
Tracking People Using IPhone To
Locate Their Avatars In The

Virtual World

Jorge Pérez Lahera

Kongens Lyngby 2012
IMM-M.Sc.-2012-80

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-M.Sc.-2012-80

Summary (English)

The goal of the thesis is to develop a tracking system using an iOS device and a
3D model mainly in the DTU campus area. The main objective of the system
is that the users will switch on the app when they are located in one of the
available 3D models. The app will send the users location to an Internet server.
The 3D models are available through an Internet website (realsite.dk) where the
user avatars will be represented tracking the user in real time.

Smartphones GPS sensors are usually not very accurate. To develop the best
algorithms for the tracking with the best accuracy possible, the device accu-
racy has to be analyzed and measured. That is why this thesis starts with an
extensive study of this sensor and the parameters that can be configured in
the iOS location services. All the main problems that were solved during the
development of this thesis are presented in the following sections.

The two most important parts of the proposed system have been completely
developed as part of this master thesis. The first part is the iPhone app, which
obtains and filters the positions of the users. Moreover, it allows the users to
upload a picture to be shown in their avatars. The other developed part is an
algorithm to represent the avatars in the 3D model; the row GPS measurements
cannot be placed directly since they are not accurate enough. Some of the
interesting improvements are that the system is able to detect when the user is
in an indoor or outdoor position. It leads the avatar to the door of the building
when they go inside or outside. Moreover, it detects when there is a big altitude
change; the avatars use the stairs in these cases.

ii

Summary (Danish)

Formålet med denne afhandling er at udvilke et sporingssystem, ved hjælp af en
iOS-enhed og en 3D model af DTU Campus. Idéen med systemet er at brugerne
tænder for app’en, når de befinder sig inden for et område med en tilgængelig 3D
model. App’en sender brugernes placering til en Internet server. 3D modellerne
er tilgængelige gennem en hjemmeside (realsite.dk), hvor brugernes avatarer vil
blive brugt til at spore brugerne i realtid.

GPS sensorer i Smarphones er normalt ikke ret præcise. For at udvikle den bed-
ste algoritme til sporing, med den bedst mulige præcision, er det nødvendigt
først at analysere nøjagtigheden af enheden. Derfor begynder denne afhandling
med en omfattende undersøgelse af sensoren og de parametre, der kan konfi-
gureres i iOS placeringsservices. Alle de problemer der blev løst i forløbet med
denne afhandling, bliver præsenteret i de efterfølgende afsnit.

De to vigtigste dele af det forslåede system er fuldt implementerede, som en
del af denne afhandling. Den første del er selve iPhone app’en, som henter og
filterer brugernes placeringer. Derudover giver det brugerne mulighed for at
uploade et billede, der bliver brugt på deres avatar. Den anden implementerede
del er en algoritme til at repræsentere brugernes avatar i 3D modellen; de rå
GPS målinger kan ikke placeres direkte, da de er meget upræcise. Nogle af de
interessante forbedringer er, at systemet kan opdage om brugeren er indendørs
eller udendørs. Det leder avataren til en dør i bygningen, hvis de bevæger sig
indendørs eller udendørs. Systemet kan også tage højde for hvis der er stor
højdeforskel; i det tilfælde bruger avataren trapperne.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfillment of the require-
ments for acquiring an M.Sc. in Telecommunications engineering. The thesis
was made in collaboration with Utopian city_scape as part of the Erasmus
exchange program during the Spring semester of 2012. It was supervised by
Michael Frederiksen, Sune Lehmann and Jakob Eg Larsen.

The thesis deals with high accuracy tracking systems using smartphone’s GPS
sensor.

The thesis consists of a prototype development of a tracking system using a 3D
model and a smartphone. The system collects the locations of the users using
the smartphone GPS sensor, improves them and represents the avatars of the
users in the 3D model.

Lyngby, 31-July-2012

Jorge Pérez Lahera

vi

Acknowledgements

I am grateful to all the people at Utopian city_scape for letting me do the master
thesis in their offices. They guided and supervised me during all the process.
I would like to thank my supervisors in DTU and University of Zaragoza for
helping my in the most difficult moments. Without them everything would
have been different. Thank to my family and friends who have supported and
encouraged me during all this period.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 2
1.2 Collaboration with Utopian City_Scape 6
1.3 Project requirements . 6
1.4 Project architecture . 7
1.5 Thesis structure . 7

2 Accuracy study of iOS location services 9
2.1 Introduction to the different location systems 9

2.1.1 Satellite positioning . 9
2.1.2 Wi-Fi positioning . 11
2.1.3 Cellular positioning . 13

2.2 Location services in iOS . 14
2.3 Experimental settings . 17

2.3.1 Analyzed devices . 17
2.3.2 Data collection and evaluation criteria 18

2.4 Analysis of Static Measurements 24
2.4.1 GPS data processing . 24
2.4.2 Horizontal accuracy comparison between different desired

accuracies in iOS . 25
2.4.3 Observed versus estimated accuracy in iPhone 30

x CONTENTS

2.4.4 Time to first-fix in iPhone 32
2.4.5 Comparison between different devices 35

2.5 Analysis of Measurements in motion 37
2.5.1 How to measure the real route 37
2.5.2 GPS data processing . 38
2.5.3 Calculated horizontal error 39
2.5.4 Filtering out inaccurate locations 42
2.5.5 Time and speed between different locations 45
2.5.6 Trying to detect when the user goes inside a building . . . 48

3 Representing the routes in the 3D model 51
3.1 Problem description . 51

3.1.1 Coordinates conversion 52
3.1.2 Crossing buildings and points in the top of the buildings . 52
3.1.3 Changes of altitude along the route 53
3.1.4 Fast change of heading . 54

3.2 Tools and concepts required . 54
3.2.1 Path finding . 54
3.2.2 Map matching . 55
3.2.3 Unity and the development environment 56

3.3 Solution designed . 58
3.3.1 System requirements . 58
3.3.2 Converting from geographic to DTU coordinates and vice

versa . 59
3.3.3 Algorithms developed to represent the avatar in the model 61

3.4 Results . 72
3.5 Future improvements . 74

4 Final functional system 77
4.1 System architecture . 77
4.2 Mobile application . 79

4.2.1 Function . 79
4.2.2 Obtaining and processing location data 79
4.2.3 User interface . 80
4.2.4 Communication with the server 84

4.3 Server side . 85
4.4 Player in realsite.dk . 85
4.5 Potential improvements . 87

5 Conclusion 89

A Product Brief iPhone A-GPS chip 91

CONTENTS xi

B Routes maps and graphs 95
B.1 Routes which goes inside a building 95
B.2 Outdoor routes with curves . 100
B.3 Straight routes . 104

C Definition of DTU local coordinate system 107

D Routes maps and graphs after executing the algorithm 111

Bibliography 121

xii CONTENTS

Chapter 1

Introduction

This master thesis was carried out in the company UCS (Utopian city_scape).
This company has been developing 3D models of building complex during the
last five years. Examples of those are the 3D model of the DTU campus or the
Carlsberg Brewery. The main objective of the company is to develop interactive
3D models using gaming technologies. The 3D models are accessible using the
company website which is called realsite.dk. But now UCS wants to go an
step forward and connect these models with the real world taking advantage
of the extensive proliferation of the smartphones. Almost every smartphone
has a GPS, which allows mobile applications (named apps for the rest of the
document) to obtain the user locations; this has raised the amount of location-
based services in the market. The purpose of this master thesis is to develop
a system that will obtain the position of users carrying an iOS device and will
represent it in a 3D model of the corresponding area. All the test performed as
part of this work have been developed in the DTU campus, since UCS developed
an accurate 3D model of this area.

2 Introduction

1.1 Motivation

2011 was the first year in which vendors shipped more smartphones than PCs1.
According to this Catalyst research, the number of smartphones and tablets
shipped were 488 million while the netbooks and desktops were 414 million.
These mobile devices contain a huge number of sensors such as GPS, accelerom-
eter and compass. Moreover, they allow the user to be connected to the Internet
all the time using the cellular networks. The proliferation of these mobile devices
is changing the way the users connect to the Internet, new services have been
created using this platform in the last years which were unthinkable few years
ago. This is producing the biggest change in the Internet since the web 2.0, and
the introduction of new services that were unthinkable five years ago. That is
why many experts are stating that the future is just mobile. Examples of this
trend can be seen in the recent Facebook acquisition of Instagram for 1 billion
dollars2. Instagram was a two years old company with 15 employees and no
revenue. But it had more than 30 million users in iOS and huge traction. This
acquisition reinforces the idea of how import the mobile devices are nowadays
and how important are going to be in the future.

Although there are 953 million smartphone subscribers worldwide, the smart-
phone user adoption has huge upside, since the number of mobile phone sub-
scribers is 6.1 billions, as can be see in Figure 1.1. Moreover, as it is shown in
the same figure, the app market is a 12 billion dollars market growing 150% a
year. All these numbers motivate the author of this master thesis and UCS to
develop a system using smartphones. The development tools are very powerful,
which implies that the development time is sorter than using other platforms.
This allows companies like UCS to develop advanced services that using other
devices would have been much more expensive and maybe unattainable. One
of the reasons of the big success of smartphones is the fact that they create big
business opportunities for small companies such as UCS. Furthermore, these
numbers are going to keep growing in the future. As can be seen in Figure
1.2, the time that the users spend in the different medias and the advertising
expending are not evenly distributed. The percentage of advertising invested
in the Internet and in mobile devices is expected to grow in the future to com-
pensate the time that the users spend in these medias increasing the revenue in
these areas.

As described before, the smartphone business is a huge market that is growing
very fast and it is in the beginning of its expansion. The two more spread

1http://www.engadget.com/2012/02/03/canalys-more-smartphones-than-pcs-shipped
-in-2011/

2http://www.forbes.com/sites/bruceupbin/2012/04/09/facebook-buys-instagram-for
-1-billion-wheres-the-revenue/

http://www.engadget.com/2012/02/03/canalys-more-smartphones-than-pcs-shipped-in-2011/
http://www.engadget.com/2012/02/03/canalys-more-smartphones-than-pcs-shipped-in-2011/
http://www.forbes.com/sites/bruceupbin/2012/04/09/facebook-buys-instagram-for-1-billion-wheres-the-revenue/
http://www.forbes.com/sites/bruceupbin/2012/04/09/facebook-buys-instagram-for-1-billion-wheres-the-revenue/

1.1 Motivation 3

Figure 1.1: Global Smartphone vs Mobile Phone Subscriptions (left), mobile
apps revenue (right)a

a Internet trends at the All Things Digital conference http://www.forbes.com/sites/reu
vencohen/2012/05/30/top-internet-trends-for-2012-according-to-vc-firm-kleiner-p
erkins-caufield-byers/

smartphone operating systems are iOS and Android. As it was stated in the
comScore Reports April 2012, the market share of iOS and Android in U.S. is
50.8% and 31.4% respectively3. They are the only mobile operating systems
whose market share is growing nowadays. The number of apps available is
astonishing in both platforms, more than 500.000 and more than 400.000 in iOS
and Android respectively, as it is shown in Figure 1.2. The apple app store
crosses 25 billion downloads in March 20124. All these numbers indicates that
there are not only many smartphone users worldwide but also that they use apps
on a regular bases. The operating system selected for the mobile application that
was developed as part of the system of this master thesis is iOS. The selection
was made based on the available devices, which made easier to develop for this
platform. UCS wants to expand the system into Android devices in the future.

Every modern smartphone has a GPS sensor, a Wi-Fi receiver and is connected
to the cellular networks. This allows the phone to obtain the position of the user
very fast and with different levels of accuracy and battery consumption using a
hybrid positioning system. Since the point of view of the developer obtaining the
position of the user is really straight forward using high level libraries. But the
location services have still problems nowadays, if the application needs robust
accuracy. It cannot provide better accuracy than 5 – 10 m in many cases, as it
is demonstrated in this master thesis. This is a big problem for high accuracy
tracking systems like the one developed for this master thesis. This should
improve in the future with higher sensibility GPS chips and maybe using other

3http://www.comscore.com/Press_Events/Press_Releases/2012/6/comScore_Reports_A
pril_2012_U.S._Mobile_Subscriber_Market_Share

4http://www.engadget.com/2012/03/03/apple-app-store-25-billion/

http://www.forbes.com/sites/reuvencohen/2012/05/30/top-internet-trends-for-2012-according-to-vc-firm-kleiner-perkins-caufield-byers/
http://www.forbes.com/sites/reuvencohen/2012/05/30/top-internet-trends-for-2012-according-to-vc-firm-kleiner-perkins-caufield-byers/
http://www.forbes.com/sites/reuvencohen/2012/05/30/top-internet-trends-for-2012-according-to-vc-firm-kleiner-perkins-caufield-byers/
http://www.comscore.com/Press_Events/Press_Releases/2012/6/comScore_Reports_April_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2012/6/comScore_Reports_April_2012_U.S._Mobile_Subscriber_Market_Share
http://www.engadget.com/2012/03/03/apple-app-store-25-billion/

4 Introduction

Figure 1.2: % of time spent in media vs % of advertising spending (left)a,
number apps available across various stores (right)b

a Internet trends at the All Things Digital conference http://www.forbes.com/sites/reu
vencohen/2012/05/30/top-internet-trends-for-2012-according-to-vc-firm-kleiner-p
erkins-caufield-byers/

bhttp://visual.ly/world-mobile-apps-0

systems such as Galileo5.

The proliferation of the smartphones is bringing the population of LBS (location
based services) such as the system developed in this master thesis. Examples of
this are the social network Foursquare6 or Facebook places7, which allows users
to share their locations. Another example is the app that Apple release with iOS
5 that is called “Find My Friends”8 which shows the locations of your friends.
But these three examples cannot be considered as high accuracy tracking sys-
tems because the locations are updated on demand or at low frequency rate.
The most common apps that perform high rate tracking are sport monitoring
ones. The three most popular ones in this area are Endomondo9, Runkeeper10
and Runtastic11. Another app that does tracking of the user to share their po-
sitions in real time is Glympe12. These four examples perform similar actions
than the app that was developed as part of this master thesis; they obtain the
locations of the user and send it to an Internet server in real time.

However, the system developed in this master thesis, unlike all the tracking
systems described before, does not use a plain map to represent the routes. It
uses a high accuracy 3D model of the area where the tracking of the user was
performed. This fact makes this system so innovative, no other similar system
has been found. Although the great majority of the electronic maps that are

5http://en.wikipedia.org/wiki/Galileo_(satellite_navigation)
6https://foursquare.com/
7http://www.facebook.com/about/location/
8http://itunes.apple.com/us/app/find-my-friends/id466122094?mt=8
9http://www.endomondo.com/login

10http://runkeeper.com/
11http://www.runtastic.com/
12http://glympse.com/

http://www.forbes.com/sites/reuvencohen/2012/05/30/top-internet-trends-for-2012-according-to-vc-firm-kleiner-perkins-caufield-byers/
http://www.forbes.com/sites/reuvencohen/2012/05/30/top-internet-trends-for-2012-according-to-vc-firm-kleiner-perkins-caufield-byers/
http://www.forbes.com/sites/reuvencohen/2012/05/30/top-internet-trends-for-2012-according-to-vc-firm-kleiner-perkins-caufield-byers/
http://visual.ly/world-mobile-apps-0
http://en.wikipedia.org/wiki/Galileo_(satellite_navigation)
https://foursquare.com/
http://www.facebook.com/about/location/
http://itunes.apple.com/us/app/find-my-friends/id466122094?mt=8
http://www.endomondo.com/login
http://runkeeper.com/
http://www.runtastic.com/
http://glympse.com/

1.1 Motivation 5

usually used in computers or smartphones are plain such as Google Maps or
OpenStreetMap; the use of 3D maps is becoming more popular in the recent
years. Google maps has a 3D version of the most important cities in the world.
Moreover, other companies such as Upnext produce 3D maps of big cities, which
are available using their mobile application. Apple bough two companies that
produce 3D maps which are Poly9 and C3 Technologies in July 2010 and October
2011 respectively13. Last June, Apple announces that the new version of iOS,
iOS 6, will bring a new Apple made 3D maps14. An example of this 3D map
made by Apple can be seen in Figure 1.3 All these movements just indicate that
the 3D maps are the future of digital mapping.

Figure 1.3: New 3D maps in iOS 6a

ahttp://www.apple.com/ios/ios6/#maps

UCS has been producing interactive 3D maps for more than five years. Tracking
users using these 3D models will produce a novel digital representation of the
reality that have never done before. This master thesis is a proof of concept of
this system. Although the system does not have a direct useful implementation
yet, UCS and the author of this master thesis strongly believe in the usefulness of
this system in the future. The combination of the 3D models with the tracking
of users using smartphones is a field that has to grow in the future with the
popularization of 3D maps. The use of high accuracy 3D maps adds additional
information to the tracking of the users which can be used to improve the

13http://9to5mac.com/2011/10/29/apple-acquired-mind-blowing-3d-mapping-company
-c3-technologies-looking-to-take-ios-maps-to-the-next-level/

14http://techcrunch.com/2012/06/11/goodbye-to-google-maps-with-street-view-hel
lo-to-apples-new-maps-with-3d-flyovers/

http://www.apple.com/ios/ios6/#maps
http://9to5mac.com/2011/10/29/apple-acquired-mind-blowing-3d-mapping-company-c3-technologies-looking-to-take-ios-maps-to-the-next-level/
http://9to5mac.com/2011/10/29/apple-acquired-mind-blowing-3d-mapping-company-c3-technologies-looking-to-take-ios-maps-to-the-next-level/
http://techcrunch.com/2012/06/11/goodbye-to-google-maps-with-street-view-hello-to-apples-new-maps-with-3d-flyovers/
http://techcrunch.com/2012/06/11/goodbye-to-google-maps-with-street-view-hello-to-apples-new-maps-with-3d-flyovers/

6 Introduction

accuracy as it is demonstrated in this master thesis. The system can differentiate
where the buildings and the terrain are, therefore the user can be placed in each
moment in the correct place. An accurate altitude can be obtained for each
position unlike the one that the Location API obtains which usually has an
accuracy of more than 20 m. Other information that can be easily obtained is
where the roads are, the slope of a surface, where the doors of the buildings
are. All this information combined with intelligent designed algorithms can
transform really inaccurate routes into feasible routes that can be represented
in a high accurate 3D model as it is done in this master thesis.

1.2 Collaboration with Utopian City_Scape

This master thesis has been developed in collaboration with Utopian City_Scape.
UCS stated at the beginning the general requirements of the project. The whole
master thesis has been an innovation process in which the initial project has
evolved until the final result presented in this report. During all this evolution
the pursuit of each decision has been to find something useful and interesting
for both parts, the company and the student.

During the entire project the student has collaborated with the people of UCS.
They supervised and guided the work that the student was doing. The stu-
dent developed entirely the mobile application and the algorithm to improve
the routes. The UCS workers joined this algorithm with the company website
(realsite.dk) and did a web application which allows the app to store the routes
in the server database.

1.3 Project requirements

The general project requirements are to develop a system that tracks users in the
DTU area to place them in the 3D model. The system should be easy to scale
into other 3D models of the company and to integrate in the company’s actual
products. As it is demonstrated in this master thesis the developed system
fulfills all this requirements.

In more detail the required modules to be developed are:

• Analysis of the location services in iOS devices.

• IOS app to acquire the locations of the user and send it to the server.

1.4 Project architecture 7

• Server to store, process and send the locations to the 3D model player.

• 3D model player to see the routes, which includes algorithms to enhance
the raw routes received according to the 3D model details.

1.4 Project architecture

The final developed system is composed of three main parts, the mobile applica-
tion, the Internet server and the 3D model player. The mobile application is in
charge of obtaining the user locations using the GPS of the phone and sending
it to the UCS server. In order to do that, the app recognizes in which 3D model
the user is placed and asks for a route name. The positions that the app receives
are filtered and sent to the server in real time. The server stores these locations
for each route in a database. Each model has its own coordinate system; thus
the server performs the transformation from geographic coordinates to the coor-
dinates of each of these models. The 3D model player is accessible through the
company website (realsite.dk), which can be accessed using a PC browser. The
algorithm to improve the routes is executed in this side. Therefore, the server
sends the locations to the player. The user will be represented in this player in
real time when he is using the app.

1.5 Thesis structure

So far, this introduction has unveiled the motivation to do this project, the
project requirements and architecture. Moreover, it explained how the collabo-
ration with the company and the student worked during the whole project.

Chapter 2 is an accuracy study of the location services in iOS. The analysis
includes not only static positions but also recordings while moving. For the
static positions, the mean horizontal error for different configured accuracy levels
is compared. Moreover, the estimated accuracy and the time to first-fix are
analyzed. Regarding the positions recording in motion, several routes were
made in the DTU campus for this analysis. The mean error and the time
between different locations were studied. Furthermore, a noise filter and an
indoor detector were designed which are used in the following chapters.

Chapter 3 shows the algorithms that were designed to represent the routes in the
model since an avatar can not move in the model following the original route.
It presents how the coordinates are converted from geographic coordinates to

8 Introduction

DTU coordinates and vice versa. The result routes are analyzed and compared
with the original ones. To conclude this section, possible future improvements
of the algorithm are discussed.

Chapter 4 presents the final system integrated with realsite.dk.

Chapter 5 summarizes the whole report and emphasizes the most important
results presented.

Chapter 2

Accuracy study of iOS
location services

2.1 Introduction to the different location systems

In this first section, the different ways that smartphones are used to get the lo-
cation of the user is going to be briefly explained. All the modern smartphones
use a hybrid location system, this means that three different positioning tech-
nologies can be used to obtain the user locations. These systems are satellite
positioning (A-GPS), Wi-Fi positioning and cellular positioning.

2.1.1 Satellite positioning

Satellite positioning is a technology in which several satellites are used to esti-
mate the user location. The most well known satellite-positioning system nowa-
days is GPS (Global Positioning System). The GPS system was designed by
the United States Department of Defense (DoD), has been in Fully Operational
Capability (FOC) from July 1995. It was originally composed of 24 satellites
but currently it consists of 321. This assures that a mobile device equipped

1GPS Constellation Status ftp://tycho.usno.navy.mil/pub/gps/gpstd.txt

ftp://tycho.usno.navy.mil/pub/gps/gpstd.txt

10 Accuracy study of iOS location services

Figure 2.1: Example of hybrid positioning systema

ahttp://www.skyhookwireless.com/howitworks/loader_howitworks.swf

with a GPS receiver will catch up signals from at least four different satellites
[ZA06][ML08].

