
Master thesis

Redesigning the language for
business logic in the Maconomy

ERP system and automatic
translation of existing code

Author:
Piotr Borowian
(s091441)

Supervisors:
Ekkart Kindler

Christian W. Probst
Martin Gamwell Dawids

Rune Glerup

Kongens Lyngby 2012
IMM-M.Sc.-2012-79

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2012-79

Summary

Maconomy Scripting Language (MSL) is a Domain Specific Language (DSL)
for expressing business logic in the Maconomy ERP System, developed by Ma-
conomy [1]. For various reasons, which are discussed in Chapter 1, Deltek has
decided to investigate the possibility of replacing MSL by Scala as a new business
logic development language.

This thesis defines a subset of MSL, called MSL core, that comprises the core
features of the language. It then introduces a number of extensions to Scala,
which altogether make up MScala − a proposed replacement for MSL core.

In the course of this thesis we argue that MScala allows for expressing business
logic in Maconomy at the same or higher level of abstraction than MSL core. It
means that, in most cases, the same functionality can be expressed in a more
succinct and elegant manner in MScala than in MSL, but very rarely, if at all, the
other way around. Moreover, we show that Scala is well-suited for embedding
domain specific languages. It allows domain specialists (Maconomy business
logic programmers for that matter) to define libraries that look and feel like
built-in language constructs. This lightweight way of embedding DSLs in Scala
makes it much easier to gradually abstract business logic concepts in Maconomy
from technical artifacts so that business problems can be solved at the right level
of abstraction. Finally, we provide a prototype MSL core to MScala translator
along with a precise description of the correspondence between particular MSL
core and MScala constructs.

In addition to that, this thesis defines a clear and scalable architecture of a
source to source translator, based on state-of-the-art concepts and technologies

ii

like attribute grammars [2] and rewrite rules [3]. The proposed architecture,
which the MSL to Scala prototype translator is based on, allows for building
composable translation phases out of composable translation rules and further
for combining the translation phases to define the actual translation. This
architecture is extensible across two axes: it enables adding new source language
features as well as new translation phases, which can implement optimizations
leading to more idiomatic target code.

To sum it up, this thesis provides a proof-of-concept prototype of an MSL to
Scala translator along with a well-grounded rationale of why it would be sensible
to migrate the Maconomy MSL code base into Scala.

Acknowledgements

First and foremost, I would like to thank my supervisor Ekkart Kindler for
his invaluable guidance, constant support and encouragement for the last two
years. We have had many fruitful discussions and your feedback has always been
helpful, insightful and right to the point. I would also like to thank Christian
W. Probst for co-supervising this thesis and for his valuable feedback on my
work.

It has been a true pleasure and honor to work on this thesis with Martin Gamwell
Dawids and Rune Glerup – my amazing supervisors at Deltek. The discussions
we had have always been insightful, enriching and helped me tremendously to
complete this thesis. Thank you very much for your great support in the last
days of the project, when I needed it most. Martin deserves special credit for
being my personal LATEX consultant – your help was invaluable, thank you!

I would like to express my gratitude to Anne Hellung-Larsen, my former manager
at Deltek, without whom this thesis would not have been possible. Thank you
very much for supporting me in all of my initiatives.

I wish to thank Vaidas Karosas and Nathaniel Bo Jensen for taking their time
to proof-read this thesis, which significantly reduced the number of typos and
unclear statements in it.

Finally, I can never thank enough my parents for their love and constant support
during my entire life.

iv

Contents

Summary i

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Scope . 3
1.4 Structure and main contributions 4

2 MSL core 5
2.1 Maconomy system . 5
2.2 MSL overview . 6

2.2.1 Domain specific features of MSL 7
2.3 Methodology of choosing core MSL features 11
2.4 MSL core . 11
2.5 Conclusions . 12

3 Scala as a host language for embedded DSLs 13
3.1 Quick introduction to Scala . 13
3.2 DSL hosting capabilities of Scala 16

3.2.1 Scala Virtualized . 19
3.2.2 Scala Macros . 20

3.3 Conclusions . 20

4 MScala as a new language for business logic in Maconomy 21
4.1 Productivity gains from using Scala 22

4.1.1 Research in programming style and productivity 22
4.1.2 Tool support for Scala . 22

vi CONTENTS

4.2 MScala by examples from the Maconomy domain 23
4.2.1 Database schema . 23
4.2.2 Example 1: Operations on collections 23
4.2.3 Example 2: SQL joins . 26
4.2.4 Example 3: Code reuse in cursors 28

4.3 Building succinct, reusable software components in Scala 28
4.3.1 Object oriented concepts 28
4.3.2 Functional concepts . 30

4.4 Conclusions . 30

5 Translating MSL core to MScala 31
5.1 Straightforward translations . 32

5.1.1 Type system . 32
5.1.2 Statements . 52
5.1.3 Expressions . 54
5.1.4 Passing parameters to functions 55

5.2 Optimizations: towards more idiomatic Scala code 57
5.2.1 Inlining variable declarations 57
5.2.2 Translating non-reassignable vars to vals 58
5.2.3 Removing unnecessary MRef types 62

5.3 Conclusions . 62

6 Architecture of the MSL core to MScala translator 67
6.1 Architecture overview . 68
6.2 Attribute grammars . 69
6.3 Strategy-based term rewriting . 71
6.4 MSL core to MScala translator 72

6.4.1 Architecture of the translator – properties 73
6.5 Conclusions . 74

7 Discussion 75
7.1 Why migrate MSL to another existing language 75
7.2 Advantages of MScala as a replacement for MSL 77
7.3 MSL core to MScala translator 78
7.4 Future work . 78
7.5 Related work . 79

8 Conclusion 81

A MSL core grammar 83

B MSL core to MScala prototype translator 89

Bibliography 91

Translations

1 Operations on strings . 34
2 Operations on arrays . 36
3 Records: alternative translation of structural subtyping 43
4 Records: using adapter pattern 45
5 Operations on read cursor . 47
6 Cursor-related functions: Get and GetNext 48
7 For all iteration over a cursor . 49
8 Put and Delete readwrite cursor functions 49
9 Cursor Updates and passing cursors as parameters 50
10 Arbitrary fields selection for MSL cursor 51
11 MSL cursors: where clauses and order by 51
12 MSL cursors: aggregate functions with name aliases 52
13 MSL cursors: aggregate functions and group by 53
14 Statements . 54
15 By-reference parameters . 56
16 Parameters as local variables . 57
17 Straightforward translation of variable definitions with no inlining 59
18 Inlining variable definitions . 60
19 Operations on arrays – turning non-reassignable vars to vals . . . 61
20 Straightforward translation of by-reference parameters 63
21 Optimized translation of by-reference parameters 64

viii TRANSLATIONS

Chapter 1

Introduction

This thesis defines MScala – a new language for expressing business logic in
the Maconomy ERP system and provides a proof-of-concept prototype of the
Maconomy Scripting Language to MScala translator.

In this chapter we describe the motivation for the thesis as well as its goals and
objectives. Further, we define the scope of the thesis, its structure and main
contributions.

1.1 Motivation

In the late 1980s Maconomy, a Danish software company acquired by Deltek
in 2010, started to develop an enterprise resource planning (ERP) solution for
professional services organizations [1]. To increase the productivity of appli-
cation programmers as well as to ensure a sound, extensible architecture, the
Maconomy Scripting Language (MSL) was introduced. MSL is a domain spe-
cific language (DSL) tailored specifically to the business logic development in
the Maconomy system. At its core MSL is a simple procedural language with
syntax and semantics similar to Pascal and Ada. It also incorporates some do-
main specific extensions like custom data types, type-safe database queries and
data manipulation statements as well as automatic transaction management.

2 Introduction

At the time of its creation MSL gave a real competitive edge to Maconomy.
Most notably, it had included language integrated type-safe queries 20 years be-
fore they were incorporated into mainstream languages like LINQ in the .NET
platform [4]. For the last 20 years, however, the IT industry has been expe-
riencing a vary fast pace of innovation, putting enormous amounts of effort,
resources and brainpower into programming languages development, including
tools, frameworks, integrated development environments (IDEs) etc.

Companies like Deltek, whose main objective is to provide customers with soft-
ware solutions empowering their businesses as opposed to developing technolo-
gies for their own sake, are finding it less and less profitable to develop and
maintain their own complex programming languages in-house. Having full con-
trol over language development has benefits on its own: the company is indepen-
dent from any third-party vendors, can evolve the language as needed, extend
it, migrate it to new platforms and so on. But these are not the main business
reasons for creating and maintaining a DSL in the first place. Most importantly,
DSLs make the developers more productive and efficient in bringing new fea-
tures to the market. Nowadays, however, there are plenty of very powerful and
expressive general purpose programming languages available that come along
with rich frameworks, libraries and a great tool support. These languages are
often open-source and powerful enough to express business logic concepts in an
ERP system like Maconomy at a higher level of abstraction than a language like
MSL. Another invaluable aspect is a high quality tool support, which can boost
the developers’ productivity to a whole new level.

One of these modern languages is Scala [5, 6] - a fusion of object oriented and
functional paradigms, running on top of the Java Virtual Machine (JVM). What
makes Scala particularly interesting with regard to replacing an external DSL
like MSL is that it is a very good host language for embedding internal DSLs. [7].
It supports shallow embedding in the form of pure library-based DSLs, good ex-
amples being actors [8], parser combinators [9] and testing frameworks. Ongoing
projects, such as Scala-Virtualized [7] and Scala Macros [10], enable deep em-
bedding of DSLs as well, which is when the DSL implementor has access to an
abstract syntax tree (AST) representation of a program that is amenable to
analysis and optimization.

For these and other reasons Deltek has decided to investigate the possibility of
replacing MSL with an internal Scala DSL. This thesis addresses that challenge
by providing a proof-of-concept prototype of an MSL to Scala translator. The
next section describes the main goals and objectives of the thesis.

1.2 Objectives 3

1.2 Objectives

The primary objective of this thesis, set right at the beginning of the project, was
to investigate whether an internal Scala DSL could make up a good replacement
for MSL. The definition of “good” is in this case at least two-fold. First of all,
we require Scala to be flexible enough to host a DSL that can express business
logic in Maconomy in a more succinct, concise and elegant manner compared to
MSL, when new functionality is implemented. Secondly, it should be possible
to automatically translate the existing MSL code to the new Scala DSL and
furthermore – the target Scala code should be at least as concise and operate on
at least the same level of abstraction as the source MSL code. The satisfiability
of this requirement does not necessarily follow from the first one, since the
conceptual gap between a procedural language like MSL and a hybrid of object
oriented and functional paradigms like Scala is rather substantial.

The second objective was to provide a proof-of-concept prototype of an MSL
to Scala translator that would be based on a clear and extensible architecture.
The architecture should allow for plugging in new transformations that would
either extend the number of MSL features covered or lead to more idiomatic
Scala code than merely the result of a straightforward translation.

1.3 Scope

Migrating a huge legacy code base to a quite different language is anything
but trivial. Semantic Designs, a company that has been developing its own
technologies for performing such automatic migrations for more than 15 years
and has a number of predefined front and back ends, estimated that a typical
migration project involving several people takes them around 9–18 months [11].
Designing a usable DSL is not trivial either and surely consumes some time.

That being said, in order to achieve the described objectives within the given
time frame, certain trade-offs had to be made. First of all, we decided to choose
a subset of MSL features, hereafter called MSL core, that are at the core of the
language. Then we designed and implemented a library-based DSL in Scala,
hereafter called MScala, that is capable of expressing the same concepts as MSL
core and is a suitable target language for automatic translation. An MSL core to
MScala prototype translator has been implemented, with the focus on defining
a clear, extensible and reliable architecture rather than testing thoroughly every
single transformation.

4 Introduction

1.4 Structure and main contributions

The remainder of this thesis is structured as follows. Chapter 2 defines MSL
core and justifies the choice of the language features included.

Chapter 3 elaborates on Scala as a host language for embedding DSLs. It
points out, in particular, that a domain specialist knowing Scala can relatively
easily implement an internal Scala DSL that looks and feels as if it consisted
of native language constructs. Therefore, once the MSL code base is converted
to MScala, the Maconomy application programmers will have means to refactor
the exsisting code and to gradually raise the level of abstraction of the language
constructs used to solve problems in the Maconomy domain.

In Chapter 4 we define MScala, which is Scala along with the minimal number of
extensions that enable expressing the same concepts as MSL core. By presenting
several examples, we show that the same implementation tasks, common for the
Maconomy system, can be expressed in a much more succinct manner in MScala
than in MSL.

Chapter 5 describes in detail how to carry out an automatic MSL core to MScala
translation. It covers both straightforward translation as well as some optimiza-
tions that result in semantically equivalent but more idiomatic Scala code. The
proposed translations generally produce Scala code of similar or higher concise-
ness than the source MSL code. The translations described in this chapter have
been implemented in the prototype MSL core to MScala translator, which is
delivered with this thesis (see Appendix B).

In Chapter 6 we define a clear and scalable architecture of a source to source
translator, based on state-of-the-art concepts and technologies like attribute
grammars [2] and rewrite rules [3]. The proposed architecture, which the MSL
to Scala prototype translator is based on, allows for building composable transla-
tion phases out of composable translation rules and for combining the translation
phases to define the actual translation. This architecture is extensible across two
axes: it enables adding new source language features as well as new translation
phases, which can implement optimizations leading to more idiomatic target
code.

In Chapter 7 we evaluate the work that has been done and, based on its results,
provide a well-grounded rationale of why it is sensible to migrate MSL code base
into Scala, despite possible risks and certain disadvantages.

Finally, Chapter 8 concludes the thesis.

Chapter 2

MSL core

In this chapter we briefly describe MSL and the role it plays in the Maconomy
system. Moreover, we define MSL core – a subset of MSL comprising the core
language constructs, which is a subject for the automatic code translation to
MScala. Chapter 5, that specifies the translation, further describes the MSL
core constructs in much more detail.

2.1 Maconomy system

Maconomy is an Enterprise Resource Planning solution for professional services
organizations, such as consulting and audit agencies, legal services and scientific
research institutions. It focuses on supporting business processes in such orga-
nizations and, to this end, performs complex data analysis that helps in decision
making, strategy setting, keeping track of project progress etc. It targets middle
size as well as large companies with thousands of employees.

The Maconomy system must therefore address at least two kinds of challenges.
One is handling application business logic, i.e., providing the functionality that
customers expect. The other kind has to do with all the architectural and tech-
nological challenges in enabling these functionalities for a large number of client
applications, working concurrently in a distributed, client/server environment.

6 MSL core

To make the development of such a system easier, as well as its architecture
more extensible, scalable and maintainable, there is a clear distinction between
these two classes of problems in Maconomy. To this end, several domain spe-
cific languages have been introduced so that the application programmers focus
on solving problems in the business domain, rather than dealing with all of
the surrounding technical artifacts. Some of these languages target high level
database entities definition, some other UI layout specifications that are then
rendered by a generic client. Finally, the Maconomy Scripting Language (MSL)
is a language tailored specifically to business logic development in Maconomy.

The overall architecture of the Maconomy system is shown in Figure 2.1.

Figure 2.1: Overall architecture of the Maconomy system

2.2 MSL overview

MSL is a procedural, imperative language with syntax and semantics similar
to Pascal or Ada. It is statically typed and supports both reference and value
types. All the types in an MSL are value types, unless passed to a function or
procedure by reference. Value types are copied upon assignment so that every
variable references its own value. In contrast, two variables of reference type

2.2 MSL overview 7

can be bound to the same value in memory, so that when one of these variables
changes the value, the change is visible to the other variable as well.

Listing 2.1 shows an example of an MSL function SubString that takes a string
value (passed by reference for efficiency reasons) and two integer indexes as
parameters and returns a substring of the given string specified by the beginning
and end indexes.

Listing 2.1: SubString: an example MSL function

1 function SubString(var StrPar : String;

2 FromPar : Integer;

3 ToPar : Integer) : String is

4 var

5 Ivar : Integer;

6 StrVar : String;

7 begin

8 Ivar := FromPar;

9 StrVar := "";

10 while Ivar <= ToPar and Ivar <= StringLength(StrPar) do

11 StrVar := ConcatString(StrVar,Char’Image(StrPar[Ivar]));

12 Ivar := Ivar + 1;

13 end while;

14 return StrVar;

15 end function;

Lines 4–6 specify the variable definition block, as in MSL all the variables must
be defined in one place at the beginning of a function or procedure. The begin

and end function keywords specify the statement block, where the actual busi-
ness logic is implemented. MSL provides a set of standard procedural state-
ments, which are shown in Listing 2.2.

Individual functions can be grouped into modules, that are simply containers
(namespaces) for functions and procedures.

2.2.1 Domain specific features of MSL

Besides the standard general purpose constructs of MSL described in the pre-
vious paragraph, the language provides some domain specific features as well.
This section describes them briefly.

8 MSL core

Listing 2.2: MSL statements

1 -- notation

2 -- [<x>]* => <x> occurs zero or more times

3 -- [<x>]? => <x> is optional

4

5 -- assignment

6 <variable> := <expr>

7

8 -- if then else

9 if <Boolean expression> then

10 <Statement list>

11 [elsif <Boolean expression> then

12 <Statement list>]*
13 [else

14 <Statement list>]?

15 end if

16

17 -- while

18 while <Boolean expression> do

19 <Statement list>

20 end while

21

22 -- repeat until

23 repeat

24 <Statement list>

25 until <Boolean expression>

26

27 -- call

28 <Procedure_name> [([<parameter list>]?)]?

29

30 -- return

31 return <Expression>

32

33 -- case statement

34 case <Expression> of

35 [<value> : begin <statement list> end;]*
36 end case

37

38 -- raise statement

39 raise

40

41 -- break statement

42 break

2.2 MSL overview 9

2.2.1.1 Cursor

One of the most important domain specific extensions to MSL is its support for
type-safe database queries and data manipulation statements. An MSL cursor
is a means of defining type-safe SQL-like queries. Once a query is executed,
the defining cursor can be used to access the result set of the query, as well as
individual records comprising the result set.

An example of a simple cursor definition as well as its use can be seen in List-
ing 2.3. MSL cursors are described in Chapter 4 that, among other things,
presents idiomatic MScala solutions to database related problems. Section 5.1.1.5
goes to even more detail in describing MSL cursors, as it defines how their par-
ticular features get auto-translated to MScala.

