
An implementation of VMQL

Radu-Vlad Acretoaie

Kongens Lyngby 2012

IMM-MSc-2012-81

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-MSc-2012-81

Summary (English)

As domain models may reach considerable sizes, retrieving the knowledge con-
tained in them is often a nontrivial task. The fact that this task, known as model
querying, must sometimes be performed by non-technical domain experts only
makes matters more di�cult. Existing model querying techniques su�er from
limitations that make them unsuitable for many practical purposes.

A proposed solution attempting to overcome the drawbacks of current ad-hoc
model querying facilities is the visual model query language (VMQL). It aims to
simplify the process of retrieving information from models by allowing modelers
to express queries using the host modeling language, thus eliminating the need
for them to learn a new query language. Additional expressive power is added to
queries through model annotations. VMQL is a highly portable solution which
may be applied to a wide array of host modeling languages.

This thesis presents a tool implementing VMQL for UML. Since it is the second
prototype to attempt this, the tool is called MQ-2. In order to provide seamless
integration with existing modeling facilities, it is integrated with the MagicDraw
UML modeling tool. MQ-2 is based on a query execution algorithm written in
the Prolog logic programming language.

ii

Summary (Danish)

Eftersom domæne modeller kan nå store størrelser, er det at �nde den viden der
er indeholdt i dem, ofte ikke en triviel opgave. Det faktum, at denne opgave, der
er kendt som model forespørge, skal undertiden udføres af ikke-tekniske domæne
eksperter gør kun opgaven vanskeligere. Eksisterende model søgnings teknikker
lider af begrænsninger, som gør dem uegnede til mange praktiske formål.

En foreslået løsning at forsøge at overvinde ulemperne ved den nuværende ad
hoc-model søgninger faciliteter er visual model query language (VMQL). Formå-
let er at forenkle processen med at hente information fra modeller ved at tillade
brugere at udtrykke forespørgsler med værten modellering sprog, hvilket elimi-
nerer behovet for dem at lære et ny forespørgsel sprog. Yderligere udtrykskraft
føjes til forespørgsler gennem model anmærkninger. VMQL er en transportabel
løsning, som kan anvendes til en lang række værtsceller modellering sprog.

Denne afhandling præsenterer et værktøj gennemførelse VMQL for UML. Da
det er den anden prototype at forsøge dette, er det værktøj kaldet MQ-2. For
at give en problemfri integration med eksisterende modellering faciliteter, er det
integreret med MagicDraw UML modellering værktøj. MQ-2 er baseret på en
forespørgsel udførelse algoritme skrevet i Prolog logik programmeringssprog.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�llment of the require-
ments for acquiring an M.Sc. in Informatics. Work on this thesis was conducted
under the supervision of Associate Professor Harald Störrle.

The thesis deals with describing MQ-2: an implementation of the visual model
query language (VMQL) as a plug-in to the MagicDraw CASE tool. VMQL is
a graphical model query language that allows expressing queries as annotated
model fragments in the host modeling language. This approach enables modelers
to express complex queries without requiring them to master a dedicated query
language. In addition to implementing the original speci�cation of VMQL, the
presented tool brings several modi�cations to the language. The motivations
behind these modi�cations are also discussed in this thesis.

The presented implementation is based on a query execution engine created
using the Prolog logic programming language. It relies on representing existing
models as Prolog fact databases. As such, the implementation also allows users
to query models directly through a fully featured integrated Prolog console.

While VMQL is in theory applicable to a wide range of modeling language, this
thesis focuses on its application to UML.

The thesis consists of an introduction presenting its domain, objectives, and re-
lated work (Chapter 1); an overview of the visual model query language (Chap-
ter 2); an analysis of the requirements for the presented tool (Chapter 3); a
description of the tool's implementation (Chapter 4); a guided tour of the tool
(Chapter 5); an evaluation of the tool's performance and coverage of the VMQL

vi

speci�cation (Chapter 6); conclusions and possible future developments (Chap-
ter 7).

Lyngby, 10-August-2012

Radu-Vlad Acretoaie

Acknowledgements

I would like to thank my supervisor, Associate Professor Harald Störrle, for
his invaluable feedback and thoughtful suggestions regarding both the overall
direction of this thesis and day-to-day implementation challenges.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Context and objectives . 1
1.2 Related work . 3

1.2.1 Tool speci�c solutions . 3
1.2.2 Domain speci�c solutions 5
1.2.3 Textual model query languages 6
1.2.4 Visual model query languages 8

2 The visual model query language 11
2.1 Base queries . 13
2.2 The mattr, mclass, name, and match constraints 14
2.3 The distinct and once constraints 16
2.4 The optional, either, and not constraints 17
2.5 Path-related constraints: steps and indirect 19

3 System analysis 23

4 Implementation 25
4.1 System architecture . 25
4.2 The MQ-2 plug-in . 26

4.2.1 Integrated Prolog console 28

x CONTENTS

4.2.2 VMQL query execution 33
4.2.3 Query solution display methods 35
4.2.4 Internal MQ-2 utilities . 37

4.3 MQ-2 Prolog modules . 38
4.3.1 XMI to Prolog transformation 39
4.3.2 VMQL matching algorithm 41

4.4 Encountered implementation di�culties 48
4.5 Unit testing . 50

5 User guide 53
5.1 Using the MQ-2 Prolog console 53

5.1.1 Consulting models . 55
5.1.2 Querying models . 56
5.1.3 Library predicates . 57
5.1.4 Limitations . 58

5.2 Executing VMQL queries . 58
5.2.1 Query execution . 58
5.2.2 Result highlighting . 60

6 Evaluation 61
6.1 VMQL implementation coverage 61

6.1.1 The once constraint . 61
6.1.2 The optional+ constraint 63
6.1.3 The either+ constraint 64
6.1.4 The not+ constraint . 65

6.2 Performance evaluation . 66

7 Conclusions 69
7.1 Future work . 70

A Installation instructions 71

Bibliography 73

Chapter 1

Introduction

This chapter presents the context and objectives of the thesis (Section 1.1),
followed by a review of related work (Section 1.2).

1.1 Context and objectives

Models play a prominent role in several software development approaches. In
model based software development, domain models are an important focal point
of the development process, as part of an e�ort ensure the suitability of the
created application to its intended usage context.

Industrial expertise has shown that the large sizes reached by models in general,
and domain models in particular, can quickly become a limiting factor in their
usage [Stö10]. Activities that appear trivial for small models, such as tracking
the di�erences between model versions or searching for certain structures within
a model, become time consuming tasks for large scale models.

This thesis focuses on the problem of model querying: e�ectively specifying
and executing searches on a model with the purpose of retrieving certain model
elements or model structures. Model querying is arguably one of the most basic

2 Introduction

day-to-day activities performed in the process of working with models. It is
also a necessary �rst step in more complex activities such as enforcing model
constraints or performing model transformations. When working with large
models, query languages capable of ensuring high levels of precision and recall
are a necessity. Apart from the challenges brought by model size, querying
domain models raises particular requirements (high usability and learnability)
motivated by the fact that they are often created and maintained by domain
experts that do not necessarily have a technical or programming background.

Several approaches to model querying have been proposed, ranging from ba-
sic full text search to full blown textual and graphical query languages (see
Section 1.2). One recent such approach is the visual model query language
(VMQL) [Stö11b]. In short, VMQL is a graphical query-by-example approach
that allows modelers to formulate queries as annotated model fragments in the
modeling language that they are already using to create their models. The goal
of VMQL is to leverage modeler's existing skills and provide them with a pow-
erful query facility that incurs a minimal learning e�ort. A full description of
VMQL is provided in Section 2.

The main objective of this thesis is to provide a working implementation of
VMQL. The implementation is to be created as a plug-in to the popular Mag-
icDraw CASE tool1, so that it can be available to a wide audience of existing
modelers. Furthermore, the implementation should be based on the Prolog logic
programming language in order to further explore the use of Prolog for model
manipulation presented in [Stö07] and [Stö09]. This consideration leads to a sec-
ondary objective for this thesis: providing modelers with a fully featured Prolog
console integrated in MagicDraw. This feature will allow advanced processing
extending beyond the immediate scope of model querying to be performed on
MagicDraw models. Finally, the implementation's performance should be eval-
uated on a set of models of various sizes. In what follows, the implemented tool
will be referred to as MQ-2 (an implementation of an earlier version of VMQL
has been developed under the name of MQ [Win09]).

Although VMQL is not bound to any speci�c modeling language, the MQ-2
tool is targeted at the Uni�ed Modeling Language [UML11]. This choice is
motivated by the fact that UML has become a de-facto standard in the software
engineering community. Furthermore, a successful implementation for UML is
portable to other Meta-Object Facility (MOF) [MOF06] modeling languages
with minimal e�ort. In fact, VMQL's design is explicitly aimed at portability,
making the application of MQ-2 to other modeling languages such as Business
Process Model and Notation (BPMN) [BPM10] possible with relatively minor
adjustments. However, such adjustments are outside the scope of this thesis.

1http://www.nomagic.com/products/magicdraw.html

1.2 Related work 3

1.2 Related work

The model query approaches available at present can be grouped into four gen-
eral categories: tool speci�c solutions (Section 1.2.1), domain speci�c solutions
(Section 1.2.2), textual query languages (Section 1.2.3) and visual query lan-
guages (Section 1.2.4). As suggested in [Stö11b], the following aspects should
be taken into account when evaluating model query approaches:

1. Expressiveness: The variety of queries that may be expressed.

2. Genericity : The variety of supported modeling languages.

3. Usability : The ability of users to take advantage of the tool's features
regardless of the depth of their technical background.

4. Practicality : The extent to which a tool is actually implemented and avail-
able to users.

5. Performance: The extent to which a tool's response times accommodate
interactive work.

Table 1.1 presents an overview of the advantages and drawbacks of the di�erent
model query approaches that fall under each of the four categories, while the
following sections present a more comprehensive analysis of each approach.

1.2.1 Tool speci�c solutions

Given that executing queries is a fundamental necessity in the modeling pro-
cess, most modeling tools provide some form of model query facility. Possibly
the most common among such facilities is the ability to perform a full text search
of element names in the model. While it is trivial to use, a full text search is only
expressive enough for the most trivial of queries. Furthermore, many domain-
relevant search terms are likely to appear in a large number of locations in the
model. Finally, the results produced by a full text search are dependent on the
search algorithm implemented in the tool, which may or may not provide accu-
rate results. While some tools (e.g. MagicDraw) support regular expressions as
search terms, the severe limitations of this query method remain present.

Recognizing the need for expressing more complex queries, some tools provide
prede�ned queries considered of interest by a particular tool's creators. Magic-
Draw, for instance, provides the ability to search for model elements by stereo-

4 Introduction

Table 1.1: Overview of existing model query approaches

Approach Strengths Weaknesses

Full text search of

element names

usability, practicality expressiveness, false positive
results

Prede�ned queries expressiveness, usability, prac-
ticality

no support for ad-hoc queries

Model visualiza-

tion tools

usability genericity, practicality (de-
pending on implementation)

Tool speci�c APIs expressiveness usability

Low level query fa-

cilities

expressiveness usability

Domain speci�c

solutions

expressiveness, usability genericity, practicality

OCL [AB01] expressiveness, practicality genericity, usability

Visual

OCL [BKPPT01]
expressiveness practicality

Constraint Dia-

grams [Ken97]
usability genericity, practicality (never

implemented)

BP-QL [BEKM08] usability, practicality genericity (limited to WS-
BPEL models)

BPMN-Q [AWW11] usability, practicality genericity (limited to business
process modeling languages)

JPDDs [SHU04] usability genericity, practicality

type, meta-class or meta-attributes. Other tools, such as ADONIS2, allow pa-
rameters and logical connectors between the prede�ned queries. However, this
approach does not allow de�ning ad-hoc queries.

Model visualization tools are also a commonly provided facility in many model-
ing environments. They include various tree views of the model, such as con-
tainment or inheritance trees, automatically generated overview diagrams, and
textual model reports. All of these tools can be of use in the process of inferring
certain properties of a model or locating elements in the overall model structure.
But, strictly speaking, they are not query facilities, and their implementation
may vary considerably between modeling tools.

Several established modeling tools such as Rational Rose3, Sparx Enterprise Ar-
chitect4, and MagicDraw provide model access through tool speci�c APIs [Stö11b].
Each tool vendor may provide such an API in its programming language of
choice. Although these APIs provide virtually unlimited access to the model,
they require modelers to possess programming skills in a particular programming
language. This requirement is not always met, especially when modelers come

2http://www.boc-group.com/products/adonis/
3http://www-01.ibm.com/software/awdtools/developer/rose/
4http://www.sparxsystems.com.au/

1.2 Related work 5

from a background as domain experts. Furthermore, writing a new application
for every new type of query is exceedingly time consuming.

Finally, considering that all tools must provide persistent model storage, it may
be possible to query the persistent representation of a model using low level
query facilities. Several tools support model storage in �les adhering to the
XML Metadata Interchange (XMI) standard [XMI11]. It is thus possible to
extract information from such �les using generic XML querying facilities such
as XPath [XPa10]. Alternatively, in case the model is stored in a relational
database, its internal representation may be queried using SQL. Still, these
approaches are at least as technically challenging as tool speci�c APIs, and for
this reason are also unlikely candidates for specifying ad-hoc queries.

1.2.2 Domain speci�c solutions

After considering the available tool speci�c solutions in Section 1.2.1, it is pos-
sible to observe that they are plagued by one of two problems: they are either
not �exible enough to allow complex ad-hoc queries or require a signi�cant in-
vestment in terms of time and programming expertise. Both of these issues
are successfully addressed by domain speci�c query solutions, which are able
to obtain expressiveness and usability at the expense of genericity. Such so-
lutions address the needs of various domains of human activity that produce
large amounts of data that must be analyzed. Domain speci�c query languages
signi�cantly improve the e�ciency of the analysis process.

An example domain speci�c query approach is the PHEASANT visual query
language [AHM05], which addresses the domain of high energy physics. Its
authors state that prior to the development of PHEASANT, physicists were
required to program individual queries in various programming languages, a
problem very similar to the one identi�ed in Section 1.2.1 for tool speci�c solu-
tions. PHEASANT features a strictly de�ned semantics, but relies on a highly
domain speci�c syntax, making it inapplicable for tasks outside the area of high
energy physics. The query language is implemented as a stand-alone tool.

A second relevant example is the HyperFlow visual query and data�ow language,
targeted primarily at querying scienti�c work�ows in areas such as bioinformat-
ics [DP05]. The main challenge identi�ed by the authors in this domain is related
to data integration, with various research groups making experimental results
available through a plethora of interfaces, ranging from databases and ontolo-
gies to Web forms and Web services. In addition to its role as a visual query
language, HyperFlow also serves the purpose of a visual data�ow language, al-
lowing simple queries on di�erent types of data sources to be combined into

6 Introduction

more complex work�ows. HyperFlow o�ers a rich variety of features, including
sub-queries and SQL-like operations such as JOIN and GROUP BY. While not
as limited to a single domain as PHEASANT, the syntax of HyperFlow is still
nowhere near as general as that of a generic modeling language such as UML.

