 Design and Implementation

choices for the application based on the user’s needs.
Chapter 1, Android theory, describes the structures of user interface. This being
an application for the visually impaired, graphics is not important; the main
point is the accessibility. To develop an accessible application, one has to use
the provided tools for this and find out how to arrange the layout.

Android allows adding Talk-Back commands by adding
android:contentDescription to a view1. This means, the added content de-
scription will be read out loud when the view is touched. There is nothing
difficult in adding the content description, but having no GUI the user can rely
on, these descriptions are his only help and therefore it is really important to
add a covering content description. So Android and Accessibility only provide
the opportunity to add the description, but it is up to the programmer to use
this correctly.
I used TalkBack to gain insight to how it can be used to understand what is on
the screen - so I started off with using my smartphone as a blind person would;
I explored the smartphone with closed eyes.
There are some things which are different than using the phone normally. To
slide from side to side, you have to use two fingers, because one touch is for
exploring the screen. To start an application you have to press twice on it - the
first time to find it, the second time to launch it.

What I have done, is just implement one activity and explore the possibilities
that come with accessibility. So basically, this activity shouldn’t do anything,
besides showing me the user interface. I used different views; text fields, but-
tons, radio buttons and similar, to get an idea of how it works with accessibility
and understand the user’s difficulties.
So I explored this small test-application with closed eyes, trying to understand
how much information is needed with TalkBack to picture the screen and when
the content description makes it too confusing.
Being the one who designed it, I had a picture in my head of it before even
starting. So I also asked others to try it, which haven’t seen the layout, to see
their reaction and see how they would navigate.

I will show an example of an activity, which is an (simplified) example of a
regular application. Afterwards I’ll demonstrate how I would implement it as
an application for visually impaired.

Let us look at a simple application screen.

1Views are interfaces like buttons or image fields, described in chapter 2, Theory

5.1 Accessibility and User Interface in general 25

Figure 5.1: Example of a regular application

If a visually impaired was to use this application, he wouldn’t know where to
begin. If the user explores at the left part of the screen he will just meet two la-
bels, which may or may not read what they are when invoked. If he explored the
right side, he wouldn’t meet any view, because the input fields do not stretch all
the way. These are very bad design choices for this kind of application. Hope-
fully, when the input fields are found, TalkBack would read what needs to be
done.
Then, we have a toggle button in the middle of the screen, which is small and
placed slightly to the right, so even if the text field beside the toggle button is
found there are various possible positions of finding the toggle button itself - the
obvious choice is possibly to try to the right of the text field, but this should
not be something left for the user to figure out.

And at last we have a button in the middle of nowhere. It is small and lo-
cated in the lower part of the screen. There isn’t anything to navigate around
to find it, which makes it difficult to use.

Overall this activity could be used without problems by a regular user - it
is obvious what is going on. But for a visually impaired it isn’t that simple. So

26 Design and Implementation

after trying this out with some test persons, I tried to improve the layout based
on the things I have learned.

Figure 5.2: Example of an application for visually impaired

What is changed here is mainly the size of input fields and buttons. I would like
to make it easier for the user to find the views and therefore they are bigger, but
mainly they fill the width of the screen - the user can’t be in doubt of what it
is on that ”row” of the screen. By doing this, the layout automatically becomes
a list, so you can just explore from top to bottom.

Also, the text fields are just there for information reasons if a regular user
uses the application - they do not do anything with TalkBack, so a blind user
wouldn’t know that they exist. Everything that is needed is read when a button
or input field is invoked. The idea is that the content description replaces the
labels.

So here is what I have learned through this experiment.

I found out that comprehensive descriptions are very confusing for the user,
especially when you have an application you want to use on the go - it takes

5.2 Internet access and Rejseplanen 27

time to read a long content description and you might get confused about what
view the description describes if it is too long.
When only having your ears to rely on, it is important that it is easy to access
every input field or any other view. You can’t have too much content, because
that would be very confusing.
Therefore the description must be short and precise, only the needed informa-
tion should be read.

Besides adding the content description, there is another thing you can do to
make it easier for the user to use the application. That is, to place the views in
a smart way and avoid making them small and difficult to find. The larger the
area of a view is, the easier it is for the user to find it. With this, it is easier to
find the views if the different activities of an application are consistent - so you
have an idea of what to expect when exploring the activity.

What I have learned through this small experiment will be used when designing
the UI of TravelBuddy. I will round this up by describing the design choices, but
first, I will use the next sections to review the implementation of the use cases.
After the implementation review, which explains how TravelBuddy works, I rec-
con it will be easier to discuss the user interface.
So the next section will cover the implementation and understanding the func-
tion in order to afterwards show screen shots of UI and comment on the UI
design choices.

5.2 Internet access and Rejseplanen

The second part of the assignment, was to get internet access from the applica-
tion. For TravelBuddy, the internet access was needed in order to perform API
calls to Rejseplanen and get the desired information. This is done simple:

Listing 5.1: Internet connection
URL url = new URL(serviceName);

HttpURLConnection connection =

(HttpURLConnection) url.openConnection();

connection.setRequestMethod("GET");

connection.setRequestProperty("Accept", "application/xml");

When performing this, we use an URL from Rejseplanen’s API. The output is
an XML file, which is stored as a document object. But before we can do all
this, we need to create the correct URL for the API call, which is based on the
user input.
To create the URL, handle the API calls and working with the output of the

28 Design and Implementation

API calls is the difficult part. The difficulty lies in how to do this, without
interrupting the main thread.

Earlier, I have described the AsyncTask class. This is the key in performing
an API call. We don’t want to disturb the UI thread, and block the applica-
tion. Instead, we use AsyncTask and perform the API call in background, with
doInBackground method. The user of course needs to wait until the call is done
in order to get a result, but the UI thread isn’t blocked, so he could potentially
stop the request.
All the services that Rejseplanen’s API offers are located in the Rejseplanen-
Rest class. The name comes from Rejseplanen’s documentation, as they use
ReST (Representational State Transfer) interface for the different API services.
The API calls are performed from RejseplanenAsyncTask class, that runs asyn-
chronosly to the UI thread. I will shortly introduce the services that I use when
I work with them.
I will analyze the design and implementation of the classes, by looking at the
use cases.

When TravelBuddy is started, we are in TravelBuddyActivity class.
Before the activity can be shown to the user, he is asked to turn the GPS on.
I have implemented this as the first thing, because it takes a while before a
GPS signal is established and I want to have a position ready before the user
begins to use the application. Therefore the TravelBuddyActivity implements
a LocationListener. I will comment on the use of the LocationListener later, for
now, the permission for GPS is given and we proceed with the application.
The main screen is shown, see figure 5.3, and there are two options and thereby
two use cases - either TripFromAtoB or NextDeparture. I will start by looking
at NextDeparture.

5.3 Use case: Next Departure

When the ”Next Departure” button is clicked, a new activity is started. This
is the NextDepartureActivity class.
The way I wanted to solve (and started off with doing) the Next Departure
request, was to show the nearest 5 stops to the user’s location and he could
choose the stop he was interested in, or if he was interested in another location,
an input field would be above the nearby stops, so the user can specify if he
desires another location than the one found by the GPS. After choosing a stop,
a new activity starts and a list of departures from this stop is shown.
While this arrangement gives you flexibility and options, it also gives you a lot
of choices. Choices which can’t be illustrated, but explained by sounds. There-

5.3 Use case: Next Departure 29

fore, this was a bad design for the primary user. After talking with the client,
we agreed that this should be changed. So this is how it works instead.

The user has two options now - either to just search and find the nearest stop us-
ing the current location, time and date or he can specify these, if he is planning
a trip for later, as described in the use cases in chapter 4. The user interface for
the NextDepartureActivity is shown in figure 5.4.