Listing 2.3: MSL cursor as a query definition and a current record

1 -- query definition

2 read cursor UniStudent is

3 select all from UniStudent

4 order by Name;

5

6 -- here the query is executed and UniStudent denotes the result set

7 for all UniStudent do

8 -- and here UniStudent denotes the current record

9 if UniStudent.Name = "Piotr" then

10 return true;

11 end if;

12 end for;

2.2.1.2 Dialog state machine

The user interface of Maconomy is composed of dialogs that are simply forms
nd tables presenting data in a uniform manner. Every dialog has an underlying
database relation – its primary source of data. Moreover, dialogs provide a set
of standard actions, such as creating a new entity (e.g. the dialog Customers
would create a new customer in the database), updating and deleting it. Besides
these standard actions, dialog-specific actions can be defined and plugged into
the UI in a uniform way. Figure 2.2 shows an example workspace in Maconomy
with a Fee forecast dialog opened, where available actions are marked.

The set of standard actions that can be performed on any dialog, as well as

10 MSL core

Figure 2.2: Example workspace in Maconomy: project progress reporting to
compare with actual budget

the uniform way of plugging in new actions, are handled by the dialog state
machine. It is a state machine that enforces a valid order of executing actions,
e.g., it does not make sense to update an entry before creating it. Moreover,
it defines an interface for plugging in new actions. All the actions are declared
in declarative DSLs and their semantics, i.e., the business logic – is defined in
terms of MSL code. On top of that, the dialog state machine implicitly manages
database transactions, so that the application programmers can focus on solving
actual problems in the business domain.

2.2.1.3 Domain specific data types

MSL provides a set of data types specific to the Maconomy domain, e.g., Date,
Time , Amount and pop-up types that are simply enumerations supported by the
Maconomy UI in the form of drop-down lists. Moreover, records – user defined
composite data type suitable for grouping data elements together – are available
in MSL as structural types.

2.3 Methodology of choosing core MSL features 11

2.3 Methodology of choosing core MSL features

As explained in the Scope paragraph of Chapter 1, once the thesis project
started, it soon became clear that defining an embedded Scala DSL, which
could replace the full MSL language, along with implementing an MSL to Scala
translator was simply too big of a task for a half year project. Therefore, in
order to make the project feasible within the given timeframe, a core subset of
MSL had to be chosen.

We established a few criteria that were leading the decision process of what
features to include in MSL core. First of all, the chosen features should be
essential to the language in a sense that when removed, the language would
suffer from some fundamental shortcomings. Moreover, we wanted to include
as much domain specific parts of MSL as possible. Finally, the chosen features
should make up a representative subset of MSL, meaning that if we can design
a Scala embedded DSL expressing these features and carry out an automatic
source to source translation, then there should not be any fundamental problems
in including the rest of MSL into MSL core and extending the translator to
MScala respectively.

To this end, we hosted two workshops with the MSL application developers
at Deltek. The first was about identifying key concepts in MSL as well as
pointing out its strong points and weaknesses. The second involved abstracting
the identified concepts from the concrete MSL syntax to be able to incorporate
them in MScala.

2.4 MSL core

After the workshops with the MSL application developers took place, it became
evident that not only is the MSL cursor a key concept to the language, but also
its strongest and most expressive part. The importance of records following
structural subtyping was also highlighted.

In order to incorporate these concepts in MSL core, more fundamental parts of
the language had to be included too. As for the type system, most of the types
have been included, except for Date, Time, Amount and pop-up types. When
it comes to statements, case and break statements have been left out. MSL
core supports defining individual functions and procedures as well as modules.
Dialog scripts, which special kinds of MSL scripts are tightly coupled with the
dialog state machine, have been left out, since they are more of a library or

12 MSL core

framework than an essential language concept.

The full grammar of MSL core is included in Appendix A. Moreover, all the
parts of the language are described in detail in Chapter 5, which specifies the
MSL core to MScala translations.

2.5 Conclusions

The features included in MSL core cover all the spectrum of the MSL language
constructs. The only major part left out is the dialog state machine, which
is, however, more of an external framework or library than a native language
concept. Hence, if MScala turns out to be a good replacement for MSL core,
then it should not be difficult to extend it to cover the full MSL language. It
would rather be a matter of time and effort put into more or less straightfor-
ward implementation than nontrivial struggles of reconciling two conceptually
different languages.

Chapter 3
Scala as a host language for

embedded DSLs

In this chapter we briefly introduce Scala, emphasizing the features that make
it particularly suitable for hosting embedded DSLs. Moreover, two projects
supporting deep embedding of DSLs – Scala-Virtualized and Scala Macros – are
briefly described.

3.1 Quick introduction to Scala

Scala is a general purpose programming language that smoothly integrates ob-
ject oriented and functional paradigms. It is statically typed, but due to local
type inference the majority of type signatures do not have to be specified, the
most notable exception being types of formal parameters in method signatures.

The object oriented nature of the language manifests itself in that everything
in Scala is an object. The usual concepts like classes, access modifies, inheri-
tance, polymorphism are present. Moreover, Scala enables multiple inheritance
by mixing in traits [12], which gives a deterministic solution to the diamond
problem [13] via trait linearization. Similar to interfaces in Java, traits are used
to define object types by specifying the signature of the supported methods.

14 Scala as a host language for embedded DSLs

Unlike Java, Scala allows traits to be partially implemented; i.e. it is possible to
define default implementations for some methods. In contrast to classes, traits
may not have constructor parameters.

Scala seems to be a more complete and orthogonal object oriented language than
Java in a sense that the two main notions of abstraction – parametrization and
abstract members – apply to fields, methods and type variables in a uniform
way. In Java, on the other hand, only some of the combinations are possible
and one could argue that these limitations are fairly arbitrary. Table 3.1 shows
which abstraction principles apply to which concepts in both Java and Scala.

Abstract members Parameters
fields and values Scala Java/Scala
methods Java/Scala Scala
types Scala Java/Scala

Table 3.1: Which constructs can be used as abstract members and parameters
in Java and Scala

Besides being a full-blown object oriented language, Scala is a functional lan-
guage too. It provides a lightweight syntax for defining anonymous functions,
supports higher-order functions, allows functions to be nested, and supports cur-
rying. Scala’s case classes and its built-in support for pattern matching model
algebraic types used in many functional programming languages. The following
paragraphs present the functional features listed above.

In Scala, functions are first class citizens, i.e., they can be treated as values,
passed around as method parameters etc. Scala provides a lightweight syntax
for specifying function literals, as shown in Listing 3.1:

Listing 3.1: Function literals in Scala

1 //anonymous functions (function literals)

2 val intList = List(1,2,3,4)

3 val evenNumbers = intList filter (i => i % 2 == 0)

4 val evenNumbers2 = intList filter (_ % 2 == 0)

The variable intList is defined as a val, which is a final value in Scala, i.e.,
once assigned – it cannot be changed. Mutable variables are defined in Scala

3.1 Quick introduction to Scala 15

as vars. The method filter defined for List expects a function taking Int
as a parameter and returning Boolean – in Scala such a type is denoted by
Int => Boolean. The passed function literal can either name the argument it
takes (e.g. i => ...) or use the underscore symbol to denote the first argument
that is passed to it.

A higher order function is a function that takes other functions as a parameters,
e.g., the filter method from the previous example. Suppose we want to define
a function applyFun that takes another function f as a parameter and also an
argument arg that is applicable to the function f. Then it returns the result of
applying the function f to the given argument. The function applyFun can be
defined as shown in Listing 3.2:

Listing 3.2: Higher order functions in Scala

1 //higher order functions with currying

2 def applyFun[T](arg : T) (f : T => T) = f(arg)

3 //twoArg is a partially applied function of type: (Int => Int) => Int

4 //i.e. it takes a function of type (Int => Int) and returns Int

5 val twoArg = applyFun(2) _

6 //we supply as an argument a multiply by 2 function and get 4 as a result

7 val four = twoArg (_ * 2)

This definition uses another functional programming concept – currying. It is
a technique of transforming a function that takes multiple arguments (or an
n-tuple of arguments) in such a way that it can be called as a chain of functions
each with a single argument. In our case applyFun takes arg : T as a parameter
and returns a function that takes the function f : T => T as a parameter, which
returns T. The applyFun function is given the first argument (partial application)
and then, the resulting function twoArg is supplied with the remaining argument
which is itself a function.

Another important concept in Scala is pattern matching. Basically, compound
values can be matched against patterns and if the match is successful, extracted
to simpler values that made up the compound value. For instance, the result
of the partition method for List, which is a tuple of 2 lists of integers, can be
matched against a tuple pattern and the 2 lists will be extracted to even and
odd lists, as shown in Listing 3.3:

Listing 3.3: Simple pattern matching in Scala

1 //is extracted into 2 variables: even and odd of type List[Int]

2 val (even, odd) = intList partition(_ % 2 == 0)

16 Scala as a host language for embedded DSLs

Pattern matching is supported out of the box for case classes, but can be defined
for any class by means of extractors. Listing 3.4 shows a definition of a few case
classes modeling arithmetic expressions. It defines one function: mulToShift

that, when applied to a multiplication node (Mul), tries to turn it into the
corresponding left shift node (Shl) whenever applicable. For example, a node
Mul(Num(32),Num(7)), which represents the arithmetic expression 32 ∗ 7 can be
turned into Shl(Num(7),5), which is equivalent to (7 << 5).

Listing 3.4: Case classes and pattern matching in Scala

1 sealed trait Exp

2 case class Mul(a : Exp, b : Exp) extends Exp

3 case class Num(a : Int) extends Exp

4 case class Shl(a : Exp, n : Int) extends Exp

5

6 def mulToShift: Mul => Exp = {

7 case Mul(Shl(x,n),Num(y)) if y % 2 == 0

8 => mulToShift(Mul(Shl(x,n+1),Num(y/2)))

9 case Mul(x,Num(y)) if y % 2 == 0

10 => mulToShift(Mul(Shl(x,1),Num(y/2)))

11 case Mul(Num(x),y) => mulToShift(Mul(y,Num(x)))

12 case Mul(x, Num(1)) => x

13 case e => e

14 }

15

16 val e = Mul(Num(32),Num(7))

17 println(mulToShift(e)) //prints Shl(Num(7),5)

3.2 DSL hosting capabilities of Scala

When it comes to internal domain specific languages, there is a distinction
between shallow and deep embedding of DSLs [7]. Shallowly embedded DSLs
are DSLs defined as pure libraries that, due to the flexibility of the host language
syntax, look and feel as if they were providing built-in language constructs. Deep
embedding, on the other hand, is when a DSL implementation builds or obtains
an internal representation of a domain program (usually some sort of AST),
which can first be analyzed, optimized and then executed.

Pure Scala enables both shallow and deep embedding of DSLs, although the
latter approach has its limitations, which two ongoing research projects – Scala-

3.2 DSL hosting capabilities of Scala 17

Virtualized [7] and Scala Macros [10] – are trying to address. The two projects
are briefly described in sections 3.2.1 and 3.2.2.

Let us take a look at an example of the repeat .. until loop, which is not
supported by Scala natively but can be easily implemented in a few lines of
code, as shown in Listing 3.5

Listing 3.5: Implementation of the repeat .. until loop in Scala

1 //repeat until loop definition

2 def repeat(body: => Unit) = new {

3 def until(condition: => Boolean) = {

4 do {

5 body

6 } while (!condition)

7 }

8 }

9

10 //and its use

11 var i = 0

12 repeat{

13 i += 1

14 println(i)

15 } until(i >= 10)

The first thing to notice in this example is that the defined repeat .. until

loop looks no different in terms of syntax than the do .. while loop, which is
natively supported by Scala, i.e., implemented by the Scala compiler. There is
a number of Scala features that enable this piece of code to be implemented:

1. by-name parameters – the parameters body and condition are passed by
name, which means that they are evaluated in a lazy manner upon every
use in the defining function. In other words, the parameter body behaves
as if it was a function taking no parameters and being evaluated upon
every invocation of it.

2. infix operator syntax for method calls – the until part of the loop is simply
a method call on the anonymous object returned from the repeat function.
Moreover, method names can be of an almost arbitrary form in Scala
(except for predefined keywords), so one can define methods called +, ->
or ===.

3. curly braces for method calls - the code passed to the repeat function

18 Scala as a host language for embedded DSLs

as a parameter can be enclosed within curly braces instead of standard
parenthesis.

Besides the features mentioned above, there is also a number of other features
that proved themselves to be very useful in embedding DSLs in Scala.

4. for expressions (a.k.a. for comprehensions)
For expressions consist of three parts : generators, filters and a yield
expression, as shown in Listing 3.6. A generator is just a familiar way of

Listing 3.6: For expressions in Scala

1 val students = List(Student("Piotr",25),

2 Student("Anna", 19),

3 Student("Jens", 10))

4 val adultStudents = //returns List[Student]

5 for {

6 student <- students //generator

7 if(student.age >= 18) //filter

8 } yield student //yield

naming a particular element in a collection and then referring to it while
iterating over the collection, like in case of a standard for loop. Filters filter
out the elements in a collection that do not meet the specified predicate.
Finally, the yield expression just returns a new element for every iteration
step that complies with the specified filters.
For expressions can be seen as a query language for collections of data.
The very same query as shown in Listing 3.6 could be expressed in SQL
as follows (provided that there is a table students with a field age):

select * from students where age >= 18

With multiple generators, filters and a complex yield expression, for ex-
pressions make up a very powerful query language. For this reason Sqala-
Query [14] – one of the leading Scala database libraries in the market – has
adopted the for expression syntax to formulate SQL queries. This is possi-
ble, because for expressions are translated by the Scala compiler to a com-
bination of three higher order functions: map, flatMap, and withFilter.
Therefore, it suffices to provide an implementation of these three methods
for a class in question, e.g DatabaseTable class, to be able to query an
instance of this class with a for expression.

5. implicit conversions
Whenever a type A is expected but a type B is given instead, the Scala

3.2 DSL hosting capabilities of Scala 19

compiler searches for an implicit conversion definition that could convert
B to A (hence it has to be a function of type B => A). If such an implicit
conversion function is found in the required scope, it is applied. Otherwise
a compile error is issued. This mechanism is very powerful – it can be used,
for instance, to lift a part of a program to the AST representation of it
at runtime. In case of a for expression querying a database table, implicit
conversions can be used, e.g., to lift the expression given to a filter as a
parameter to an expression tree, which can be used to generate an SQL
query instead of simply evaluating the expression.

6. manifests
A method parametrized with a type parameter T can request the Scala
compiler to provide a runtime descriptor of T in the form of Manifest[T].
Whenever requested, the manifest is passed as an implicit parameter. The
main use of manifests in the context of embedded DSLs is to preserve
information necessary for generating efficient specialized code in those
cases where polymorphic types are unknown at compile time (e.g. to
generate code that is specialized to arrays of primitive type, say, even
thought the object program is constructed using generic types).

3.2.1 Scala Virtualized

Scala Virtualized extends the Scala language and compiler by a small number
of features that enable combining shallow and deep embeddings of DSLs [7].
First of all, it redefines most control structures (e.g. conditionals, variable defi-
nitions, assignments) in terms of method calls, which can be overridden by the
DSL implementation to change the meaning of these core language constructs.
Moreover, it provides implicit source context which lifts static source infor-
mation (e.g file names, line numbers) such that it becomes part of the object
program.

The project is a branch of the official Scala distribution, but it undergoes the
same rigorous testing and quality assurance procedures as the official Scala
distribution. It has been successfully used in a number of research projects,
e.g., Delite – compiler framework and runtime for parallel embedded DSLs [15]
or OptimML– a DSL for machine learning that employs aggressive, domain-
specific optimizations resulting in high-performance code [16].

20 Scala as a host language for embedded DSLs

3.2.2 Scala Macros

Scala Macros [10] bring up compile-time meta-programming capabilities to Scala.
Basically, macros can be seen as functions taking ASTs, manipulating them and
returning possibly rewritten ASTs. Whenever a compiler sees an invocation of a
method declared as a macro definition, it calls the implementation of the macro
with the arguments being the ASTs that correspond to the arguments of the
original invocation. After the macro returns, its result gets inlined into the call
site. This all happens at compile-time, giving a DSL implementor the power
comparable a compiler plug-in, but much more lightweight in use.

Macros has been included in the official distribution of Scala 2.10 as an experi-
mental feature.

3.3 Conclusions

In order to design a successful DSL, domain expertise seems to be crucial. Build-
ing external DSLs is hard – one needs to be an expert in compiler technologies
to do so. This kind of knowledge rarely goes together with a particular domain
expertise, e.g., in business processes in professional services firms, which makes
building accurate DSL operating on the right level of abstraction even harder.

Scala offers a lightweight way of implementing library-based DSLs that look
and feel like built-in language features. This way of embedding DSLs proved
itself to be sufficient in a number of domains (actors [8], parser combinators [9],
testing frameworks [17], language integrated type-safe queries [18, 14], language-
processing libraries [19] etc.). If deep embedding of a DSL is needed (i.e. enabling
overriding built-in language constructs like assignment operator, if statements
or operating on the AST representation of a relevant part of a program), the
ongoing projects like Scala-Virtualized or Scala Macros can be utilized.

Once the MSL code base has been converted to Scala and domain specialists
have gained confidence in using the language, Scala equips the developers with a
very lightweight yet powerful way of defining internal DSLs and hence gradually
raising the level of abstraction in expressing business logic in the Maconomy
system.

Chapter 4

MScala as a new language for
business logic in Maconomy

This chapter highlights the main advantages of introducing Scala as a new lan-
guage for business logic development in Maconomy. We use the name MScala
to refer to a DSL embedded in Scala that is the proposed replacement for MSL
core. MScala consists of a database library called Squeryl [18], which brings
language integrated type-safe queries to the language, together with a number
of custom types, methods and functions introduced for the sake of automatic
code translation from MSL core. All of these extensions are described in detail
in Chapter 5.

This chapter starts off by describing productivity gains from using Scala in
general, based on some current usability and cognitive psychology research as
well as on the availability of commercial quality tools, libraries and frameworks
supporting the language. Further, we show, by presenting several examples, how
MScala can be employed to solve tasks specific to the Maconomy domain. When
compared to the idiomatic MSL solutions, the Scala ones are much more concise,
elegant and very often better performance-wise since they enable to reduce the
number of database queries that must be executed against the database to
solve the task at hand. We finish up by showing how Scala supports building
reusable software components on a larger scale by integrating object-oriented
and functional paradigms.