Although they are well suited for their intended usage, HyperFlow and PHEAS-
ANT serve the purpose of highlighting the main weakness of domain speci�c
query solutions: they can only be used in a very limited context. In order to
overcome this drawback and maintain the advantages of expressiveness and us-
ability, it is necessary to introduce either a textual (see Section 1.2.3) or a visual
(see Section 1.2.4) generic model query language.

1.2.3 Textual model query languages

Creating tool independent, highly expressive model queries requires the avail-
ability of dedicated query languages. In the case of UML, this role is most
commonly ful�lled by the Object Constraint Language (OCL). Although OCL
is most often mentioned in the context of expressing model constraints, the Ob-
ject Management Group (OMG)5 de�nes OCL as both a query and constraint
language for the Meta-Object Facility (MOF) family of modeling languages,
which includes UML [OCL11].

The usage of OCL as a query language for UML data models has been proposed
in [AB01], where the authors also propose a number of extensions to OCL, with
the purpose of facilitating its usage as a query language. A parallel is drawn
between relational databases and Object-Oriented data models, based on the
observation that both require a means of querying data. Relational databases
possess such a means in the form of the Structured Query Language (SQL).
In the �eld of relational databases a query language is required to have, at a
minimum, the expressive power of a relational algebra [Dat99]. A relational
algebra is de�ned as "a set of operators that take relations as their operands
and return a relation as their result" [AB01]. Consequently, a query language
that claims to have the expressive power of a relational algebra must support a
minimum set of primitive operators (Union, Di�erence, Product, Project, and
Select) [Dat99]. For Object-Oriented data models, the combination of OCL
and UML does indeed have the expressive power of a relational algebra [AB01]
(note, however, that OCL in isolation does not support the speci�cation of
some queries that can be speci�ed in relational algebra [MC99]). While OCL
independently supports the Union, Di�erence, and Select relational operators, it
requires the UML concepts of AssociationClass and n-ary Association in order

5http://www.omg.org/

1.2 Related work 7

to support the Product and Project operations. The authors of [AB01] propose
the addition of a Tuple type to OCL in order to streamline the usage of OCL
as a query language without making any changes to the queried UML model.

An OMG initiative aimed at basing a standard set of model query and trans-
formation languages on OCL has been proposed in the form of Query / View
/ Transformation (QVT) [QVT11]. Early QVT requests for proposals [QVT03]
have garnered a signi�cant level of interest, leading to the creation of OCL-based
model transformation languages such as ATL [JABK08] or MOLA [KBC04].
Note that a model transformation can be de�ned as the process of transforming
a source model conforming to a certain meta-model into a target model con-
forming to a di�erent meta-model [JABK08]. While it only partially complies
with the QVT requirements, ATL bene�ts from relatively extensive and mature
tool support based on the Eclipse Rich Client Platform (RCP)6. Furthermore,
ATL is not limited to MOF meta-models, allowing source and target models
represented as XML documents or SQL databases. MOLA combines a textual
language with a graphical syntax in an e�ort to improve usability.

Although they are the most prevalent text-based model query language, OCL
and its extensions are not the only such languages available. In [Stö07], an
approach based on using Prolog as a query language is proposed. The Model
Manipulation Toolkit (MoMaT) is in fact a predecessor to VMQL and intro-
duces the concept of representing models as collections of Prolog facts which
can then be queried from a Prolog console. MoMaT also includes a library of
prede�ned Prolog predicates that provide a more accessible way of interacting
with the model's Prolog representation. However, early usability evaluations
have pointed to the fact that the low level query interface provided by Mo-
MaT is not adequate for most modelers [Stö09]. As a consequence, a more
comprehensive library of Prolog predicates functioning on top of the MoMaT
infrastructure has been put together under the umbrella of the Logical Query
Facility (LQF). LQF "captures the properties and relationships of model ele-
ments in the terms modelers are accustomed to rather than in terms of the
underlying meta model" [Stö09].

A performance comparison between MoMaT and an Eclipse Modeling Frame-
work (EMF)7 based OCL interpreter is presented in [COL08]. The authors
consider large UML models consisting of up to 10000 classes. The results of
this comparison highlight the fact MoMaT outperforms OCL for relatively sim-
ple queries based on model element properties. However, OCL is faster when
evaluating queries based on relationships between model elements. A second
aspect tested is the time required to load a model into memory in the two query

6http://wiki.eclipse.org/index.php/Rich_Client_Platform
7http://www.eclipse.org/modeling/emf/

8 Introduction

frameworks. For this scenario, MoMaT proves to be faster by a factor of two.

Nevertheless, query execution performance is not the main setback of OCL. As
with all textual query languages, OCL su�ers from the existence of a medium
gap between the graphical notations used to express models and the textual
notations used to express queries. Empirical studies have shown that using
OCL to express all but the most trivial queries can be challenging even for
experienced modelers [Stö11b]. It is reasonable to expect that such usability
de�ciencies on the part of OCL become more prominent when its users are not
professional modelers but domain experts. One proposed solution to bridging
the medium gap between OCL and the models it is meant to be executed on
is Visual OCL [BKPPT01]. The main feature of Visual OCL is the ability
to represent object property navigation expressions as collaboration diagrams.
The implicit assumption of the authors is that object navigation can be made
easier by o�ering a visual representation for the navigation paths. Visual OCL
strives to mostly use existing UML notation elements (though some minimal
additions prove to be necessary), thus avoiding the need for modelers to learn
a new graphical language for expressing queries and constraints. However, tool
support for Visual OCL is not presently available.

Although it represents a step in this direction, Visual OCL cannot fully eliminate
the medium gap between models and queries. This is because a query expressed
using Visual OCL does not visually re�ect the structure of the expected result,
but rather the structure of the underlying OCL expression. Thus, the complexity
of OCL remains an aspect that modelers must handle. A real improvement in
usability in the area of model query languages must place no requirement on
modelers other than that of being familiar with the modeling language itself.
This improvement can be achieved by adopting a query-by-example approach,
in which the query is a "blueprint" for the expected results. Such an approach
has led to the development of several visual model query languages.

1.2.4 Visual model query languages

Expressing model constraints using a visual notation has been proposed shortly
after the introduction of UML, in the form of Constraint Diagrams [Ken97]. The
described notation has a relatively narrow scope: it aims to enhance the expres-
siveness of UML object diagrams by introducing constraints on the relations
between object states. The author claims that Constraint Diagrams o�er an
improved usability compared to textual notations available for similar purposes
at the time, which notably do not include OCL. It should be noted that model
constraints and queries are complementary concepts: expressing a constraint
may be interpreted as expressing a query that must have an empty result set

1.2 Related work 9

in order for the constraint to hold [Stö11a]. Thus, Constraint Diagrams can
be viewed as an early example of a graphical model query language. They are
visually represented as a combination between class diagrams and Venn dia-
grams, and as such cannot be regarded as a true query-by-example approach
with respect to UML class diagrams.

BP-QL [BEKM08] is a visual language for querying business process mod-
els. It provides usability advantages similar to the ones o�ered by VMQL,
but restricted to the area of business process modeling, namely an abstrac-
tion of the Business Process Execution Language (BPEL), currently standard-
ized and known as Web Services Business Process Execution Language (WS-
BPEL) [WSB07]. With this restriction in mind, BP-QL is tailored to the par-
ticular challenges of querying business processes. These include, for instance,
the existence of in�nitely large result sets obtained when a business process
contains recursive activities. While very likely appropriate for its intended use,
BP-QL was not designed with the ability to query other modeling notations in
mind, and some of the challenges it attempts to solve are not relevant for a
more general modeling language such as UML. An interesting aspect of BP-QL
is the fact that simple constraints on the query model are speci�ed by custom
graphical notations, rather than a textual constraint language. As an example,
paths of unlimited length are identi�ed by a double headed arrow. The imple-
mentation of BP-QL presented in [BEKM08] is based on processing the XML
representation of BPEL models and translating them into Active XML [GT08]
documents for increased ease of query processing. While the authors provide
a motivation for their implementation choices, they do not compare them with
other possible alternatives. At the same time, no alternative query languages
for BPEL models are mentioned, making the usability arguments invoked by
BP-QL's creators hard to substantiate.

Another proposed solution for graphically querying business process models
comes in the form of the Business Process Model Notation Query language
(BPMN-Q) [AWW11]. Its authors envision BPMN-Q as a means of specifying
domain-dependent compliance constraints on business process models. Thus,
modelers are provided with an alternative to model checking for the task of ver-
ifying constraint compliance. However, the underlying task remains fundamen-
tally that of model checking. For this reason, BPMN-Q models are translated
to Computational Tree Logic (CTL) [Hal85] - a widely used logic in the area
of model checking - expressions at execution time. It is argued that BPMN-Q
provides an accessible means for modelers to harness the power of CTL without
being required to possess model checking expertise. BPMN-Q can consequently
be seen as a graphical front-end for CTL. An implementation of BPMN-Q has
been created and presents a number of interesting facilities. Among them is the
ability to show constraint violations as BPMN-Q "anti-patterns" which, when
used as queries on the original model, retrieve the constraint violating model

10 Introduction

fragments. It thus becomes apparent that anti-patterns are essentially model
queries. Just as in the case of BP-QL, a potential drawback of BPMN-Q is the
fact that it proposes the addition of new notation elements to the host modeling
language (in this case BPMN [BPM10]). Unlike BP-QL, BPMN-Q is designed
as an abstraction over common business process modeling notations, making it
easily portable to other host modeling languages.

For the task of querying UML models, the approach with the highest conceptual
similarity to VMQL is that featured in Query Models [SHU04]. The authors
also propose a Query-By-Example approach to formulating queries on UML
models, while motivating their work using a series of Model-Driven Architec-
ture and Aspect-Oriented Software Development scenarios in which it proves
relevant. Join Point Designation Diagrams (JPDDs) are proposed as a nota-
tion for specifying model queries. JPDDs are based on elements of the UML
notation, but introduce several query-speci�c symbols. Further work by the
same authors [SHU05] identi�es the need to specify binary relationships be-
tween JPDDs with the main purpose of increasing the expressiveness of queries.
For instance, two JPDDs representing queries on a UML class diagram and,
respectively, a UML sequence diagram may be combined to create a query spec-
i�ed from both a structural and behavioral perspective. This approach also
permits the creation of abstractions covering recurring selection patterns. Such
abstractions may be stored and re-used whenever appropriate.

As opposed to VMQL, which maps to Prolog executable code, Join Point De-
scription Diagrams are meant to be translated into and executed as OCL con-
straints. The process of obtaining OCL constraints from JPDDs is, however,
not fully de�ned. Only some examples are presented. A second limitation of
JPDDs is that they are only exempli�ed for class diagrams and sequence dia-
grams, without any mention of their applicability to other UML diagram types.
Finally, the notation introduced for creating JPDDs contains some additions to
the standard visual representations of UMLmodel elements, such as crossed lines
depicting indirect associations. Considering these aspects, it may be concluded
that JPDDs share a common vision with VMQL but stop short of carrying this
vision through into an actual implementation, which is precisely the objective
of this thesis with respect to VMQL.

Chapter 2

The visual model query
language

The visual model query language (VMQL) is a novel model querying approach
that proposes using the host modeling language as a basis for expressing queries.
This section provides an overview of VMQL based on its speci�cation in [Stö11b].
Some additions to this speci�cation have been made as part of this thesis. They
are discussed in Section 6.1, while this section limits itself to VMQL's original
speci�cation. A recent paper [Stö11a] proposes extending VMQL to function as
a model constraints language. However, these extensions are outside the scope
of this work. VMQL is considered here exclusively as a model query language.

The target usage scenario of VMQL is within the context of domain modeling,
where modelers with a business background do not have the necessary skills
and motivation to master a complex new query language. In order to appeal
to this category of users, VMQL adds no additional syntax elements to the
host modeling language: any model fragment can be executed as a query. Ad-
ditional expressiveness is added to queries by attaching comments containing
textual VMQL constraints to certain query model elements. The syntax of
the various VMQL constraints is described in the following paragraphs. The
feature of VMQL that sets it apart from other query-by-example languages
([SHU04], [AWW11], [BEKM08]) is the fact that it is not bound to a certain
modeling language. This is made possible by the fact that VMQL operates pri-

12 The visual model query language

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Class Overviewpackage LMS[]

+encoding : DiscEncodingStandards

Disc

Blu-ray Disc
HD DVD

«enumeration»

DiscEncodingStandards

NonFiction

+name

Reader

+name

Publisher

+isbn

Book

+title

Medium

Current

Person

Fiction

lends

*1 hasDamaged

*1

1*

hasReferenced

1*

1 *

Figure 2.1: Library Management System source model: class overview

marily at a syntactical level: it matches model elements from a query model to
model elements from a source model based on their type and attributes, with-
out taking into account their semantics. The only constraint placed on the host
modeling language is its required support for some form of comments or anno-
tations. While the MQ-2 tool is designed to support querying UML models, and
the features of VMQL are exempli�ed in this section based on UML diagrams,
there is no conceptual limitation to applying the same techniques on EPC or
BPMN models, for instance.

In what follows, VMQL is described through a series of examples based on
a sample Library Management System (LMS) scenario. A summary of the
constraints proposed by VMQL is provided at the end of this section in Table 2.1.
The sample model that will be queried in what follows consists of two diagrams:
a Class Diagram presented in Figure 2.1 and an Activity Diagram presented in
Figure 2.2. The Class Overview diagram showcases the relationships between
some of the entities involved in a typical LMS scenario, where readers may lend
various media types (in this case books or discs), which are published by certain
publishers. A record is kept for readers that have damaged items, as well as for
readers that have referenced other readers and pursued them to join the library.
The Lend Medium diagram illustrates the business process of a reader lending
a medium. The medium is identi�ed and checked for availability, the reader
is identi�ed and checked for eligibility, and a new lending is created. After
these three steps are performed in parallel, a decision is made as to whether the
lending can proceed. If this is the case, a record of the transaction is created.

2.1 Base queries 13

Otherwise, an error noti�cation is displayed.

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Lend Medium Lend Mediumactivity []

Identify reader

Get copies

Create lending

Check eligibility
Validate

lending period

Display
notification

Record
transaction

Identify
medium

Check
availability

«datastore»

Medium catalog

Medium copies

Medium code Reader code

Reader

Medium

Lending

«datastore»

Readers

 [Not allowed] [Allowed]

Figure 2.2: Library Management System source model: lending a medium

This model is referred to as source model in what follows. VMQL queries exe-
cuted on this model are referred to as query models, given that they are in fact
models themselves. A query model normally consists of a single diagram.

2.1 Base queries

In this context, a modeler may be interested for instance in determining the me-
dia types provided by the library. Query 1 presented in Figure 2.3 is a VMQL
query performing this function. Since it does not contain any annotations rep-

14 The visual model query language

package Query 1LMS[]

Medium

Figure 2.3: VMQL query �nding all subclasses of the Medium class

resenting VMQL constraints, this is a base query. It should be interpreted as
instructing the VMQL execution engine to match all classes of the source model
that are named Medium and have one subclass, regardless of the name of this
subclass. It is important to notice that a VMQL query speci�es a minimum set
of constraints that must be satis�ed by any matching source model fragment:
any other properties of the matched model elements are irrelevant. For this rea-
son, executing Query 1 will match the Medium class of the source model even if
it has an extra attribute (title) and a number of associations to other classes.
It will also match the unnamed subclass of Medium from the query model to two
classes of the source model, Book and Disc, despite their extra attributes and
subclasses. Query 1 thus succeeds in identifying all media types supported by
the library, without incurring any additional query-speci�c notations: it is an
ordinary Class Diagram.

