
An Automatic Protocol
Composition Checker

Ivana Kojovic

Kongens Lyngby 2012
IMM-M.Sc.-2012-52

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2012-52

Summary

Formal analysis is widely used to prove security properties of protocols. There
are tools to check protocols in isolation, but in fact we use many protocols in
parallel or even vertically stacked, e.g. running an application protocol (like
login) over a secure channel (like TLS) and in general it is unclear if that is safe.
There are several works that give sufficient conditions for parallel and vertical
composition, but there exists no program to check whether these conditions are
actually met by a given suite of protocols.

The aim of the master thesis project is to implement a protocol composition
checker and present it as a service for registering protocols and checking com-
patibility of the protocols among each other. In order to establish the checker, it
is necessary to collect and integrate different conditions defined throughout the
literature. Also, we will define a framework based on Alice and Bob notation,
so the checker can examine protocols in an unambiguous manner.

Further we will develop a library of widely-used protocols like TLS that are
provenly compatible with each other and define a set of negative example pro-
tocols to test the checker.

We implement the checker as an extension of the existing Open-Source Fixed-
Point Model-Checker OFMC to easily integrate our composition checker with
an existing verification procedure that supports Alice and Bob notation.

ii

Preface

This thesis is a part of a double degree Master program in Security and Mobile
Computing (NordSecMob). I spent first semester on Norwegian University of
Science and Technology (NTNU) and then I continued with the program on
Technical University of Denmark (DTU). The thesis was prepared on the De-
partment of Informatics and Mathematical Modelling on DTU, under the main
supervision of Sebastian Alexander Mödersheim and co supervision Danilo Glig-
oroski from NTNU.

Lyngby, 29-June-2012

Ivana Kojovic

iv Preface

Acknowledgements

Special appreciation goes to my supervisor Sebastian. His sound advices, good
ideas and friendly atmosphere, provided enough encouragement and helped me
to pass the thesis process less stressing. It was a pleasure working with such a
dedicated researcher and a great person.

Also, I would like to thank to my co supervisor Danilo Gligoroski for contribu-
tion. Special thanks to the officers in Finland and Norway for the full support
during whole master program.

Sincere thanks to all my friends and my boyfriend for unforgettable days spent
in Northern Europe.

I dedicate this thesis to my wonderful family whose unconditional love and
advices helped me throughout my master studies.

vi Acknowledgements

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1
1.1 Protocol composition . 2

1.1.1 Vertical protocol composition 3
1.1.2 Parallel protocol composition 3

1.2 Potential problems with protocol composition 4
1.3 Motivation for the checker . 6

2 Preliminaries 7
2.1 Algebraic protocol model . 7

2.1.1 Public operations . 8
2.1.2 Private mappings . 8

2.2 Unification algorithm . 8
2.2.1 Definitions . 9
2.2.2 Unification algorithm - rule based approach 10

2.3 Preconditions for composition analysis 11
2.3.1 Security in isolation . 11
2.3.2 Format-type safe (FTS) protocols 11
2.3.3 Disjointness and DISE condition 12

3 Implementation of APCC 15
3.1 General idea . 15
3.2 Data structures . 16
3.3 Unification over Message data type 18

viii CONTENTS

3.4 Implementing preconditions . 19
3.4.1 Important implementation notes 21
3.4.2 DISE condition . 21
3.4.3 Protocol security in isolation 23

3.5 AnB notation . 23
3.5.1 Parallel composition . 25
3.5.2 Translation of AnB to APCC message type 25

3.6 Up and running . 26

4 Experimental results 27
4.1 Demonstration of the tool . 28
4.2 APCC disapproval vs. good protocol design 30
4.3 APCC limitations . 33

5 Conclusion and future work 35

A Source code 37

Bibliography 45

Chapter 1

Introduction

A rapid development of applications on the Internet brought the need for secure
communication. That is why security protocols are implemented: they strictly
define set of rules in the communication between a numbers of parties in order
to assure secrecy, authenticity and integrity of the data. Assuring security goals
using security protocols is a demanding task and in the previous 30 years this
has been dynamic research area of a computer science.

Protocols can be described in purely formal manner. We prefer formal de-
scription because that can automate protocol verification of security features.
Usually, formal descriptions consider message representation using term alge-
bra. Dolev and Yao provided a paper [1] which main principles are still used
today. In this model, we assume that cryptography primitives are perfect:
message-forming operation is treated as symbolic application of function symbol
to atomic abstractions of nonce, names, keys, etc. Dolev-Yao model empowers
its attacker aka. intruder by setting deduction system : fixed set of his capabil-
ities to manipulate messages. The intruder is superior in the protocol:

• he can intercept any message on the communication medium

• he can initiate protocol runs at any point of time with some party

• has has unlimited computational storage for data on which he applies
inference rules

2 Introduction

The intruder knowledge can be presented as a constraint system. Checking
the confidentiality property is equal to finding a solution for a set of constraint
and that is NP-complete problem, considering one specific scenario. When the
number of sessions is unbounded, secrecy checking becomes even an undecidable
problem.

Even when we prove security of protocols in isolation, it is not clear whether their
composition is secure. This can cause problems when we run many protocols in
the same environment in parallel or vertical (stack) composition. Keys used in
one single protocol can be a result of key establishment of other protocol and
there is no guarantee that such composition is secure. Further more, we are
never sure how protocols are interacting and whether messages can be confused
and misunderstood by some of the participants.

This is the central concern of the thesis. We collect some of the conditions
through literature and implement checker for compositionality. First chapter
defines algebraic preliminaries necessary for data structures used in checker.
Later on, we present some of the techniques and algorithms that we used in
application. The checker is tested against Clark-Jacob library where we get
both gives negative and positive results.

1.1 Protocol composition

Composing different types of security protocols and using established keys is
very common on the Internet. The OSI model provides security protocols on the
layers where applications can use underlying mechanisms. Such examples are:
TLS [2] and its predecessor SSL inside transport layer, IPSec on network layer
where it is widely used to corporate security to VPNs, etc. One can arbitrarily
compose protocols: an application can establish another secure channel over the
established VPN or another TLS connection over existing one (self-composition).
One example is given in figure 1.1 Here, applications (smtp, mail, svn) are
running over the established keys over the channels protocols painted in green.
This represents vertical composition and it is indicated with a red color. Parallel
protocol composition corresponds to the light blue. For a composition like 1.1 is,
it is unclear whether they are secure in composition and claim that it is secure
although protocols in isolations, like TLS and SSH, are.

1.1 Protocol composition 3

Figure 1.1: Protocol composition example

1.1.1 Vertical protocol composition

As we could see from the example above, vertical composition consists of channel
protocol and application running over it. Channel protocol is a key exchange
protocol between two parties which provides 2 symmetric keys, for each direction
of the communication between parties. This kind of channel protocols has to
follow design principles such as usage of fresh nonces per session. Application
protocols are any kind of protocols that can run over the channel. We distinguish
2 types of application protocols: abstract and concrete. Abstract ones are relying
on the security mechanisms of the channel, while later ones are having built-in
features that preserve secrecy or authenticity of data and they are secure in
isolation.

1.1.2 Parallel protocol composition

Every time we run protocols over the same medium we say that we are dealing
with parallel composition. Protocols that are composed in parallel may also
share the same key infrastructure such as: public keys and long term shared
keys.

4 Introduction

1.2 Potential problems with protocol composi-
tion

Most of the techniques for security protocol verification are focused on the single
protocol in isolation without considering protocols that are run in parallel or on
top of each other. Compositions are often too complicated system to analyse
and verification methods cannot scale to that level. Protocols can be composed
in infinite different ways where automated verification is not possible.

The easiest approach for handling the security of the composition is to establish
preconditions for single protocols which will give guarantee that their composition
will remain secure. Setting up the conditions is not straight forward but we can
get an idea from couple of examples.