When interested in getting the departures from a stop, two URL requests to
Rejseplanen need to be performed. In order to ask for a stops departures, a
stop ID is needed for the corresponding stop. This is the first API call. The
API needs coordinates, so if the user doesn’t provide a location, the GPS coor-
dinates are used. The URL then looks like this:
http://<baseurl>/stopsNearby?coordX=12565796&coordY=55673063

&maxRadius=1000&maxNumber=30

This URL is Rejseplanen’s stops nearby service and it returns an XML with
stop locations and their coordinates based on the provided coordinates.
If the user desires to make the search from another location, we have to find
the coordinates first in order to find the stops nearby. When we have the co-
ordinates of the location, we can repeat the API for getting a stop ID. Here is
Rejseplanen’s Location service, which returns a list of locations and the corre-
sponding coordinates based on the user input.
http://<baseurl>/location?input=userinput

Here, I make the choice for the user. The two API requests return an XML
file, with several locations or stop ID’s. I make the choice that we are interested
in the first location in the case of using the Location service and the first coor-
dinates in the stop nearby service, and continue to work with them. Otherwise,
I would have to display the different possibilities to the user, and we agreed to
avoid the many options. So the application takes care of the choices itself.
As mentioned before, I wanted to include these options, but keeping the user in
mind, we want to get rid of them.

When making these API calls, I discovered that Rejseplanen’s XML files I got
as response weren’t necessarily the same every time. This made it difficult to
get the desired stop ID and coordinates.
For instance, when making a location API request, the XML returns a list of
locations, holding different elements, StopLocation and CoordLocation, which
are sorted in a specific way. Both elements have coordinate attributes, but the
StopLocation also has a stopID attribute. Rejseplanen’s documentation doesn’t
have the explanation of these, so I figured it was smart to use StopLocation,
because I could directly get the stopID and thereby always get the needed in-
formation by one API call only.

http://<baseurl>/stopsNearby?coordX=12565796&coordY=55673063
&maxRadius=1000&maxNumber=30
http://<baseurl>/location?input=userinput

30 Design and Implementation

So, my first try was just to find the first occurrence of StopLocation and thereby
find the needed stop ID.
Eventually, when trying different locations, I got some errors. First of all, there
wasn’t always a StopLocation element, so I couldn’t get any result. So I started
researching the XMLs, and found this example. If the user input is ”Nørreport”,
here are the first occurring elements of StopLocation and CoordLocation:

Listing 5.2: StopLocation example

<StopLocation name="Nrreport st" x="12571306" y="55683050" id="008600646"/>

Listing 5.3: CoordLocation examplelabel

<CoordLocation name="Nrreport 7500 Holstebro, Holstebro" x="8619972" y="56363102"

type="ADR"/>

The StopLocation is in Copenhagen, while the CoordLocation is located in Hol-
stebro, so the two results are totally different. The StopLocation returns a stop
name with a resemblance to the user input, while CoordLocation returns a lo-
cation with a resemblance to the user input.

After many different try outs, I found out that the first element was always
the best match, so the elements are sorted after the best match. So instead of
checking the element name if it is CoorLocation or StopLocation, I simply use
the first element.
Doing this, I encountered another problem. The XML holds some elements
with the string ”#text”, which are not shown in the XML file and thereby can’t
be seen - they come from the whitespaces of the original XML. It took me a
while to find out that this caused the trouble, but I ended up with a method,
getCoordinate(String location), which returns a coordinate object from the user
provided location:

Listing 5.4: XML parser - from a location to coordinates

Document doc = getXMLfromURL(url);

Node firstNode = doc.getFirstChild();

Node node;

if(firstNode.getFirstChild().getNodeName().equals("\#text")){

node = firstNode.getFirstChild().getNextSibling();

}else{

node = firstNode.getFirstChild();

}

String xCoor = node.getAttributes().getNamedItem("x").getNodeValue();

String yCoor = node.getAttributes().getNamedItem("y").getNodeValue();

coor = new Coordinate(Integer.parseInt(xCoor), Integer.parseInt(yCoor));

5.3 Use case: Next Departure 31

The XML is firstly stored as a document and then it is divided into nodes for
each element. The code snippet shows that we get the first element which is
holding the coordinate attributes and how to get the attributes from the XML
elements. When we have the coordinate attributes, we perform the next API
call to find the stop ID matching the coordinate set.
One option that our client wanted to keep, was to choose whether he is inter-
ested in a bus stop, train station or else.
Meanwhile, I found out that this isn’t exactly possible. When adding this in
the URL, it doesn’t change the result. The reason is that Rejseplanen looks at
a stop as a potential stop for every transport vehicle - so in theory a bus could
stop at any station. So this is actually not possible for this kind of API call.
The XML for the stops nearby doesn’t hold information about which kind of
stop the ID belongs to.
Having one stop ID, we can get the departures. This is done by using the De-
parture board ReST service:
http://<baseurl>/departureBoard?id=8600626&date=19.09.10\&time=07:

02&useBus=0

This API call will return the next departures from the given stop ID. Now
it is possible to choose whether you are interested in bus departures or train,
but this is only useful on big stations, where you have all kinds of transport
vehicles, so this is actually removed from the UI, for simplicity.

Once again, after the API call is performed, it is time for the document parsing,
which of course is also done asynchronosly, so the method for this is also located
in the RejseplanenAsyncTask class.
As mentioned before, the XML is stored as a document. Now it is time to parse
the XML document, so the desired results can be presented. Listing 5.5 shows
a snippet of the XML:

Listing 5.5: XML snippet from the departure board service

<Departure name="Re 5837" type="REG" stop="Kbenhavn H" time="14:06" date="

30.08.12" direction="Lejre st">

<JourneyDetailRef ref="http://xmlopen.rejseplanen.dk/bin/rest.exe/journeyDetail

?ref=147885%2F58508%2F324836%2F113128%2F86%3Fdate%3D30.08.12%26"/>

</Departure>

<Departure name="H" type="S" stop="Kbenhavn H" time="14:06" date="30.08.12"

direction="Frederikssund st">

<JourneyDetailRef ref="http://xmlopen.rejseplanen.dk/bin/rest.exe/journeyDetail

?ref=960780%2F331618%2F953564%2F156536%2F86%3Fdate%3D30.08.12%26"/>

</Departure>

<Departure name="Bus 6A" type="BUS" stop="Hovedbanegrd/Vesterbrog." time="14:06"

date="30.08.12" direction="Emdrup Torv">

<JourneyDetailRef ref="http://xmlopen.rejseplanen.dk/bin/rest.exe/journeyDetail

?ref=556386%2F192409%2F243110%2F63908%2F86%3Fdate%3D30.08.12%26"/>

</Departure>

http://<baseurl>/departureBoard?id=8600626&date=19.09.10\&time=07:02&useBus=0
http://<baseurl>/departureBoard?id=8600626&date=19.09.10\&time=07:02&useBus=0

32 Design and Implementation

<Departure name="Bus 1A" type="BUS" stop="Hovedbanegrd/Tietgensbro" time="14:06"

date="30.08.12" direction="Hellerup st. (bus)">

<JourneyDetailRef ref="http://xmlopen.rejseplanen.dk/bin/rest.exe/journeyDetail

?ref=424629%2F144044%2F90398%2F96347%2F86%3Fdate%3D30.08.12%26"/>

</Departure>

Now, we are interested in every Departure element of the shown XML and want
to have its information. It is easier to look at every Departure as an object;
therefore I have created a data class, Departure, to store the information in. A
Departure object has a vehicle name, direction and a departure time. Here is a
code snippet of how a Departure object is created.

Listing 5.6: Creating a Departure object
Document doc = getXMLfromURL(url);

NodeList listOfDepartures = doc.getElementsByTagName("Departure");

Departure[] departuresArray = new Departure[listOfDepartures.getLength()];

for(int s=0; s<listOfDepartures.getLength() ; s++){

Node node = listOfDepartures.item(s);

String vehicleName = node.getAttributes().getNamedItem("name").getNodeValue();

String direction = node.getAttributes().getNamedItem("direction").getNodeValue

();

String departureTime = node.getAttributes().getNamedItem("time").getNodeValue()

;

departuresArray[s] = new Departure(vehicleName, direction, departureTime);

}

The snippet shows how to get the attributes from the XML elements. For every
departure we get the name, direction and time from the XML and then we can
create a Departure object. When the code finishes, we have an array of Depar-
ture objects - departureArray. The array holds the information that we want
to present to the user.

