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Summary

This project will investigate imprecise arithmetic operations, which can result
in circuits dissipating signi�cant less power at the expense of errors tolerated
by many applications in signal and image processing. The project will espe-
cially investigate addition and multiplication (the most common operators in
signal processing), and the error that imprecise circuits introduce. Di�erent
implementation will be considered, evaluating their delay, power, area and error
characteristics
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Preface

This report was prepared at Department of Informatics and Mathematical Mod-
elling, the Technical University of Denmark in partial ful�lment of the require-
ments for acquiring the Master degree in engineering.

The report deals with di�erent aspects of imprecise arithmetic in addition and
multiplication implementation. The main focus is on acquiring data on di�erent
implementation and �nd the scheme with the best balance between accuracy and
power consumption.

This report is a summery of collected data from imprecise addition and mul-
tiplication schemes implemented in the spring and summer of 2012 during the
master thesis, with the emphasis on error and power consumption.

Lyngby, August 2012

Tobias N. Jeppe
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Chapter 1

Introduction

In some application the accuracy of a calculation is less important and the urge
to save power drive people to approximate a result via software or hardware.
This is specially the case with wearable gadgets such as media players, mobile
phones ect. Decoding sound and images error free is important for the best
result, but as most sound, images and videos are received/stored compressed,
some loss of information has already been applied. Introducing errors to an
already error-prone sound, image or video has little e�ect on the experience, es-
pecially if the receiver do not notice the error. In the case of unnoticeable errors,
it is possible to save power by reducing the power consumption via software or
use hardware with lower power consumption. This thesis is based on reducing
the power consumption of hardware, that calculates an imprecise result which
is good enough.

In January 2011 the MIT press released the article �The surprising usefullness
of sloppy arithmetic� [LH11]. It describes how an algorithm commonly used in
object-recognition, to separate foreground and background, where all numeric
results were infused with a random error. Errors between ±1% would generate
errors in around 14 pixels out of million, unnoticeable by the human eye. Know-
ing that an object-recognition algorithm for static pictures `is considered good if
it's right about half the times`, the errors introduced by using sloppy arithmetic
to separate the foreground and background is minimal. The article also sug-
gest that sloppy arithmetic can be used when interacting with humans, being
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the movement of a mouse pointer as the human "interface" intuitive compensate
for the movement error or calculating 3D graphic. The great thing about sloppy
arithmetic is the size of the circuit needed, which can be considerably smaller.

Even though a certain calculation precision is only obtainable using �oating
point numbers, the principle of sloppy arithmetic is pursued in the integer do-
main. In [MP10], the switching activity is reduced by freezing the least signif-
icant part of the input arguments to the adder and multiplier, to either 0 or a
random number. The result clearly display a relation ship between the amount
of input freezing and the power saving and error. The more bit frozen the bigger
the error and power saving. The experiment were performed on custom hard-
ware, designed for 1D �ltering, but only to the degree of controlling the input
registers.

What if fully sloppy circuits were to be used, meaning that the precision of
the result always were questionable? This is pursued in the technical report
[AN11], which is the foundation for this thesis. The report describes addition
and multiplication with sloppy circuits. The idea being that the least signi�cant
part of the addition is calculated or more correct estimated without regards for
carry information. The most signi�cant part is calculated error free, with the
exception of the missing carry from the least signi�cant part. For multiplication,
the "least signi�cant" partial product is generated sloppy. It is shown that a
sloppy adder can perform image smoothing, sharpening and edge-detection with
some introduction of errors. Combining a sloppy multiplier and adder into a
Multiplier and Accumulation Circuit (MAC), applied to a Inverse Discrete Co-
sinus Transformation (IDCT) application, shows power saving of 17%, a delay
reduction of 17% and area saving of 10%, without doubling the error of the error
free implementation.

This thesis will build on [AN11] and investigate imprecise arithmetic in depth.
The report will describe imprecise adders and multiplier schemes. The imprecise
schemes errors will be formalised as functions based on their performance and
their accuracy in image processing will be investigated. Their performance will
be compared in terms of area, delay and power, at a point where they perform
identically, error wise. The investigation into sloppy arithmetic, will hopefully
give a better understanding and knowledge of sloppy arithmetic and schemes,
together with �nding the best compromise between the performance parameters:
Accuracy and power reduction.
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1.1 Report Layout

Chapter 1 gives an super�cial introduction to imprecise arithmetic and it uses
and ends with a report layout describing how the report is constructed and the
assumptions used in the report.
Chapter 2 starts the report with a short introduction to power dissipation and
ways to reduce this. Then it will de�ned the errors used to measure the perfor-
mance of imprecise schemes. The image processing routines is introduces, which
is used to test the imprecise schemes together with a description of the tools
used to synthesis and obtain the power dissipation of the di�erent schemes. The
chapter ends with the test pictures.
Chapter 3 introduces imprecise adders. Starting with a description of the re-
spectable imprecise schemes. The statistically accuracy and the error introduced
in image processing is investigated. A short discussion sums up the �ndings.
The schemes are then implemented at a common precision and their area, delay
and power consumption are compared to that of an error free implementation.
The implementation result is then discussed and a conclusion summarising the
error and implementation.
Chapter 4 introduces the imprecise multipliers. Start with a description of
the respectable imprecise schemes. The statistically accuracy and the error in-
troduced in image processing is investigated. A short discussion sums up the
�ndings. The schemes are then implemented at a common precision and their
area, delay and power consumption are compared to that of an error free im-
plementation. The implementation result is then discussed and a conclusion
summarising the error and implementation.
Chapter 5 introduces the Multiply and ACcumulation (MAC) units. The
MAC's is comprised from the best performing imprecise multiplier and adders.
The error it introduces in image processing is investigated. Based on their com-
bined error, their implementation is compared by area, delay and power against
an error free scheme. The third part end by discussion the result and summaris-
ing with a conclusion.
Chapter 6 concludes the report, summarises the �ndings for imprecise adders,
imprecise multiplier and imprecise MAC's.
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1.2 How to Read the Report

• Figures, tables and images which refers to a destination as "3.4" is placed
in chapter 3 and is the fourth of its kind in that chapter.

• Figures, tables and images which refers to a destination as "E.3.4" is placed
in Appendix E, section 3 and is the fourth of its kind in that appendix.

• [abc12] refer to other publications. The full list of references is collected
in the Bibliography, page 79.

1.3 Project Assumptions

For data generation the following image processing has been applied: Trans-
formation (IDCT) is described in 2.4.1. Smoothing uses a 5x5 Gaussian �lter,
described in appendix 2.4.2. Edge-detection is performed by sobel's algorithm,
described in appendix 2.4.3.
The number system used in this report is two's complement system, if nothing
else is mentioned. All adders used in this thesis is build as CPA using the two
staged CLA as a basis, with a width of 32bit. All multipliers in the report is
square 16 bit multipliers with a 32bit result, using the recoder scheme NRP3a
[ZH03, p. 33]. A comparison between using Booth and NRP3a as recoding
scheme can be found in 4.1.



Chapter 2

Background

2.1 Power Dissipation

The power dissipation of a CMOS circuit can be approximated by equation 2.1.

PTOTAL =

N∑
i=1

(
V 2
DDCLi + Einti

)
aifclk︸ ︷︷ ︸

Dynamic

+

N∑
i=1

VDDI
leak
i︸ ︷︷ ︸

Static

(2.1)

For the dynamic part VDD is the supply voltage, CLi is the capacitive load
connected to the gate output, Einti is the short-circuit current and the power
dissipated by switching an internal node, ai is the cell's switching activity and
fclk is the circuits clock frequency. The static contribution I leaki is the cell's
leakage. The dynamic contribution is by far the largest in the 90 nm cell library
used in this thesis, but static power must be accounted in deep sub-micro CMOS
technologies as its contribution approaches the dynamic contribution. Equation
2.1 suggest a couple of ways to reduce the power consumption of a circuit. Eint

and I leak are technology dependent and cannot be changd without chancing the
cell library. CL which is basically the gates fan out can be changed, but is a
low level optimization process primarily left to programs. The dynamic power
dissipation is linear dependent on the switching activity and clock frequency. If
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power saving is of interest, the clock frequency has already been chosen as low as
possible and can only be further lowered if a task can be performed with fewer
clock cycles. Reducing the switching activity can be achieved by chancing the
implementation schemes or disabling part of the logic [MP10]. Lowering VDD
reduces both the dynamic and the static power dissipation, but unfortunately
also increases the circuit delay.

2.1.1 Reduce Switching Activity

An example of this is the reduction of switching activity in an adder caused
by freezing the least signi�cant part of the input. The logic used to calculate
the least signi�cant part of the result is kept in a steady state, as the adders
input do not change, the switching activity of this logic is 0, while the unfrozen
part of the adder still has a switching activity [MP10]. Another way to reduce
switching activity is introducing pipe-lining. Each pipe-lining register acts as a
signal barrier, placing a register after a circuit which is prone to introduce race
conditions will prevent the race condition to carry over the register. Clock gating
is another way to reduce the switching activity. The clock network in modern
system uses a considerable amount of power, turning o� the clock tree not alone
saves the power dissipation of the clock tree, is also stops all switching activity
for the logic that were provided with a clock from the given clock tree. Clock
gating is primarily used on bigger logic blocks, which is being used frequently.

2.1.2 Voltage Scaling

Voltage scaling can be applied to a circuit if there is enough slack. Slack being
the time from the circuit delay up to the timing constrains. Voltage scaling
is a particular e�ective way of reducing the power dissipation as it in�uence
both the dynamic and static part. The dynamic power dissipation is decreased
quadratically while the static part is linear decreased.
If a circuit which barely obey the timing constraints placed upon it is pipelined
with a single register at the exact middle of the circuit timing wise, the crit-
ical path of each part is half of the original, disregarding the setup, hold and
propagation time for the pipeline register. Normally this is used to increase the
frequency, giving a higher throughput, but if the frequency is kept the voltage
can be lowered, still obeying the original circuits timing constrain. From the
data provided in [MP10], a 30% decrease in supply voltage increases the delay
with 50% but also decreases the power dissipation with 50%. Pipe-lining intro-
duce latency, but for most application these can be hidden by other operations.
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In this thesis, imprecise arithmetic is used to decrease the delay, thereby making
it possible to lower the power supply voltage and reduce the power dissipation.

2.1.3 Reducing Clock Frequency

Reducing the clock also reduces a gates switching activity over time. In many
cases where power is a factor the clock frequency is set as low as possible,
reducing it further demands that the application to uses fewer clock cycles. As
an example, a multiplier and adder is replaced by a MAC. For a sum function,
a series of multiplications and additions are needed to obtain the �nal result.
Each multiplication followed by an addition which uses 2N operations. Using
a MAC which accumulates all multiplications uses N operations, half the time.
This makes it possible to reduce the frequency and still meet the deadline. The
frequency reduction can be calculated as

Fnew = Forg ×

(
Non MAC code

Total code
+

MAC code
Total code

2

)
(2.2)

Introducing a slower clock make it possible to scale the supply voltage as swell.

2.1.4 Leakage Power

The static power dissipations is low compared to the dynamic power consump-
tion, but as the cell technology moves to sub-micron CMOS technology, the
di�erence between the static and dynamic power dissipation decreases. Lower-
ing the supply voltage is one way to reduce the leakage power, but this increases
the circuit delay. Reducing the amount of gate area means implementing new
schemes and this a�ect everything, which makes it less interesting for leakage
reduction. Power gating is a schemes that turns o� the power supply for cer-
tain logic blocks. As no power is delivered to the logic block, it cannot use any
power. As the circuits which turns o� the power supply is rather big to support
the power needed and the turn on time is large, it is a scheme only applied to
larger logic blocks which is seldomused.

2.2 Errors in Imprecise Schemes

The error caused by an imprecise calculation is given in equation 2.3. ε is the
di�erence between the correct result and the result generated by the imprecise
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implementation, resultimprecise. The error, ε, for a single calculation is impor-
tant for that speci�c calculation, but is not a manageable size for comparing
di�erent imprecise schemes. The reason being that it only describes a single
calculation error leaving out all others possible number combinations and er-
rors hereof. Comparing between di�erent imprecise schemes, being adders or
multipliers, the average error - ε̄, average absolute error - |ε̄|, min - εmin and
maximum error - εmax and maximum absolute error - |ε|max, is far more usable
as benchmarking tools, as they describe the overall performance of an imprecise
scheme.

result = resultimprecise + ε (2.3)

ε̄ describes the average error, de�ned in equation 2.4. ε̄ indicates if positive or
negative errors are dominating and describes the average error which can be
expected if many arbitrary numbers are added or multiplied separately together
by an imprecise scheme. The error can be miss leading for a single operation,
as positive and negative errors can cancel each other out given the impression
of an imprecise scheme being error free.