[3] considers parallel composition conditions. Intuitively, we guess that protocols
running over the same medium need to have different formats so intruder cannot
manipulate with the message formats. Lets look at the example with P1 and P2

protocol:

P1 : A→ B : asycrypt(pkB , s) P2 :A→ B : asycrypt(pkB , Na)

B → A : Na

First protocol P1 just sends a secret asymmetrically encrypted with B’s public
key pkB . In second protocol P2, agent A sends nonce asymmetrically encrypted
also with B’s public key. Agent B then acknowledges the message by returning
the encrypted nonce. By running these 2 protocol in parallel, secrecy of protocol
P1 is violated: intruder intercepts the message from P1 and forwards it to P2

protocol which is used to decrypt the messages of this format. [3] explains and
proves the solution for the attack. Main idea is tagging the similar sub-message
formats with different constants so that intruder cannot perform unification
between messages. Fixed protocol looks like this:

P1 : A→ B : asycrypt(pkB , [1, s]) P2 :A→ B : asycrypt(pkB , [2, Na])

B → A : Na

where square brackets annotate concatenation of messages. Similarly, [4] gives
an example where vertical composition fails. This protocol is defined with hand-

1.2 Potential problems with protocol composition 5

shake:

A→ B : asycrypt(pkB , [A,B, sk(A,B)])

B → A : symscrypt(sk(A,B), crypt(pkA, [B,A,N]))

where afterwards every message that has message M as payload and N as session
identifier, looks like:

A→ B : [N, symcrypt(sk(A,B),M)]

This protocols has an attack under a self-composition. The self-composition is
defined in [4] and presents the situation where established channel establishes
another channel over existing one. In this example , attack trace looks like:

a → b : asycrypt(pkb, [a, b, sk(a,b)])
Step 1 of the protocol

b → a : symcrypt(sk(b,a), asycrypt(pka, [b, a, n]))
Step 2 of the protocol

a →b(i) : [n, symcrypt(sk(a,b), asycrypt(pkb, [a, b, sk(a,b)]))]
Step 1 of the protocol, over established channel but intercepted by intruder

b →a(i) : asycrypt(pka, b, a, sk(b,a))
Step 1 initiated by b but intercepted by intruder

a(i) →b : symcrypt(sk(a,b), asycrypt(pkb, [a, b, sk(a, b)]))
Replay of the intercepted message, with sk(A,B) as session identifier

b →a(i) :[sk(a,b), symcrypt(sk(a,b), ...)]
B sends a message where intruders gets shared key!

Like we stated in the definition of channel protocol, this protocol needs freshly
generated keys for the session and both parties must contribute to those keys.
Correspondingly to parallel composition in [3], here we also demand different
message formats and additionally one more condition: disjointness from mes-
sage encryption. Disjointness from message encryption ensures that we cannot
confuse one message with its own encryption. In the attack above, we see that
message in the protocol can be unified with message on the established channel

6 Introduction

(encrypted with channel keys). In order to prevent this, we tag the body of the
symmetric encryption in the second message. Then, fixed protocol looks like:

A→ B : asycrypt(pkB , [A,B, sk(A,B)])

B → A : symcrypt(sk(A,B), [tag, asycrypt(pkA, [B,A,N])])

1.3 Motivation for the checker

Following the results from a few research articles [4], [5], [3], the idea is to trans-
late the composability conditions from the literature and implement an Auto-
matic Protocol Composition Checker (APCC). The current state of art has lots
of issues: there are different models with too complicated notation and com-
posability conditions are not trivial to understand and check. For this purpose,
we need to establish set of conditions that are sufficient to deicide composition
security. We want a simplification of theoretical conditions which will enable
system administrators and protocol designers to easily and automatically check
protocol composability. Therefore, APCC is given a set of protocol descrip-
tions as an input in the widely used Alice and Bob notation and it returns the
answer whether it is possible to compose the protocols. Next chapter will de-
scribe message model, data structures and certain details of the implementation
process.

Chapter 2

Preliminaries

In this chapter we describe in detail our model of protocol messages. This model
is at the core of composability preconditions which are translated into imple-
mentation of checker. [4] also defines intruder model which is crucial for formal
a prove of the composability result. Further more, we will review standard uni-
fication procedure which is one of the fundamental operations over the messages
for a conditions checking.

2.1 Algebraic protocol model

Messages exchanged between agents are represented in term algebra T where:

• Σ represents countable set of signature: symbols and constants all written
with lower-case letters

• V is a countable set of variables, written with upper-case letters

• Σ ∩ V = ∅

The set of signatures Σ is a partition set and consists of Σ0 - the set of all
constants (agents, keys and nonces), Σp - the set of public operations that every

8 Preliminaries

agent can perform and Σm - the set of private mappings.

2.1.1 Public operations

Operations Σp over the message terms can be performed by any agent. In this
model we use:

• asycrypt(pk,m) asymmetric encryption of message m with public key pk,
while crypt(invpk,m) represents signing the message m using private key
invpk

• symcrypt(k,m) symmetric encryption of message m with symmetric key
k where we assume that this function also includes integrity protection
such as MAC

• hash(m) cryptographic hash function

• [m1, ...,mn]n, n ≥ 2 concatenation of n messages. Different arity of mes-
sages eliminates basic type-flaw attacks. For instance in [6], one of the at-
tacks in Otway-Rees protocol is possible because of the non-defined length
of concatenation of messages

2.1.2 Private mappings

Set Σk contains functions such as invk (the private key of corresponding public
key), which is obviously not a public operation. They are treated as special
mappings in the model, but not as regular functions over symbols in the Σ0.
We call them basic terms and as consequence, mappings like pkA, skA ,inv(pkA)
are treated as atomic terms together with all constants and variables.

2.2 Unification algorithm

The unification problem for a set of pairs of terms is concerned about the pos-
sibility of replacing term variables with some terms in order to obtain syntacti-
cally 1 equal terms. If two terms are unifiable, we can always find a solution i.e.
substitution that makes two terms identical. We call this substitution unifier.

1We are only interested in syntactical unification of first-order terms

2.2 Unification algorithm 9

Sometimes, there can be more than one solution to unification problem but we
are only interested in most general unifier (mgu), where all the other unifiers
are formed with instantiation from the general one.

Unification is a central function that helps identifying similar message formats
(recall the chapter 2 and examples). We will mention the basic definitions and
unification algorithm from [7] used in the implemented checker.

2.2.1 Definitions

We operate over the defined term algebra T (Σ,V) where V defines set of vari-
ables and Σ all function symbols in term definition. Constants are always func-
tions with arity 0 (which is exactly Σ0 from above defininion). A Substitution
is a mapping from variables to terms. We define application of substitution σ
to a term t as tσ where:

tσ :=

{
xσ if t = x
f(t1σ, ..., tnσ) if t = f(t1, ..., tn)

Second case of the definitions also allows n = 0. Then, f is a constant symbol
and fσ = f A substitution is usually presented with a set of bindings between
variables in domain and terms: {x1 7→ s1, x2 7→ s2, ..., xn 7→ sn} and it can
be applied to set of terms or set of equations in same manner. For example,
for a term t = f(a, b) and substitution σ = {a 7→ x, b 7→ y}, application of
substitution σ to a term t is defined as tσ = f(x, y)

Definition 3.1 A substitution σ is more general than substitution σ′ if there
is a substitution δ where σ′ = δσ. Then, σ′ is an instance of σ and we write
σ . σ′

Definition 3.2 A unification problem is a finite set of equations S = {s1=?t1,
..., sn=?tn} A unifier or solution of S is a substitution σ such that siσ = tiσ
for i = 1, ..., n. U(S) denotes set of all unifiers of S. S is unifiable if U(S) = ∅.
A substitution σ is a most general unifier (mgu) of S if σ is a least element of
U(S):

• σ ∈ U(S)

• ∀σ′ ∈: σ . σ′

[7] gives necessary conditions for proving what is mgu. First, it proves a quasi-
order relation over all substitutions. Then, it sets up lemma for idempotent

10 Preliminaries

substitutions (the one where σ = σσ). Finally, it states with theorem that
unification problem S has a solution when it has idempotent mgu but only up
to renaming. This means that even idempotent mgus are not unique, as an
example {a 7→ b} and {b 7→ a} are both idempotent mgus of a=?b

2.2.2 Unification algorithm - rule based approach

Given a set of pairs of terms, we want to determine algorithmically whether
this unification problem has solution. Also, when a solution exists we want to
compute mgu. [7] presents a rule based approach where the algorithm is an
inference system.

Every idempotent substitution {x1 7→ t1, ..., xn 7→ tn} can be represented in its
solved form: if all the xi are pairwise distinct variables and none of which occurs
in any of the ti.

The algorithm starts with set of unification problems that need to be solved,
namely P . At every point the algorithm state is either ⊥ (no solution), or it
is determined with pair P of unification problems and set S of corresponding
equations in solved form. We say that there is unifier (solution) to the system
P ;S if it unifies every equation in both P and S. The system state ⊥ represents
that there is no unifier.

In order to find the mgu of the system, we apply transformation rules:

• Delete rule : {t=?t} ∪ P ′;S ⇒ P ′;S expresses that the trivial equation
can be deleted from the set

• Decompose rule :
If f = g then f(t1, ..., tn)=?g(p1, ..., pn) ∪ P ′;S ⇒ {s1=?p1, ..., s2=?pn} ∪
P ′;S . The rule includes subterms of composed terms into the list of P

• Orient rule : If t is not a variable then {t=?x}∪P ′;S ⇒ {x=?t}∪P ′;S.
The rule moves variables to the left-hand side of equation.

• Eliminate rule: If variable x does not occur in term t then
{x=?t}∪P ′;S ⇒ P ′{x 7→ t};S{x 7→ t}∪ {x = t}. Notation for the solved
form. The rule enforces substitution of variable x with term t in both sets
and includes this equation as part of the solution while taking it out of
the set of problems.