Now we are done with RejseplanenRest class with all the API services and
RejseplanenAsyncTask class which is the asynctask class and we want to return
to the main thread. The difficult part is not to return to the thread, but to
return with the found information, in this case with the departure array.

I have tried this in several ways. Sending an empty array from the main thread
to RejseplanenAsyncTask and fill it up - this returns an empty array again in the
main thread, although I have checked that it is filled before leaving Rejseplane-
nAsyncTask. Another way was to use the onPostExecute method of asynctask
in the RejseplanenAsyncTask class. This actually worked, but the way it was
done, was to start a new activity from onPostExecute and send the array with
the intent.
I later found out that this is a bad design - this way, I changed the GUI from

5.4 Use case: Trip from A to B 33

a asynctask class, instead from the main thread. This mixed up the different
activities and it was difficult to keep track of the activities and return to the
right ones.
The last and best solution that I found, is to use a callback method.

Before starting the API calls, we are in NextDepartureActivity class. From
here we start the AsyncTask and go to the RejseplanenAsyncTask class. When
we are at the onPostExecute() method we return to the UI thread and send data
to the callback method Finished() in NextDepartureActivity. In the callback
method, I create a new activity with the results, PossibleDeparturesActivity.

It is a bit troublesome to send data between activities. Intents are used for
this, as described in chapter 1. It took me a while to figure out how the intents
are used; it is easy to send one object, but an array of objects is another thing.
Implementing Serializable in the data class solves this problem. So when we
are in PossibleDeparturesActivity, the sent array is extracted. Therefore a new
array must be created and afterwards be filled with the intent data.
After this, we are ready to show the result screen, showed in figure 5.5.

Overall, looking at the way I have designed a solution to this use case, there
is a difference in designing it for a visually impaired user and as a accessible
application compared to a regular travel application.
The main difference is that some of the options are actually removed, in order to
make it more accessible, while more options are desired for a regular user, or at
least, the possibility is there. Some of these options, could be added as settings
whether the user wants to have few or more options, but I haven’t implemented
this.

5.4 Use case: Trip from A to B

Now, I will be looking at the case where the user wants to plan a trip from A to
B. Compared with the NextDeparture use case, the user now has to provide a
destination, assuming he knows where he is going. This is the only mandatory
information that needs to be provided - the others are optional.
From the main screen, the button From A to B is clicked and we come to the
next activity, FromAtoBActivity, which can be seen on figure 5.6.

This use case needs several more URL calls than the earlier use case. The
coordinates for the destination are found like described in the earlier use case.
If a location is specified we need an API call for the coordinates, otherwise the
GPS coordinates are used.

34 Design and Implementation

There are several ways of finding a trip from A to B, but I have chosen to use
the coordinates, like this:
http://xmlopen.rejseplanen.dk/bin/rest.exe/trip?originCoordX=12530950&originCoordY=

55795058

&originCoordName=your+location&destCoordX=12571306&destCoordY=55683050

&destCoordName=your+destination&useBus=0

I have done this, because I believe that with coordinates we get the most pre-
cise result. I will provide a snippet of this XML, in order to explain its parsing,
because it is more complex than the earlier use case.

Listing 5.7: XML snippet from a trip service request

<Trip>

<Leg name="til fods" type="WALK">

<Origin name="Kbenhavn H" type="ST" time="14:43" date="07.08.12"/>

<Destination name="Nrreport st. (bus)" type="ST" time="15:02" date="07.08.12"

/>

<Notes text="Varighed: 19 min.;(Afstand: ca. 1,5 km);"/>

</Leg>

<Leg name="Bus 150S" type="EXB">

<Origin name="Nrreport st. (bus)" type="ST" routeIdx="0" time="15:02" date="

07.08.12"/>

<Destination name="DTU/Rvehjvej" type="ST" routeIdx="13" time="15:25" date="

07.08.12"/>

<Notes text="Retning: Kokkedal st (bus);"/>

<JourneyDetailRef ref="http://xmlopen.rejseplanen.dk/bin/rest.exe/

journeyDetail?ref=856104%2F286702%2F311200%2F129768%2F86%3Fdate%3D07

.08.12%26station_evaId%3D461%26"/>

</Leg>

<Leg name="til fods" type="WALK">

<Origin name="DTU/Rvehjvej" type="ST" time="15:25" date="07.08.12"/>

<Destination name="Rvehjvej, DTU" type="ST" time="15:27" date="07.08.12"/>

<Notes text="Varighed: 2 min.;"/>

</Leg>

</Trip>

For the earlier use case, I implemented a data class, Departure - I will do the
same now. At first I made an abstract class, for the common fields of Departure
and the new data class, Trip, but then I found out that they do not have that
much in common because of the diversity of the XML files. A trip consists of
several legs as it can be seen on 5.7 - these are the steps of the trip. So, a
result should return a list of trips, which consists of a list of steps. To make this
manageable, there is another data class, namely TripStep.

Listing 5.8: Creating a Trip object

Document doc = getXMLfromURL(url);

doc.getDocumentElement ().normalize();

NodeList listOfTrips = doc.getElementsByTagName("Trip");

http://xmlopen.rejseplanen.dk/bin/rest.exe/trip?originCoordX=12530950&originCoordY=55795058
http://xmlopen.rejseplanen.dk/bin/rest.exe/trip?originCoordX=12530950&originCoordY=55795058
 &originCoordName=your+location&destCoordX=12571306&destCoordY=55683050
 &destCoordName=your+destination&useBus=0

5.4 Use case: Trip from A to B 35

Trip[] tripsArray = new Trip[listOfTrips.getLength()];

int numberOfShifts;

//We find all the trips and are ready to extract the steps from them

for(int b=0; b<listOfTrips.getLength(); b++){

numberOfShifts = 0;

NodeList listOfTripSteps = listOfTrips.item(b).getChildNodes();

ArrayList<TripStep> stepArray = new ArrayList<TripStep>();

for(int j= 0; j<listOfTripSteps.getLength(); j++){

if(listOfTripSteps.item(j).hasAttributes()){

NodeList listOfTripStepsChildren = listOfTripSteps.item(j).getChildNodes();

TripStep step = new TripStep();

Node stepNode = listOfTripSteps.item(j);

step.setType(stepNode.getAttributes().getNamedItem("type").getNodeValue());

step.setTransportName(stepNode.getAttributes().getNamedItem("name").

getNodeValue());

for (int s=0; s<listOfTripStepsChildren.getLength(); s++){

Node node = listOfTripStepsChildren.item(s);

if (node.getNodeName().equals("Origin")) {

step.setOrigin(node.getAttributes().getNamedItem("name").getNodeValue())

;

step.setOriginTime((node.getAttributes().getNamedItem("time").

getNodeValue()));

step.setOriginDate((node.getAttributes().getNamedItem("date").

getNodeValue()));

}

if(node.getNodeName().equals("Destination")){

step.setDestination(node.getAttributes().getNamedItem("name").

getNodeValue());

step.setDestinationTime(node.getAttributes().getNamedItem("time").

getNodeValue());

step.setDestinationDate(node.getAttributes().getNamedItem("date").

getNodeValue());

}

if(s == listOfTripStepsChildren.getLength()-1){

step.setDestinationCoor(tripDestinationCoor);

}

}

stepArray.add(step);

}

}

tripsArray[b] = new Trip(stepArray.toArray(new TripStep[0]), numberOfShifts);

}

This piece of code shows how the Trip objects are created and how information
is extracted from the XML document. We make a node list of trips, and for
every trip we make a list of TripSteps. Now, every TripStep has some attributes
that we are interested in, but it also has an origin and destination element. We

36 Design and Implementation

want to store these separately, which is done by checking if the trip step node’s
child is an origin or a destination element.
So the result of this method is an array of Trips, where every Trip has an array
of TripSteps.

Again like in the earlier use case, after the API calls are performed and we
are in onPostExecute() we go back to the UI thread and the callback method
Finished() is called, now with a list of trips. Of course the data classes Trip and
TripStep need to implement Seriazable like before.
The result of this use case is a list of the next three trips to the desired desti-
nation and can be seen on figure 5.7.
What is shown here is a list of trips. For every trip there is a button holding
the origin of the first step and the destination of the last step of the trip. This
is handled in PossibleTripsActivity class.