2.2 The mattr, mclass, name, and match constraints

Consider now a scenario in which a modeler is interested in �nding all gener-
alizations involving an abstract super-class. Such a query may be written by
adjusting Query 1: the name of the Medium class must be removed and the class
must be made abstract. Alternatively, Query 2 presented in Figure 2.4 may be
used. It uses the mattr VMQL constraint to set the value of the isAbstract

meta-attribute of the super-class to false. It also stores the name of the identi-
�ed super-class in the $Superclass variable, using the name VMQL constraint,
which is a short-hand notation for a mattr constraint involving the name meta-
attribute. The name = $Superclass constraint in Query 2 could be re-written
as mattr name = $Superclass.

2.2 The mattr, mclass, name, and match constraints 15

package Query 2LMS[]

name = $Superclass ,
mattr isAbstract = true

«vmql»

Figure 2.4: VMQL query �nding all abstract super-classes

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

activity Query 3 Query 3[]

Identify
medium

«vmql»

name = $O , mclass <: ObjectNode

Figure 2.5: VMQL query �nding all object nodes preceding the Identify

medium action

Query 3 in Figure 2.5 illustrates the mclass constraint. Suppose a modeler is
interested in �nding all object nodes directly preceding the Identify medium

activity in the Lend Medium Activity Diagram. The expected results would be
the Medium catalog and Medium code object nodes. However, because Medium
catalog is actually a data store (a specialized type of object node), it will not
be returned in case the mclass constraint is omitted. By adding the mclass

<: ObjectNode constraint, the modeler speci�es that he is interested in all
model elements of types that are specializations of ObjectNode in the UML
meta-model. Thus, when taking into account the name constraint, the variable
$O will be bound to the values "Medium catalog" and "Medium code".

A similar usage of the mclass constraint is featured in Query 4 presented in
Figure 2.6. This query also introduces the match constraint, which is used here
to set a condition on the name meta-attribute of the model elements to which it
is anchored. In this case, it states via a regular expression that the names of the
returned elements must start with the pre�x "Disc". The query returns both

16 The visual model query language

package Query 4LMS[]

«vmql»

match Disc.* ,
mclass <: classifier

Figure 2.6: VMQL query �nding all classi�ers having the pre�x "Disc" in their
names

the Disc class and the DiscEncodingStandards enumeration from the Class
Overview diagram, keeping in mind that in the UML meta-model both classes
and enumerations are specializations of the Classifier meta-class. Note that
the mclass and mattr constraints are the only VMQL constraints that explicitly
access the meta-model of the host modeling language.

2.3 The distinct and once constraints

package Query 5LMS[]

Reader «vmql»

name = $C

«vmql»

once

«vmql»

distinct

Figure 2.7: VMQL query �nding all classes linked by a directed association to
the Reader class

In the Class Overview diagram, the Reader class has outgoing directed asso-
ciations towards itself and the Medium class. Consider a situation in which a
modeler wished to locate only the classes connected to the Reader class by such
directed associations that are di�erent from the Reader class itself. Query 5
in Figure 2.7 accomplishes this by using the distinct VMQL constraint. This
constraint states that the query model elements to which it is anchored must
have distinct bindings. Notice, however, that the source model contains two

2.4 The optional, either, and not constraints 17

associations of the speci�ed type between the Reader and Medium classes. This
will cause the query to produce a duplicate solution. To avoid this, the once

VMQL constraint is introduced. This constraint speci�es that a solution "may
occur only once in the set of all solutions" [Stö11b].

2.4 The optional, either, and not constraints

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

package Query 6LMS[]

+price

«vmql»

name = Medium ; Media

«vmql»

optional

(a)

package Query 7LMS[]

Current

«vmql»

optional

«vmql»

name = *.Fiction

(b)

Figure 2.8: VMQL queries for �nding: (a) a class with an optional attribute,
(b) a class with an optional association

To exemplify VMQL's optional constraint, consider Query 6 in Figure 2.8(a).
In this scenario, a modeler is searching for a class that he knows is named either
Medium or Media and expresses this using the name constraint (notice the use
of the or logical connector denoted by the ; symbol). He also knows that such
a class may have a price attribute, but would also like to retrieve it in case
it does not. This is achieved using the optional constraint, which states that
the query model element to which it is anchored may or may not be bound to a
source model element. Consider now the query depicted in Figure 2.8(b), where
the modeler is searching for a class whose name ends in the "Fiction" su�x
and which has an optional directed association to a class named Current. This
query returns the Fiction and NonFiction classes. Applying the optional

constraint to the Current class is not su�cient, as the association in the query
model is still required in any binding. The optional constraint must also be
applied to this association.

Query 8 in Figure 2.9(a) illustrates the either VMQL constraint. Suppose a

18 The visual model query language

package Query 8LMS[]

+publisher
Publisher

«vmql»

either

(a)

package Query 9LMS[]

+isbn
ISBN

«vmql»

either

(b)

Figure 2.9: VMQL queries for �nding a class having a property expressed
either as an attribute ((a)) or an association ((b))

modeler is looking for a class that has a "publisher" property, regardless if this
property is expressed as an attribute or an association. The either constraint
in Query 8 states that the leftmost class must either have a publisher attribute
or be connected via a directed association to a Publisher class, but not both.
As a result, this class will be bound to the Medium class in the source model,
since this class is linked via a directed association to a class named Publisher.
Figure 2.9(b) illustrates a similar scenario, retrieving the Book source model
element. However, in this case the isbn property is present in the solution, not
the ISBN class to which it is associated.

package Query 10LMS[]

+name

«vmql»

not

(a)

package Query 11LMS[]

«vmql»

not

(b)

Figure 2.10: VMQL queries for �nding: (a) all classes which do not have a
name public attribute, (b) all classes which do not have subclasses

The not constraint is used to prevent the query model elements to which it
is anchored from being bound in a solution. It is exempli�ed by Query 10

2.5 Path-related constraints: steps and indirect 19

in Figure 2.10(a), which retrieves all classes that do not have a name public
attribute (not to be confused with the name meta-attribute, which all UML
classes possess). That is, the query matches all source model classes with the
exception of Reader and Publisher. Figure 2.12 illustrates the usage of the not
constraint to identify all classes that do not have a subclass. Similarly to the
either constraint discussed above, the not constraint must be applied to the
subclass in the query model, as well as to the generalization relationship. Were
the constraint not applied to the generalization relationship, the query would
produce no solutions, since it would be interpreted as searching for all super
classes connected to a generalization relationship that has no subclass attached
to the other end.

2.5 Path-related constraints: steps and indirect

package Query 12LMS[]

Medium

«vmql»

name = $Sub

«vmql»

steps = 2

(a)

Query 13 Query 13activity []

«vmql»

name = Identify.*

«vmql»

name = $A

«vmql»

steps < 5

(b)

Figure 2.11: VMQL queries exemplifying the steps constraint

VMQL's path-related constraints, steps and indirect, contribute signi�cantly
to increasing the language's expressiveness. Consider for instance Query 12 pre-
sented in Figure 2.11(a), which uses the steps = 2 constraint to identify the
classes inheriting from the Medium class through a path of exactly two general-
izations - that is, the Fiction and NonFiction classes. This is a very concise
manner of expressing what would otherwise be a complex query in a language
such as OCL. VMQL also supports specifying an upper or lower limit to the num-
ber of steps in a relationship path, as exempli�ed by Query 13 in Figure 2.11(b)
(specifying a lower limit is not currently implemented in MQ-2). This query re-
trieves all �ow paths of length at most four that start with an Action node whose
name contains the "Identify" pre�x. Furthermore, the path must be enclosed

20 The visual model query language

between a Fork-Join pair of model elements. Query 13 matches two paths from
the Lend Medium Activity Diagram in the source model: The path starting with
the Identify medium action and ending with the Check availability action,
and the path starting with the Identify reader action and ending with the
Check eligibility action. Notice that the types of the nodes included in the
path are not relevant: both action nodes and object nodes can be included.
The only constraint is that the link type between the nodes must be consistent
with the type of the link to which the steps constraint is anchored in the query
model. In Activity Diagrams, the Object Flow and Control Flow link types
are considered equivalent.

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

package Query 14LMS[]

Medium

«vmql»

name = $Sub

«vmql»

indirect

Figure 2.12: VMQL query exemplifying the indirect constraint

The indirect constraint showcased in Query 14 is a short-hand notation for
specifying a path of undetermined length. It is equivalent to the steps = *

constraint, where the * symbol is a wild card replacing any value. Consequently,
Query 14 �nds all transitive subclasses of the Medium class and binds their names
to the $Sub variable. The Book, Disc, Fiction, and NonFiction classes are all
found. This example highlights VMQL's ability to handle transitive closures,
which is essential to the expressiveness of any model query language.

The VMQL constraints supported by MQ-2 are de�ned in Table 2.1, based
on Table 1 in [Stö11b]. The precision and strict constraints have been
considered as having low priority and have not been implemented in MQ-2, with
the implementation e�ort being re-directed to the VMQL extensions presented
in Section 6.1.

2.5 Path-related constraints: steps and indirect 21

Table 2.1: VMQL constraints implemented by MQ-2

Constraint Informal de�nition Examples

mattr Constrains the value of a meta-attribute. If given
a value expression, the meta-attribute's value
must conform to it. If given a variable (i.e.any
expression starting with $), the value of the meta
attribute is bound to that variable if possible.

mattr isRoot = true

mattr aggregationKind

= composition; none

mattr isAbstract = *

mattr name = $N

name Alias for mattr name = $N name = $N

match Restricts the name of the constrained model el-
ement by a wild card expression or regular ex-
pression.

match pa?tern.*

mclass Modi�es the constrained element's meta-class. mclass = Class

mclass = Class;

Component

mclass = *

mclass <: Feature

once Enforces that a solution occurs only once in the
set of all solutions.

once

distinct Enforces that a set of constrained model elements
are bound to distinct source model elements.

distinct

optional Speci�es that a constrained query model element
may or may not have a binding in the result.

optional

either Allows only one of the set of constrained model
elements to appear in a result.

either

not Prevents a result from containing a binding for
the constrained model element.

not

steps De�nes the length of a path between two con-
nected model elements. Only one type of rela-
tionship may occur on the path. Applicable val-
ues are integers >0 or * for arbitrary length >0.
Applicable only to elements that are subclasses
of Relationship.

steps = 3

steps < 3

steps = *

indirect Alias for steps = * indirect

precision Reduces the matching precision level to values
below 1.

precision = 0.8

indirect Enforces that a query model element must match
exactly one result model element.

strict

22 The visual model query language

Chapter 3

System analysis

The overall objective of this thesis is to create a fully functional implementation
of VMQL that appeals to the needs of modelers coming from a business back-
ground while also providing more advanced features suitable for expert modelers.
The implementation must be created as an extension to an existing modeling
tool and must preferably be portable across several operating systems.

At the highest level, users of MQ-2 must be able to perform two use cases: query-
ing a model through a Prolog console, and querying a model using VMQL. The
�rst requirement is targeted at experienced modelers that are also familiar with
Prolog, while the second must ensure a minimal learning curve for novice model-
ers. This pair of fundamental use cases helps divide MQ-2 into two subsystems,
as shown in Figure 3.1.

The use cases envisioned for MQ-2's integrated Prolog console are:

• Formulate Prolog query: Modelers must be able to formulate Prolog
queries via MQ-2's Prolog console user interface.

• Execute Prolog query on model: Queries must be executable on the
Prolog representation of a model. The model could be the one currently
open in MagicDraw or another locally stored model.

24 System analysis

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Analysis Level Use CasesMQ-2 Analysispackage []

«subsystem»

VMQL query execution interface

Execute VMQL query on model

Formulate VMQL query

Display bindings

«subsystem»

Prolog console

Execute Prolog query on model

Formulate Prolog query

Display results

Modeler

Figure 3.1: MQ-2 analysis level use cases

• Display results: Query results must be displayed both textually in the
console and graphically by highlighting them on the model's diagrams.
Integration with the host modeling tool's query results display facilities is
also desirable.

The use cases envisioned for MQ-2's VMQL query execution interface are:

• Formulate VMQL query: Modelers must be able to formulate VMQL
queries by creating query models annotated with VMQL constraints.

• Execute VMQL query on model: Modelers must be able to execute
VMQL queries by selecting a query model to be matched against a selected
source model.

• Display bindings: The bindings resulting from the execution of a VMQL
query must be displayed by highlighting them on the source model. If a
query has produced several bindings, modelers must be able to select one
binding to display.

Chapter 4

Implementation

This chapter describes the implementation of the requirements identi�ed in
Chapter 3, from the overall architecture down to more detailed descriptions
of its components. It also presents the di�culties encountered and the testing
methodology employed in order to verify the implementation's conformance to
the VMQL speci�cation.

4.1 System architecture

MQ-2 is implemented as a plug-in to the popular MagicDraw CASE tool. It
is integrated with an underlying SWI-Prolog1 instance responsible for both di-
rect and VMQL-based query execution. Given that MQ-2 is implemented in
Java, communication between MQ-2 and SWI-Prolog is carried out through the
JPL Java-Prolog bridge2. The high level architectural of MQ-2 is presented in
Figure 4.1.

MagicDraw performs a two-fold role in this architecture. First, it acts as a model
repository for source models and VMQL query models. Second, it provides an

1http://www.swi-prolog.org/
2http://www.swi-prolog.org/packages/jpl/

26 Implementation

MagicDraw
MQ-2

Plug-in

J

P

L

SWI-Prolog

MQ-2

Prolog

modules

Figure 4.1: MQ-2 architecture. Arrows indicate data �ow direction.

interface for creating and manipulating these models. MagicDraw has been
selected as a basis for MQ-2's implementation with several considerations in
mind. It is a mature modeling tool, o�ering full support for UML 2.x. It is
also a cross-platform tool currently supported on Windows, Linux, and Mac OS
X, thus satisfying MQ-2's portability requirement identi�ed in Section 3. But
more importantly, MagicDraw supports the creation of plug-ins through the
MagicDraw Open API. Since MagicDraw is itself a Java application, the Open
API provides a means of utilizing a large number of internal MagicDraw Java
classes, both for extending the tool's user interface and manipulating the internal
representation of models. Further details regarding the implementation of the
MQ-2 plug-in based on the MagicDraw Open API are provided in Section 4.2.

While MagicDraw provides the infrastructure on which MQ-2 is built, actual
query execution is carried out by SWI-Prolog. After a model has been trans-
formed into a Prolog facts database (see Section 4.3.1 for details on this process),
it is available for querying through the integrated Prolog console. SWI-Prolog
has been selected from several available Prolog implementations in view of the
fact that previous work on transforming models to Prolog fact databases has
been carried out using this Prolog implementation. Furthermore, SWI-Prolog
is an open-source cross-platform Prolog implementation that meets the require-
ment for portability placed on MQ-2. VMQL queries are also executed by
SWI-Prolog by passing the Prolog representations of an annotated query model
and source model to the matching algorithm described in Section 4.3.2.