22 MScala as a new language for business logic in Maconomy

4.1 Productivity gains from using Scala

4.1.1 Research in programming style and productivity

Scala is often compared with Java, since it is a very innovative language running
on the JVM. Java is a very mature object-oriented language, facilitating generic
programming, subtyping and inheritance as well as classes and interfaces. All
of these features allow for building extensible software systems made out of
reusable components.

That being said,“experience with Scala shows that it typically takes one half to
one third of the lines of code to express the same application as Java yet executes
at about the same speed. From the research it also appears that Scala better
matches the way programmers think, and it seems to be a view supported by
experienced Scala programmers to” [20]. In another article [21] Gilles Dubochet
claims that it is, on average, 30 % faster to comprehend algorithms that use
for-comprehensions and maps, as in Scala, rather than those with the iterative
while-loops of Java.

In comparison to Java or Scala, MSL does not support building reusable soft-
ware components well. The only abstractions allowing for code reuse are func-
tions and procedures. However, in MSL functions and procedures cannot be
parametrized with types. MSL has also a rather verbose syntax that further
contributes to the increased number of lines of code. Therefore, it is sensible
to expect that when implementing new functionality in MScala application pro-
grammers should experience at least the same factor of reduction in terms of
lines of code as in the case of Java.

4.1.2 Tool support for Scala

Nowadays one of the most significant factors that contribute to programmers’
productivity is good tool support, with a first-class Integrated Development
Environment being particularly important. Java ecosystem is huge, very mature
and by-design everything that is written in Java can be easily used in Scala.
Moreover, Typesafe [22], a company created by Martin Odersky (the creator
of Scala) to support Scala commercially, is currently putting a lot of effort
and resources into improving the Eclipse Scala plug-in, which already gives a
commercial quality user experience [23].

4.2 MScala by examples from the Maconomy domain 23

4.2 MScala by examples from the Maconomy
domain

Oversimplifying things a bit, one could say that Maconomy is a typical database
system, where the majority of tasks have to do with reading data from the
database, processing collections of data and either displaying it in a form accessi-
ble to the user or writing it back to the database. Therefore, this section focuses
mainly on processing collections of data as well as working with databases.

4.2.1 Database schema

All of the examples presented in this chapter are based on a simple database
of students attending courses at different universities. Figure 4.1 depicts the
database schema for this domain.

Figure 4.1: Schema of a database of students

4.2.2 Example 1: Operations on collections

As mentioned in Chapter 2, MSL does not support dynamic memory allocation
and at the same time does not provide any predefined collections library. The
only way of building collections of data, except for using statically allocated

24 MScala as a new language for business logic in Maconomy

arrays, is therefore to retrieve the data from the database be means of a cursor.
Cursors support a substantial part of SQL, but queries are limited to retrieving
data from one relation only (no joins).

Suppose we want to display a list of all the students, with a possibility of
dividing them into 2 groups: students younger than 26 (e.g. eligible for student
discounts) and the ones that are 26 years old or older. To this end, we need
to populate three collections with the respective data. Moreover, we would like
to find the youngest and the oldest student. Listing 4.1 shows a typical MSL
implementation of this functionality. The youngest and the oldest students are
found in the for all loop to avoid an unnecessary query against the database,
which might be expensive in a distributed system.

Listing 4.1: MSL: operations on collections

1 youngestAge : Integer := Integer’last;

2 oldestAge : Integer := Integer’first;

3

4 read cursor AllStudents is

5 select all from UniStudent;

6

7 read cursor EligableForDiscounts is

8 select all from UniStudent

9 where Age <= 26;

10

11 read cursor NotEligableForDiscounts is

12 select all from UniStudent

13 where Age > 26;

14

15 CheckFatal(Get(AllStudents));

16 CheckFatal(Get(EligableForDiscounts));

17 CheckFatal(Get(NotEligableForDiscounts));

18 for all AllStudents do

19 youngestAge := MinInteger(youngestAge, AllStudents.Age);

20 oldestAge := MaxInteger(oldestAge, AllStudents.Age);

21 end for;

What makes the MSL implementation cumbersome is that for every new collec-
tion of data we have to declare a new cursor. MSL provides no means of reusing
cursor declarations, which leads to code redundancy. Moreover, every new cur-
sor means a new query executed against the database, which in many situations
might introduce a substantial performance overhead in a distributed system like
Maconomy. Once we have a list of all the students fetched, there should be no

4.2 MScala by examples from the Maconomy domain 25

need to query the database again for students eligible for a discount and those
who are not. In MSL, however, this is the only way to obtain a new collection
of data. Moreover, since MSL does not support generic programming (functions
parametrized with types), the only operation we can perform on a collection of
records is to iterate through it by using a built-in for all loop. Defining any
other generic functions on collections is technically impossible in MSL.

Let us now analyze an idiomatic Scala implementation of the described func-
tionality, which is shown in Listing 4.2:

Listing 4.2: Scala: operations on collections

1 def CollectionsTest{

2 val allStudents = from(uniStudentTable)(select(_)).toList

3 val (eligableForDiscounts,notEligableForDiscounts) =

4 allStudents partition (_.Age <= 26)

5 val youngest = allStudents.minBy(_.Age).Age

6 val oldest = allStudents.maxBy(_.Age).Age

7 }

The first striking difference is in the conciseness of the 2 implementations; 7
lines of Scala code in contrast to 21 in MSL (excluding blank lines). The Scala
version is, moreover, very likely to perform much better, since it avoids executing
2 additional queries against the database. In line 2 we declare a query selecting
all the students from the uniStudentsTable and then execute it by calling the
toList method on it. If we didn’t call toList, the code would compile too and
give the same result, except that it would execute 3 queries against the database
instead of one, since in Squeryl a query is executed every time some sort of
iteration is performed over it. Line 3 makes use of pattern matching in Scala –
it extracts the result of the partition method, which is a tuple of 2 lists, into
2 variables. The functions in lines 3–6 (partition, minBy, maxBy) are higher
order functions – they take other functions as parameters. The underscore
character ‘_’ denotes an argument to which the function passed as a parameter
should apply; in this case it’s a current element of the collection – a UniStudent

object.

Generally speaking, lines 2–6 owe their conciseness to the following Scala fea-
tures:

• higher order functions (functions that can take other functions as param-
eters), e.g., the comparison function <= passed as a parameter to the
partition method

26 MScala as a new language for business logic in Maconomy

• generic methods - methods in Scala can be parameterized with both values
and types, which allows for defining generic methods

• type inference - whenever a type can be inferred from the context, it does
not have to be specified. It results in a much more lightweight syntax,
similar to dynamically typed languages like python, yet preserving the
compile-time type-safety offered by statically typed languages.

• in-line variable declarations - variable declarations can be intermixed in
Scala with statements/expressions.

4.2.3 Example 2: SQL joins

MSL cursor queries do not support joins. In other words, an MSL cursor can
return a subset of fields of one table only. One can, however, bind 2 cursors
together by referencing one of them in the where clause of the other. This can
be seen as a substitute of an outer join. This workaround, however, can lead to
both very verbose and slow code.

Suppose we want to calculate the average of grades for a particular university,
which is given as a parameter. Listing 4.3 shows how it can be done in MSL.

Grades are stored in the CourseSubscription table, which is bound with the
given University by means of the UniCourse table. Basically, we have to iterate
through all the courses belonging to the given University, and for each of them
store the sum of grades and the number of subscriptions. Once the total sum of
grades and the number of course subscriptions belonging to the given University

are calculated, we can return the average as a simple division of the two values.

The corresponding Scala solution, shown in Listing 4.4, is as straightforward as
it can get. It defines one query calculating exactly what we want – the average
of grades for all of the courses at the given University.

Not only is the Scala version 4 times shorter, but also performs much better,
since it executes only one query against the database, as opposed to the MSL
version, which executes the number of queries equal to the number of courses
at the given University plus one, as we need to fetch all the courses first.
Moreover, the Scala query fetches only one number from the database, whereas
the MSL version fetches potentially a lot of data, which might be very expensive
performance-wise.

4.2 MScala by examples from the Maconomy domain 27

Listing 4.3: MSL: outer joins substitute

1 function GradeAverage(cursor University : University) : Real is

2 var

3 gradeSum: Real := 0;

4 avgCount : Integer := 0;

5

6 read cursor UniCourse is

7 select all from UniCourse

8 where UniversityId = University.Id;

9

10 read cursor CourseSubscription is

11 select sum(Grade) as GradeSum, count(Grade) as GradeCount from

å CourseSubscription

12 where CourseId = UniCourse.Id;

13

14 begin

15 for all UniCourse do

16 CheckFatal(Get(CourseSubscription));

17 if CourseSubscription.GradeCount > 0 then

18 gradeSum := gradeSum + CourseSubscription.GradeSum;

19 avgCount := avgCount + CourseSubscription.GradeCount;

20 end if;

21 end for; -- UniCourse

22 if avgCount = 0 then

23 return 0;

24 else

25 return gradeSum / avgCount;

26 end if;

27 end function;

Listing 4.4: Scala: inner joins

1 def gradeAverage(university : University) : BigDecimal = {

2 from(courseSubscriptionTable, uniCourseTable){ (cs,uc) =>

3 where(cs.CourseId === uc.id and uc.UniversityId === university.id)

4 compute(avg(cs.Grade))

5 }.getOrElse(0)

6 }

28 MScala as a new language for business logic in Maconomy

4.2.4 Example 3: Code reuse in cursors

An MSL cursor can be seen as a definition of a variable of some new type that is
valid only in the scope in which it has been defined. In other words, the variable
is a singleton instance of the newly defined type. In this respect, such a cursor
has quite a schizophrenic nature, as it can denote either a database query or
a current record, depending on the context in which it is used. In Listing 4.1,
we can see an example of this dual nature. In line 18 the AllStudents cursor
denotes a query – the Get function executes the query against the database. In
line 22 and 23 however, the very same identifier, AllStudents, denotes a current
record in the iteration.

This design decision, although saves a bit of typing needed to declare a separate
identifier for a current record, has some profound implications. It does not
allow for reusing cursor query declarations – neither is it possible to instantiate
a new query of this “type” nor to use the query as a subquery composed into
a more complex one. Moreover, when passed as a parameter to a function or
procedure, a cursor always denotes a reference to the current record, making it
impossible to reuse cursor definitions declared elsewhere. To sum it up, in MSL
every database query must be defined (typed or copied) anew, even though there
might be a lot of copies of the very same query in other places in the system.

In Scala, on the other hand, not only can one reuse the same query in all parts
of the system (e.g. by dependency injection), but also use it as a building block
to compose more and more complex queries. These capabilities are shown in
Listing 4.5, where subsequent queries are built out of the previously defined
ones.

4.3 Building succinct, reusable software compo-
nents in Scala

4.3.1 Object oriented concepts

Scala is a fully object-oriented language in a sense that all the entities in a
Scala program are objects. Object-oriented programming has been so successful
for the last decades, because this paradigm is particularly suitable for building
software systems out of reusable, loosely coupled components. The title of the
famous Design Patterns book [24] develops further as "Elements of Reusable
Object-Oriented Software", which is pretty self-descriptive. Concepts like ab-

4.3 Building succinct, reusable software components in Scala 29

Listing 4.5: Scala: reusable queries

1 def queryReuse(dtu : University){

2 val cursesAtDTU = uniCourseTable.where(uc => uc.UniversityId === dtu.

å id)

3 val courseSubscriptionsAtDTU =

4 from(cursesAtDTU, courseSubscriptionTable){ (ucAtDtu, cs) =>

5 where(ucAtDtu.id === cs.CourseId)

6 select(cs)

7 }

8

9 val studentsFromDtu =

10 from(courseSubscriptionsAtDTU, uniStudentTable){ (csAtDtu,s) =>

11 where(csAtDtu.StudentId === s.id)

12 select(s)

13 }.distinct

14

15 val maleStudentsFromDtu =

16 studentsFromDtu.where(s => s.Gender === MALE)

17 val femaleStudentsFromDtu =

18 studentsFromDtu.where(s => s.Gender === FEMALE)

19 }

stract members, polymorphism, type parameters, composition, encapsulation
via access modifiers etc. facilitate this reusability and help building extensible
software systems.

Scala goes even further than Java in expressing object-oriented abstractions.
The two main notions of abstractions in programming languages – abstract
members and parametrization – apply in Scala to fields, values methods and
types in a uniform way, as described in Section 3.1. Moreover, Scala ab-
stract type members, explicit selftypes, and modular mixin composition bring
up new capabilities in building reusable and scalable software components, as
described in the “Scalable Component Abstractions” paper by Martin Odersky
and Matthias Zenger [12].

To sum it up, Scala provides some very powerful object oriented concepts that,
when used wisely, can help structure complex software systems to make them
more comprehensible, scalable, extensible and to facilitate as much code reuse
as possible.

30 MScala as a new language for business logic in Maconomy

4.3.2 Functional concepts

The functional aspects of Scala are described in Section 3.1 Summing it up,
Scala provides a lightweight syntax for function literals, supports higher-order
functions, allows functions to be nested (closures), and supports currying. In
addition to that, pattern matching is supported out of the box for case classes
as well as for all the classes that define respective extractors.

Each of these features stand out in some particular applications and having
them in a toolbox allows for writing very succinct, easily understandable and
’right to the point’ code.

4.4 Conclusions

When solving Maconomy specific problems from scratch, idiomatic MScala so-
lutions tend to be much more concise, elegant and often better performance-
wise than the corresponding MSL solutions. In the large scale, Scala brings to
the table advanced object-oriented concepts like parametrization and abstract
members that allow for constructing generic and reusable software components,
which is basically infeasible in MSL.

In business terms it means shorter development time as well as a smaller, clearer,
more extensible and maintainable code base. In addition to that, a first-class
tool support, IDEs and libraries together with great DSLs hosting capabilities
of Scala can further boost the MSL developers’ productivity to a whole new
level, once they switch to Scala.

Chapter 5
Translating MSL core to

MScala

Chapter 4 presented some examples of how typical implementation tasks in
Maconomy can be expressed in a much more concise way in MScala compared
to MSL. When new functionality is to be implemented or the old code to be
refactored, Maconomy business logic developers can use the full power of MScala
to express the solutions in a clean and elegant manner.

However, what gives Maconomy a competitive edge is the functionality of the
current system, which is unique in the market. The 1 million lines of MSL
code, which implement all of these features, are a very valuable asset for the
Maconomy product and it is simply a business imperative that this code is
auto-translated when migrating to a new programming language.

In this chapter we describe in detail how to automatically translate each MSL
core language construct into a semantically equivalent MScala construct. All
the translations assume to have valid MSL input code. First, a straightforward
translation is defined, which results in MScala code that is not only semantically
equivalent but also very similarly looking to the source MSL code. Although
this might be seen as a benefit, since the auto-translated code will still look
familiar to the MSL developers, it also means porting all the weaknesses and
limitations of MSL to MScala that, after all, are the reasons to abandon MSL
and move to MScala in the first place. Therefore, we further define a number of

32 Translating MSL core to MScala

transformations that turn this straightforward translations into more idiomatic
Scala.

For every MSL language construct that does not have a straightforward equiva-
lent in Scala, we provide a design rationale for the chosen translation, sometimes
describing the alternatives that have been rejected. We believe that the contri-
bution of this thesis in terms of automatic translation lies not only in presenting
the final solutions, but mostly in describing in detail what kind of considerations
and trade-offs were involved when choosing between different alternatives.

5.1 Straightforward translations

5.1.1 Type system

Led by Occam’s razor principle, which is sometimes formulates as “plurality
should not be posited without necessity”, we decided to use Scala built-in types
whenever they could make up a good replacement for the corresponding MSL
types. Basically, the semantics of Boolean, Char and Integer in MSL is exactly
the same as the corresponding Boolean, Char and Int semantics in Scala. The
other MSL core types do not have straightforward equivalents in Scala, therefore
custom types have been introduced as their replacements. Table 5.1 shows the
correspondence between the MSL core and MScala types. The remainder of this
section describes each of these custom types translations in detail.

MSL core MScala
Boolean Boolean
Char Char
Integer Int
Real MReal
Amount MAmount
String MString
Array MArray
Record Classes with traits
Cursor MCursor

Table 5.1: Correspondence between MSL core and MScala types

5.1 Straightforward translations 33

5.1.1.1 Amount and Real

Amount and Real types in MSL are just arbitrary precision signed decimal num-
bers. MScala provides a wrapper around BigDecimal for each of them (MAmount
and MReal respectively), to be able to control their automatic conversion behav-
ior to other types. For instance, it should not be possible to add an amount to
a real number as it does not make sense in the Maconomy domain.

5.1.1.2 String

In MSL, strings are mutable sequences of characters. A character in a string
can be accessed using 1-based indexing. Since MSL strings are value types,
they are copied upon assignment. On the contrary, strings in Scala are 0-based
indexed, immutable sequences of characters with reference type semantics of
an assignment operation, i.e, an assignment binds a string object to a variable
(symbol).

Translation

MSL strings are translated into built-in Scala strings. Since strings in Scala
are immutable, there is no need to make a defensive copy upon assignment like
in MSL. The mutability aspect of MSL strings as well as the 1-based indexing
are solved by providing a rich wrapper around the Scala String class – MString
– along with an implicit conversion from String to MString.

Basically, whenever there is a type-safe assignment to a particular character
in a string, the MString wrapper provides a method update1based that takes
1-based index and the new character and returns a new string, with the char
at the given index replaced by the new char. The newly created string is then
assigned back to the same string variable, which emulates mutability of strings
in MSL.

Similarly, whenever a char at a particular 1-based index is referenced (not in an
assignment), MString provides a method get1based that takes this index as a
parameter and returns the indexed character.

Translation 1 shows an example of a function that performs some string manip-
ulations (it replaces ’S’ character by ’M’ character).