5.5 Use case: Trip Description

The earlier section explained how a request for a Trip from A to B is imple-
mented.
While constructing the array of Trips, the trip description is also stored. If the
user chooses to se its details, a new activity is started, TripDescriptionActiv-
ity. Once again we need to use the intent in order to send the information to
TripDescriptionActivity from PossibleTripsActivity. Here, the screen shows a
list, showing every step of the selected trip and can be seen on figure 5.8.

5.6 Loading Screen

Without having graphics to rely on, it is difficult to know when a program is
doing something. Therefore, I have added a loading screen, which stops the
background and reads out loud that it is loading.
The loading screen is shown right after the API call is started and dismissed in
the Callback function Finished(), before starting the result activity.
Depending on how long it takes for the asynctask to run, the loading screen is
shown. So if it runs fast, the loading screen can’t manage to read the whole
command - this can be confusing, leaving the user without knowing what screen
he is at. A sleep() command could be used to get enough time to read it, but this
would slow the program. Here it should be considered what is most important;
speed versus accessibility.

5.7 Additional 37

I have removed the sleep() command and chosen the speed here, because the
user can find out what is on the next screen by exploring it, although the first
times he uses the application would perhaps leave him confused with this.

5.7 Additional

After working with the application for so long, I decided to spend more time
on adding some important and useful functionalities to the application. In this
section I will cover two extra functions that I have implemented - both of them
are important for the client.

5.7.1 Directions and Google Navigation

In the introduction Chapter, I mentioned, that I would like to implement the
possibility of getting directions by foot. This wasn’t a use case, but the user
said it would be a nice thing to add to the application.
When a trip is selected, we get a list of steps in order to travel from A to B.
For every step there is a button. When selecting a step where the user has to
walk from in order to get to the next step, I want to add the directions to the
stop. This could not be provided by Rejseplanen’s API, but it can be done with
Google Navigation.
The way it is done is by using the Google Navigation application. This requires
that the application is installed on the smartphone, but this is a standard ap-
plication on all new Android smartphones.
To start Google Navigation, I have added an onClickListener on the buttons,
where the user needs to walk. The onClickListener starts a new activity, Google
Navigation, when such a button is clicked.

There are many ways of starting Google Navigation and it is done by one line
of code, so it is not that complicated. Once again, an intent is used to pass the
desired location or coordinates to Google Navigation.
The difficult part here is to start Google Navigation in ”walk” mode. Usually,
the user specifies this once Google Navigation is started, but I want to do it as
easy as possible for the user, spare him the trouble and start Google Navigation
in ”walk” mode.

After a lot of reaserch, I found only one way of doing this. Listing 5.9 shows
how it is done.

38 Design and Implementation

Listing 5.9: Starting Google Navigation Activity

startActivity(new Intent(Intent.ACTION_VIEW, Uri.parse("google.navigation:ll=" +

((double)stopCoor.getStopCoor().getLat()/1000000) + "," + ((double

)stopCoor.getStopCoor().getLon()/1000000) + "&mode=w")));

When started this way, I have encountered one problem. One can only send a
destination along with the intent as a parameter - Google Navigation will use
the GPS coordinates as the users current location.
I tried other ways of starting it, which allowed me to provide both location
and destination, but then the problem was to start it in ”walk” mode - Google
Navigation required a specification of user mode before one could get directions.
I chose to use the first option and here is why. First of all, the application is
automatically started in ”walk” mode.
Second of all, optimally, you are interested in the directions when you need to
get them - and you need them when you have to walk the distance from the
current location to the destination. So when turning on Google Navigation,
the location is your current location - if you get the directions to step 3, while
actually you are at step 1, the location will be the same as step 1. So the
directions should be used when you are at a certain step, otherwise they could
be confusing.
It is easy to navigate between Google Navigation and TravelBuddy just by goin
back and forth as usual.

5.7.2 Get off the bus!

In the Project Analysis chapter, the challenges of traveling are listed and one
of these is when to get off a transport vehicle.
It would be great to be able to get in the bus or another vehicle, without the
need of asking the driver to inform you when you have to get off and getting
rid of the risk of the driver forgetting to inform you about this. In many public
transports, the stops are read out loud, but not always. So therefore I would
like to give the possibility of this to the user.
This problem isn’t listed as a use case, but is something I have added because
of the importance of the problem.
The main issue in solving the problem is not to implement the functionality,
but to evaluate the pros versus the cons in having the functionality in the ap-
plication.
I will start by discussing the implementation of the solution and then I will look
at the pros and cons.

We are interested in finding out when the location is changed to the arrival
coordinates - so the user can be warned and be ready to get off.

5.7 Additional 39

In order to do this, the location must be checked regularly and be compared to
the stop location.
When the user gets to Trip description activity he can follow the steps of the
trip. After getting to the stop using Google Navigation, the next step is to take
the bus or another vehicle. If pressing the button of the step of a vehicle ride,
the application will know it is time to check the distance to the stop regularly.

The way I have solved this is by having another activity, ReachStopActivity,
which is started when a vehicle ride step button is chosen.
A new screen appears which lets the user know that the bus is driving towards
the destination. When he is close to the destination he needs to be warned.
So first of all I need to get the information about the route and send it to
ReachStopActivity. What I need is the stop coordinate. The XML snippet on
listing 5.7 shows that besides the two elements of a trip, Origin and Destina-
tion, some of the trips have another element, namely JourneyDetailRef. This
element can be found for every TripStep that involves a public transport. The
ref attribute of JourneyDetailRef element is an URL, which has further journey
details.
If we use listing 5.7 as the example and need to know when we have reached the
stop, we would need to get the coordinates. So I will modify the parsing shown
in listing 5.8, in order to also store the ref attribute from the JourneyDeatilRef.
If we look at the XML snippet from the new API call, JourneyDetailRef, there
might be some way to get the destination coordinates.

Listing 5.10: XML snippet of JourneyDetailRef

<Stop name="Nrreport st. (bus)" x="12572933" y="55683985" routeIdx="0" depTime="

15:02"/>

<Stop name="Slvtorvet" x="12573868" y="55688956" routeIdx="1" arrTime="15:04"

depTime="15:04"/>

<Stop name="Blegdamsvej/Tagensvej" x="12567108" y="55694089" routeIdx="2" arrTime

="15:06" depTime="15:06"/>

<Stop name="Fredrik Bajers Plads" x="12562236" y="55696030" routeIdx="3" arrTime=

"15:07" depTime="15:07"/>

<Stop name="Universitetsparken" x="12562128" y="55702017" routeIdx="4" arrTime="

15:09" depTime="15:09"/>

<Stop name="Vibenshus Runddel" x="12561975" y="55706044" routeIdx="5" arrTime="15

:10" depTime="15:10"/>

<Stop name="Lyngbyvej/Haraldsgade" x="12561705" y="55710071" routeIdx="6" arrTime

="15:11" depTime="15:11"/>

<Stop name="Hans Knudsens Plads" x="12559845" y="55712930" routeIdx="7" arrTime="

15:13" depTime="15:13"/>

<Stop name="Ryparken st. (bus)" x="12557813" y="55715690" routeIdx="8" arrTime="

15:14" depTime="15:14"/>

<Stop name="Tuborgvej/Lyngbyvej" x="12550325" y="55728248" routeIdx="9" arrTime="

15:16" depTime="15:16"/>

<Stop name="Kildegrds Plads" x="12538621" y="55737866" routeIdx="10" arrTime="15

:17" depTime="15:17"/>

<Stop name="Brogrdsvej/Lyngbyvej" x="12523313" y="55752896" routeIdx="11" arrTime

="15:20" depTime="15:20"/>

40 Design and Implementation

<Stop name="Klampenborgv/Hgr.Motorv." x="12523780" y="55775108" routeIdx="12"

arrTime="15:24" depTime="15:24"/>

<Stop name="DTU/Rvehjvej" x="12528311" y="55786920" routeIdx="13" arrTime="15:25"

depTime="15:25"/>

The XML snippet shows that there are coordinates for every stop, which can
be found by the routeIdx attribute.
Every departure has also a routeIdx, shown on listing 5.7. So if these two are
compared, the coordinates can be found.
Now that we have the coordinates, they will be parsed along with the other
attributes and send to TripDescriptionActivity and then to ReachStopActivity.
Having the needed data, we can proceed.