The GPS satellites broadcast two signals in the L1 (1575.42 MHz) and L2
(1227.60 MHz) bands, which broadcast time and orbital information; the lo-
cations are being calculated through this information. Two services are pro-
vided: the Standard Positioning Service (SPS) and the Precise Positioning Ser-
vice (PPS). SPS is the one that is used by the entire end costumer GPS enabled
products and is the one that is used in the devices analyzed in the project, while
PPS offers enhanced accuracy but it can only be used by authorized users for
instance the US army [Hub].

The majority of GPS-enabled smartphones, including all models of iPhone, em-
ploys a technology, which is called Assisted GPS (A-GPS) [GS05]. With this
technology a remote GPS location server performs many functions that usually
are performed in a full GPS receiver. This server provides the A-GPS device
with satellite orbit and clock information and position computation. The mobile
device does not need to decode the GPS messages or perform a search for visible
satellites when the system is starting, the server assists the device in these tasks.
These improve the power consumption and the time-to-first-fix [ML08] over the
traditional GPS receivers [Zan09].

The signal propagation errors limit the GPS accuracy. These are the typical
errors that may be encountered in all satellite communications. The signal in
the path from the satellite to the mobile device does not have a constant speed,

http://www.skyhookwireless.com/howitworks/loader_howitworks.swf

2.1 Introduction to the different location systems 11

this produces a inconsistent propagation delay. Moreover, the signal bounces
off obstacles before arriving to the device antenna; this produces signal quality
degradation due to multipath fading errors.

Neither GPS nor A-GPS works well in high-density urban areas and in indoor
locations due to poor satellite visibility and signal attenuations. High-sensitivity
GPS (HSGPS) chip sets try to solve this problem and are implemented in many
new A-GPS receivers. But even with this chipsets there are many locations
where the device is not able to find the current position.

Hence, other positioning systems apart from GPS have to be implemented in
smartphones if the user has to receive a position in all the locations. Almost
all smartphones deploy Wi-Fi positioning and cellular positioning in addition to
A-GPS, which are explained in the following sections.

2.1.2 Wi-Fi positioning

This technology uses WiFi access points (APs) to determine the user location.
Over the last several years millions of wireless networks have been deployed
everywhere. Nowadays, it is hard to find a place inside a city where there is
no WiFi APs available, a study about APs density can be found in [JL07].
Each AP has a unique identifier that is called BSSID which is the MAC address
of the AP and in order to be visible for other devices beacon frames are sent
periodically. These facts make WiFi access a very appropriate location system
in the places where A-GPS is less accurate or even can not give a location which
is in high density urban areas and indoor locations. Thus, the WiFi positioning
enabled device records BSSID and signal strength of all the available networks
at a particular location to obtain the locations. This allows encrypted and weak
signals to be used.

As it is described in [Kue05], the WiFi positioning algorithms can be upstream
or downstream and are divided into three main categories: proximity sensing,
lateration and fingerprinting. In proximity sensing the position of the AP with
best signal strength is adopted. Lateration method tries to measure the distance
between the AP and the device using the path loss experienced by the beacon
packets during transmission. While with fingerprinting, the set of APs and the
signal strengths for these APs that the device receives in a location (“fingerprint”)
is compared with patterns that have been measured before at known locations.
The pattern that is more similar to the fingerprint that the device is measuring
meanwhile is adopted as the actual position [Hub].

Fingerprinting technologies have two big advantages over the other techniques.

12 Accuracy study of iOS location services

They do not require the exact location of the APs and do not try to model signal
strength. These advantages have made fingerprinting the preferred technology
for big scale WiFi positioning in metropolitan areas. In order fingerprinting
technologies to be available in an area, the WiFi signals have to be observed at
known locations in that area, this is called calibration phase or offline phase, as
it can be seen in Figure 2.2. During this phase, a WiFi receiver is hooked up
to a GPS device and the WiFi signals are recorded with the GPS positions as
the device moves through an area. This WiFi fingerprints for known locations
are stored in a database and compared with the signals that the device receives
when it is in an unknown location, the location is determined finding the closest
match, this phase is called positioning or online phase. There are several match-
ing techniques that have been developed for this, but the most widely used is
the K-nearest neighbor estimation because of its computational simplicity and
performs well in contrast with other techniques [Zan09] [SC05].

Figure 2.2: Collection of data for WiFi and Cellular positioninga

ahttp://www.skyhookwireless.com/howitworks/loader_howitworks.swf

Several WiFi positioning systems are currently in the market, the most remark-
able one is the one that is created by Skyhook Wireless which is used by ample
well known companies. It was also used in iOS until April 2010. Other alter-
natives are Navizon and PlaceEngine. Moreover, Apple and Google have their
own WiFi positioning system2 3.

2In April, Apple Ditched Google And Skyhook In Favour Of Its Own Location Databases
http://techcrunch.com/2010/07/29/apple-location/

3Copy of Google’s submission today to several national data protection authori-
ties on vehicle-based collection of wifi data for use in Google location based ser-
vices http://static.googleusercontent.com/external_content/untrusted_dlcp/www.googl
e.com/en//googleblogs/pdfs/google_submission_dpas_wifi_collection.pdf

http://www.skyhookwireless.com/howitworks/loader_howitworks.swf
http://techcrunch.com/2010/07/29/apple-location/
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en//googleblogs/pdfs/google_submission_dpas_wifi_collection.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/www.google.com/en//googleblogs/pdfs/google_submission_dpas_wifi_collection.pdf

2.1 Introduction to the different location systems 13

2.1.3 Cellular positioning

It is more than 20 years since the first GSM call, made by Finnish Prime Min-
ister Harri Holkeri4. Since then, a huge expansion of cellular networks has been
developed in the world, to an extent of having almost worldwide coverage nowa-
days. The two main cellular networks that are in operation in the world are The
Global System for Mobile Communication (GSM) and the Universal Telecom-
munication System (UMTS), which are commonly called 2G and 3G networks,
respectively. Moreover, the new 4G networks which is called LTE is starting its
deployment but it is far from the actual coverage that 2G and 3G have, and it
will take several years to achieve it. The cellular positioning techniques that are
explained in this section are only applicable for 2G and 3G networks.

Cellular networks are divided into cells, which have a hexagonal shape since
a theoretical point of view. Each of these cells has a base station (BS) in
the middle. The mobile phone of the user is connected to one of these base
stations which is usually the one that has a better signal strength and switches
between them automatically. The simplest way of cellular positioning is to
use the location of this BS as the user location. This method is called cell
identification (cell ID). The precision of this method is conditioned by the cell
size, which varies from urban to rural areas. These base stations can have mainly
two different kinds of antennas, omnidirectional and directional antennas. If the
antenna is directional, the cell is divided into sectors, which means that the user
location can be obtained with better precision.

Other techniques have been developed for improving cell identification. One
of them it is called enhanced cell ID (E-CID), this method measures the time
that the signal takes to arrive from the device to the base station which is
measured by the base station and is called time advance. The mobile device is
usually within the range of multiple base stations; several techniques try to take
advantage of that. These techniques are Time Difference of Arrival (TDOA) or
Angle of Arrival (AOA) [Kue05]. Same as for WiFi positioning, fingerprinting
techniques have also been developed [SB04] and [CMYA06].

Although the accuracy of cellular positioning is lower than GPS or WiFi, the
availability of the cellular networks are much higher. Moreover, it is very energy
efficient because it uses data and hardware that it is available all the time in
the phone, the phone is always connected to the cellular network. Thus, it does
not need to switch on any other hardware like GPS or WiFi.

4GSM turns 20 today, still rocking the world http://www.engadget.com/2011/07/01/gsm-t
urns-20-today-still-rocking-the-world/

http://www.engadget.com/2011/07/01/gsm-turns-20-today-still-rocking-the-world/
http://www.engadget.com/2011/07/01/gsm-turns-20-today-still-rocking-the-world/

14 Accuracy study of iOS location services

2.2 Location services in iOS

The iPhone 3G, which was released on 11 July 20085, was the first commercial
device presenting the hybrid positioning system [Zan09]. But, nowadays almost
all the smartphones implement this technology. As already mentioned, this
system acquires the user location choosing the best option for each situation
between satellite, WiFi or cellular positioning. This is done automatically by
the operating system; neither the users nor the developers have to care about it.
In previous versions of iOS the Maps app shows different pins depending on the
type of location that it was used but in the recent versions (currently 5.01) all
the positioning systems show the same pin and the only clue that can be used
to differentiate them is the accuracy that the location services provides.

Until April 2010, Apple relies on Skyhook and Google data to provide WiFi and
Cellular positioning systems respectively. But starting with iOS 3.2, which was
released in April 2010, Apple uses its own databases to provide location-based
services (LBS)6. As Apple states in the official documentation, this database is
maintained by iOS users.“If Location Services is on, your device will periodically
send the geo-tagged locations of nearby Wi-Fi hotspots and cell towers in an
anonymous and encrypted form to Apple, to augment the crowd-sourced database
of Wi-Fi hotspot and cell tower locations.”7.

After this short introduction about the location services in iOS from now until
the end of this section, the technical details and the parameters that the loca-
tion API allows the developer to configure will be explained. The only way the
developer can access the positioning features in iOS is using the Core Location
API provided by Apple. This API provides the location using the hybrid posi-
tioning system but the developer can not choose which of the three systems is
going to be used directly, only the desired accuracy can be chosen.

The Core Location framework provides three different services to monitor the
device’s location: the significant-change, standard location and region moni-
toring location services. In this project, only the standard location service is
going to be studied because it is the most easily configurable and thereby it
can be the most accurate. For the purposes of this study accuracy is one of the
main constraints because the model is very accurate, thus for this project the
significant-change and region monitoring are not feasible solutions8.

5iPhone 3G announced iPhone 3G announced iPhone 3G announced http://www.tuaw.com
/2008/06/09/iphone-3g-announced/

6In April, Apple Ditched Google And Skyhook In Favour Of Its Own Location Databases
http://techcrunch.com/2010/07/29/apple-location/

7iOS 5: Understanding Location Services http://support.apple.com/kb/HT4995
8Location Awareness Programming Guide https://developer.apple.com/library/ios/doc

http://www.tuaw.com/2008/06/09/iphone-3g-announced/
http://www.tuaw.com/2008/06/09/iphone-3g-announced/
http://techcrunch.com/2010/07/29/apple-location/
http://support.apple.com/kb/HT4995
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf

2.2 Location services in iOS 15

The standard location service is available on all devices and in all versions of
iOS, thus it is the most common way to get the user’s location. Before using it,
you have to configure the desired accuracy and the minimum distance between
two locations that produce a new location in your app.

In order to start using the standard location service you have to create an in-
stance of the class CLLocationManager. After that, you have to configure its
desiredAccuracy and distanceFilter properties. Once this is done, assign a del-
egate to the object, which implements CLLocationManagerDelegate Protocol9
and calls the startUpdatingLocation method to begin receiving location notifica-
tions. One of the experiments with the iPhone location service that are included
in this master thesis tries to measure the impact that the parameter desiredAc-
curacy has in the locations that the API provides. In the Apple documentation,
the next paragraph can be found:

“When tracking changes to the user’s location, the distanceFilter
property can be used to filter out update messages from the loca-
tion manager to it’s delegate. However, such messages may still be
delivered if more accurate measurements are acquired. Also, the
distanceFilter does not impact the hardware’s activity - i.e., there
is no savings of power by setting a larger distanceFilter because the
hardware continues to acquire measurements. This simply affects
whether those measurements are passed on to the location man-
ager’s delegate. Power can only be saved by turning off the location
manager.”10

As can be seen, the parameter distanceFilter just defines a filter to filter the
locations that are received before the delegate is called. That is why, for all
the experiments developed in this section this parameter was set to zero. Using
this configuration, the app was able to store all the locations that the location
manager receives. The number of unique and equal positions and the time dif-
ference between them are going to be analyzed in the following sections because
it may contain valid information, such as the user is not moving unless the vast
majority of the locations that delegate receives change.

The desiredAccuracy parameter does not guarantee any accuracy as it was stated
by apple in this readme:

umentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
9CLLocationManagerDelegate Protocol Reference https://developer.apple.com/library

/ios/#documentation/CoreLocation/Reference/CLLocationManagerDelegate_Protocol/CL
LocationManagerDelegate/CLLocationManagerDelegate.html

10LocateMe ReadMe.txt https://developer.apple.com/library/ios/#samplecode/Locate
Me/Listings/ReadMe_txt.html

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/LocationAwarenessPG/LocationAwarenessPG.pdf
https://developer.apple.com/library/ios/#documentation/CoreLocation/Reference/CLLocationManagerDelegate_Protocol/CLLocationManagerDelegate/CLLocationManagerDelegate.html
https://developer.apple.com/library/ios/#documentation/CoreLocation/Reference/CLLocationManagerDelegate_Protocol/CLLocationManagerDelegate/CLLocationManagerDelegate.html
https://developer.apple.com/library/ios/#documentation/CoreLocation/Reference/CLLocationManagerDelegate_Protocol/CLLocationManagerDelegate/CLLocationManagerDelegate.html
https://developer.apple.com/library/ios/#samplecode/LocateMe/Listings/ReadMe_txt.html
https://developer.apple.com/library/ios/#samplecode/LocateMe/Listings/ReadMe_txt.html

16 Accuracy study of iOS location services

“Core Location does not guarantee that a measurement matching the
desiredAccuracy will be delivered. Rather, a best effort is made, and
may be constrained both by the capabilities of the device and the
location and environment from which it is used. ... a GPS equiped
device will often provide better than 10 meter accuracy, but not
underground.”10

This fact is going to be analyzed in the Section 2.4.2 using different values for the
desiredAccuracy property. His property belongs to the data type CLLocationAc-
curacy which is a double that “represents the accuracy of a coordinate value in
meters”11. There are several constants defined for this property the fourth most
accurate ones are kCLLocationAccuracyBestForNavigation, kCLLocationAccura-
cyBest, kCLLocationAccuracyNearestTenMeters and kCLLocationAccuracyHun-
dredMeters which define a value of -2, -1, 10 and 100 respectively. Moreover,
this property can be set to any positive double value.

Once the location services have been started, whenever a new location is avail-
able the locationManager reports it to the locationManager:didUpdateToLocation:-
fromLocation: method of its delegate12. The locations are stored in objects,
which belongs to the class CLLocation. These objects have five location at-
tributes, which are coordinate, altitude, horizontalAccuracy, verticalAccuracy
and timestamp. The names of it are self-explanatory, thus an explanation of its
meaning is not necessary. There are other two properties, which are speed and
course. All these seven parameters were stored and analyzed; the results are
shown in the following sections.

This report analyzes the parameters coordinates, horizontal accuracy and times-
tamp. But it does not analyze other ones such as verticalAccuracy, speed and
course. These parameters were not used for several reasons.

The altitude and the verticalAccuracy do not provide any useful information
because the 3D model has a better estimation of the altitude that the one than
the GPS can provide. Moreover the vertical Accuracy was in all the cases bigger
than 20 meters. As for the speed and course, their value was not available in the
majority of the time. It had a value of 0 and -1 respectively. It can be assumed
that this values were more time available using the new models of iPhone which
are iPhone 4 and iPhone 4S. But since the system has to work in all model of
iOS devices is useless develop an algorithm which needed data is not available
all the time.

11Core Location Data Types Reference https://developer.apple.com/library/ios/#docum
entation/CoreLocation/Reference/CoreLocationDataTypesRef/Reference/reference.html

12CLLocationManagerDelegate Protocol Reference https://developer.apple.com/library
/ios/#documentation/CoreLocation/Reference/CLLocationManagerDelegate_Protocol/CL
LocationManagerDelegate/CLLocationManagerDelegate.html

https://developer.apple.com/library/ios/#documentation/CoreLocation/Reference/CoreLocationDataTypesRef/Reference/reference.html
https://developer.apple.com/library/ios/#documentation/CoreLocation/Reference/CoreLocationDataTypesRef/Reference/reference.html
https://developer.apple.com/library/ios/#documentation/CoreLocation/Reference/CLLocationManagerDelegate_Protocol/CLLocationManagerDelegate/CLLocationManagerDelegate.html
https://developer.apple.com/library/ios/#documentation/CoreLocation/Reference/CLLocationManagerDelegate_Protocol/CLLocationManagerDelegate/CLLocationManagerDelegate.html
https://developer.apple.com/library/ios/#documentation/CoreLocation/Reference/CLLocationManagerDelegate_Protocol/CLLocationManagerDelegate/CLLocationManagerDelegate.html

2.3 Experimental settings 17

2.3 Experimental settings

2.3.1 Analyzed devices

The analyzed devices in this study were iPhone 3GS and Garmin forerunner
405. The iPhone was chosen because it is the device where the final app will
be implemented. Garmin forerunner 405 was analyzed to compare with the
results that the iPhone provides especially in the movement test. Moreover, the
Garmin forerunner is supposed to have better accuracy than the iPhone, as can
be seen in the next sections.

2.3.1.1 iPhone 3GS

Apple released iPhone 3GS on June 19 2009, after the big success of the iPhone
3G the new model had a big expectations. The expectations were rapidly
achieved, since Apple announced that 1 million units were sold during the first
weekend after the release13. Three years later of that date, we can say that
iPhone 3GS was a commercial success for apple. This device is the device that
is going to be used for the development of this master thesis. The iPhone was
running iOS 5 during the analysis, concretely the versions 5.01 and 5.1.

This information is not public but according to online (non official) resources, the
GPS chip that the iPhone 3GS include is supposed to be Infineon Hammerhead
II, the same one that the iPhone 3G included14 15. A product overview of this
chip can be found in the Appendix A. It claims to have a time to first fix of 1
second at 5 m accuracy and 2 m steady state accuracy. As can be seen in the
analysis these values in the iPhone are way worse than Infineon claims in the
product brief. However, there is not information about how Apple configures
the chip or what accuracy apple provides with this chip. Thus, the provided
values cannot be used as the expected accuracy for the iPhone.

13Apple Sells Over One Million iPhone 3GS Models http://www.apple.com/pr/library/
2009/06/22Apple-Sells-Over-One-Million-iPhone-3GS-Models.html

14iPad 3G Vs iPhone 3GS: 3G Speed And GPS Improvements http://www.iphonehacks.c
om/2010/05/ipad-3g-vs-iphone-3gs-3g-speed-gps-improvements.html

15iPhone 3GS Teardown http://www.ifixit.com/Teardown/iPhone-3GS-Teardown/817/2

http://www.apple.com/pr/library/2009/06/22Apple-Sells-Over-One-Million-iPhone-3GS-Models.html
http://www.apple.com/pr/library/2009/06/22Apple-Sells-Over-One-Million-iPhone-3GS-Models.html
http://www.iphonehacks.com/2010/05/ipad-3g-vs-iphone-3gs-3g-speed-gps-improvements.html
http://www.iphonehacks.com/2010/05/ipad-3g-vs-iphone-3gs-3g-speed-gps-improvements.html
http://www.ifixit.com/Teardown/iPhone-3GS-Teardown/817/2

18 Accuracy study of iOS location services

Figure 2.3: iPhone 3GSa

ahttp://www.apsipirkim.lt/image/cache/data/iphone/MC555_AVM-500x500.jpg

2.3.1.2 Garmin forerunner 405 CX

The other GPS enabled device analyzed was a Garmin forerunner 405, which
is a GPS enabled watch, as can be seen in Figure 2.4. This watch records the
GPS positions when the training is enabled. Once the training is finished, the
positions that the watch recorded can be transferred to the computer and can
be exported in the format files GPX and TCX. Technical information about the
GPS chip that is integrated in the watch was not available.

2.3.2 Data collection and evaluation criteria

The data was collected in a different way for the different devices. While the
Garmin watch allows importing the GPS positions directly, iPhone does not
allow this.

Previous research in this area placed the GPS enabled device in an ideal position
using a tripod and direct the device in the direction of the maximum radiation
of the GPS antenna to the sky. This is not a very realistic position if we think in
terms of the daily use of a smartphone. Examples of this can be seen in [Zan09]

http://www.apsipirkim.lt/image/cache/data/iphone/MC555_AVM-500x500.jpg

2.3 Experimental settings 19

Figure 2.4: Garmin forerunner 405a

ahttps://static.garmincdn.com/en/products/010-00658-10/g/cf-lg.jpg

for the iPhone or in [ZB11] for two GPS enabled smartphones. No previous
research has been found in which the devices were placed in a jeans pocket that
is the normal place where the users usually place the mobile phone. In all tests
in this study the iPhone was placed in a front jeans pocket while the watch was
in the left hand. The user was wearing a winter jacket. The purpose of this is to
get the most real results that can be used in the development of real Location
Based apps. The entire tests were performed inside the DTU campus area. The
four different quadrants were used for the different static and movements tests.
The positions used for the static tests can be seen in Figure 2.5.

Six different static locations were chosen to perform this test. Three of them
were used for the comparison between the different location services accuracy in
iOS and the other three for the comparison between the phone and the watch.
In both devices, the locations were harvested for periods of time of two minutes.
1887 location coordinates were gathered for the accuracy comparison study and
372 for the comparison between the two devices. As for the measurements in
motion, 1791 positions were harvested using iPhone and 376 using the Garmin
watch.

Regarding iPhone, the data was collected using one app that was developed
entirely for the purpose of this master thesis. The idea is to use part of this app
for the implementation of the final one. As can be seen in Figure 2.6, this app
allows the user to select the desired accuracy and start the location services.
All the locations that Core Location provides to the app since the button “start
GPS” is pressed until the button “stop GPS” is pressed are stored in a database
in the iPhone memory using Core Data16 17. This database has two tables

16CS 193P iPhone Application. Lecture 13: Core Data http://www.stanford.edu/class/c
s193p/cgi-bin/drupal/system/files/lectures/Lecture%2013_2.pdf

17Core Data Programming Guide https://developer.apple.com/library/ios/documentati
on/Cocoa/Conceptual/CoreData/CoreData.pdf

https://static.garmincdn.com/en/products/010-00658-10/g/cf-lg.jpg
http://www.stanford.edu/class/cs193p/cgi-bin/drupal/system/files/lectures/Lecture%2013_2.pdf
http://www.stanford.edu/class/cs193p/cgi-bin/drupal/system/files/lectures/Lecture%2013_2.pdf
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData/CoreData.pdf
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/CoreData/CoreData.pdf

20 Accuracy study of iOS location services

one table that stores the routes and other table that stores each location. The
routes tables include a field that indicates which positions belong to this route,
also applicable for the locations table. All the information that core location
provides for each position, which was commented in the section location services
in iOS, is stored in the database. All the routes keep stored in the database
until the app is uninstalled. As can be seen in Figures 2.6 and 2.7, another
feature is that the app allows sending the locations in real time to the Utopian
Cityscape server.