Table 5.2 formalizes the translation of the operations on strings, as well as some

34 Translating MSL core to MScala

Listing 5.1: MSL: operations on
strings

1 function testString() : Boolean is

2 var

3 s : String := "Scala String";

4 i : Integer := 1;

5 begin

6 while i <= s’no_of_elems do

7 if s[i] = "S" then

8 s[i] := "M";

9 end if;

10 i := i + 1;

11 end while;

12 return s = "Mcala Mtring";

13 end function;

Listing 5.2: MScala: operations on
strings

1 def testString(): Boolean = {

2 var s = "Scala String"

3 var i = 1

4 while(i <= s.size) {

5 if(s.get1based(i) == ’S’) {

6 s = s.update1based(i,’M’)

7 }

8 i = i + 1

9 }

10 return s == "Mcala Mtring"

11 }

Translation 1: Operations on strings

of its attributes (no_of_elems) and predefined functions (ConcatString).

MSL core MScala
<str_val>[<e1>] := <e2> <str_val> = <str_val>.

update1based(<e1>,<e2>)
<str_val>[<e1>] <str_val>.get1based(<e1>)

<str_val>’no_of_elems <str_val>.size
ConcatString(<str_val1>,<str_val2>) <str_val1> + <str_val2>

Table 5.2: String translations from MSL core to MScala

Rationale

Apart from the presented translation, an alternative solution has been con-
sidered. To deal with mutability and 1-based indexing as well as to keep the
Scala code operating on strings as close to the MSL source code as possible, one
could implement a custom 1-based indexed mutable String class. This would
not, however, solve the copy on assignment semantics of MSL, because it is
impossible in Scala to override the assignment operator. While translating the

5.1 Straightforward translations 35

code one could, of course, explicitly copy strings upon assignment as shown in
Listing 5.3.

Listing 5.3: Scala: alternative translation of strings

1 var str1 = MutableString("hard work")

2 MutableString(6) = ’p’

3 var str2 = str1.copy()

4 str2 = "changed value"

5 println(str1) //prints "hard pork"

6 println(str2) //prints "changed value"

Such auto-generated code would be, however, hard to maintain and interoperate
with, since it requires a user to call a copymethod whenever a string is reassigned
to a variable, but does not enforce it in any way, which is rather error-prone.

Strings are immutable in most of the modern programming languages (Scala,
Java, C#, F#, SML just to name a few) and this solution has a lot of advantages.
Immutable objects are better for concurrency, hashing and safe sharing (no
defensive copying needed). Besides that immutability of strings is crucial for
security / safety requirements. For these reasons it has been decided to use
standard Scala immutable strings, which is a merit on its own since we are
consistent with the host language.

Moreover, the methods get1based and update1based, offered by the MString

rich wrapper, encapsulate 1-based indexing in a transparent way and provide
meaningful names making it obvious that this is auto-generated code.

5.1.1.3 Array

MSL supports multi-dimensional arrays with custom indexing, e.g., like in the
Pascal programming language. That being said, the actual MSL code in the
Maconomy system uses almost exclusively one-dimensional arrays, with a few
exceptions of two-dimensional ones. For the sake of simplicity and due to time
constraints it has been decided to support only one-dimensional arrays in the
automatic translation and to emit error messages in case of multi-dimensional
arrays, so that they can be handled manually.

Translation

36 Translating MSL core to MScala

MScala provides MArray – a wrapper around a standard Scala Array – that
makes the translation of custom indexing clear and transparent. An instance of
MArray, once instantiated with a range object representing a custom indexing
range, is used with original MSL indexes that are then internally shifted to
match the underlying 0-based Array instance, whenever an element of the array
is accessed.

Translation 2 shows an example of a function that fills out an array with the
newElem character.

Listing 5.4: MSL: arrays

1 function testArray() : Boolean is

2 var

3 a : Array[1..10] of Integer;

4 i : Integer;

5 newElem : Integer := 7;

6 begin

7 i := a’first;

8 while i <= a’no_of_elems do

9 a[i] := newElem;

10 i := i + 1;

11 end while;

12 i := a’first;

13 while i <= a’no_of_elems do

14 if a[i] <> newElem then

15 return false;

16 end if;

17 i := i + 1;

18 end while;

19 return true;

20 end function;

Listing 5.5: MScala: arrays

1 def testArray(): Boolean = {

2 var a = MArray[Int](1 to 10)

3 var i = 0

4 var newElem = 7

5 i = a.first

6 while(i <= a.size) {

7 a(i) = newElem

8 i = i + 1

9 }

10 i = a.first

11 while(i <= a.size) {

12 if(a(i) != newElem) {

13 return false

14 }

15 i = i + 1

16 }

17 return true

18 }

Translation 2: Operations on arrays

Table 5.3 formalizes the translation of some of the array’s attributes (no_of_elems,
first, last).

5.1 Straightforward translations 37

MSL core MScala
<array_val>’no_of_elems <array_val>.size

<array_val>’first <array_val>.first
<array_val>’last <array_val>.last

Table 5.3: Arrays translations from MSL core to MScala

5.1.1.4 Record types

In MSL, a record is a user defined composite data type suitable for grouping data
elements together. It consists of a number of fields, which can be of primitive
type only. Records cannot, in particular, have fields that are also records or
arrays.

Records are structural types and as such comply with structural subtyping re-
lationships, i.e., a record A is a structural subtype of a record B iff all the fields
of B (having the same names and types) can be found in A.

Moreover, records exhibit one more interesting characteristic – a special seman-
tics of an assignment operation. Two records A and B are assignment compat-
ible if the set of fields S of one of them is a subset of the set of fields of the
other (again, taking into account the names and types). If compatible, we can
assign A to B as well as B to A with the semantics being that the values of the
fields in S are simply copied from one record to the other (other fields remain
unchanged). So in case of records, an assignment does not bind a new record in
memory to a variable - it just copies the values of the common fields.

Listing 5.6 shows a declaration of three records, whose names denote which
fields are present in the record.

In the given example, both AB and BC are structural subtypes of B. Moreover, the
pairs AB and B as well as BC and B are assignment compatible, which means that
it is possible to assign one record to the other. Records AB and BC are neither
assignment compatible nor in a structural subtyping relationship.

The type system of Scala is, at its roots, nominal [25], i.e., subtyping rela-
tionships are specified explicitly based not only on the presence of the same
members, but also on the same semantics of these members. There are two
means of specifying nominal subtyping in Scala – class inheritance and trait
mixin. Classes and traits are much richer concepts than records in MSL and
combined together can model records, structural subtyping and the peculiar
semantics of the assignment operation.

38 Translating MSL core to MScala

Listing 5.6: MSL records: structural subtyping and assignment compatibility

1 AB = record

2 A : Integer;

3 B : Integer;

4 end record;

5

6 B = record

7 B : Integer;

8 end record;

9

10 BC = record

11 B : Integer;

12 C : Integer;

13 end record;

It is worth mentioning that Scala supports structural subtyping too [25], but a
solution facilitating this feature has been rejected in favor of explicit modeling
of subtyping relationships via trait mixin. The rationale behind this design
decision is given after the chosen translation description.

Translation

The idea behind the proposed translation is to bring to MScala only the subtyp-
ing relationships that are actually present in the source program, i.e., to declare
that a record A is a subtype of a record B only if A is actually used in the code
as a subtype of B. The only places where it can happen in MSL are function
calls, in which a record of type B is expected as a formal parameter, but A is
given as the actual parameter. In this case, if all the fields of B are present in
A, then we can indeed say that A is a subtype of B and that was the intention
of the programmer who wrote the code and not merely a coincidence that these
two records happen to share the same fields.

So, whenever we encounter a function call where a record A of a type AT is
treated as a value of record type BT , where AT is a subtype of BT , we can
declare the type AT to mix-in a trait representing the type BT . Listings 5.7
and 5.8 show a translation of an example module using structural subtyping for
records.

5.1 Straightforward translations 39

Listing 5.7: MSL: Records Listing 5.8: MScala: Records

1 module Records is 1 object Records {

2 2 trait INamed {

3 type 3 var name: String

4 Named = 4 def update(that : INamed)

5 record 5 }

6 name : String; 6 case class Named(

7 end record; 7 var name: String = "")

8 8 extends INamed{

9 Person = 9 def update(that : INamed) {

10 record 10 name = that.name

11 name : String; 11 }

12 age : Integer; 12 }

13 end record; 13 trait IPerson {

14 14 var name: String

15 Employee = 15 var age: Int

16 record 16 def update(that : INamed)

17 name : String; 17 }

18 age : Integer; 18 case class Person(

19 company : String; 19 var name: String = "",

20 end record; 20 var age: Int = 0)

21 21 extends IPerson with INamed {

22 Painting = 22 def update(that : INamed) {

23 record 23 name = that.name

24 name : String; 24 }

25 age : Integer; 25 }

26 end record; 26 trait IEmployee {

27 27 var name: String

28 procedure setName(28 var age: Int

29 var n : Named; 29 var company: String

30 newName : String) is 30 }

31 begin 31 case class Employee(

32 n.name := newName; 32 var name: String = "",

33 end procedure; 33 var age: Int = 0,

34 34 var company: String = "")

35 procedure copyNamedToPerson(35 extends IEmployee with IPerson{

36 var n : Named; 36 def update(that : INamed) {

37 var p : Person) is 37 name = that.name

38 begin 38 }

39 p := n; 39 }

40 end procedure; 40 trait IPainting {

40 Translating MSL core to MScala

41 41 var name: String

42 procedure resetNamed(42 var age: Int

43 var n : Named) is 43 }

44 var 44 case class Painting(

45 newNamed : Named; 45 var name: String = "",

46 begin 46 var age: Int = 0)

47 n := newNamed; 47 extends IPainting

48 end procedure; 48

49 49 def setName(

50 function testRecords() : 50 n : INamed,

å Boolean is 51 newName : String) {

51 var 52 n.name = newName

52 p : Person; 53 }

53 e : Employee; 54 def copyNamedToPerson(

54 begin 55 n : INamed,

55 setName(p, "Person"); 56 p : IPerson) {

56 e.age := 11; 57 p.update(n)

57 p.age := 44; 58 }

58 e.company := "Deltek"; 59 def resetNamed(n : INamed) {

59 copyNamedToPerson(p, e); 60 var newNamed = Named(Named())

60 resetNamed(p); 61 n.update(newNamed)

61 return (p.name = "" 62 }

62 and p.age = 44 63 def testRecords(): Boolean = {

63 and e.name = "Person" 64 var p = Person()

64 and e.age = 11 65 var e = Employee()

65 and e.company = " 66 setName(p,"Person")

å Deltek"); 67 e.age = 11

66 end function; 68 p.age = 44

67 end 69 e.company = "Deltek"

70 copyNamedToPerson(p,e)

71 resetNamed(p)

72 return p.name == "" &&

73 p.age == 44 &&

74 e.name == "Person" &&

75 e.age == 11 &&

76 e.company == "Deltek"

77 }

78 }

In the given example, every record is translated into a Scala trait declaring all

5.1 Straightforward translations 41

the fields present in the record. Then such a trait can be used as a type of a
formal parameter in a function signature. For instance, the setName procedure
declared in the MSL listing in line 28 takes as a parameter a record n of type
Named. This procedure is further called in function testRecords in line 55 with a
record e of type Employee. Therefore the Scala class Employee extends the trait
INamed, which introduces the detected subtyping relationship. Similarly, in line
59 the copyNamedToPerson procedure expects the parameters of types Named and
Person, but is given a Person and an Employee respectively. For this reason, the
Scala class Person mixes in the INamed trait and the Employee class mixes in the
IPerson trait.

Assignments to records are handled in a similar manner. For every pair of as-
signment compatible records A and B, if there is a an assignment from record
A to B, then it gets translated to an auto-generated update method on ob-
ject A that takes object B as a parameter. This update method simply copies
the subset of common fields’ values to the receiver’s fields. For example, the
copyNamedToPerson MSL procedure in line 39 from Listing 5.8 assigns a Named

record to a Person record. It gets translated to the update method call in line
57 in listing 5.7, which is declared in the IPerson trait and implemented by the
Person class.

Rationale

As mentioned briefly in the previous section, Scala has built-in support for struc-
tural subtyping, but there is a certain performance overhead associated with it.
Scala runs primarily on the JVM, which does not support structural types na-
tively. To get around this limitation, the Scala compiler uses reflection with
caching, which makes method invocations on structural types around 2-7 times
slower than on nominal types, depending on the cache hits/misses ratio [25].

Moreover, the type system of Scala is, at its roots, nominal, i.e., subtyping
relationships are specified explicitly based not only on the presence of the same
members, but also on the same semantics of these members. Such a solution,
although arguably more verbose, guarantees much better type safety since it
prohibits from treating two types, having incidentally the same members, as
subtypes of each other when they are conceptually completely different entities.
For instance, let us consider two classes: Person and Painting, each having
the same fields: name: String and age: Integer. A Painting is a structural
subtype of a Person, therefore, e.g., a method feed expecting a structural type
Person as a parameter could accept an instance of a Painting too, although
semantically it does not make much sense to feed a painting. For this reason,
e.g., the class Painting from Listing 5.8 does not mix in the IPerson trait,
because there is nothing in the code indicating that these entities should be the
subtypes of each other. This is a flexible solution, since at any point in time

42 Translating MSL core to MScala

any auto-translated records, which are in a structural subtyping relationship,
can be turned into nominal subtypes simply by mixing in one trait.

In addition to that, there are other drawbacks of using structural types. If
a method takes an instance of a structural type as a parameter, then every
object having the same members can be passed as a parameter to this method.
Once declared in this way, the structural type cannot be constrained in any way
by introducing nominal types on top of it, e.g., by specifying some additional
inheritance relationships. Hence once introduced to a system, structural types
will stay there forever, compromising type safety in the sense explained in the
previous paragraph.

That being said, there is also another, simpler way of turning structural subtyp-
ing relationships in MSL into nominal ones in Scala, different from the chosen
solution. To this end, one could generate a trait for each distinguishable field
name and type and then declare records as classes mixing in all the traits for the
fields they define. A simplified example of such a solution is shown in listings
5.9 and 5.10. Companion objects are introduced to define a name alias for the
type comprising mixed-in traits.

This solution, however, has several drawbacks. First of all, it requires a lot
of boilerplate code in the form of trait definitions for every distinct pair of a
field name and a corresponding type. Moreover, it truly encodes structural
subtyping, bringing to the table all of its weaknesses that have been already
discussed.

It is also important to mention that the chosen translation for records has some
drawbacks too – most notably its non-locality. In the general case all the code
has to be translated at once to resolve the use-sites of structural subtyping
and assignments for records. The problem lays in the fact that we cannot
translate record definitions separately, because whenever we encounter a use-
site of structural subtyping or an assignment for this record, we have to change
the translated code for it.

5.1 Straightforward translations 43

Listing 5.9: MSL: Records v. 2

1 Named =

2 record

3 name : String;

4 end record;

5

6 Person =

7 record

8 name : String;

9 age : Integer;

10 end record;

11

12 procedure setName(

13 var n : Named;

14 newName : String) is

15 begin

16 n.name := newName;

17 end procedure;

18

19 function test() : Boolean is

20 var

21 p : Person;

22 begin

23 setName(p, "name");

24 return p.name = "name";

25 end function;

Listing 5.10: MScala: Records v. 2

1 trait StructuralRecord {type T}

2

3 trait hasName{var name: String}

4 trait hasAge{var age : Int}

5

6 class Named(var name: String="")

7 extends hasName

8

9 object Named extends

å StructuralRecord{

10 type T = hasName

11 }

12

13 class Person(

14 var name : String = "",

15 var age : Int = 0)

16 extends hasName with hasAge

17

18 object Person extends

å StructuralRecord{

19 type T = hasName with hasAge

20 }

21

22 def setName(

23 p: Named.T,

24 newName:String) {

25 p.name = newName

26 }

27

28 def test() = {

29 var p = new Person()

30 setName(p,"name")

31 p.name == "name"

32 }

Translation 3: Records: alternative translation of structural subtyping

44 Translating MSL core to MScala

A slight modification of the chosen translation can give us the desired locality
property. Instead of using trait mixin to model subtyping relationship, we could
use an adapter pattern, supported by Scala natively by means of implicits.
Translation 4 shows a simplified example of how this can be achieved. In line
25 the MSL procedure setName is called with 2 instances of the Person record,
while it expects instances of Named. To model this subtyping relationship the
personToINamed adapter is introduced, which wraps the Person instance and
provides the INamed interface for it. Similarly the iNamedToUpdatable adapter
provides an update method taking another INamed as a parameter, which solves
the peculiar assignment semantics for MSL records. This solution, although
allows for local translation, is much more verbose that the chosen one. Moreover,
there is a certain merit in explicitly stating the subtyping relationships in one
place via trait mixin, i.e, it is immediately apparent what are the subtyping
relationships in the system. Obviously all the adapters could be placed in one
file too, but again – this solution is much more verbose than just enumerating
all the traits that are mixed into a class.

5.1.1.5 Cursor

Cursor is a means of expressing type-safe database queries in MSL. It also allows
for type-safe data manipulation, i.e., updates, inserts and deletes. As described
in Section 4.2.4, cursor has a dual nature: it denotes either a database query
definition or a current record of the query’s result set, depending on the context.
Listing 5.13 shows an example of a cursor definition and its use1.

Listing 5.13: MSL cursor as a query definition and a current record

1 -- query definition

2 read cursor UniStudent is

3 select all from UniStudent

4 order by Name;

5

6 --here UniStudent denotes a query

7 for all UniStudent do

8 -- and here the current record

9 if UniStudent.Name = "Piotr" then

10 return true;

11 end if;

12 end for;

1All the cursor examples in this section use the database schema introduced in Section 4.2.1

5.1 Straightforward translations 45

Listing 5.11: MSL: local translation
of records

1 type

2 Named =

3 record

4 name : String;

5 end record;

6

7 Person =

8 record

9 name : String;

10 age : Integer;

11 end record;

12

13 procedure setName(

14 var n : Named;

15 var n2 : Named) is

16 begin

17 n := n2;

18 end procedure;

19

20 function testRecords() :Boolean is

21 var

22 p1 : Person;

23 p2 : Person;

24 begin

25 setName(p1, p2);

26 return p1.name = p2.name;

27 end function;

Listing 5.12: MScala: local transla-
tion of records

1 trait INamed {

2 var name : String

3 }

4 case class Named(

5 var name: String = "")

6 extends INamed

7

8 trait IPerson {

9 var name : String

10 var age : Int

11 }

12 case class Person(

13 var name: String = "",

14 var age: Int = 0)

15 extends IPerson

16

17 implicit def personToINamed(

18 _person : Person) : INamed =

19 new INamed{

20 def name = _person.name

21 def name_=(that : String){

22 _person.name = that

23 }

24 }

25

26 implicit def iNamedToUpdatable(

27 _named : INamed) =

28 new {

29 val named = _named

30 def update(that : INamed){

31 named.name = that.name

32 }

33 }

34

35 def setName(n : INamed,

36 n2 : INamed) {

37 n.update(n2)

38 }

39 def testRecords(): Boolean = {

40 val p1 = Person()

41 val p2 = Person(name="p2")

42 setName(p1,p2)

43 return p1.name == p2.name

44 }

Translation 4: Records: using adapter pattern

46 Translating MSL core to MScala

Whenever a cursor’s field is referenced (like in line 9 of Listing 5.13), the cursor
denotes a current record. Otherwise, it denotes a database query.