Initially, we set up system {x=?t}; ∅ and we apply the transformation rules.
Rules are picked arbitrarily and the order of applying them does not affect the

2.3 Preconditions for composition analysis 11

result at the end. It is proven that this algorithm always terminates leaving the
system in two possible states: either in ⊥ where we cannot apply some of the
rules above (some preconditions are maybe violated) or in ∅;S where P set is
exhausted and S is in the solved form.

2.3 Preconditions for composition analysis

As summarized in previous chapter, composability result usually requires a set of
conditions on protocols, that are proved sufficient for their secure composition.
In the following pages, we will emphasise these condition from theoretical point
of view. Ideas for the checker implementation relies on these preconditions.

2.3.1 Security in isolation

Unsurprisingly, we cannot allow insecure protocols in the composition. We have
seen that security of protocols in isolation alone does not necessary imply secure
composition.

Security of each of the protocols can be checked with a variety of automatic
tools. Some of them are using static analysis approach, like LySa tool while
some are using model checking where protocols are executed bounded number
of session. One of the tools from model checking group is OFMC (Open-source
Fixed-point Model Checker) [8].

The experimental phase will check the secuity in isolation using OFMC and even
more, protocol composition checker will become one of the options in OFMC
software package.

2.3.2 Format-type safe (FTS) protocols

Looking back to the examples in chapter 1, we see that different message formats
in protocols are one of the conditions for composability result. Therefore, we
pay attention on the type-flaw attacks. Type-flaw attacks are possible when
intruder convince agent that message format have different type than intended.
In [5] it is explained how these attacks can be prevented by typing and tagging
messages. [4] goes further and demands distinct message formats even on the
level of all non-variable subterms. We call this format-type safe (FTS) definition

12 Preliminaries

of the protocol. We require that a type is define for every message: basic types
for atomic terms:

{agent, nonce, symkey, pubkey, privkey, tag}

We annotate that term t has type τ as t : τ . Functions are defined as com-
posed types: if (t1 : τ1), ..., (tn : τn) then f(t1, ..., tn) : f(τ1, ..., τn) where
f ∈ {conc, crypt, scrypt, hasht}. As an example, message asycrypt(pk, [NA,A])
has a type crypt(pubkey, conc(nonce, agent)).

Definition: Let MP (P) be all the message patterns - all sent and received
non-variable messages within protocol. Every element of MP (P) is α-renamed
so that different messages have different variables. We call a protocol format-
type safe when:

1. MP (P) ∩ V = ∅, messages are either functions or constants

2. for every 2 non-variable subterms m1,m2 ∈ MP (P) with different types,
there exists no unifier.

For instance a protocol with

MP (P) ={([asycrypt(pkA, [NA,B]), A] : conc(crypt(pubkey, conc(nonce, agent)), agent),

[NB,B] : conc(nonce, agent))}

is not FTS because non-variable subterms asycrypt(pkA, [NA,B]) : conc(nonce, agent))
and NB : nonce have different intended types and they are unifiable while:

MP (P) ={([hash[NA,B]), A] : conc(hasht(nonce, agent), agent),

[NB,B,NA] : conc(nonce, agent, nonce))}

is FTS.

Unless protocol is FTS, it cannot be considered to participate in composition.
This is the first implemented condition in the APCC.

2.3.3 Disjointness and DISE condition

While the previous ensures that we don’t have type flaw attacks on a single
protocol, we must make sure that messages are different from its own encryp-
tions. There can be situations where we run some protocol over the channel

2.3 Preconditions for composition analysis 13

where every message is additionally encrypted with a channel key. In that case,
we have to check that encrypted message is not getting confused with already
existing messages defined in a protocol. This is a precondition for the vertical
composition presented in [4] and based on that, we adapt the following defini-
tion:

Definition: Let P be a protocol and K1,K2, ...,Kn be variable symbols that
do not occur in MP (P). Then the message patterns with encryptions of P is
defined as:

EMP (P) = α(
⋃
EMPn(P))

EMP0(P) = MP (P)

EMPn+1 = α({symcrypt(Kn+1|m ∈ EMPn(P))})

where α(M) indicates variable renaming of the elements of M (taking into
account the K1, ...,Kn names) so that different elements have different variable
names. Then, P is called disjoint from its own encryption (DISE) iff there is
no unifier between the EMPi and EMPj where i 6= j.

In [4] there is no bound on the number n but for purpose of the checker we are
bounding n to total depth of encryption in the protocol.

depth = max
M∈MP (P)

{n| number of nested symmetric encryptions in message M}

The depth of encryption presents expected upper bound for the number of
EMPi-s e.g. in the checker there is no need to encrypt messages more than
depth times to find out whether we can unify some existing message with it.
Let’s look at the example where message pattern contains these 2 messages:

MP (P) ={symcrypt(k1, symcrypt(sk(A,B), [NA,A]))

: scrypt(symkey, scrypt(symkey, conc(nonce, agent))),

[NB,B] : conc(nonce, agent)}

We must identify whether these messages are allowed to be in the same message
pattern set. First of all, we easily notice that depth of encryption of MP (P) is
equal to 2, so we will make EMP1 and EMP2 as encrypted patterns and dis-
cover that we can unify messages symcrypt(k1, symcrypt(sk(A,B), [NA,A])) ∈
MP (P) = EMP0 and symcrypt(KEY 1, symcrypt(KEY 2, [NB1, B1])) ∈ EMP2.
This means that we cannot allow these 2 messages in theMP (P) and we can ei-
ther modify second message by adding tag, [tag,NB,B] : conc(tag, nonce, agent)
or change the order in concatenation, [B,NB] : conc(agent, nonce).

14 Preliminaries

The previous example shows why we bound number n to the depth of encryption
and shows that encrypting MP (P) more than ’depth of encryption’ times will
be irrelevant.

Disjointness of protocols: Let EST (P) present all non-atomic subterms of
EMP (P), again α renamed. We say that set of protocol R is pairwise disjoint if
for every two protocols Pi and Pj there is no unifier between the sets EST (Pi)
and EST (Pj), i 6= j

We compose EST (P) as the union of all EMPis and NV ST (MP (P)) non-
variable subterms of MP (P):

EST (P) = MP (P) ∪ EMP1(P)... ∪ EMPn(P) ∪NV ST (MP (P))

This is how we achieve disjointness. Namely, every EST set characterize each
protocol and every element of one EST must not be unifiable with elements in
the other EST .

Parallel composition: The last definition will be also related to conditions in
the parallel composition. Then, we will be sure that no similar message formats
will be confused on the same medium. Additionally, inside parallel composition
we have to take care of long-term secrets in each of the protocols that are not
secret in some of them e.g. we do not want any private keys of one protocol to
appear as public constants in another protocol.

Chapter 3

Implementation of APCC

In the previous chapter we introduced theoretical foundations for An Automatic
Protocol Composition Checker (APCC). Here, we will presents the overall idea
but also the most important implementation details. First, we will define the
data structures on which ACPP operates, then we will implement composibility
conditions so the program can decide whether some protocols are composable.
The code will be explained through snippets while some code parts are listed in
appendix A

We chose Haskell [9] as language of implementation because it is a suitable for
the problems where we deal with structural data types and recursions, although
it has some challenges which could not be found in script or object-oriented
languages. OFMC’s source code is also written in Haskell, therefore it will be
easy to integrate APCC into it.

3.1 General idea

The basic idea behind APCC is to present it as a service where users can test
composability of their protocol specifications. The specification can be given in
some high-level language like Alice and Bob notation [10] (AnB) that OFMC

16 Implementation of APCC

Figure 3.1: Interaction with APCC tool

uses. Once we feed APCC box like in 3.1 with these specifications, AnB notation
is translated into data structures that are suitable for analysis. Finally, we get
either positive or negative answer whether conditions hold or now and where
problems occurred. The workflow is presented on 3.1 and it shows how user can
interact with result of APPC. Every time when a user gets a negative answer, it
should be precised what went wrong so user can fix the protocol specifications
and repeat the procedure again until he gets a positive answer. This feedback
can help to gain some good practices of protocol composition design.