ReachStopActivity class implements LocationListener, which has an onLoca-
tionChanged method. This method is exactly what we need. Having a location
manager, we can specify how often it needs to request for updates. I have used
1 second as the update time.
So every second we go to onLocationChanged method. Here, the GPS provided
location is compared to the stopLocation where we are heading.
The user needs to be warned in time, not too soon, because there could be stops
which are located close to each other, so he could get off too early, and not too
late, so he can’t make it to pres stop. So this could be defined as 100 meters
before the stop, the user should be warned, either with saying it or vibration
(this could be a setting).
To calculate the distance between two coordinates, various mathematical formu-
las could be used. Of course, the distance is an indicative distance, calculated
as an air line and is not the distance the vehicle needs to drive before it is a the
stop.
If the distance is no more than 100 meters, the user should be alerted that he
needs to get off the bus.
I reckon there is no need in calculating the distance in a complicated way, be-
cause the only thing we need it for is to check when we are 100 meters from the
stop point. This is such a short distance, that it almost is the same if it is the
route or an air line.
So when the user is less than 100 meters from the stop he is warned that he
needs to get off. This is done by an alert box, reading Destination is reached
within 100 meters. I have considered to increase the distance to 200 meters, so
the user has more time to react in - but this depends on how close the stops
are - if they are any closer than 200 meters, the application would give you the
wrong stop, so there is another thing to be considered.

Another way of solving this problem is to follow the route. Instead of checking
the distance to the stop we are heading to, it could be checked when the stop
before our destination is passed - this would automatically mean that the user

5.8 User Interface 41

should get off at the next stop.
There are several problems to this. If the stops are very far away from each
other, the user could be confused and doubt if he has missed something - or
could be confused if the bus stops at a traffic light - he could think that it was
the stop and be confused about why the doors don’t open and then doubt if he
had pressed the stop at the bus.
This is another option, which could be optimized, but I have chosen the first
solution as described.

In the beginning of this section I wrote one needs to evaluate pros and cons.
What I have stated until now are clearly pros - giving the user the possibility
of knowing when to get of a transport vehicle.
The single bad thing about this functionality is the battery usage. Every smart-
phone user knows that you need to charge your smartphone often enough, and
do it a lot the more you use it. GPS service is the very application which con-
sumes much battery - and that is what we need in this application.
If a bus ride takes one hour, you would need the GPS to be active the whole
time. I was thinking about implementing the functionality of performing the
destination check rarely when far away and more often when the distance de-
creases down to 1-2 km. But even if you implement that the check is performed
more often when you get closer to the destination, the GPS is still on and active.
This consumes the battery time.

There is no guarantee that the smartphone will have enough battery to di-
rect you the rest of the trip if you use it up on a simple function, to get off the
bus.
This functionality is important, but it takes a lot of battery time, so perhaps it
is not such a great help after all.
However, now it is a function of TravelBuddy and should be used wisely.

5.8 User Interface

During the last sections, I have commented on the implementation of the use
cases. In this section, I will comment on my choices on the user interface.
I have observed how our client uses his smartphone, during our meetings. This
gave me an insight to how difficult it is to use it. Although you have TalkBack
turned on and it is easy to navigate between the applications, it is difficult to
use them.
Almost none of the clients applications are developed for visually disabled users,
so when they were developed, his needs were not prioritized. When TalkBack
is turned on, sometimes everything on the screen is read out loud, without any

42 Design and Implementation

user input.
This is very confusing and not useful at all. I have tried to use these observa-
tions when designing the user interface for TravelBuddy. Following is a review
of the thoughts and choices I made when designing the user interface.

When starting the application, there are two possibilities. If the GPS is not
turned on, a popup window is shown, asking if the user would like to change
the settings. If this is the case, a new activity starts, which is a default activity
for changing the GPS settings. There is nothing I can change about the design
of this, because it is the default handler of the GPS settings and needs to be
done in order to use the GPS.
When the user turns on the GPS TravelBuddy is ready to be used. The main
screen is shown and can be seen on figure 5.3. The design is very simple and
there is almost nothing on the screen except the few necessery buttons.

5.8 User Interface 43

Figure 5.3: UI - Main screen

The main screen has a view for the name of the application - just for information
purposes. Additional to this, there are two very large buttons, which are easy
to find because of their size. Everything is read out loud if invoked by touch. If
the buttons are touched, they will be clicked the second time they are touched.
I want to minimize the number of steps the user needs to go through, before he
gets the wanted information.
The layout is black and simple, with not too many options - but therefore it is
easy to use by any other user also.

Earlier, I discussed the options I wanted to add to NextDepartureActivity. It
wasn’t much, but the few adjustments and additions I had, the client said were

44 Design and Implementation

too much.
The layout of NextDepartureActivity can be seen on figure 5.4.

Figure 5.4: UI - Next Departure

I have kept the simple style and big views, to make it easier for the user to
explore. The simplest way to get to the stop is just to use the large Search
button and use the general settings. It is located at the bottom of the screen,
so the user can find it fast and doesn’t have to go through the other views in
order to find it.
Enabling TalkBack, the user knows where he is on the screen. The only things
that I have implemented to be read are the input fields and the buttons. This
was to not confuse the user further more - for instance the first field on the

5.8 User Interface 45

Next Departure screen is ”Location”. This is just information for a user with
no visual disability and is not read out loud by TalkBack. Also, when a input
field is invoked, like ”Location”, the TalkBack reads: Input your location. Edit
box. The last part, ”Edit box” is something Android adds to input fields, which
I wanted to remove. But the user explained that he was often confused by other
applications, whether fields just were information fields or input fields, so I left
the extra explanation.

A thing which would be unusual to a regular user, would be the input of time
and date.
The way this is done in TravelBody, is just by writing the time as one number.
For instance ”12.45” is just written as 1245. The same for the date. It is of
course punctuation insensitive. Usually, for normal apps, this could be divided
in two different fields, so if you got the hours wrong, you do not have to change
the minute. I suggested this to the client, but he thought it would be smartest
to leave it as one big field. After the search the result screen is shown, and can
be seen on figure 5.5.

46 Design and Implementation

Figure 5.5: UI - Result from a Next Departure request

Additional to this, Trip from A to B has a few more options, which can be seen
on figure 5.6.

5.8 User Interface 47

Figure 5.6: UI - Trip from A to B

There are three checkboxes, which are used for choosing a transport vehicle. I
think this is the best way of adding these options.
Another way could be to add it as a setting, but this is probably inconvinient
to change every once in a while. So I stayed with checkboxes.
So much for the input. The output on the other hand, is almost the most im-
portant part. As I mentioned earlier, output can appear when the user presses
the ”Search”-button. I wrote about how I would like to have some output, as
instant service based on your GPS location. This is difficult for the user to
examine though. The way that it is now, the user follows the application step
by step, and knows what is going on - logically, he gets results when he has
searched for them.

48 Design and Implementation

The output for Next Departure generates buttons from the XML the API re-
turns and is filled by the information. The buttons can be clicked and Google
Navigation starts with direction to the bus stop.

Figure 5.7: UI - Result from a Trip from A to B request

This works the same way for ”Trip from A to B”. Except when clicking on a
trip we come to a trip description screen, which looks the same way - it has
buttons, based on how many steps the trip has. An addition is also that if a
step is a ride with public transport, a new activity starts informing the user
when he needs to get off the transport vehicle.

5.8 User Interface 49

Figure 5.8: UI - Trip Description

The output for both use cases is showed as a list of buttons. Every button can
be clicked and lead either to Google Navigation or an activity showing when to
get off the vehicle.
All the results are shown in form of a list - I chose this first of all so the result
activities would stay true to the layout of the other activities, but there is also a
functional aspect to this. The user can explore the information row by row and
thereby control what is read out loud and get a repetition of the information if
he needs it.