ε̄ =
1

z2

z∑
i=0

z∑
j=0

O(i, j)−Oimprecise(i, j) (2.4)

O being a multiplication or addition operation, z = 2width − 1 describing the
maximum value of the input, thereby given the error for an exhausted combi-
nation of all possible input.

|ε̄| describes the average absolute error, de�ned in equation 2.5. |ε̄| describes
the size of error which can be expected if two arbitrary numbers are multiplied
or added together by an imprecise scheme. It do not describe the sign of the
expected error, but the distance between the exact and imprecise result.

|ε̄| = 1

z2

z∑
i=0

z∑
j=0

|O(i, j)−Oimprecise(i, j)| (2.5)

O being a multiplication or addition operation, z = 2width − 1 describing the
maximum value of the input, thereby given the error for an exhausted combi-
nation of all possible input.

εmin describes the biggest negative error possible for an imprecise scheme to
produce, de�ned in equation 2.6. εmax describes the biggest positive error an
imprecise scheme can produce, de�ned in equation 2.7. |ε|max is the biggest
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error an imprecise can produced, being positive or negative, de�ned in equation
2.8.

εmin = min (O(i, j)−Oimprecise(i, j)) i, j ∈ {0, . . . , z} (2.6)

εmax = max (O(i, j)−Oimprecise(i, j)) i, j ∈ {0, . . . , z} (2.7)

|ε|max = max(εmax,−εmin) (2.8)

2.3 Errors in Image Processing Caused by Impre-

cise Addition and Multiplication

Image processing are used to investigate the performance of imprecise adders and
multipliers in applications. The imprecise adders and multipliers performance is
expressed by the error they introduce in the �nal image compared to the same
image processed on an error free platform. The error is the di�erence between
the same positioned pixel value, de�ned in equation 2.9.

εp(i,j) = Pixel(i, j)− Pixelimprecise(i, j) (2.9)

But as the error εp(i,j) only describes the error for a single pixel and not the entire

image, a more general error de�nition is needed. The average image error - ε̄p

and average absolute image error - |ε̄|p describes the average errors in the image
and maximum absolute error - |ε|pmax describes the biggest error in the image.
The errors do not describe the application or the image alone, but the image
processed by the application with the given imprecise adders and multipliers.
Change one of the factors and the error can change more or less.

ε̄p describes the average pixel error in an image, de�ned in equation 2.10. The
error indicates if positive or negative pixel errors are dominating. The error can
be misleading, as positive and negative pixel errors can cancel each other out,
given the impression that no pixel errors occurs. For pictures this means that
ε̄p describes the image intensity changes, if ε̄p is positive the image are lighter,
if negative the image are darker than the error free.

ε̄p =
1

Width×Height

Width∑
i=0

Height∑
j=0

εp(i,j) (2.10)
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|ε̄|p describes the average error per pixel, de�ned in equation 2.11. |ε̄| describes
the size of error which can be expected per pixel in the image. It do not describe
the sign of the expected error, but the distance between the exact and imprecise
pixel. If |ε̄| ≈ ε̄p the prevailing pixel error is positive, |ε̄| ≈ −ε̄p the prevailing
pixel error is negative.

|ε̄|p =
1

Width×Height

Width∑
i=0

Height∑
j=0

|εp(i,j)| (2.11)

|ε|pmax describes the maximum pixel error in the picture, de�ned in equation
2.12. The average pixel error in the image is a good indicator for the image
quality, but it do not describe how the errors are distributed, |ε|pmax describes
the biggest error in the image, this do not describe the error distribution either,
but limits the error to a speci�c size.

|ε|pmax = max(|εp(i,j)|) (2.12)

2.4 Image Processing Application

To test the performance of the di�erent imprecise adder and multiplier schemes
di�erent image processing applications were used. Inverse Discrete Co-sinus
Transformation - IDCT, found in one form or another in image and video ap-
plications. Image smoothing blurs the image and can be used to suppress pixel
errors in an image. Edge-detection is used to distinguish element in object
recognition systems.

2.4.1 IDCT Application

The Inverse Discrete Co-sinus Transformation - IDCT, is the inverse of DCT.
DCT is used to transform a pixel block into an equivalent frequencies block. As
high frequencies is less pronounced for the human eye they are removed making
is possible to compress the image without loosing obvious quality. IDCT is used
to transform a frequencies block into a pixel block.

DCT and IDCT is calculated by �rst taking the transform along one dimension
and repeating the operation along the other direction, as explained in [KA06,
p. 397]. By matrix terminology DCT is calculated by equation 2.13 and IDCT
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is calculated by EQ 2.14.

F = APAT (2.13)

P = ATFA (2.14)

P being the pixel block, F the frequency block and A is the transformation
matrix given in equation 2.15.

Ai,j =


√

1
8cos

(2j+1)iπ
2N , i = 0, j = 0, 1, . . . , 6, 7√

2
8cos

(2j+1)iπ
2N , i = 1, 2, . . . , 7, j = 0, 1, . . . , 6, 7

(2.15)

For testing purposes, DCT is performed with �oating points numbers and saved
as integer numbers. To test how the IDCT application performed with impre-
cise adder and multiplier schemes, which is all integer based, the transformation
matrix A, is represented as �xed point numbers. The transformation matrix con-
tains only decimal numbers, which cannot be represented by integer numbers.
Representing A as �xed point numbers by scaling the decimal part of the num-
ber, circumvents this. A is scaled 1

216 , meaning that the LSB representing 1
216

the second LSB representing 1
215 and so on, the values is basically left shifted

16 places. The frequency and pixel values are stored as integers, equivalent to
�xed point numbers with a scaling factor of 1

20 .

Calculating P as in equation 2.14 with the transformation matrix scaled 1
216 re-

quires a multiplier, with an input width of atleast 16 bit for the �rst part ATX,
to represent the transformation matrix correct. The second part (ATX)A re-
quires a multiplier with an input width of at least 24 bit, 16 bit × 8 bit. As
this exceeds the multiplier width for this rapport, the �rst matrix multiplication
,AX, is right shifted 16 places, giving it a �xed point scaling of 1

20 . Now the
second matrix multiplication can be performed on a multiplier with an input
width of 16 bit. The result of (ATX)A is again a �xed point number with
a scaling of 1

216 , because of the multiplication with the transformation matrix
and is there for right shifted to again represent an integer value, for the pix-
els. This makes IDCT performed on integer hardware with the values in the
transformation matrix scaled 1

216 , calculated as in equation 2.16.

P = (((ATF )× 1
216 )A)× 1

216 (2.16)

It should be noted, that the performance between IDCT calculated with �oating
point numbers and as described in equation 2.16 are around |ε̄|p = 0.2, given in
table 2.1. The errors is rather consistent for all pictures, using the �oating point
method or integers method, which indicated that the application are picture
independent to a certain degree. Figure 2.1 shows the test picture baboon
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|ε̄|p
IDCT using Baboon Barbara Goldhill Lena Peppers
Floating point 0.58 0.57 0.56 0.57 0.57
Exact Integer 0.80 0.78 0.77 0.79 0.78

Table 2.1: The di�erence PSNR between IDCT calculated with Floating point
numbers and 16 bit integers, using �xed point for the transforma-
tion matrix

|ε̄|p(Floating point−Fixed point)

Image Smoothing Baboon Barbara Goldhill Lena Peppers
Floating point - �xed point 0.03 0.03 0.03 0.03 0.02

Table 2.2: The di�erence between image smoothing with �oating point and
integer numbers

inverse transformed back from its DCT representation, using �oating points
numbers and �xed point numbers. As the data suggest in table 2.1 there are no
visual di�erence between using �oating point and integer for the IDCT.

2.4.2 Image Smooting Application

Image smoothing blurs a picture by passing a mask over the picture for each
pixel. The mask, which in this case covers 5x5 pixel, rede�nes the pixel value in
the middle as a sum of the neighbouring pixels times the corresponding mask
values divided by the total weight of the mask. Figure 2.2 shows the Gaussian
mask used in this application. The mask total weight is 159, which needs to be
divided. As division is expensive and 159 is a bit far from 128 and 256 which
is division factors that can be achieved by a right shift. The weights of the
mask is changes to �xed point number, which makes it possible to incorporate
the division into the weight of the mask, without using division. This gives the
mask in �gure 2.3. The �xed point scaling is choose to be 1

216 , meaning that
the LSB of the masks integer values represent a values of 1

216 . The pixel values
is de�ned to an integer value between 0 and 255. As the mask represent a �xed
point number with a scaling 1

216 , the sum is right shifted 16 positions, given the
end result. The di�erence between image smoothing calculated with �oating
point and �xed point numbers is given in table 2.2. By visual inspection the
di�erence between �oating point and �xed point is unnoticeable for the human
eye as seen in �gure 2.4.
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Figure 2.1: Visual result of �oating point transformation (top) and integer
transformation (bottom). Original picture to the left, DCT-IDCT
transformation in the middle. Error map of |ε̄|p to the right, mag-
ni�ed 60 times.
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Figure 2.2: Gaussian mask used for smoothing �lter
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Figure 2.3: Gaussian mask used for smoothing �lter, for �xed point operation
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Figure 2.4: Visual result of image smoothing performed by �oating point (top
right) and integer (bottom left). Original image (top left), Error
map of |ε̄|p between the two (bottom right), magni�ed 255 times.
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Figure 2.5: Gaussian mask used for smoothing �lter

2.4.3 Edge-detection Application

Edge-detection comprises of four steps, Smoothing, Enhancement, Detection
and Localization. The smoothing step suppresses as much noise as possible.
The enhancement step applies a �lter which enhances the edges in the image.
The detection step provides a threshold for what pixels are noise and which are
describing an edge. Localization determines the exact location of the edge. In
this test application, smoothing is provided by the �oating point implementation
described in section 2.4.2. Enhancement is provided by the Sobel operation
described underneath. Detection and Location is not used in this application.

After applying image smoothing to the image the enhancement step is performed
as follows. As with image smoothing, a mask rede�nes the pixel value in its mid
as a sum of the neighbouring pixels times the corresponding mask values. In
the case of the sobel edge detection, there are two masks which covers 3x3 pixel,
which absolute combined value gives the end pixel result. The Sobel masks
is given in �gure 2.5, one enhances the vertical edges and one enhances the
horizontal lines, together they enhances the diagonal edges.

All values in the schemes are all integers. The Sobel mask weights are {-2,-
1,0,1,2} and the pixel values from the image are in the range {0, 1,. . . , 254,
255}. The end result can be bigger than 255, as is the highest values a pixel
value can take, this only a�ects the images and not the calculated error. In
�gure 2.6 the original picture with applied edge-detection can be seen. As it is
a pure integer scheme, an error free integer application can produce a perfect
result.

2.5 Implementation and Synthesis

Synopsys Design Vision (V. G-2012.06 May 30, 2012) is used to synthesize the
VHDL implementation of the di�erent schemes. No timing constrains is places
on the synthesis, only dynamic power and leakage constraints which is set to
zero, given the circuit with the smallest power dissipation possible. The simu-
lated circuit power dissipation, area and delay are all obtained through Design
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Figure 2.6: Visual result of edge detection for test picturepeppers

Vision.
Synopsys Chronologic VCS (V. D-2010.06_ Full64) is used to simulate the syn-
thesized gate level design, obtaining the switching activity based on the actual
gate delay. All simulation is done at 100MHz. The test vector used is comprise
of a random set together with the test vectored recorded performing IDCT on
the test pictures.
A 90 nm library of standard cells with the nominal supply voltage Vdd = 1V 0
is used.

2.6 Test Pictures

The test pictures used are Baboon, Barbara, Goldhill, Lena and Peppers in
2.7. They can be found at http://en.pudn.com/downloads187/sourcecode/
graph/detail878292_en.html.. They are all gray scale image, with the pixel
values between 0 and 255, with 0 being black and 255 white.

http://en.pudn.com/downloads187/sourcecode/graph/detail878292_en.html.
http://en.pudn.com/downloads187/sourcecode/graph/detail878292_en.html.
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Figure 2.7: Test pictures used for image processing. From to left, Baboon,
Barbara, Goldhill, Lena and Peppers
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Chapter 3

Addition

The addition schemed learned in the second school year, applies to all non
redundant number system, not only the decimal system, Radix-10. Addition
in di�erent radix systems all works in the same way and can be generalized as
described in algorithm 1. Add the least signi�cant digit of the two numbers
together plus the carry, if they exceed the radix for the given system, create a
carry for next least signi�cant digit. Repeat until there are no more digits and
carry bits are generated.

Algorithm 1 General addition scheme

C ← 0, I ← 0
for C > 0 & Radixi < max(A,B) do

T ← Ai +Bi + C
if T > Radix then

C ← 1
else

C ← 0
end if

Si ← T modulus Radix
i← i+ 1

end for

As an example of addition in di�erent Radix's see �gure 3.1, where addition is
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performed on decimal, octal and binary numbers.

As can been seen by algorithm 1, the carry is propagated through the whole
addition and is basically the deciding factor when choosing adder implementing,
given a timingconstraint.

3.1 Imprecise Addition Schemes

There are lots of ways to design an imprecise adder. You can make one which
always gives the result 1, independent of the input. This of course would not
been seen as an adder circuit by many people, but in theory it is an imprecise
adder circuit, just one which uses very little power and in most cases gives a very
big error. In this chapter commonly known imprecise adders and new proposed
adders are presented. The most signi�cant part of the adder is calculated error
free, with the least signi�cant part estimated by an imprecise adder circuit. The
width of least signi�cant part is denoted q and is presented as ADDERq.