3.2 Data structures

Based on the term representation of messages and theoretical analysis from
previous chapter, we define the following message data structure:

data Atomic = Ident Id
| Mapping Id [Atomic]
deriving (Eq,Ord)

data Message = Atom Atomic
| Concat [Message]
| Asycrypt Message Message
| Symcrypt Message Message

3.2 Data structures 17

| Hash Id Message
deriving (Eq,Ord)

Listing 3.1: Message data types

Message is either Atomic or composed with recursive definition. Here, Atomic1

part corresponds to either constants, variables or mappings defined over agents:
public keys like pk(A) or shared keys like sk(A,B). We mentioned in previous
chapter that mappings are not considered as normal operations, hence they are
basic terms and we classify them as atomic. By convention, variables always
begin with upper-case, while constants begin with lower-case letter. Composed
messages are defined as:

• Concat is concatenation of messages, Haskell’s data type list

• Asycrypt is asymmetric encryption where the arguments are key and mes-
sage to be encrypted

• Symcrypt is symmetric encryption where the arguments are key and mes-
sage to be encrypted

• Hash is a hash ’like’ function with Id name, with a message as an argument

In close correspondence, to Message data type we are defining the MessageType
data type. We mentioned that part of compositionality analysis 2.3.2 requires
format-type safeness (FTS) check. This includes that all messages are supposed
to be typed. Therefore, we define:

data BasicType = Agent
| Nonce

| Symkey
| Pubkey
| Privkey
| Tag

deriving (Eq ,Ord)
data MessageType = Basic BasicType

| Conc [MessageType]
| Crypt MessageType MessageType
| Scrypt MessageType MessageType
| HashT MessageType
deriving (Eq,Ord)

Listing 3.2: MessageType data types

1Ident is user defined type identical to String

18 Implementation of APCC

Atomic messages are having one of the types from the set {Agent, Nonce,
Symkey, Pubkey, Privkey, Tag2} while composed types correspond to composed
messages. For instance, message asycrypt(pk(B), NA) looks like:

Asycrypt(Atom((Mapping"pk") [Ident "B"]))(Atom(Ident"NA"))

with message type:

Crypt (Basic Pubkey) (Basic Nonce)

An APPC analysis requires that for every message/submessage protocol a type
is specified, like a tuple (Message, MessageType). AnB specification (at least
the extended one) contains information what are the types of the atomic part
of the message: variables, constants and function names, while the rest we get
just by composing.

3.3 Unification over Message data type

The theoretical overview of unification algorithm was given in the 2.2.2 and now
we are implementing that idea. The algorithm is generalized to find unifier for a
list of messages but we are only interested whether unifier exist for pair. Unify
function is defined as:

unify :: [(Message , Message)] → Maybe [(Message , Message)]

The unification result is Maybe data type in Haskell. It is either Nothing (empty
list) or list of substitutions expressed as a tuples. In order to implement the
transformation rules, we need to consider the more complicated definition of
message operations e.g. specific data structure where even atomic parts (private
and public mappings) are functions in the unification algorithm.

-- | Initial state. xx is the messages that we are trying to
unify

unify xx = unify ’ xx []

unify ’ :: [(Message , Message)] → [(Message , Message)] →
Maybe [(Message , Message)]

-- | When there is nothing to process , acc is the solution
unify ’ [] acc = Just acc

2Tag is a type for a unique constant within one protocol that makes message format disjoint

3.4 Implementing preconditions 19

-- | Delete rule
unify ’ ((a, b):xx) acc | a==b = unify ’ xx acc

-- | Eliminate rule
unify ’ ((Atom(Ident x),t):xx) acc
| not (occursCheck (x,t)) && isVariable x =
unify ’ (map (substitutionp (Atom (Ident x)) t) xx) ((Atom(

Ident x),t) : map (substitutionp (Atom (Ident x)) t) acc
)

| isVarTerm t && not (isVariable x) =
unify ’ (map (substitutionp t (Atom (Ident x))) xx) ((t,(

Atom (Ident x))) : map (substitutionp t (Atom (Ident x)
)) acc)

| otherwise = Nothing

-- | Orient rule
unify ’ ((t,Atom(Ident x)):xx) acc = unify ’ ((Atom(Ident x),t

):xx) acc

-- | Decompose rules for all the non atomic message terms ,
including mappings!

unify ’ ((Asycrypt key1 mess1 , Asycrypt key2 mess2):xx) acc
= unify ’ ([(key1 ,key2)]++([(mess1 ,mess2)] ++ xx)) acc

Listing 3.3: Unification code

The code snippet 3.3 shows core of the unification code where decompose rule
is only given for asymmetric encryption and for all other composed terms it
looks similar. We start unification algorithm with pair of messages as argu-
ments. Then, algorithm tries to perform one of the specified rules. The func-
tion occursCheck examines one of the conditions for the eliminate rule whether
variable on left side occurs in the function term on the right side. Substitutionp
performed inside one term, substitutes every occurrence of one variable with a
term.

3.4 Implementing preconditions

After we established Message data type and its corresponding MessageType
type, we can check the preconditions, starting with FTS defined in 2.3.2. An
approach to this part of implementation was straightforward: we form α re-
named set of all possible protocol message subterms and try to unify each pair
of them. Implemented conditions are based on unifiability of terms that have to
have disjoint variable symbols, thus we need to perform appropriate α renaming.

20 Implementation of APCC

The α renaming task changed direction of implementation process. Idea behind
the renaming is the following: every time we add new term to a growing set
of subterms, we append the cardinal number of the set to the term’s variable
names. Hence, current number of the elements in the set has to be saved through
all process of computation.

This is why we employ monads in Haskell [11, 12]. Haskell is a pure functional
programming languages and programs are made of functions that cannot change
global variables or state. While in other programming languages we can have
a global state can be preserved using variables but, in Haskell every variable
has to be part of function parameters. When a function is called twice with
the same arguments the result will always be the same. Haskell offers State
monads to bind a state transition to computations. This syntactic sugar allows
imperative programming style in a pure functional programming language.

Computation over Control.Monad.State [13] depends on some internal state
which can be modified during computations. The State monad used in compu-
tation for forming subterms set is defined as State StateType StateType, where
StateType represents both internal state and its value:

type StateType = (Map.Map (Message ,String) MessageType , Int)

StateType holds the map data structure of all subterms as a key-value pair
(Message,MessageType) 3. Function subTerms that results with this kind of
monad will always add new state by modifying existing one.

subTerms :: ((Message ,String), MessageType) → State
StateType StateType

subTerms ((Symcrypt k x,protocolName), Scrypt key msg) = do
(state , counter) ← get
put (Map.insert ((alphaRenaming (Symcrypt k x)

counter),protocolName) (Scrypt key msg) $ state ,
counter+1)

subTerms ((k,protocolName),key)
subTerms ((x,protocolName),msg)

Listing 3.4: Function subTerms

The snippet of the function 3.4 gives pattern matching with symmetric en-
cryption. It takes the current states,using monad function get and changes it
by appending renamed message,using monad function put, while incrementing
counter and recursively calling functions on the key and encrypted message.

3String is just a name of the protocol that every Message holds for the easy error reporting

3.4 Implementing preconditions 21

Based on the definition of FTS, 3.5 shows checking of FTS in 2 parts: whether
we can unify non-variable subterms of different types and finding out whether
some element of message pattern is a variable. protocolNVST wraps subTerms
by calling it with array of protocol messages hence, it takes MP (P) and initial
state (Map.empty, 0) as arguments. If the checkUnify function returns a positive
answer for unification, the program will terminate and an error report will be
given as printed trace which terms were unified.

propertyNum1 :: [((Message ,String), MessageType)] → Bool
propertyNum1 array = let nvst = protocolNVST array (Map.

empty ,0)
in
if (cond1propertyNum1 array) && (checkUnify (fst nvst) (

Map.keys (fst nvst)))
then True
else error ()

Listing 3.5: Format-type safe check

3.4.1 Important implementation notes

During formal definition in the previous chapter we emphasised that if a protocol
is not FTS than it cannot be taken into consideration because it violates the
first crucial condition. This is exactly what we are using in APCC. The APCC
program will always terminate if it discovers violation of FTS otherwise it will
proceed to check DISE condition. DISE and FTS are single protocol properties
and they should be satisfied before the checker continues to examine protocols’
disjointness.

3.4.2 DISE condition

Following the definition 2.3.3, the list of all subterms that we have to examine is
getting bigger and complicated as we form list of the lists. We need to keep track
of all EMPi-s separately but still performing α renaming of all the terms. Single
EMPi is also computed using state monad. New EMPi with renamed variable
elements gets into a list and increases the counter value that we piggyback.
For the purpose of encryption we use variable KEY concatenated with counter
value, so we can keep it also unique.

makeSingleEMP :: [((Message ,String),MessageType)] → State
State ’ State ’

makeSingleEMP [] = do

22 Implementation of APCC

(state ,counter) ← get
return (state ,counter)

makeSingleEMP (x:xs) = do
(state , counter) ← get
let aux = encryptMsg x ("KEY"++(show counter))
in put(Map.insert ((alphaRenaming (fst (fst aux))

counter), (snd(fst aux))) (snd aux) $ state ,
counter+1)

makeSingleEMP xs

Listing 3.6: Function that makes EMPi

In order to compute EMP set, we need to include more complicated information
in the state which will contain list of all EMPis and that will always propagate
the counter. We need the counter afterwards to pass it to the analysis of the
next protocol. The length of the EMP strictly depends on depth of protocol
encryption. This means that we will call function 3.7 over state exactly depth+1
times

-- state definition
type StateEMP=([Map.Map (Message ,String) MessageType], Int)
-- EMP function
computeEMP :: Int → State StateEMP StateEMP
computeEMP 0 = do

(state , counter) ← get
return (state , counter)

computeEMP depth = do
(state , counter) ← get
let newState = evalState (makeSingleEMP (Map

.toList(head(state)))) (Map.empty ,
counter)

in put((fst newState):state , (snd newState)
+counter)

computeEMP (depth -1)