For the result of TripFromAtoB use case we discussed adding an option which
should sort the results by different preferences - sort by number of transport

50 Design and Implementation

shifts, duration or time for starting the trip. This could be added easily, but the
problem is that the trip API only returns three trips at a time. I reckon that
there is no need to add a sorting algorithm for three items. Even if I added an
option for finding the next three trips, there would only be 6 trips. Perhaps it
would make sense to sort them, but this would mix up the older results, making
it more confusing than helpful.

Overall, I have chosen for the design to have as little content and options as
possible and also make every view large enough, so the user can’t get confused
about which view he is at.

Another thing I have tried to accomplish is to use the same layout for every
activity and make the application layout consistent. Every activity should be
explored from top to bottom and has a form of a list layout. There is only one
view per line - meaning there is no need to explore the screen to the sides. This
should help the user have an overview of how to navigate on the screen. This
layout idea is used on both input and output.

The most used view in the application is the button view. I have used but-
tons in order to create the feeling of clicking around in the application - also
because when a button is used, the user is informed that it is clicked, TalkBack
reads ”Clicked”.
So input fields are used for input purposes, because they read ”Edit Box” and
buttons are used when you get from one activity to another - this is consistent in
the application and will make the user feel safe and familiar with the application.

Above the input fields, there are labels explaining what needs to be provided
in the input field. Although they are there, they do not read anything - I have
added them with the purpose of making it possible to use TravelBuddy without
TalkBack, or allowing a not visually impaired to help a user the first time he
uses the application, so a blind user would not in fact know of their existence.
The same goes for the buttons - they have text and information, and this is for
the same purpose as before - a not visually impaired user could navigate around
in the application. So the only thing that is read by TalkBack is actually when
an input or output view is invoked. When the application is designed like this,
the extra information like ”Edit Box” and ”Clicked” information shouldn’t be
needed. Never the less, I have left them because our client was fond of this.
This is because other applications he has used also read the labels, leaving him
without information about what kind of view he is at and what he needs to do.
Although I have optimized this in my application, he is uncertain because of his
experience from other applications, so I have left this of consistency reasons.

Chapter 6

Test

In order to make the application robust it has been through a lot of testing.

Testing this kind of Android appplication can’t exactly be done as general soft-
ware testing. First of all, there are not many Unit tests to be done, when using
the internet to get the results. Of course, a hard-coded XML file could be used
to see if the output is as expected. On the other hand, this wouldn’t be so effi-
cient, when having many different and many forms of XML files. Of course Unit
tests of different input could be tested, but this is taken care of when checking if
the XML files return anything. It will be commented on later on in this chapter.

Besides, this project has the accessibility as the main focus and therefore manual
testing was necessary.

6.1 Manual Testing

While programming TravelBuddy, the client has performed tests continuosly
and given feedback in order to improve the program in a way that he finds fit-
ting.

After the last revision I got his feedback. He had some few comments, but

52 Test

otherwise he thought that the application was good and easy to use.
One of the comments was that the user somehow should be informed that the
GPS location was used if no location is provided.
I thought that it was enough that the permission for the GPS was asked when
starting the application, but this is of course not something that should be as-
sumed.
There are various ways of fixing this problem. I figure that it is too much to
add this information as content description, but could be added when asked for
GPS permission. A better choice could be to add it as an information menu
in the settings, but this is something I would like the client to specify what he
thinks is more useful.

Another thing that he would like to be a setting is the time of the trips and
departures. The way that it is now, is that the the descriptions hold the time of
the departure of the transport vehicle. The client’s suggestion was to indicate
the time until the the vehicle arrival in minutes instead - so he knows in how
long it will arrive and for how long he needs to wait.

Personally I think that it is easier to plan a trip when having the time in-
stead, but the problem is that a visually imapired user can’t just check the time
when he likes. It is easier to relate to the remaining minutes untill the departure
instead of the time.
In order to change the time to minutes it would require to update the results so
the minutes are a form of a countdown. Right now, there is not implemented a
function to update the search result, but I will discuss the option of updating
in chapter 7, Further Development and Perspectivation.

The update aside, the solution to the client’s suggestion could be adding a
setting for the arrival time presentation, so the different users can use whatever
they prefer.

6.2 Other forms of testing

There is a test that an application needs to pass in order to get allowed to be
uploaded on the Android Market. I have used this test for testing TravelBuddy.
The test comes with the Android tools and is run from the command promt.

The test is called The Monkey and is used to stress test the application us-
ing the UI. It performs a provided number of randomly generated user events
in form of clicks, touches etc.

6.2 Other forms of testing 53

I have used the Monkey on TravelBuddy, but no errors were reported. Not
until I used 100.000 user events. After so many events, the Monkey performed
a random search - which made the application crash.

The crash occured when the location string only consisted of non-letters. I
thought that I had taken care of this, but the application performed the search
and stopped when a Null-Pointer exception occurred. The Null-pointer occurred
when an API call for finding coordinates to this location was performed - no
location could match a non-letter user input.

After the testing, the error has been fixed by adding an alert box when the
input returns an XML with an error. The alert box informs the user that the
input is invalid.

Another crash occured after various runs of the Monkey test. Accidently, while
the test was running, the user events turned of the internet connection. This
means that the XML file can never be fetched and therefore all the methods
which handle the XML file will return a Null-Pointer exception.
I have stated that TravelBuddy needs internet connection in order to fully func-
tion, but sometimes the internet connection is lost, which I haven’t taken care
of.
There are various ways of solving this situation. Most applications on the mar-
ket simply let the user know that there is no internet connection and let the
user cancel the application or try again - many times the connection is found
right after the first try. So I would also solve the problem this way, by showing
an alert box or similar, letting the user know what the problem is and give him
the opportunity to try again or stop the search.

It was very efficient to use the Monkey in this case, but I reckon that it is
better to use for an application with more focus on graphical user interface.

An obvious way of testing an Android application would be to test it on other
devices. TravelBuddy is developed on Samsung Galaxy Nexus, but is also tested
on a Samsung Galaxy S2.
What TravelBuddy requires is Google Maps, GPS and Android Accessibility.
Any smartphone which doesn’t support these functions would TravelBuddy not
be conpatible with. Otherwise, the layout of TravelBuddy is not based on the
size of the screen, but on percentage - therefore the layout would be the same
on every smartphone and can both be used in horizontal or vertical orientation
- as the user perfers. Of course the bigger the screen the better it is for this
exact application.

54 Test

Chapter 7

Further Development and
Perspectivation

Other than the implemented and described functionalities, I would like to re-
search on other problems I have thought about, but didn’t have time to imple-
ment myself.

7.1 Your Friend’s Address

A smart addition to TravelBuddy, could be to use an address of a contact in
the contact list as a potential destination in a trip. This would require that the
contacts address’ are stored in the contact list correctly - which is a quite big
assumption.

Just like Google Navigation is used in order to get directions, to launch the
contact list would require starting a new activity. This is easy, but it would
require many checks, whether the address is there, if it is of a valid format etc.
It would be a nice addition, but it should be evaluated how much longer it takes
to find the correct contact for a blind person than typing an address.

56 Further Development and Perspectivation

7.2 Which bus is it?

My research and contact to people with visual disabilies showed that a very
important problem for them was to find the correct transportation vehicle. If
there are two busses at the stop, which one should they take?

I have been researching on how this could be implemented in TravelBuddy.
Using live updates from the internet is one idea - there is a way of getting the
live updates, but one would have to gain access to this by contacting Rejsepla-
nen.

This idea would remove some uncertainity but not all. The user could almost
always be sure of when the bus has arrived. The smartphone could signal when
the live update says it is time for the bus to arrive. But they are not always
precise enough and this could be misleading for a blind person.

Another problem is if two busses arrive at the same time - the user would
automatically walk over to the first bus, which isn’t necessarily the one he is
interested in.

My best suggestion to solving this problem, would be to use some kind of vehicle-
to-smartphone signal. The vehicle would have some kind of device, which sends
a signal to the smartphone, when it stops or is in range - or could beep more
and more when the vehicle is getting closer.
This way, the user would be sure when the bus has arrived and be sure of which
one to take.
Using blutooth or infrared signals don’t use so much battery time, so this could
be a good solution. It of course depends on what distance this can be done, but
this is just a suggestion.
There are already various devices in public transports, for example for checking
in - here could the sender be added.