There are two kinds of cursors – read and readwrite cursors. A read cursor can
only select data from a database, whereas a readwrite cursor can also update,
insert and delete data.

Translation

Squeryl [18] is a Scala database library supporting type-safe queries and data
manipulation statements. It has been chosen as basis for MScala language inte-
grated queries, as it is considered mature and one of the leading Scala database
libraries in the market. Moreover, Squeryl provides query abstractions that are
pretty close to MSL cursor, as opposed to the other leading database library –
ScalaQuery [14] – that has also been considered as a candidate.

Operations applicable for both read and readwrite cursors

We will start off by describing how to translate operations that can be applied to
both read and readwrite cursors. Translation 5 presents a full example utilizing
all of these operations. The next paragraphs describe the translations of the
individual operations in detail.

MScala defines MCursor – a wrapper around the Squeryl’s Query class, which
provides all the operations that can be performed on a cursor in MSL (see line 4
in Listing 5.15). The Get function, when applied to a cursor in MSL, executes
the query defined by the cursor against the database and sets the current record
to be the first record fetched from the database. The GetNext function moves
the current record pointer to the next record in the result set returned from the
database. When applied for the first time to a new cursor, it is semantically
equivalent to the Get function. Both of these functions return a Boolean value
indicating whether the operation was successful. The returned boolean value
is then, by convention, examined in one of the MSL check procedures ,e.g.
CheckFatal.

Translation 6, which is an excerpt from Translation 5 (lines 10-20), shows how
the MSL functions Get and GetNext are converted into corresponding MScala
methods of the MSLCursor class. Moreover, the class offers a currentRecord

field, which represents the record that the cursor is currently pointing at. In
this way MSLcurosr distinguishes between the two semantics of cursors in MSL
– a query definition and a current record pointer.

5.1 Straightforward translations 47

Listing 5.14: MSL: read cursor oper-
ations

1 function testReadCursorOps() :

å Boolean is

2 var

3 name : String;

4 names : Array[1 .. 2] of String;

5 i : Integer := 0;

6 read cursor UniStudent is

7 select all from UniStudent

8 order by Name;

9 begin

10 names[1] := "Anna";

11 names[2] := "Jens";

12 CheckFatal(Get(UniStudent));

13 if UniStudent.Name <> "Anna" then

14 return false;

15 end if;

16 CheckFatal(GetNext(UniStudent));

17 if UniStudent.Name <> "Jens" then

18 return false;

19 end if;

20 CheckFatal(Get(UniStudent));

21 if UniStudent.Name <> "Anna" then

22 return false;

23 end if;

24 i := 1;

25 for all UniStudent do

26 if UniStudent.Name <> names[i]

å then

27 return false;

28 end if;

29 i := i + 1;

30 end for;

31 CheckFatal(Get(UniStudent));

32 i := 1;

33 repeat

34 if UniStudent.Name <> names[i]

å then

35 return false;

36 end if;

37 i := i + 1;

38 until not GetNext(UniStudent);

39 return true;

40 end function;

Listing 5.15: MScala: read cursor
operations

1 def testReadCursorOps() :Boolean ={

2 var names = MArray[String](1 to

å 2)

3 var i = 0

4 val UniStudentQuery = new

å MSLCursor(

5 from(uniStudentTable)(u =>

6 select(u)

7 orderBy(u.Name)

8)

9)

10 names(1) = "Anna"

11 names(2) = "Jens"

12 checkFatal(UniStudentQuery.get)

13 if(UniStudentQuery.currentRecord.

å Name != "Anna")

14 return false

15 checkFatal(UniStudentQuery.

å getNext)

16 if(UniStudentQuery.currentRecord.

å Name != "Jens")

17 return false

18 checkFatal(UniStudentQuery.get)

19 if(UniStudentQuery.currentRecord.

å Name != "Anna")

20 return false

21 i = 1

22 for(UniStudent<-UniStudentQuery){

23 if(UniStudent.Name != names(i))

24 return false

25 i = i + 1;

26 }

27 checkFatal(UniStudentQuery.get)

28 i = 1

29 repeat{

30 if(UniStudentQuery.

31 currentRecord.Name != names(i))

32 return false

33 i = i + 1

34 } until(!UniStudentQuery.getNext)

35 return true

36 }

Translation 5: Operations on read cursor

48 Translating MSL core to MScala

Listing 5.16: MSL: Get and Get-
Next

1 names[1] := "Anna";

2 names[2] := "Jens";

3 CheckFatal(Get(UniStudent));

4 if UniStudent.Name <> "Anna" then

5 return false;

6 end if;

7 CheckFatal(GetNext(UniStudent));

8 if UniStudent.Name <> "Jens" then

9 return false;

10 end if;

11 CheckFatal(Get(UniStudent));

12 if UniStudent.Name <> "Anna" then

13 return false;

Listing 5.17: MScala: Get and Get-
Next

1 names(1) = "Anna"

2 names(2) = "Jens"

3 checkFatal(UniStudentQuery.get)

4 if(UniStudentQuery.currentRecord.

å Name != "Anna")

5 return false

6 checkFatal(UniStudentQuery.getNext)

7 if(UniStudentQuery.currentRecord.

å Name != "Jens")

8 return false

9 checkFatal(UniStudentQuery.get)

10 if(UniStudentQuery.currentRecord.

å Name != "Anna")

11 return false

Translation 6: Cursor-related functions: Get and GetNext

MSL provides a for all loop for cursors, which first executes the query defined
by the cursor against the database and then in every iteration moves the current
record pointer to the next record. It gets translated to a for loop in MScala,
where for each iteration a separate, locally scoped variable holding the current
record is instantiated. See Translation 7 for an example.

Operations on readwrite cursors

MSL provides a way of inserting, deleting and updating data in the database
by means of Put, Delete and Update functions respectively. These functions can
be called on a readwrite cursor that defines a select all query. When calling
one of these functions, the cursor parameter denotes the current record.

In MScala, objects that are returned from select all queries implement the
active record pattern [26], i.e., they provide put, delete and update methods
which persist/delete the record in the database. Translation 8 shows an example
utilizing Put and Delete functions to delete all the entries from the UniStudent

table and to insert 2 new students, named Anna and Jens respectively.

Translation 9 shows an example of updating a UniStudent record with Name = "Anna"

to a new name ("Piotr") and persisting it into the database. When used as a

5.1 Straightforward translations 49

Listing 5.18: MSL: For all loop

1 for all UniStudent do

2 if UniStudent.Name <> names[i]

å then

3 return false;

4 end if;

5 i := i + 1;

6 end for;

Listing 5.19: MScala: For all loop

1 for(UniStudent<-UniStudentQuery){

2 if(UniStudent.Name != names(i))

3 return false

4 i = i + 1;

5 }

Translation 7: For all iteration over a cursor

Listing 5.20: MSL: Put and Delete
functions

1 function setUpDb() : Boolean is

2 var

3 readwrite cursor UniStudent is

4 select all from UniStudent;

5 begin

6 for all UniStudent do

7 CheckFatal(Delete(UniStudent));

8 end if;

9 end for;

10 Initialize(UniStudent);

11 UniStudent.Name := "Anna";

12 CheckFatal(Put(UniStudent));

13 Initialize(UniStudent);

14 UniStudent.Name := "Jens";

15 CheckFatal(Put(UniStudent));

16 return true;

17 end function;

Listing 5.21: MScala: Put and
Delete functions

1 def testSetUpDb() : Boolean = {

2 val UniStudentQuery = new

å MSLCursor(

3 from(uniStudentTable)(select(_))

4)

5 for (UniStudent <-

å UniStudentQuery) {

6 checkFatal(UniStudent.delete())

7 }

8 UniStudentQuery.initialize(

å UniStudent())

9 UniStudentQuery.currentRecord.

å Name = "Anna"

10 checkFatal(UniStudentQuery.

å currentRecord.put())

11 UniStudentQuery.initialize(

å UniStudent())

12 UniStudentQuery.currentRecord.

å Name = "Jens"

13 checkFatal(UniStudentQuery.

å currentRecord.put())

14 return true

15 }

Translation 8: Put and Delete readwrite cursor functions

50 Translating MSL core to MScala

parameter to a function, an MSL cursor always denotes a current record. There-
fore, in the MScala auto translated code, the updateStudentName method takes
an instance of the IUniStudent trait as a parameter. The trait is present there
to model structural subtyping, which MSL cursors are subject to in exactly the
same way as described in Section 5.1.1.4 for MSL record types.

Listing 5.22: MSL: cursor updates

1 procedure updateStudentName(

2 var student : UniStudent) is

3 begin

4 student.Name := "Piotr";

5 end;

6

7 function testUpdates() : Boolean is

8 var

9 readwrite cursor UniStudent is

10 select all from UniStudent

11 where Name = "Anna";

12 begin

13 CheckFatal(Get(UniStudent));

14 updateStudentName(UniStudent);

15 CheckFatal(Update(UniStudent));

16 return true;

17 end function;

Listing 5.23: MScala: cursor up-
dates

1 def updateStudentName(

2 student : IUniStudent){

3 student.Name = "Piotr"

4 }

5

6 def testUpdates() : Boolean = {

7 val UniStudentQuery = new

å MSLCursor(

8 from(uniStudentTable)(u =>

9 where(u.Name === "Anna")

10 select(u)

11)

12)

13 checkFatal(UniStudentQuery.get)

14 updateStudentName(UniStudentQuery

å .currentRecord)

15 checkFatal(UniStudentQuery.

å currentRecord.update())

16 return true;

17 }

Translation 9: Cursor Updates and passing cursors as parameters

Cursor queries

MSL read cursors implement a substantial subset of SQL. The following para-
graph describes which SQL features are supported and how they get translated
into MScala. As for the MSL cursor limitations, it does not support joins, i.e.,
a cursor can select data from one database table only.

Translation 10 shows how one can select a number of fields from a database
table. It is supported in MScala by means of an anonymous class, which makes
the chosen fields available by name.

5.1 Straightforward translations 51

Listing 5.24: MSL cursor: arbitrary
fields selection

1 read cursor StudentName is

2 select Name,

3 LastName

4 from UniStudent;

Listing 5.25: MScala : arbitrary
fields selection

1 val studentNameQuery = new

å MSLCursor(

2 from(uniStudentTable)(s =>

3 select(new {var Name = s.Name;

4 var LastName = s.LastName})

5))

Translation 10: Arbitrary fields selection for MSL cursor

An MSL cursor also supports arbitrary where clauses as well as the order by

functionality. Translation 11 shows the corresponding MScala code.

Listing 5.26: MSL cursors: where
and order by

1 read cursor MaleStudent is

2 select all from UniStudent

3 where Gender = 1

4 order by Name asc;

Listing 5.27: MScala: where and
orderBy

1 val maleStudentQuery = new

å MSLCursor(

2 from(uniStudentTable)(s =>

3 where(s.Gender === 1)

4 select(s)

5 orderBy(s.Name asc)

6)

7)

Translation 11: MSL cursors: where clauses and order by

One of the core SQL functionalities are aggregate functions like avg, max, min,
sum and count, which are all supported by the MSL cursor. Usually, when such
an aggregate function is applied, its result is given a name alias through which it
can be further referenced. The Squeryl library supports aggregate functions, but
it does not allow for giving name aliases to them. To get around this limitation,
for every MSL cursor that contains aggregate functions with name aliases, an
implicit conversion function in MScala is generated, which acts as an adapter
providing the required name aliases.

Translation 12 shows a simple example of a query calculating a grade average
for all of the courses. In addition to that, an implicit conversion function is

52 Translating MSL core to MScala

generated. It can be seen in Listing 5.30 along with an example code of how
the query can be used.

Listing 5.28: MSL cursors with ag-
gregate functions

1 read cursor GradeAvarage is

2 select avg(Grade) as Value

3 from CourseSubscription;

Listing 5.29: MScala: cursors with
aggregate functions

1 val gradeAvgQuery = new MSLCursor(

2 from(courseSubscriptionTable)(

3 compute(avg(_.Grade))

4)

5)

Translation 12: MSL cursors: aggregate functions with name aliases

Listing 5.30: MScala: implicit adapter for name aliases

1 //implicit adapter placed in a special package object

2 implicit def readCursorCapabilities_GradeAvg_adapter[T]

3 (result : Measures[Option[T]]) = new {

4 def value = result.measures.get

5 }

6 //and its use

7 for(gradeAvarage <- gradeAvgQuery){

8 val avg : MReal = gradeAvarage.value // implicit conversion here

9 println(avg)

10 }

MSL cursors also allow for utilizing aggregate functions in queries in a more
sophisticated way, e.g., together with a group by clause. An example of how
this can be achieved in MSL and MScala is shown in Translation 13. The
corresponding implicit adapter is shown in Listing 5.33, along with an example
code of how the query can be used.

5.1.2 Statements

Most of the MSL core statements have their straightforward equivalents in pure
Scala, the only exception being the repeat .. until loop. MScala, however,
provides a custom implementation of this construct, as described in Section 3.2.

5.1 Straightforward translations 53

Listing 5.31: MSL cursors: aggre-
gate functions and
group by

1 read cursor StudentGradeAvg is

2 select StudentName,

3 StudentLastName,

4 avg(Grade) as Value,

5 count(Grade) as

å NumberOfCourses

6 from CourseSubscription

7 group by StudentName,

å StudentLastName;

Listing 5.32: MScala: aggregate
functions and group
by

1 val studentGradeAvgQuery = new

å MSLCursor(

2 from(courseSubscriptionTable)(cs

å =>

3 groupBy(cs.StudentName,

4 cs.StudentLastName)

5 compute(avg(cs.Grade),

6 count(cs.Grade))

7)

8)

Translation 13: MSL cursors: aggregate functions and group by

Listing 5.33: MScala: implicit adapter for name aliases and group by

1 //implicit adapter

2 implicit def readCursorCapabilities_StudentGradeAvg_adapter[T,U,V,W]

3 (a : GroupWithMeasures[Product2[T,U],Product2[Option[V],W]]) = new {

4 def studentName = a.key._1

5 def studentLastName = a.key._2

6 def value = a.measures._1.get

7 def numberOfCurses = a.measures._2

8 }

9

10 //and its use

11 for(studentGradeAvg <- studentGradeAvgQuery){

12 println(studentGradeAvg.studentName)

13 println(studentGradeAvg.studentLastName)

14 println(studentGradeAvg.value)

15 println(studentGradeAvg.numberOfCurses)

16 }

54 Translating MSL core to MScala

Translation 14 establishes the correspondence between MSL core and MScala
statements.

Listing 5.34: MSL: statements

1 --assignment

2 <variable> := <expr>

3

4 --if then else

5 if <Boolean expression> then

6 <Statement list>

7 [elsif <Boolean expression> then

8 <Statement list>]*
9 [else

10 <Statement list>]?

11 end if

12

13

14

15 --while

16 while <Boolean expression> do

17 <Statement list>

18 end while

19

20 --repeat until

21 repeat

22 <Statement list>

23 until <Boolean expression>

24

25 --call

26 <Procedure_name> [([<parameter

å list>]?)]?

27

28 --return

29 return <Expression>

Listing 5.35: MScala: statements

1 //assignment

2 <variable > = <expr>

3

4 //if then else

5 if (<Boolean expression>){

6 <Statement list>

7 }

8 [else if (<Boolean expression>){

9 <Statement list>

10 }]*
11 [else {

12 <Statement list>

13 }]?

14

15 //while

16 while (<Boolean expression>) {

17 <Statement list>

18 }

19

20 //repeat until

21 repeat {

22 <Statement list>

23 } until (<Boolean expression>)

24

25 //call

26 <Procedure_name> [([<parameter

å list>]?)]?

27

28 //return

29 return <Expression>

Translation 14: Statements

5.1.3 Expressions

Expressions in MSL are characterized by left to right, eager evaluation. The
same holds for Scala, unless we use more sophisticated features like lazy vals or

5.1 Straightforward translations 55

by-name parameters. These features, however, are not utilized for the automatic
code translation. Therefore, MSL expressions are simply parsed, then if any of
the translation rules described in this chapter applies to any of the operands
building the expression, the rule is applied. Finally, the transformed MScala
expression tree is pretty-printed according to the algorithm described by Ramsey
in “Unparsing expressions with prefix and postfix operators” [27], which takes
into account the precedence of operators in Scala, as described in the Scala
Language Specification [28].

5.1.4 Passing parameters to functions

5.1.4.1 By-reference parameters

MSL supports passing parameters to functions and procedures both by value
and by reference, which is denoted by prefixing the formal parameter with the
keyword var. In contrast, Scala does not support by-reference parameters, i.e.,
it is not possible to change a binding to a variable outside of its scope. However,
when passing parameters by value in Scala, we pass in fact the address of the
parameter (a Scala object) so it is possible to change its state via method calls.

Therefore, in order to emulate passing parameters by reference in Scala, one
can wrap it within another object and provide a means of changing the value
of the wrapped parameter. The wrapper class used in MScala can be see in
Listing 5.36.

Listing 5.36: Scala wrapper for by-reference parameters

1 case class MRef [T](var value : T)

So, if an MSL variable v of type T is at least once passed as a parameter to a
function f that expects a by-reference parameter, the variable must be declared
to have a type MRef[T] in MScala. Then, in the MScala translation every
reference to the variable v should be replaced by v.value, except when used
as an actual parameter to the function expecting a reference type. Naturally,
the function f must be declared as taking MRef[T] in MScala to indicate that it
expects by-reference parameter.