Listing 3.7: Forming EMP

Once when we get a collection of lists, it is straightforward to check whether
every two elements from distinct lists have a unifier. When they do not, we
proceed with forming the EST list. Informally speaking, this list characterizes
every protocol in ACCP. Inside EST , we will have all the terms, to the level of
non-variable subterms, that need to be different and non-unifiable with EST s
elements of other protocols. This is a central function in ACCP. ACCP accepts
lists of protocols, computes the EST s of them and tries to unify any two elements

3.5 AnB notation 23

from different EST . If there is a unifiable pair, it is a violation of composability
condition. Idea is implemented in 3.8.

protocolsEST :: [[((Message ,String), MessageType)]] → State
StateEMP StateValue -- [[(Message , MessageType)]]

protocolsEST [] = do
(state ,counter) ← get
return state

protocolsEST (x:xs) = do
(state ,counter) ← get
let newElem = makeEST (x,counter)
in put ((fst newElem) : state , snd newElem)

protocolsEST(xs)
disjointCheck :: [([(Message , MessageType)], String)] →

Bool
disjointCheck protocols = let est = (evalState (protocolsEST

(map putNameInsideMessages protocols)) ([], 0))
in unifyEMP(est)

Listing 3.8: Central functions

3.4.3 Protocol security in isolation

APCC assumes that the protocol is already secure in isolation, which can be
established e.g. by calling OFMC. APCC in the first version, does not call
OFMC for protocol verification, but we will rely on protocol specifications that
OFMC already labelled as verified. OFMC package already contains adapted
protocols from Clark-Jacob library [14]. The main goal is to integrate APCC as
one of the options inside OFMC which will make all process more user friendly.

3.5 AnB notation

OFMC uses AnB format based on the popular Alice and Bob notation which
is translated to the Intermediate Format(IF) [15], a tool-independent language
more suitable for analysis. OFMC is a part of AVISPA and AVANTSSAR
project [16] and IF format can be used for different back-ends, not just OFMC.
APCC uses slightly modified AnB notation extended with additional informa-
tion for APCC.

The first modification in the grammar of AnB language is separate definition
for the mappings. In current version mappings are part of Functions but we

24 Implementation of APCC

want to distinguish them as different models explained in 2.1.2

The second addition to a grammar is the definition of the keys. This only refers
to a channel protocols like TLS. In that case, we specify a pair of keys one for
each direction of message flow.

Finally, we define the Public and Private terms of the protocols. This is crucial
for parallel composition precondition where we have to check whether some pro-
tocol considers some constants as private that are public in some other protocol.
Protoco l : TLS

Types : Agent A,B, s ;
Number NA,NB, Sid ,PA,PB,PMS;
Function hash , c l i entK , serverK , p r f ;
Mapping pk

Knowledge : A: A, pk (A) , pk (s) , inv (pk (A)) ,{A, pk (A) } inv (pk (s)) ,B, hash ,
c l i entK , serverK , p r f ;

B: B, pk (B) , pk (s) , inv (pk (B)) ,{B, pk (B) } inv (pk (s)) , hash ,
c l i entK , serverK , p r f

Publ ic : pk (A) , pk (B) Pr ivate : inv (pk (A)) , inv (pk (B))

Act ions :

A−>B: A,NA, Sid ,PA
B−>A: NB, Sid ,PB,{B, pk (B) } inv (pk (s))
A−>B: {A, pk (A) } inv (pk (s)) ,

{PMS}pk (B) ,
{hash (NB,B,PMS, tag2) } inv (pk (A)) ,
{ | hash (p r f (PMS,NA,NB) ,A,B,NA,NB, Sid ,PA,PB,PMS) | }

c l i en tK (NA,NB, p r f (PMS,NA,NB))
B−>A: { | hash (p r f (PMS,NA,NB) ,A,B,NA,NB, Sid ,PA,PB,PMS) | }

serverK (NA,NB, p r f (PMS,NA,NB))

Goals :

B au then t i c a t e s A on pr f (PMS,NA,NB)
A authen t i c a t e s B on pr f (PMS,NA,NB)
pr f (PMS,NA,NB) s e c r e t between A,B

ChannelKeys :

K(A,B) : c l i en tK (NA,NB, p r f (PMS,NA,NB))
K(B,A) : serverK (NA,NB, p r f (PMS,NA,NB))

Listing 3.9: TLS protocol

In 3.9 gives TLS deescription in AnB files. Here, public constants are public
keys of the agents and they can be used to in other protocols that these agents
participate in. Also, private constants are agents’ certificates and they cannot

3.5 AnB notation 25

be used anywhere else except in this protocol. ChannelKeys section defines a
pair of keys for both direction of communication. The key is shown together
with the contributed nonces that agents produced during the key agreement.

Implementation of the AnB front end of is achieved using the lexer generator
Alex [17] and parser generator Happy [18] for Haskell. Happy is similar to the
famous Yacc parser generator and it is also using LALR parsing algorithm but
it has an option for GLR parsing [19]. Firstly, we generate new tokens using
Alex generator which are new reserved words in AnB file: Functions, Public,
Private, ChannelKeys and then we extend the parser file with productions and
corresponding actions which will map the parser result to the Abstract Syntax
Tree (AST) file.

3.5.1 Parallel composition

Sections Private and Public in AnB file are presented so we can initiate checking
of parallel composition condition. We will not allow any long term secrets in
one protocol to be a public constant in another one. Checking will be performed
using unification function between every pair of Public and Private list defined
in AnB file.

3.5.2 Translation of AnB to APCC message type

The data that OFMC uses is quite different from the one used in ACPP. As an
example, OFMC concatenation is defined using binary operation pair (e.g [a, b, c]
is same as pair(a, pair(b, c))), while in ACPP we use a list of messages. Once we
parsed the file, we can easily extract all needed information from corresponding
AST. All agent, nonces, functions, mappings need to be defined in the file so we
can check types of all those identifiers that appear in the protocol specification.

processProtocol :: Protocol → ([(M.Message , M.MessageType)
],String)

processProtocol protocol =
let actions = extractActions protocol

name = protocolName protocol
msgs = map msgToMessage actions
typeMsgs = map (λx → assignType x protocol) msgs

in (zip msgs typeMsgs ,name)

Listing 3.10: Translation

26 Implementation of APCC

Function 3.10 shows process of AnB protocol specification to the APCC message
representation. Here, we are extract the most important details needed for
APCC analysis:

• All actions from AST which are transformed as array of Messages defined
in 3.2

• Name of the protocol which we will piggyback to all messages, for easier
error reporting

From message list and AST, it is straightforward to discover message types.
Once, we do that, all result is wrapped in the type:

([(M.Message , M.MessageType)],String)

and the protocol is ready for analysis.

3.6 Up and running

APCC is a command line tool in its first version and it requires protocol speci-
fication as an arguments. Listing 3.11 represents the core of the checker where
lexer, parser and the main analysis functions are called. There are 2 possible
outcomes of APCC: either program will terminate without analysis errors, then
conditions for the composition of the protocols are fulfilled, or the program will
terminate will report a violation of the conditions

xs ← getArgs
if null xs then do

putStrLn "You entered no arguments !"
else do

putStrLn ("You entered " ++ show xs)
file ← mapM readFile xs
let protocols = map anbparser (map alexScanTokens

file)
allProtocols = map processProtocol protocols

putStrLn ("Are conditions for vertical composition
being violated? : "++ show (disjointCheck
allProtocols))

putStrLn (" Parallel condition: " ++ show (
parallelChecker protocols))

Listing 3.11: Program

Chapter 4

Experimental results

This chapter describes experimental results of APCC with a library of protocols
consisting of most of the Clark-Jacob library [14] of protocols and TLS. The
protocols are all given in AnB notation and we consider only those verified with
OFMC. It is required to use extended AnB notation for the purpose of APCC
analysis and we described it in the previous chapter . We demonstrate APCC
on a small subset of the library, but at the end we will redesign specifications
so all protocols from the library are composable.

The library [14] contains a list of small and medium scale authentication proto-
cols. They are classified according to:

• cryptographic approach: using public or shared key encryptions

• usage of trust party to achieve some level of authentication

• number of messages in protocol

• whether it is a one-way (unliteral) or two-way mutual authentication

The majority of them belongs to a group of key transport protocols like Ker-
beros [20], Andrew Protocol RPC [21] while some of them provide some security
services like: key authentication, key freshness and key confirmation.

28 Experimental results

For the composability result, we are interested in the channel protocols and we
extend the library with TLS, currently omitting Diffie-Hellman because APCC
does not support algebraic properties.

4.1 Demonstration of the tool

We first take a look at a small subset of protocols, namely: TLS, Needham–Schroeder
public key protocol (NSPK) [22] and ISO Symmetric Key One-Pass Unilateral
Authentication Protocol. The analysis of these 3 protocols does not consider
how they can be composed, one can say that all of them are stacked (vertical
composition) of they 2 of them run as parallel composition on established TLS
channel. If APCC analysis comes out with positive answer, composability result
guaranties that they can be composed in no matter what combination.