The second tab of the app, which is called routes, provides to the user with one
list of all the routes that are stored in the database as can be seen in Figure
2.7. One new view is presented when the user tap in one of the route rows in
the table, this window can be seen in the Figure 2.7. This five buttons perform
different actions that were needed for the development of the master thesis. Two
of them print information in the console of Xcode to be able to export the data
into a text file. The two bottom ones send information to the Utopian Cityscape
server. Figure 2.7 shows how the routes are plotted in a map in the app.

As for the Garmin, the routes are transferred to a computer. After that, they
can be exported as GPX or TCX files. The GPX files were used since it was
easier to parse it in python and both contains the same information. Using this
method, only the latitude, longitude and time were obtained for each position.
As it was commented before with iPhone latitude, longitude, altitude, speed,
course, horizontal accuracy and vertical accuracy were obtained for each loca-
tion that the API provides. It makes sense that Core Location provides much
more information that the Garmin watch since Core Location has to provide
functionalities for all the location based apps in iOS. The Garmin watch just
has this functionality as an additional feature since you can analyze your routes
in Garmin website directly.

The GPX files were parsed using gpxpy (GPX file parser)18. The locations were
stored in a text file with known structure, thus it was easy to process it using
Java and python programs.

The data that was harvested using iPhone was printed in the phone console
using the buttons that were shown before and copied in a text file. Although,
it is not the best way to do that, due to the limitations that the file system has
in iOS it was the most effective way.

The following sections analyze the accuracy of the location services in iOS. Both
static and in motion measurements are analyzed. The horizontal error is ana-
lyzed and compared with the one that is provided by the services. The change

18https://github.com/tkrajina/gpxpy

https://github.com/tkrajina/gpxpy

2.3 Experimental settings 21

of the behavior of the locations services according to different parameters such
as desired accuracy is studied as well. Moreover, the two devices are compared
and the time interval, which the new locations are received, is examined. To
finalize, a filter to remove the inaccurate positions is designed and evaluated.

22 Accuracy study of iOS location services

Figure 2.5: Positions where the tests were performed

2.3 Experimental settings 23

Figure 2.6: Left: initial tab screen. Right: initial tab screen while harvesting
data

Figure 2.7: Left: routes tab. Middle: route info window. Right: map window

24 Accuracy study of iOS location services

2.4 Analysis of Static Measurements

This section analyzes the accuracy several parameters that the location services
provides in iOS. Moreover, it measures the time to first-fix and compares the
accuracy of the iPhone and the Garmin watch.

2.4.1 GPS data processing

Once the data which the iPhone and the Garmin watch provides were stored
in text files with a known structure, open the text file using java and python
to process the locations is fairly straightforward. The first step in the calcula-
tions was to convert the geographic to UTM (Universal Transverse Mercator)
coordinates.

As can be seen in the Figure 2.8, the geographic coordinates represent the lo-
cations in the hearth using three parameters, latitude, longitude and altitude.
Latitude represents the angle between the equatorial plane and line perpendic-
ular to the ellipsoid at that point. While the longitude is the angle between the
meridian passing through that point and the prime meridian19.

Figure 2.8: Geographic coordinates systema

aA guide to coordinate systems in Great Britain http://www.ordnancesurvey.co.uk/oswe
bsite/gps/docs/A_Guide_to_Coordinate_Systems_in_Great_Britain.pdf

19Geodetic Datum Overview http://www.colorado.edu/geography/gcraft/notes/datum/da
tum_f.html

http://www.ordnancesurvey.co.uk/oswebsite/gps/docs/A_Guide_to_Coordinate_Systems_in_Great_Britain.pdf
http://www.ordnancesurvey.co.uk/oswebsite/gps/docs/A_Guide_to_Coordinate_Systems_in_Great_Britain.pdf
http://www.colorado.edu/geography/gcraft/notes/datum/datum_f.html
http://www.colorado.edu/geography/gcraft/notes/datum/datum_f.html

2.4 Analysis of Static Measurements 25

At the beginning of the study, the Haversine formula was used to calculate the
distance between the real coordinates that the device was and the coordinates
that the location services provided, the real horizontal error20. But this formula
calculates the distance, it does not provide any information about the direction
of this error. Moreover, in order to be able to plot scatter plots with the real po-
sition and the position that GPS provides using a Cartesian coordinate system,
the geographic coordinates were converted to UTM coordinates. The distance
between two points in UTM coordinates is the shortest Euclidean distance in
meters, this was used to calculate the horizontal error. Unlike geographic coor-
dinates UTM is used to represent the locations in a map.

The datum used for GPS positioning is called WGS84 (World Geodetic System
1984). Thus, this is the datum that was used to convert from geographic coor-
dinates to UTM. Further details about this conversion can be found in Section
3.3.2.1.

The java code developed for this part for each location convert all the geographic
coordinates into UTM coordinates and calculate the difference in both axes (x
and y) between them and the real position that the device was placed during
the experiment. The real UTM coordinates were obtained using digital DTU
maps that Utopian City_Scape provided which were said to be very accurate.

This program generates a new text file with the same information than the
previous one but with the x and y coordinates centered in the real position
instead of in the UTM coordinates system. This data was the data used to
generate all graphs that area available in the results section. The graphs were
generated using the python library Matplotlib21.

2.4.2 Horizontal accuracy comparison between different
desired accuracies in iOS

As aforementioned CLLocationManager allows the developer to configure the
desired accuracy for the locations that provides. This parameter is a double,
which represents the accuracy that the app needs in the positions that receives.
For this comparison four different values for this parameter have been chosen as
can be seen in the Table 2.1.

All the locations chosen for this experiment were placed in outdoor locations in
the DTU area. Only 3 out of 1893 locations were obtained through Wi-Fi po-

20Calculate distance, bearing and more between two latitude/longitude points http://ww
w.ig.utexas.edu/outreach/googleearth/latlong.html#ellipsoid

21http://matplotlib.sourceforge.net/

http://www.ig.utexas.edu/outreach/googleearth/latlong.html#ellipsoid
http://www.ig.utexas.edu/outreach/googleearth/latlong.html#ellipsoid
http://matplotlib.sourceforge.net/

26 Accuracy study of iOS location services

Table 2.1: desiredAccuracy values used in the analysis

Name of the accuracy constant value
kCLLocationAccuracyBestForNavigation -2
kCLLocationAccuracyBest -1
kCLLocationAccuracyNearestTenMeter 10
(custom value) 50

sitioning and none of them were obtained using Cellular positioning. Although
the Location Manager does not provide this information directly, the type of po-
sitioning system used can be guessed using the value of the horizontal accuracy.
Zandbergen in [Zan09] states that if the location is obtained using Wi-Fi or
cellular positioning the altitude is not reported. During this analysis, this state-
ment has been found incorrect since for all the locations that were gathered for
this analysis an altitude was provided. The previous mentioned article is from
2009, so we can think that Apple have fixed this in this three years. Doing
some indoor and outdoor testing’s, the horizontal accuracy that the Location
Manager provides in Wi-Fi positioning has been found to be 65 while in cellular
positioning it is an integer number usually bigger than 1.000. If A-GPS is used
horizontal accuracy is usually smaller than 100 and it is a float number with 14
decimal positions. This can likely be attributed to the algorithm to calculate
the accuracy in GPS is much more accurate that the one that it is used in the
other two methods.

Therefore, this section analyzes the accuracy of the A-GPS in the iPhone and
not the other location systems. Figure 2.9 shows a scatter plot of the horizontal
error calculated as was explained in the previous sections. The X and Y axes
correspond with the X and Y coordinates of UTM. At a first glance, it can be
seen that the best for navigation, best and nearest 10 m accuracies parameters
provide similar results while the nearest 50 m provides slightly worse results.
Other remarkably fact that can be seen in the graph is that the great majority
of the positions are placed in the surroundings of the diagonal that cross from
negative X and Y to positive X and Y. Moreover there are more positions in
the right part of the graph than in the left one. Since, with this data we can
conclude that the GPS positions provided by iOS location services were more
likely to be in the south, north and east area from the correct position than to
the west. But due to the limitations of this test we can not conclude that this
is going to happen in all the situations.

Table 2.2 summarizes the horizontal error calculations done for this experiment.
As it was commented before the horizontal error for the best for navigation, best
and nearest 10 m accuracies are very similar. The best minimum value among
them is 45 cm surprisingly for the desired accuracy nearest 10 m while the

2.4 Analysis of Static Measurements 27

Figure 2.9: Scatter plot of horizontal accuracy for different desired accuracy
in iOS in meters

maximum is for the same desired accuracy and it is 43 m. As for the mean the
best mean error was performed by the desired accuracy nearest 10 m and it is
8.7 m, although the values for “best for navigation” and “best” are very close.
The RMSE values are for the three accuracies 11. .

The better results for desired accuracy nearest 10m instead of for best for nav-
igation or best which are supposed to be more accuracy could be explained
using the way that the test were performed. In each location the test for each
accuracy were performed one after the other starting with best for navigation
continuing with best, nearest 10 m and nearest 50 m. As Apple states in its
official iOS 5 website, the GPS accuracy improves during time since it can take
several minutes to locate all the visible satellites22. Therefore, this can be the
explanation of why the results are better in best than in best for navigation.
The results for the desired accuracy nearest 50 m are slightly worse than for the
other three as it was expected. The horizontal error average is 17.3 m, which is
more than twice the one obtained for nearest ten meters.

Zandbergen did a similar study with an iPhone 3G which includes the same
A-GPS chip, it can be seen in [Zan09]. He obtained a horizontal error mean of

22iOS 5: Understanding Location Services http://support.apple.com/kb/HT4995

http://support.apple.com/kb/HT4995

28 Accuracy study of iOS location services

Table 2.2: Horizontal positional accuracy for different desired accuracy in iOS
under real conditions in meters

Accuracy min max mean RMSE
Best for navigation 1.3581 23.3408 9.1048 11.2679
Best 0.5834 19.5479 9.2488 11.6861
Nearest 10 m 0.4516 43.0338 8.7107 11.3551
Nearest 50 m 0.7861 57.5612 17.2975 26.0383

6.9 m, minimum error of 0.4 and maximum of 18.5 m. The mean error is 1.8
m smaller that the one that has been obtained in this study. This can likely be
attributed to two different reasons. The main one is that in Zandbergen‘s study
the iPhone was placed in an ideal position in a tripod while in this study the
iPhone was placed in a jeans pocket. This produces that clothes attenuate the
GPS signal that the iPhone receives in our experiment. The second reason it is
that the Zandbergen‘s experiments last for 20 min while our lasts for four times
two minutes. The GPS improves the accuracy during the time, thus the accuracy
in larger experiments has to be better. Apple states in its documentation10, that
the horizontal accuracy is often better than 10 m which is proved in this analysis.

Figure 2.10: Horizontal error distribution for the different desired accuracy in
iOS

Figure 2.10 shows the distribution of the horizontal error for the different desired

2.4 Analysis of Static Measurements 29

accuracies. As can be seen the distribution for the desired accuracies best for
navigation, best and nearest 10 m is very similar. It can be said that it is almost
the same. The horizontal errors from 0 to 10 are highly probable while from 10
to 15 are not very common. From 15 to 20 are likely again and bigger than 20 m
are very unlikely. As for nearest 50 m, the most common error is between 0 and
10 but there are errors bigger than 10 that are probable as well, such as from 30
to 35 or from 50 to 55. The same data show in other way can be seen in Table
2.3. As can be seen using the three most accurate options the probability that
the horizontal accuracy for a received location is smaller than 20 m is almost 1.
As for a horizontal accuracy of 10 m is almost 0.7.

Table 2.3: Percent of locations whose horizontal accuracy is smaller than a
certain threshold (shown in each column)

Accuracy <5 <10 <20 <50
Best for navigation 31.11% 71.61% 97.70% 100.00%
Best 38.95% 66.52% 100.00% 100.00%
Nearest 10 m 42.62% 68.35% 99.79% 100.00%
Nearest 50 m 34.17% 67.92% 68.97% 78.62%

The battery consumption was supposed to be included in the study. Apple
provides a tool which is called Instruments23 to do this kind of analysis. This
program has a template, which is called energy diagnostic that provides a diag-
nostic regarding energy usage. This template was used to store the information
about the battery consumption during the different tests. The energy usage
level shows the relative energy usage on a scale of 0 - 20. Not big differences
were found executing the app with the different desired accuracies. In all the
cases this parameter varies from 13 to 18 while the GPS was enabled. There
was almost no difference during the periods of time that the GPS was enabled
and disabled as can be seen in Figure 2.11. This is not a correct result since
the GPS is said to be one of the most power consuming hardware in the smart-
phones. For this reason, this parameter was considered not accurate enough to
be included in the analysis.

The conclusion of this section is that the difference between the three most
accurate desired Accuracy parameters is insignificant. Best for navigation, best
and nearest 10 m provides very similar results in the entire tests, thus the
selection of one or another in the final app is not going to change the results.
But Apple does not recommend to use the parameter best for navigation unless
the device is plugged in24. Therefore, best for navigation cannot be used for

23Instruments User Guide http://developer.apple.com/library/ios/documentation/Dev
eloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf

24Core Location Constants Reference http://developer.apple.com/library/ios/#DOCUMEN
TATION/CoreLocation/Reference/CoreLocationConstantsRef/Reference/reference.html

http://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf
http://developer.apple.com/library/ios/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/InstrumentsUserGuide.pdf
http://developer.apple.com/library/ios/#DOCUMENTATION/CoreLocation/Reference/CoreLocationConstantsRef/Reference/reference.html
http://developer.apple.com/library/ios/#DOCUMENTATION/CoreLocation/Reference/CoreLocationConstantsRef/Reference/reference.html

30 Accuracy study of iOS location services

Figure 2.11: Instruments screen shoot which shows battery and GPS probes.
Red or black color bar shows when the GPS is enabled or disabled
respectively

the final system. Although the difference between nearest 10 m and best were
so small, best is going to be used as the desired accuracy parameter. Since the
GPS is not accurate enough for the high accuracy tracking that is the aim of
this application, the best accuracy that the iPhone can provide has to be used.
Moreover in the battery consumption analysis was shown that the difference in
the battery consumption between the different parameters was insignificant.

2.4.3 Observed versus estimated accuracy in iPhone

One of the most important parameters that Location Manager provides is hor-
izontalAccuracy ; this parameter provides an estimation of how accurate the
provided location is. As it has been observed in the testings, this parameter
can vary from 15 m to 149000 m. Although the normal values that have been
observed in the DTU testing are usually below 100 m after few seconds after
the location manager is started. But one question that may arise when we are
speaking about estimated accuracy is how accurate this estimation is. This is
what it is going to be analyzed in this section.

The data set used in this section is the same one that was used in the previ-
ous one. The error calculated in the previous section was used to plot it in
relation with the horizontalAccuracy that the location manager provides for
each location. Apple does not provide any information about how this hori-
zontalAccuracy is calculated but in conventional GPS devices this parameter is
calculated using some algorithm derived from Dilution of Precision (DOP)25,
which is based on the number of satellites that have been used to calculate the
location. A scatter plot with the data can be seen in Figure 2.12.

25Dilution of Precision http://www.nrem.iastate.edu/class/assets/nrem446_546/week3/
Dilution_of_Precision.pdf

http://www.nrem.iastate.edu/class/assets/nrem446_546/week3/Dilution_of_Precision.pdf
http://www.nrem.iastate.edu/class/assets/nrem446_546/week3/Dilution_of_Precision.pdf

2.4 Analysis of Static Measurements 31

The first two conclusions that arise while seeing the graphs are that the pre-
dicted horizontalAccuracy is always bigger than the real one and the correlation
between the predicted error and the real one is very weak, same results were ob-
tained in [ZB11]. These two facts make the provided location even less accurate
since the point of view of the developer. The location is known not to be very
accurate but if the horizontalAccuracy would be accurate, the position could be
somehow corrected. In this case, the comparison between two positions could
be useful. But neither the location nor the estimated error are accurate, this is
the worst possible scenario.

Looking the Figure 2.12 carefully, it can be seen that although the correlation
between the two variables is very low, higher estimated error are likelier to have
higher real errors. Other relevant fact is that the estimated error tends to have
primarily three values that are 17.07, 47.42 and 76.36 m. Moreover, there is not
correlation between the different desired accuracies values and the estimated
error as it was commented in the previous section. Therefore, histograms have
been plotted for all the desired accuracies together for the three more common
estimated errors.

Figure 2.12: Comparison between estimated (by the location services) and
real horizontal error

These histograms can be seen in Figure 2.13, it can be observed that there is
some correlation between the estimated and the real error. But the difference
between 17 and 47 m are very small. As can be seen the only difference is that
a real error between 15 and 20 m for 47 m is likelier than in the case of 17 m,

32 Accuracy study of iOS location services

but in both the most probable real error is between 0 and 10 m.

As it has been exposed the estimated error is not that accurate as it should be for
values smaller than 60 m. But it can be useful for filtering out the positions that
have an estimated error very high and that are almost always very inaccurate.
These positions are usually the ones that are obtained using cellular positioning.
The accuracy of these positions is enough for many kinds of applications that
only needs to know in which are the user is but they are not accurate enough
for high accuracy tracking.

The conclusion of this section is that although the correlation between the es-
timated and the real error is low, it exists. Moreover, the estimated error can
be very useful to discard the locations that are very inaccurate because they
usually have a high estimated error, higher than 100m.

Figure 2.13: Real horizontal error distribution for the different estimated hor-
izontal errors

2.4.4 Time to first-fix in iPhone

Apart from the accuracy, the time that the location services needs to provide
an accurate position is a very important parameter. This is usually measured
with the time to first fix (TTFF), which is the time that a GPS receiver needs
to search for the available satellites and provides the current position. TTFF
is usually classified into three different start types, which are cold, warm and
hot. These parameters are not defined in any standard; the different GPS
manufacturers provide their own definitions [ML08].

For this analysis only cold start is under consideration because Apple does not
provide any information about how the downloaded location information for the
hybrid system is kept in the internal memory. In April 2011, two researchers
found that iPhone stored all the WiFi networks and cell towers around you in
an unencrypted database in the internal memory26. After that, Apple published

26Tracking File Found in iPhones http://www.nytimes.com/2011/04/21/business/21data.h

http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html

2.4 Analysis of Static Measurements 33

a press release answering several questions about it. In this press release, it is
said that after the next software update the cache with the location data would
be removed each time the location services are switched off27. Therefore, for
this analysis it was assumed that each time the location services are switched
off, all the cached data used for it is removed from the internal memory of the
device. Before each test the location services were disabled and enabled.

It is worth noting that the results of this test strongly depend on the speed of
the available Internet connection since the data used for the location services
is mainly downloaded from the Internet. In every test the Wi-Fi was enabled
and the device was connected to the DTU eduroam network in many of them,
otherwise the device had 3G connection.

Figure 2.14: Estimated horizontal error during the time for the different in-
door and outdoor test

The Figure 2.14 shows how the estimated accuracy varies with the time for
the three different outdoor and indoor locations. As can be seen for five out
of six test the first location had an accuracy of 149000 m. This first location
is certainly obtained using cellular positioning. After this the locations that
are received improved with the time and for the entire tests a location with a
horizontal accuracy better than 100 m was obtained in less than 15 seconds,
which are a pretty good results. Since a conventional GPS receiver needs more
than 30 seconds to obtain its first position after a cold start [ML08].

It is obvious in the Figure 2.14 the outdoor and indoor positions have a differ-

tml
27Apple Q&A on Location Data http://www.apple.com/pr/library/2011/04/27Apple-Q-A

-on-Location-Data.html

http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.nytimes.com/2011/04/21/business/21data.html
http://www.apple.com/pr/library/2011/04/27Apple-Q-A-on-Location-Data.html
http://www.apple.com/pr/library/2011/04/27Apple-Q-A-on-Location-Data.html

34 Accuracy study of iOS location services

Table 2.4: Time in seconds to receive a position with estimated horizontal
accuracy better than 100 m in cold start

Location Time (s) indoor Time (s) outdoor
308 5.45 6.58
321 9.74 3.27
404 4.81 13.21
mean 6.67 7.69

ent behavior in the range of positions with estimated accuracy smaller than 200
m. While the outdoor positions obtain new positions continuously, the indoor
positions obtain an accurate position, which is very likely based on Wi-Fi posi-
tioning. Two of these positions have horizontal accuracy equals to 65 which as
was commented in this report it was assumed that it was Wi-Fi positioning. As
can be seen in the outdoor locations the accuracy improves within the first 20
seconds and in all of them an accuracy of 47 m is achieved.

In the Table 2.4, the time to first fix has been defined as the time that is needed
to obtain a location with horizontal accuracy better than 100m. 100m was
selected because as it was shown in the previous sections, the majority of the
“accurate” positions have an estimated error in this range. As can be seen in
the table the mean time to receive one of this locations in a cold start is 6.67
for indoor locations and 7.69 for outdoor ones. The Wi-Fi positioning looks to
be around 1 second faster than the A-GPS, although the A-GPS improves the
locations in the following seconds after the first fix and Wi-Fi positioning do not
do that. The different times for the three different locations have big variations
from one to another.

The conclusion of the analysis of this section is that the time to receive a location
with a horizontal accuracy of 100 m varies from one experiment to another but it
is always better than 15 seconds and in the majority of the tests is better than 10
seconds. Other relevant discover of this section is that indoor positioning does
not improve during the time while A-GPS improves during the first 20 seconds.
A very relevant aspect is that the iPhone was able to provide a quite accurate
location in all the indoor/ outdoor test not only in this analysis but also in all
the test that were performed for this master thesis. Thus, the availability of
iOS positioning in the DTU area is almost 100%.

2.4 Analysis of Static Measurements 35

2.4.5 Comparison between different devices

All the analysis than have been explained in the previous sections have been per-
formed using an iPhone and static data provided by utopian city_scape. But in
this section, the horizontal accuracy of the iPhone is going to be compared with
the one that other GPS enabled device provides. This device is Garmin fore-
runner 405 CX. The analysis is similar than the one performed for the different
desiredAccuracy parameters in the previous section.

As can be seen in Figure 2.15, the positions obtained using the Garmin watch are
usually more accurate that the ones that iPhone provides. These results were
expected since the Garmin watch is not a general use device like the iPhone; it
is a device which main feature is that contains a GPS sensor. Moreover, Garmin
is a company specialized in GPS enabled devices.