Translation 15 shows how the setString procedure, expecting the parameter s
to be passed by reference, gets translated to MScala as well as how it can be

56 Translating MSL core to MScala

called using by-reference convention.

Listing 5.37: MSL: by-reference pa-
rameters

1 procedure setString (

2 var s : String;

3 newVal : String) is

4 begin

5 s := newVal;

6 end procedure;

7

8 function testByRef() : Boolean is

9 var

10 str : String := "init";

11 newStr : String := "new string";

12 begin

13 setString(str, newStr);

14 return str = newStr;

15 end function;

Listing 5.38: MScala: by-reference
parameters

1 def setString(s : MRef[String],

2 newVal : String){

3 s.value = newVal

4 }

5

6 def testByRef(): Boolean = {

7 var str = MRef("init")

8 var newStr = "new string"

9 setString(str,newStr)

10 return str.value == newStr

11 }

Translation 15: By-reference parameters

5.1.4.2 Parameters as local variables

In MSL, a parameter passed to a function can be seen as a local variable available
in the function’s scope, i.e., it is possible to assign new values to it. This is
different in Scala, since parameters are passed as vals that cannot be assigned
new values.

Therefore, whenever in MSL code a parameter passed by value is assigned a
new value, a corresponding local variable must be declared in MScala.

Translation 16 shows an example of such a situation. The MSL variable i

is passed by value and then assigned a new value in line 7 in Listing 5.39.
Therefore, it must be declared as a var in MScala (Listing 5.40, line 4) and
initialized with the _i parameter, whose name is prefixed by an underscore
character to avoid name clash with the newly declared var. On the other hand,
the newV al parameter is not assigned a new value hence there is no need to
declare a var for it. The parameter a is passed by reference, therefore we can
safely assign a new value to it.

5.2 Optimizations: towards more idiomatic Scala code 57

Listing 5.39: MSL: parameters

1 procedure fillArray (

2 var a : Array[1..10] of Integer;

3 newVal : Integer;

4 i : Integer) is

5 begin

6 --bounds check

7 if i < a’first or

8 i > a’no_of_elems

9 then

10 i := a’first;

11 end if;

12 while i <= a’no_of_elems do

13 a[i] := newVal;

14 i := i + 1;

15 end while;

16 end procedure;

Listing 5.40: MScala: parameters

1 def fillArray(a: MRef[MArray[Int]],

2 newVal : Int,

3 _i : Int){

4 var i = _i

5 // bounds check

6 if(i < a.value.first ||

7 i > a.value.size) {

8 i = a.value.first

9 }

10 while(i <= a.value.size) {

11 a.value(i) = newVal

12 i = i + 1

13 }

14 }

Translation 16: Parameters as local variables

5.2 Optimizations: towards more idiomatic Scala
code

Section 5.1 describes how to translate the MSL core constructs in a rather
straightforward manner. In this way, we end up with MSL coded in MScala,
which is quite often far from how an idiomatic MScala solution to the task at
hand would look like. The purpose of this section is to present several opti-
mizations that can make the target MScala code more idiomatic. Chapter 6
further describes how the MSL core to MScala prototype translator supports
these optimization refinements of the target code.

5.2.1 Inlining variable declarations

Variables in MSL must be declared at the beginning of a function/procedure.
While such an approach simplifies building the compiler for a language, it is not
particularly comfortable to work with. When a variable is defined just before its
use, it is much easier to find its definition whenever needed. Moreover, it is clear
from the code which value the variable is assigned whereas when the variable is

58 Translating MSL core to MScala

defined at the beginning of a long function, it is easy to overlook references to
it and therefore hold wrong assumptions about its state.

Moreover, in Scala vars and vals must be assigned an initial value explicitly,
whereas in MSL this is implicit when an initial value is not specified. It is,
however, quite often the case that variables in MSL are initialized explicitly,
which makes a literal translation from MSL to Scala rather verbose. Translation
17 shows an example of such a situation. Variables that start with “yes” could
be easily defined inline, i.e., their definition could be combined with the first
assignment to it. On the contrary, the definitions of the variables that start
with “no” cannot be combined with the first assignment to it, since they are
further referenced in a scope outside of the first assignment.

In order to make the translated code look and feel more like idiomatic Scala,
one can combine the definitions of variables with the first assignments to them
whenever it is safe to do so. The definition of “safe” is in this case two-fold:

1. The first assignment must be at the same time a first reference to the
variable in question (as it appears statically in the code), and

2. Assuming that the declaration is moved to where the first assignment to
the variable is, there cannot be any references to the variable in the scopes
outside the scope of the first assignment.

Translation 18 shows a result of such an optimization.

5.2.2 Translating non-reassignable vars to vals

Because of its functional roots, immutability is always the first choice in Scala
whenever possible. Therefore, it is desired to structure code in a way that only
vals (equivalent to constants or final values in other programming languages)
are used. Variables in MSL are semantically equivalent to vars in Scala in a
sense that vars are reassignable symbols referring to objects in memory. Hence
a straightforward translation would turn all the MSL variables into Scala vars.
But whenever a variable is assigned a value only once, it can be safely turned into
a val, which gives compiler guarantees that the variable will not be reassigned
a new value in the code.

In lines 2–4 of Listing 5.5 the MSL variables are translated into Scala vars.
However, the variables a and newElem are not assigned new values after being
initialized, therefore they can be turned into vals. Translation 19 shows the
result of this optimization.

5.2 Optimizations: towards more idiomatic Scala code 59

Listing 5.41: MSL: variable defini-
tions

1 function VariablesRewrites (

2 paramToDeclareVar : Integer;

3 param: Integer) : Integer is

4 var

5 yes1 : Integer;

6 yes2 : Integer;

7 yes3 : Integer;

8 yes4 : Integer;

9 yes5 : String;

10 no1 : Integer;

11 no2 : Integer;

12 no3 : Integer;

13 begin

14 yes1 := param;

15 while yes1 > 1 do

16 no1 := yes1;

17 yes5 := "111";

18 if no1 > no2 then

19 yes2 := yes1;

20 yes5[1] := "X";

21 if 1 > 2 then

22 no3 := 1;

23 yes3 := 1;

24 elsif 2 > 3 then

25 yes4 := 4;

26 else

27 no3 := 2;

28 paramToDeclareVar := 7;

29 end if;

30 end if;

31 end while;

32 no2 := 10;

33 return no1;

34 end function;

Listing 5.42: MScala: variable defi-
nitions

1 def VariablesRewrites (

2 _paramToDeclareVar : Int,

3 param : Int): Int = {

4

5 var paramToDeclareVar =

å _paramToDeclareVar

6 var yes1 = 0

7 var yes2 = 0

8 var yes3 = 0

9 var yes4 = 0

10 var yes5 = ""

11 var no1 = 0

12 var no2 = 0

13 var no3 = 0

14 yes1 = param

15 while(yes1 > 1) {

16 no1 = yes1

17 yes5 = "111"

18 if(no1 > no2) {

19 yes2 = yes1

20 yes5 = yes5.update1based(1,’X’

å)

21 if(1 > 2) {

22 no3 = 1

23 yes3 = 1

24 } else if(2 > 3) {

25 yes4 = 4

26 }

27 else {

28 no3 = 2

29 paramToDeclareVar = 7

30 }

31 }

32 }

33 no2 = 10

34 return no1

35 }

Translation 17: Straightforward translation of variable definitions with no in-
lining

60 Translating MSL core to MScala

Listing 5.43: MSL: inline variables

1 function VariablesRewrites (

2 paramToDeclareVar : Integer;

3 param: Integer) : Integer is

4 var

5 yes1 : Integer;

6 yes2 : Integer;

7 yes3 : Integer;

8 yes4 : Integer;

9 yes5 : String;

10 no1 : Integer;

11 no2 : Integer;

12 no3 : Integer;

13 begin

14 yes1 := param;

15 while yes1 > 1 do

16 no1 := yes1;

17 yes5 := "111";

18 if no1 > no2 then

19 yes2 := yes1;

20 yes5[1] := "X";

21 if 1 > 2 then

22 no3 := 1;

23 yes3 := 1;

24 elsif 2 > 3 then

25 yes4 := 4;

26 else

27 no3 := 2;

28 paramToDeclareVar := 7;

29 end if;

30 end if;

31 end while;

32 no2 := 10;

33 return no1;

34 end function;

Listing 5.44: MScala: inline vari-
ables

1 def VariablesRewrites (

2 _paramToDeclareVar : Int,

3 param : Int): Int = {

4 var no1 = 0

5 var no2 = 0

6 var no3 = 0

7 var yes1 = param

8 while(yes1 > 1) {

9 no1 = yes1

10 var yes5 = "111"

11 if(no1 > no2) {

12 var yes2 = yes1

13 yes5 = yes5.update1based(1,’X

å ’)

14 if(1 > 2) {

15 no3 = 1

16 var yes3 = 1

17 } else if(2 > 3) {

18 var yes4 = 4

19 }

20 else {

21 no3 = 2

22 var paramToDeclareVar = 7

23 }

24 }

25 }

26 no2 = 10

27 return no1

28 }

Translation 18: Inlining variable definitions

5.2 Optimizations: towards more idiomatic Scala code 61

Listing 5.45: MSL: arrays

1 function testArray() : Boolean is

2 var

3 a : Array[1..10] of Integer;

4 i : Integer;

5 newElem : Integer := 7;

6 begin

7 i := a’first;

8 while i <= a’no_of_elems do

9 a[i] := newElem;

10 i := i + 1;

11 end while;

12 i := a’first;

13 while i <= a’no_of_elems do

14 if a[i] <> newElem then

15 return false;

16 end if;

17 i := i + 1;

18 end while;

19 return true;

20 end function;

Listing 5.46: MScala: arrays

1 def testArray(): Boolean = {

2 val a = MArray[Int](1 to 10)

3 var i = 0

4 val newElem = 7

5 i = a.first

6 while(i <= a.size) {

7 a(i) = newElem

8 i = i + 1

9 }

10 i = a.first

11 while(i <= a.size) {

12 if(a(i) != newElem) {

13 return false

14 }

15 i = i + 1

16 }

17 return true

18 }

Translation 19: Operations on arrays – turning non-reassignable vars to vals

62 Translating MSL core to MScala

5.2.3 Removing unnecessary MRef types

As described in Section 5.1.4.1, whenever an MSL function declares a formal
parameter of type T to be passed by reference, then the translated formal pa-
rameter type in MScala is MRef[T]. Such a translation preserves the semantics
of MSL, but can lead to Scala code that is more verbose than really needed.

For instance, arrays and records in MSL must be passed by reference whenever
used as parameters in functions. This requirement is imposed mostly for effi-
ciency reasons, i.e., it would be simply too expensive to copy entire records or
arrays if they were passed by value. In most of the cases though, it is not the
intention to change the binding to a variable in the calling code (which is es-
sentially the semantics of by-reference parameters) but to simply pass a pointer
to the record/array into the function so that the record’s fields or the array’s
contents can be changed.

This is perfectly aligned with the Scala pass by value semantics as far as objects
are concerned. Therefore, if a variable is passed by reference in the MSL code
but the receiving function does not reassign a new value to the variable, the
formal parameter type in MScala can be simplified from MRef[T] to T.

Translation 20 shows a non-optimized example of functions/procedures, which
expect by-reference parameters, but do not reassign new values to these parame-
ters. The parameter types get translated to MRef[T], although it is unnecessary.
Translation 21 shows an optimized version, where the unnecessary MRef[T] type
wrappers are removed.

5.3 Conclusions

In this chapter we have described how to automatically translate MSL core to
MScala. All of these transformations, except for the MSL cursor part, have
been implemented in the prototype translator that is delivered with this thesis.
The translator has been tested using a variety of different input files, for which
it produced correct results. Most of the MSL test functions were written in a
way that they would take no parameters and return true if a function behaves
as expected. Thus, testing these auto-translated functions in MScala was based
on calling them and checking whether they still return true. As for the original
Maconomy MSL code that was a subject to translation, the respective auto-
translated MScala code was examined manually to determine its correctness.

5.3 Conclusions 63

Listing 5.47: MSL: parameters

1 function isOne(var i : Integer) :

å Boolean is

2 begin

3 return i = 1;

4 end function;

5

6 function id(var ix : Integer) :

å Integer is

7 begin

8 isOne(ix);

9 return ix;

10 end function;

11

12 procedure setArray(

13 var a : Array[1..10] of Integer;

14 newElem : Integer) is

15 var

16 i : Integer;

17 begin

18 i := a’first;

19 while i <= a’no_of_elems do

20 a[i] := newElem;

21 i := i + 1;

22 end while;

23 end procedure;

24

25 function testArray() :Boolean is

26 var

27 a : Array[1 .. 10] of Integer;

28 i : Integer;

29 begin

30 setArray(a,10);

31 i := a’first;

32 while i <= a’no_of_elems do

33 if a[i] <> 10 then

34 return false;

35 end if;

36 i := i + 1;

37 end while;

38 return true;

39 end function;

Listing 5.48: MScala: parameters

1 def isOne(i: MRef[Int]): Boolean ={

2 return i.value == 1

3 }

4

5 def id(ix : MRef[Int]): Int = {

6 isOne(ix)

7 return ix.value

8 }

9

10 def setArray (

11 a : MRef[MArray[Int]],

12 newElem : Int) {

13 var i = a.value.first

14 while(i <= a.value.size) {

15 a.value(i) = newElem

16 i = i + 1

17 }

18 }

19

20 def testArray(): Boolean = {

21 val a = MRef(MArray[Int](1 to 10)

å)

22 setArray(a,10)

23 var i = a.value.first

24 while(i <= a.value.size) {

25 if(a.value(i) != 10) {

26 return false

27 }

28 i = i + 1

29 }

30 return true

31 }

Translation 20: Straightforward translation of by-reference parameters

64 Translating MSL core to MScala

Listing 5.49: MSL: parameters

1 function isOne(var i : Integer) :

å Boolean is

2 begin

3 return i = 1;

4 end function;

5

6 function id(var ix : Integer) :

å Integer is

7 begin

8 isOne(ix);

9 return ix;

10 end function;

11

12 procedure setArray(

13 var a : Array[1..10] of Integer;

14 newElem : Integer) is

15 var

16 i : Integer;

17 begin

18 i := a’first;

19 while i <= a’no_of_elems do

20 a[i] := newElem;

21 i := i + 1;

22 end while;

23 end procedure;

24

25 function testArray() :Boolean is

26 var

27 a : Array[1 .. 10] of Integer;

28 i : Integer;

29 begin

30 setArray(a,10);

31 i := a’first;

32 while i <= a’no_of_elems do

33 if a[i] <> 10 then

34 return false;

35 end if;

36 i := i + 1;

37 end while;

38 return true;

39 end function;

Listing 5.50: MScala: parameters

1 def isOne(i : Int): Boolean = {

2 return i == 1

3 }

4

5 def id(ix : Int): Int = {

6 isOne(ix)

7 return ix

8 }

9

10 def setArray(

11 a : MArray[Int],

12 newElem : Int) {

13 var i = a.first

14 while(i <= a.size) {

15 a(i) = newElem

16 i = i + 1

17 }

18 }

19

20 def testArray(): Boolean = {

21 val a = MArray[Int](1 to 10)

22 setArray(a,10)

23 var i = a.first

24 while(i <= a.size) {

25 if(a(i) != 10) {

26 return false

27 }

28 i = i + 1

29 }

30 return true

31 }

Translation 21: Optimized translation of by-reference parameters

5.3 Conclusions 65

The optimized translations defined in this chapter usually result in the target
MScala code that is at least as concise as the source MSL code. There are
rare cases, however, where the reconciliation of substantial differences between
the two languages required a fair amount of boilerplate code. For instance, in
order to emulate structural subtyping in MSL by nominal subtyping in MScala,
classes and cursors mix-in a number of traits that were not present in the source
MSL code. This solution is arguably more verbose, but at the same time brings
to the table all the benefits of nominal subtyping, which can be considered a
good thing. Another example of not necessarily pleasant to read auto-translated
boilerplate code is the implicit adapters generated for MSL cursors containing
aggregate functions, as shown in Listing 13. This boilerplate code, however, can
be placed in some predefined package object so that the developers do not see
it unless they are very curious.

It is important to bear in mind that by the help of top-class tooling as well as
the flexibility of the language, the auto translated MScala code can be much
easier refactored compared to MSL.

66 Translating MSL core to MScala

Chapter 6

Architecture of the MSL core
to MScala translator

A source to source translator can be seen as a special kind of compiler, since
it takes a source code in one programming language and outputs semantically
equivalent target code in another programming language. In case of traditional
compilers, the output language is a low-level language (e.g. byte-code or machine
code), whereas translators emit code in a higher-level language.

Compiler construction has been a vary vital and lively research field for the last
50 years, with a lot of focus on algorithms performing certain semantic analysis
phases, optimization phases etc. As for the architecture of a compiler, however,
there does not seem to be a state-of-the-art way of structuring a compiler. In
particular, Lambda the Ultimate – one of the most popular scientific on-line
forums that has to do with programming languages design – hosts a very inter-
esting discussion about what is known as the abstract syntax tree (AST) typing
problem [29]. The problem is basically about how to structure a compiler in a
statically typed language so that the consecutive compiler passes are guaranteed
to accept only a valid version of the AST, that has already undergone partic-
ular analysis phases and perhaps optimization phases. The solution should be
type-safe, i.e., the validity of the input AST for a particular phase should be
guaranteed by its type, which denotes that the AST has the required form and
all the attributes that are needed for the phase in question.

68 Architecture of the MSL core to MScala translator

This problem is obviously valid for source to source translators. In addition
to that, there are also other important requirements. A translator should be
extensible – i.e it should be easy to define new analysis and transformation
phases and integrate them with the existing ones. Moreover, the architecture
should be clear and testable. Translation rules should be composable in a sense
that it should be possible to define simple and easily understandable translation
rules that can be combined together in a clear and transparent way.

The MSL core to MScala translator is built on top of the architecture that
meets all of these requirements. It incorporates state-of-the-art concepts in
compiler construction such as term rewriting [3], attribute grammars [2] and
pretty printing [30]. All of these powerful concepts are implemented in the
Kiama language processing library [31] as internal Scala DSLs, which is in itself
a strong evidence of how flexible Scala is as a host language for embedding
DSLs [19].