NSPK is one of the first authentication protocols and it is often mentioned in
the research papers. There is an attack known on the protocol and we can
discover it in OFMC and that is the reason why we use Lowe’s fixed version
of NSPK [23]. AnB specification is given in 4.1 where we defined Public and
Private constants while ChannelKey section is empty because this is not channel
protocol.

Protoco l : NSPK # with Lowe f i x

Types : Agent A,B; Knowledge : A: A, pk , inv (pk (A)) ,B;
Number NA,NB; B: B, pk , inv (pk (B))
Mapping pk

Publ ic : pk (A) , pk (B) Pr ivate : inv (pk (A)) , inv (pk (B))

Act ions :
A−>B: {NA,A}(pk (B))
B−>A: {NA,NB,B}(pk (A))
A−>B: {NB}(pk (B))

Goals :

B au then t i c a t e s A on NA
A authen t i c a t e s B on NB
NA s e c r e t between A,B
NB s e c r e t between A,B

ChannelKeys :

Listing 4.1: Needham–Schroeder (public key) protocol (NSPK)

4.1 Demonstration of the tool 29

Verified and adapted TLS and ISO Symmetric Key One-Pass Unilateral Au-
thentication Protocol are given in 4.2 and 4.3

Protoco l : TLS

Types : Agent A,B, s ;
Number NA,NB, Sid ,PA,PB,PMS;
Function hash , c l i entK , serverK , p r f ;
Mapping pk

Knowledge : A: A, pk (A) , pk (s) , inv (pk (A)) ,{A, pk (A) } inv (pk (s)) ,B, hash ,
c l i entK , serverK , p r f ;

B: B, pk (B) , pk (s) , inv (pk (B)) ,{B, pk (B) } inv (pk (s)) , hash ,
c l i entK , serverK , p r f

Publ ic : pk (A) , pk (B) Pr ivate : inv (pk (A)) , inv (pk (B))

Act ions :

A−>B: A,NA, Sid ,PA
B−>A: NB, Sid ,PB,{B, pk (B) } inv (pk (s))
A−>B: {A, pk (A) } inv (pk (s)) ,

{PMS}pk (B) ,
{hash (NB,B,PMS) } inv (pk (A)) ,
{ | hash (p r f (PMS,NA,NB) ,A,B,NA,NB, Sid ,PA,PB,PMS) | }

c l i en tK (NA,NB, p r f (PMS,NA,NB))
B−>A: { | hash (p r f (PMS,NA,NB) ,A,B,NA,NB, Sid ,PA,PB,PMS) | }

serverK (NA,NB, p r f (PMS,NA,NB))

Goals :

B au then t i c a t e s A on pr f (PMS,NA,NB)
A authen t i c a t e s B on pr f (PMS,NA,NB)
pr f (PMS,NA,NB) s e c r e t between A,B

ChannelKeys :

K(A,B) : c l i en tK (NA,NB, p r f (PMS,NA,NB))
K(B,A) : serverK (NA,NB, p r f (PMS,NA,NB))

Listing 4.2: TLS protocol

Protoco l : ISO_onepass_symm

Types : Agent A,B;
Number NA, Text1 ;
Function sk

Knowledge : A: A,B, sk (A,B) ;
B: B,A, sk (A,B)

Publ ic : sk (A,B)

Pr ivate :

30 Experimental results

Actions :
A−>B: { |NA,B, Text1 | } sk (A,B)

Goals :
B weakly au then t i c a t e s A on Text1

ChannelKeys :

Listing 4.3: ISO Symmetric Key One-Pass Unilateral Authentication Protocol

4.2 APCC disapproval vs. good protocol design

Although the demo subset of the library holds only 3 protocols, the functionality
of APCC can be efficiently demonstrated. Through numerous iterations, user
improves protocol specifications based on a feedback from APCC. The first run
discovers the problem:

∗ Protoco l "NSPK" i s not format−type s a f e !
∗ Un i f i c a t i o n i s p o s s i b l e between terms : { [NA2,NB2,B2] } pk ([A2])

and {NB4}pk ([B4])

This message error report gives enough information how to proceed with fixing
the protocol. Namely, APCC unified 2 terms with different types crypt(pubkey,
conc(nonce, nonce, agent) and crypt(pubkey, nonce). This gives a hint to a
user to make sure that messages, on non-variable subterm level, inside one
protocol should not be confused and that he should make them as distinct
as possible. One way to achieve it is to tag the different encrypted mes-
sages e.g. so that each tag represents the message number of the protocol.
Thus, we define constants tagNSPK1, tagNSPK2 and change the problematic
actions to {tagNSPK1, NA,NB,B2}(pk(A)), {tagNSPK2, NB}(pk(B)). We
chose naming convention for tags as concatenation of 3 string components: tag,
protocolname and number to distinguish tag constants among the protocols.
We run APCC again and get the following error:

∗ Protoco l "NSPK" i s not format−type s a f e !
∗ Un i f i c a t i o n i s p o s s i b l e between terms : [NA1,A1] and [

tagNSPK2 ,NB6]

This confirms the assumption that even the first protocol message needs a tag e.g
tagNSPK3 which will make make unification between these 2 terms impossible.
So, third message becomes {tagNSPK3, NA,A}(pk(B))

4.2 APCC disapproval vs. good protocol design 31

Having fixed this error, APCC finally finishes checking the FTS condition for
NSPK protocol. Then, DSE is checked and it is trivially satisfied because NSPK
doesn’t have any symmetric encryption involved inside its actions. ISO Sym-
metric Key One-Pass Unilateral Authentication Protocol has only one message
where FTS and DSE conditions are also trivially satisfied.

Once APCC comes to the TLS, there will be many reported problems. This
happens due to the complexity of the TLS handshake where lots of different
message subterms looks similar which makes them unifiable. We start with:

∗ Protoco l "TLS" i s not format−type s a f e !
∗ Un i f i c a t i o n i s p o s s i b l e between terms : [NA16 ,NB16 , p r f [PMS16,

NA16 ,NB16]] and [PMS31,NA31 ,NB31]

These 2 terms are subterms of shared key clientK(NA,NB, prf(PMS,NA,NB))
and adding a tag, clientK(NA,NB, prf(PMS,NA,NB), tagTLS1), in the
outer concatenation can make them non-unifiable. This problem is also ad-
dressed to a serverK(NA,NB, prf(PMS,NA,NB)) where we use the same
fix. On next run, we get:

∗ Protoco l "TLS" i s not format−type s a f e !
∗ Un i f i c a t i o n i s p o s s i b l e between terms : [NB13 , B13 ,PMS13] and

[PMS33,NA33 ,NB33]

The triples are situated in the hash functions: hash and prf and we resolve this
unification by tagging both triples. The next run brings new error message:

∗ Protoco l "TLS" i s not format−type s a f e !
∗ Un i f i c a t i o n i s p o s s i b l e between terms : [A0 ,NA0, Sid0 ,PA0] and

[{ [A5 , pk ([A5])] } inv ([pk ([s5])]) ,{PMS5}pk ([B5]) ,{ hash [NB5,
B5 ,PMS5] } inv ([pk ([A5])]) , | hash [p r f [PMS5,NA5,NB5, tagTLS3] ,
A5 ,B5 ,NA5,NB5, Sid5 ,PA5,PB5,PMS5] | c l i en tK [NA5,NB5, p r f [PMS5,
NA5,NB5] , tagTLS1]]

Adding new tags into the client’s shared key, a new problem emerges and unifica-
tion between the first message of the handshake is being confused with the final
client’s message. Adding a tag to a message [A0, NA0, Sid0, PA0, tagTLS4]
will make error disappear.

After fixing this part, APCC finally reports positive result of analysis e.g. 3
protocols are composable. DISE and protocols disjointness conditions are satis-
fied without fixing the specifications. Added tags actually prevented APCC to
complain about protocols disjointness. Parallel composition conditions is also
satisfied, because tool could not unify any private with public constant.

32 Experimental results

One can add more protocols to this library. Then, we need to gain some routine
and experience and learn how to avoid similar problems. APCC gives good
directions and hints what is supposed to be done. The main techniques is
certainly tagging but also permutation of concatenation parts so disjointness is
satisfied. The checker is typically not the critical point for runtime. This, we
can check the composition of all protocols basically in the time that is required
to check the individual protocols.

We tested protocols from Clark-Jacob library (that are verified with OFMC)and
all of them needed to be fixed. Surprisingly, APCC reported many unifications
and all of them needed to be resolved. As a result, we have 18 protocols1 ready
to be composed: .