3.1.1 Input Truncation Scheme (Trunc)

This scheme is one of the most basic imprecise addition schemes and is widely
used where the least signi�cant part of an addition has no or little interest.
The scheme do not try to retain any information of the least signi�cant part of
the two input arguments and set their values to zeros. Figure 3.2 describes the
implementation. As no carry is generated by the least signi�cant part and the
output is set to zero, all logic is removed from this. The reduction of the carry-
network, restricting it to the most signi�cant part, reduces the adders delay, as
the carry network always are the critical path. Figure 3.3 shows the di�erence
between an exact adder and an input truncated adder with an imprecise width
= 4, Trunc4.

Figure 3.1: Addition of decimal, octal and binary numbers.
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Figure 3.2: Input trunk scheme

Figure 3.3: Di�erent between Exact and Trunk addition. n=8, q=4

3.1.2 Freeze0.5 Scheme

The Freeze 0.5 is proposed in [MP10]. And looks identical to the input trunk
scheme except that it changes the most signi�cant bit of the truncated part to a
logical 1. In [MP10] this is done by freezing the least signi�cant part of an error
free adder by disabling the shifting capability of the adders input register, taking
advantage of the low leakage power. The reducing in power consumption is only
from a reduction in switching activity, but makes it possible to place any number
in the frozen least signi�cant part of the adder. Theoretical, freezing the input
also reduced the critical path. The implementation of a hardware implemented
Freeze0.5 scheme is given in �gure 3.4. Figure 3.5 shows the di�erence between
an exact adder and the Freeze0.54.

3.1.3 OR- and XOR-tail Scheme

Both OR and XOR tail schemes are proposed in [AN11]. The addition schemes
replaces the least signi�cant part with a parallel OR or XOR network, their
implementation shown in 3.6. The schemes reduced the complexity of a precise
addition by removing the least signi�cant part of the carry-network, thereby
reducing the critical path. They di�erent from the Trunc and Freeze0.5 scheme
by retaining some of the information in the least signi�cant part of the two
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Figure 3.4: Freeze 0.5 scheme

Figure 3.5: Di�erent between Exact and Freeze0.5 addition. n=8, q =4

input arguments. The reduction of area reduces the static power consumption
together with the switching activity of the missing circuit, compared to that
of an error free adder. As the imprecise part do not have carry network, the
critical path is restricted to the precise part. Figure 3.7 shows the di�erence
between an exact adder and the OR-tail4 and XOR-tail4.

3.1.4 Carry-one Scheme

Di�erent form the other schemes presented the Carry-one scheme only cripples
the lest signi�cant part of the carry-network instead of removing it completely.
The carry-network is crippled in the least signi�cant part, so it only generate a
carry to the following bit. Basically replacing the carry-network with parallel
half adders, where the sumi and carryi−1 are OR'ed together. One advantage of
this scheme is that it is possible to preserve more information than the OR- and
XOR-tail schemes, but getting the same delay reduction. The implementation
is illustrated in �gure 3.8. It is the only scheme where the imprecise part of the
adder can in�uence the error free part, with a pseudo carry. The area is only
reduced slightly, but the critical path is reduced the same as the other schemes.
Q is a some what miss leading denotation here, as some of the data from the
imprecise part can move over to the error free part, as the last carry bit of the
imprecise part is OR'ed with the LSB of the error free parts result. The logic
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(a) OR-tail scheme

(b) XOR tail scheme

Figure 3.6: OR- and XOR-tail implementation, both retaining some informa-
tion through the imprecise part

Figure 3.7: Di�erent between Exact and OR/XOR-tail addition. n=8, q =4
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Figure 3.8: Carry-one scheme

Figure 3.9: Di�erent between Exact and Carry-on addition. n=8, q = 4

in the imprecise part of Carry-one and the soft separation of the imprecise and
error free part makes a full carry chain from 20 to 2n possible, over multiple
additions. Figure 3.9 shows the di�erence between an exact adder and the
Carry-one4.

3.2 Errors Generated by Imprecise Adders

The four performance parameters for an imprecise adder are in alphabetic order
Area, Delay, Error and Power, the smaller the better. In this chapter the error
is investigated.

3.2.1 Statistical Error

Table 3.1 describes the error functions for the imprecise addition schemes pre-
sented in chapter 3.1. The error functions describes how the error change de-
pending on the width, q, of the imprecise part. The average error - ε̄, average
absolute error -|ε̄|, minimum error -εmin-, maximum error -εmax and maximum
absolute error -|ε|max is de�ned in section 2.2. All errors growth exponential
with respect to q.
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Type ε̄ |ε̄| εmin εmax |ε|max
Truncq −2q + 1 2q − 1 2− 2q+1 0 2q+1 − 2
Freeze 0.5q 1− 2q−1 < 2.025i−1 −

(
3− 4

2q

)
2q−1 2q−1

(
3− 4

2q

)
2q−1

OR-tailq
1
4 − 2q−2 2q−2 − 1

4 1− 2q 0 2q − 1
XOR-tailq

1
2 − 2q−1 2q−1 − 1

2 2− 2q+1 0 2q+1 − 2

Carry-oneq
1
4 − 2q−2 2q−2 − 1

4 −2q ×
∑ q+1

2
i=1

2
22i−1 0 2q ×

∑ q+1
2

i=1
2

22i−1

Table 3.1: Statistical derived error functions for di�erent imprecise addition
schemes, found by exhausting simulation. Blue indicated the lowest
error function. Red indicated |ε̄| for Freeze0.5 given as an upper
limit.

Freeze 0.5 stands out as it is the only imprecise adder which can generate a
positive error, all other schemes has a maximum error of 0. All schemes have a
negative ε̄, even Freeze 0.5. This means that for all schemes ε̄ = −|ε̄| except for
Freeze 0.5, for which ε̄ ≈ −|ε̄| holds. OR-tail is the best performing scheme, for
ε̄, |ε̄| and εmax it performs equivalent to Carry-one, but outperforms it for εmin
and |ε|max. |ε̄| for Freeze0.5 is given as an upper limit, as the exact function
could not be found, it is indicated red in table 3.1. A graphical representation
of the error function can be seen in �gure 3.10.

3.2.2 Transformation Error

The error represent the di�erence between IDCT calculated with an error free
adder and an imprecise adder scheme. The error are averaged over the test
pictures. |ε̄|p and |ε|pmax is de�ned in section 2.3.

Figure 3.11a shows the average absolute error, |ε̄|p, of each pixel. Trunc,
Freeze0.5 and OR/XOR-tail produces equivalent errors for an imprecise width
under 16,q ≤ 16, the reason for this is the hard separation of the error free and
imprecise part of the adder schemes, which prohibits data smaller than 2q to
carry upwards. As the IDCT transformation scheme uses a �x point scaling
of 1

216 , which right shift 16 positions for obtaining the �nal integer pixel value,
data with a value under 216 are discarded. For q > 16 the imprecise part of the
addition scheme starts to be a represented in the �nal pixel value. The error
generated by Trunc, Freeze0.5 and OR/XOR-tail starts to distinguish from each
other, with OR-tail as the best performing of the four and Trunc as the worst.
Carry-one has a soft separation of its precise and its imprecise part, which allows
data generated in the imprecise part to be carried upward into the precise part.
This property makes Carry-one the best performing of the imprecise addition
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(a) ε̄ (b) |ε̄|

(c) εmin (d) εmax

Figure 3.10: Graphical representation of the error functions presented in 3.1
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(a) |ε̄|p (b) |ε|pMAX

Figure 3.11: Errors generated using imprecise addition compared to error free
addition performing IDCT

schemes.

Figure 3.11b shows the maximum absolute error, |ε|pmax. Despite the fact that
|ε̄|p indicate that an imprecise addition scheme could be used without a perfor-
mance impact for q ≤ 10, |ε|pmax tells a di�erent story as |ε|pmax = 2 for q ≤ 10.
Again the error generated by the Carry-one is equal or better than the other
proposed schemes.

3.2.3 Image Smoothing Error

The error represents the di�erence between two pictures after they have been
smoothed, one using error free and one using imprecise addition. |ε̄|p and |ε|pmax
is de�ned in section 2.3. The error are averaged over the test pictures. The
image smoothing application is described in section 2.4.2.Figure 3.12a shows the
average absolute error, |ε̄|p. As with transformation, image smoothing uses a �x
point scalin of 1

216 , which right shift 16 positions for obtaining the �nal integer
pixel value, data with a value under 216 are discarded. Given the same error
for Trunc<16, Freeze0.5<16, OR-tail<16 and XOR-tail<16. |ε̄|p ≈ −ε̄p which,
indicates that majority of errors are negative and the amount of positive errors
produced are to small to have any in�uence. The error graphs is similar to those
found performing IDCT, but scale di�erently. The error scaling is most likely
produced by the di�erence in schemes, as smoothing sums 25 entries compared
to 8 for IDCT. As the amount of entries in the sum function grows the lack of a
full carry chain get more apparent. Figure 3.12b shows the maximum absolute
error |ε|pmax. Again the error shape seems similar to that of the IDCT, even the



28 Addition

(a) |ε̄|p (b) |ε|pmax

Figure 3.12: Errors generated using imprecise addition compared to error free
addition performing image smoothing

scaling, but are much more closely packed together. Carry-one performs as good
or better than all others schemes for all q's, Trunc, Freeze0.5 and OR/XOR-tail
still performance equivalent for q ≤ 16, and ranks OR-tail, Freeze0.5, XOR-tail
and Trunc for q > 16 for both |ε̄|p and |ε|pmax.

3.2.4 Edge-detecting Error

Edge detecting is performed without �xed point arithmetic, which distinguishes
it from the transformation and image smoothing. |ε̄|p and |ε|pmax is de�ned in
section 2.3. The error are averaged over the test pictures. See section 2.4.3 for
detailed on edge detection algorithm. Figure 3.13a shows a completely di�erent
average error graph than that of the transformation and image smoothing ap-
plication. This can be reasoned with the two di�erent types of number format
used, integer operations vs �xed point numbers. All errors seems to be positive,
which contradicts the derived error functions in table 3.1. The positive errors
are contributed the edge detection algorithm in conspiracy with the imprecise
adder schemes. Carry-one performs the best, then OR-tail, XOR-tail and Freeze
0.5 has similar performance and Trunc which generates the biggest errors. In
�gure 3.13b, the |ε|pmax is shown, which changes ranking to Carry-one, OR-tail,
Freeze 0.5 where XOR-tail and Trunc display similar performance.
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(a) ε̄p ≈ |ε̄|p (b) |ε|pmax

Figure 3.13: Errors generated using imprecise addition compared to error free
addition performing edge detection

3.2.5 Error Discussion

IDCT and image smoothing both uses �xed point arithmetic with the same
scale factor. Their error curves for |ε̄|p looks similar but with a di�erent scaling.
The biggest error of the two occurs in image smoothing and is likely generated
by the larger amount of entries to be summed together. The |ε|pmax curves are
similar both in shape and scaling. Using �xed point number representation
some of the errors is removed when truncating, which is clearly seen in both
IDCT and smoothing for imprecise adders with an imprecise width under 16,
where errors generate by Trunc, Freeze0.5 and OR/XOR-tail are the same, as
information from the imprecise part of the schemes never contributed to the end
value. When the imprecise part of the schemes is directly a part of the �nal
result, for q > 16, they ranked as table 3.1 suggested, with the exception of
Carry-one. The edge detection uses integer operations and is more sensitive for
error in the least signi�cant part of the logic, this can clearly be seen in �gure
3.13, where |ε̄|p > 15, for all schemes with a q ≥ 4, where transformation and
image smoothing ha |ε̄|p < 1. Transformation, smoothing and edge detection do
not give the same impression as the statistically derived error functions. The
reason for this is that the error in table 3.1 is based on a single addition and not
a summarising, which is heavily used in transformation, smoothing and edge
detection. OR/XOR-tail, Trunc and Freeze 0.5 all have a distinct error free
part and an imprecise part with no overlap. Carry-one has a precise part which
is overlapped by the imprecise, lest signi�cant part. The overlap can deliver a
single carry from the imprecise part into the error free part, basically adding a
delayed carry, which unfortunately can be masked by the precise result, giving
a slight performance advantage summarizing over many numbers.
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Trunk14 Freeze 0.514 OR-tail14 XOR-tail14 Carry-One15
IDCT |ε̄|q 1.09 1.09 1.09 1.09 1.61
IDCT |ε|qmax 5.0 5.0 5.0 5.0 7.2

Table 3.2: Chosen q's for addition schemes together with errors average over
the test images

It is clear from the di�erent errors generated by the IDCT and image smoothing
versus that of edge-detection, that not all application can be executed on the
same hardware, with the expectation of the same error generation.