7.3 Updating During a Travel

While programming TravelBuddy I was thinking about if it was smart to update
a found trip. Here is an example: the user has found a trip that he would like
to take and is looking at the trip description. He is done with the first step and
is on the next. Should the result screen update and remove the first step - there
is no need for it to still be there. I did not do this because it would be confusing
for the user that the screen is different than before, so this was an easy decision

7.4 Security 57

to make.

While considering this, I found a more important situation to consider. While
being on the trip the user takes the bus but doesn’t manage to get off in time.

The functions of the application as it is now have no way of checking this.
But updating the route would make it easier. A good addition to the appli-
cation would be to let the user know that he didn’t get off and then calculate
another route for him. Also if the user gets on the wrong bus, the application
should alert the user.
I have considered ways of doing this - using the GPS and the JourneyDetail
element it would be possible to follow the ride and perceive the first time the
route is not followed. Checking the start routeIdx and following the increasing
routeIdx’s combined with the GPS position would work. This addition would
not stop the user from taking the wrong bus but it would help him get on the
right track.

As discussed in chapter 6, Test, updating the search results could also allow
the setting of showing the time of a departure as minutes untill departure.
Updating the trip would be a great help this way and would be a good addition
to TravelBuddy.

7.4 Security

When I first started off with the project and heard the project requirements, I
was in doubt if I wanted to take it on.
My main doubt lies in the security of this kind of program. The main idea was
that TravelBuddy should follow the user from A to B. The question was, could
this be done in a secure way, so a visually impaired could use it?
The plan was that TravelBuddy should have its own navigation system, which
I doubted could be used because of the required precision - what happens if the
GPS signal is low? Therefore I have put this requirement aside and focused on
the public transport information which was the main requirement to the appli-
cation.

I ended up with adding the possibility of getting direction by using Google
Navigation as the navigation system, which is probably the most precise there
is - but is this good enough?

I chose not to try to implement something better than Google Navigation -
why try to improve something that is already working well. My client also said

58 Further Development and Perspectivation

that he has used it before and liked the help there is provided. Therefore I chose
to use Google Navigation - it could be interesting to develop this function on my
own, but the focus of this project is to investigate and explore the possibilities
of developing such an application and Google Navigation has the function that
was needed.

Being visually impaired, it is very dangerous to move in the traffic. If any
kind of navigation is used, the user can never fully trust that the directions are
totally precise - but also needs to use his sense, intuition and ofcourse what he
sees. This is not that simple for a visually impaired. Therefore, TravelBuddy
is just a indicative help for moving in traffic - the user would still need to have
awareness and be careful.

7.5 Applications for both Target Groups

My assignment was to implement a traveling application for the visually im-
paired. But what if we could develop applications for both the visually impaired
and the regular users? What would be needed then?
I can imagine that TravelBuddy or another traveling application could be de-
veloped for both kind of users. TravelBuddy’s purpose was to be accessible in
order for the blind and the visually imapired to use it - but as I stated before,
there are still labels and text fields so a not visually impaired could easilly use it.
For the graphics, fancier things could be added, which a blind person wouldn’t
know that they existed.

I stated that the idea behind the design of the layout is to fill the whole screen
and strech the views so the user wouldn’t have to search in a long time for
the views. A regular user would have to live with this as the design, although
these choices wouldn’t be the same when designing applications for regular users.

The only big and important difference there is, is that some of the options
are simply removed when programming for the visually impaired. In the case of
the function ”Next Departure”, I have removed the options like choosing what
stop the user is interested in, letting the application choose the first and nearest
stop to the given coordinates, instead of presenting the best 5 results as sugges-
tion first.

When I presented this idea to the client, he would rather have the first and
the best instead of having to spend time on finding the needed one. Also if you
are using this function while you are at the stop, the departures for that stop
would be the output - which is exactly what the client asked for.

7.6 Developing other Applications for the Visually Impaired 59

If the same function was designed for a regular user, the option would probably
not be removed. It isn’t that time consuming to chose the desired stop yourself
- and it could spare you the time if the application found another stop than the
one you were interested in.

So this could be a setting that could be changed to the way the user likes
it - maybe another visually impaired than the client would like the possibility of
having this option and a not visually impaired who needs the information fast
wants to turn it off.
So making it a setting could solve the problem.

Working with this kind of developing, I believe that it is better to develop
two different versions of an application instead of trying to satisfy both parts
in one application. There is no need to not fully satisfy both kind of users and
thereby simply develop two different user interfaces. It is more considerate for
both parts - the visually impaired would have an application with not to many
choices and thereby an application which is easier to use, while the design for
the regular user would be up to the developer and could be smart in other ways
than found during this project.

However if one would like to develop an application for both target groups,
it would be more considerate to start by developing the application for the vi-
sually impaired and then add options so a regular user also could get use of the
application.
I reckon that this would be easier than the other way arround because it is easier
to add options than removing them. To program for the visually impaired is
troublesome as there are more special cases to consider than when programming
for ordinary users.

7.6 Developing other Applications for the Visu-
ally Impaired

After my expirience with developing for the visually impaired, I evaluate that
it is not that easy to develop any kind of application for this target group. It is
limited what you can do and requires a lot of planning and consideration. Not
that regular applications do not need this, but in this case it is very essenential
that the layout is thought through.

My opinion is that applications for any kind of information could be devel-
oped for the visually impaired, like for instance for travel purposes, schedule,
wheather forecasts or similar.

60 Further Development and Perspectivation

The limitations of the layout design make it difficult to implement games and
other entertainment applications which already exist for regular users. An op-
tion is to research what kind of games there already are for the visually impaired
and evaluate if they could be transfered to a smartphone.

One thing that I think would make programming for this target group eas-
ier is to have some kind of template that can be followed. For instance, there
only be content descriptions on views which are either input or output or click-
able - the way that I have done it in TravelBuddy - there is no need for labels
and similar because the user hasn’t any use of them.

It would be easier for the users to know how to navigate in different appli-
cations and also make it easier for the developers to have one way of doing this.

I believe that this field needs more research and can be improved by making
applications for the visually impaired in some other ways to make them more
accessible - for instance with speech input and output. This would it make much
easier for the user to use the application, especially when the voice recognition is
a continuosly improving field. There is still the discussion if the user would like
to actually speak to his smartphone while in public, but that is also a problem
that needs to be considered.

Chapter 8

Conclusion

In this project I have developed an Android application. The application has
the visually impaired as the target group and its purpose is to make it easier to
find information about the public transport and planning a trip.

During the project I have researched how to optimize the design in order to
make the application useful for the visually impaired. To make the application
more accessible, the transition from one activity to another has to be logical -
this means there cannot be any smart precalculated information that the user
hasn’t searched for yet, this would be confusing.
Besides this, the layout is very important - the placement of views and their
size is essential for making the application accessible. Big views that stretch on
the whole screen are much easier to find than small views in a side or middle of
the screen.

Another very important thing is not to have too much information on a screen
or for each screen - it can only be read by TalkBack and if there is too much,
the user can not just hear the information he needs, he has to hear it all again.

In order to provide information about public transport I used Rejseplanens
API. There are different API calls for Rejseplanens API services which return
different XML files. I have implemented XML parsers in order to achieve the
user requested information.

62 Conclusion

The application, TravelBuddy, lets the user find the next departures from the
nearest stop and also offers navigation to the stop, provided by Google Naviga-
tion.

Another function is that the user can plan a trip, where the only mandatory
information that needs to be provided is the destination. The user will recieve a
list of trips as a result and can choose one of them - and get a trip description.
Here he can get navigation to the various stops of the trip and also use the
application to get warned when he needs to get of the vehicle.

In order to make the application accessible, I wanted to make less mandatory
fields that the user had to fill - therefore, the GPS plays a large role in this ap-
plication. Using the GPS, the application uses more battery and is something
the user needs to be aware of.

Programming for the visually impaired has its difficulties when wanting to im-
plement many functions - it is definitly easier to program for regular users,
because many of the options can be represented with icons or similar, which is
unfortunatly impossible when programming for the visually impaired. There-
fore I believe that it is difficult to develop an application which is optimal for
both users.