• TLS

• Needham–Schroeder protocol (NSPK) with Lowe’s fix

• ISO Symmetric Key One-Pass Unilateral Authentication Protocol

• Needham-Schroeder Protocol with Conventional Keys

• Bilateral Key Exchange with Public Key

• ISO One-Pass Unilateral Authentication with CCFs2

• ISO Two-Pass Unilateral Authentication with CCFs

• ISO Two-Pass Mutual Authentication with CCFs

• ISO Three-Pass Mutual Authentication with CCFs

• ISO Symmetric Key One-Pass Unilateral AuthenticationProtocol

• ISO Symmetric Key Two-Pass Unilateral AuthenticationProtocol

• ISO Symmetric Key Two-Pass Mutual Authentication

• ISO Symmetric Key Three-Pass Mutual Authentication

• Non-ReversibleFunction protocol

• Andrew Secure RPC Protocol

• Denning-Sacco protocol

• Denning-Sacco protocol using public key cryptography

• Basic Kerberos protocol
1Specifications for all of them are found in a source code of APCC
2cryptographic check functions

4.3 APCC limitations 33

4.3 APCC limitations

We did not consider protocols that involves Diffie-Hellman key exchange like
H.530 [24]. Although Diffie-Hellman key exchange is really popular because of
its nice properties like forward secrecy, most of the verification tools did not
implement it. Involving modular exponentiation in the tools, affects unification
algorithm as well as the intruder deduction. In the scope of the free algebra we
cannot model Diffie-Hellman thus, we skipped protocols that are using Diffie-
Hellman key exchange. There are couple of suggestions [25] how to resolve this
problem and that could be one of the future improvements of APCC.

34 Experimental results

Chapter 5

Conclusion and future work

The thesis work turns the theoretical conditions of several works on composabil-
ity into practical usable tool and therefore adds a helpful feature to automatic
verification tools: checking protocol composition automatically. The compos-
ability is all about whether message formats are confused and the checker is
alerting these problems. Although the tagging is not so much used in the real
situation, the messages must somehow be distinguished and that is good engi-
neering practice. However, in our abstract term world the tags are often just a
way to express that two messages are distinct.

We plan the future versions of the checker to bring better compatibility with
OFMC tool as well as better user friendly environment. One can extend the
current functionality of APCC by defining it as a webservice where we can
register our protocols and give an answer about its composability with some
other protocols in already registered set. The AVISPA project had already
implemented a web service for verification of the protocols in isolation.

One of the mentioned missing features is Diffie-Hellman key exchange. This
is the high priority extension and researchers are trying to efficiently adopt
the algebraic properties into the current algorithms of unification and intruders
deduction.

Still, formal analysis is bounded to a small and medium scale protocols with

36 Conclusion and future work

lots of limitation comparing to the real protocol implementations. Nevertheless,
impact of the research to the protocol design is enormous and modelling pro-
tocols in the term algebra is one of the most used approaches. Discovering the
security flaws in algebraic models is cheaper and it can help designing better
and more secured protocols.

Appendix A

Source code

module Unification (unify) where

import Message

-- | Substitution of the messages on single term
substitution :: Message → Message → Message → Message
substitution (Atom (Ident x)) t (Atom (Ident s))

| s == x = t
| otherwise = Atom (Ident s)

-- | Substitution of the messages on complex (function) term
substitution x t (Atom (Mapping id a)) = Atom (Mapping id (

map toAtomic (map (substitution x t) (wrapIdent a))))
substitution x t (Concat xx) = Concat (map (

substitution x t) xx)
substitution x t (Asycrypt k xx) = Asycrypt (substitution

x t k) (substitution x t xx)
substitution x t (Symcrypt k xx) = Symcrypt (substitution

x t k) (substitution x t xx)
substitution x t (Hash _ xx) = substitution x t xx

substitutionp x t (p1 ,p2) = (substitution x t p1 ,
substitution x t p2)

38 Source code

-- | if variable is "inside" the non atomic term on the
right side -}

occursCheck :: (String , Message) → Bool

occursCheck (x, Atom(Ident t))
| x==t = True
| otherwise = False

occursCheck (x, Atom (Mapping k t)) = let t2 = wrapIdent t
in foldl (λacc a → if occursCheck (x,a) then True else

acc) False t2
occursCheck (x, Concat t) = foldl (λacc a → if occursCheck

(x,a) then True else acc) False t

occursCheck (x, Asycrypt k t) = occursCheck (x,t) | |
occursCheck (x,k)

occursCheck (x, Symcrypt k t) = occursCheck (x,t) | |
occursCheck (x,k)

occursCheck (x, Hash _ t) = occursCheck (x,t)
--------------------------------- Wrap message ---------

technical thing because of message data type

wrapIdent :: [Atomic] → [Message]
wrapIdent [] = []
wrapIdent (x:xs) = (Atom x): wrapIdent xs

--------------------------------- Making atomic message

toAtomic :: Message → Atomic
toAtomic (Atom (Ident t)) = Ident t
toAtomic (Atom (Mapping id t)) = Mapping id t

-- | Unification algorithm also works for set of the
messages

unify :: [(Message , Message)] → Maybe [(Message , Message)]

unify xx = unify ’ xx []

unify ’ :: [(Message , Message)] → [(Message , Message)] →
Maybe [(Message , Message)]

-- | When there is nothing to process , acc is the solution
unify ’ [] acc = Just acc

39

-- | Delete rule
unify ’ ((a, b):xx) acc | a==b = unify ’ xx acc

-- | Substitute rule : takes care of occurrence of the
variable of on the right side; constants on the left side
⇒ do the substitution with switched arguments

unify ’ ((Atom(Ident x),t):xx) acc | not (occursCheck (x,t))
&& isVariable x = -- SUBSTITUTE - watching out on
constants!

unify ’ (map (substitutionp (Atom (Ident x)) t) xx)
((Atom(Ident x),t) : map (substitutionp (Atom (
Ident x)) t) acc)

| isVarTerm t && not (isVariable x) =
unify ’ (map (substitutionp t (Atom (Ident x)))

xx) ((t,(Atom (Ident x))) : map (
substitutionp t (Atom (Ident x))) acc)

| otherwise = Nothing

-- | Orient rule
unify ’ ((t,Atom(Ident x)):xx) acc = unify ’ ((Atom(Ident x),t

):xx) acc

-- | Decompose rules for all the non atomic message terms ,
including mappings!

unify ’ ((Asycrypt key1 mess1 , Asycrypt key2 mess2):xx) acc
= unify ’ ([(key1 ,key2)]++([(mess1 ,mess2)] ++ xx)) acc

unify ’ ((Symcrypt key1 mess1 , Symcrypt key2 mess2):xx) acc
= unify ’ ([(key1 ,key2)]++([(mess1 ,mess2)] ++ xx)) acc

unify ’ ((Hash id1 mess1 , Hash id2 mess2):xx) acc
| id1 == id2 = unify ’ ([(mess1 ,mess2)] ++ xx) acc
| otherwise = Nothing

unify ’ ((Concat f1s , Concat f2s):xx) acc
| length f1s == length f2s = unify ’ (zip f1s f2s ++ xx)

acc
| otherwise = Nothing

40 Source code

unify ’ ((Atom (Mapping id1 t1), Atom (Mapping id2 t2)):xx)
acc
| (id1 == id2 && length t1 == length t2) = unify ’ (zip (

wrapIdent t1) (wrapIdent t2) ++ xx) acc
| otherwise = Nothing

-- | For everything else , return Nothing
unify ’ (_) acc = Nothing

Listing A.1: Unification module

subTerms :: ((Message ,String), MessageType) → State
StateType StateType

subTerms ((Atom(Ident x),protocolName), msgtype) = do
(state , counter) ← get
if isConstant x

then put (Map.insert ((alphaRenaming (Atom (
Ident x)) counter),protocolName) msgtype $
state ,counter+1)

else put (state ,counter)
get

subTerms ((Atom(Mapping id t),protocolName), keyType) = do
(state , counter) ← get
put (Map.insert ((alphaRenaming (Atom(Mapping id t))

counter),protocolName) keyType $ state , counter+1)
get

subTerms ((Asycrypt k x,protocolName), Crypt key msg) = do
(state , counter) ← get
put (Map.insert ((alphaRenaming (Asycrypt k x)

counter),protocolName) (Crypt key msg) $ state ,
counter+1)

if isNonVarSubTerm k
then do subTerms ((k,protocolName),key)

subTerms ((x,protocolName),msg)
else subTerms ((x,protocolName),msg)

subTerms ((Symcrypt k x,protocolName), Scrypt key msg) = do
(state , counter) ← get
put (Map.insert ((alphaRenaming (Symcrypt k x)

counter),protocolName) (Scrypt key msg) $ state ,
counter+1)

subTerms ((k,protocolName),key)
subTerms ((x,protocolName),msg)

41

subTerms ((Concat x,protocolName), Conc t) = do
(state , counter) ← get
put (Map.insert ((alphaRenaming (Concat x) counter),

protocolName) (Conc t) $ state , counter+1)
mapM subTerms (zip (zipName x protocolName) t)
get

subTerms ((Hash id x,protocolName), HashT t) = do
(state , counter) ← get
put (Map.insert ((alphaRenaming (Hash id x) counter),

protocolName) (HashT t) $ state , counter+1)
subTerms ((x,protocolName),t)

-- | function counts non variable subterms of one protocol
protocolNVST :: [((Message ,String), MessageType)] → (Map.