4.2 The MQ-2 plug-in

The MQ-2 plug-in is implemented according to the guidelines laid out in the
MagicDraw Open API user guide [Ope10]. It consists of:

4.2 The MQ-2 plug-in 27

• A JAR archive containing the MQ-2 plug-in implementation

• An XML �le describing the plug-in's properties and dependencies

• Several folders containing resources such as image �les, Prolog modules
and the JPL library

This section focuses on the Java-based part of the plug-in's implementation,
which is split into the �ve packages shown in Figure 4.2. The implementation
consists of 43 Java classes, totaling 2151 lines of code.

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Package Overviewpackage MQ-2 []

mq2.console

mq2.output

mq2.plugin

mq2.vmqlmq2.util

«import»

«import»

«import»

«import»

«import»

«import»

Figure 4.2: MQ-2 packages

The mq2.plugin package contains code responsible for exposing the MQ-2 plug-
in to MagicDraw at run-time and adding an MQ-2 entry to the standard Magic-
Draw Tools menu. The mq2.console package (detailed in Section 4.2.1) handles
the tasks of extending the MagicDraw UI to include a Prolog console and send-
ing queries typed at the console to an underlying Prolog instance for execution.
The mq2.vmql package (detailed in Section 4.2.2) provides functionality for in-
voking the VMQL matching algorithm implemented in Prolog and processing
the results returned by this algorithm. Since the VMQL-related parts of the user
interface are integrated into the Prolog console, they reside in the mq2.console
package with the rest of the MQ-2 UI components. This aspect accounts for
the import relationship between the mq2.console and mq2.vmql packages. The

28 Implementation

mq2.output package (detailed in Section 4.2.3) o�ers query result display facili-
ties for both console queries and VMQL queries. Finally, the mq2.util package
(detailed in Section 4.2.4) encapsulates classes providing common utility meth-
ods used in other parts of the application for interacting with the JPL library
and the MagicDraw Open API. For this reason, it is imported by all packages
involved in query execution.

4.2.1 Integrated Prolog console

The implementation of the Integrated Prolog console is based on the analysis
level use cases identi�ed in Chapter 3, which are mapped to the implementation
level use cases shown in Figure 4.3 as follows:

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Integrated Prolog Console Use Casespackage MQ-2 []

Show console text selection in
 containment tree

extension points
show results

Execute Prolog query

Show query solutions in
containment tree

Highlight query
solutions on diagrams

Consult user
defined libraries

Show results

Input Prolog query

Modeler

«extend»
(show results)

Figure 4.3: Integrated Prolog console implementation level use cases

4.2 The MQ-2 plug-in 29

• The Formulate Prolog query analysis level use case corresponds to the
Consult user de�ned libraries and Input Prolog query implementation level
use cases, implemented by the mq2.console package. The process of query
formulation is facilitated by the existence of a query history maintained
by the console and accessible through the up and down arrow keys. Users
can consult Prolog libraries placed in a pre-de�ned directory at run-time
without re-starting MagicDraw.

• The Execute Prolog query on model analysis level use case corresponds
directly to the Execute Prolog query implementation level use case, imple-
mented by the mq2.console package.

• The Display query results analysis level use case corresponds to the Show
results use case and its sub use cases, implemented by the mq2.console

package in conjunction with the the mq2.output package.

The structure of the mq2.console package is presented in Figure 4.4. The
central component of this package is the PrologConsole class, which leverages
methods provided by the JPL library to send queries for execution to an un-
derlying SWI-Prolog connection. An instance of the ConsolePanel class, which
extends javax.swing.JPanel, manages the GUI components of the console,
including the Console Tool Bar (implemented by the ConsoleToolBar class,
which extends javax.swing.JToolBar) and the console text area (represented
by the ConsoleTextArea class, which extends javax.swing.JTextArea). The
various actions available to users are accessible through buttons placed on the
Console Tool Bar, each associated to an action listener in standard Java fashion.
The PrologConsole class makes use of utility methods from the MQ2Util and
MagicDrawUtil classes, which are not part of the mq2.console package but are
included in the diagram for completeness. The same observation applies to the
QuerySolutionDisplayer class.

At console start-up time, several MQ-2 speci�c Prolog modules are consulted
through the constructor of the PrologConsole class. These include modules
responsible for transforming models to Prolog facts databases, executing VMQL
queries and providing library predicates such as the highlight/2 predicate used
to highlight model elements in diagrams. In addition, all user de�ned Prolog
modules placed in the plug-in's user directory are consulted.

Before a model can be queried through the Prolog console, it is transformed to
a Prolog facts database which must also be consulted in the underlying SWI-
Prolog engine. These tasks are carried out by the useMDProject() method of
the PrologConsole class. Re-consulting the current model is carried out by the
refresh() method, while a full re-start of the console is performed through the
reset() method.

30 Implementation

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Prolog Consolepackage MQ-2 []

com.nomagic.magicdraw.ui.browser.WindowComponentContent

mq2.output.QuerySolutionDisplayer

-state
-queryCache [0..*]

+useMDProject(project)
+refresh()
+reset()
+showPreviousCachedQuery()
+showNextCachedQuery()
+printNextSolution()
+printAllSolutions()
+abortQuery()
+highlightAllSolutions()
+showSolutionsInTree()
+findSelectionInTree()

PrologConsole
+readQueryString()
+prettyPrintNextSolution(solution)
+printError(error)

ConsoleTextArea

+getConsole() : ConsoleTextArea
+getToolBar() : ConsoleToolBar

ConsolePanel

mq2.util.MagicDrawUtil

javax.swing.JTextArea

javax.swing.JToolBar

+getQuickActionIndex()
+getHighlightColor()

ConsoleToolBar

ConsoleConstants

java.swing.JPanel mq2.util.MQ2Util

jpl.QuerycurrentQuery

11

consolePanel

11

1

1

1

1

11

Figure 4.4: Classes implementing the Prolog console

Queries typed into the console are executed via the printNextSolution()

method of the PrologConsole class. A notable aspect is that one user ac-
tion (pressing the return key) may have two distinct meanings: triggering the
execution of a new query and printing the next result of the current query. For
this reason, the console must maintain an internal state taking either the Wait-
ing for query or Result displayed value. This internal state is maintained in
conjunction by the printNextSolution() and abortQuery() methods, which
together implement the �nite state machine presented in Figure 4.5.

To further emulate the expected behavior of a Prolog console, all executed
queries are stored in a query history internal to the PrologConsole class, in
the queryCache property of this class.

Query strings typed into the console are forwarded to SWI-Prolog via the JPL
library, which returns each result in the form of a hash table in which every
key is a query variable. The value associated to a key is the term to which
the respective variable is bound. The JPL library provides a dedicated data
structure for Prolog terms, consisting of the abstract base class Term extended
by concrete classes for every Prolog data type, as shown in Figure 4.6. Given

4.2 The MQ-2 plug-in 31

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

state machine Query Execution Query Execution[]

Waiting for query

Result
displayed

 [query.hasMoreSolutions() AND nextSolution.size()>0] / consolePanel.getConsole.prettyPrintNextSolution(nextSolution)
 [!query.hasMoreSolutions()]

 [query.hasMoreSolutions() AND nextSolution.size()=0] / consolePanel.getConsole().prettyPrintNextSolution("true")

 [!query.hasMoreSolutions()] / consolePanel.getConsole().prettyPrintNextSolution("false")

 [query.hasMoreSolutions()] / consolePanel.getConsole().prettyPrintNextSolution(nextSolution)

Figure 4.5: State Machine Diagram describing the internal state transitions of
the Prolog console

the presence of this data structure in the JPL library, implementing an MQ-2
speci�c representation for Prolog terms is no longer necessary.

The consulted model can be queried either through the MQ-2 Prolog console
using the me/2 predicate, the get_me/3 MQ-2 library predicate, or a user de-
�ned library predicate. Highlighting the model elements included in the results
of such queries is facilitated by the highlight/2 MQ-2 library predicate. How-
ever, the implementation of this library predicate is somewhat unusual, in that
only its signature is de�ned in the MQ-2 Prolog library. The predicate is actu-
ally detected using a regular expression on the Java side of the MQ-2 plug-in
and removed before queries containing it are forwarded to SWI-Prolog. Its ar-
guments are extracted and provided as parameters to the solution highlighting
methods in the vmql.output package. This approach has been adopted due
to the fact that model element highlighting must be performed through the
MagicDraw Open API, and implicitly in Java. The signature of the predicate
is only de�ned in the MQ-2 library to prevent SWI-Prolog from producing an
error when encountering it (otherwise, SWI-Prolog would correctly identify the
highlight/2 predicate as unde�ned.)

In addition to the standard key-based interaction style, queries may be exe-
cuted by using one of the buttons on the Console Tool Bar. These buttons
expose MQ-2 speci�c query execution options. Print all solutions is one of
these options, introduced in order to facilitate query result display given that
a query of the form me(Type-Id,Properties) (returning all model elements)
will likely produce a large number of results, presumably tedious to display
one at a time. The repeated execution of a query to the point where all of
its solutions have been exhausted is implemented by the printAllSolutions()

32 Implementation

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Prolog Term Data Structurepackage MQ-2 []

JPL

Compound VariableInteger

Term

Atom

Float

Figure 4.6: The Prolog term data structure provided by JPL

method of the PrologConsole class, which in turns makes repeated calls to the
printNextSolution()method. The highlightAllSolutions() and showSolu-
tionsInTree() methods extend the behavior of the printAllSolutions()

method by visually highlighting query solutions in the current project. Model
element highlighting is carried out by the QuerySolutionDisplayer class, de-
tailed in Section 4.2.3.

Once the solutions of a query have been displayed in the Prolog console, the
requirements of MQ-2 state that users must be able to select a section of text
from the console and view the model elements which it identi�es. This is possible
if the selected text represents an original XMI ID of a model element, a generated
ID created for a model element at Prolog transformation time, or the name of
a model element. This feature is implemented in the findSelectionInTree()
method of the PrologConsole class, which wraps around the method of the
same name of the QuerySolutionDisplayer class.

In case a query is particularly slow to execute, it may be aborted through
the Abort button of the Console Tool Bar. At the implementation level, the
abortQuery() method of the PrologConsole class wraps around the close()

method provided by the JPL Query class, which e�ectively terminates the
query's execution in the SWI-Prolog engine.

4.2 The MQ-2 plug-in 33

Testing the MQ-2 plug-in has revealed the fact that using the Console Tool Bar
buttons to perform query execution and result highlighting tasks is sometimes
not appropriate for a console style of interaction. To address this issue, the
option to modify the behavior associated to pressing the return key has been
introduced. The Console Tool Bar contains a drop-down list containing several
highlighting and query result display options (informally dubbed Quick Actions)
which mimic the functionality of each tool bar button. The selected quick action
is performed each time the return key is pressed, augmenting the standard con-
sole behavior. At the implementation level, the printNextSolution() method
of the PrologConsole class - which is called at each press of the return key -
makes a call to the getQuickActionIndex() method of the ConsoleToolBar

class to determine the action to perform.

4.2.2 VMQL query execution

The implementation of VMQL query execution support is based on the analysis
level use cases identi�ed in Chapter 3, which are mapped to the implementation
level use cases shown in Figure 4.7 as follows:

• The Formulate VMQL query analysis level use case corresponds to the Se-
lect source and query models implementation level use case, implemented
by the mq2.vmql package. VMQL queries are formulated as regular Mag-
icDraw models, with optional additional VMQL constraints expressed as
comments.

• The Execute VMQL query analysis level use case corresponds to the imple-
mentation level use case of the same name. This use case is implemented
by the mq2.vmql package in conjunction with the matching algorithm de-
scribed in Section 4.3.2.

• The Display bindings analysis level use case corresponds to the Highlight
bindings implementation level use case and its sub use cases, implemented
by the mq2.vmql package in conjunction with the mq2.output package.

Since VMQL queries are executed in Prolog, the Java side of the VMQL im-
plementation merely provides a user interface through which the matching al-
gorithm described in Section 4.3.2 is invoked and its results are displayed in a
user friendly manner. Figure 4.8 presents the classes of the mq2.vmql package
involved in query execution. Note that the VMQLPanel class is included in the
mq2.console package due to the fact that the VMQL user interface is a part of

34 Implementation

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

VMQL Use Casespackage MQ-2 []

Highlight bindings in
search results tree

extension points
highlight bindings

Execute VMQL
query

Highlight bindings

Highlight bindings
on diagrams

Select source
and query model

Modeler

«extend»

(highlight bindings)

Figure 4.7: VMQL implementation level use cases

the Prolog console user interface - the VMQL interface elements can be shown
or hidden at the click of a button.

Query execution is triggered through the executeQuery() method of the VMQL-
Panel class, which in turns invokes the method of the same name of the QueryEn-
gine class. The match/4 predicate is then invoked through JPL. As a pre-
requisite to invoking this predicate, the source and query models must be spec-
i�ed. While the source model is implicitly the model currently consulted in
the Prolog console, the query model must be explicitly speci�ed through the
setQueryFile() method of the VMQLPanel class.

The result of invoking the match/4 predicate is a Prolog list of query solutions,
where each solution is a list of source model XMI element IDs. Displaying
this list directly to users is not feasible from a usability standpoint. Thus, the
query results must be processed further. Results are displayed in an instance
of the javax.swing.JTable class through a custom table model implemented
by the ResultsTableModel class. Based on the results obtained from the JPL
invocation of the match/4 predicate, this class provides implementations for

4.2 The MQ-2 plug-in 35

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

VMQL Implementationpackage MQ-2 []

mq2.console.ResultsTableSelectionListener

javax.swing.event.ListSelectionListener

javax.swing.table.AbstractTableModel

+executeQuery()
+setSourcePrologFile(sourcePrologFile)
+setQueryPrologFile(queryPrologFile)

QueryEngine

mq2.output.QuerySolutionDisplayer

+getColumnCount()
+getRowCount()
+getValueAt(row, column)
+getColumnName(column)
+getSourceIds()

-data
-columnNames
-sourceIds

ResultsTableModel

-resultsTable

+setQueryFile(queryFile)
+executeQuery()
+highlightBinding()
+showBindingInTree()

mq2.console.VMQLPanel

javax.swing.JPanel

1 1

*1

1 1

Figure 4.8: Classes implementing the VMQL front-end

the methods required by the javax.swing.table.AbstractTableModel class,
which it extends.

For visualizing VMQL query results, a ListSelectionListener implemented
by the ResultsTableSelectionListener class is associated to the results dis-
play table. When a user selects a solution by clicking on a row of the ta-
ble, this listener invokes the displayAsHighlightedElements() method of
the QuerySolutionDisplayer class in order to show the model elements in-
cluded in the solution in the MagicDraw Search Results Tree. A button on
the VMQL Panel allows users to highlight the selected solution by invoking the
displayAsHighlightedElements() method of the QuerySolutionDisplayer

class.

4.2.3 Query solution display methods

The methods employed to graphically display query solutions are shared by
the Prolog console and the VMQL front-end. They have consequently been
encapsulated in the mq2.output package, detailed in Figure 4.9.

