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Digital prototyping has revolutionised the automotive industry by providing designers and engineers with digital 
models of their products that enable virtual product design, visualisation, and simulation [1]. However, digital 
prototyping does not exist in the food industry as the colloidal nature of most foods make them much more 
challenging to visualise and simulate realistically. We present models and methods that take steps toward digital 
prototyping of milk products and other food colloids. To simulate the dynamics of liquid products that only exist 
digitally, we use deformable simplicial complexes with an optimisation-based, linear finite element method [2,3]. 
Visualisation of products that only exist digitally requires a model for predicting the optical properties of the product 
materials. The optical properties (absorption coefficient, scattering coefficients, and phase function or asymmetry 
parameter) are the input needed for a Monte Carlo based graphical rendering. We have developed a model for 
predicting the optical properties of milk as a function of its fat and protein contents [4]. However, the model has only 
been validated to a limited extent. We suggest that diffuse reflectance measurements can be used for more extensive 
validation and for gathering data that can be used to extend our current model such that it can also predict how the 
optical properties develop during fermentation or acidification of milk to yogurt. 
 
A well-established way of measuring optical properties is by static light scattering measurements. This, however, is 
an invasive procedure where a sample must be placed in a relatively small container (like a cuvette) and scanned by a 
photon detector orbiting the sample. The container must be small enough to ensure that the sample enters the single 
scattering regime. Diffuse reflectance measurements have the advantage of being noninvasive. However, the analysis 
becomes more complex as such measurements include multiple scattering effects. To measure optical properties 
using diffuse reflectance, we capture high dynamic range images of laser at different wavelengths incident on a 
sample in situ. The wavelength of the laser is easily adjustable as we use an NKT Photonics SuperK laser [5]. This 
enables us to retrieve spatially and spectrally resolved diffuse reflectance images. We also acquire images with the 
laser at several angles of incidence to enable oblique-incidence reflectometry. This enables us to use existing 
techniques [6,7] for retrieving the apparent optical properties of a sample. The validation consists in comparison of 
measured optical properties with predicted optical properties. 
 
One of our goals is to extend our model for digital prototyping of milk products such that it can also predict how the 
optical properties develop during gelation of milk to yogurt. The influence of the colloidal aggregation on the optical 
properties is described by the static structure factor. As our method is noninvasive, we can use our setup for 
monitoring an acidification process over time. The challenge is to investigate whether we can use the resulting diffuse 
reflectance images to measure the static structure factor or similar optical properties of gels. We can see some 
correlation between measured diffuse reflectance and the rheology of the gel. This indicates that some quantity 
similar to the static structure factor is measurable using spatially resolved diffuse reflectance. There are ways of 
predicting the static structure factor for different types of colloids [8]. Thus if we succeed in measuring a similar 
quantity, we can extend our model and validate the extension. 
 
This work was (in part) financed by the Centre for Imaging Food Quality project which is funded by the Danish 
Council for Strategic Research (contract no 09-067039) within the Programme Commission on Health, Food and 
Welfare. This work was also in part financed by the Digital Prototypes project funded by the Danish Council for 
Technology and Innovation (Resultatkontrakt). 
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Modelling cow’s milk
Milk from an optical point of view [1]:
• Two types of nearly spherical particles: fat globules and casein micelles.
• Host medium with almost the same optical properties as pure water.
• Absorption of vitamin B2 (riboflavin) needs to be added to that of the host medium.
• Refractive indices and size distributions of particle inclusions are given by empirical

formulae and measured data.

Macroscopic optical properties (absorption coefficient, scattering coefficients, and phase
function or asymmetry parameter) are the input needed for a Monte Carlo based graphical
rendering. We predict the optical properties of milk as a function of its fat and protein contents
using Lorenz-Mie theory with the input specified above [1]. The following plots exemplify our
prediction of scattering properties at a wavelength of 650 nm.
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Validation

To find out if our model correctly predicts the appearance of real milk, we model our experimental setup
digitally. Tests at a wavelength of 650 nm is provided in the figures above. These illustrate that our milk
model and Monte Carlo simulation can predict the outcome of our diffuse reflectance image captures.

Computing appearance and behaviour
The mathematical model of radiative transfer is used for rendering realistic images. We solve the radiative
transfer equation using Monte Carlo path tracing [1], which is a sampling-based rendering algorithm that
works in general (see illustration to the right).

Using our milk model and rendering method, we are able to 
show the visual significance of each component in the milk. 

In the rendered image below, the glasses contain (left to right): pure water, 
milk host, casein micelles in water, fat globules in water, skimmed milk, regular milk, and whole milk [1].

To simulate the dynamics of liquid products that only exist digitally, we use deformable simplicial complexes
with an optimisation-based finite element method [2]. The following sequence of images is an example.
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Measuring scattering properties
We capture images of laser at different wavelengths incident on a sample in situ. The
wavelength of the laser is easily adjustable as we use an NKT Photonics SuperK laser [3]. This
enables us to retrieve spatially and spectrally resolved diffuse reflectance images. We also
acquire images with the laser at several angles of incidence to enable oblique-incidence
reflectometry. With this setup (see below), we can estimate the macroscopic optical properties
of a sample using existing techniques [4].
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Motivation
We present models and methods that take steps toward digital prototyping of milk products and other food colloids. The motivation for doing this is the following.
- Digital prototyping has revolutionised the automotive industry by providing designers and engineers with digital models of their products that enable virtual product design, visualisation, and simulation.
- Digital prototyping does not exist in the food industry as the colloidal nature of most foods make them much more challenging to visualise and simulate realistically.
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We can also add cocoa
particles to render the
appearance of chocolate
milk.

Laser in skimmed milk - photo Laser in skimmed milk - computed
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Finally, we would like to validate our milk model by comparison
of measured and predicted scattering properties. This work is,
however, not yet finished as our measurement technique is in
the process of being calibrated using phantom materials. The
figure to the right indicates preliminary results. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Captured images used for 
estimating the reduced 
scattering coefficient:


	DigiProMilk_abstract_FC2012
	DigiProMilk_poster_FC2012