The imprecise adders big weakness is its lack of carry-chain, which blocks carry
through from the imprecise part, Carry-one solves to some degree this problem
and is shown to be superior when summering over many entries. The perfor-
mance of the OR-tail is superior forsingleadditions.

3.3 Imprecise Adder Implementation

The four performance parameters for an imprecise adder are in alphabetic order
Area, Delay, Error and Power, the smaller the better. In in the previous section
the error was investigated, in this section area, delay and power dissipation is
investigated.

To compare the di�erent schemes implementation when generating a similar
error, each scheme were tuned to maximize the width of the imprecise part,
produced |ε̄|p ≤ 2 when calculating IDCT. The imprecise additions schemes
were applied to a 32bit adder, implemented as 32 bit two-level carry-lookahead
adder, as described in [MDETL04, p 75]. The synthesise tools and conditions
is described in section 2.5.

Table 3.2 summarise the width of the imprecise adders and the error generated
by calculating IDCT, collected from section 3.2.2.

3.3.1 Area and Delay Comparison

The area and delay are speci�c for the implementation and do not change with
changes in the applied data, the area data is located in table 3.3. The XOR-tail
is the largest of the simple imprecise adder schemes, using 65% of the error
free implementation, the OR-tail is a close second and it is apparent how big a
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Area 1471 873 949 796 796 1035
RatioErrorfree 1.00 .59 .65 .54 .54 0.70

Table 3.3: Area of imprecise addition schemes, compared to an error free im-
plementation.
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Dalay 2.04 1.59 1.59 1.59 1.59 1.59
RatioErrorfree 1.00 .78 .78 .78 .78 .78

Table 3.4: Delay of imprecise addition schemes, compared to an error free
implementation.

XOR gates is compared to a OR gate. Both Trunk and Freeze0.5 uses 54% of
the error free implementation which is the minimum size for an imprecise adder
with an imprecise width of 14, as the imprecise parts output gates is bounded
to either logic 0 or 1. The Carry-one uses the most area, 70%, even though it
has the widest imprecise part. This is due to the complexity of its imprecise
part, which uses multiple gates for generating the output.
The delay data is located in table 3.4. The error free adder has a delay of 2.04
nS. OR-tail14, XOR-tail14, Trunk14, Freeze0.514 and Carry-one15 all have the
same delay of 1.59 nS, 22% faster than the error free adder. This is because
the critical path in the adder is the carry-network, which for all is A[17] →
Result[31].

3.3.2 Power Comparison

The test vectored is the input values performing IDCT on di�erent pictures,
together with a random set of test vectored. Table 3.5 shows the simulated
power consumption. Trunk14 and Freeze0.514 consumes the least power, only
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Random 133 76 73 78 71 71 80
Barboon 118 65 60 67 60 60 68
Barbara 108 60 56 62 55 55 63
Goldhill 112 62 58 63 57 57 65
Lena 107 60 56 61 55 55 63
Peppers 110 61 57 63 56 56 64
Average 115 64 60 66 59 59 67
RatioEF 1.00 0.56 0.52 0.57 0.51 0.51 0.58

Table 3.5: Transformation - Power consumption of di�erent pictures on di�er-
ent addition schemes [µW ]

using 51% of the error free implementation, this was expected as no logic is
present in its imprecise part. OR-tail14 uses 52% of the EF implementation.
For the imprecise part of the OR-tail holds that the switching activity is kept
to a minimum, as the output is feed back as input. The OR gates will generate
a high output when presented with a high input and will at most switch ones,
giving a minimum of switching activity and power consumption. XOR-tail is
not bounded by the same input output feed back as the OR-tail, as the output
is dependent on both input. This gives a higher switching activity in more
complex gates and uses 57% of the EF implementation. Carry-one has the
highest power consumption of all the imprecise schemes using 58% of the EF
implementation, this can be contributed to the more complex gate array in the
imprecise part and a higher switching activity. The EFTrunk14 describes the
power consumption of the error free implementation with the least signi�cant
part of the input frozen, basically giving the same scheme as Trunk14 but on an
error free implementation. EFTrunk14 only uses 56% of the EF implementation
and it is evident that the static power consumption only contributes very little
to the total power numbers.

3.3.3 Implementation Discussion

For all implementations goes that a the imprecise implementation uses less area,
creates a shorter critical path and have a smaller power consumption than the
error free adder. If a bigger error could be tolerated, the width of the imprecise
part could be widend, giving an even bigger savings in area, delay and power
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consumption. All schemes shows equivalent delay characteristic only leaving
two performance criteria: area and power. Area and power wise Trunk and
Freeze0.5 wins as they uses the lowest area and power. The frozen EF imple-
mentation EFtrunk14 is a potential competitor, as it besides having a low power
consumption, also can act as precise adder.

3.4 Conclusion for Imprecise Addition

None of the presented imprecise addition schemes manage to have a balanced ε̄.
OR-tail is the most statistical accurate adder, with Carry-one as a close second
only di�erentiating them self from each other by |ε|max. For image smoothing
and transformation the errors introduced by the imprecise adder schemes is the
same up to an imprecise width of 16, except for Carry-one. This it because both
schemes uses a right shift of 16 bit at the end, making the precise part of the
adder scheme the only contributing part to the end result. With an imprecise
width of over 16, the imprecise part contributes directly to the end result, OR-
tail with the best outcome, but at this width the error is considerable. For edge-
detecting which is an integer algorithm, the di�erence between the imprecise
adders are substantial, as the imprecise part contributes to the end result. Again
Carry-one is the best performing imprecise adder. OR-tail is marginally better
than XOR-tail and Freeze0.5 and Trunc is the worst performing, producing an
error three times that of Carry-one. The imprecise addition scheme Carry-one,
outperforms the other schemes in all three applications by being able to transfer
a carry from the imprecise to the precise part, thereby saving more information
than any other schemes. To compare the di�erent additions schemes area, delay
and power consumption, the biggest imprecise width of each scheme with a
performance of |ε̄|p ≤ 2 for transformation were implemented and synthesised.
Carry-one had an imprecise with of 15, while the others had a with of 14. The
imprecise additions schemes were applied to a 32bit two stage CLA. All schemes
came out with a 22% lower delay, making it possible to save ≈ 22% power by a
≈ 10% decrease in operating voltage, still keeping the same timing constrains.
As the width of the imprecise part of the adders schemes are almost the same,
the area of them is directly comparable to the complexity of the imprecise part.
As Trunc and Freeze0.5 do not have any logic in their imprecise part, they have
the smallest area and saves 46%, Carry-one has the biggest area as it has the
most complex imprecise part only saving 30%. Trunc14 and Freeze0.514 have a
power reduction of 49%, closed followed by OR-tail, saving 48%. The reason
for the low power consumption of the OR-tail is its self reinforcing production
of '1' when the output is reapplied to its input, making the output only switch
once. Carry-one15 had a high power consumption and only saved 42%, closed
followed by XOR-tail14 with 43%. The error free addition scheme were applied
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the same test vectors as the Trunc14, the last 14 least signi�cant bits zeroed,
there by performing as Trunc14. It had a power reduction of 44% by not using
its full precision, using less power than XOR-tail14 and Carry-one15.

Given the highly di�erent error sizes for di�erent application with the same
imprecise addition scheme, it is fair to say that one-size does not �t all. Carry-
one had the over all best performance, but also the highest power consumption
of the imprecise adders, still manages to save 42% power, 55% with applied
voltage scaling. But the title of: king of the hill, goes to the error free imple-
mentation, as by freezing its input, a 44% reduction in power consumption can
be achieved and altering the amount of frozen bits, would make it perform with
many di�erentapplications.



Chapter 4

Multiplication

Multiplication can be expressed in its the general form as equation 4.1. Where
y is the multiplier, z the multiplicand and the result is the product between the
two.

result = y × z (4.1)

With small or pleasing numbers this can be done by mental arithmetic. But
as the numbers gets funnier, mental arithmetic becomes hard and papers are
normally taken to aid, if not machines. Even though most people jumps a couple
of steps, the main way to multiply numbers is the one taught in 5'th school year,
which can be described as the sum function 4.2.

result =

|y|<Radixj∑
j=0

O(yj)× Z ×Radixj (4.2)

Even though it was taught in the decimal system, Radix-10, the structure in
which to multiply two numbers together holds for most number systems.
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An example of equation 4.2, two decimal numbers 32510 × 95410, 32510 being
the multiplier and 95410 the multiplicand is being multiplied. As y < 103, j =
{0, 1, 2} the sum function is executed over 3 iterations. The multiplication is
described in equation 4.3, where the sum function is unrolled.

32510 × 95410 = O(510)× 95410 × 100 : 477010 (4.3a)

+O(210)× 95410 × 101 : 1908010 (4.3b)

+O(310)× 95410 × 102 : 28620010 (4.3c)

= 31005010 (4.3d)

A further example of this method works with other than the decimal system,
the binary, Radix-2, numbers 011012(1310)× 010112(1110), where 011012 is the
multiplier and 010112 is the multiplicand is being multiplied. As y < 24, j =
{0, 1, 2, 3} the sum function is executed over 4 iterations. The multiplication is
described in EQ 4.4, where the sum function is unrolled.

011012 × 010112 = O(12)× 010112 × 20 : 010112 (4.4a)

+O(02)× 010112 × 21 : 0000002 (4.4b)

+O(12)× 010112 × 22 : 01011002 (4.4c)

+O(12)× 010112 × 23 : 010110002 (4.4d)

= 100011112 (4.4e)

011012(1310)×010112(1110) = 0100011112(14310) is the correct result. Normally
when operating with logic, the number of iterations of the sum function is �xed
to the with of the multiplier word. Even though the sum function, EQ 4.2,
is a serial function, it can be unrolled and executed in parallel. The parallel
execution style is used in this report. The radix chosen for this thesis is Radix-
4, which requires a recoder, see appendix 4.1 for more information.

4.1 Precise Radix-4 Multiplier

The general parallel multiplier scheme consist of 4 main components: Recoder,
Partial Product Generator (PPG), Partial Product Reducer (PPR) and a Carry
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Figure 4.1: General multiplier scheme

Propagate Adder (CPA). Equation 4.2 is used as a reference to described the
di�erent components.

• The Recoder transforms the binary numbers y into a Radix-4 number set,
O(yj)

• The Partial Product Generator, multiplies the multiplicand width a pre-
de�ned Radix-4 digit set creating the product O(yj)× z

• The Partial Product Recucer and CPA is equivilent to the summering
function,

∑
, giving the �nal result

The missing Radixj is a simple right shift when representing in binary numbers
and can be thought of as keeping alignment, as it will not change the generation
of the partial product. The Recoder, PPG, PPR an CPA, is connected as seen in
FIG 4.1. Each component has a speci�c job in the multiplier and can be created
with di�erent function as well as gate combination. Chancing one component,
being function or gate wise, can alter the accuracy, area and power consumption
of the entire multiplier, therefore each component and sub components has been
kept as standard as possible, as not to favour or optimize a scheme over another.
The change of component is demonstrated in the following sections, where two
di�erent recoder schemes is being introduced where everything else is identical.
In the following sections the main component of a multiplier will be explained
i more detail, together with the implementation.
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y2j+1 y2j y2j−1 O(yj)
0 0 0 0
0 0 1 zj
0 1 0 zj
0 1 1 2zj
1 0 0 −2zj
1 0 1 −zj
1 1 0 −zj
1 1 1 −0

Table 4.1: Recoding of Booth digit set

y2j+1 y2j y2j−1 O(yj)
0 0 0 0
0 0 1 zj
0 1 0 zj
0 1 1 2zj
1 0 0 −2zj
1 0 1 −zj
1 1 0 −zj
1 1 1 0

Table 4.2: Recoding of NPR3A digit set

4.1.1 Recode

The recoding component takes the multiplier input, Y, and generates a set of
signals, which the partial product generator (PPG) uses to generate the partial
products from the multiplicand, Z. How the partial product are generated de-
pends on the recoding scheme, an its digit sets. The most simple digit set is
that of the Radix-2, with the digit set {0,1}. An example of this is equation
4.4e. Using a radix-4 recoding scheme only requires half the partial product of
a radix-2 scheme, why a radix-4 or higher is favoured for area saving. Gener-
ating partial product form a Radix-4 digit set or higher radix can require pre
addition, something the delay will su�ers under. In this project only radix-4
multipliers are used. The best known radix-4 recoding digit set is that of Booth
[MDETL04, p. 197], with the digit set {-2,-1,-0,0,1,2}, recoded described in TAB
4.1. Implementation in FIG 4.2a. The recoding scheme NPR3a, proposed in
[ZH03, p. 33, NPR3a], recodes Y into the digit set {-2,-1,0,1,2}, which avoids
the generation of -0, recode description in TAB 4.2. See FIG 4.2b for NPR3a
implementation. Avoiding the generation of -1, reduces the switching activity
in PPC and CLA, but does introduce more area and delay in the recoder.
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(a) Booth implementation

(b) NRP3a implementation

Figure 4.2: Implementation of Recoding and PP generation

Booth and NRP3a represent their digit set with tree signals twoj , onej , signj(cj),
see FIG 4.2a and FIG 4.2b. The Booth and NRP3a recoded is interchangeable,
which makes it possible to change between the two recoders without have to
change the PPG, PPR or CPA.