The different locations do not follow any clear pattern in any of both devices.
Although for the iPhone the locations tend to be in the diagonal between the
first and third quadrant, the same was observer in the analysis of the desired
accuracies. As it was said in this section, no conclusions can be achieved from
this. It is remarkable that all the locations that the Garmin watch provides were
inside the circle of 10 m radius. This is a very important fact since it assures
that once the location is provided is at least 10 m accurate. In the case of the
iPhone unfortunately this does not happen.

Table 2.5: Comparison of horizontal positional accuracy between iPhone 3GS
and Garmin forerunner 405 CX in meters

Device min max mean RMSE
iPhone 0.7970 55.3629 6.9375 8.8528
Gramin watch 1.4947 8.9773 5.263 5.8425

The Table 2.5 shows the numeric results. As can be seen the mean horizontal
error is 6.93 m and 5.26 m for the iPhone and the Garmin watch respectively.
The Garmin mean error is better than the iPhone one mean in all the studied
cases. Although the horizontal error presented by the iPhone in this analysis is
almost 2 m smaller than the one presented in the Section 2.4.2. After a analysis
of the experimental data, it was discovered that for one of the location, iPhone
was able to provide a position with an accuracy of 0.79 m during a long period
of time. This produces that the mean of the horizontal error decreases a lot
since just six points were analyzed in this particular study.

The most remarkable result of this table is that the positions that the watch
obtains are in a smaller range around the real position that the ones that the

36 Accuracy study of iOS location services

Figure 2.15: Scatter plot of horizontal accuracy for iPhone and Garmin fore-
runner 405 in meters

iPhone provides. This can be seen observing the iPhone RMSE value which is
bigger than Garmin one. Moreover, the max and min values are much spreader
for the iPhone than for the Garmin that its maximum error is 8.9 m. Remember
that this was the best mean error for the iPhone in the study of the Section
2.4.2.

The conclusion of this section is that as expected the Garmin watch is at least 2
meters more accurate than the iPhone in static positions. Moreover it produces
all the locations within 9 meters distance from the real location.

2.5 Analysis of Measurements in motion 37

2.5 Analysis of Measurements in motion

This section analyzes the accuracy that the iPhone 3GS provides tracking real
routes at the DTU campus. To be able to measure this error, the Garmin
forerunner 405 CX was used as the reference path. The real accuracy, estimated
accuracy, time between received positions and time between different positions
are analyzed to try to find repetitive patterns when the user is entering a building
or the GPS accuracy decreases drastically. Detecting correctly this action is
crucial to obtain a realistic representation of the tracked trajectory in the model.

2.5.1 How to measure the real route

The first problem that arises when the error in a given route has to be calculated
is how the real route can be measured. This is a very big problem because the
user not only has to remember what the route was, but also when he was in
each position. This second fact makes almost impossible to obtain manually
an accurate measure of the routes with the means that were available for this
master thesis.

One first approach could be to leave the time parameter out of the analysis,
as it was done in [ZB11]. But analyzing the data that the iPhone provides,
it was noticed that when using GPS positioning the same position tends to
be received many times. Thus, it can be though that the iPhone does not
always provide your current location, it sometimes provides old locations during
a certain period of time, this fact is analyzed in the following sections. Therefore
the time parameter can not be left out of the analysis.

If the time parameter cannot be left out of the analysis, a GPS enabled device
more accurate than the iPhone has to be used to obtain the real route. This
solution provides the better balance between accuracy and means needed to
make the analysis. The device used to measure the reference route was the
Garmin forerunner 405 CX. This device was selected because it was available to
use and provides the possibility of importing the routes into a computer using
a GPX file.

The Garmin watch was found to be less than 2 meters more accurate than the
iPhone in positional positions, in the Section 2.4.5. But as can be seen in the
route‘s maps that are shown in the Appendix B, the watch is way more accurate
in measurements in motion. It provides positions more often and these positions
are more accurate than the iPhone ones. This can be seen especially when there
are some curves in the route. In these cases, the iPhone does not show the exact

38 Accuracy study of iOS location services

curve while the watch usually provides enough positions to be able to see the
whole curve.

However, it can not be assumed that the watch is perfect, it will have some error.
Therefore, the horizontal error calculated in this section can not be assumed as
a real accurate error calculation as it was for the fixed position. It is actually an
estimation of the horizontal error that the iPhone makes. It can be very useful to
compare between different estimations of the same route in which some positions
have been removed to obtain a more accurate route28.

2.5.2 GPS data processing

The data processing in this section is divided into two main parts, the first part
consist of joining the data from the iPhone and the watch to plot it in a map and
the second one is the numerical error calculation. These two different tasks were
done using geographic coordinates and UTM coordinates respectively. The data
was harvested in the same way that was done for the static positions analysis
explained in Section 2.4.1.

As for the routes map creation, the Google static maps API29 was used. This
API provides the possibility of creating map images with marker and paths. The
map is generated using URL parameters that are sent using a standard HTTP
request; the map is received as an image. The main limitation that this API has
is that the URL has a limited size, which is 2000 characters. For the large routes
that are analyzed in this study much more than 2000 characters are needed.
The solution for this problem is encoding the routes using encoded polylines30.
Since the program that generates de map was programmed in python a python
polyline encoder was needed. The used python encoder was py-gpolyencode31.

As it was explained before, the error that the iPhone provides is going to be
calculated in relation to the route that the Garmin watch obtained. It can
be many ways to measure this distance. For this analysis, the error between
each unique iPhone position and the position at that time in the path that the
Garmin produced is the error that is going to be measured. Therefore, each
unique iPhone position will have a calculated error. Instead of measuring the
minimum distance between each given iPhone position and the Garmin path,

28Calculate distance, bearing and more between two latitude/longitude points http://ww
w.ig.utexas.edu/outreach/googleearth/latlong.html#ellipsoid

29Static Maps API V2 Developer Guide https://developers.google.com/maps/documentat
ion/staticmaps/

30Encoded Polyline Algorithm Format https://developers.google.com/maps/documentat
ion/utilities/polylinealgorithm

31py-gpolyencode http://code.google.com/p/py-gpolyencode/

http://www.ig.utexas.edu/outreach/googleearth/latlong.html#ellipsoid
http://www.ig.utexas.edu/outreach/googleearth/latlong.html#ellipsoid
https://developers.google.com/maps/documentation/staticmaps/
https://developers.google.com/maps/documentation/staticmaps/
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
https://developers.google.com/maps/documentation/utilities/polylinealgorithm
http://code.google.com/p/py-gpolyencode/

2.5 Analysis of Measurements in motion 39

the time that the given iPhone position was received is used to calculate the
point at that time in the Garmin path. For this calculation, it has been assumed
that the movement between two Garmin positions was constant during the time
and in a straight line. These calculations are made using UTM coordinates.
Thus, the horizontal error is just the Euclidean distance in meters between the
two coordinates.

To try to obtain both routes synchronized, the iPhone and Garmin watch were
started to obtain locations at the same. The Garmin watch provides in the GPX
file when the route was started and when each location was received. Thus it
was pretty easy to synchronize both. Although as can be seen in the final results
this synchronization is not perfect and will introduce some error. That is why
the calculated error has to be seen as a relative error that can be useful to
compare between different point selections within the same route. It can not be
seen as a real accurate error, which can be used to compare between different
routes.

Not only the maps were plotted, but also some graphs showing the error and
the time for the different routes. The most important graphs can be seen in the
Appendix B. These graphs were plotted using the python library Matplotlib 32.

The locations that the iPhone provides were filtered out following several criteria
that will be explained in the following sections. All the calculations were done
for all this set of points. Moreover, only the unique positions were considered
for this analysis. Since the parameter distanceFilter was set to zero in the
entire test, the location manager provides the same position many times after
it provides a new one. The time rate that this positions are received is going
to be analyzed as well. But, for the error calculation the repeated positions are
ignored. Two positions that are equal but with a different predicted horizontal
accuracy are considered as different positions.

2.5.3 Calculated horizontal error

As can be seen in Appendix B, nine routes were performed in the DTU area
during the months of February and March 2012 for the development of this
master thesis. In this section, the total error calculated for these routes are
going to be presented. This section shows the main results for all the routes,
although the results for each of the nine routes in detail can be seen in Appendix
B. The analysis performed in this section was done in the same way as it was
done for the static locations. The calculated horizontal error is studied with the

32http://matplotlib.sourceforge.net/

http://matplotlib.sourceforge.net/

40 Accuracy study of iOS location services

scatter plots, numerical values of the distribution and the histograms.

The scatter plot can be seen in 2.16. As can be seen in the scatter plot, the
location of the different positions does not follow any pattern. It can be seen
that the points tend to be placed in the diagonal between the first and the third
quadrant more often than other places. But this tendency is very weak, thus it
will be ignored from now on in this master thesis. Same tendency was found
for the static positions, but in this case the pattern was more obvious. Other
conclusion that can be obtained from the scatter plot is that the correlation
between the predicted and the real error is very weak. The same conclusion was
obtained in the case of the static positions.

Figure 2.16: Scatter plot of horizontal accuracy for all the routes

The results shown in Table 2.7 were obtained using all the unique positions
that the iPhone obtained but the ones that have a predicted accuracy higher
than 1000 m. The location manager usually provides these locations when the
location service is started and are sometimes outside DTU and far away from
the real location, thus it does not make any sense to include it in the analysis.

The nine routes can be divided in three types of routes: routes that go inside a
building, outdoor routes with curves and straight routes. The four first routes
that appear in the table belong to the first group, routes which go inside a
building. These routes are from 308 to 342, from 341 to 101, from 343 to 308
and from library to 229. The second group is outer routes that are from 115

2.5 Analysis of Measurements in motion 41

Table 2.6: Horizontal accuracy for the different routes in meters

Route Min Max Mean RMSE
From 308 to 342 7.46 188.34 26.59 38.80
From 341 to 101 2.28 175.08 30.86 40.05
From 343 to 308 1.04 133.87 36.23 44.07
From library to 229 6.13 132.91 35.49 47.02
From 115 to library 4.24 99.34 24.94 30.97
From 229 to 115 3.24 61.52 26.33 29.92
From Nordvej to 302 biking 4.62 93.08 26.57 33.60
From Knuth-Wintherfeldts to Nils Koppels Alle walking 3.76 41.47 17.83 19.02
From Nils Koppels Alle to Knuth-Wintherfeldts biking 4.69 218.90 30.32 38.33
All 1.04 218.90 27.13 35.10

to library, from 229 to 115 and from Nordvej to 302 biking. The last group
is straight routes that is composed of two routes From Knuth-Wintherfeldts to
Nils Koppels Alle walking and From Nils Koppels Alle to Knuth-Wintherfeldts
biking.

Analyzing the mean errors for these three different groups of routes in the Table
2.7, it can be observed that have different mean values. The mean value for the
routes that cross a building is always bigger than the outdoor routes one. This
result was expected since when the mobile go inside a building the GPS signal
are lost and it takes a while to detect it again once it is outside. During this
period without GPS signal either Wi-Fi positioning or inaccurate GPS positions
are received, this produce degradation in the mean error. The straight routes
should have better mean error than the outdoor with curves. This is true in
the case of the route for Knuth-Wintherfeldts to Nils Koppels Alle that has
the lowest mean error between all the studied routes. But the route from Nils
Koppels Alle to Knuth-Wintherfeldts has a mean error, which is quite high.
This has not a direct explanation but the time between unique positions in this
route is the fastest between all the analyzed, one second. And the horizontal
error has a high value and consecutive a low value all the time, thus it can be
think that the iPhone does not provide very accurate timestamp of the locations
with this time rate.

It can be observed that the mean error for all the routes is 27.13 m, which is
much higher than the one obtained for the static locations in the Section 2.4.2.
Just looking the maps it can be seen that the error is higher than in the static
positions since the rate which the locations are received is not high enough for
provide an accurate route and the positions that are received are not accurate
neither. However, the real error should be smaller than this because as it was
explained before the route reference is not the real one, it is an estimation.

42 Accuracy study of iOS location services

As can be seen in the Figure 2.17, the distribution of the horizontal error, the
error between 10 and 20 meters are the most likely to happen. Errors higher
than 20 meters are less probably as the error value increases. Moreover, error
smaller than 10 meters are less probable as the error value decreases.

Figure 2.17: Horizontal error distribution for all the routes

The conclusion of this section is that the iPhone has a bigger horizontal error
for measurements in motion than for static ones. Moreover, the straight routes
have a smaller error than the ones that makes curves. The routes that combine
curves and crossing building are the ones that have a bigger horizontal error.
As the histogram shows the most likely horizontal errors are between 10 and 20
m.

2.5.4 Filtering out inaccurate locations

As it was analyzed in Section 2.4.3, the predicted horizontal error that the
location manager provides is not really accurate for small values (smaller than
100m). But it can be very useful to know if the position is really inaccurate
and if the position is based in GPS positioning, Wi-Fi positioning or Cellular
positioning.

As can be seen in the Appendix B in the red routes, which includes all the
positions that the iPhone obtained. There are parts of the routes where the
iPhone provides pretty accurate positions, and there are other parts especially
at the beginning and when a building is crossed that the positions are very
inaccurate. These positions can have error of several hundred meters, which
is inacceptable for high accuracy tracking applications which is the aim of this
master thesis.

Two examples of these very inaccurate positions can be seen in Figure 2.18. In
all the route maps in this master thesis the blue line is the route that the Garmin
Watch provided, the red one is the route that the iPhone obtained using all the

2.5 Analysis of Measurements in motion 43

Figure 2.18: Two examples of very inaccurate positions (inside yellow circle)
in routes: from 343 to 308 (left) and from Nils Koppels Alle to
Knuth-Wintherfeldts (right)

positions and the green one is the one that is obtained after applying horizontal
error and Wi-Fi positioning filter. The points that have high horizontal accu-
racy values are marked with a yellow circle. These types of positions have to be
filtered out in order to obtain a more accurate tracking since it does not provide
any relevant information. Analyzing the error graphs that are available in the
Appendix B it was discovered that all this positions had a very high predicted
horizontal accuracy. It was usually higher than 700 m and always higher than
100m. This positions are obtained using GPS but with few satellites available
or using cellular positioning. As it was discovered during the development of
this report, the predicted accuracy of the positions that are obtained using cel-
lular positioning is always high, usually higher than 1000 m, and this predicted
accuracy is always an integer instead of a float number. The predicted accuracy
of the two examples that are shown in Figure 2.18 are floats number, thus it
can be guessed that these positions are obtained using satellite positioning but
with weak signal strength.

As can be seen in Table 2.7, just removing the positions with accuracy higher
than 100 m the results are way better especially in the routes that the results
were very inaccurate. But, it was observed that sometimes when the GPS po-
sitions are not very accurate the location services switches to Wi-Fi positioning
when you are outside. This fact worsens the tracking since these Wi-Fi positions
are usually more than 50 m far from the real position. In the Figure 2.19, it
can be seen two part of two of the analyzed routes with this Wi-Fi positions
removed on the right or not removed on the left.

Removing some of the positions obtained using Wi-Fi positioning was found to

44 Accuracy study of iOS location services

Table 2.7: Horizontal accuracy for all the routes with different error and Wi-Fi
filters in meters

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 1.04 218.90 27.13 35.10
200 0 1.04 105.53 24.85 29.67
150 0 1.04 105.53 24.35 29.09
100 0 1.04 105.53 24.21 28.91
100 2 1.04 105.53 24.19 28.90
100 3 1.04 105.53 24.19 28.90
100 4 1.04 105.53 23.91 28.38
100 5 1.04 105.53 23.91 28.38
100 6 1.04 105.53 23.99 28.46
100 7 2.35 105.53 23.98 28.48

be a very good idea, but some of them are very useful for example to detect
when the user is inside a building. Moreover, in the case of the device is inside
a building the Wi-Fi positioning positions were found to be the most accurate
available. To try to find the perfect valance between these two situations, a
Wi-Fi positioning filter was defined as the minimum number of Wi-Fi positions
that have to be provided in a row to use it. For instance, if the filter is 4 only
the Wi-Fi positioning that is received in groups of four or more will be used and
the ones that are received in groups of three or less will be removed and not
used for the route calculations. As in a row it refers to that not other positions
but Wi-Fi positioning ones are received between them. The Wi-Fi positioning
filter has to be applied after the horizontal error positioning, since the location
services sometimes provides positions with accuracy higher than 100 m when
the user is inside a building. As was commented before in this report the Wi-Fi
positions can be differentiated because the predicted horizontal error is equal to
65 m in almost all of them.

Several Wi-Fi positioning filters were analyzed to try to find the best number for
this parameter using all the routes. The results can be seen in Table 2.7. As can
be seen in the table, the best result were obtained for error filter of 100 m and
Wi-Fi filter of either 4 or 5. The mean error was improved almost 4 meters which
is an awesome result since only two easy of implement filters have to be used
to obtain these results. Error filters smaller than 100 are not considered since
as it was seen in Section 2.4.3 the correlation between predicted error smaller
than 100 m and the real error is very weak, thus positions with predicted error
76 can be more accurate than other positions with smaller predicted error.

The green route in the maps that are shown in the Appendix B were obtained
using an error filter of 100 m and a Wi-Fi filter of 4 meters. As can be seen the
routes are much more accurate that the ones that the iPhone directly provides.

2.5 Analysis of Measurements in motion 45

Figure 2.19: Two examples of removing Wi-Fi positions (inside yellow circle)
in routes: from 341 to 101 (above) and from 343 to 308 (below)

2.5.5 Time and speed between different locations

In this section, the frequency which new coordinates are received is going to be
analyzed. The routes used for this section have been filtered with an horizontal
error filter of 100 m and Wi-Fi filter of 4 samples, since they are the filters
that provide better results as it was seen in the previous section. Moreover, all
the repeated positions have been filtered, thus the routes only contains unique
positions for this section. As was commented in previous sections, the iOS
location manager usually provides the same coordinates many times and this
fact is undesired for a time analysis like this. In these cases, the time for the first
position, which includes this coordinates, have been used as the timestamp for
this position. Sometimes, the location manager does not change the coordinates
but change the predicted accuracy. In case of better predicted accuracy, this is

46 Accuracy study of iOS location services

Table 2.8: Time between unique positions for all the routes in seconds

Route Name Min Max Mean RMSE
From 308 to 342 0.06 72.56 16.23 26.59
From 341 to 101 0.50 104.11 7.89 19.25
From 343 to 308 0.99 140.00 23.90 39.77
From library to 229 1.62 104.85 32.83 45.96
From 115 to library 7.00 64.00 23.44 29.34
From 229 to 115 1.58 61.96 29.83 34.06
From Nordvej to 302 biking 0.99 30.00 4.61 7.19
From Knuth-Wintherfeldts to Nils Koppels Alle walking 0.93 51.65 3.47 7.47
From Nils Koppels Alle to Knuth-Wintherfeldts biking 0.97 38.00 1.63 3.79
Total 0.06 140.00 6.50 15.80

updated but not the timestamp.

The time when each location is received is important for two main reasons.
The first one is that it can be used to calculate the speed at which the user was
moving; this speed should be used to move the users in the model correctly. The
other reason is that it is useful to know the period of time between locations
to design the route-improving algorithm correctly, this is explained in the next
chapter.

Figure 2.20: Time between position distribution for all the routes

As can be seen in the Figure 2.20, the most likely times between new positions
are 1 or 2 seconds. Many new positions were received in a period of time
between 2 and 20 seconds. It is not very likely more than 20 seconds between
new positions but as can be seen in the distribution it can happen. This has to

2.5 Analysis of Measurements in motion 47

Table 2.9: Speed between positions for all the routes in kilometer per hour

Route Name Min Max Mean RMSE
From 308 to 342 0.48 245.17 16.68 50.21
From 341 to 101 0.02 45.03 18.06 20.65
From 343 to 308 0.88 91.34 10.68 23.08
From library to 229 0.64 70.15 13.17 22.80
From 115 to library 2.67 9.80 5.98 6.38
From 229 to 115 2.78 43.24 10.10 14.72
From Nordvej to 302 biking 0.77 37.96 15.96 17.59
From Knuth-Wintherfeldts to Nils Koppels Alle walking 0.99 13.88 6.54 6.93
From Nils Koppels Alle to Knuth-Wintherfeldts biking 1.72 37.63 18.95 19.77
Total 0.02 245.17 13.66 19.11

Table 2.10: Absolute speed for all the routes calculated as the total time used
to make the whole route in kilometer per hour

Route Name Absolute Speed
From 308 to 342 4.18
From 341 to 101 6.31
From 343 to 308 4.22
From library to 229 4.28
From 115 to library 4.70
From 229 to 115 6.21
From Nordvej to 302 biking 12.82
From Knuth-Wintherfeldts to Nils Koppels Alle walking 6.17
From Nils Koppels Alle to Knuth-Wintherfeldts biking 15.20

be taken into account in the development of the algorithm that represents the
users in the model.

The Table 2.8 shows the same data that was represented in the graph but for
every route. As can be seen, the mean time including all the routes is 6.50
seconds, which is not really high, but for many individual routes this mean time
is higher, and the maximum time was 140 seconds, which is really high. If we
think in terms of the route groups that were explained before we can see that
the time between positions have some correlation between routes that are from
the same type.

The routes that go inside a building have the highest maximum value, which
makes sense since when the user goes inside the GPS signals are lost and the
location manager starts to provide inaccurate positions which are filtered out in
our system. Moreover, it can be observed that the routes that are straight or
by bike have a mean time way smaller than the rest. The conclusion that we
can obtain from this is that the GPS works better in these situations.

48 Accuracy study of iOS location services

Not only the time is needed to calculate the speed but also the distance be-
tween the coordinates. Using both the speed between each position has been
calculated, the results can be seen in Table 2.9. Taking into account that the
routes were made approximately in a constant speed, walking or biking, it can
be stated that the speeds that it is shown in Table 2.9 are really inaccurate.
The means have no correlation between the different routes and the min and
max speeds have a big difference. For this reasons the instant speed between
two locations can not be used to represent the users in the model.

Since the values for the instant speed are not accurate the absolute speed for
each route has been calculated and can be seen in Table 2.10. These results are
pretty accurate and the difference between the walking and the biking routes
can be observed.

The conclusion of this section is that the timestamp that the location manager
provides for each location is not precise. Therefore, it can not be used to cal-
culate the instant speed between two locations. For the representation of the
users in the model the speed should be calculated for a group of several locations
instead of between each two.

2.5.6 Trying to detect when the user goes inside a building

In order to represent the users in the model in a more realistic way, it would
be really useful to be able to detect when the user is inside a building. As it
was commented in the previous sections if a position is obtained using Wi-Fi
positioning the horizontal error that location manager provides is 65. If the user
is inside a building accurate GPS positions cannot be obtained, therefore the
location manager should use Wi-Fi positioning since it is the most accurate way
the location can be obtained. It can be thought that if the received position is
obtained using Wi-Fi positioning, the user is inside a building. But analyzing the
routes this was found not to be truth because sometimes the location manager
provides Wi-Fi positioning locations when the user is outside because the GPS
ones are not accurate enough.