6.1 Architecture overview

When building a source to source translator, there are some essential steps that
cannot be skipped. First, the source code has to be parsed to obtain an AST.
Then, the AST is analyzed, rewritten – sometimes to a completely different
intermediate representation (IR) – and finally pretty printed.

Figure 6.1 shows a high-level overview of the MSL core to MScala translator’s
architecture. The MSL source code is parsed by means of Scala parser combina-
tors [9]. The parser outputs an immutable, MSL specific AST, which is further
decorated with different attributes that store the results of semantic analysis
passes like symbol resolving or type checking. Once this information is calcu-
lated, it can drive the translation into the MScala AST, which is carried out by
means of rewrite rules that apply to particular MSL nodes and turn them into
corresponding MScala nodes.

Once this step is completed, we obtain an immutable MScala AST that is the
result of all the all the straightforward translations described in Section 5.1. If
the AST was pretty printed at this stage, we would get the straightforward, non-
optimized translation. The architecture, however, supports successive rewriting
of the MScala AST in order to obtain optimized, more idiomatic MScala code,
as described in Section 5.2. This can be easily achieved by adding new at-
tributes, possibly referencing the existing ones, formulating new rewrite rules
and composing new optimization phases from them.

6.2 Attribute grammars 69

Figure 6.1: Overall architecture of the MSL core to MScala translator

6.2 Attribute grammars

Attribute grammars allow for adding new attributes to immutable AST nodes,
essentially solving the AST typing problem described in the beginning of this
chapter. Let us consider an example: a symbol resolution phase in a compiler
binds symbols to their respective definitions. Once carried out, all the symbols
in the program (e.g. variable references, function calls, type constructors) should
have references to their respective definitions. Here, the AST typing problem
comes into play – how do we add new attributes to the AST in a type-safe man-
ner, so that a transformation that requires an AST after the symbol resolution
can express it in its type signature?

One solution is to have multiple versions of the AST – actually, a separate
version for every analysis phase performed by the compiler. This is not very

70 Architecture of the MSL core to MScala translator

maintainable and can easily lead to a high number of versions of nearly the
same thing. On the other hand, we could have just one version of the AST with
mutable placeholders for attributes to be computed later on. But in this way we
give up type safety, since it is impossible to determine at compile-time whether
the required attributes have been computed or not.

The solution that Kiama advocates is to represent attributes as memoised func-
tions, i.e functions the results of which are cached, from AST nodes to attribute
values [32]. In their definitions, attributes usually refer to other attributes de-
fined for the neighboring nodes. Attributes defined in this way are lazy – noth-
ing is computed unless requested. The laziness (or equivalently, demand-driven
evaluation) takes care of dependencies between attributes, so one does not need
to explicitly schedule AST traversals.

Listing 6.1 shows an example of a subprogramDecl (subprogram declaration)
attribute definition for a CallStm (call statement) AST node, which computes
a MslSubprogramDef (subprogram definition) for the given call statement as a
part of symbol resolution.

Listing 6.1: Attribute definition - subprogram declaration for a call stm

1 val subprogramDecl : CallStm => MslSubprogramDef =

2 attr {

3 //attributes are defined as partial functions applicable for

4 //particular AST nodes - in this case a call statement node

5 case call @ CallStm(name, args) =>

6 (call->subprogramLookup(name)).getOrElse(UnknownSubprogramDef)

7 }

8

9 private val subprogramLookup : String => ASTNode => Option[

å MslSubprogramDef] = {

10 paramAttr{ //we define an attribute with a parameter

11 name => { // the String parameter is assigned to name

12 node => { //the ASTNode parameter is assigned to node

13 (node->enclosingSubprogram)

14 .parent[ModuleDef]

15 .subprograms.find (_.name == name)

16 }

17 }

18 }

19 }

The subprogramDecl attribute definition delegates the computation to another
attribute – subprogramLookup – also defined for the CallStm node, which searches

6.3 Strategy-based term rewriting 71

through all the subprogram definitions in the entire module. As already men-
tioned, these attributes are computed in a lazy manner and then cached in a
hash map to avoid potentially expensive recomputations.

It is also trivial to add new attributes to the AST. They can either reference
other attributes or be computed independently. This is type-safe, because once
we reference an attribute of the required type, its value is guaranteed to be
computed on demand and to remain constant.

6.3 Strategy-based term rewriting

Kiama implements the concepts defined in Stratego - a successful term rewrit-
ing language based around the concept of generic tree traversals [33]. Its se-
mantics [34] is naturally suited to a combinator-style implementation where a
strategy is implemented as a function that takes a subject term as argument
and returns either a transformed term or a failure indication.

Listing 6.2 presents an example of a function that rewrites simple arithmetic
expressions. It first defines 3 rewrite rules – multToShiftRule, simplifyNeg and
AddToMul. The multToShiftRule rule rewrites multiplications by the power of
two into corresponding shift left nodes. It is based on the function already de-
fined in Listing 3.4 in Section 3.1. The other two rules are just partial functions
matching particular AST nodes and defining simple rewrites. The individual
rules are then combined in line 21 by means of the + functional combinator that
has the same semantics as the OR operator in case of boolean expressions.

Everywherebu is a combinator that applies its argument to every sub-term of
the subject term in a bottom up fashion – i.e it starts with the leaf nodes and
proceeded further up the expression tree. Finally, rewrite applies its argument
strategy to an expression and, if it succeeds, returns the resulting expression,
otherwise it returns the original expression.

The goal of this example was to show how small rewrite rules can be combined
together by means of functional combinators to perform more complex trans-
formations. Kiama offers plenty of different predefined combinators that can fit
almost every need as far as strategy based rewriting is concerned. If unavailable,
it is rather easy to define new custom combinators.

In this way we achieve what we call composable translation rules. One can
easily plug-in a new translation rule by combining it with the existing ones by
means of a combinator with the required semantics. This enables extending the

72 Architecture of the MSL core to MScala translator

Listing 6.2: Kiama rewrite rules

1 def simplify : Exp => Exp = {

2 def mulToShift: Term => Term = {

3 case Mul(Shl(x,n),Num(y)) if y % 2 == 0

4 => mulToShift(Mul(Shl(x,n+1),Num(y/2)))

5 case Mul(x,Num(y)) if y % 2 == 0

6 => mulToShift(Mul(Shl(x,1),Num(y/2)))

7 case Mul(Num(x),y) => mulToShift(Mul(y,Num(x)))

8 case Mul(x, Num(1)) => x

9 case e => e

10 }

11 //make a rule out of the mulToShift function

12 val mulToShiftRule = rulef(mulToShift)

13 val simplifyNeg = rule{

14 case Neg(Neg(x)) => simplify(x)

15 }

16 val AddToMul = rule {

17 case Add (x, y) if x == y => simplify(Mul(Num(2), x))

18 }

19 // rewrite everywhere from bottom to up, applying

20 // simplifyNeg or AddToMul or mulToShiftRule to every node

21 rewrite(everywherebu(simplifyNeg + AddToMul + mulToShiftRule))

22 }

translator with new language features as well as new optimizations.

6.4 MSL core to MScala translator

This section describes how attribute grammars and strategy-based rewriting are
utilized in the MSL core to MScala translator.

The translator defines two versions of an abstract syntax tree – MSL and MScala
specific, both being fully immutable. The first translation phase transform the
MSL AST into MScala AST, which corresponds to the straightforward trans-
lations defined in Section 5.1. Each consecutive phase rewrites the immutable
MScala AST, incorporating the optimizations described in Section 5.2. This
approach is therefore purely functional – every translation phase take an im-
mutable AST as a parameter and returns a rewritten immutable AST.

6.4 MSL core to MScala translator 73

Typically, in order to perform a translation phase we need to carry out some sort
of semantic analysis and compute relevant attributes. Then, the rewrite rules
composed into rewrite strategies can reference the defined attributes. When
extending the translator, we can either add a new translation phase or hook into
the existing ones. Either way, adding new attributes to drive the translation
does not take more than simply defining the attributes, possibly by referencing
other attributes. Then, we can either rewrite the AST in a new pass, which
has no influence on the existing functionality, or hook into an existing pass by
combining our rewrite rules with the ones that already make up the pass. In
the latter case we have to be cautious though not to interfere with the existing
rules.

6.4.1 Architecture of the translator – properties

The proposed architecture, which the MSL to Scala prototype translator is
based on, allows for building composable translation phases out of composable
translation rules and further for combining the translation phases to define the
actual translation. This architecture is extensible across two axes: it enables
adding new source language features as well as new translation phases, which
can implement optimizations leading to more idiomatic target code.

Moreover, our functional approach to translation combined with attribute gram-
mars essentially solves the AST typing problem. When composing a new trans-
lation phase out of individual translation rules, we can specify in a type-safe
manner which attributes have to be present (computed) in the AST. Because
attributes are just higher order functions, they are computed on demand and
their results are cached. Therefore, referencing an attribute in a translation rule
is type safe, as its value is guaranteed to be computed on demand.

The possibility of plugging in and out individual translation rules and the en-
tire phases offers great scalability, extensibility and testability. Moreover, such
an architecture is very clear and easier to comprehend for humans than doing
everything in one pass.

On the other hand, such a flexibility does not come for free. There is a certain
performance overhead associated with storing attributes in a hash map rather
than directly in the AST nodes as fields. Moreover, doing everything in one
go is certainly faster than splitting the translation into consecutive translation
phases. We believe, however, that the flexibility, type-safety and extensibility of
the proposed architecture are definitely worth this little performance overhead,
especially taking into account that one of the most possible scenarios of using
the translator in migrating all the MSL code at once.

74 Architecture of the MSL core to MScala translator

6.5 Conclusions

Due to the high flexibility and extensibility of the MSL core to MScala translator
described in this chapter. it should be rather straightforward to extend it in
order to cover the full MSL language. In addition to that, more optimization
phases can be easily defined so that the target MScala code is more idiomatic.

Chapter 7

Discussion

As mentioned in the Introduction, the primary objective of this thesis was to
investigate whether Scala could be a good replacement for MSL. In this chapter
we evaluate the work that has been done, summarize the arguments given in
the previous chapters as well as provide some additional considerations to finally
draw the conclusion that is is indeed sensible and recommended to migrate the
MSL code base into Scala. Not only do we make such a recommendation, but
also provide an initial implementation of MScala along with the prototype MSL
core to MScala translator, which can be relatively easily extended to cover the
full MSL language.

7.1 Why migrate MSL to another existing lan-
guage

Let us first flip the question that this section seeks to answer and describe what
would be the benefits of keeping the Maconomy business logic code base in
MSL. Developing and maintaining a programming language in-house gives the
company full control over it. Requirements such as adding new features to the
language, migrating it to a new platform etc. are feasible and within reach of

76 Discussion

the company, provided that it is able to allocate enough resources to make it
happen.

MSL is a very restricted language with a relatively small number of features,
which makes the project of writing a translator from MSL to another language
doable within a sensible time frame. Such a migration is like buying a one-
way ticket though, because once the code is migrated to, say, Scala, building
a translator from Scala to another language suddenly becomes a huge task,
requiring enormous resources and strong expertise in programming languages
theory as well as compiler construction.This is certainly a risk that should be
taken into account when deciding whether to translate MSL into Scala or not.

That being said, risk management is all about balancing the benefits of a par-
ticular action with the risk associated with it. One of the most important
parameters when assessing the risk of an action is the likelihood of it to occur
as well as its consequences. The following sections summarize the main bene-
fits of migrating the MSL code base into Scala. In essence, this will certainly
strengthen Deltek’s long term competitive advantage by making the developers
faster in bringing new features to the market as well as gradually improving
the architecture of the Maconomy system in terms of scalability, maintainabil-
ity and reusability. Suppose the MSL code has been migrated to Scala and in
five years time other programming languages advance to such extend, that in
order to keep up with the competitors, the Scala code must be migrated again
to one of these new languages. First of all, Scala is one of the most innovative
languages today so this is very unlikely to happen. But assuming it did happen,
what would be the chances of Maconomy to be ahead of the competitors with
the 30 years old MSL on board, if Scala was too obsolete of a language and
had to be migrated to something more modern? In this scenario, sticking to
MSL would simply mean gradually loosing competitive advantage in favor of
more innovative competitors for the next five years, until a point when it might
be simply too late to innovate and thus survive. It is also worth pointing out
that migrating MSL to Scala really means migrating it to the JVM, thus en-
abling seamless interoperability with other JVM languages. Therefore, it would
be possible to switch business logic development language from Scala to some
other JVM language in the future, if such a requirement emerges. What is more,
the efforts of enabling Scala for the .NET platform are in a very advanced stage
[35] which also opens up a possibility of switching to a .NET language instead.

Let us now come back to the initial question: why migrate MSL to another
language? First of all, maintaining a language in-house is expensive. If having
this language does not provide any competitive advantage or, even worse, the
language is inferior to other open source programming languages available on
the market, then from the pure business standpoint it does not make any sense
at all to keep it. Moreover, developing a top-quality tool support, such as a

7.2 Advantages of MScala as a replacement for MSL 77

decent IDE is even more expensive than maintaining the language itself and,
to be done well, requires a lot of expertise. As we have shown in the course of
this thesis, Scala has a number of advantages over MSL. These advantages will
be summarized in the following sections. But even if Scala was just as good of
a language as MSL, it would pay off to migrate MSL to Scala just to be able
to leverage the top-class tool support it offers along with an uncounted number
of open source libraries and frameworks in the JVM ecosystem. In addition to
that, although Scala is still a fairly new language, it is now gaining momentum
and it is certainly easier to find a Scala developer on the market compared to
finding a former Maconomy’s employee, who happens to know MSL. Currently,
every newly hired MSL developer must be trained from scratch in using the
language, which is both costly and time consuming.

7.2 Advantages of MScala as a replacement for
MSL

As shown in Chapter 4, idiomatic MScala solutions to the typical problems
from the Maconomy domain tend to be much more concise and elegant than
the corresponding MSL solutions. Moreover, advanced object oriented as well
as functional concepts in Scala, explained in Chapters 3 and 4, make it possible
to build generic and reusable software components, which is basically infeasible
in MSL. Not only will it lead to further reduction in terms of lines of code, but
it will also make the code base easier to comprehend, more extensible and easier
to maintain.

Chapter 3 emphasizes that Scala provides a very lightweight way of implement-
ing library-based DSLs that look and feel like native language constructs. It
gives the application programmers a means of gradually raising the level of ab-
straction when expressing business logic concepts in the Maconomy system. In
this way the domain specialists can easily enrich MScala with new domain spe-
cific constructs, which will both make them more efficient in implementing new
functionality, as well as help their new colleagues get started much faster and
soon become productive programmers.

In addition, Typesafe [22], the company that is commercially supporting Scala,
is currently putting a lot of effort into improving the Eclipse plug-in for Scala,
which is already a top-quality development environment. Having a decent sup-
port for refactoring is of great significance when maintaining and evolving a very
large code base like in the case of the existing MSL code.

78 Discussion

7.3 MSL core to MScala translator

Not only does this thesis precisely describe how to translate each construct
included in MSL core, but it also provides a prototype implementation of the
MSL core to MScala translator. As shown in Chapter 5, the target MScala code
is in most of the cases at least as concise as the source MSL code. What is more,
the implemented translator supports composable translation phases so that new
optimization phases leading to more idiomatic (and hence concise) MScala code
can easily be plugged in. The translator can also be extended to handle new
MSL features so that eventually the full MSL language will be covered. This
can be achieved by means of composable translation rules.

7.4 Future work

The problem of migrating the existing MSL code base into Scala has several
dimensions to it. They range from business and risk management considerations,
through designing a good DSL embedded in Scala, quality assurance, i.e, making
sure that the translation produces semantically equivalent target code, up to
possible automatic refactoring of the code while performing the translation.

Due to time constraints, this thesis has been mostly focusing on showing that it
is indeed possible to translate the core part of MSL into MScala. We developed
a prototype of an MSL core to MScala translator, which is extensible both in
terms of adding new MSL features to be handled, as well as new optimization
phases that turn the target code into more idiomatic Scala. Some efforts have
been also dedicated to showing that the typical implementation problems from
the Maconomy domain can be solved in MScala in a much more concise and
elegant manner compared to MSL. Moreover, we have discussed the features of
Scala that support building reusable software components, which – in practice
– is impossible in MSL.

We believe that this thesis is a good foundation for migrating the MSL code
into Scala. There is, however, still a lot of work to be done to complete the
transition. First of all, there is a very important business aspect to it, namely,
how to make the transition as smooth as possible to avoid a drastic decrease in
the productivity of application developers. This might also have an impact on
the requirements for the translator. If a one-time translation is to take place,
then the performance requirements towards the translator are not so important.
Moreover, the translator can assume to have valid MSL code as input, i.e., the
code that has been successfully compiled by the MSL compiler. On the other

7.5 Related work 79

hand, if the translator is going to act as a cross-language compiler for a longer
period of time, during which the development is kept both in MSL and Scala
(i.e. everything is ultimately translated to Scala and compiled down to the Java
bytecode) then good performance of the translator is a very significant factor.
Moreover, in this scenario the translator must assume additional responsibilities
for performing all of the semantic analysis that used to be done by the MSL
compiler.

In such a migration project the quality assurance aspect is of critical importance.
Our approach of building translation phases out of composable translation rules
and of composing translation phases to define the actual translation has a great
potential for testability. This area, however, was not given much attention in
this thesis and should be explored further. Ideally, one could build a testing
framework that would be able to execute an MSL function against some prede-
fined (or auto-generated) data, then execute the corresponding auto-translated
MScala function and compare their results, which should be identical.

Finally, perhaps the most obvious and already mentioned area for future work
is to extend the translator to cover the full MSL language and to implement
more optimizations to increase the quality of the target MScala code.

7.5 Related work

In a narrow sense this thesis is unique as it solves a problem that has not been
even tackled before, namely, the problem of translating MSL into Scala. In a
broader sense, however, our work was very much focused on two research areas:
embedding domain specific languages in Scala as well as compiler construction,
with building source to source translators being particularly important.