4.1.2 Partial Product Generator (PPG)

The partial product generator, generate the products which is accumulated in
PPR to two bit vectors which is added together in the CPA given the multipliers
result. Each partial product (PPj) is generates as a product of the recorders
digit set (O(yj)) and the multiplicand, Z. Equation 4.5 describes the partial
product generated by a Radix-4 recoding scheme. The shift 4j is added to keep
the right alignment between partial products.

PPj = O(yj)× Z × 4j (4.5)

The partial product Zj × {0, 1} is easily generated. The Zj × 2 is generated
with a left shift. The partial product Zj × {−2,−1,−0} is generated by taking
their respectable positive and inverting their bit values adding one. But instead
of doing the addition before hand, the partial product is kept in a redundant
number format, EQ 4.6. Giving the PPC the partial product in a redundant
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(a) Partial product generated, for a 6x6 multiplier

(b) Reduced complexity of the partial product generated, for a 6x6 multiplier

Figure 4.3: Shape of Radix-4 partial production generation

number format, hides the addition delay between the reduction of partial prod-
ucts. The one needed to be added is de�ned as a carry Cj and corresponds to
the signal Signj . This gives the partial product generated the shapes in FIG
4.3a. The partial product generator implementation is given in FIG 4.2.

PPj = (Singj ⊕ (Z × onej + 2Z × twoj))× 4j , Cj × 4j (4.6)

Because Booth, NRP3a and the two's complement system, the partial products
is signed, which means each partial product is sign extended to the width of the
results length. To reduce the numbers of bit needed to represent a given partial
product, the scheme given in [MDETL04, p. 202] is used, which turns FIG 4.3a
into FIG 4.3b.

4.1.3 Partial Product Reducer (PPR)

The PPR takes the partial product generated and reduced them into two bit
vectors. A carry propagate adder uses the two bit vectors to calculating the �nal
result. The generated partial products FIG 4.3b, is reduced using (3,2] counters
and (2,2] counters. In practise a (3,2] is a full adderand a (2,2] is a half adder.
The partial product is reduced in steps, where each counter, "transforms" the
columns into rows and unused bits are move to the next step, as displayed in
FIG 4.4. Figure 4.5 shows how the partial product from a 6x6 bit multiplier is
reduced to two bit vectors. The reduction used in this project follows a very
strict method and are parted into two stages: the general stage where atleast
one column has more than 3 entries & the �nal stage where there are at most
3 entries in all columns, see algorithm 2 and 3 for general and �nal reduction
steps.
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(a) (3,2] CSA reduction
step

(b) (2,2] CSA reduction
step

(c) Transfer bit to next
step

Figure 4.4: Reduction by (3,2] & (2,2] counters

Figure 4.5: The reduction of partial products from a 6x6 bit multiplier into
two bit vectors.
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Algorithm 2 General method, used when atleast one column height > 3

i← #first non empty column
for i < culumns do

if columniheight > 2 then
for columniheight > 2 do

Reduce with (3,2]
end for

if columniheight > 1 then
Reduce with (2,2]

end if

end if

i← i+ 1
end for

Algorithm 3 Final methods, used when the columns height ≤ 3

i← #first non empty column
for i < culumns do

if columniheight > 2 then
Reduce with (3,2]

end if

if column(i−1)height < 1 then
Reduce with (2,2]

end if

i← i+ 1
end for
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4.1.4 Carry Propagate Adder

There are many types of CPA adders. The one used here is a 32 bit two-
level carry-lookahead adder, as described in [MDETL04, p 75]. If the CLA
is implemented with the correct amount of look-ahead levels it should have a
logarithmic delay.

4.1.5 Area, Delay and Power Comparison

The synthesise tools and conditions is described in section 2.5. The multiplier
tested is both squared 16bit parrallel Radix-4 multipliers, the di�erence is their
recoding scheme. Booth and NRP3a is both described in SEC 4.1.1.

From table 4.3, it is clear to see that the collected area of the multiplier using
NRP3a instead of Booth can be disregarded, NRP3a uses a higher area as
expected, but the area increased is under 1%.

Area [µm2]
Booth NRP3a Di�erence

Recoder 190 214 12%
PP Generate 2381 2381 0%
PP Reducer 3149 3146 0%
CLA 1143 1143 0%
Total 6863 6886 <1%

Table 4.3: Area comparison between Booth and NRP3a

TAB 4.4 shows that the collected delay rises 12 % using NRP3a instead of Booth
as recoder. This is a substantial increase, which is a catastrophe in modern high
speed systems. It do seem that the delay is contained to the Recoder and the
PPG, which could make the delay arbitrary to multiplier size. Meaning bigger
multiplier will be less a�ected by using NRP3a that Booth as a recorder.

The power numbers speaks for them self, there are no di�erence between using
NRP3A and Booth recoder. Both Booth and NRP3A are excellent recorders,
they both have a small impact on the collected area. Booth is a faster recoder
and is there for to perfer in an error free implementation, as both recorders show
similar power dissipation numbers.

The NRP3a is being used in all imprecise schemes in this project, as it has
the lowest power consumption. The NRP3a digit sets avoids the -0 generation,
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Delay [ns]
Booth NRP3a Di�erence

Recoder 0.42 0.73 74 %
PP Generate 0.29 0.35 20 %
PP Reducer 0.95 0.95 0 %
CLA 1.45 1.45 0 %
Total 3.11 3.48 12 %

Table 4.4: Delay comparison between Booth and NRP3a, through the critical
path

Power [mW ]
Picture Booth NRP3a Di�erence
Random 1.935 1.939 <1 %
Barboon 1.906 1.904 <1 %
Barbara 1.856 1.855 <1 %
Goldhill 1.891 1.885 <1 %
Lena 1.863 1.861 <1 %
Peppers 1.884 1.878 <1 %
Average 1.889 1.887 <1 %

Table 4.5: Power dissipation of Booth and NRP3a for di�erent pictures

which makes it more ideal for imprecise multiplier schemes where the carry
signal is left out, as only -1 and -2 will be generated imprecise.

Because of an error in my VCS scripts I got incorrect power numbers. I got
a 22% power saving using NRP3a rather than Booth as recoder. This was
expected from the result from data given in table 2.14 in [ZH03]. Because of
this, NRP3a is used in the project instead of Booth, as the error were discovered
quite late in theproject.

4.2 Imprecise Multiplier Schemes

In this section the imprecise multiplier schemes is presented. The schemes
change the way the partial products are generated. As the partial product
generated changes shape, so will the PPR and CPA, in�uencing the area, delay,
error and power consumption of the scheme. The imprecise multipliers are based
on a parallel Radix-4 scheme described in section 4.1, which uses the NRP3a
scheme for recoding.
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Figure 4.6: Implementation of the imprecise TEPPE2 scheme, with a truncat-
ing width of 2

4.2.1 Truncating Each Partial Products End Scheme (TEPPE)

The Trunk Each Parital Product End scheme (TEPPE) as the name suggest
truncates the generation of each partial product. All partial products are gener-
ated leaving out the least signi�cant part, this reduced the logic needed gener-
ating the partial product and subsequent the logic in the compression tree and
CPA. Depending on the width chosen, more or less of the least signi�cant part of
each partial product is truncated out. Cj is moved, Cj.teppe = Cj × 2q, towards
the most signi�cant part to accommodate the generation of minus products, {-2,
-1}. The implementation can be seen in �gure 4.6. The width of the truncation
is given as q, TEPPEq.

4.2.2 Hybrid 2 Scheme (H2)

The Hybrid 2 scheme (H2) generates it partial product in a hybrid fashion.
The hybrid part consist of the PP being generated with two di�erent digit set,
a full and a crippled. The di�erent set can be seen in table 4.6. The least
signi�cant part of the partial product is generated using a crippled version of
the original NRP3a, with the digit set {-2,0,2}. A new recoding is not necessary
as the NRP3a generated the correct signals already. q describes the width of
the partial product which is generated by the crippled digit set. See �gure 4.7a
for implementation.
The generation of PP j0 = signj , which is the same signals as Cj . Cj represent

the same value as PP j0 in this implementation and they are added together,

CJ + PP J0 = 2 × CJ . A complexity reduction is achieved by leave out PP j0 ,
but letting Cj represent double it original value, Cj.h2 = 2×Cj . This gives the
implementation in �gure 4.7b. The generation of the hybrid part uses less logic,
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y2j+1 y2j y2j−1 O(yj) O(yj)hybrid
0 0 0 0 0
0 0 1 zj 0
0 1 0 zj 0
0 1 1 2zj 2zj
1 0 0 −2zj −2zj
1 0 1 −zj -0
1 1 0 −zj -0
1 1 1 0 0

Table 4.6: Recoding of NPR3A digit set, with hybrid generation

but the partial product width = n, given almost the same size compression tree
and CPA as a precise implementation.

4.2.3 Leave out LowLow Scheme (LLL)

It is generally known that multiplication between two words which width exceeds
the available multiplier hardware, can be parted up in smaller multiplications
bites and combined. Given a square 8 bit multiplier and the wish to multiply
the two 16 bit words A and B, the scheme illustrated in �gure 4.8 will do just
that. Part up the two big numbers in to a high and a low part. Multiply ALow
with BLow, AHigh with BLow, ALow with BHigh and AHigh with BHigh, align
them correctly and add them together will give the product A B. In the LLL
scheme the ALow x BLow product is left out in the �nal summering, illustrated
in �gure 4.9. Instead of using 3 small multiplier to incorporated the scheme, the
product generated by ALow x BLow is left out generating the partial product.
q ∈ {2, 4, 6, 8...} describes as the width of the low part. The partial product
generated without ALow x BLow is illustrated in �gure 4.10, the carry bit, Cj ,
is preserved.

4.2.4 Truncating Scheme (R4T)

The implementation is the same as used for R4TEPPE in section 4.2.1, with the
exception that each partial product is truncated di�erently if truncated at all.
All bits generated in the partial products PPj which represents a value in the
collected scheme under 2q is truncated away. See �gure for a description 4.11a.
Cj is preserved and moved, Cj.R4T = Cj × 2(q−j), j ∗ 2 < q, towards the most
signi�cant part to accommodate the generation of minus products, {-2, -1}.
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(a) Naive implementation

(b) Optimized implementation, works by applying Cj.h2 = 2× Cj

Figure 4.7: Implementation of Hybrid 2 scheme, q = 3. Top is the naive
implemented and bottom is the optimized implementation.
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Figure 4.8: How to multiply big number on small hardware

Figure 4.9: LLL scheme

Figure 4.10: The partial product generated by the LLL scheme, Red indicates
removed bit, as they represents ALow x BLow. Blue represents
carry bit which has been preserved and moved. Multiplier width
= 8, scheme size = 4
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(a) Partial product generation where red indicated truncated bits and green represents
preserved carry bits, Cj

(b) Partial products generated and the preserved Cj .R4T which creates an unreason-
able high column

Figure 4.11: R4T scheme. Top the general partial product generation for
8x8bit multiplier q = 3, bottom displays the an unreasonable
high column for a 8x8 multiplier with aq = 6

The truncation can build up C0..n−1, which can become a problem with a high
q as column height is increased dramatically. When the column height increases
to much the delay reducing the partial product is increased together with the
power consumption. an example of this is given in �gure 4.11b, where instead
of a reduction of 5 rows, the reduction is increase to 8 rows. The truncated bits
creates a shorter CPA and some what smaller partial product reduction logic,
but also one which can be slower because of the extra rows which needs to be
compressed.

4.2.5 Hybrid 1 Scheme (H1)

The Hybrid 1 scheme use the same partial product generation as the Hybrid 2
scheme presented in section 4.2.2, the only di�erence is that the imprecise part
of each partial product varies, if present at all. Figure 4.12a describes how the
partial product is parted up in a precise and imprecise generation of PP. All bits
generated in the partial products PPj which represents a value in the collected
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(a) Partial product generated, where the imprecise part of the partial product is
marked red

(b) The generation of the partial product is optimized by reduction, red represent
imprecise generated partial product and blue bit which is not generated

Figure 4.12: H1 schemes. Top the naive implementation, bottom the opti-
mized version. Both 8x8 bit multiplier, q = 3

scheme under 2q are imprecise encoded. The optimizing scheme for the partial
production in section 4.2.2, for the R4H2 scheme holds for the R4H1 as well.
Using the optimization will give the partial product generated in �gure 4.12b.