Map (Message ,String) MessageType , Int) → (Map.Map (
Message ,String) MessageType , Int)

protocolNVST [] initState = initState
protocolNVST ((msg ,msgtype):xs) initState = let newInitState

= evalState (subTerms (msg ,msgtype)) initState
in protocolNVST

xs
newInitState

-- | alpha renaming function
alphaRenaming :: Message → Int → Message
alphaRenaming (Atom (Ident t)) num | (isVariable t) = Atom (

Ident (t++show num))
| otherwise = (Atom (

Ident t))
alphaRenaming (Atom (Mapping id t)) num = Atom (renameAtomic

(Mapping id t) num)
alphaRenaming (Symcrypt key t) num = Symcrypt (alphaRenaming

key num) (alphaRenaming t num)
alphaRenaming (Asycrypt key t) num = Asycrypt (alphaRenaming

key num) (alphaRenaming t num)
alphaRenaming (Hash id t) num = Hash id (alphaRenaming t num

)
alphaRenaming (Concat t) num = Concat (map (λ x →

alphaRenaming x num) t)

Listing A.2: Part of Format Type Safe module

-- | Extension of the theorem. Number of EMPs is equal to
the depth of encryptions inside a protocol.

depth :: ((Message ,String),MessageType) → Int
depth ((Atom _, protocolName), _)= 0

42 Source code

depth ((Hash id t,protocolName), HashT tt) = depth ((t,
protocolName),tt)

depth ((Concat t,protocolName), Conc tt) = (foldl (λacc (a,
a1) → depth (a,a1)) 0 (zip (zipName t protocolName) tt))

depth ((Asycrypt k t,protocolName), Crypt kt tt) = depth ((k
,protocolName),kt) + depth ((t,protocolName),tt)

depth ((Symcrypt k t,protocolName), Scrypt kt tt) = (depth
((k,protocolName),kt) + depth ((t,protocolName),tt))+1

-- | Uses depth function

depthProtocol :: [((Message ,String), MessageType)] → Int
depthProtocol array = maximum (map depth array)

-- | It gives single EMPi , preserving counter value for
alpha renaming

makeSingleEMP :: [((Message ,String),MessageType)] → State
State ’ State ’

makeSingleEMP [] = do
(state ,counter) ← get
return (state ,counter)

makeSingleEMP (x:xs) = do
(state , counter) ← get
let aux = encryptMsg x ("KEY"++(show counter))
in put(Map.insert ((alphaRenaming (fst (fst aux))

counter), (snd(fst aux))) (snd aux) $ state ,
counter+1)

makeSingleEMP xs

-- | Now we make EMP set. Monadic computation.
--

computeEMP :: Int → State StateEMP StateEMP

computeEMP 0 = do
(state , counter) ← get
return (state , counter)

computeEMP depth = do
(state , counter) ← get
let newState = evalState (makeSingleEMP (Map

.toList(head(state)))) (Map.empty ,
counter)

in put((fst newState):state , (snd newState)
+counter)

43

computeEMP (depth -1)

Listing A.3: Part of Encrypted Message Pattern module

44 Source code

Bibliography

[1] D. Dolev and A. C. Yao, “On the security of public key protocols,” Founda-
tions of Computer Science, IEEE Annual Symposium on, vol. 0, pp. 350–
357, 1981.

[2] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.1.” RFC 4346 (Proposed Standard), Apr. 2006. Obsoleted by
RFC 5246, updated by RFCs 4366, 4680, 4681, 5746.

[3] V. Cortier, S. Delaune, and J. Delaitre, “Safely composing security proto-
cols,” 2008.

[4] S. Mödersheim and T. Groß, “Vertical protocol composition (extended ver-
sion),” IBM Research - Zurich, Switzerland, DTU Informatics Denmark,
p. 22, 2011.

[5] J. Heather, G. Lowe, and S. Schneider, “How to prevent type flaw attacks
on security protocols,” Department of Computing, School of Electronics,
Computing and Mathematics, University of Surrey; Programming Research
Group, Oxford University Computing Laboratory and Royal Holloway; Uni-
versity of London.

[6] G. Wang and S. Qing, Two New Attacks Against Otway-Rees Protocol,
pp. 137–139. International Academic Publishers, 2000.

[7] F. Baader and T. Nipkow, Term Rewriting and All That. Cambridge Uni-
versity Press, 1998.

[8] D. Basin, S. Mödersheim, and L. Viganò, OFMC: A symbolic model checker
for security protocols, vol. 4, pp. 181–208. Springer-Verlag, 2005.

46 BIBLIOGRAPHY

[9] “Haskell: Fuctional programming language.” http://www.haskell.org/
haskellwiki/Haskell, 2011.

[10] S. Mödersheim, An AnB Tutorial. DTU Informatics, September 2011.

[11] J. Newbern, “All about monads.” http://monads.haskell.cz/html/
index.html, 2010.

[12] B. O’Sullivan, J. Goerzen, and D. Stewart, Real World Haskell. O’Reilly
Media, Inc., 1 ed., Dec. 2008.

[13] “Haskell GHC 7.0.4.” http://www.haskell.org/ghc/docs/7.0.4/, 2011.

[14] J. A. Clark and J. L. Jacob, “A Survey of Authentication Protocol Litera-
ture: Version 1.0,” tech. rep., Department of Computer Science, University
of York, 1997.

[15] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,
P. H. Drielsma, P. C. Heám, O. Kouchnarenko, J. Mantovani, S. Möder-
sheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vi-
ganò, and L. Vigneron, “The AVISPA Tool for the Automated Validation of
Internet Security Protocols and Applications,” in Computer Aided Verifica-
tion (K. Etessami and S. K. Rajamani, eds.), vol. 3576, ch. 27, pp. 281–285,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[16] “AVISPA - Automated Validation of Internet Security Protocols and Ap-
plications.” http://www.avispa-project.org/.

[17] “Alex: A lexical analyser generator for Haskell.” http://www.haskell.
org/alex/.

[18] “Happy - the parser generator for haskell.” http://www.haskell.org/
happy/.

[19] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition). Prentice Hall, 2 ed., Sept. 2006.

[20] B. C. Neuman and T. Ts’o, “Kerberos: an authentication service for com-
puter networks,” Communications Magazine, IEEE, vol. 32, no. 9, pp. 33–
38, 1994.

[21] M. Satyanarayanan, “Integrating security in a large distributed system,”
ACM Trans. Comput. Syst., vol. 7, pp. 247–280, Aug. 1989.

[22] R. M. Needham and M. D. Schroeder, “Using encryption for authentication
in large networks of computers,” Commun. ACM, vol. 21, pp. 993–999, Dec.
1978.

http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
http://monads.haskell.cz/html/index.html
http://monads.haskell.cz/html/index.html
http://www.haskell.org/ghc/docs/7.0.4/
http://www.avispa-project.org/
http://www.haskell.org/alex/
http://www.haskell.org/alex/
http://www.haskell.org/happy/
http://www.haskell.org/happy/

BIBLIOGRAPHY 47

[23] G. Lowe, “An attack on the needham-schroeder public-key authentication
protocol,” INFORMATION PROCESSING LETTERS, vol. 56, pp. 131–
133, 1995.

[24] “H.530: Symmetric security procedures for h.323 mobility in h.510.” http:
//www.avispa-project.org/library/h.530.html, 2004.

[25] S. Mödersheim, “Diffie-Hellman without Difficulty,” FAST 2011.

http://www.avispa-project.org/library/h.530.html
http://www.avispa-project.org/library/h.530.html

	Summary
	Preface
	Acknowledgements
	1 Introduction
	1.1 Protocol composition
	1.1.1 Vertical protocol composition
	1.1.2 Parallel protocol composition

	1.2 Potential problems with protocol composition
	1.3 Motivation for the checker

	2 Preliminaries
	2.1 Algebraic protocol model
	2.1.1 Public operations
	2.1.2 Private mappings

	2.2 Unification algorithm
	2.2.1 Definitions
	2.2.2 Unification algorithm - rule based approach

	2.3 Preconditions for composition analysis
	2.3.1 Security in isolation
	2.3.2 Format-type safe (FTS) protocols
	2.3.3 Disjointness and DISE condition

	3 Implementation of APCC
	3.1 General idea
	3.2 Data structures
	3.3 Unification over Message data type
	3.4 Implementing preconditions
	3.4.1 Important implementation notes
	3.4.2 DISE condition
	3.4.3 Protocol security in isolation

	3.5 AnB notation
	3.5.1 Parallel composition
	3.5.2 Translation of AnB to APCC message type

	3.6 Up and running

	4 Experimental results
	4.1 Demonstration of the tool
	4.2 APCC disapproval vs. good protocol design
	4.3 APCC limitations

	5 Conclusion and future work
	A Source code
	Bibliography