All classes that require query solution display functionality must obtain an
instance of the singleton QuerySolutionDisplay class via its getInstance()
method. The displayElementsInSearchResultsTree() method of this class
displays the model elements whose XMI IDs are provided as arguments in the
MagicDraw Search Results Tree. This method of displaying search results is

36 Implementation

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Query Solution Displaypackage MQ-2 []

com.nomagic.magicdraw.ui.DiagramSurfacePainter

+getInstance()
+displayElementsInSearchResultsTree(elementIds)
+displayAsHighlightedElements1(querySolutions, color)
+displayAsHighlightedElements(elementIds, color)
+clearHighlights()

QuerySolutionDisplayer

+paint(graphics, diagram)

HighlightedElementsPainter

+element
+color

HighlightedElement

*

1

*

1

11

Figure 4.9: Classes implementing the query solution display methods

also adopted by MagicDraw's built-in search feature, making it familiar for
existing users. However, displaying MQ-2 query results in this manner has
raised some unexpected challenges. Adding elements to the Search Results
Tree requires an undocumented use of the MagicDraw Open API, suggested
by the MagicDraw support team. Namely, an instance of the undocumented
com.nomagic.magicdraw.ui.SearchResult class must be created.

A more unique query solution display method supported by MQ-2 consists of
highlighting solutions directly in relevant diagrams. Model elements are high-
lighted using a color selected by the user through a color picker included in
the MQ-2 Prolog Console Tool Bar. This functionality is implemented by the
displayAsHighlightedElements() method of the QuerySolutionDisplayer

class. The method is overloaded to support highlighting a list of elements iden-
ti�ed either by their XMI IDs or by a Prolog query result presented in JPL-
speci�c format. Highlighting is carried out by adding a custom painter class
(HighlightedElementsPainter) to the relevant diagrams. This class main-
tains a reference to the list of model elements to highlight and, through its
paint() method, renders a rectangle of the appropriate color around these el-
ements whenever they appear in a diagram. This highlighting method can also
be applied to model elements which have a purely textual syntax, such as clas-
si�er attributes. Each highlighted model element is encapsulated in an instance
of the HighlightedElement class, which also stores the highlight color.

Finally, the QuerySolutionDisplayer class exposes the clearHighlights()

method, which removes all existing highlights. This is achieved by re-painting
each diagram without making use of the custom painter class described above.

4.2 The MQ-2 plug-in 37

4.2.4 Internal MQ-2 utilities

The mq2.util package detailed in Figure 4.10 contains static utility methods
required by several other classes or likely to be re-used by an extension to MQ-
2. The methods are encapsulated in two classes: the MQ2Util class, which
contains methods for processing the Prolog representation of a model, and the
MagicDrawUtil class, which contains methods for processing the MagicDraw
representation of a model.

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Utility Classespackage MQ-2 []

+transformToProlog(projectFile)
+getElementIds(text)
+refreshElementIdCache(moduleName)
+getPropertyValue(modelElement, propertyName)

MQ2Util

+findElementById(id, rootElement)
+findElementByName(name, rootElement)

MagicDrawUtil

java.util.concurrent.Callable

-cache

+getInstance()
+refresh(moduleName)
+getModelCache()

ElementIdCache

-query

+setQuery(query)
+call()

CallableQuery

QueryConstants

MQ2Constants

1

*

Figure 4.10: Classes implementing internal MQ-2 utilities

The transformToProlog() method of the MQ2Util class is called whenever a
MagicDraw model must be transformed to a Prolog facts database. The �rst
step in this process is to create an un-compressed copy of the model in the
MDXML format (if the model is not already stored in this format), as the Pro-
log transformation algorithm does not support MagicDraw's compressed MDZIP
format. The MDXML model storage format is a MagicDraw speci�c extension
to the standard XMI format. Once the existence of an MDXML �le describ-
ing the model is ensured, the name of this �le is passed as a parameter to the
Prolog transformation algorithm described in Section 4.3.1. Tests have shown
that supplying this algorithm with a corrupt MDXML �le may prevent it from
terminating, a situation in which the MQ-2 plug-in becomes unresponsive. Sit-
uations of this type are avoided by enforcing a time-out on the JPL query trig-
gering the transformation algorithm's execution. This is achieved by wrapping
the query inside a class implementing the java.util.concurrent.Callable

interface, namely the CallableQuery class, whose call() method triggers the
query's execution. Thus, in the transformToProlog() method of the MQ2Util
class, the query can be executed through the get() method of an instance of

38 Implementation

the java.util.concurrent.Future class, which supports a time-out on the
asynchronous task it is executing. This time-out is set to a default value of 10
seconds through a constant de�ned in the MQ2Constants class.

Perhaps the most interesting in terms of implementation is the getElementIds()
method of the MQ2Util class. It takes a string as a parameter and returns the
XMI IDs of the model elements identi�ed by the string either by name or by
their XMI or generated ID. The method is used, among others, for �nding the
model elements identi�ed by a section of text selected in the Prolog console.
When this method is called, it �rst identi�es candidate substrings of the pro-
vided string, i.e. substrings that could represent model elements. For instance,
substrings enclosed between single quotes are selected since they may represent
model element names or XMI IDs in a Prolog query result. Each candidate
substring is then subjected to a series of at most three tests, with the aim of
determining the model element which it identi�es (if one of the tests succeeds,
the remaining tests are no longer performed). First, a check is performed to
determine if the candidate substring represents the XMI ID of a model ele-
ment from the current model. Second, a check is performed to determine if
the candidate substring represents a model element name. These checks are
performed by the findElementById() and findElementByName() methods of
the MagicDrawUtil class, respectively. They do not involve executing any Pro-
log queries on the model. The �nal test applied determines if the candidate
substring represents a generated model element ID created at Prolog transfor-
mation time. This would normally involve an extra Prolog query for retrieving
all model elements in the Prolog facts database. However, this requirement is
circumvented by maintaining a hash table that maps the correspondence be-
tween XMI and generated model element IDs. The hash table is encapsulated
by the ElementIdCache class and refreshed each time a MagicDraw model is
transformed to a Prolog facts database.

The getPropertyValue() method of the MQ2Util class retrieves the value of
a given property for a model element represented as a Prolog fact of the form
generated by the Prolog transformation algorithm. The method is called, for
instance, when refreshing the model element ID hash table described in the
previous paragraph.

4.3 MQ-2 Prolog modules

The MQ-2 plug-in relies on Prolog modules consulted at start-up to perform
two operations: transforming MagicDraw models from their original XMI rep-
resentation to Prolog facts databases, and executing VMQL queries based on the

4.3 MQ-2 Prolog modules 39

Prolog representations of a source and a query model. The following subsections
detail the implementation of these Prolog modules.

4.3.1 XMI to Prolog transformation

Models are stored by MagicDraw as �les conforming to the proprietary MDXML
format, which is based on the standard XMI format. XMI is in turns an XML-
based �le format speci�ed by OMG with the goal of promoting interoperability
between UML modeling tools by ensuring that models are stored in a tool-
independent format. The existence of the XMI standard [XMI11] implies that
MQ-2 may process UML models created using a wide range of tools with little or
no extra implementation e�ort. However, any XML model representation is not
appropriate for model manipulation using Prolog. In order to be queried from a
Prolog console, a model must be represented as a set of Prolog facts conforming
to a pre-determined format. Querying the model then becomes a simple matter
of executing a query conforming to the same format. Transforming a model
from its XMI representation to a Prolog representation is performed in MQ-2
by the xmi2pl/1 predicate, implemented in a stand-alone Prolog module. It
receives the name of an XMI �le as input and produces a �le representing the
same model as a Prolog module.

The resulting Prolog module consists of instances of the me/2 predicate intro-
duced in [Stö07], one for each model element. The me/2 predicate has the form:

me(type-id, [tag-value, ...]).

where type is the model element's meta-class, id is a unique generated identi�er
for the model element, tag is one of the model element's meta-attributes, and
value is the corresponding meta-attribute value. A model element may have
any number of tag-value pairs, stored as elements of a Prolog list. An example
of how a model is represented in Prolog following this convention is presented
in Figure 4.11. The considered model consists solely of a Use Case Diagram
illustrating a considerably simpli�ed version of the use cases and actors involved
in a Library Management System (LMS) scenario. Below the diagram, the
Prolog representation corresponding to this model is shown. To highlight the
correspondence between model elements and Prolog facts, each element's ID is
shown next to it on the diagram in red.

After consulting the generated 'Use Cases' module in a Prolog console, it may be
queried by making use of the me/2 predicate in conjunction with any standard

40 Implementation

:-module('Use Cases',[me/2]).

 me(model-0,[ownedMember-ids([1,4,5,6,7,8,11]),name-'LMS',visibility-public).

 me(association-1,[ownedMember-ids([2,3]),visibility-public,

 navigableOwnedEnd-ids([3,2]),memberEnd-ids([3,2])]).

 me(property-2,[visibility-private,type-id(6),association-id(1)]).

 me(property-3,[visibility-private,type-id(4),association-id(1)]).

 me(actor-4,[name-'Member',visibility-public]).

 me(useCase-5,[name-'Create member account',visibility-public]).

 me(useCase-6,[name-'Lend medium',visibility-public]).

 me(actor-7,[name-'Librarian',visibility-public]).

 me(association-8,[ownedMember-ids([9,10]),visibility-public,

 navigableOwnedEnd-ids([10,9]),memberEnd-ids([10,9])]).

 me(property-9,[visibility-private,type-id(5),association-id(8)]).

 me(property-10,[visibility-private,type-id(7),association-id(8)]).

 me(association-11,[ownedMember-ids([12,13]),visibility-public,

 navigableOwnedEnd-ids([13,12]),memberEnd-ids([13,12])]).

 me(property-12,[visibility-private,type-id(6),association-id(11)]).

 me(property-13,[visibility-private,type-id(7),association-id(11)]).

1

2 3

4
6

5

7
9

10 8

13

12
11

Figure 4.11: A simple model and its Prolog representation

Prolog library predicates supported by the console. For example, the IDs and
meta-attributes of all actors included in the model can be retrieved through the
following query:

me(actor-ID, MetaAttrs).

Model elements having a certain value for one of their meta-attributes can be
retrieved by making use of the memberchk/2 standard library predicate. As
an example, the query below retrieves the ID and meta-attributes of the actor
named 'Librarian':

me(actor-ID, MetaAttrs), memberchk(name-'Librarian', MetaAttrs).

4.3 MQ-2 Prolog modules 41

Alternatively, the same query can be formulated in the MQ-2 Prolog console
in a more concise manner by utilizing the get_me/3 MQ-2 library predicate
proposed in [Stö07]:

get_me(name-'Librarian', actor-Id, MetaAttrs).

Further details on how the Prolog representation of a model can be queried from
the MQ-2 Prolog console are presented in Section 5.1. The xmi2pl module has
not been developed entirely as part of the MQ-2 project, as it was considered to
be outside of the project's scope. Instead, an existing implementation has been
extended to meet the requirements of MQ-2. The two notable modi�cations
required are described in what follows.

• Originally, the xmi2pl/1 predicate only required an MDXML �le name
as a parameter. The predicate has been modi�ed to accept an optional
second parameter. If this parameter has the value [explicit], the me/2
predicate is included in the generated module's header. Otherwise, it is
omitted from this header. This option is relevant for situations in which
two models must be consulted in the same Prolog console, for instance
for the purpose of version control. In such situations, the me/2 predicate
must be omitted from the two module's headers. Otherwise, an error will
be produced by the Prolog engine upon consulting the second module.

• Since the element ID included in each me/2 clause is generated at transfor-
mation time for readability purposes (XMI element IDs are considerably
long strings of characters), the element's original XMI ID must be included
in its list of tag-value pairs. Thus, the xmi_id tag having the model el-
ement's XMI ID as a value is now added at transformation time to each
me/2 clause.

4.3.2 VMQL matching algorithm

VMQL queries are executed by computing a set B = {b1, b2, ..., bn} of bindings
between the elements of a query model and those of a source model. Each
binding represents a query solution passed to the Java side of the MQ-2 plug-in
for display. A query may have no solutions, in which case B = ∅. A binding
bi = {(q_id1, s_id1), (q_id2, s_id2), ..., (q_idm, s_idm)} is a set of m pairs
consisting of the ID of a query model element and the ID of the matching
source model element, where m is the number of elements of the query model.
If a query model does not have a match in the source model, it is represented in

42 Implementation

the binding as (q_id,NULL). Given the Prolog representations of a query and a
source model obtained as described in Section 4.3.1, the bindings between these
two models are computed by Algorithm 4.1. This algorithm, as well as all the
subsequent algorithms presented in this section, are imperative representations
of the logic behind the actual Prolog implementation. The corresponding Prolog
source code is split into three modules, implementing the matching algorithm,
VMQL constraint parsing, and a representation of relevant aspects of the UML
meta-model, respectively. The modules consist of a total of 900 lines of code.

Algorithm 4.1 MATCH

1: Inputs:
2: q_model - a VMQL annotated query model
3: s_model - a source model
4:

5: Outputs:
6: bindings - a list of bindings between q_model and s_model
7: var_bindings - a list of bindings for the VMQL variables in q_model
8:

9: begin
10: c← COLLECT_CONSTRAINTS(q_model)
11: ADD_CONSTRAINTS(q_model, c)
12: bindings← GET_BINDINGS(q_model, s_model)
13: bindings← FP_REFINE(bindings, q_model, s_model)
14: bindings← GET_PAIRWISE_BINDINGS(bindings)
15: bindings← VERIFY_CONSTRAINTS(bindings, c, q_model, s_model)
16: var_bindings← GET_VAR_BINDINGS(bindings, c, s_model)
17: end

The MATCH algorithm takes as parameters a query model (q_model) and a
source model (s_model), both represented as lists of me/2 clauses. It produces
a list of bindings (bindings), each representing a query solution, and a list of
variable bindings (var_bindings), each representing the values of the VMQL
variables in the query model for the corresponding query solution. Note that
bindings and var_bindings are ordered lists of the same length, and a corre-
spondence exists between elements located on equal positions in these lists. A
variable binding is a list of pairs of the form (var_name, var_value), associat-
ing a variable to its value.

The �rst step of the matching process is to collect the constraints included as
comments in the query model and store them in a separate list, a task per-
formed by the COLLECT_CONSTRAINTS algorithm. Some of the collected
constraints require modi�cations to the query model prior to the computation
of bindings. These modi�cations are performed by the ADD_CONSTRAINTS

4.3 MQ-2 Prolog modules 43

algorithm. The initial bindings can then be computed by the GET_BINDINGS
algorithm (see Algorithm 4.2). The initial bindings only take into account model
element types and attribute values, while ignoring references (links) between
model elements. The FP_REFINE algorithm (see Algorithm 4.3) applies a
�xed point re�nement process to the initial bindings by considering the links
between model elements: if two model elements are linked in the query model,
their bindings must also be linked in the source model. Up to this point in the
matching process (Line 14), the bindings are stored as a single list of pairs asso-
ciating each query model element ID to a set of source model element IDs. The
GET_PAIRWISE_BINDINGS algorithm is invoked in order to transform this
representation into the list B of lists bi described above, where each binding bi
consists of pairs of the form (q_id, s_id) - that is, a one-to-one correspondence
between query model elements and source model elements. The last step in the
binding computation process is to eliminate those bindings that do not satisfy
the VMQL constraints included in the query model. This step is carried out by
the VERIFY_CONSTRAINTS algorithm. Once the model element bindings
are computed, the query model variables can be assigned corresponding values
for each binding by the GET_VAR_BINDINGS algorithm.