4.2.6 Truncating Normal Carry Bits Scheme (TNCB)

The R4TNCB scheme is equivalent to that of the R4T scheme, with the ex-
ception that R4TNCB truncated the carry bits Cj as well, not preserving their
information. This reduces the amount of bits needed to be processed by the
compression tree, it especially solves the problem for preserving the Carry bits -
which created high columns, as seen in �gure 4.11b. An example of the partial
products generated by TNCB is shown in picture 4.13.
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Figure 4.13: R4TNCB scheme The red partial product representing bit which
is not generated, notice the lack of Cj preservation. 8x8bit mul-
tiplier with q = 3

Figure 4.14: R4TMCB scheme. The red part of the partial product is not
generated. notice the total lact of carry bits Cj . 8x8bit multiplier
with q = 6

4.2.7 Truncating Missing Carry Bits Scheme (TMCB)

The TMCB scheme is equivalent to that of the R4T scheme, with the exception
that R4TMCB leaves out all carry bits Cj . As TNCB this reduces the amount
of bits needs to be processed by the compression tree, it especially solves the
problem when preserving the Carry bits - which created high columns, as seen
in �gure 4.11b. An example of the PP generation for the R4TMCB scheme is
shown in picture 4.14,

4.3 Errors Generated by Imprecise Multipliers

In this chapter the error generated by the imprecise multipliers are investigated.
The statical errors are found by exhausting simulation. The error generated via
application is investigated through IDCT, image smoothing and edge-detection.
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4.3.1 Statistical Error for Imprecise Multipliers

The error function are derived from statistically observations based on exhaust-
ing simulation. q for 1 to 8 are exhaustively simulated for 232 combinations
and the error observed are converted into functions for comparison. The error
of TEPPE, H2 and TMCB are not only a�ected by q, but also the multipliers
width, as each partial product is generates with an error. The error functions for
the imprecise multipliers is given in table 4.7. See section 2.2 for error de�nition.

The average error, ε̄, can be divided into 4 groups. H1, H2 which have an
average error of zero, independent of q. TEPPE, LLL and R4T which has
the same medium error growth. TNCB which has a high average error growth.
TMCB having a biased and high negative error growth. In �gure 4.15a TEPPE,
LLL, R4T and TNCB error development is displayed.
The average absolute error, |ε̄|, is divided into 3 groups. R4T and H1 with
similar error generation and TNCB all showing low error growth. TEPPE, H2
and LLL showing the highest error growth and TMCB which is biased with
medium growth rate. Figure 4.15b shows R4T, H1 and TNCB as the lowest
growing error functions. Figure 4.15c shows just how much LLL grows compared
to the other schemes.It looks like all others errors converts against the same
limited growth.
The maximum absolute error, |ε|max, can be parted into 4 distinct groups.
As seen in �gure 4.15d. R4, H1 and TNCB displays the same maximum error
development over q. LLL has a high growth rate, but manageable at low q'es.
TMCB start biased, but grows only very little. TEPPE and H2 Starts biased
and grows fast, even though LLL would exceed their maximum error at a higher
q.

4.3.2 Transformation Error

The IDC-Transformation is described in section 2.4.1. There are given two
algorithm scenarios, one where A is the multiplier and B the multiplicand(AxB)
and visa versa (BxA). B generally being the number with he smallest magnitude,
given A and B represents integers. As the algorithm returns an integer number,
from a scaling of 1

216 , an error which has direct in�uence on the end result can
be generated for the following schemes TEPPEp>2, H2p>2, LLLq>8, R4Tq>16,
H1q>16, TNCBq>16 and TMCBq>16. The generated error size is con�ned to
the multiplier scheme and not the picture content.The errors are average over
the �ve test pictures presented in section 2.6. The error is given as ε̄p which
indication the average intensity change in the image. |ε̄|p gives the average error



4.3 Errors Generated by Imprecise Multipliers 53

T
y
p
e

ε̄
|ε̄
|

ε m
in

ε m
a
x

|ε
| m
a
x

T
E
P
P
E
q

1 4
−

2q
−
3

<
2.

04
5
q
+
1
2
−

2
1
8
4
5
×

(2
q
−

1
)

−
ε m

in
−
ε m

in

H
2
q

0
<

2.
01

5
q
+
1
2
−

2
1
8
4
5
×

(2
q
−

1
)

−
ε m

in
−
ε m

in

L
L
L
q

1 4
−

2q
−
3

<
3q

−
(2

q
−
1
)2

3
−
ε m

in
−
ε m

in

R
4
T
q

1 4
−

2q
−
3

<
2.

5
×

2.
2
q

−
q ∑ q
=
1
dq 2
e×

2
q
−
1

−
ε m

in
−
ε m

in

H
1
q

0
<

0.
3
×

2.
2
q

−
q ∑ q
=
1
dq 2
e×

2
q
−
1

−
ε m

in
−
ε m

in

T
N
C
B
q

( dq 2
e+

q
−
3
+
2
m
o
d
(q

+
1
)

4

) 2q
−
2

+
1 4

ε̄
0

−
q ∑ q
=
1
dq 2
e×

2q
−
1

ε m
a
x

T
M
C
B
q

<
−

81
92
.5
−

2.
1
q

<
ε̄

<
−

2
1
8
4
6
−

2.
2i

+
1

0
−
ε m

in

T
a
b
le

4
.7
:
S
ta
ti
st
ic
a
l
d
er
iv
ed

er
ro
r
fu
n
ct
io
n
s
fo
r
im
p
re
ci
se

a
d
d
er
s.

R
ed

en
tr
ie
s
is
n
o
t
ex
a
ct

b
u
t
a
u
p
p
er

b
o
u
n
d
fo
r
th
e

er
ro
r



54 Multiplication

(a) Average error growth of TEPPE, LLL,
R4T and TNCB over q. TEPPE, LLL
and R4T is overlaying

(b) Average absolute error growth of R4T,
H1 and TNCB over q. R4T & H1 is
overlaying

(c) Average absolute error growth of
all schemes, TMCB is displayed as
|TMCB|. All error growth has been
normalised. Notice the logarithmic y
axes

(d) Maximum absolute error growth for
all schemes over q. Notice the loga-
rithmic y axes. TEPPE and H2 over
lays, so do R4T, H1 and TNCB

Figure 4.15: Graphs based on error functions in table 4.7 for imprecise multi-
pliers
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(a) ε̄p for IDCT, AxB (b) ε̄p for IDCT, BxA

Figure 4.16: ε̄p for IDCT

of each pixel in the image. |ε|pmax describes the biggest pixel error in the image,
the error de�nition is given in section 2.3.
The average error, ε̄p, displayed in �gure 4.16a for AxB and 4.16b for BxA,
clearly displays the di�erence between calculation the transformation with input
order AxB or BxA. The argument order BxA being the one which generally
generates the smallest error over q. For both AxB and BxA there are some
similarities between schemes, TEPPE and H2, TNCB and TMCB and in some
sense R4T and H1, have a similar error curve. TEPPE and H2 are especially
a�ected by the order of the arguments, the argument order even negates the
errors signs. R4T and H1, seems to be the ones which is least e�ected by the
order of the input to the multipliers, TNCB and TMCB close after. LLL has the
highest error growth rate for AxB over q compared the others schemes, but have
a similar growth rate of TEPPE and H2 with reverse argument order. TNCB
and TMCB produces a darker image, with a negative error, H1 produces the
smallest error and seems to weave around zero. LLL and R4T generates a lighter
picture, with a positive error. TEPPE and H2 goes from producing a rather
negative error for AxB to a small positive error for BxA. The graphs which are
discontinues generate unstable errors, give errors bigger than the width of the
multiplier or adder.
The average absolute error, |ε̄|p, displayed in �gure 4.17b for AxB and

4.17b for BxA. As for ε̄p, the error generated is greatly a�ected by the size of
the input. TEPPE and H2 being the most a�ected. Again LLL has a high
error growth rate for AxB but follows that of TEPPE and H2 for BxA. The
errors compared for both argument orders shows that except for TNCB and
TMCB, which only produces negative errors, all scheme produce both negative
and positive errors. The graphs which are discontinues generate unstable errors,
give errors bigger than the width of the multiplier or adder.
The maximum absolute error, |ε|pmax, shown in �gure 4.18 for both AxB
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(a) |ε̄|p for IDCT, AxB (b) |ε̄|p for IDCT, BxA

Figure 4.17: |ε̄|p for IDCT

(a) |ε̄|pmax for IDCT, BxA (b) |ε̄|pmax for IDCT, AxB

Figure 4.18: |ε̄|pmax forIDCT

and BxA. |ε|pmax seems to follow the same tendencies observed in ε̄p and |ε̄|p,
where the order has great in�uence on the errors generate. Again TEPPE, H2
and LLL, TNCB and TMCB and R4T and H1 have similar error growth rates
for AxB. TEPPE, H2 and LLL generating the biggest error, then TNCB and
TMCB, R4T and H1 having the smallest. R4T and H1 are the least a�ected by
the order of the arguments.

4.3.3 Smoothing Error

The image smoothing is described in section 2.4.2. There are given two algo-
rithm scenarios, one where A is the multiplier and B the multiplicand(AxB) and
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(a) ε̄p for smooth, AxB (b) ε̄p for smooth, BxA

Figure 4.19: ε̄p for smooth, TNCB and TMCB cover each other

visa versa (BxA). B generally being the number with he smallest magnitude,
given A and B represents integers. As the algorithm returns an integer number,
from a scaling of 1

216 , the introducing of a direct error into the end result can
be generated by the following schemes TEPPEp>2, H2p>2, LLLq>8, R4Tq>16,
H1q>16, TNCBq>16 and TMCBq>16. The generated error size is con�ned to the
multiplier scheme and not the picture content.The errors are averaged over the
�ve test pictures presented in section 2.6.The error is given as ε̄p which indicates
the average intensity change in the image. |ε̄|p gives the average error of each
pixel in the image. |ε|pmax describes the biggest pixel error in the image, the
error de�nition can be found in 2.3
The average error, ε̄p, development over q is shown in 4.19. R4T, H1, TNCB
and TMCB seems almost una�ected by the order of the arguments, but per-
forms slightly better with BxA. TEPPE and H2 is a�ected the most where the
input order BxA is al lot better than AxB. As the only one LLL seems to behave
best with the argument order AxB. All except LLL seems to make the picture
darker, with general negative errors for both argument ordering.
The average absolute error, |ε̄|p, over q is displayed in 4.20. TEPPE and
H2 are most a�ected by the order of the arguments and they have the biggest
error growth.
The maximum absolute error, |ε̄|pmax, over q is displayed in 4.21. The input
argument BxA have the lowest error generation for all multiplier schemes except
LLL which favours the AxB order. TEPPE and H2 errors growth fast, R4T and
H1 has the lowest growing error, followed closely by TNCB and TMCB.
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(a) |ε̄|p for smooth, AxB.
(b) |ε̄|p for smooth, BxA. TEPPE and

H2 cover each other

Figure 4.20: |ε̄|p for smooth, TNCB and TMCB cover each other

(a) |ε̄|pmax for smooth, AxB (b) |ε̄|pmax for smooth, BxA

Figure 4.21: |ε̄|pmax for smooth, TNCB and TMCB cover each other
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(a) ε̄p for edge-detection, AxB (b) ε̄p for edge-detection, BxA

Figure 4.22: ε̄p for edge-detection

4.3.4 Edge-detection Error

The edge-detection is described in section 2.4.3. There are given two algorithm
scenarios, one where A is the multiplier and B the multiplicand(AxB) and visa
versa (BxA). A generally being the number with the smallest magnitude, given
A and B represents integers. Independent of q, all schemes has the possibility
to generate a direct error in the �nal result. The generated error size is con�ned
to the multiplier scheme and not the picture content.The errors are averaged
over the �ve test pictures presented in section 2.6.The error is given as ε̄p which
indicates the average intensity change in the image. |ε̄|p gives the average error
of each pixel in the image. |ε|pmax describes the biggest pixel error in the image,
the error de�nition can be found in section 2.3.
The average error, ε̄p, over q is illustrated in �gure 4.22. All schemes produces
a general brighter picture than the error free multiplier, generating positive
errors. All schemes performs better with the AxB ordering of the multiplier
arguments. The errors produced by TEPPE, H2 and TMCB using BxA are all
over 200 and not displayed in 4.22b. As all errors are direct errors, even a small
change of q alternating the end result substantial. R4T performs the best no
matter the input argument order and is the only one which is usable for q ≤ 5.
For AxB, H2, TNCB and TMCB performs similar but the worst, q ≤ 3 is usable.
LLL, TEPPE and H1 performs better, but only slightly, as q ≤ 4 is usable.
The average absolute error, |ε̄|p, over q is illustrated in �gure 4.23. The

curves are similar as those in 4.22 for ε̄p but are scales slightly higher. This
means that most errors are positive but some negative errors occurs.
The average absolute error, |ε̄|pmax, over q is illustrated in �gure 4.23. |ε̄|pmax
follows ε̄p with a positive scaling between 2 and 4 times that of |ε̄|p. Meaning
that the average absolute error is around half to a quarter of the maximum error
in the picture.
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(a) |ε̄p| for edge-detection, AxB (b) |ε̄p| for edge-detection, BxA

Figure 4.23: |ε̄p| for edge-detection

(a) |ε̄|pmax for edge-detection, AxB (b) |ε̄|pmax for edge-detection, BxA

Figure 4.24: |ε̄|pmax for edge-detection
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4.3.5 Error Discussion

For all applications and imprecise multipliers it is clear that using the argument
with the smallest magnitude as the multiplier and the largest magnitude as
the multiplicand gives the best result. For short, this means that the smallest
number recodes the fewest partial products with the biggest value. This makes
sense, as fewer imprecise partial product is generated, the less error is introduced
into the �nal result. The magnitude of the arguments to the multiplier especially
a�ected TEPPE, H2 in IDCT, image smoothing and edge-detecton and TMCB
especially in edge-detection. This is not a quality wanted in a multiple, as it
applies extra work on the programmer to create the most precise program, an
error free multiplier will give the same result no matter the order of the input.
The faster an error grows the harder it will be to �nd a good q for a given
scheme and precision, given this TEPPE, H2 and LLL are not preferable when
choosing an IDCT precision, as their error grow the fastest. In smoothing and
edge-detection, given some schemes start biased and some start generating errors
late, they almost all have the same growth, except for LLL which error seems
to grow with twice the speed. The statistically error functions given in section
4.3.1 is not applicable directly to any application, the reason being that they
do not take error accumulation into account. For instance ε̄ for TEPPEq, LLLq
and R4Tq are exactly the same over q, but there are no evidence in this when
applied to the IDCT, image smoothing or edge-detection application. The bests
imprecise multipliers seen from the error prospective is R4T and H1, TNCB as
a close third. Their performance are stable over q given a smooth curve in all
application. They are easy to adjust to a wanted error size, as their error do not
leap uncontrollable. Changing the order of the input only change the error size a
little, which means that they introduce a bounded error in each partialproduct.