After applying the Wi-Fi filter that was explained in Section 2.5.4 with a value
of 4, all these Wi-Fi positioning positions that were obtained when the user
was outdoor are filtered out. Only the Wi-Fi positions that were obtained
when the user was inside pass the filter. They are always in groups of 4 or more
positions because if there were positions between them the horizontal error filter
would filter it. Because they have a high-predicted horizontal error due to the
unavailability of reliable GPS signals.

2.5 Analysis of Measurements in motion 49

Figure 2.21: Graph of two routes where it was detected that the user was in
an indoor location (yellow circle)

This phenomenon can be observed in Figure 2.21, the yellow circles indicates the
periods of time that the user has been detected to be inside a building. Looking
the map can be seen that these estimations are correct. This algorithm detects
when the user goes inside a building in the three routes that the user goes inside
a building, which is a really good result.

The detection of when the user goes inside a building can be very useful in
the representation of the users in the model. Since the user should enter the
buildings using the doors and ones is inside it should stay there without moving.
The interior of the buildings is not implemented in the model, and iPhone cannot
detect the positions inside the buildings.

50 Accuracy study of iOS location services

Chapter 3
Representing the routes in

the 3D model

3.1 Problem description

Unlike it can be thought, representing the routes in the 3D model is not an
easy task. As it was studied in Chapter 2, the positions that are received from
the smartphones are not accurate enough. They are usually more than 10 m
further from the real position and sometimes even more than 50m. These are
not the only inaccuracies; the positions do not arrive with constant frequency.
Sometimes, a new position is received each second and other times it takes more
than 100 seconds to receive a new one.

The purpose of the system that has to be developed as part of this master thesis
is to move a character in 3D models in realsite (company website realsite.dk)
using positions that a smartphone provides in real time. Realsite uses video
games technology to show 3D models of real buildings. The system should
move a character following the same rules than when the character is controlled
by the user. These mean that the character cannot cross walls, climb a big
high. . . Moreover, the route has to look feasible, this means for instance that
the character cannot jump off 5 m. The character has to be placed in the
ground all the time to look feasible. It can not be placed in the top a building
for example. Therefore, the routes received from the smartphone cannot be

52 Representing the routes in the 3D model

represented in the model directly. They need a transformation to move the
character using them. This transformation was developed as part of this master
thesis and it is going to be explained during this chapter.

As it was described before, all these problems arise because the location services
are not accurate enough. Thus systems like the one presented in this chapter
have to be developed if the route is going to be represented in a more sophisti-
cated framework than a plain 2D map. To define the problem more precisely,
a set of 9 routes, studied in Chapter 2 were analyzed to establish the different
problems that need to be solved with this route representation algorithm. The
main problems found are explained in the following subsections.

3.1.1 Coordinates conversion

The first problem that arose when we were trying to represent the coordinates
sent by the phone in the model was that the location service in iOS provides
the locations using geographic coordinates. The DTU 3D model has its own
reference system which center is in the center of the campus. It is obvious that
a program that can convert from geographic to DTU coordinates was necessary.
And this program was not available, therefore it was developed as part of this
master thesis. The program had to be developed in Java, since it has to be exe-
cuted in Utopian city_scape server, which is programmed in this language. It is
necessary to be able to convert from geographic coordinates to UTM coordinates
in the server side for this application.

3.1.2 Crossing buildings and points in the top of the build-
ings

Figure 3.1: The yellow circles indicate different examples of routes crossing
buildings and points in the top of the buildings,

3.1 Problem description 53

These are two different problems but they are very related. These two problems
are very common in the analyzed routes; almost every route has these problems.
The crossing building problem happens when the path that joins two positions
crosses a building. This problem has to be fixed, otherwise the character will hit
the building and sometimes it gets stuck in this position. Both are not desired
behaviors. To avoid that, some points have to be added to the route to avoid
the building without modifying the final route a lot.

Other problem that usually happens at the same time than the previous one is
that many positions are placed in the top of the buildings. As it was commented
before, the character cannot be placed in the roof of a building; it has to be
placed in the ground outside of any building. Therefore the positions that are
in the top of a building has to be removed or replaced for other ones from the
final route. Both problems can be seen in any of the figures in Figure 3.1.

3.1.3 Changes of altitude along the route

Figure 3.2: The yellow circles indicate different examples of routes changing
the altitude

This problem happens when two consecutive points are at different altitudes.
DTU campus is an uneven piece of land; it has several high walls that separate
this altitude difference. These walls have usually stairs to allow pedestrians
to cross it. Since the routes are not very precise, although the user that was
being tracked changed the altitude using stairs, the route does not follow that
path. This makes the character hit the wall and gets stuck there or jumps off
the altitude different. Both behaviors make the route to look unfeasible. This
problem has to be fixed adding the corresponding points to change the altitude
properly. Three examples of this problem can be seen in Figure 3.2 .

54 Representing the routes in the 3D model

3.1.4 Fast change of heading

As it was observed in Section 2.5.5, sometimes the location services provides
new positions each second. This behavior that is apparently desirable ended up
being undesirable. These positions are usually really close one to another and do
not follow a straight line. This fact made the character change the heading very
often. The camera was attached at the back of the character thus the camera
moves with the character. This fast movement looks really strange in the model.
Since these many positions close one to another does not provide more accuracy
than more spread out position. This was considered as a problem that needed
to be fixed.

3.2 Tools and concepts required

This section introduces some concepts about path finding and map matching,
technologies. The tracking problem that is going to be solved is neither a map
matching nor a path finding problem. But understanding the techniques that
are used in these fields is crucial to understand the solution designed in this
master thesis. Since several parts of it are based in techniques that are used in
path finding and map matching. Moreover at the end of the section the used
development environment is briefly introduced.

3.2.1 Path finding

Path finding refers to the process of finding the shortest route between two
points in a digital environment. This technique is mainly used in video games,
although it is used in other applications as well. An example of this can be
found in [PM09], where path finding is used in the semiconductor industry.
The problem that we are trying to solve in this project cannot be solved using
path finding algorithms because these algorithms need an especial environment
map. The environment maps that are available for this project are the 3D
models that UCS produced. These 3D models are very accurate but they can
not be explored in the way that typical path finding algorithms such as A* do
[PEH68]. An improved A* algorithm which reduces both exploration and time
can be found in [YB06]. Recent work in hierarchical path finding can be found
in [Mul04] and [Rab00]. These algorithms need the environment represented as
a network, which is composed of nodes and edges. This network needs to be
created manually for each 3D model.

3.2 Tools and concepts required 55

Although path finding algorithms cannot be used directly in this project, the
problem that has to be solved is somehow a path finding problem. One of
the objectives for this section is to find an obstacles free path between any
two points in the 3D model. This can be seen as a short distance path finding
problem. It varies from the classical path finding problem because the character
has to move following the GPS positions received from the phone. An example
of a system similar to the one developed for this master thesis can be found in
[MYW10]. This article describes the implementation of a Pac-Man Game on
campus using the locations that are harvested using a smartphone. Unlike our
project, the system designed in this article does not make any transformation
in the locations that are received from the smartphone.

Other path finding practical implementation can be found in [MCP]. In this
article the character is moved using the voice and the exact path is calculated
using path finding algorithms. A technique for generating human motion path
in 3D environments can be found in [SB00]. Both studies use a grid map for
the path finding algorithm. This map has to be generated manually in our case
as well. Thus this technique can note be used directly in our project.

3.2.2 Map matching

Map matching is the process of correlating a sequence of user’s positions with
the road network. It can handle different data types such as point-to-line, line-
to-line and polyline to polyline. In this project point-to-line is going to be used.
Regarding temporal-response characteristics, map matching can be classified
into online and offline map matching. The online methods work with the re-
ceived data in real time, while the offline ones work after the whole set of data
has been collected. One part of the algorithm that has been developed in this
project is a map matching algorithm that only works in case the road network
is available. This algorithm is explained in Section 3.3.3.3.

There are many studies in this field that solve different problems. Sometimes
neither the location nor the network data are accurate, Christopher, David
and Alain proposed several map matching offline algorithms that studied this
problem using personal navigation assistants [CEW00]. Jagadeesh, Srikanthan
and Zhang developed an online algorithm for real-time vehicle location that
only uses GPS data [GRJZ04]. Marchal, Hackney and Axhausen designed an
efficient algorithm that relies in the same than the two previous one, GPS data
and network topology [FM04]. Other map matching approach for travel/activity
research needs can be found in [Zho].

Other offline map matching approach can be found in [TG11]. It uses Douglas-

56 Representing the routes in the 3D model

Peucker [DD73] algorithm to obtain key waypoints in the trajectory. This same
algorithm was used in this master thesis. As it was commented before in this
master thesis, sometimes the location services are not able to give an accurate
position during a long period of time. A map matching algorithm was proposed
in Seul National University for these cases [YJs05].

Road Reduction Filter (RRF) [GT99] is a method of detecting the road in which
a vehicle is traveling along. This method compares road centerlines and trajec-
tories described by the GPS positions. Further development of this algorithm
can be found in [GTAH01].

The map matching algorithm that was developed for this master thesis is in 2D
because the road network was provided in 2D, moreover the altitude in the GPS
positions is very inaccurate. Regarding this reasons in our particular case using a
3D algorithm would not improve the accuracy. But for other applications where
the road network is bigger it can improve the accuracy. Using a map matching
3D algorithm implies to have information of the network in 3D. Menglei propose
a way of modelling the road network in 3D in [YZ10].

3.2.3 Unity and the development environment

Unity is a development engine that allows developers to create games and other
interactive 3D content. Using Unity you can join your 3D models and assets
to create interactive 3D content. This part of the master thesis was developed
in Unity, since it is the tool that Utopian city_scape uses for the development
of the web player in realsite. Therefore, the integration with realsite was easier
than using other tools.

The version of unity used for this project was the free version of Unity 3. Unity
allows developers to program in C# or JavaScript, all the libraries can be used
in both languages. C# was selected for this project, because it is the language
that is used in realsite. The model as it is implemented in realsite is too heavy
to be run in unity. Each building in DTU 3D model has two different versions,
a high quality version and a low quality one. Therefore, a DTU 3D model
combining high and low quality buildings was set up manually for the purpose
of this master thesis. Some screenshots of this model during the development
phase can be seen in Figure 3.3.

To represent the routes in the model some object had to be moved through the
route points. This object could have been any game object from unity or some
3D model imported into unity such as a human avatar. For the development
phase, a sphere was used as can be seen in Figure 3.3. It was selected for

3.2 Tools and concepts required 57

Figure 3.3: Four screenshots of the development phase of the project in Unity

simplicity since it is available directly in Unity. Moreover, once the algorithm it
is done this is very easy to change. Each game object in unity can have a script
attached to it that controls it. Thus, the ball has a C# script attached to it
that is in charge of executing the route improvement algorithm and moving the
ball around the DTU 3D model using the route result. The ball has a camera
attached at the back of it that is moving with the ball. With this system, the
user can see how the ball moves in the model following the improved route.

As it was commented in Section 3.2.1, the problem that it is trying to be solved
cannot be solved using path finding algorithms because of the unavailability
of an environment map. But Unity has some path finding tools that allow the
developer to build a navigation map, which is called navigation mesh (navmesh),
in the editor1. This tool would have been really useful but it could not be used.
To create the navigation mesh, the terrain has to be a static object, but every
object is dynamic in realsite’s web player. Therefore, the path finding algorithm
has to be developed from scratch using methods available in unity’s physics
library2.

Every object in unity has a Transform3. It stores the position, rotation and

1http://unity3d.com/support/documentation/Manual/Navmesh%20and%20Pathfinding.h
tml

2http://unity3d.com/support/documentation/ScriptReference/Physics.html
3http://unity3d.com/support/documentation/ScriptReference/Transform.html

http://unity3d.com/support/documentation/Manual/Navmesh%20and%20Pathfinding.html
http://unity3d.com/support/documentation/Manual/Navmesh%20and%20Pathfinding.html
http://unity3d.com/support/documentation/ScriptReference/Physics.html
http://unity3d.com/support/documentation/ScriptReference/Transform.html

58 Representing the routes in the 3D model

scale of the object and allows manipulating their values. If the object has
any children, you can loop through them using the Transform of the parent.
This was used in the project because each DTU building is composed of many
children objects. The transform provides the name of the object that was used
to differentiate between buildings and terrain or to detect doors in buildings.

Each building and the terrain in realsite has a MeshCollider4 attached. This
allows to do collision detection using for example the RayCast method5. This
method was used for detecting the existence of objects between points in the
model. SphereCast method was used for the same purpose. These two methods
return a struct, which is called RaycastHit. This struct provides the point of
collision and the transform of the collided object in case of collision among
others.

3.3 Solution designed

3.3.1 System requirements

As it was described before, the routes cannot be represented directly in the
model directly. The character would get stuck all the time, moreover there are
positions that are unreachable such as the roof of the buildings. Therefore, a
system has to be implemented to generate a new route that could be represented
in the model. The requirements required for this system were the following:

1. The new route can be represented in the model and looks feasible.

2. The system has to work not only in the DTU 3D model but also in other
3D models that UCS has developed such as the Carlsberg area one. Thus,
it has to be easily scalable.

3. The obtained route should be as close to the real route as possible.

4. The system has to be developed in Unity using C#.

5. All the algorithms have to be developed using libraries available in the
free version of Unity and compatibles with realsite.dk.

The solution for this problem proposed in this project is a novel algorithm that
follows all the requirements proposed above and fixes all the problems presented

4http://unity3d.com/support/documentation/ScriptReference/Collider.html
5http://unity3d.com/support/documentation/ScriptReference/Physics.Raycast.html

http://unity3d.com/support/documentation/ScriptReference/Collider.html
http://unity3d.com/support/documentation/ScriptReference/Physics.Raycast.html

3.3 Solution designed 59

in Section 3.1. The algorithm is a hybrid solution, with multiple steps. It
includes not only a map matching algorithm but also other algorithms that can
be considered as path finding algorithms. Although, they are not typical path
finding solutions, these normally use an environment map and algorithms such
as A*.

The system was divided in five different steps that are executed one after an-
other. Thus, the result of each algorithm is the input data for the next one.
Although, it is not the most efficient way of solving this problem. It is the
easiest to implement. Moreover, this project does not study the performance of
the algorithm. This can be done in future improvements of the system. Each of
the five different steps of the algorithm are explained in Section 3.3.3 in detail.

3.3.2 Converting from geographic to DTU coordinates and
vice versa

As it was described at the beginning of this chapter, the first problem that
needed to be solved was the coordinate conversion from geographic to DTU co-
ordinates. This conversion is explained in this section, although it is performed
in the server side unlike the other algorithms, which are executed in client side
player.

3.3.2.1 From UTM to DTU coordinates

The only reference that was available about the DTU coordinate system is shown
in Appendix C. As it can be seen it shows the transformation between UTM and
DTU coordinates. Specifically, the UTM coordinates are in zone 32 and uses
Euref 89 datum. The article suggests using the Helmert transformation. The
Helmet transformation formula that was used to solve the problem was found
in [Bes03] and [Teu88].

Using the Helmet formula and the data that is available in Appendix C the
following formulas were obtained:

(
DTUx
DTUy

)
= λ

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
UTMx

UTMy

)
+

(
∆x
−∆y

)

60 Representing the routes in the 3D model

(
UTMx

UTMy

)
=

1

λ

(
cos(θ) − sin(θ)

sin(θ) sin(θ)−sin(θ)3

cos(θ) sin(θ)

)(
DTUx − ∆x
DTUy + ∆y

)

λ = 0.9998133

θ = 14.3472◦

∆x = 834864.7242936

∆y = 6172294.56110385

These formulas were programmed in java and tested during the development of
this master thesis. They were found to provide a very accurate transformation
of the coordinates.

3.3.2.2 From geographic to UTM coordinates

Once the transformation between UTM coordinates and DTU coordinates were
solved, the next step was to solve the conversion between geographic and UTM
coordinates. This conversion involves a huge number of calculations, as can
be seen in [oOGP11] and 6. Therefore, the program of the algorithm it was
going to be very time consuming. Since it is a very common transformation
there are a lot of free resources on the Internet that solve this problem and
they are already tested. Thus, instead of fully program the transformation a
transformation already programmed was searched on the Internet and modified
for the desired specifications in this problem.

The datum used in the conversion that is available in Appendix C is Euref89
which differs from the one that the GPS uses which is WGS 84. A long search
in the Internet ended up with the conclusion that Euref89 and WGS 84 are
almost the same and that can be assumed that WGS 84 is used when Euref89 is
used. As it could be observed with the conversion designed in this project this
assumption is completely correct. Since the error in the conversion is negligible.

Some of the conversions found on the Internet can be found in 7 8 9. After
6Converting UTM to Latitude and Longitude (Or Vice Versa) http://www.uwgb.edu/dutch

s/usefuldata/utmformulas.htm
7Coordinate conversions made easy https://www.ibm.com/developerworks/java/library

/j-coordconvert/
8Geographic/UTM Coordinate Converter http://home.hiwaay.net/~taylorc/toolbox/geo

graphy/geoutm.html
9Convert Between Geographic and UTM Coordinates http://www.uwgb.edu/dutchs/usef

uldata/ConvertUTMNoOZ.HTM

http://www.uwgb.edu/dutchs/usefuldata/utmformulas.htm
http://www.uwgb.edu/dutchs/usefuldata/utmformulas.htm
https://www.ibm.com/developerworks/java/library/j-coordconvert/
https://www.ibm.com/developerworks/java/library/j-coordconvert/
http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
http://www.uwgb.edu/dutchs/usefuldata/ConvertUTMNoOZ.HTM
http://www.uwgb.edu/dutchs/usefuldata/ConvertUTMNoOZ.HTM

3.3 Solution designed 61

trying some of them, it was found that not all of them provides the same re-
sults, for instance the code that can be found in IBM website provided results
several meters far from the real location, which is why this code was discarded.
Geographic/UTM Coordinate Converter provided the best results; the locations
were transformed perfectly. This was the selected code, the author claims in the
website that the code can be used without restrictions. But the source code is
in JavaScript, thus the code was translated from JavaScript to Java. To do that
just some variables names and the method headers were modified.

Although, Copenhagen are is in UTM zone 33U, the coordinate conversion,
which can be seen in Appendix C, was projected into zone 32U. This is the
zone used in the Danish mapping system. The code was modified to fulfill this
requirement.

During the development of this master thesis the conversion from geographic
coordinates to DTU coordinates was tested many times. It worked perfectly in
all the cases.

3.3.3 Algorithms developed to represent the avatar in the
model

The five stages, which compose the developed system, are explained in detail
in the following sections. They are executed in the same order that they are
exposed. In other words, the first algorithm that is executed is “Adding Building
Entrances when the user is inside a building” and the last one is “Avoiding
hitting buildings”. The different algorithms are executed in the order that makes
that one algorithm cannot break what the previous algorithms fixed. But the
previous algorithms will break thinks that the following algorithms will fix. For
example all the algorithms can add new collisions with buildings to the route.
That is why the last algorithm to be executed is “ Avoiding hitting buildings”.
This order has the advantage that each algorithm only has to fix its problem
and forget about the other ones because they will be fixed later.

To show examples of the different algorithms in the following section, Google
maps images are presented. These images were obtained using the Static maps
API10. But the algorithms were executed in Unity with the 3D model. Thus,
Google maps it is only used for the representation of these results. The rep-
resentation in the model was more complicated to produce. A video would be
necessary to show it properly. In the images, the blue line is the route obtained
using the Garmin watch. While, the red and the green one are the ones obtained

10https://developers.google.com/maps/documentation/staticmaps/

https://developers.google.com/maps/documentation/staticmaps/

62 Representing the routes in the 3D model

with the iPhone. The green one is the result after execute all the algorithms in
Unity with the 3D model.

3.3.3.1 Step 1: adding Building Entrances when the user is inside a
building

As it was commented in Section 2.5.6, after applying an accuracy filter of 100m
and a Wi-Fi positioning filter of 4 positions it is fairly easy to detect when
the user was inside a building. The Wi-Fi positions that passed the Wi-Fi
positioning filter which are in groups of 4 or more are the ones that were obtained
when the user was inside a building in almost all the cases. Using this property,
an algorithm was developed that do the following tasks:

1. It detects the Wi-Fi positioning positions in the route.

2. It removes the Wi-Fi positions that are inside a building.

3. It adds the building entrances of the building that is between the first
Wi-Fi position that is inside a building and the previous one. It does the
same for the first position that is outside a building between the Wi-Fi
positioning ones.

4. It adds a jump in the route between the two positions of the doors.

One practical example of this algorithm working can be seen in Figure 3.4, the
blue line represents the route received from the GPS watch while the red one
and the green one represent the iPhone route before the algorithm and after
respectively. As can be seen, the algorithm has added the doors of the buildings
328 and 308 that are the doors that the user uses in the route. Thus, the
algorithm works correctly in this example. Other examples have been tested
obtaining the same results.

This is the first executed algorithm for several reasons. The first one is that
the Wi-Fi positioning positions cannot be filtered out before executing this
algorithm. Otherwise some useful positions could be removed and the building
in which the user was could be detected wrongly. Moreover, this is the only
algorithm that uses the horizontal accuracy parameter. As it was demonstrated
before, the correlation between the horizontal accuracy parameter and the real
horizontal accuracy for values smaller than 100 m is really low. That makes this
parameter useless for the rest of the algorithms. Therefore, this parameter is
used in these algorithms and removed after it.

3.3 Solution designed 63

Figure 3.4: One example where two building doors (marked with a yellow
circle) have been added to the route because the user was inside
the building

Once a building is detected using the RayCast method, the transform of the
part of the building that is hit can be obtained using the RayCastHit struct 11.
Using the parent of this transform, all the different parts of the building can
be obtained. If the 3D model of the building has building entrance, the name
of the entrance part contains the word entrance. This was the used method to
detect where the entrances of a building are.

But the center of the doors is usually a point that is not reachable for the char-
acter. Therefore, a new point that the character can reach has to be calculated.
Four points that are one meter far of the center of the bounds of the door were
calculated. The closest point to the previous position of the route was chosen.

Following the implementation of this algorithm, the user jumps from one build-
ing door to the next one. Thus, the new route does not contain any information
about where the user was inside the building. This is not a big problem, because
the location services are really inaccurate inside the buildings. Which building
is the user inside is the most accuracy that you can get. Moreover the inside
of the buildings is not designed in the model. Therefore it makes no sense to
position the user inside the buildings because it is empty.