When it comes to building source to source translators, Terrence Par discusses
various ways of going about this task in his book “Language implementation
patterns” [36]. He presents three basic strategies that one can take: syntax-
directed, rule-based and model-driven translations. Our approach incorporates
both rule-based and model-driven strategies.

Stratego/XT [33] is a language and toolset for program transformation, based
on the concept of rewrite rules. This concept has been incorporated into Kiama
– the language processing library that has been used to implement the MSL
core to MScala translator.

JastAdd [37] is another popular system for program transformation. It ad-

80 Discussion

vertises itself as a metacompilation system for generating language-based tools
such as compilers, source code analyzers, and source to source translators. Jas-
tAdd defines a declarative object oriented language based on reference attribute
grammars, which have also been included in the Kiama library.

When it comes to embedding domain specific languages in Scala, there is a
number of very successful examples in both research and industrial applications.
The Kiama language processing library provides internal Scala DSLs, which
express essentially the same concepts as the external DSLs that they have been
inspired by, such as Stratego/XT or JastAdd [19].

Scala itself comes along with two very powerful DSLs – actors [8] and parser
combinators [9]. Moreover, the Squeryl library, which has been used as a basis
for MScala cursor implementation, is itself a DSL embedded in Scala [18].

As for examples of application in some different domains, Delite [15, 38] is
a research project from Stanford University’s Pervasive Parallelism Laboratory
(PPL). Delite is a compiler framework and runtime for parallel embedded DSLs.
To enable the rapid construction of high performance, highly productive DSLs,
Delite provides several facilities, such as code generators for Scala, C++ and
CUDA, built-in parallel execution patterns, optimizers for parallel code as well
as a DSL runtime for heterogeneous hardware. OptiML [39] is a DSL for machine
learning based on Delite.

Chapter 8

Conclusion

We have designed and implemented MScala – an internal Scala DSL that is well-
suited for expressing business logic in the Maconomy system. Compared to MSL,
solutions to the typical implementation problems from the Maconomy domain
tend to be much more concise and elegant when expressed in MScala. The new
DSL is also suitable for being a target language for an automatic code translation
from MSL core. Not only have we shown and described precisely how to carry
out the translation, but we have also provided a prototype implementation of
the MSL core to MScala translator. The implemented translator is extensible
across tho axes: it makes it easy to add new MSL features to be handled as well
as to plug in new optimization phases leading to more idiomatic MScala code.

Abstracting from the Maconomy context, we believe that the architecture which
the MSL core to MScala translator is based on is a significant contribution in
itself. It is easy to reason about due to its functional nature – the consecutive
translation phases gradually rewrite an immutable AST. It essentially solves the
AST typing problem by utilizing the concept of reference attribute grammars.
Moreover, the properties of composable translation rules and translation phases
provide great flexibility, testability and extensibility.

These contributions are not only a proof of concept that it is indeed possible
to create a good internal Scala DSL for expressing business logic in Maconomy
and to achieve a high quality automatic translation. They also comprise a solid

82 Conclusion

foundation to build on top of, if Deltek decides to carry out the full migration
of the Maconomy MSL code base to Scala.

Appendix A

MSL core grammar

Listing A.1 shows the MSL core grammar, expressed in terms of notation used
by parser combinators. The notation is essentially equivalent to EBNF.

Listing A.1: MSL core grammar

1 /**
2 * Meaning of symbols:

3 * ~ : sequential composition

4 * opt(x) : x is optional

5 * rep(x) : repetition of x (0 or more times)

6 * a | b : deterministic choice - a or b

7 *
8 * Note that MSL is CASE INSENSITIVE

9 */

10 class MSLParser extends JavaTokenParsers{

11

12 /***
13 * Modules

14 **/

15 def moduleDef =

16 "module"~ident~"is"~opt("type"~rep(recordDef~";"))~rep(subprogramDef)~

å "end"

17

18 def recordDef =

84 MSL core grammar

19 ident~"="~"record"~rep(ident ~ ":"~mslType~";")~"end"~"record"

20

21 /***
22 * Subprograms

23 **/

24 def subprogramDef = procedureDef | functionDef

25

26 def procedureDef =

27 "procedure"~ident~opt("("~opt(formalParamList)~")")~"is"~block~"

å procedure;"

28

29 def functionDef =

30 "function"~ident~opt("("~opt(formalParamList)~")")~":"~mslType~"is"~

å block~"function;"

31

32 def formalParamList =

33 repsep(paramDef,";")

34

35 def paramDef =

36 opt("var")~ident~":"~mslType

37

38 def block =

39 declarativePart~statementPart

40

41 def declarativePart =

42 opt(varDefs)~opt(constDefs)

43

44 def varDefs =

45 "var"~> rep(varDef~";")

46

47 def constDefs =

48 "const"~> rep(varDef~";")

49

50 def varDef =

51 ident~":"~mslType~opt(":="~literal)

52

53 def constDef =

54 ident<~":"~mslType~":="~>literal

55

56 def mslType = (

57 primitiveType

58 | "array"~>"["~>repsep(wholeNumber~".."~wholeNumber,",")~"]"~"of" ~

å primitiveType

59 | ident

60)

61

62 def primitiveType = (

85

63 "INTEGER"

64 | "CHAR"

65 | "BOOLEAN"

66 | "AMOUNT"

67 | "REAL"

68 | "STRING"

69 | "VOID"

70)

71

72 /***
73 * Statements

74 **/

75 def statementPart =

76 "begin"~stmList~"end"

77

78 def stmList : Parser[Any] =

79 rep(statement~";")

80

81 def statement =

82 returnStm | repeatStm | ifElseStm | whileStm | assignmentStm | callStm

83

84 def assignmentStm =

85 variableRef~":="~expression

86

87 def callStm =

88 ident~opt("("~repsep(expression, ",")~")")

89

90 def returnStm =

91 "return"~expression

92

93 def whileStm =

94 "while"~expression~"do"~stmList~"end while"

95

96 def repeatStm =

97 "repeat"~stmList~"until"~expression

98

99 def ifElseStm =

100 "if"~expression~"then"~stmList~elsifStmsPart~elseStmPart<~"end if"

101

102 def elsifStmsPart =

103 rep("elsif"~expression~"then"~stmList)

104

105 def elseStmPart =

106 opt("else"~ stmList)

107

108 /***
109 * Expressions

86 MSL core grammar

110 **/

111

112 def expression =

113 booleanTerm~rep("or"~booleanTerm)

114

115 def booleanTerm =

116 booleanFactor~rep("and"~booleanFactor)

117

118 def booleanFactor =

119 simpleExpr~rep(

120 "="~simpleExpr

121 | "<>"~simpleExpr

122 | "<="~simpleExpr

123 | ">="~simpleExpr

124 | ">"~simpleExpr

125 | "<"~simpleExpr

126)

127

128 def simpleExpr =

129 term~rep(("+" | "-")~term)

130

131 def term =

132 factor~rep(("*" | "/" | "mod" | "div")~factor)

133

134 def factor : Parser[Any] = (

135 "-"~factor

136 | "+"~factor

137 | "not"~factor

138 | atom

139)

140

141 def atom = (

142 "("~expression~")"

143 | literal

144 | typeAttr

145 | ident~"("~repsep(expression, ",")~")"

146 | variableRef

147)

148

149 def variableRef = (

150 ident~"."~ident

151 | ident~"’"~ident

152 | ident~"["~expression~"]"

153 | ident

154)

155

156 def typeAttr =

87

157 primitiveType~"’"~ident~opt(expression)

158

159 def literal = (

160 floatingPointNumber

161 | wholeNumber

162 | "true".r

163 | "false".r

164 | charLiteral

165 | stringLiteral

166)

167 }

88 MSL core grammar

Appendix B
MSL core to MScala
prototype translator

The CD, which is delivered along with this thesis, contains the prototype MSL
core to MScala translator. Please read the ReadMe.txt file in the top folder of
the CD for the detailed instruction on how to use the translator.

90 MSL core to MScala prototype translator

Bibliography

[1] “Deltek Maconomy, ERP for professional services organizations.” http://

www.deltek.com/products/maconomy.aspx/, 2012.

[2] P. Deransart, M. Jourdan, and B. Lorho, Attribute grammars: definitions,
systems and bibliography. New York, NY, USA: Springer-Verlag New York,
Inc., 1988.

[3] E. Visser and Z.-E.-A. Benaissa, “A core language for rewriting,” Electronic
Notes in Theoretical Computer Science, vol. 15, 1998.

[4] Microsoft, “Linq: .net language-integrated query.” http://msdn.

microsoft.com/en-us/library/bb308959.aspx, 2007.

[5] M. Odersky and al., “An overview of the scala programming language,”
Tech. Rep. IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[6] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A Com-
prehensive Step-by-Step Guide, 2nd Edition. USA: Artima Incorporation,
2nd ed., 2011.

[7] A. Moors, T. Rompf, P. Haller, and M. Odersky, “Scala-virtualized,” in
Proceedings of the ACM SIGPLAN 2012 workshop on Partial evaluation
and program manipulation, PEPM ’12, (New York, NY, USA), pp. 117–
120, ACM, 2012.

[8] P. Haller and M. Odersky, “Scala actors: Unifying thread-based and event-
based programming,” Theor. Comput. Sci., vol. 410, no. 2-3, pp. 202–220,
2009.

http://www.deltek.com/products/maconomy.aspx/
http://www.deltek.com/products/maconomy.aspx/
http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://msdn.microsoft.com/en-us/library/bb308959.aspx

92 BIBLIOGRAPHY

[9] A. Moors, F. Piessens, and M. Odersky, “Parser combinators in scala,”
Tech. Rep. CW491, Department of Computer Science, K.U. Leuven, 2008.

[10] E. Burmako, M. Odersky, C. Vogt, S. Zeiger, and A. Moors,
“Sip 16: Self-cleaning macros.” https://docs.google.com/document/d/

1O879Iz-567FzVb8kw6N5OBpei9dnbW0ZaT7-XNSa6Cs/edit?pli=1, 2012.

[11] Semantic Designs, “Legacy software migration.” http://www.semdesigns.

com/Products/Services/LegacyMigration.html, 2012.

[12] M. Odersky and M. Zenger, “Scalable component abstractions,” in Pro-
ceedings of the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’05, (New
York, NY, USA), pp. 41–57, ACM, 2005.

[13] E. Truyen, W. Joosen, B. N. Jørgensen, and P. Verbaeten, “A generalization
and solution to the common ancestor dilemma problem in delegation-based
object systems,” in Proceedings of the 2004 Dynamic Aspects Workshop,
pp. 103–119, 2004.

[14] ScalaQuery.org, “A type-safe database API for Scala.” http://scalaquery.

org/, 2012.

[15] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “A heterogeneous parallel framework for domain-specific
languages,” in Proceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques, PACT ’11, (Washington, DC,
USA), pp. 89–100, IEEE Computer Society, 2011.

[16] A. Sujeeth, H. Lee, K. Brown, T. Rompf, H. Chafi, M. Wu, A. Atreya,
M. Odersky, and K. Olukotun, “Optiml: An implicitly parallel domain-
specific language for machine learning,” in Proceedings of the 28th In-
ternational Conference on Machine Learning (ICML-11) (L. Getoor and
T. Scheffer, eds.), ICML ’11, (New York, NY, USA), pp. 609–616, ACM,
June 2011.

[17] ScalaTest, “Scalatest github website.” https://github.com/rickynils/

scalacheck, 2012.

[18] Squeryl, “A Scala ORM and DSL for talking with databases with minimum
verbosity and maximum type safety.” http://squeryl.org/l, 2012.

[19] T. Sloane, “Experiences with Domain-specific Language Embedding in
Scala,” in Domain-Specific Program Development (J. Lawall and L. Réveil-
lère, eds.), (Nashville, United States), p. 7, 2008.

[20] The Scala programming language, “Research: Programming style and pro-
ductivity.” http://www.scala-lang.org/node/3069, 2012.

https://docs.google.com/document/d/1O879Iz-567FzVb8kw6N5OBpei9dnbW0ZaT7-XNSa6Cs/edit?pli=1
https://docs.google.com/document/d/1O879Iz-567FzVb8kw6N5OBpei9dnbW0ZaT7-XNSa6Cs/edit?pli=1
http://www.semdesigns.com/Products/Services/LegacyMigration.html
http://www.semdesigns.com/Products/Services/LegacyMigration.html
http://scalaquery.org/
http://scalaquery.org/
https://github.com/rickynils/scalacheck
https://github.com/rickynils/scalacheck
http://squeryl.org/l
http://www.scala-lang.org/node/3069

BIBLIOGRAPHY 93

[21] G. Dubochet, “Computer Code as a Medium for Human Communication:
Are Programming Languages Improving?,” in Proceedings of the 21st Work-
ing Conference on the Psychology of Programmers Interest Group (C. Ex-
ton and J. Buckley, eds.), (Limerick, Ireland), pp. 174–187, University of
Limerick, 2009.

[22] Typesafe, “Typesafe: the company’s official website.” http://typesafe.

com/, 2012.

[23] Eclipse IDE, “Scala ide for eclipse – roadmap.” http://scala-ide.org/

docs/dev/roadmap.html, 2012.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: el-
ements of reusable object-oriented software. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

[25] G. Dubochet and M. Odersky, “Compiling structural types on the jvm:
a comparison of reflective and generative techniques from scala’s perspec-
tive,” in Proceedings of the 4th workshop on the Implementation, Compi-
lation, Optimization of Object-Oriented Languages and Programming Sys-
tems, ICOOOLPS ’09, (New York, NY, USA), pp. 34–41, ACM, 2009.

[26] M. Fowler, Patterns of Enterprise Application Architecture. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[27] N. Ramsey, “Unparsing expressions with prefix and postfix operators,” tech.
rep., Charlottesville, VA, USA, 1997.

[28] M. Odersky, “The scala language specification version 2.9,” tech. rep.,
Switzerland, 2011.

[29] Lambda the Ultimate. The Programming Languages Weblog, “The AST
typing problem.” http://lambda-the-ultimate.org/node/4170, 2012.

[30] S. d. Swierstra and O. Chitil, “Linear, bounded, functional pretty-printing,”
J. Funct. Program., vol. 19, pp. 1–16, Jan. 2009.

[31] Kiama, “A scala library for language processing.” http://code.google.

com/p/kiama/, 2012.

[32] A. M. Sloane, L. C. L. Kats, and E. Visser, “A pure object-oriented embed-
ding of attribute grammars,” Electron. Notes Theor. Comput. Sci., vol. 253,
pp. 205–219, Sept. 2010.

[33] E. Visser, “Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9,” in Domain-Specific Program Gen-
eration (C. Lengauer et al., eds.), vol. 3016 of Lecture Notes in Computer
Science, pp. 216–238, Spinger-Verlag, June 2004.

http://typesafe.com/
http://typesafe.com/
http://scala-ide.org/docs/dev/roadmap.html
http://scala-ide.org/docs/dev/roadmap.html
http://lambda-the-ultimate.org/node/4170
http://code.google.com/p/kiama/
http://code.google.com/p/kiama/

94 BIBLIOGRAPHY

[34] M. Bravenboer, A. van Dam, K. Olmos, and E. Visser, “Program transfor-
mation with scoped dynamic rewrite rules,” Fundam. Inf., vol. 69, pp. 123–
178, July 2005.

[35] T. S. P. Language, “Scala comes to .Net.” http://www.scala-lang.org/

node/10299/, 2011.

[36] T. Parr, Language Implementation Patterns: Create Your Own Domain-
Specific and General Programming Languages. Pragmatic Bookshelf,
1st ed., 2009.

[37] G. Hedin, “An introductory tutorial on jastadd attribute grammars,”
in Proceedings of the 3rd international summer school conference on
Generative and transformational techniques in software engineering III,
GTTSE’09, (Berlin, Heidelberg), pp. 166–200, Springer-Verlag, 2011.

[38] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky,
and K. Olukotun, “Building-blocks for performance oriented dsls,” in DSL
(O. Danvy and C. chieh Shan, eds.), vol. 66 of EPTCS, pp. 93–117, 2011.

[39] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi, M. Wu, A. R.
Atreya, M. Odersky, and K. Olukotun, “Optiml: An implicitly parallel
domain-specific language for machine learning,” in ICML, pp. 609–616,
2011.

http://www.scala-lang.org/node/10299/
http://www.scala-lang.org/node/10299/

	Summary
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Scope
	1.4 Structure and main contributions

	2 MSL core
	2.1 Maconomy system
	2.2 MSL overview
	2.2.1 Domain specific features of MSL

	2.3 Methodology of choosing core MSL features
	2.4 MSL core
	2.5 Conclusions

	3 Scala as a host language for embedded DSLs
	3.1 Quick introduction to Scala
	3.2 DSL hosting capabilities of Scala
	3.2.1 Scala Virtualized
	3.2.2 Scala Macros

	3.3 Conclusions

	4 MScala as a new language for business logic in Maconomy
	4.1 Productivity gains from using Scala
	4.1.1 Research in programming style and productivity
	4.1.2 Tool support for Scala

	4.2 MScala by examples from the Maconomy domain
	4.2.1 Database schema
	4.2.2 Example 1: Operations on collections
	4.2.3 Example 2: SQL joins
	4.2.4 Example 3: Code reuse in cursors

	4.3 Building succinct, reusable software components in Scala
	4.3.1 Object oriented concepts
	4.3.2 Functional concepts

	4.4 Conclusions

	5 Translating MSL core to MScala
	5.1 Straightforward translations
	5.1.1 Type system
	5.1.2 Statements
	5.1.3 Expressions
	5.1.4 Passing parameters to functions

	5.2 Optimizations: towards more idiomatic Scala code
	5.2.1 Inlining variable declarations
	5.2.2 Translating non-reassignable vars to vals
	5.2.3 Removing unnecessary MRef types

	5.3 Conclusions

	6 Architecture of the MSL core to MScala translator
	6.1 Architecture overview
	6.2 Attribute grammars
	6.3 Strategy-based term rewriting
	6.4 MSL core to MScala translator
	6.4.1 Architecture of the translator – properties

	6.5 Conclusions

	7 Discussion
	7.1 Why migrate MSL to another existing language
	7.2 Advantages of MScala as a replacement for MSL
	7.3 MSL core to MScala translator
	7.4 Future work
	7.5 Related work

	8 Conclusion
	A MSL core grammar
	B MSL core to MScala prototype translator
	Bibliography