4.4 Imprecise Multiplier Implementation

To compare the di�erent schemes implementations when generating similar er-
ror, each scheme were tuned to maximize its imprecise part, produced |ε̄|p ≤ 2
when calculating IDCT. As there are two error curves depending on the order
of the input argument to the multiplier, the worst is chosen to limit the error of
a worst-case picture. Table 4.8 summarise the size of the imprecise multiplier
scheme and the error generated by calculating IDCT, collected from section
4.3.2. The error free multiplier implementation is a square 16bit multiplier with
NRP3A recoding, as described in 4.1. The di�erent imprecise multiplier schemes
are applied to the same frame work. The synthesise tools and conditions is de-
scribed in section 2.5.
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Scheme TEPPE2 H22 LLL8 R4T15 H115 TNCB12 TMCB11

IDCT |ε̄|p 1.255 1.04 0.48 1.87 1.41 1.53 1.99
IDCT |ε|pmax 8.85 6.00 2.67 10.98 25.52 5.31 6.00

Table 4.8: The size of the imprecise multiplier schemes given as q, together
with |ε̄|q and |ε|qmax average over the test pictures

Area [µm2]
EF TEPPE2 H22 LLL8 R4T15 H115 TNCB12 TMCB11

Recoder 214 204 206 209 205 210 206 206
PPG 2381 2118 2241 1829 1272 2066 1651 1758
PPR 3146 2758 2953 2472 1866 2953 2205 2238
CPA 1143 1028 1104 896 650 1104 686 839
Total 6886 6109 6504 5405 3993 6331 4748 5041
RatioEF 1.00 0.84 0.94 .78 .58 .92 .69 .73

Table 4.9: The area of the multiplier schemes divided into main component,
compared to a precise implementation.

4.4.1 Area Comparison

The area of the di�erent implementations can be seen in table 4.9. The area
is divided into the main part of the multiplier. As all schemes uses the same
recoder, this area is similar. The partial product generation is where the di�erent
schemes di�er, the compression tree and CPA is based on the partial product
size and shape and will therefore vary with the schemes. R4T15 uses the smallest
area then TNCB12, with 58% and 69% of the error free implementation. The
reason for R4T15 "big" PPC is the preservation of carry bits. H22 and H115
is identical in terms of recoder, PPR and CPA, only the area of their partial
product di�er. Non of them saves allot of area, as they uses 94% and 92% of
the EF implementation. In �gure 4.25a is the graphical representation of table
4.9. It is clear to see that the area of the recoder do no change.

4.4.2 Delay comparison

See table 4.10 and �gure 4.25b for graphical representation of delay numbers.
The delay are divided into the main components of the multiplier and are
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(a) Graphical representation of area use
for the di�erent imprecise multiplier
implementation, divided into multi-
plier components

(b) Graphical representation of the delay
through the di�erent imprecise mul-
tiplier implementation, divided into
multiplier components

Delay [nSec]
EF TEPPE2 H22 LLL8 R4T15 H115 TNCB12 TMCB11

Recoder 0.73 0.70 0.51 0.71 0.66 0.71 0.71 0.72
PPG 0.35 0.34 0.56 0.36 0.34 0.63 0.40 0.35
PPR 0.95 0.88 0.96 0.94 1.15 0.91 0.89 0.83
CLA 1.45 1.64 1.44 1.44 1.31 1.53 1.36 1.45
Total 3.48 3.56 3.53 3.46 3.46 3.86 3.36 3.35
RatioEF 1.00 1.02 1.01 0.99 0.99 1.11 0.96 0.96

Table 4.10: Delay of each multiplier schemes through its critical part, [nS]

recorded for the critical path. The delay through each component are more
or less the same. As the same hardware are to be found in the Recoder and
PPG the almost equal delay through these are expected. The time through the
PPR is almost identical, except for R4T and TMCB. R4T's long delay through
PPR is caused by the excessive column height, generated by preserving the carry
bit used for generating the products {-2,-1}. TMC's small delay through PPR,
caused by the total lack of carry bits. The only serial delay in the scheme are
caused by the error free CPA and seems to compensate the delay through the
preceding parts. Even though the critical path varies through the main com-
ponents the total delay is more or less the same. H1 is the only scheme which
has a delay which lies away from the error free implementation with a 11%.
The reason is contributed the partial product generation which apparently, to
optimize the power dissipation, introducing slow gates.
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Random 1.939 1.820 1.693 1.846 1.551 1.142 1.615 1.364 1.477
Barboon 1.904 1.795 1.669 1.811 1.521 1.119 1.587 1.344 1.456
Barbara 1.855 1.740 1.624 1.761 1.483 1.091 1.531 1.310 1.418
Goldhill 1.855 1.772 1.651 1.790 1.507 1.107 1.563 1.329 1.438
Lena 1.861 1.746 1.630 1.766 1.487 1.093 1.536 1.314 1.421
Peppers 1.878 1.766 1.644 1.782 1.502 1.102 1.555 1.324 1.433
Average 1.882 1.773 1.652 1.793 1.508 1.109 1.563 1.331 1.441
RatioEF 1.00 0.94 0.88 0.95 0.80 0.59 0.83 0.71 0.77

Table 4.11: Power consumption of di�erent pictures on di�erent schemes
[mW], worst case

4.4.3 Power Comparison

See table 4.11 for power numbers. The test vectors contains the same infor-
mation as calculation IDCT for the test pictures. The random generated test
vectors consumes more power than calculation IDCT, this can be contributed to
the similarity between test vectored calculating IDCT, reducing switching ac-
tivity. All imprecise schemes uses less power than the error free implementation.
R4T15 uses 59%, H22 92% of the error free implementation. EFTEPPE2

is an
error free multiplier where the two least signi�cant bits of the multiplicand input
has been frozen to 0. The scheme will perform similar to TEPPE2 regarding
the error generation. It places itself between the precise implementation and
TEPPE2 power wise, saving 6% power. Freezing the input of a multiplier do
not stop all switching activity further down the logic, as generating the partial
product can inverse the frozen input. In �gure 4.25 the power dissipation for
the di�erent part of the multiplier is show. The reduction of the partial prod-
uct dissipates most power, then CPA, PPG and the recoder consumes the least
power.

4.4.4 Implementation discussion

The delay of the multiplier is rather even, but H1 has a very slog path through
PPG, this is reasoned to be caused by the lack of timing constrains and emphasis
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Figure 4.25: Graphical representation of power dissipation for each component
in the di�erent imprecisemultipliers

on low power synthesised. The area and power consumption do follow each other
and to some degree the size of the imprecise scheme for TEPPE, R4T, TNCB
and TMCB. R4T have the smallest power consumption followed by TNCB and
TMCB, as they uses similar schemes this is not uprising. H2 and H1 which tries
to estimate the imprecise part of the partial product loses on area and power
to the other schemes, as the generation of the partial products is only 1

3 of the
area and power and 1

10 of the delay for the EF circuit.

4.5 Conclusion for Imprecise Multipliers

The statistical generated errors indicated that TMCB were never going to pro-
duce usable numbers for any application as its average error started at 8000 for
q ≤ 1 and only grow. But in transformation, image smoothing it showed good
performance. This is a good exampled of how the di�erent imprecise schemes
behaves a bit irrational depending which application they performs. Chanc-
ing the order of the inputs also changed the error generated, the most e�ected
schemes were TEPPE and H2, where R4T and H1 seems the least sensitive
to the arguments input order. Except for LLL, all imprecise multipliers per-
formed the best when the smallest input were the multiplier and the biggest
the multiplicand. This input order gives the fewest generated partial product,
as the multiplier input recodes the digit set for the partial product. Depend-
ing the application the error were prevailing negative or positive. One solution
size imprecise multiplier do not �t all application, which is evident comparing
transformation, image smoothing and edge-detection. The same size error is not
achievable by the same schemes in all tree application, not even for the smallest
possible imprecise schemes. For all application goes that R4T have an excellent
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behaviour in the sense that the errors grow slowly, making it easy to �nd a
participial size schemes, which �t the error size wanted. There is no big di�er-
ence between the di�erent implementation delay except for H115, which delay
has increased 11% from precise implementation. Area wise H22 are the biggest,
closely followed H115, of the imprecise multiplier schemes, this is not surprising
as their partial product are almost the same size as the precise implementation.
their reduction of logic generating the partial product is not su�cient to com-
pensate for the large partial product compared to the other schemes. There is
a big di�erence between the di�erence schemes power dissipation, TEPPE2 and
H22 saves 10%, LLL8 and TMCB12 saves 20%, TNCB 30% and R4T15 saves
40%, all performing IDCT with the same error loft.
The multipliers can be parted into two groups. TEPPE, H2, LLL, TMCB all
have mixed precise and imprecise values in their generated partial products,
meaning that precise generate values is added with an imprecise generate value
with the same weight. The other group being R4T and TNCB which do not
mix precise and imprecise generates partial product. R4T is clearly the best
imprecise multiplier closely followed by TNCB when comparing the trades o�
between error andpower.



Chapter 5

Multiply and Accumulate

The Multiply and ACcumulate (MAC) scheme is present in most if not all DSP
chips in one form or another. It is a piece of hardware which has been created to
reduce the amount of operations needed to perform most signal processing tasks.
Many signal processing algorithms has a major part which can be written in the
form

∑
a×b, the MAC performing exactly this operation. A MAC is a multiplier

where the result from its previous calculation is reintroduced through a register
into the PPR. As the compression tree reduces the partial product in parallel,
the extra partial product being the previous result, do not contribute substantial
to the overall delay. Figure 5.1 shows a MAC, using a (3,2] Carry Save Adder
(CSA), for introduction of the previous result.This MAC construction is used
when testing the imprecise multipliers and adder schemes together.

5.1 Errors Generated by Imprecise MAC

MAC - Combining Exact Multiplier with Imprecise Addition Schemes.

Image application su�ers under the hard separation of the precise and imprecise
part of the adder. When combining an imprecise adder scheme with an exact
multiplier into a MAC, see 5.1, most adder schemes performances rise substan-
tially. The performance improvement is contributed the CSA32 in the adders



68 Multiply and Accumulate

Figure 5.1: A MAC with the adder in the critical path

path. The CSA32 blurs the border of the precise and imprecise part of the impre-
cise adder, as it "incorporates" a carry chain with a width of one, allowing data
from the imprecise part to in�uence the precise part. Figure 5.2 and 5.3 shows
|ε̄|p for transformation and image smoothing for standalone adder and MAC,
both featuring an imprecise addition scheme. Except for Trunc which performs
worse, all other imprecise additions schemes performs better in a MAC. Both
image smoothing and edge-detection favours Freeze0.5 with a good margin to
the next. Freeze0.5 only generate half the error in a MAC as Carry-one, the
best standalone imprecise adder. Figure 5.4 shows |ε̄|p for edge-detection for
standalone imprecise adders and MAC's with imprecise adders. Depending on
the width of the imprecise adder, edge-detection favours OR-/XOR-tail upto a
width of 4 and above Trunc perform better. For edge detection Carry-one and
Freeze0.5 performs worse than their standalone counter part, directly contrary
to the image smoothing and transformation application where they performed
the best.