11http://unity3d.com/support/documentation/ScriptReference/RaycastHit

http://unity3d.com/support/documentation/ScriptReference/RaycastHit

64 Representing the routes in the 3D model

3.3.3.2 Step 2: filtering the routes using Douglas-Peucker algorithm

After all the other algorithms were developed, the fast change of heading prob-
lem was the most important problem to solve. This problem was explained
in Section 3.1.4. The best way of solving it is designing a filter that removes
all these positions that are close one to another. Several studies have been
done in curve simplification algorithms examples of these are [DD73], [BKR92],
[Ram72]. Between them the Douglas-Peucker Algorithm [DD73] was found to
be the one that provides better results for geographic information from GPS
devices. Further studies using this algorithm has been developed to improve the
performance of it [JH]. The first version of the Douglas-Peucker Algorithm was
the filter implemented for this project.

The Douglas-Peucker Algorithm is a recursive algorithm that reduces the num-
ber of points needed to represent a curve maintaining the accuracy. Other
studies in the map matching field used this algorithm [TG11] as well. The algo-
rithm recursively divides the line if the distance between the line segment with
the first and last points as endpoints and a point is bigger than ε. In our case, ε
has a value of 5 m. This value was observed to work well for our system. Figure
3.5 shows an example of the algorithm working. The C# implementation of this
algorithm developed for this master thesis can be seen below:
public stat ic ArrayList douglasPeucker (ArrayList route) {

double dmax = 0 ;
int index = 0 ;
for (int i = 1 ; i< route . Count ; i++) {

double d = perped i cu la rD i s tance ((Vector3) route [i] , (Vector3) route [0] ,
(Vector3) route [route . Count − 1]) ;

i f (d > dmax) {
dmax = d ;
index = i ;

}
}

ArrayList r e s u l t = new ArrayList () ;
i f (dmax > ep s i l on) {

ArrayList r e cu r s i v eRe su l t 1 = douglasPeucker (route . GetRange (0 , index +1));
ArrayList r e cu r s i v eRe su l t 2 = douglasPeucker (route . GetRange (index ,

route . Count −index)) ;
r e s u l t . AddRange(r e cu r s i v eRe su l t 1 . GetRange (0 , r e cu r s i v eRe su l t 1 . Count −1));
r e s u l t . AddRange(r e cu r s i v eRe su l t 2) ;

} else {
r e s u l t .Add(route [0]) ;
r e s u l t .Add(route [route . Count − 1]) ;

}
return r e s u l t ;

}

If the route contains doors of buildings that have been added by the previous
algorithm, the route is split before the Douglas-Peucker algorithm is executed.
Each part of the route is treated as a new route. With this system, the Douglas-
Peucker algorithm cannot filter out the positions that the previous algorithm
added.

After some testing of this algorithm, it was found to produce really good results
in our system. The fast change of heading problem was completely solved with

3.3 Solution designed 65

Figure 3.5: Douglas-Peucker algorithma

ahttp://softsurfer.com/Archive/algorithm_0205/Pic_DP-2.gif

an ε value of 5 m. Moreover, the routes do not lose any accuracy since the main
waypoints are not filtered out. The routes are smoother after applying the filter,
because the ball change the heading less often. All these advantages produce a
route that looks more real. This is exactly what the system was supposed to
do.

This algorithm is executed just after adding the building entrance because the
sooner the route is filtered the less points have to be handled by the next algo-
rithms. Thus, the next algorithms will be executed faster. Although less efficient
the results would have been similar if the douglas filter had been executed just
before avoiding hitting buildings algorithm.

3.3.3.3 Step 3: matching the routes with the road network

As it was commented in Section 3.2.2, all map matching algorithms need a
road network to work. This road network cannot be obtained directly from the
model. Because the terrain is divided in 29 pieces and the same textures that
are used in the roads are used in other places in the model. Therefore the road
network had to be obtained from other sources. Other option was to generate
it manually but UCS wants an algorithm that can be used in other 3D models
directly, so this was not an option.

Google maps does not provide an API to access the road networks directly but it

http://softsurfer.com/Archive/algorithm_0205/Pic_DP-2.gif

66 Representing the routes in the 3D model

provides the directions API12. This API calculates directions between two points
using the Google road network. This was studied as a possible solution but it
was rejected at the end. The main reason to reject using Google maps API was
that the 3D model and the materials used to develop it are way more accurate
than the data that Google maps provides. Other solutions like Open street
maps or bing maps were studied too but they were found to be less accurate
than Google maps in the DTU campus. Moreover, it is always better not to
depend on third parties products in your applications. For all this reasons using
Google maps or other map service was rejected.

Between the materials used for the development of the DTU 3D model, there is
an AutoCAD file that contains detailed information about the different parts of
the campus such as buildings, green areas, roads. . . This file contains segments
for the main roads of the campus, the points that compose this segments can
be exported into a text file using 3ds Max. This road network was the one used
for the map matching algorithm.

Since the road network only includes the main streets in DTU and the user
should be able to be placed in all outdoor locations in the model. The map
matching algorithms should not match all the positions to the road network.
Instead, it should match only the positions that are close enough to one of the
segments and have similar heading. This differs from the majority of studies in
this field that always try to match all the points of the route. The terminology
used to describe the road network is the road network is composed of segments.
This segments are composed by two points which are called nodes. Several of
this links together compose a street in DTU.

The map matching algorithm developed is an offline algorithm that projects the
selected points in the road network. It is a variant of the Algorithm 2 presented
by Christopher, David and Alain in [CEW00]. It not only checks how far the
projection in the road segment is from the real point but also if the route heading
is similar to the road segment one. The different in the route heading has to be
smaller than 30 degrees to match the point in the road segment. The distance
varies from 20 or 30 m depending on if the previous point has been matched. The
projection is calculated as the intersection between the perpendicular segment
to the road segment that passes through the point and the road segment. The
algorithm works in the following way for each point of the route:

1. If the previous point in the route has been matched. The current point is
projected in the same road segment if the distance is smaller than 30m.
If the distance is more than 30 m, the point 2 is executed.

12https://developers.google.com/maps/documentation/directions/

https://developers.google.com/maps/documentation/directions/

3.3 Solution designed 67

2. First of all, a list of the closest road segments to the current point is
generated. This list includes all the road segments which nodes are closer
than 300 m to the current point. The point is projected to each of this
segments and if the closest of this projection is closer than 20 m. The
point is changed for the projection in the road segment.

As it was commented in [CEW00], the calculation of the distance between a
point and a segment is different than the calculation of the distance between
a point and a line. The problem can be seen in Figure 3.6. This problem was
solved calculating the cosines of the angles between the road segment and the
segments between each segment node and the point. If one of both cosines or
both are smaller than zero that means that it is the first case that can be seen
in Figure 3.6.

Figure 3.6: The distance between a point and a segment

As can be seen in Figure 3.7, our algorithm matches the route to Nils Koppels
Alle street perfectly (green line). This makes the route more accurate because
the user was walking in this street when the route was obtained. Moreover, the
route looks more realistic in the model because the ball is following a straight
line now instead of changing the direction all the time.

3.3.3.4 Step 4: fixing altitude differences

As it was commented before the DTU campus is not completely flat. There
are many places that are in different altitudes. There are many places in the
campus where there are walls that the character cannot climb. To pass these
walls, the user can use some stairs or some buildings that have stairs inside.
Our algorithm considers both situations. Therefore, if a change of altitude is

68 Representing the routes in the 3D model

Figure 3.7: Example of route improved with the map matching algorithm

detected between two positions our algorithm try to fix it adding the positions
of a stairs or the doors of a building that allows changing the altitude.

As for the stairs, the idea is that the algorithm adds a group of positions to
the route to make the character using the stairs. These positions are two or
four depending on the types of stairs. The stairs and the walls are included in
the terrain object in the model. Thus, there is not way to detect it with Unity.
Since there are just seven stairs in the DTU campus, a text file with the points
that have to be added for each of these stairs was created. This is not the most
scalable way of doing it, but it was the only way of solving this problem. The
algorithm uses these stars list to find the closest stairs to the actual point. This
list of points that is returned from the text file sometimes has to be reversed
to match the altitude of the actual point with the first point of the stairs. An
example of this algorithm adding four points to the route can be seen on the
left in Figure 3.8 (green line inside of the yellow circle).

Regarding the doors of the buildings, it is worth noting that just few buildings in
DTU have doors in two different altitudes, one example of these is the building
341. The algorithm detects the buildings that are around the altitude change
using the OverlapSphere method13. These buildings are discarded if all their
doors are at the same altitude, which is the most common in DTU. One example

13http://unity3d.com/support/documentation/ScriptReference/Physics.OverlapSphere

http://unity3d.com/support/documentation/ScriptReference/Physics.OverlapSphere

3.3 Solution designed 69

Figure 3.8: Example of fixing altitude different algorithm adding the stairs
(left) or doors (right)

of this can be seen on the right in Figure 3.8.

Once the closest door and the closest building with doors in different altitudes
to the altitude difference point are detected. Their distance to the last point
before the altitude difference is compared between the two possible solutions.
The closest one is selected if its distance to this point is smaller than 1.5 times
the distance between the altitude difference point and the first point to add. If
so, these points are added to the route. Otherwise, the algorithm cannot fix
the altitude difference and it adds a jump between the two points. With the
value of 1.5 times the distance between the altitude difference point and the first
point to add, all the altitude differences for all the analyzed routes were fixed
correctly. Moreover no false positive was detected.

3.3.3.5 Step 5: avoiding hitting buildings

This algorithm is the last algorithm executed but it is one of the most important
ones. The objective of this algorithm is to produce a route visualization free of
obstacles. Therefore, a character should be able to follow the route in the model
without hitting any obstacle. It is the last algorithm executed because all the
points added to the route has to be checked because it may hit some object in
the model. Moreover, this algorithm cannot ruin any of the problems fixed by
the others algorithms.

70 Representing the routes in the 3D model

The algorithm does two different tasks; on one hand it adds points close to the
corners of the buildings to surround them. On the other hand, it removes all the
points that are on the top of the buildings. But these points are not removed
directly; they are used before being removed. All the objects in the game area
are considered as obstacle but the terrain. The problems with the terrain are
solved in the previous steps of the algorithm.

The points that are added to the route are 2 m in x and y axes far form the
building corners. This solution was chosen because it is the solution that requires
fewer resources to be obtained. Other solutions such as the closest path to this
corner would have been better. But the same problem than for the roads and
the stairs arises, as the model is designed it is impossible to detect this in Unity.
Another external source has to be used to get this information.

Unlike some of the other algorithms, this algorithm works only with information
obtained from the 3D model in Unity using the Physics class. The main methods
used are Raycast and SphereCast14. Both check if there is any obstacle starting
in a point and following a direction; if so some information of this obstacle is
returned.

The algorithm should be able to add any number of points to surround a build-
ing. It is very common to find several buildings that are connected in DTU.
Thus the algorithm has to be able to solve complex buildings shapes and not
only rectangular buildings. Furthermore, sometimes the positions can be far
one for another, the algorithm should find a path surrounding the buildings in
these cases as well. For all this reasons, a recursive algorithm was designed to
solve this problem.

This program is called for each point in the route. The point (-1, -1, -1) is
a jump between two points. As can be seen in the code below, if the current
or the previous points are a jump the point is just added to the route. After
that, it checks if there is an obstacle in the line between the current point and
the previous one. If so, it tries to find a solution. It tries to add the corners
of the obstacle that was hit. If some of these corners are free of obstacles from
the point previous to the hit the one that produces the shortest path is added.
If all the corners add an obstacle to the route, the corners of these obstacles
are tested. For each point that is added to the route, the same algorithm is
executed again recursively.

The code of the recursive algorithm programed can be seen below:
void addPointToRoute (Vector3 point , ref ArrayList route)
{

14http://unity3d.com/support/documentation/ScriptReference/Physics.SphereCast.htm
l

http://unity3d.com/support/documentation/ScriptReference/Physics.SphereCast.html
http://unity3d.com/support/documentation/ScriptReference/Physics.SphereCast.html

3.3 Solution designed 71

i f (po int == new Vector3 (−1F, −1F, −1F)) {
route .Add (point) ;
return ;

}
i f (route . Count > 0) {

i f ((Vector3) route [route . Count − 1] == new Vector3 (−1F, −1F, −1F)) {
i f (! po in t In s i d eBu i l d ing (point)) {

route .Add (point) ;
}
return ;

}
}

RaycastHit hit , hitn , nhi t ;
bool obs ta c l e = obstac leBetweenPoints ((Vector3) route [route . Count − 1] , point ,
out hitn) ;

i f (ob s t a c l e && nameOfBuilding (h i tn . transform . name)) {
h i t = hitn ;
Vector3 newPoint = new Vector3(−1F, −1F, −1F) ;
int i = 0 ;
while (newPoint == new Vector3 (−1F, −1F, −1F)) {

i f (route . Count > 1) {
newPoint = pointToNotHitBuilding
((Vector3) route [route . Count − 2] ,

(Vector3) route [route . Count − 1] ,
point , hit , out nhit) ;

} else {
newPoint = pointToNotHitBuilding
(new Vector3 (−1F, −1F, −1F) ,

(Vector3) route [route . Count − 1] ,
point , hit , out nhit) ;

}
h i t = nhit ;
i f (i == 5) {

break ;
}
i++;

}
i f (! ((Vector3) route [route . Count − 1] == new Vector3 (−1F, −1F, −1F) &&

(newPoint == new Vector3 (−1F, −1F, −1F)))) {
route .Add (newPoint) ;

}
i f ((newPoint == new Vector3 (−1F, −1F, −1F) &&

! po in t In s i d eBu i l d ing (point , out hitn))) {
// i f a new point can not be found the route w i l l jump
route .Add (new Vector3 (−1F, −1F, −1F)) ;
route .Add (point) ;
return ;

}
i f (! po in t In s i d eBu i l d ing (point , out hitn)) {

//remove the po in t s tha t are in s i de a bu i l d i n g
addPointToRoute (point , ref route) ;

}
} else {

i f (! po in t In s i d eBu i l d ing (point , out hitn)) {
route .Add (point) ;

}
}

}

The pointToNotHitBuilding method returns the closest corner to the previous
and the next point of the object that was hit that is free of obstacles with the
previous point. If this corner does not exist, it returns (-1, -1, -1) and the
returned hit is the obstacle that was hit while testing the corners.

The Figure 3.9 shows two examples of the execution of this algorithm. The
colors used for the lines is the same than in the previous sections. As can be
seen the algorithm generates a free of obstacles path, although the positions are
far one to another and on the top of buildings.

72 Representing the routes in the 3D model

Figure 3.9: Examples of execution of the algorithm avoiding hitting buildings

3.4 Results

The algorithm satisfies the requirements stated in Section 3.3.1 for all the ana-
lyzed routes. It produces a feasible route that can be represented in the model
without getting stuck. Although, the main requirements are fulfilled, the new
routes should be more accurate than the original ones. This is going to be
analyzed in this section.

In order to quantify the inaccuracy of the improved routes a new error has to be
calculated. Three solutions were analyzed to solve this problem, using Hausdorff
Distance [FDA08], Fréchet distance [AM06] or the same solution that was done
in Section 2.5.3. The last option was the selected one. This solution measures
not only the horizontal error but also the time error of the positions. Moreover,
the results of these error calculations can be directly compared with the ones
obtained in Section 2.5.3. It is worth noting that this algorithm only tries to
improve the horizontal error and not the time error.

But this solution has a problem; after the algorithm is executed the route has
points that were not present in the original route. Therefore, these points do
not have the time that the position was received. This time has to be calculated
before the error calculations. Two solutions were evaluated to solve this problem.
The first one was to measure the average speed of the whole original route.
Assuming that the speed is constant during the whole route, a new time stamp is
calculated for each position in the improved route. This solution produces really

3.4 Results 73

high errors. Although the speed of the user is approximately constant during
the route, the speed in the received route is not constant as was previously
demonstrated. This is the reason why the calculated error was high for this
solution. The solution that was adopted was to calculate a timestamp just
for the positions that are added by the algorithm. These timestamps were
calculated assuming constant speed between the added positions and using the
time that takes in the original route to do this part of the route.

Route name Number
from 308 to 342 0
from 341 to 101 1
from 343 to 308 2
from library to 229 3
from 115 to library 4
from 229 to 115 5
from Nordvej to 302 biking 6
from Knuth-Wintherfeldts to
Nils Koppels Alle walking 7

from Nils Koppels Alle to
Knuth-Wintherfeldts biking 8

Figure 3.10: Comparison of horizontal error between original and improved
routes

The error calculated for each route after and before the algorithm is applied can
be seen in Figure 3.10. The detailed results of the algorithm for each route can
be seen in Appendix D. The routes are filtered with an accuracy filter of 100m
and a Wi-Fi filter of 4 samples, which was found to produce the best results.
As can be seen, the error is improved in 4 of the 9 routes. At the first glance
these results seem not to be very promising. But as it was commented before,
this algorithm tries to improve the horizontal error and not the time error.

In the routes which are called “from Knuth-Wintherfeldts to Nils Koppels Alle
walking” and “from Nils Koppels Alle to KnuthWintherfeldts biking” the mean of
the error increases 1.55m and 33.02m respectively. The routes that the algorithm
returns in these two examples are even more accurate than the ones that the
Garmin watch obtained since the routes are matched with the road, which the
user was during all the time. Therefore, the increase of the error in these two
routes is caused because the position time stamps are not the correct ones. This
problem cannot be easily solved and it is not important for the application of
our system. It does not really matter that the timestamp are incorrect since
they are not used for the representation of the users in the model.

The routes “from 308 to 342” and “from 341 to 101” increases its average error

74 Representing the routes in the 3D model

12.4m and 17.2m respectively. As can be seen in Appendix D, the routes that
the algorithm returns unlike the original ones can be represented in the model.
However, some parts of them differ from the original ones. This last fact and
the time error produce this increase in the mean error. Other route which
error increases after the algorithm is executed is “from Nordvej to 302 biking”.
Analyzing the returned route can be seen that the route is closer to the real
route than the original one. Therefore, the timestamps were correct in this case
as well.

As it has been explained, only two routes are further form the original one after
executing the algorithm which are “from 308 to 342” and “from 341 to 101”.
During these routes, the user went inside buildings several times and the results
that the iPhone provided are really inaccurate. The other 4 routes that have not
been examined in this section are closer to the real route than the original ones,
as can be see in Appendix D. Some parts of them are even more accurate than
the ones that the Garmin watch obtained. Therefore, it can be concluded that
the algorithm improves the horizontal error in 7 out of 9 routes. The time error
is worsening the horizontal error in all the cases. Moreover it provides a route
that can be represented in the model in all the cases. These are very promising
results, hence the intention of Utopian City_scape is continuing developing this
algorithm in the future.

3.5 Future improvements

Although the algorithm fulfills the requirements for all the analyzed routes,
there is plenty of room left for future improvements which Utopian City_scape
would like to develop in the future. The improvements can be divided into two
groups, improvements in the data that the algorithm uses and improvements in
the algorithm itself. The improvements in the data that the algorithm uses are:

• As the terrain is designed now in the model, the walls are included in it.
This makes impossible to differentiate between the ground and the walls
when the object is hit. To improve this, the walls should be different
object than the terrain.

• There are buildings in the model which doors are not separated for the
other parts of the building. In this situation, it is impossible to detect
where the entrance of the building are. This should be fixed.

• The road network that was used only included the main roads in the
campus. Increase the number of roads in this network will increase the
accuracy of the algorithm.

3.5 Future improvements 75

Next, the improvements that can be developed in future versions of the algo-
rithm are listed:

• The algorithm was not designed taking into account performance. There-
fore, the performance of the algorithm can be studied and improved.

• The algorithm does not check the positions that have been added to the
route. The positions that should not have been added should be detected
and removed. An example of this problem can be seen in the route “From
308 to 342”.

• The algorithm avoiding hitting buildings does not evaluate different groups
of positions to add. It just evaluates which position to add at each time
between the lists of possible ones. It would be better if this algorithm
could compare between different groups of solutions and select the best
one.

• When the user is detected to be inside a building the algorithm add two
entrances of buildings and a jump between them. These entrances can be
from different buildings. The algorithm does not check if the buildings
are connected in case the doors are in different buildings. This should be
check in order to obtain more feasible results.

• The map matching algorithm does not detect if the roads are connected
between them. This should be detected and taken into consideration.

• Several parameters have to be introduced in the algorithm manually.
These parameters have been set with reasonable values and are found
to work well. But the accuracy of the algorithm would be better if the
possible values for these parameters will be analyzed in more detail.

• Nine routes have been used to test the algorithm. More routes have to be
used to find possible bugs and improvements.

• The algorithm only makes the route crosses buildings to avoid an altitude
difference or when Wi-Fi positioning is detected. The algorithm should
be able to detect when crossing a building is better option that surround
it.

• In the route “from Nordvej to 302” the algorithm “Fixing altitude differ-
ences” produces a false positive. Changing the parameter that controls
the maximum supported altitude difference and slope between two points
causes other altitude differences not to be solved. This problem has to be
solved implementing a more sophisticated detection algorithm.

76 Representing the routes in the 3D model

Chapter 4

Final functional system

This section describes the final system implementation. How the different parts
that were explained in the previous sections were connected to produce a fully
functional system. The system has been tested under several scenarios. It
has been found to follow all the required specifications. Although, it is worth
noting that this system is more a prototype than a final deployable system. This
project pretends to be a proof of concept which will allow UCS to develop more
advanced services in the future using this technology.

4.1 System architecture

As aforementioned in this report, the objective of this master thesis is to develop
a tracking system using an iOS device in the UCS platform realsite.dk. The
developed system is composed of three main parts, the mobile application, the
server side with the database and the website. The mobile application was
fully developed as part of this master thesis. Moreover, parts of the system in
the other two parts were developed as part of this master thesis as well. The
functions to convert from geographic coordinates to the reference system of each
model which is explained in section 3.3.2 were developed for the server side. As
for the website, the algorithms explained in section 3 were developed. People

78 Final functional system

in UCS developed the rest of the system because it was highly connected with
their systems and they are the experts on that.

As can be see in Figure 4.1, the mobile app and the website running in the user
PC cannot communicate directly. Therefore the server is necessary to allow this
communication and to store the routes in a database. The communication of
both the mobile application and the website with the server are made mainly
using HTTP GET and POST requests. The system is developed to work over
the Internet. Therefore an Internet connection is necessary in both the mobile
and the browser side. The system is made to work in real time. Thus the
positions have to be sent to the server as soon as they are available in the
phone. In the next sections the three parts that the system is composed of are
going to be analyzed in more detail.