The COLLECT_CONSTRAINTS algorithm takes the Prolog representation of
a model as input and produces a list of constraints as output. The constraints
are extracted from the comments included in the model - note that a comment
may be anchored to several model elements. The text of the comment is parsed
according to a grammar describing the syntax of VMQL constraints. This pars-
ing process is carried out by a separate Prolog module that utilizes Prolog's built
in facilities for parsing context free grammars. Namely, the −− > predicate is
used to specify de�nite clauses in a manner closely resembling a BNF (Backus-
Naur Form) speci�cation of the VMQL grammar. In case parsing succeeds,
the comment represents a VMQL constraint and must be added to the list of
constraints. The returned list of constraints also contains implicit constraints,
such as the optional constraint added to elements referenced by a model element
annotated with a steps constraint.

The GET_BINDINGS algorithm (Algorithm 4.2) takes a query and a source
model as inputs, and produces a list representing the initial bindings between
these models as output. The resulting bindings are represented as a list with
elements of the form (q_id, s_ids), where q_id is a query model element ID
and s_ids is a list containing the IDs of the source model elements that match
the type and meta-attribute values of s_id. The algorithm starts by initializing
an empty bindings list (Line 9) and iterates through each element of the query
model in order to discover its bindings. Some element types, such as comments,
must not be bound (Line 11). For each query model element, an inner loop
iterates through all source model elements and checks if their type and meta-
attribute values match those of the current query model element (Lines 14-19).

44 Implementation

Algorithm 4.2 GET_BINDINGS

1: Inputs:
2: q_model - a query model
3: s_model - a source model
4:

5: Outputs:
6: bindings - an initial list of bindings
7:

8: begin
9: bindings← ∅
10: for all q_me ∈ q_model do
11: if !SKIP_TYPE(q_me) then
12: b← ∅
13: q_id← GET_ID(q_me)
14: for all s_me ∈ s_model do
15: if (MATCH_TYPE(q_me, s_me) ∧

MATCH_ATTRS(q_me, s_me)) then
16: s_id← GET_ID(s_me)
17: b← b ∪ {s_id}
18: end if
19: end for
20: bindings← bindings ∪ {(q_id, b)}
21: end if
22: end for
23: return bindings
24: end

If this is the case, the ID of the considered source model element is appended to
the list of source element IDs bound to the current query model element (Line
17). When all source model elements have been considered, the new binding
is stored (Line 20). In case no source model elements match the query model
element, the new binding pair will contain an empty list as its second element.

Although not explicitly presented here, the MATCH_ATTRS function called
by the GET_BINDINGS algorithm requires some clari�cations. First, it only
considers meta-attributes with �xed values, ignoring meta-attributes represent-
ing references to neighbor model elements. Second, it ignores meta-attributes
that are not relevant for matching, such as the xmi_id attribute introduced
by the Prolog transformation algorithm. Finally, it supports matching regular
expressions through SWI-Prolog's PCE library.

The FP_REFINE algorithm (Algorithm 4.3) takes as inputs a list of bindings

4.3 MQ-2 Prolog modules 45

Algorithm 4.3 FP_REFINE

1: Inputs:
2: bindings - a list of bindings
3: q_model - a query model
4: s_model - a source model
5:

6: Outputs:
7: r_bindings - a re�ned list of bindings
8:

9: begin
10: old_bindings← bindings
11: new_bindings← bindings
12: repeat
13: old_bindings← new_bindings
14: new_bindings← ∅
15: for all (q_id, s_ids) ∈ old_bindings do
16: new_s_ids← ∅
17: for all s_id ∈ s_ids do
18: if VERIFY_LINKS(old_bindings, q_id, s_id, q_model, s_model)

then
19: new_s_ids← new_s_ids ∪ {s_id}
20: end if
21: end for
22: new_bindings← new_bindings ∪ {(q_id, new_s_ids)}
23: end for
24: until old_bindings = new_bindings
25: return new_bindings
26: end

along with a source and a query model and produces a re�ned list of bindings
computed by executing a �xed point re�nement algorithm on the original bind-
ings. The algorithm takes into account the references between query model ele-
ments, which are ignored by the GET_BINDINGS algorithm. The �xed point
re�nement process is performed by a repeat loop (Lines 12-24) that terminates
upon the convergence of two binding lists: old_bindings and new_bindings.
At each step of the loop, a new version of the bindings is computed by con-
sidering each (q_id, s_ids) binding of the old version and verifying its con-
sistency with the rest of the bindings through the VERIFY_LINKS function.
Namely, for each s_id ∈ s_ids, the VERIFY_LINKS function checks that if
the query model element identi�ed by q_id references a query model element
with ID ref_q_id, then there exists a binding (ref_q_id, ref_s_ids) such
that s_id ∈ ref_s_ids. In other words, model element references in the query

46 Implementation

model must be re�ected by the source model. s_id is only maintained as a
member of s_ids if it respects this condition (Lines 18-20). If after an execu-
tion of the repeat loop no changes have been made to the list of bindings, a
�xed point has been reached and the bindings can be returned (Line 25).

To show the necessity of a �xed point algorithm in this situation, consider two
bindings (q_id1, s_ids1) and (q_id2, s_ids2), where a meta-attribute of the
query model element identi�ed by q_id1 holds a reference to q_id2. This implies
that for every s_id1 ∈ s_ids1 there exists s_id2 ∈ s_ids2 such that the same
meta-attribute of the source model element identi�ed by s_id1 holds a reference
to s_id2. In case s_id2 is removed from s_ids2, this condition no longer holds
and the validity of the (q_id1, s_ids1) binding must be checked again. Hence,
an iterative algorithm with an appropriate stop criterion is required. A �xed
point algorithm meets this requirement.

After bindings are computed and each binding of the form (q_id, s_ids) is split
into a list of pairwise bindings containing one pair of the form (q_id, s_id) for
each s_id ∈ s_ids, the VERIFY_CONSTRAINTS algorithm eliminates the
bindings that do not meet the VMQL constraints included in the query model.
This is achieved by iterating through the list of bindings and verifying each type
of constraint. All constraint types except mattr and mclass (which are handled
by the ADD_CONSTRAINTS function) are considered here. The implemen-
tations of the distinct and steps constraints are detailed in Algorithm 4.4 and
Algorithm 4.5, respectively. The implementations of the once, either, and not
constraints are not discussed, since they are highly similar to the implementation
of the distinct constraint.

The VERIFY_DISTINCT function (Algorithm 4.4) receives a pairwise binding
and a list of constraints as inputs, and produces a boolean result signaling
whether the binding respects all distinct constraints in the provided constraints
list. It loops through all the constraints in the list and �nds those matching
the expected format for distinct constraints (Line 10). It then loops through
all (q_id, s_id) pairs (where q_id is a query model element ID and s_id is a
source model element ID) in the binding and uses the distinct_ids list to collect
all values of q_id that belong to the list of IDs of elements to which the current
distinct constraint is anchored. If at the end of this loop the distinct_ids list
contains duplicate entries, it follows that the distinct constraint is not satis�ed
and the function must return FALSE (Lines 17-19). If all distinct constraints are
satis�ed, the function returns TRUE.

Similarly to the VERIFY_DISTINCT function, the VERIFY_STEPS function
(Algorithm 4.5) receives a pairwise binding and a list of constraints as inputs.
In addition, it receives a source model and a query model. It produces a boolean
result signaling whether the binding respects all steps constraints in the pro-

4.3 MQ-2 Prolog modules 47

Algorithm 4.4 VERIFY_DISTINCT

1: Inputs:
2: binding - a pairwise binding
3: constraints - a list of constraints
4:

5: Outputs:
6: distinct - whether or not binding respects all distinct constraints
7:

8: begin
9: for all c ∈ constraints do
10: if c = (ids,'distinct') then
11: distinct_ids← ∅
12: for all (q_id,s_id) ∈ binding do
13: if q_id ∈ ids then
14: distinct_ids← distinct_ids ∪ {q_id}
15: end if
16: end for
17: if !IS_SET(distinct_ids) then
18: return FALSE

19: end if
20: end if
21: end for
22: return TRUE

23: end

vided constraints list. Upon identifying a steps constraint in this list (Line 12),
it determines the type of relationship to which the constraint is anchored, as
well as the IDs of the start and end points of the relationship (Lines 13-15).
Note that steps constraints may only be anchored to so-called model elements
representing relationships. The currently supported relationships are associa-
tions, generalizations, inclusions, control �ows and extensions. As an example,
if in a UML Class Diagram a steps constraint is anchored to a generalization re-
lationship showing that class A is a superclass of class B, the VERIFY_STEPS
algorithm will identify class B as a starting point and class A as an end point.
After the extremities of the relationship are identi�ed in the query model, a
check is performed to determine whether the source model contains a path of
the length speci�ed in the constraint and consisting exclusively of relationships
of the same type between the determined extremities (Lines 16-18). This check
is performed by the EXISTS_PATH function, which utilizes Prolog's built-in
backtracking to perform the search. If this is not the case, the steps constraint
fails and the VERIFY_STEPS function must return FALSE. Note that the EX-
ISTS_PATH function also takes a comparison operator speci�ed by the steps

48 Implementation

Algorithm 4.5 VERIFY_STEPS

1: Inputs:
2: binding - a pairwise binding
3: constraints - a list of constraints
4: q_model - a query model
5: s_model - a source model
6:

7: Outputs:
8: distinct - whether or not binding respects all steps constraints
9:

10: begin
11: for all c ∈ constraints do
12: if c = (id,'steps',comp,limit) then
13: link_type← GET_LINK_TYPE(id, q_model)
14: start_id← GET_START(id, q_model)
15: end_id← GET_END(id, q_model)
16: if !EXISTS_PATH(start_id,end_id,link_type,comp,limit) then
17: return FALSE

18: end if
19: end if
20: end for
21: return TRUE

22: end

constraint as a parameter. This comparison operator determines how the length
of the identi�ed path is veri�ed. Currently, the supported comparators are '='
(for specifying paths of a �xed length) and '<' (for specifying the maximum
allowed path length). If all steps constraints are satis�ed, the function returns
TRUE.

4.4 Encountered implementation di�culties

The MQ-2 plug-in relies on the JPL Java library to enable the execution of
Prolog predicates from Java. This ability is vital to the plug-in's functioning,
being used both to forward queries typed in the integrated Prolog console to the
underlying SWI-Prolog engine and to invoke the the xmi2pl/1 model transfor-
mation predicate, as well as the match/1 query execution predicate. However,
several unexpected problems have been encountered in the usage of JPL. Some
of the problems have been caused by the JPL library itself, and some by unex-
pected behavior on the part of SWI-Prolog. This section brie�y documents the

4.4 Encountered implementation di�culties 49

encountered setbacks, since a considerable amount of e�ort has been spent in
handling them.

The �rst encountered issues concern cross-platform portability. Though MQ-2
is implemented purely in Java and Prolog, it requires separate distributions for
32-bit and 64-bit Windows operating systems. This is due to the fact that the
JPL library, included with the MQ-2 distribution, relies on low level system
calls that appear to be incompatible between the two versions. Furthermore,
the version of JPL used with the MQ-2 plug-in must correspond to the installed
version of SWI-Prolog. This implies that users must replace the JPL library
included with the MQ-2 plug-in with the version of the JPL library included
with their respective SWI-Prolog installations. While this is not a major setback
for Windows users, it has a bigger impact on Linux users who are required to
compile JPL for their particular distribution, since it appears that the compiled
JPL library included with SWI-Prolog's Linux distribution is not functional on
most systems.

A second problem has been caused by SWI-Prolog's unusual handling of er-
rors occurring during predicate and module consulting via the consult/1 and
use_module/1 built-in predicates, which both take a �le name as an argument.
This �le name presumably identi�es a �le containing Prolog predicate de�ni-
tions. However, in case it does not or in case the identi�ed �le cannot be found,
the two mentioned predicates still succeed, only printing a warning message.
Because JPL only passes Prolog errors to Java encapsulated inside Java excep-
tions and ignores Prolog warnings, it is in fact impossible to determine from the
Java side of the implementation if consulting a �le has succeeded. This aspect
may a�ect modelers that wish to consult their own Prolog modules at run-time
through the MQ-2 Prolog console. However, an inquiry to the o�cial SWI-
Prolog mailing list3 has revealed the fact that this problem has been resolved in
the development version of SWI-Prolog, which correctly produces errors upon
failing to consult a �le.

Finally, what is perhaps the most signi�cant problem encountered can lead to
unexpected MagicDraw crashes. It can be exempli�ed by considering the fol-
lowing scenario. Assume that two MagicDraw models, Model_A and Model_B,
have been transformed to Prolog using the xmi2pl/1 predicate, and both ex-
pose the me/2 predicate. Assume now that they are both consulted from MQ-2's
built-in Prolog console using the following two queries:

?- use_module('Module_A').
?- use_module('Module_B').

3https://lists.iai.uni-bonn.de/mailman/listinfo.cgi/swi-prolog

50 Implementation

The second query fails, since the me/2 predicate has already been imported as
a result of executing the �rst query. This behavior is entirely expected. What
is unexpected is the fact that SWI-Prolog enters debug mode after displaying
an error message, which causes a crash of the Java Virtual Machine (JVM) if
the two queries are issued through JPL. Naturally, this leads to a MagicDraw
crash, since MagicDraw is itself a Java application. However, the behavior of
SWI-Prolog that leads to this crash has also been resolved in its development
version and will likely no longer occur in future versions of SWI-Prolog.

4.5 Unit testing

The development of the matching algorithm has followed the test-driven ap-
proach shown in Figure 4.12. After implementing support for base queries, the
constraints proposed in the VMQL speci�cation were prioritized according to
their in�uence on the language's expressiveness: constraints adding a consider-
able expressiveness improvement to the implementation received priority. Once
the next constraint to implement was determined, a series of test cases illustrat-
ing the constraint's usage were developed. The constraint would then enter a
cycle of iterative development and testing, until all of its test cases were satis�ed.
At this point, regression tests were performed in order to mitigate the possibility
that the most recent constraint's development has interfered with the evaluation
of other constraints. In some cases, the testing phase of a constraint's imple-
mentation would lead to the identi�cation of shortcomings in the constraint's
speci�cation, and possibly to the creation of a new VMQL constraint. A total
of 85 Prolog unit tests were used, and their execution was facilitated by the
PlUnit4 unit testing framework supported by SWI-Prolog.

4http://www.swi-prolog.org/pldoc/package/plunit.html

4.5 Unit testing 51

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

MQ-2 development process MQ-2 development processactivity []

Implement support for
base query execution

Pick constraint to
implement

Execute regression
tests

Create unit tests for
 constraint

Prioritize VMQL
constraints

Execute constraint
unit tests

Specify new VMQL
constraint Implement

constraint support

 [more constraints to implement]

 [unit tests fail]

 [new constraint identified]

 [unit tests fail]

 [no new constraint identified]

 [all constraints implemented]

 [unit tests pass]

 [unit tests pass]

Figure 4.12: Activity Diagram illustrating the test-driven development pro-
cess of the VMQL query execution algorithm

52 Implementation

Chapter 5

User guide

5.1 Using the MQ-2 Prolog console

The Prolog console can be opened by selecting the MQ-2 entry from the Tools
menu in the MagicDraw menu bar. This action will cause the MQ-2 Prolog
Console window to appear at the bottom of the MagicDraw application window
(see Figure 5.1). The console may only be opened if a model is already open in
MagicDraw. The console's initial behavior is that of a regular Prolog console:
it allows executing queries supported by SWI-Prolog, and prints query results
and error messages. The following keys must be used to execute queries in the
MQ-2 Prolog console:

• Return: Prints the next query result. The behavior of the Return key
may be modi�ed using the Quick Actions drop-down on the Console Tool
Bar (see Section 5.1.2).