MAC - Combining Imprecise Multiplier Scheme with Imprecise Ad-

dition Schemes. Given the multiplier conclusion in section 4.5, TEPPE, H2,
LLL, H1 and TMCB are avoided when generating MAC's, as their accuracy or
power properties are undesirable, leaving the imprecise schemes R4T, TNCB.
As the MAC is a combination of an imprecise multiplier scheme and an impre-
cise addition scheme there is two variables which can impact performance, the
width of the imprecise part of the adder and the size of the imprecise part of
the multiplier. In the following sections, behaviour of the di�erent compositions
of imprecise schemes are investigated. When describing the di�erent imprecise
multipliers performance in the previous chapter, the order of the input were
investigated as well, this is left out in this chapter to make it more readable. To
guaranteed a certain performance the input with the worst performance were
chosen.
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Figure 5.2: |ε̄|p for IDCT performed on MAC (Right) and separate multi-
plier+adder (Left). Both with exact multipliers and imprecise
adder schemes

Figure 5.3: |ε̄|p for image smoothing performed on MAC (Right) and separate
multiplier+adder (Left). Both with exact multipliers and impre-
cise adder schemes
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Figure 5.4: |ε̄|p for Edge-detection performed on MAC (Right) and separate
multiplier+adder (Left). Both with exact multipliers and impre-
cise adder schemes. Notice the di�erent scaled x-axle

5.1.1 Transformation Error

In �gure 5.5 the |ε̄|p for transformation is shown for di�erent combinations of
imprecise multiplier schemes and imprecise additions schemes. The size of the
imprecise part of the multiplier is kept steady and the width of the imprecise
part of the adders varies. For both multiplier schemes goes that their partial
product are truncated up to a certain value. This means than if the imprecise
part of the adder scheme is smaller that the imprecise part of the multiplier,
the di�erent adder schemes will return the same result and basically behave as
an error free adder. This e�ect is seen in the graph for q ≤ 14. R4T and TNCB
each favours a di�erent imprecise adder. For R4T the OR-tail and TNCB the
Freeze0.5. For both schemes goes that the imprecise adder actually reduces the
error as it get wider, but only to a certain point. This means that a symbiotic
relationship between imprecise multiplier and adder is achieved, compensating
for each others shortcomings.

5.1.2 Image Smoothing Error

In �gure 5.6 the |ε̄|p for image smoothing is shown for di�erent combinations of
imprecise multiplier schemes and imprecise additions schemes. The size of the
imprecise part of the multiplier is kept steady and the width of the imprecise part
of the adders varies. As for the transformation error, adders with an imprecise
width less than the truncation width of the multiplier schemes, performs as a
precise adder. R4T and TNCB both favours Freeze0.5 as their imprecise counter
part. TNCB actually has a substantial performing boost using the Freeze0.5,
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Figure 5.5: |ε̄|p for IDCT, for �xed width R4T14 on the left and TNCB14 on
right with running Truncq, Freeze0.5, OR-/XOR-tail1 and Carry-
oneq

Figure 5.6: |ε̄|p for image smoothing, for �xed width R4T13 on the left and
TNCB13 on right with running Truncq, Freeze0.5, OR-/XOR-tail1
and Carry-oneq

reducing |ε̄|p with 1.

5.1.3 Edge-detection Error

In �gure 5.7 the |ε̄|p for edge-detection is shown for di�erent combinations of
imprecise multiplier schemes and imprecise additions schemes. The size of the
imprecise part of the multiplier is kept steady and the width of the imprecise
part of the adders are varied. As seen with a separate multiplier and adder the
errors is provoked instantaneous and grows fast. As with IDCT R4T favours
the OR-tail and the TNCB favours the Freeze0.5 scheme. The combination
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Figure 5.7: |ε̄|p for edge-detection, for �xed width R4T1 on the left and
TNCB11 on right with running Truncq, Freeze0.5, OR-/XOR-tail1
and Carry-oneq

of TNCB2 and Freeze0.53 almost performs as good as R4T2 and Or-tail3, the
reason can be that the constant adding of one by the Freeze0.5 scheme makes
up for the missing carry bits in TNCB.

5.1.4 Error Discussion

As for the separate imprecise multiplier and adder schemes, the MAC do not
give a single solution for IDCT, image smoothing or edge-detection. The extra
dimension combining an imprecise multiplier with an imprecise adder, makes the
error more complex. Fortunately only two imprecise adders seems to performe
above the rest, being Freeze0.5 and OR-tail scheme. TNCB always performs
best with Freeze0.5. R4T either performs best with Freeze0.5 or OR-tail and
even performs quite bad with Freeze0.5 in edge-detection. The performance is
application-, multiplier- and adder-dependent.

5.2 MAC Implementation

The error free multiplier implementation is a square 16bit multiplier with NRP3A
recoding, as described in 4.1. The di�erent imprecise multiplier schemes are ap-
plied to the same frame work. The imprecise addition schemes were implemented
as a 32 bit two-level carry-lookahead adder, as described in [MDETL04, p 75].
The synthesise tools and conditions is described in section 2.5.
As the �nal addition in the imprecise multiplier, section 4.4.3 only uses a frac-
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tion of the total power consumption of the total scheme, the imprecise adder is
chosen on the basic of the imprecise multiplier. The size of the imprecise mul-
tiplier is chosen �rst, then the imprecise adder. The imprecise adder is custom
�tted for the imprecise multiplier.
Two imprecise MAC's are pitched against an error free implementation. The
MAC being R4T15OR-tail17 and TNCB12Freeze0.516. As R4T15 is a truncation
scheme which truncated all data less that 216, the OR-tail is truncated to this
width as well.

5.2.1 Area Comparison

Table 5.1 summarises the area usage for an error free MAC, the two imprecise
MAC's R4T15OR-tail17 and TNCB12Freeze0.516 and the area of an error free
multiplier and adder. The area saving using an imprecise scheme is quite large,
45% for the smallest and 32% for the largest implementation. The area for a
precise separate adder and multiplier exceed that of the error free MAC. The
reason for the MAC's comparison with a multiplier and adder, is that their
operations is needed if a MAC is not present in the system. The area for the
CPA in the error free MAC exceeds that of the exact multiplier, the reason
being that the introduction of CSA32 and the old result requires more entries
that the PPR alone.

5.2.2 Delay Comparison

Table 5.2 summarises the delay of the MAC's. The delay through the error free
MAC is increased by the delay through the CSA32 and lower entry values for
the CPA compared to the error free multiplier, creating a longer critical path
through the CPA. The imprecise MAC's are 6% faster than the error free MAC
and around 10% slower than an error free multiplier.

5.2.3 Power Comparison

Table 5.3 summarises the power dissipation of the MAC's together with an
exact multiplier and adder. The two imprecise MAC's used 54% and 66% of the
error free implementation. They both use less power than if a separate error
free multiplier and adder were to be used instead. Table 5.4 shows the power
dissipation for the main components in the MAC, and their relation to the error
free implementation. It is especially the �nal addition which uses signi�cant
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Recoder 214 205 206 214
PPG 2382 1272 1651 2381
PPC 3147 1866 2205 3146
CSA32 789 440 499
CPA 1471 638 715 1143 1471
Total 8003 4421 5277 6886 1471 8357
Ratio 1.0 0.55 0.66 1.05

Table 5.1: Area comparison between exact MAC implementation, MAC com-
prised of R4T15 & OR-tail17, MAC comprised by TNCB12 &
Freeze0.5-tail16 and an exact multiplier and adder.
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Recoder 0.73 0.72 0.72 0.73
PPG 0.35 0.34 0.35 0.35
PPC 0.85 1.03 0.99 0.95
CSA32 0.23 0.26 0.26
CLA 2.10 1.46 1.47 1.45 2.04
Total 4.05 3.81 3.80 3.48 2.04
Ratio 1.0 0.94 0.94

Table 5.2: Delay comparison between exact MAC implementation, MAC com-
prised of R4T15 & OR-tail17, MAC comprised by TNCB12 &
Freeze0.5-tail16 and an exact multiplier and adder.
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Random 2.473 1.341 1.625 1.939 0.113 2.052
Baboon 2.400 1.284 1.566 1.904 0.118 2.022
Barbara 2.323 1.248 1.528 1.855 0.108 1.963
Goldhill 2.366 1.266 1.548 1.855 0.112 1.967
Lena 2.328 1.250 1.529 1.861 0.107 1.968
Peppers 2.353 1.260 1.542 1.878 0.110 1.988
Average 2.373 1.275 1.556 1.882 0.113 1.995
Ratio 1.0 0.54 0.66 0.84

Table 5.3: Power comparison between exact MAC implementation, MAC com-
prised of R4T15 & OR-tail17, MAC comprised by TNCB12 &
Freeze0.5-tail16 and an exact multiplier and adder.

less power in the imprecise MAC compared to the error free MAC. For both
imprecise MAC's, the smallest reduction in power dissipation is to be found the
partial product generation.

5.3 Conclusion of Imprecise MAC

Given the many variables in creating a MAC with an imprecise multiplier and
adder, an exact conclusion is almost impossible. Beside the error which changes
with the application, each imprecise multiplier can be combined with each im-
precise adder, both changing their error depending on the size of the precise and
imprecise part and the interaction between multiplier and adder. This makes it
very hard to come up with a set of imprecise multiplier and adder that works for
all application. For the IDCT, the best imprecise MAC were a R4T15 multiplier
combined with a OR-tail16 adder. Its delay were reduced by 6%, area and power
dissipation with 45% for picture error which is unnoticeable for the human eye.
This combination of size and imprecise schemes will not work for either image
smoothing or edge-detection, which makes it very application speci�c.
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Power [mW]
EF MAC R4T15OR-tail17 TNCB12Freeze0.516
Power Power Ratio Power Ratio

Recode 0.0776 0.0438 0.56 0.0535 0.69
PPG 0.2888 0.1735 0.60 0.2177 0.75
PPR 1.1163 0.6690 0.60 0.8255 0.56
CSA32 0.3666 0.1929 0.53 0.2254 0.61
CPA 0.5245 0.1973 0.38 0.2343 0.47
Total 2.373 1.275 0.54 1.556 0.66

Table 5.4: Power comparison between exact MAC implementation, MAC com-
prised of R4T15 & OR-tail17, MAC comprised by TNCB12 &
Freeze0.5-tail16, on a componentbasic



Chapter 6

Conclusion and Future

Work

Imprecise adder, multiplier and MAC schemes has been proposed and their error
investigated. Error functions for the proposed imprecise adders and multipliers
has been found or been bounded. IDCT, image smoothing and edge-detection
is used to investigate the error generate by imprecise adders, multipliers and
MAC's running applications. The area, delay and power dissipation were ob-
tained by gate list simulation at a common arithmetic performance making it
possible to compare the error/power trade-o�s, between the di�erent schemes.

The errors that the imprecise addition schemes introduced were limited and has
a nice error function which made them predictable. For the imprecise addition
schemes it was found that a reduction in area, delay and power dissipation are
achievable if an unnoticeable error is allowed performing IDCT. With an average
maximum error per pixel of no more than 2 in the processed picture, a 49% power
reduction, 22% delay reduction and an area reduction of 46% are achievable
using Trunc14 or Freeze0.414. Using a precise addition scheme, freezing the
input and allowing the same error, reduced the power dissipation with 44%, a
higher power reduction than some of the proposed imprecise addition schemed.
As the amount of inputs which can be frozen can be dynamical changed, the
approach is more usable in a situation where a wide range of applications is
used, demanding di�erent precision.
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The errors generated by some of the imprecise multiplication schemes is some
what irrational at times. Multiplier schemes which mixed precise and imprecise
generated partial product is the worst performing and were most a�ected by
the size and order of the argument input. In generally using the smallest ar-
gument as the multiplier and the biggest as the multiplicand gives the smallest
error. Allowing a small and unnoticeable error in the �nal picture, IDCT can
be performed by the imprecise multiplier R4T15 with a 42% area reduction and
41% reduction in power dissipation. The delay stayed the same for most im-
precise implementation and increased for one. Freezing some of the multipliers
multiplicand input do reduce the power dissipation, but only with 6%.

The MAC is a combination of a multiplier and an adder, which accumulated
the performed multiplications. The combination of an imprecise multiplier and
an imprecise adder is only proposed for the best performing schemes. For some
combinations of imprecise multiplier and imprecise adder the performance im-
proves the more imprecise the addition scheme is. This improvement caused by
a symbiotic relationship between the imprecise multiplier and adder is limited
to a certain point where the error start to increase again. The imprecise MAC
is implemented as the best performing combination of an imprecise multiplier
and an imprecise adder, R4T15OR-tail17. Allowing a small error in the �nal
picture, IDCT can be performed by an imprecise MAC. The best implemented
imprecise MAC achieved a 6% reduction in delay, 45% reducing in area, and
46% reduction of power dissipation.

The biggest problem with the imprecise schemes is that one scheme does not
�t all application. The schemes which performs excellent in one application
both error and power wise is bound to perform adequate or not at all for other
applications.

Future Work. It would be interesting to see if the MAC's performance would
increase if introducing the previous result in the top of the compression tree
instead of the bottom.
As one imprecise scheme cannot cover all application adequately, it could be in-
teresting to investigate the possibility of an imprecise multiplier with adjustable
precision, in the same lines as an exact adder which can freeze the input de-
pending on the precision needed.
With integer calculation it is hard to give an upper bound for the error of
each calculation, it could therefore be interesting to investigate a �oating point
implementation which has a maximum error of 1% per operation.
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