Database
Internet server

Computer running realsite.dk
iOS device running the app

Figure 4.1: System architecture diagrama

ahttp://cdn1.iconfinder.com/data/icons/database/PNG/512/Database_1.png http://ww
w.jailbreakyourphone.net/wp-content/uploads/2011/07/iphone.png http://aux.iconpedia
.net/uploads/1360992576.png http://upload.wikimedia.org/wikipedia/commons/thumb/c/c
1/Computer-aj_aj_ashton_01.svg/2000px-Computer-aj_aj_ashton_01.svg.png

http://cdn1.iconfinder.com/data/icons/database/PNG/512/Database_1.png
http://www.jailbreakyourphone.net/wp-content/uploads/2011/07/iphone.png
http://www.jailbreakyourphone.net/wp-content/uploads/2011/07/iphone.png
http://aux.iconpedia.net/uploads/1360992576.png
http://aux.iconpedia.net/uploads/1360992576.png
http://upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Computer-aj_aj_ashton_01.svg/2000px-Computer-aj_aj_ashton_01.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/c/c1/Computer-aj_aj_ashton_01.svg/2000px-Computer-aj_aj_ashton_01.svg.png

4.2 Mobile application 79

4.2 Mobile application

The app that was developed for the location services accuracy analysis, pre-
sented in section 2.3.2, was modified to develop the final app. The user interface
was changed and additional functionalities were added to the app. Moreover,
the communication with the app and the server was improved to make the
system less app dependent. One of the requirements of the project is that it
has to be easily scalable. Therefore, the mobile application fulfills this require-
ment no change are needed to support future models added to realsite.dk. The
application was developed for iOS 5.1 and tested in an iPhone 3GS.

4.2.1 Function

The main function of the mobile application is to obtain, filter, store and send
the user’s locations. The mobile phone is the only device that is location-aware
in all the system. The tracking is not always enabled; the user decides whether
the tracking is enabled or disabled pressing one button in the main windows of
the application. Each route has associated a route description and a picture,
which have to be defined by the user before starting the tracking. The picture
has to be taken using the camera in the phone. It is stored in the internal
memory of the phone. Thus, the same photo is used for every route until the
user takes a new one.

The application detects which site the user is. If the user is not in a place where
there is a 3D model available, the tracking cannot be started. This functionality
is necessary because one of the parameters that are stored for each route in the
server is the site where the route was tracked. After this site recognition, the
same tasks in the application are performed in every place.

All the positions that are obtained and sent to the server are stored in a database
in the phone. Therefore, the application allows the user to explore the previous
routes. The routes are shown in a list ordered by date. A map of the route is
displayed in the screen if the user selects a route. Other window shows additional
information of the route such as the number of used positions and the duration.

4.2.2 Obtaining and processing location data

As it was explained in section 2.2, the location of the user in iOS only can be
obtained using the Core Location framework. During the chapter 2, CLLoca-

80 Final functional system

tionManager parameters such as the desiredAccuracy and distanceFilter were
studied. Moreover, several filter solutions were analyzed to remove the not
accurate enough locations. The conclusions of this chapter were used in the
development of the final app.

Following the results of these sections, the final app has CLLocationManager de-
siredAccuracy set to kCLLocationAccuracyBest. Furthermore, the locationFilter
is set to 1 meter to receive just the positions that are new. Not all the locations
that the Location Manager provides are used. The locations are filtered using
the filter that was presented in section 2.5.4. As it was demonstrated in this
section, the filter that provides better performance was the filter with error filter
of 100 meters and Wi-Fi filter of 4 locations. The error filter removes the routes
which predicted horizontal accuracy is bigger than 100 meters. While the Wi-Fi
filter filters out the Wi-FI positioning locations that are in groups of less than
4 positions after the error filter.

The same positions that are sent to the server are stored in the internal memory
of the device in a database. The database is managed by the app using Core
Data as described in Chapter 2.3.2. The database has two tables one table for
the routes and other one for the positions. Each route in the route table has
associated several positions in the positions table.

Each time the application is opened the list of available sites is downloaded.
This list includes the coordinates of the corners that include the area. Using
these coordinates and the first accurate coordinate available the site where the
user is placed is detected.

4.2.3 User interface

The user interface of the app is composed of a tab bar, which allows the user to
switch between the two main windows, Start and Routes. In the start windows,
the user can switch the tracking on and off and changes his avatar photo. While
in the routes one, all the routes that have been taken with the app are presented
in a list. Pressing on it leads into a map of the route and info of it.

As can be seen in Figure 4.2, the start tab presents a window which is compose
of the elements which are needed to start a new tracking session. The user can
find a text field to write the route title. If no title is specified, the route title
is set to “No title specified”. The next button starts or stops the tracking. If
the button is green as can be seen in the picture in the middle in Figure 4.2,
the tracking is started when the button is pressed. While if the button is red
as can be seen in the right picture, the tracking stops. The change of color is

4.2 Mobile application 81

accompanied with a change of the text that is written on it.

Figure 4.2: Different states of the start window

Below the button, the avatar picture can be found. The user can take a new
avatar picture clicking the camera icon which is on the right of the photo. The
screen while the user is taking the photo shows an oval hole that has the shape
of the avatar’s head as can be seen after the photo is taken in the start window.

App is
launched

Connecting

No Internet
connection

Ready
Starting
location
services

Searching
for GPS
signals

GPS
disabled

Uploading
route

information

No 3D model
available in

this area

Tracking in
x area

Problem with
the

connection
to the server

Figure 4.3: States diagram of the application

Under the avatar picture, there is a line of text with an icon on the left that
shows the status of the app. As can be see in Figure 4.3, the app has ten states
that have associated one of the four different icons. These four different icons
indicate either ready or loading or warning or error. In Figure 4.2, the loading
and the ready one are shown. The list of the ten different states and what they
mean is listed below:

82 Final functional system

• Connecting: this is the state that is shown when the app is started. During
this state the app downloads the list of the different sites where there is
a 3D model available. If this download fails, the app assumes that there
is not Internet connection available and switches to this state. If the
download works, the app switches to the Ready state.

• No Internet connection: this state indicates that the list of the sites could
not be downloaded. The tracking cannot be started in this state because
the application has to tell to the server in which site the tracking is done.
Without the list of the sites this parameter cannot be calculated.

• Ready: it means that the list of sites has been downloaded successfully
and the tracking can be started by the user. This state is the state that
the app has when a tracking session finishes.

• Starting location services: this is the first state that the app has after
the tracking session is started. During this state the database is opened
and the Location Manager started. Opening the database usually takes
around 1 or 2 seconds, once the database is opened the Location Manager
is started immediately. After this state the app switches to the next state
of this list.

• Searching for GPS signals: the application stays in this state until a lo-
cation that passes the filter is received. This means that a location with
a horizontal accuracy better than 100 m has to be received in order to
switch to the next state. This location is used to calculate in which site
the user is.

• Uploading route information: in this state the route information is up-
loaded to the server. The route information contains the route title, the
avatar picture and the site id. This state takes usually several seconds
because the image size is high and it takes time to upload it to the server.

• Tracking in x area: this state indicates that the tracking session has started
without problems. The positions are received and sent to the server in real
time during this state. If the Internet connection is lost during this state,
the positions are stored and sent to the server when the connection is
available again.

• GPS disabled: the app enters in this state when the location services are
disabled or the user does not allow the application to obtain his location.

• No 3D model available in this area: if the user tries to start a tracking
session and he is not in a place where there is 3D model available. The
app enters in this state.

4.2 Mobile application 83

• Problem with the connection to the server: this state is caused when
uploading of the route information to the server fails.

Figure 4.4: All the windows that are shown in the route tap

As can be seen in Figure 4.4, the Routes tap shows a list of the tracking sessions
that have been recorded with the app since the app was installed. This list
shows exactly the routes that are stored in the device internal memory database.
These routes should be the same that are stored in the Internet server database.
Although, the app handles connection problems during the tracking, it can
happen that some positions are lost during a tracking. This can happen if
the app is terminated during a tracking while there is not Internet connection
available. This is unlikely but it can happen.

Tapping in one of the route leads to a windows where a map of the route or
information about it are shown. As can be seen in Figure 4.4, the two buttons
that are in the navigation bar which is in the top of the screen allows the user
to switch between the two windows. The map window, which can be seen in
the center, shows a map centered in the route. Each point that has been sent to
the server is represented with a red dot. Tapping in these dots shows a callout
with the timestamp and horizontal accuracy of this position. The info window
shows information about the route such as the title, the site of the tracking,
the date when route was started, the duration and the number of positions that
have been received.

84 Final functional system

4.2.4 Communication with the server

Since the app is designed to track users in real time the communication with
the server is a crucial part of it. The app communicates with the server using
HTTP POST and GET requests. While in the GET request only the URL and
the headers are sent to the server, the POST request also includes a message
body. The app sends all the parameters in the URL but the picture that is sent
in the body of a POST request.

IOS provides several classes to handle HTTP requests. NSURLConnection class
has been used for uploading the photo. For the other requests, the method
stringWithContentsOfURL of the class NSString has been used since all the
parameters were sent in the URL and the server just returns a string. The
class NSURLConnection with NSMutableURLRequest allows the developer to
set between others the type, the header and the body of the HTTP request. If
the body of the HTTP request has to be sent, these methods should be used
to do so. The other method used in the app hides the HTTP protocol for the
developer and makes an HTTP GET request. This method can be where all
the information is sent in parameters in the URL.

The communication with the server is done asynchronously in the app. This
means that all the HTTP requests are not done in the main thread. This is basic
in a mobile application since the main thread is in charge of the user interface.
If the HTTP requests are done in the main thread, the user interface will be
stuck until the request receives a response. This leads into a really poor user
experience. That is why the HTTP requests are executed in a secondary thread
using either asynchronous request with a completion handler or synchronous
request that are executed in other queue using the dispatch_async framework.

The application makes three different types of requests to the server which are
listed below in the same order that are executed:

• Download the list of sites: this is the first request that the application
executes when it is launched. The server responses to this request a list
of the available sites. This list contains for each site its name, site ID and
the coordinates of the corners of the polygon that contains the site.

• Get the route ID: this request is sent when a tracking session is started
and is a HTTP POST. This request sends to the server the route title,
the site ID and the route picture. While the route title and the site ID
are sent as parameters in the URL, the picture is sent in the body. The
sever returns the route ID for this session. This route ID is used for each
location that is sent to the server to identify the route that it belongs to.

4.3 Server side 85

• Upload the locations: this request is sent each time the application re-
ceives a new location that passes the filter. All the parameters are sent in
the URL. The parameters that this request sends are longitude, latitude,
altitude, time interval, horizontal accuracy and route ID.

As it was commented before the photo is uploaded at the same time that the
route ID is obtained using a HTTP POST request. The raw JPEG data of the
photo is placed in the body of the request. But this body has to have a special
format to be understandable by the web application. This format is the format
that the HTML forms have.

4.3 Server side

The server side executes the web application that handles all the requests that
have been explained in the previous sections. Moreover it stores the routes and
the positions in a database. The player in realsite.dk has to access the data
that the application stores in the database. Therefore the server side has to
provide an interface for this communication as well which is explained in the
next section.

The routes are stored in a MySQL database. The database has two tables one
for the routes and other one for the locations. Each location in the locations
database belongs to one route from the routes table. The locations are stored
using the class point of the Spatial Extension of MySQL1.

The positions are stored in the database in geographic coordinates. But as
it was explained before in this report the models have their own coordinates
system that is always a transformation of the UTM coordinates of the place.
Therefore, the coordinates transformation that was explained in Chapter 3.3.2
is performed by the server when the player requires the coordinates of a route.

4.4 Player in realsite.dk

The player in realsite.dk is the interface that shows the routes that have been ob-
tained with the mobile application in the 3D model. This player was developed
using Unity. It is accessible using every browser with unity plugin installed,

1http://dev.mysql.com/doc/refman/5.5/en/gis-class-point.html

http://dev.mysql.com/doc/refman/5.5/en/gis-class-point.html

86 Final functional system

therefore is executed locally in the computer of the user. The player used to be
private; a realsite account was necessary to see it. But since April 2012 every-
one can see the player with the DTU 3D model in www.realsite.dk/DTU/public.
The public and the private versions of the player are the same. Thus, the func-
tionalities that are explained in this section are available in both versions.

The routes are not shown in the model when it is started. Instead, the key L has
to be pressed to activate this functionality. After the letter L is pressed a pink
ball is created for each route that is stored in the database. As it was explained
before, the balls cannot be moved in the model using the points received from
the phone directly. Therefore, the transformation that was designed as part of
this master thesis and presented in Chapter 3 is executed for every route. The
balls are moved following the route that the algorithm returns. The algorithm
worked perfectly for new routes that were obtained using the whole system.

As can be seen in Figure 4.5, users are represented as a ball since it would
be very resources consuming using a normal character for each route. Thus,
a simple object has to be used to represent the users. The ball was selected
because is one of the default game objects in Unity. But in future developments
of the system the ball is going to be changed for a 2D not animated character.
This character will have a body shape and contain the pictures that the mobile
application sent in his face. The color pink was selected for the balls because is
one of the easiest colors to differentiate inside the model.

Figure 4.5: Two screenshots of realsite with the system activated

The camera in the player is always attached to the character. Therefore the
character has to be moved around the model manually to see the different routes,
this can be seen in Figure 4.5. There is no way to search for the different balls
but manually. As the system is implemented the balls are placed in the model
but there is no way to see information about the different routes or to find them.
Future versions of the system should improve this.

The balls never stop; they are continually moving form the beginning of the
route to the end. Once the end is reached the ball starts in the beginning of the

4.5 Potential improvements 87

route again. This implementation was chosen mainly for testing purposes. The
system was tested in real time; the new points are loaded in the player as soon
as they are stored in the database in the server. The algorithm to improve the
routes is just executed for the new positions and not for the old ones. Everything
worked fine in the real time testing; the delay of the whole system is around 1
minute, which is pretty promising for future development of the system.

As it was commented before, a future version of the characters that represent
the routes in the model are supposed to include the picture that is taken with
the mobile application in their heads. For testing that the communication of
the pictures is working, the actual version loads the routes picture in the balls.
As can be seen in the Figure 4.5, the communication is working perfectly.

4.5 Potential improvements

As it was commented before in this report, this system is a prototype, which
can be used to develop advanced tracking services. It is a proof of concept
using Utopian City_Scape products. Thus, there are many aspects that can
be developed in the future. The improvements can be either in the mobile
application or in the player. The mobile application should be improved mainly
in the following points:

• Login: the application does not have any authentication. This is a big
issue because every user that downloads it can upload infinite number of
routes to Utopian City_Scape server. That is why the application has not
been deployed in the app store. But this login can be implemented in the
same way that the realsite login and it should be really easy to deploy.

• Design: since the application is a prototype the design is not an important
part of it. It could be improved with some graphics and redesigning the
layout of the different windows.

Regarding the representation of the routes in the player in realsite.dk, the fol-
lowing improvements could be done:

• Improve the algorithm for improving routes: although the algorithm re-
turns a route free of building obstacles in almost all the cases. The condi-
tions that detect the several problems can be improved to be more accu-
rate. Moreover it sometimes adds some corners of buildings that should
not be added.

88 Final functional system

• Divide the different parts of the terrain into different object: as it was
commented before in this master thesis the walls and the outdoor stairs
are integrated in the terrain object. This makes the detection of walls very
complicated and inefficient. As it is now, the algorithm does not detect
walls, it detects altitude difference. If the walls were different objects, the
detection of the walls would be very easy and avoid them could be done
in the same way that was done with the buildings.

• Design an user interface to interact with the different routes: as it is
implemented now, the only user interaction with the routes is done by
pressing key L. A new user interface should be designed where the user
can select which routes should be visualized. Moreover, some way to find
the routes in the model should be available as well. As it is now the user
has to move the player around until he finds a ball.

• Improve the road network: the road network that was used for the map
matching was generated automatically. Just the main streets of the cam-
pus are available in this network. A more accurate network will improve
the results of the algorithm.

The final system has been tested several times. But it is not enough to assume
that it has no errors. More tests should be performed in order to find bugs and
fix them.

Chapter 5

Conclusion

Firstly, this master thesis studies the accuracy of the iOS location services.
The study shows that the statics positions are up to 8 m accurate in average.
Moreover some configuration parameters were found to have no influence over
this accuracy. Other additional parameters that are provided apart form the
geographical coordinates such as the time stamp and the predicted horizontal
accuracy were analyzed, they were found to be more inaccurate than the coor-
dinates. As the study demonstrated, the accuracy is not the best quality of the
location services in smartphones but they are really fast and available almost
everywhere. These two characteristics are very important in a mobile device,
even more important than the accuracy. The study shows that the location
services are able to provide an accurate position within 15 seconds in almost
all situation and 10 seconds in the majority of them. The availability of iOS
positioning in the campus area was found to be almost 100%.

Not only static positions were analyzed but also positions in motion. The error in
these cases was calculated using as reference the positions that a more accurate
device provided. The mean error in this case is bigger than in the case of the
static positions because this technique introduces some error. The mean error
for all the analyzed routes was 27.13 m. This error was reduced to 23.89 m after
filtering out the inaccurate positions. Inaccurate positions are the ones that
have a predicted horizontal accuracy bigger than 100 m. The WiFi positioning
positions that appear in groups of less than 4 positions are considered inaccurate

90 Conclusion

as well. After applying this two filters detecting when the user enters a building
is as easy as detect the remaining positions obtained using WiFi positioning.

After this study, a novel system to represent inaccurate routes obtained with an
iPhone in a very accurate 3D model was developed. As it was demonstrated,
the characters cannot be moved directly in the model using the row GPS data.
A transformation of this data has to be performed. This transformation is done
by a system, which is composed of five different stages. These are executed
one after another. Each of these stages improves one problem of the route
without ruining the work of the previous ones. Although the system cannot be
considered as a path finding algorithm, the problem that solves is related to a
path finding problem. One of the algorithms is a map matcher. Moreover the
algorithm was developed in Unity using the Utopian City_Scape 3D model of
DTU.

The system improved the average of the horizontal error in four of the nine
analysed routes. After a deeper analysis of the result routes seven of the nine
routes were found to be closer to the real ones after applying the algorithms.
Moreover for all the cases the system returns a route that does not get stuck.
Although these results are very promising, this system pretends to be a proof
of concept. Utopian City_Scape has already stated the intention of developing
further this system in the future.

The final functional system is composed of the iOS app, the webserver with the
database and the 3D model player. The mobile application obtains the GPS
positions. These positions are filtered and stored in the device internal memory
before they are sent to the server. The server stores this positions in a database
and convert them into the 3D model coordinate system.

Appendix A

Product Brief iPhone
A-GPS chip

1

1http://www.infineon.com/dgdl/PMB2525-Hammerhead+II-pb.pdf?folderId=db3a304316f
66ee80117824fc0d71e07&fileId=db3a304316f66ee8011782518d4a1e08

http://www.infineon.com/dgdl/PMB2525-Hammerhead+II-pb.pdf?folderId=db3a304316f66ee80117824fc0d71e07&fileId=db3a304316f66ee8011782518d4a1e08
http://www.infineon.com/dgdl/PMB2525-Hammerhead+II-pb.pdf?folderId=db3a304316f66ee80117824fc0d71e07&fileId=db3a304316f66ee8011782518d4a1e08

The Industry’s Highest Performance GPS Receiver in the smallest package yet.

H a m m e r h e a d I I delivers all the performance of its predecessor, while

achieving a new benchmark for high performance Positioning & Navigation integration

into mobile devices.

U S I N G C H I P scale packaging (CSP) technology, its size (3.59 x 3.75 mm2) now

offers possibilities of integration into the miniaturizing world of mobile handhelds.

H a m m e r h e a d I I integrates a high performance A-GPS baseband processor

and a low-noise GPS RF front end. It comes packed with new software features such

as advanced multi-path mitigation that avoid large errors in urban environments

caused by reflected signal-in buildings and other structures.

Key Features and Benefits

Single-chip minimizing board space (< 50 mm2 PCB area for complete A-GPS solution)

Advanced low-power 0.13 µ RFCMOS technology with smart power management

Real-time hardware correlator engine (fast acquisition and high sensitivity)

High sensitivity, -160 dBm, enabling indoor and deep urban operation

Built-in voltage regulators supporting single-power supply source

Multiple-mode operation

MS-based (calculation of position in mobile handset)

MS-assisted (calculation of position in base station)

Autonomous (no assistance by network)

Enhanced autonomous (using four day assistance data)

Multiple protocol operation

Control plane (RRLP & RRC)

User plane (SUPL)

A-GPS control software enables non disrupting call flow and ease integration

Standard compliant (exceeds requirements for 2.5 G and 3 G networks)

–

–

–

–

–

–

Specification

-160 dBm sensitivity

Time-to-First Fix (Mobile-Based)

1 second @ 5 m accuracy

(cold start, -130 dBm)

2 m steady state accuracy

Reference frequencies: 10 – 40 MHz

Assistance data standards support

UMTS/GSM: 3GPP TS 25.331, TS 44.031,

 and OMA SUPL

CDMA: 3GPP2 C.S0022-0-1

Devices

Mobile phones

Smartphones

PDAs

PND (Personal Navigation Devices)

Applications

Emergency Assistance (E911, E112)

Navigation: Point-to-Point, POI, Business

finder, Real-time Traffic information

Child safety and Friend-finder

Fleet and workforce management

Location Games

–

–

–

Product Brief

HammerheadTM II
PMB 2525

w w w . i n f i n e o n . c o m / g p s
w w w . g l o b a l l o c a t e . c o m

Communication Solutions

Note: The Hammerhead trade mark is owned by Global Locate, Inc

Product Brief

How to reach us:
http://www.infineon.com

Published by
Infineon Technologies AG
81726 Munich, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

Legal Disclaimer
The information given in this Product Brief shall in no event be
regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints
given herein, any typical values stated herein and/or any informa-
tion regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of
intellectual property rights of any third party.

Information
For further information on technology, delivery terms and
conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain
dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-
support devices or systems with the express written approval
of Infineon Technologies, if a failure of such components can
reasonably be expected to cause the failure of that life-support
device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in
the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume
that the health of the user or other persons may be endangered.