• Up: Displays the previous query.

• Down Displays the next query.

The MQ-2 Prolog console o�ers a number of features aimed speci�cally at the
task of model querying. These features are accessible through the Console Tool

54 User guide

M
Q-

2
Pr

olo
g

Co
nso

le
Co

nso
le

To
ol

Ba
r

Se
ar

ch
 R

es
ult

s T
re

e

Hi
gh

lig
ht

ed
 qu

er
y

sol
uti

on

Figure 5.1: MagicDraw window featuring the MQ-2 Prolog console. Model el-
ements returned by the last console query are highlighted in green.

5.1 Using the MQ-2 Prolog console 55

Bar, placed above the console text area, and are detailed in what follows.

5.1.1 Consulting models

Before the model query facilities provided by the MQ-2 Prolog console can be
used, a model must be consulted. The Console Tool Bar features the following
buttons enabling model consulting:

• Consult the currently active model: Consults the model currently
open in MagicDraw so that it is available for querying.

• Select a MagicDraw model to consult: Opens a �le browser allowing
users to select a MagicDraw project �le to consult so that it is available
for querying. Note that only projects stored in the MDXML �le format
may be selected.

• Re-consult the MagicDraw model: Re-consults the last consulted model,
regardless if it is open in MagicDraw or not.

• Re-start the Prolog console: Clears the console contents and uncon-
sults all previously consulted modules.

The Explicit header check-box allows users to select whether or not the
me/2 predicate should be included in the header of the Prolog module gener-
ated when a model is consulted through one of the methods above. In case
it is checked, the me/2 predicate will be included in the generated module
header, and model elements may be accessed from the console using pred-
icates of the form me(Type,Id-Attributes). In case it is left un-checked,
the me/2 predicate will be omitted from the generated module header, and
model elements may be accessed from the console using predicates of the form
'ModelName':me(Type,Id-Attributes), where 'ModelName' is the name of
the consulted MagicDraw model. By default, the Explicit header check-box
is un-checked.

Warning: When using MQ-2 with versions of SWI-Prolog older than 6.1.9,
consulting two Prolog modules that expose the same predicate in their headers
causes MagicDraw to crash. For this reason, it is recommended to leave the
Explicit header check-box un-checked.

56 User guide

5.1.2 Querying models

Once a model has been consulted, it is possible to execute queries on it. The
most direct way to query a consulted model is through the me(Type-Id,Attrs)
predicate, where Type is the meta-type of a model element, Id is its unique
generated identi�er, and Attrs is a list of the element's meta-attributes and
their values. For instance, a query retrieving a class named Reader has the
following form:

me(Type-Id,Attrs), member(name-'Reader',Attrs).

Additional MQ-2 library predicates that can be used to query model elements
are presented in Section 5.1.3. While all queries can be executed by simply
typing them into the console and pressing the Return key, the Console Tool Bar
features the Quick Actions drop-down that can be used to add custom behavior
to the Return key. The Quick Actions drop-down contains the following entries:

• Print next solution: When this option is selected, pressing the Return
key causes the next query solution to be printed on the console. If no other
solutions exist, a new prompt is printed. This is the standard Prolog
console behavior.

• Print all solutions: When this option is selected, pressing the Return
key causes all query solutions to be printed, followed by a new prompt.

• Show all solutions in tree: When this option is selected, pressing
the Return key causes all query solutions to be printed and all model
elements included in the query solution to be shown in MagicDraw's Search
Results Tree. A new prompt is printed on the console.

• Highlight all solutions: When this option is selected, pressing the
Return key causes all query solutions to be printed and all model ele-
ments included in the query solution to be highlighted in the diagrams in
which they appear. The highlight color may be selected using the Select
highlight color button on the Console Tool Bar. A new prompt is
printed on the console.

• Show selection in tree: When this option is selected, pressing the
Return key causes all model elements which can be identi�ed by the se-
lected console text to be displayed in MagicDraw's Search Results Tree.

Alternatively, all actions included in the Quick Actions drop-down can be exe-
cuted through corresponding buttons on the Console Tool Bar. The buttons do

5.1 Using the MQ-2 Prolog console 57

not alter the behavior of the Return key, but rather replace its role. The Console
Tool Bar contains two additional buttons addressing Prolog query execution: the
Clear highlights button, which clears all highlights from all diagrams (includ-
ing highlights generated by VMQL queries, as discussed in Section 5.2.2), and
the Abort query button, which stops the execution of the current query.

5.1.3 Library predicates

Querying models using the integrated Prolog console is facilitated by the pre-
consulted MQ-2 library predicates:

• get_me(Attr-Val,Type-Id,Attrs): Returns the attribute values of all
model elements of type Type having the value Val for the attribute Attr.
Example usage (�nding the attributes of the class named 'Reader'):

get_me(name-'Reader', class-Id, Attrs).

• part_of(Kind,SuperId,SubId): Returns the ID of a model element rep-
resenting a part of type Kind of the model element with ID SuperID in
the variable SubId. Example usage (�nding all owned ends of the model
element with ID 1):

part_of(ownedEnd, 1, SubId).

• highlight(Elements,Color): Highlights the model elements identi�ed
by the Elements parameter in the speci�ed Color. The Elements variable
can either contain a list of me/2 predicates, a list of model element IDs,
or a list of model element names. Example usage (highlighting the class
named 'Reader' in green):

get_me(name-'Reader', class-Id, Attrs), highlight(Id, green).

In addition to the MQ-2 library predicates, users can consult their own custom
de�ned library predicates at run time by pressing the Consult user defined

Prolog modules button on the console tool bar. Files containing user-de�ned
predicates must be placed in the <MagicDraw home>/plugins/mq2/user/ di-
rectory prior to being consulted. Files containing helper predicates required by
the user de�ned library predicates must be placed separately in the <MagicDraw
home>/plugins/mq2/user/helpers/ directory, so that they are not directly
consulted in the MQ-2 Prolog console.

58 User guide

5.1.4 Limitations

The MQ-2 Prolog console does not support executing queries in debug mode.
Calling the debug/0 predicate must be avoided, as it will cause MagicDraw
to crash. All errors that cause Prolog to enter debug mode will also cause
MagicDraw to crash. This behavior occurs due to the fact that MagicDraw
interprets the Prolog debug mode as a Java Virtual Machine crash.

5.2 Executing VMQL queries

Besides providing support for executing Prolog queries on models, the MQ-
2 Prolog console also supports executing VMQL queries. The VMQL query
execution interface, shown in Figure 5.2 on the bottom right corner of the Mag-
icDraw main window, can be activated or de-activated from the VMQL toggle
button on the Console Tool Bar.

5.2.1 Query execution

Executing a VMQL query requires a source model and a query model to be
selected. The MQ-2 VMQL query execution interface assumes that the source
model is the currently open MagicDraw model. Therefore, the �rst step in
executing a VMQL query is consulting this model in the MQ-2 Prolog console,
as described in Section 5.1.1. Selecting a query model and executing it as a
VMQL query against the source model is facilitated by the following buttons
on the VMQL query execution interface:

• Select a MagicDraw project to be used as query model: Opens a
�le browser allowing users to select a MagicDraw project �le to be used
as a VMQL query model. Note that only projects stored in the MDXML
�le format may be selected.

• Re-consult the current query model: Re-consults the last selected
VMQL query model.

• Execute the selected VMQL query: Triggers the execution of the VMQL
matching algorithm between the selected source and query models.

Query execution results are displayed in a tabular format bellow these buttons
in the Bindings Table. Each binding is displayed as a row in the Bindings Table,

5.2 Executing VMQL queries 59

Hi
gh

lig
ht

ed
 b

ind
ing

Se
lec

te
d b

ind
ing

M
Q-

2
Pr

olo
g

Co
nso

le
VM

QL
 qu

er
y

ex
ec

uti
on

int
er

fac
e

Figure 5.2: MagicDraw window featuring the MQ-2 Prolog console and VMQL
query execution interface. The selected VMQL binding is high-
lighted on the model in green.

60 User guide

while the �rst column of each row identi�es the index of the binding. In case
the query model includes VMQL variables, subsequent columns correspond to
the values taken by these variables in each binding.

5.2.2 Result highlighting

Selecting a binding from the Bindings Table by clicking on it leads to the
source model elements included in this binding being displayed in the Mag-
icDraw Search Results Tree. The selected binding can also be highlighted on
the source model's diagrams through the Highlight the selected binding

button. Just as in the case of highlighting Prolog query results, the highlight
color can be selected via the Select highlight color button on the Console
Tool Bar, and highlights can be cleared via the Clear highlights button on
the Console Tool Bar.

Chapter 6

Evaluation

This chapter presents MQ-2's coverage of the VMQL speci�cation, including
extensions to this speci�cation (Section 6.1), and o�ers an evaluation of the
query execution algorithm's performance (Section 6.2).

6.1 VMQL implementation coverage

The set of VMQL constraints supported by MQ-2 is not identical to the original
set of constraints speci�ed in [Stö11b]. Some constraints' de�nitions have been
extended, some constraints have been considered out of scope, and some have
been added. Table 6.1 summarizes the implementation status of each constraint,
while the following subsections detail the modi�cations and additions brought
by MQ-2 to the VMQL speci�cation.

6.1.1 The once constraint

The �rst modi�cation to the original VMQL speci�cation regards the ambigu-
ous de�nition provided in [Stö11b] for the once constraint, which is de�ned as
"enforcing that a solution occurs only once in the set of all solutions". This

62 Evaluation

Table 6.1: Implementation status of VMQL constraints

Constraint Status

mattr covered

name covered

match covered

mclass covered

once extended (see Section 6.1.1)

distinct covered

optional covered

either covered

not covered

steps covered

indirect covered

precision out of scope

strict out of scope

optional+ added (see Section 6.1.2)

either+ added (see Section 6.1.3)

not+ added (see Section 6.1.4)

Commercial Development is strictly Prohibited

package OnceLMS[]

Medium

«vmql»

name = $Subclass2

«vmql»

name = $Subclass1

«vmql»

once

Figure 6.1: A query that may produce no bindings when applied to the LMS
source model in Section 2 due to the non-determinism of the once
constraint

6.1 VMQL implementation coverage 63

de�nition does not specify which solution should be retained in case the query
model element to which the constraint is applied is bound to the same source
model element in several solutions. The compromise adopted for the MQ-2 im-
plementation is to retain the �rst solution generated by the Prolog matching
algorithm. Users should thus be aware that using the once constraint can lead
to otherwise valuable query solutions being omitted. Such a situation can be
exempli�ed by considering the LMS source model introduced in Section 2, to-
gether with the query model in Figure 6.1. Due to the presence of the once

constraint, the query may actually produce no solutions in case the matching
algorithm binds the top-most subclass in the query model (the one annotated
with the name = $Subclass1 constraint) to the Disc subclass �rst. This would
become the only considered solution, and would later also be discarded due
to the lack of a binding for the second subclass in the query model (the Disc

source class has no subclasses). The second and third bindings produced by
the matching algorithm, which would correctly match the query subclass pair
with the Book and Fiction classes and with the Book and NonFiction classes,
respectively, would be discarded due to the once constraint, leaving the query
to produce no results.

6.1.2 The optional+ constraint

package Query 7LMS[]

Current

«vmql»

optional

«vmql»

name = *.Fiction

(a)

package Query 15LMS[]

Current

«vmql»

optional+

«vmql»

name = *.Fiction

(b)

Figure 6.2: Queries illustrating the optional constraint ((a)) and the
optional+ constraint ((b))

A second limitation has been discovered in what concerns the optional con-
straint. Consider Query 15 presented in Figure 6.2(b), which is similar to Query
7 presented in Figure 6.2(a), with the only di�erence being that it replaces the
optional constraint with the new optional+ constraint. The optional+ con-
straint is not part of VMQL's original speci�cation and has been introduced as a
result of observations made during MQ-2's development. Query 7 should return

64 Evaluation

the Fiction and NonFiction classes. Applying the optional constraint to the
Current class and to the association in the query model should intuitively have
the desired e�ect of making their presence in a solution optional, so that the
NonFiction class can also be found. However, due to the fact that in UML an
association references a property of a class rather than the class itself, Query 7
also introduces a new property to the leftmost query class (the one annotated
with the name = *.Fiction constraint). Consequently, the leftmost class in
the query model cannot be matched with the NonFiction class of the source
model. The solution to this issue is to also make the properties introduced
by an association optional in case an optional constraint is anchored to the
association. The same solution can be applied to any other relationship type.
The optional+ constraint does precisely this and enables Query 15 to �nd the
NonFiction class in the source model.

6.1.3 The either+ constraint

package Query 9LMS[]

+isbn
ISBN

«vmql»

either

(a)

package Query 16LMS[]

+isbn
ISBN

«vmql»

either+

(b)

Figure 6.3: Queries illustrating the either constraint ((a)) and the either+

constraint ((b))

A similar limitation a�ects the either constraint. Consider the case illustrated
by Query 16 in Figure 6.3(b), which is similar to Query 9 presented in Fig-
ure 6.3(a). This query aims to �nd classes that either have an isbn property or
are associated to a class named ISBN in the LMS source model. If the either

constraint is applied, as shown in Query 9, the matching algorithm fails to
retrieve the Book class from the source model, since the Book class does not
have any properties connected to an association - and, according to Query 9,
the presence of such a property is mandatory. Though justi�ed, this observed
behavior contradicts the one expected according to the VMQL speci�cation.
Following a logic similar to that behind the introduction of the optional+ con-

6.1 VMQL implementation coverage 65

straint, the either+ constraint is used in Query 16: this constraint implicitly
makes the properties connected to the association in Query 16 optional. The
query will thus successfully retrieve the Book class from the source model. The
either+ constraint was also introduced during the development of MQ-2 and is
not featured in the VMQL speci�cation.

6.1.4 The not+ constraint

package Query 11LMS[]

«vmql»

not

(a)

package Query 17LMS[]

«vmql»

not+

(b)

Figure 6.4: Queries illustrating the not constraint ((a)) and the not+ con-
straint ((b))

Finally, a limitation of this kind also a�ects the not constraint. This situation
is exempli�ed by Query 17 in Figure 6.4(b), which is based on Query 11 in
Figure 6.4(a). Query 11 searches for all classes that do not have subclasses,
but actually fails due to the fact that the generalization relationship adds a
packagedElement property to the superclass in the query model. No source
model class that does not have subclasses will exhibit a property of this type,
leading Query 9 to produce no bindings. This is once more an implementation
level detail that would have been di�cult to foresee at the time of creating
the original VMQL speci�cation. The new not+ constraint is required instead,
as shown in Query 17. It implicitly makes optional the packagedElement at-
tribute introduced to the superclass in the query model by the generalization
relationship. Query 17 thus succeeds in �nding the Reader, Publisher, Disc,
Current, Fiction, and NonFiction classes of the source model. Just as the
optional+ and either+ constraints, the not+ constraints has the additional
e�ect of making all model elements referenced by the constrained relationship
optional, regardless of the type of this relationship.