The client felt that TravelBuddy is easier to use than regular applications, be-
cause his needs were prioritized. Based on this I believe that Accessibility and
TalkBack can be used in order to make applications useful for this target group
- the developing would require a lot of guidence and directions from the user.

However, I evaluate this field still to be new, the Accessibility function is fairly
new and therefore the developers haven’t yet found a common way of imple-
menting things. But I believe that there is a future in this kind of applications
- perhaps a better and easier technology than Accessibility and TalkBalk will
be available soon.

Chapter 9

User Guide

9.1 Getting started

In order to use TravelBuddy, it needs to be installed first.

1. Copy the TravelBuddy.apk file onto your smartphone.

2. Find the file manually with any kind of file manager.

3. Click on the file and it will start the installation.

4. TravelBuddy is ready to use.

9.2 How to use TravelBuddy

9.2.1 Main Menu and Start

1. Find TravelBuddy in your application list and click to start.

64 User Guide

2. If the GPS is not turned on, a popup will ask for permission. It is located
in the middle of the screen. Press ”Yes” to change the GPS permissions.
Press back to go back to TravelBuddy.

3. The main screen is shown with to options.
The first option is an option for finding the nearest stop to your or a
specified location and find information about the departures from here.
The second option is to find a way to get from a point to another, including
a trip description of what transport is needed, a navigation from and to
the stop and getting of the vehicle.

9.2.2 Find the Nearest Stop

1. In order to find the departures from the nearest stop find a button in
the middle of the main screen which reads Click to find departures from
nearest stop.

2. If a search with default time, date and GPS location is desired, simply
press the search button, which is located in the bottom of the screen and
reads Search.

3. If another location is desired than the GPS location, it is specified in the
first field, at the top of the screen. The field reads Type your location.

4. If another date than the default is desired, specify it in the second field,
in the middle of the screen. The field reads Input day, month, year.

5. If another time than the default is desired, specify it in the third field, in
the middle of the screen. The field reads Input hour and minute.

6. When the information is provided, press the Search button.

7. A progress dialog appears, reading Progress. Loading data. Wait until the
next screen appears.

8. If there are no results to the search, an alert dialog will show and read
No departures were found. Press the ”Ok” button which is located in
the middle of the screen. This will lead back to the seach screen, where
another location, time or date can be specified.

9. If there are results to the search, they will appear as a list. In the top of
the screen, the name of the found stop is shown and is read if invoked.
Start exploring the results from the top and get information about the
departure time, direction and vehicle name.

9.2 How to use TravelBuddy 65

10. Click on a departure in order to get a navigation to the stop. The navi-
gation is provided by Google Maps and navigates from your current GPS
position to the stop.

11. Click back in order to get back to the previous screen.

9.2.3 Trip from A to B

1. In order to find a trip from A to B find a button in the bottom of the
main screen which reads Click to find trip from A to B.

2. If another location is desired than the GPS location, it is specified in the
first field, at the top of the screen. The field reads Type your location.

3. Provide your destination in the next field, which reads Type your destina-
tion

4. If another date than the default is desired, specify it in the second field,
in the middle of the screen. The field reads Input day, month, year.

5. If another time than the default is desired, specify it in the third field, in
the middle of the screen. The field reads Input hour and minute.

6. If any transport vehicle is to be excluded from the search, it can be done
by deselecting it by clicking on the boxes which read don’t use Bus, don’t
use Train or don’t use Metro.

7. When the information is provided, press the Search button, which is lo-
cated in the bottom of the screen.

8. If a destination isn’t provided, an alert box will show, reading Please
provide a destination in order to search. Click ”Ok” on the alertbox which
is located in the middle of the screen to go back to the search screen.
Provide the destination and click Search again.

9. A progress dialog appears, reading Progress. Loading data. Wait until the
next screen appears.

10. If there are no results to the search, an alert dialog will show and read
No departures were found. Press the ”Ok” button which is located in the
middle of the screen. This will lead you back to the seach screen, where
you can specify another location, destination, time, date or vehicle.

11. If there are results to the search, they will appear as a list. Start exploring
the results from the top and getting information about the departure. The
information provided here is the start stop and end stop, the arrival time
and the number of shifts of the trip.

66 User Guide

12. Click on a trip in order to get additional information. A new screen will
appear, showing the steps of the search. The steps are shown as a list and
should be read from top to bottom.

13. Click on the different steps in order to get navigation. If the step is a walk
to a stop, navigation is provided by Google Maps from your location to
the stop. If a step is by transportation, a new screen will appear when
clicked, which reads Waiting to reach the stop if invoked. When there
are less then 200meters to the stop, an alert box will alert you that you
need to get of the vehicle, by automatically reading Destination is reached
within 200 meters.

14. Click on ”Ok” button in order to get back to the previous screen.

OBS! It is assumed that the Accessibility option TalkBack is turned on while
using TravelBuddy.

Bibliography

[1] Android Developer UI/Application Exerciser Monkey. http://developer.
android.com/tools/help/monkey.html

[2] Android Developer Android Developer page used for in chapter 3, Theory
and for implementation. http://developer.android.com/index.html

[3] Lars Vogel Android Development Tutorial. http://www.vogella.com/

articles/Android/article.html Version 10.4, 2012.

[4] Lars Vogel Android Tutorials. http://www.vogella.com/android.html

Version 10.4, 2012.

[5] Geoffrey Goetz iOS and Android Development Compared. http://gigaom.
com/apple/mac-dev-notes-ios-and-android-development-compared/l

Version 10.4, 2011.

[6] Lars Vogel Android Threads, Handlers and Asynctask Tutorial. http://

www.vogella.com/articles/AndroidPerformance/article.html Version
1.9, 2012.

[7] Android Accessibility. http://eyes-free.googlecode.com/svn/trunk/

documentation/android_access/index.html

[8] Android Developers - Accessibility. http://developer.android.com/

guide/topics/ui/accessibility/index.html

[9] iOS Accessibility. https://developer.apple.com/technologies/ios/

accessibility.htm

http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/index.html
http://www.vogella.com/articles/Android/article.html
http://www.vogella.com/articles/Android/article.html
http://www.vogella.com/android.html
http://gigaom.com/apple/mac-dev-notes-ios-and-android-development-compared/l
http://gigaom.com/apple/mac-dev-notes-ios-and-android-development-compared/l
http://www.vogella.com/articles/AndroidPerformance/article.html
http://www.vogella.com/articles/AndroidPerformance/article.html
http://eyes-free.googlecode.com/svn/trunk/documentation/android_access/index.html
http://eyes-free.googlecode.com/svn/trunk/documentation/android_access/index.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
http://developer.android.com/guide/topics/ui/accessibility/index.html
https://developer.apple.com/technologies/ios/accessibility.htm
https://developer.apple.com/technologies/ios/accessibility.htm

	Abstract
	Preface
	Acknowledgements
	1 Introduction
	1.1 Target Group and Motivation
	1.2 Problem Definition
	1.3 Solving the problem

	2 Theory - Programming with Android
	2.1 Android Components
	2.2 Internet and GPS Access
	2.3 Rejseplanen and XML
	2.4 Accessibility and Input

	3 Requirements and Project Analysis
	3.1 Platform: Android versus iOS
	3.2 Approach
	3.3 Google Maps versus Rejseplanen
	3.4 Development Choices and Approach

	4 Design and Program Structure
	4.1 Use Cases
	4.2 Flow chart
	4.3 Class Diagram

	5 Design and Implementation
	5.1 Accessibility and User Interface in general
	5.2 Internet access and Rejseplanen
	5.3 Use case: Next Departure
	5.4 Use case: Trip from A to B
	5.5 Use case: Trip Description
	5.6 Loading Screen
	5.7 Additional
	5.8 User Interface

	6 Test
	6.1 Manual Testing
	6.2 Other forms of testing

	7 Further Development and Perspectivation
	7.1 Your Friend's Address
	7.2 Which bus is it?
	7.3 Updating During a Travel
	7.4 Security
	7.5 Applications for both Target Groups
	7.6 Developing other Applications for the Visually Impaired

	8 Conclusion
	9 User Guide
	9.1 Getting started
	9.2 How to use TravelBuddy

	Bibliography