Published by Infineon Technologies AG

Ordering No. B130-H8965-X-X-7600
Printed in Germany
PS 0107.75 nb

Block Diagram

Global Locate
A-GPS Control

Software
& Third Party

LBS Application

Cellular - Host CPU

32 kHz

VCXO

Existing Mobile
Phone Platform

H
os

t C
on

tr
ol

In
te

rfa
ce

Correlator Engine
&

Post Processor

Power
Management

RF
Front-end

Serial
Port

PLL

Hammerhead

SAW-Filter

GPS Antenna

Standby Clock

Reference Clock

Product Summary

Product Sales Code Package

Hammerhead II PMB 2525 SG-UFWLB-49 (3.59 x 3.75 mm2)
lead-free/halogen-free

Application Examples

Personal Navigation: Never get lost again in foreign cities. Your mobile phone is

leading the way to your destination, whether you start indoors or outdoors. Avoid

being delayed in traffic jams by utilizing real-time traffic information.

Location-based Services: Finding the way to points of interest simplifies your life.

Take the short way to restaurants in your neighborhood, the nearest gas station or

metro station. Use your LBS application indoors to start planning your trip before

you get in your car.

Emergency Assistance: A-GPS-enabled mobile telephones are in demand to allow

accurate tracking of emergency calls placed from mobile telephones by the end of

2005. Hammerhead II will enable mobile users calling emergency telephone codes

to provide emergency services with very accurate location information, both from

indoors and outdoors.

Friend-Finder and Child-Safety: Meeting with friends and family is now an easy

task by sharing your personal location. Keep an eye on the current position of your

children and keep them away from dangerous places.

Advantages

Hammerhead II is based on Global Locate

IP and state-of-the-art Infineon RFCMOS

IP and process technology. This ground

breaking chip is the key for enabling

location-based services such as

emergency assistance and personal

navigation in deep urban canyons,

in moving vehicles, and indoors.

Hammerhead II uses the proven host-based

architecture pioneered by GL as the best

fit for mobile devices as proven in mass

market 2.5 G and 3 G devices shipping

now. GL host-based architecture leverages

some of the resources already existing

in the mobile device without imposing a

big CPU load (~ 3 – 6 MIPS) or any real

time requirements. Hammerhead II uses

standard serial communication interfaces

with speeds as low as 38,400 bps.

Global Locate’s Host-based architecture

yields the lowest system cost solution

as well as the smallest footprint without

compromising performance.
For further information on the Hammerhead product please contact Global Locate
(www.globallocate.com) or Infineon Technologies (www.infineon.com/gps).

Cost-optimized architecture for

integration into mobile phones

No additional external CPU or

memory required

Both A-GPS control software and

LBS (location based services)

application executed on host CPU

of cellular processor

Serial host interface (UART, SPI or I2C)

No additional TCXO required,

uses host 32 kHz standby clock &

reference clock (10 to 40 MHz)

94 Product Brief iPhone A-GPS chip

Appendix B

Routes maps and graphs

B.1 Routes which goes inside a building

96 Routes maps and graphs

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 7.46 188.34 26.59 38.80
200 0 7.46 60.55 23.11 26.91
150 0 7.46 60.55 22.62 26.40
100 0 7.46 60.55 22.62 26.40
100 2 7.46 60.55 22.62 26.49
100 3 7.46 60.55 22.62 26.49
100 4 7.46 60.55 22.62 26.49
100 5 7.46 60.55 22.62 26.49
100 6 7.46 60.55 24.16 28.02
100 7 7.66 60.55 24.80 29.07

Figure B.1: Route map and error and time graphs. From 308 to 342

B.1 Routes which goes inside a building 97

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 2.28 175.08 30.86 40.05
200 0 2.35 93.29 26.25 31.16
150 0 2.35 93.29 24.96 29.51
100 0 2.35 93.29 24.35 28.64
100 2 2.35 93.29 24.35 28.64
100 3 2.35 93.29 24.35 28.64
100 4 2.35 59.39 22.81 25.58
100 5 2.35 59.39 22.81 25.58
100 6 2.35 59.39 22.81 25.58
100 7 2.35 59.39 22.81 25.58

Figure B.2: Route map and error and time graphs. From 341 to 101

98 Routes maps and graphs

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 1.04 133.87 36.23 44.07
200 0 1.04 65.52 31.58 36.17
150 0 1.04 65.52 30.30 34.76
100 0 1.04 65.52 29.90 34.49
100 2 1.04 65.52 29.87 34.59
100 3 1.04 65.52 29.87 34.59
100 4 1.04 65.52 29.87 34.59
100 5 1.04 65.52 29.87 34.59
100 6 1.04 65.52 29.87 34.59
100 7 3.66 65.52 30.63 35.89

Figure B.3: Route map and error and time graphs. From 343 to 308

B.1 Routes which goes inside a building 99

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 6.13 132.91 35.49 47.02
200 0 6.13 90.78 29.57 36.78
150 0 6.13 90.78 28.37 35.89
100 0 6.13 90.78 28.37 35.89
100 2 6.13 90.78 28.37 35.89
100 3 6.13 90.78 28.37 35.89
100 4 6.13 90.78 28.37 35.89
100 5 6.13 90.78 28.37 35.89
100 6 6.13 90.78 28.37 35.89
100 7 6.13 90.78 28.37 35.89

Figure B.4: Route map and error and time graphs. From library to 229

100 Routes maps and graphs

B.2 Outdoor routes with curves

B.2 Outdoor routes with curves 101

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 4.24 99.34 24.94 30.97
200 0 4.24 42.39 21.84 24.25
150 0 4.24 42.39 21.18 23.66
100 0 4.24 42.39 21.18 23.66
100 2 4.24 42.39 21.18 23.66
100 3 4.24 42.39 21.18 23.66
100 4 4.24 42.39 21.18 23.66
100 5 4.24 42.39 21.18 23.66
100 6 4.24 42.39 21.18 23.66
100 7 4.24 42.39 21.18 23.66

Figure B.5: Route map and error and time graphs. From 115 to library

102 Routes maps and graphs

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 3.24 61.52 26.33 29.92
200 0 3.24 61.52 25.39 28.77
150 0 3.24 61.52 24.64 28.30
100 0 3.24 61.52 24.64 28.30
100 2 3.24 61.52 24.64 28.30
100 3 3.24 61.52 24.64 28.30
100 4 3.24 61.52 24.64 28.30
100 5 3.24 61.52 24.64 28.30
100 6 3.24 61.52 24.64 28.30
100 7 3.24 61.52 24.64 28.30

Figure B.6: Route map and error and time graphs. From 229 to 115

B.2 Outdoor routes with curves 103

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 4.62 93.08 26.57 33.60
200 0 4.62 93.08 26.57 33.60
150 0 4.62 93.08 26.33 33.46
100 0 4.62 93.08 26.33 33.46
100 2 4.62 93.08 26.33 33.46
100 3 4.62 93.08 26.33 33.46
100 4 4.62 93.08 26.33 33.46
100 5 4.62 93.08 26.33 33.46
100 6 4.62 93.08 26.33 33.46
100 7 4.62 93.08 26.33 33.46

Figure B.7: Route map and error and time graphs. From Nordvej to 302
biking

104 Routes maps and graphs

B.3 Straight routes

B.3 Straight routes 105

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 3.76 41.47 17.83 19.02
200 0 3.76 41.47 17.83 19.02
150 0 3.76 41.47 17.83 19.02
100 0 3.76 41.47 17.83 19.02
100 2 3.76 41.47 17.83 19.02
100 3 3.76 41.47 17.83 19.02
100 4 3.76 41.47 17.83 19.02
100 5 3.76 41.47 17.83 19.02
100 6 3.76 41.47 17.83 19.02
100 7 3.76 41.47 17.83 19.02

Figure B.8: Route map and error and time graphs. From Knuth-Wintherfeldts
to Nils Koppels Alle walking

106 Routes maps and graphs

Error filter Wi-Fi filter Min Max Mean RMSE
1000 0 4.69 218.90 30.32 38.33
200 0 4.69 79.13 28.37 32.32
150 0 4.69 79.13 28.37 32.32
100 0 4.69 79.13 28.37 32.32
100 2 4.69 79.13 28.37 32.32
100 3 4.69 79.13 28.37 32.32
100 4 4.69 79.13 28.37 32.32
100 5 4.69 79.13 28.37 32.32
100 6 4.69 79.13 28.37 32.32
100 7 4.69 79.13 28.37 32.32

Figure B.9: Route map and error and time graphs. From Nils Koppels Alle
to Knuth-Wintherfeldts biking

Appendix C

Definition of DTU local
coordinate system

Side 1 af 2

 BlomInfo A/S
 Masnedøgade 20
 2100 København Ø
 Tlf. 70 200 226
 Fax: 70 200 227
 E-mail: info.dk@blomasa.com
 Web: www.blominfo.dk
 CVR.: 19 95 93 41

Danmarks Tekniske Universitet
Plan & Projekt
Nils Koppels Allé, Bygning 402
2800 Lyngby

Att.: Markus Lampe

10. december 2010

Definition af DTU's lokale koordinatsystem
DTU’s lokale koordinatsystem (DTU-LOK) defineres i dette skrift med udgangspunkt i
UTM, zone32, Euref89 koordinatsystemet (UTM). Dvs. herunder beskrives hvilke
forskelle der er imellem de to systemer og hvorledes der konverteres imellem dem.
Der er tilknyttet to CAD filer til denne definition:

• DTU_Def_in_UTM: Sammenligning mellem DTU-LOK og UTM vist i UTM.
• DTU_Def_in_DTU: Sammenligning mellem DTU-LOK og UTM vist i DTU-

LOK.

1.1. Koordinatsystemet
DTU-LOK er et venstrehåndssystem, dvs. X-aksen er positiv til venstre og y-aksen
ligger til højre, hvilket er det modsatte af UTM og andre matematiske
koordinatsystemer. Vinkler angives i DTU-LOK positivt med uret og solen. I UTM er
vinklerne angivet positivt mod uret (og mod solen) – også kaldet positiv omløbsretning.
I praksis betyder det at x koordinater angivet i DTU-LOK skal ganges med -1, for at de
kan anvendes i systemer, som anvender matematiske koordinatsystemer.
Se CAD filerne.

1.2. Akse retning
I DTU-LOK er y-aksen lagt parallelt med K.Wintherfeldt Allé og x-aksen langs Anker
Engelundsvej. UTM har Y-aksen nord/syd.
Det betyder, at der er en drejning mellem de to koordinatsystemer. Drejningen fra UTM
til DTU-LOK er på -14,3472 grader.

1.3. Nulpunkt
DTU-LOK’s nulpunkt ligger i UTM koodinaterne: (N, E)=(6.187.824,989; 720.784,976)

1.4. Skalafaktor
Pga. definitionen af UTM er der en skalafaktor mellem de to koordinatsystemer. Denne
faktor er fra UTM til DTU-LOK på 0.9998133 og 1.0001867 når der konverteres den
modsatte vej.

Side 2 af 2

 BlomInfo A/S
 Masnedøgade 20
 2100 København Ø
 Tlf. 70 200 226
 Fax: 70 200 227
 E-mail: info.dk@blomasa.com
 Web: www.blominfo.dk
 CVR.: 19 95 93 41

1.5. Transformation
Til transformation mellem de to koordinatsystemer anbefales det at anvende en Plan
Helmert transformation. Følgende punkter kan anvendes:

Nr.
E

(UTM32, Euref89)
N

(UTM32, Euref89)
X

(DTU-LOK)
Y

(DTU-LOK)
101-02 720625.164 6187234.985 8.625 -611.09
108-02 720948.055 6188418.298 -10.971 615.101
100 720784.976 6187824.989 0 0
1 721204.078 6188513.732 -235.319 770.97

110 Definition of DTU local coordinate system

Appendix D

Routes maps and graphs
after executing the

algorithm

112 Routes maps and graphs after executing the algorithm

Improved with the algorithm Min Max Mean RMSE
Yes 6.54 75.48 29.97 35.07
No 7.46 32.91 17.58 19.36

Figure D.1: Route map and error graphs. From 308 to 342

113

Improved with the algorithm Min Max Mean RMSE
Yes 4.76 143.17 49.70 63.36
No 2.35 59.39 22.53 25.38

Figure D.2: Route map and error graphs. From 341 to 101

114 Routes maps and graphs after executing the algorithm

Improved with the algorithm Min Max Mean RMSE
Yes 5.14 37.15 24.39 25.75
No 1.04 50.37 26.85 30.03

Figure D.3: Route map and error graphs. From 343 to 308

115

Improved with the algorithm Min Max Mean RMSE
Yes 11.01 45.02 25.02 26.81
No 9.55 90.78 31.35 39.52

Figure D.4: Route map and error graphs. From library to 229

116 Routes maps and graphs after executing the algorithm

Improved with the algorithm Min Max Mean RMSE
Yes 11.70 41.39 18.91 21.23
No 4.24 41.39 19.84 22.23

Figure D.5: Route map and error graphs. From 115 to library

117

Improved with the algorithm Min Max Mean RMSE
Yes 2.89 44.64 18.70 22.66
No 3.24 44.64 21.72 25.86

Figure D.6: Route map and error graphs. From 229 to 115

118 Routes maps and graphs after executing the algorithm

Improved with the algorithm Min Max Mean RMSE
Yes 6.70 78.68 34.58 39.67
No 4.62 93.08 26.08 33.27

Figure D.7: Route map and error graphs. From Nordvej to 302

119

Improved with the algorithm Min Max Mean RMSE
Yes 4.85 37.63 19.29 21.07
No 3.76 33.49 17.74 18.86

Figure D.8: Route map and error graphs. From Knuth-Wintherfeldts to Nils
Koppels Alle

120 Routes maps and graphs after executing the algorithm

Improved with the algorithm Min Max Mean RMSE
Yes 4.52 140.30 61.55 74.63
No 4.69 79.13 28.53 32.42

Figure D.9: Route map and error graphs. From Nils Koppels Alle to Knuth-
Wintherfeldts

Bibliography

[AM06] Iwan Le Berre Alain Hénaff Ariane Mascret, Thomas Devogele.
Coastline matching process based on the discrete fréchet distance.
Progress in spatial data handling, 2006.

[Bes03] Angel Balaguer Beser. Fundamentos geométricos para la topografia.
Universidad politécnica de valencia, 2003.

[BKR92] Kumar S. Ray Bimal Kr. Ray. An algorithm for polygonal approxi-
mation of digitized curves. Pattern Recognition Letters, 1992.

[CEW00] Alain L. Kornhauser Christopher E. White, David Bernstein. Some
map matching algorithms for personal navigation assistants. Trans-
portation Research Part C 8, 2000.

[CMYA06] Chmelev D. Haehnel D.-Hightower J. Hughes J. LaMarca A. Pot-
ter F. Smith I. Chen M. Y., Sohn T. and Varshavsky A. Practical
metropolitan-scale positioning for gsm phones. Proceedings of Ubi-
comp, 2006.

[DD73] T. Peucker D. Douglas. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Car-
tographica: The International Journal for Geographic Information
and Geovisualization, 1973.

[FDA08] M. Torres-Torritia A. Guesalagaa F. Donoso-Aguirre, J.-P. Bustos-
Salas. Mobile robot localization using the hausdorff distance. Robot-
ica, 2008.

122 BIBLIOGRAPHY

[FM04] K.W. Axhausen F. Marchal, J. Hackney. Ecient map-matching of
large gps data sets - tests on a speed monitoring experiment in
zurich. 2004.

[GRJZ04] T. Srikanthan G. R. Jagadeesh and X. D. Zhang. A map matching
method for gps based real-time vehicle location. The journal of
navigation, 2004.

[GS05] W. Guo-K. Liu G. Sun, J. Chen. Signal processing techniques in
network-aided positioning: a survey of state-of-the-art positioning
designs. Signal Processing Magazine, 22(4):12 – 23, 2005.

[GT99] Geoffrey Blewitt George Taylor. Virtual differential gps & road
reduction filtering by map matching. ION GPS, 1999.

[GTAH01] Jamie Uff George Taylor and Adil Al-Hamadani. Gps positioning
using map-matching algorithms, drive restriction information and
road network connectivity. GISRUK, 2001.

[Hub] Denis Huber. Background positioning for mobile devices android vs.
iphone.

[JH] Jack Snoeyink John Hershberger. Speeding up the douglas-peucker
line-simplification algorithm.

[JL07] K. Jones and L. Liu. What where wi: An analysis of millions of wi-fi
access points. IEEE International Conference on Portable Informa-
tion Devices, 2007. PORTABLE07, pages 1 – 4, May 2007.

[Kue05] A. Kuepper. Location-Based Services: Fundamentals and Opera-
tions. John Wiley & Son, 2005.

[MCP] Srikanth Bandi Marc Cavazza and Ian Palmer. “situated ai” in video
games: Integrating nlp, path planning and 3d animation.

[ML08] Jouni Ikonen Mikko Lehtinen, Ari Happonen. Accuracy and time to
first fix using consumer-grade gps receivers. SoftCOM 2008. 16th In-
ternational Conference on software, Telecommunications and Com-
puter Networks., 2008.

[Mul04] Adi Botea Martin Muller. Near optimal hierarchical path-finding.
2004.

[MYW10] Jing-Chun Wang-Yu-Chen Chuang Mei-Yi Wu, Shang-Rong Tsai.
A pac-man game on campus using gps location information and
shortest path algorithm. IEEE International Conference on Digital
Game and Intelligent Toy Enhanced Learning, 2010.

BIBLIOGRAPHY 123

[oOGP11] International Associaton of Oil & Gas Producers. Coordinate con-
versions and transformations including formulas. OGP Publication,
2011.

[PEH68] Raphael Bertran Peter E. Hart, Nils J. Nilsson. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transac-
tions on Systems Science and Cybernetics, 1968.

[PM09] Michele Stucchi Wim Dehaene Antonis Papanikolaou-Diederik Verk-
est Bart Swinnen Eric Beyne Paul Marchal, Bruno Bougard. 3-d
technology assessment: Path-finding the technology/design sweet-
spot. Proceedings of the IEEE, 2009.

[Rab00] S. Rabin. A: Speed optimizations. In Game Programming Gems,
2000.

[Ram72] Urs Ramer. An iterative procedurefor the polygonal approxima-
tionof plane curves. Computer graphics and image processing, 1972.

[SB00] Daniel Thalmannb Srikanth Bandia. Path finding for human motion
in virtual environments. Computational Geometry, 2000.

[SB04] Juurakko S. and Backman. Database correlation method with error
corrections for emergency location. Wireless Personal Communica-
tions, 30, 2004.

[SC05] Lin T. S. and Lin P. C. Performance comparison of indoor posi-
tioning techniques based on fingerprinting. Proceedings of the Sixth
IEEE International Symposium on a World of Wireless Mobile and
Multimedia Networks, 2005.

[Teu88] Peter J. G. Teunissen. The non-linear 2d symmetric helmert trans-
formation: an exact non-linear least-squares solution. Journal of
geodesy, 1988.

[TG11] Shawn Seals Terry Griffin, Yan Huang. Routing-based map match-
ing for extracting routes from gps trajectories. 2nd International
Conference on Computing for Geospatial Research & Applications,
2011.

[YB06] Kari Halldorsson Yngvi Bjornsson. Improved heuristics for optimal
pathfinding on game maps. 2006.

[YJs05] Chon Kyung-soo Yang Jae-seok, Kang Seung-pil. The map match-
ing algorithm of gps data with relatively long polling time inter-
vals. Journal of the Eastern Asia Society for Transportation Studies,
2005.

124 BIBLIOGRAPHY

[YZ10] Menglei Li Xiaojie Li-Daimin Tang Yanfei Zheng, Xiang Li. Mod-
eling road surface and network from a 3d perspective. 2nd Inter-
national Conference on Computer Engineering and Technology (IC-
CET), 2010.

[ZA06] Suddle M.R. Zaidi A.S. Global navigation satellite systems: A sur-
vey. IEEE, International Conference on Advances in Space Tech-
nologies, 2006.

[Zan09] Paul A Zandbergen. Accuracy of iphone locations: A comparison
of assisted gps, wifi and cellular positioning. Transactions in GIS,
13(s1):5 – 26, 2009.

[ZB11] Paul A. Zandbergen and Sean J. Barbeau. Positional accuracy of
assisted gps data from high-sensitivity gps-enabled mobile phones.
June 2011.

[Zho] Jianyu (Jack) Zhou. A three-step general map matching method in
the gis environment: Travel/transportation study perspective.

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Collaboration with Utopian City_Scape
	1.3 Project requirements
	1.4 Project architecture
	1.5 Thesis structure

	2 Accuracy study of iOS location services
	2.1 Introduction to the different location systems
	2.1.1 Satellite positioning
	2.1.2 Wi-Fi positioning
	2.1.3 Cellular positioning

	2.2 Location services in iOS
	2.3 Experimental settings
	2.3.1 Analyzed devices
	2.3.2 Data collection and evaluation criteria

	2.4 Analysis of Static Measurements
	2.4.1 GPS data processing
	2.4.2 Horizontal accuracy comparison between different desired accuracies in iOS
	2.4.3 Observed versus estimated accuracy in iPhone
	2.4.4 Time to first-fix in iPhone
	2.4.5 Comparison between different devices

	2.5 Analysis of Measurements in motion
	2.5.1 How to measure the real route
	2.5.2 GPS data processing
	2.5.3 Calculated horizontal error
	2.5.4 Filtering out inaccurate locations
	2.5.5 Time and speed between different locations
	2.5.6 Trying to detect when the user goes inside a building

	3 Representing the routes in the 3D model
	3.1 Problem description
	3.1.1 Coordinates conversion
	3.1.2 Crossing buildings and points in the top of the buildings
	3.1.3 Changes of altitude along the route
	3.1.4 Fast change of heading

	3.2 Tools and concepts required
	3.2.1 Path finding
	3.2.2 Map matching
	3.2.3 Unity and the development environment

	3.3 Solution designed
	3.3.1 System requirements
	3.3.2 Converting from geographic to DTU coordinates and vice versa
	3.3.3 Algorithms developed to represent the avatar in the model

	3.4 Results
	3.5 Future improvements

	4 Final functional system
	4.1 System architecture
	4.2 Mobile application
	4.2.1 Function
	4.2.2 Obtaining and processing location data
	4.2.3 User interface
	4.2.4 Communication with the server

	4.3 Server side
	4.4 Player in realsite.dk
	4.5 Potential improvements

	5 Conclusion
	A Product Brief iPhone A-GPS chip
	B Routes maps and graphs
	B.1 Routes which goes inside a building
	B.2 Outdoor routes with curves
	B.3 Straight routes

	C Definition of DTU local coordinate system
	D Routes maps and graphs after executing the algorithm
	Bibliography