66 Evaluation

6.2 Performance evaluation

In order to evaluate the performance of the VMQL matching algorithm, a series
of 60 queries covering all VMQL features are executed against several source
models. They are executed on the following source models:

0

2

4

6

8

10

12

1 2 3 4

A
v

e
ra

g
e

 e
x
e
c
u

ti
o

n
 t

im
e

 (
s
)

Source Model

Figure 6.5: Average query execution time for the considered source models.
Based on a set of 60 queries covering all VMQL features.

• Source model 1: The source model used in Section 2 to illustrate the
constraints supported by VMQL. This model consists of 94 model ele-
ments.

• Source model 2: A subset of a Library Management System analysis
model developed by students of a Requirements Engineering course at
DTU. This model consists of 316 model elements.

• Source models 3 and 4: Two full Library Management System analysis
models developed by students of a Requirements Engineering course at
DTU. These models consists of 827 and 1774 model elements, respectively.

The average execution time for one query observed in these four scenarios is
presented in Figure 6.5. While the increase in query execution time relative to
source model size is considerable, it appears to follow a polynomial curve rather
than an exponential one. Nevertheless, the query execution times of the order
of seconds observed for the large models are su�cient to become a nuisance for

6.2 Performance evaluation 67

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Source model

Query 3 - mclass, name Query 5 - once, distinct, name

Query 14 - indirect, name

Figure 6.6: Query execution times for three queries of di�erent complexity on
the considered source models.

modelers. This suggests that the matching algorithm would bene�t from further
performance optimizations.

Another aspect of interest is the e�ect that query models have on query exe-
cution time. To illustrate this, three of the queries presented in Section 2 were
executed on the same four source models. The following queries were considered:

• Query 3 (Figure 2.5): Illustrates the mclass and name constraints,
both applied to modify the query model before match computation in
Algorithm 4.1.

• Query 5 (Figure 2.7): Illustrates the once and distinct constraints,
both applied to �lter the results of match computation in Algorithm 4.1.
The query also contains a name constraint.

• Query 14 (Figure 2.12): Illustrates the indirect constraint, allowing
transitive closure computation. The query also contains a name constraint.

The execution times of these queries on the four source models are presented in
Figure 6.6. Query 3 is executed almost instantly for all model sizes, suggesting
that match candidates are �ltered early on in the match process based on the
query model element attributes. Query 5's execution time appears to increase
on a polynomial scale with source model size. This is likely motivated by the

68 Evaluation

fact that the once and distinct constraints are taken into account towards
the end of the matching process, leaving many bindings to be processed up to
that point. Finally, Query 14's execution time increases at an exponential rate
with respect to source model size. This is also not entirely surprising: path
constraints are the most computationally demanding of all VMQL constraints.

Chapter 7

Conclusions

The objectives set for this project and stated in Section 1.1 have been met. The
visual model query language has been successfully implemented as part of the
MQ-2 plug-in for the MagicDraw CASE tool. The plug-in relies on an underlying
Prolog algorithm for query execution. The results produced by this algorithm
have been veri�ed using an extensive suite of test cases, and the algorithm's
performance has been evaluated against a set of models of di�erent sizes. The
plug-in also features a fully functional Prolog console, equipped with the means
to query the Prolog representations of MagicDraw models.

During the development of MQ-2, a number of shortcomings in the original
VMQL speci�cation have been identi�ed. Solutions to these shortcomings have
been proposed and implemented. A second category of di�culties encountered
during this implementation have been related to the reliability of the third party
library employed for the task of connecting the Java-based front-end of MQ-2
with the Prolog-based query execution back-end. A signi�cant e�ort has been
devoted to ensuring MQ-2's ability to operate across various software platforms,
including both 32-bit and 64-bit operating systems. These e�orts have been
only partially successful due to the lack of stability of the current version of the
mentioned third party library.

The work showcased by this thesis has been presented in the tools section of the
8th European Conference on Modelling Foundations and Applications [AS12].

70 Conclusions

The feedback received from modeling community members at this venue has
been positive, with several participants declaring an interest in using the tool.

7.1 Future work

There are two possible main directions of further development concerning the
MQ-2 implementation: extensions concerning exclusively the tool and exten-
sions carried out in tandem with an evolution of VMQL.

The �rst category includes adapting MQ-2 to support modeling languages other
than UML. Immediate candidates would be other MOF-based languages, as well
as business process modeling languages such as BPMN. Due to the fact that
the current implementation relies to a very little extent on knowledge of the
UML meta-model, such adaptations are expected to be relatively undemanding
in terms of development e�ort. A second category of re�nements concerning
exclusively the MQ-2 implementation are related to the tool's usability. While
e�orts have been made to maintain a lightweight and intuitive user interface,
the ultimate con�rmation of these e�orts' success should come in the form of a
proper usability evaluation, including empirical user studies.

The second direction for future work must take advantage of the considerable
extension potential o�ered by VMQL. A �rst step in this direction has already
been taken with the proposal of a set of additional VMQL constraints support-
ing the expression of model constraints [Stö11a]. These additional constraints
are not currently supported by MQ-2. However, considering the fact that the
query execution algorithm lying at the core of MQ-2 has been designed to be
easily extended, the new constraints can be implemented without incurring any
changes to the processing of existing constraints. A second VMQL extension
that could constitute an appropriate match for this implementation concerns
the problem of model version control. It is possible to envision MQ-2's existing
query solution highlighting options being used to display the di�erences between
two versions of a model. Finally, a more consistent extension to VMQL that
would enable its usage as a model transformation language may also have MQ-2
as a basis for its implementation.

Appendix A

Installation instructions

System requirements:

• Operating system: Windows 7 (x86 or 64-bit), Linux

• Java SE 6 or higher

• MagicDraw 16.9

• SWI-Prolog 6.0.2 or higher (32-bit OS), SWI-Prolog 6.1.9 or higher (64-bit
OS)

Note 1: 64-bit versions of Java SE, MagicDraw and SWI-Prolog must be in-
stalled on 64-bit machines.

Note 2: SWI-Prolog 6.1.9 and higher currently require Java SE 7 on 32-bit
machines.

Installation steps:

1. Obtain a copy of the mq2.zip archive and extract its contents (a single
directory named mq2) to a location of your choice.

72 Installation instructions

2. Determine the installation directory of MagicDraw on your machine. Refer
to this directory as %MD_Home% in what follows.

3. Determine the installation directory of SWI-Prolog on your machine. Re-
fer to this directory as %SWI_Home% in what follows.

4. Copy the extracted mq2 directory to the MagicDraw plug-ins folder, lo-
cated at %MD_Home%/plugins.

5. Replace the version of the jpl.jar archive distributed with MQ-2 (found
at %MD_Home%/plugins/mq2/lib/jpl.jar) with the version included in
your local SWI-Prolog installation (found at %SWI_Home%/lib/jpl.jar).
Linux users are encouraged to compile a version of jpl.jar speci�c to
their distribution1.

6. Create the SWI_HOME_DIR environment variable with %SWI_Home% as value.

7. Add SWI_HOME_DIR/bin to the local path environment variable.

8. Re-start your system.

1For instructions on compiling jpl.jar, see https://code.google.com/p/javanaproche/wiki/HowToJPL
(an external tutorial not related to MQ-2)

Bibliography

[AB01] D. H. Akehurst and Behzad Bordbar. On Querying UML Data
Models with OCL. In Proceedings of the 4th International Con-
ference on The Uni�ed Modeling Language, Modeling Languages,
Concepts, and Tools, UML '01, pages 91�103, London, UK, 2001.
Springer-Verlag.

[AHM05] Vasco Amaral, Sven Helmer, and Guido Moerkotte. Formally Spec-
ifying the Syntax and Semantics of a Visual Query Language for
the Domain of High Energy Physics Data Analysis. In Proceedings
of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC '05, pages 251�258, 2005.

[AS12] Vlad Acretoaie and Harald Störrle. MQ-2: A Tool for Prolog-based
Model Querying. In Joint Proceedings of co-located Events at the
8th European Conference on Modelling Foundations and Applica-
tions (ECMFA 2012), pages 328�331, Kongens Lyngby, DK, 2012.
Technical University of Denmark.

[AWW11] Ahmed Awad, Matthias Weidlich, and Mathias Weske. Visually
specifying compliance rules and explaining their violations for busi-
ness processes. Journal of Visual Languages and Computing, 22:30�
55, February 2011.

[BEKM08] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo.
Querying business processes with BP-QL. Information Systems,
33:477�507, September 2008.

[BKPPT01] Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and
Gabriele Taentzer. A Visualization of OCL Using Collaborations.

74 BIBLIOGRAPHY

In Proceedings of the 4th International Conference on The Uni-
�ed Modeling Language, Modeling Languages, Concepts, and Tools,
UML '01, pages 257�271, London, UK, 2001. Springer-Verlag.

[BPM10] Business Process Model and Notation, Object Management Group
(OMG) Standard, Version 2.0, 2010.

[COL08] Joanna Chimiak-Opoka and Christian Lange. Querying UMLMod-
els using OCL and Prolog: A Performance Study. In Proceedings
of the 2008 IEEE International Conference on Software Testing
Veri�cation and Validation Workshop, ICSTW '08, pages 81�88,
2008.

[Dat99] C.J. Date. An introduction to database systems. Addison Wesley
Publishing Company, August 1999.

[DP05] Dolev Dotan and Ron Y. Pinter. HyperFlow: an Integrated Visual
Query and Data�ow Language for End-User Information Analysis.
In Proceedings of the 2005 IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC '05, pages 27�36, 2005.

[GT08] Anca Ghitescu and Evaldas Taroza. ActiveXML documentation,
JUL 2008.

[Hal85] Joseph Y Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. Journal of Computer and System
Sciences, 30:1�24, 1985.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev.
ATL: A model transformation tool. Science of Computer Program-
ming, 72(1�2):31�39, 2008. Special Issue on Second issue of exper-
imental software and toolkits (EST).

[KBC04] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model trans-
formation language mola. In Proceedings of MDAFA 2004 (Model-
Driven Architecture: Foundations and Applications 2004), pages
14�28, 2004.

[Ken97] Stuart Kent. Constraint diagrams: visualizing invariants in object-
oriented models. In Proceedings of the 12th ACM SIGPLAN con-
ference on Object-oriented programming, systems, languages, and
applications, OOPSLA '97, pages 327�341, New York, NY, USA,
1997. ACM.

[MC99] Luis Mandel and Maria Victoria Cengarle. On the expressive power
of ocl. In FM'99 - Formal Methods, World Congress on Formal
Methods in the Development of Computing Systems, volume 1708
of LNCS, pages 854�874. Springer, September 1999.

BIBLIOGRAPHY 75

[MOF06] Meta Object Facility (MOF) Core Speci�cation, Object Manage-
ment Group (OMG) Standard, Version 2.0, 2006.

[OCL11] Object Constraint Language, Object Management Group (OMG)
Standard, Version 2.3.1, 2011.

[Ope10] MagicDraw Open API user guide version 16.9, 2010.

[QVT03] Revised submission for MOF 2.0 Query/Views/Transformations
RFP, Technical Report, Version 1.1, August 2003.

[QVT11] Meta Object Facility (MOF) 2.0 Query/View/Transformation
Speci�cation, Object Management Group (OMG) Standard, Ver-
sion 1.1, 2011.

[SHU04] Dominic Stein, Stefan Hanenberg, and Reiner Unland. Query Mod-
els. Proceedings of the Seventh International Conference on Uni�ed
Modeling Language (UML'04), Lecture Notes in Computer Science,
3273:98�112, 2004.

[SHU05] Dominic Stein, Stefan Hanenberg, and Reiner Unland. On Re-
lationships Between Query Models. Proceedings of the European
Conference on Model Driven Architecture � Foundations and Ap-
plications (ECMDA-FA2005), Lecture Notes in Computer Science,
3748:254�268, 2005.

[Stö07] Harald Störrle. A PROLOG-based Approach to Representing and
Querying Software Engineering Models. In International Workshop
on Visual Languages and Logic, volume 274 of VLL '07, pages 71�
83. CEUR, 2007.

[Stö09] Harald Störrle. A logical model query interface. In International
Workshop on Visual Languages and Logic, volume 510 of VLL '09,
pages 18�36. CEUR, 2009.

[Stö10] Harald Störrle. Structuring very large domain models: experiences
from industrial MDSD projects. In Proceedings of the Fourth Eu-
ropean Conference on Software Architecture: Companion Volume,
ECSA '10, pages 49�54, New York, NY, USA, 2010. ACM.

[Stö11a] Harald Störrle. Expressing Model Constraints Visually with
VMQL. In Proceedings of the 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC '11, pages
195�202. IEEE, 2011.

[Stö11b] Harald Störrle. VMQL: A visual language for ad-hoc model query-
ing. Journal of Visual Languages and Computing, 22:3�29, Febru-
ary 2011.

76 BIBLIOGRAPHY

[UML11] OMG Uni�ed Modeling Language (OMG UML), Infrastructure
and Superstructure, Object Management Group (OMG) Standard,
Version 2.4.1, 2011.

[Win09] M. Winder. MQ�Eine visuelle Query-Schnittstelle für Modelle,
Bachelor's Thesis, Innsbruck University, 2009.

[WSB07] Web Services Business Process Execution Language, Organization
for the Advancement of Structured Information Standards (OASIS)
Standard, Version 2.0, 2007.

[XMI11] OMG MOF 2 XMI Mapping Speci�cation, Object Management
Group (OMG) Standard, Version 2.4.1, 2011.

[XPa10] XML Path Language (XPath) 2.0 (Second Edition), World Wide
Web Consortium (W3C) Recommendation, 2010.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Context and objectives
	1.2 Related work
	1.2.1 Tool specific solutions
	1.2.2 Domain specific solutions
	1.2.3 Textual model query languages
	1.2.4 Visual model query languages

	2 The visual model query language
	2.1 Base queries
	2.2 The mattr, mclass, name, and match constraints
	2.3 The distinct and once constraints
	2.4 The optional, either, and not constraints
	2.5 Path-related constraints: steps and indirect

	3 System analysis
	4 Implementation
	4.1 System architecture
	4.2 The MQ-2 plug-in
	4.2.1 Integrated Prolog console
	4.2.2 VMQL query execution
	4.2.3 Query solution display methods
	4.2.4 Internal MQ-2 utilities

	4.3 MQ-2 Prolog modules
	4.3.1 XMI to Prolog transformation
	4.3.2 VMQL matching algorithm

	4.4 Encountered implementation difficulties
	4.5 Unit testing

	5 User guide
	5.1 Using the MQ-2 Prolog console
	5.1.1 Consulting models
	5.1.2 Querying models
	5.1.3 Library predicates
	5.1.4 Limitations

	5.2 Executing VMQL queries
	5.2.1 Query execution
	5.2.2 Result highlighting

	6 Evaluation
	6.1 VMQL implementation coverage
	6.1.1 The once constraint
	6.1.2 The optional+ constraint
	6.1.3 The either+ constraint
	6.1.4 The not+ constraint

	6.2 Performance evaluation

	7 Conclusions
	7.1 Future work

	A Installation instructions
	Bibliography

