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Summary (English)

The aim of the thesis is twofold. First the thesis sets out to examine the
replicative capacity of 20 widely diversified exchange traded index funds.
The means is an analysis and subsequent modelling of the deviance of
returns, over the life time of the funds. The life time of the considered
funds span from 5 to 12 years. It is shown that the deviance processes,
with one exception, can be modelled in an ARMA-GARCH framework
with mean deviances in the range of [-4.57e-3, 3.81e-3] on weekly returns
and [-1.13e-3, 8.54e-4| on daily returns. Considering correlation between
returns, one out of 20 funds is only vaguely correlated in weekly returns,
while this is true for four out of 20 funds considering daily returns. the
remaining pairs of fund and index returns are highly correlated. It is
thus concluded that on the bottom line the funds do in fact replicate the
indices.

Given the replicative capacity of the funds, deduced from the close cor-
relation and low mean deviance, a selection of the underlying indices are
applied as proxies for the funds in a scenario generation intended to form
the basis of a portfolio optimisation. The indices are considered due to
lack of historic information on the funds. Four methods are applied and
evaluated for four point predictions, namely bootstrapping, an ARMA-
GARCH model, a Markov Switching Autoregressive model and lastly a
dependent mixture model. While the first two models consider the index
returns in their entirety, the latter two part data into regimes and estimate



separate models in each regime. The models are further distinguished as
the dependent mixture model considers the market, as represented by the
selected indices, in its whole, while the three models consider each asset
individually.

It is found that bootstrapping returns in an attempt to predict new ones
falls short in capturing the economic changes, relative to the remaining
models. ARMA-GARCH and the Markov Switching autoregressive model
perform roughly equal in generating out of sample predictions, altough
with a favour towards ARMA-GARCH which is generally more accurate.
The dependent mixture model is the preferred model amongst the con-
sidered, for portfolio optimisation purposes, due to its superior ability to
adequately reflect the financial situation.



Summary (Danish)

Formélet med denne athandling er todelt. Fgrst undersgges 20 bredt di-
versificerede bgrshandlede indeksfonde i relation til deres underliggende
finansielle indeks. Som udgangspunkt udfgres en analyse af afvigelsen
mellem fondenes afkast og afkastet fra de underliggende indeks. Det pavis-
es at tidsraekken af afvigelser, med en enkelt undtagelse, kan modelleres
i en ARMA-GARCH model med gennemsnitlige afvigelser pa [-4.57¢-3,
3.81e-3| for ugentlige afkast og [-1.13e-3, 8.54e-4] for daglige afkast. Nar
man betragter korrelation mellem fond- og indeks afkast udviser én ud
af 20 fonde svag korrelation pa de ugentlige afkast, mens fire ud af 20
fonde udviser svag korrelation med daglige indeks afkast. De resterende
par af fond og indeks afkast er hgjt korrellerede. Det konkluderes saledes
at fondene pé& bundlinjen replikerer de underliggende indeks tilfredsstil-
lende.

I betragtning af dette udveelges ni indeks til scenarie generering. Indeks
bliver anvendt i stedet for fondene pa grund af manglende historisk infor-
mation omkring fondene. De genererede scenarier skal danne grundlag for
en portefglje optimering over de udvalgte indeks. Fire metoder anvendes
til genereringen, og vurderes pa deres evne til at forudsige fire punkter
frem i tiden sammenholdt med hvad der bliver observeret i samme pe-
riode. De fire anvendte metoder er bootstrapping, ARMA-GARCH, en
Markov Switching autoregressive model og en dependent mixture mod-
el. Mens de fgrste to modeller modellerer afkast-tidsraekken i sin helhed,



deler de to sidstnaevnte data ind i regimer og estimerer separate mod-
eller i hvert regime. Modellerne kan yderligere adskilles ved at dependent
mixture modellen betragter markedet, som repraesenteret ved de valgte in-
deks, i sin helhed, mens de tre foregdende modeller betragter hvert enkelt
aktiv individuelt.

Det findes, at forsgg pa at forudsige fremtidige afkast ved at bootstrappe
tidligere afkast er betragteligt mindre péalideligt i forhold til de gvrige
modeller. ARMA-GARCH og Markov Switching autoregressiv model er
nogenlunde lige gode til at generere ngjagtige forudsigelser, omend ARMA-
GARCH foretreekkes pa grund af moderate bedre praecision i at replikere
udviklingen i data. Dependent mixture modellen er den foretrukne model
blandt de undersggte, til forméalet portefgljeoptimering, pa grund af en
fremtraedende evne til at opfange og replikere den finansielle situation.
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CHAPTER 1

Introduction

“Buy low, Sell high — And get paid taking risks!” These are the basic
guidelines for any investor. Yet, to predict the right time to buy respec-
tively sell is an ever-challenging task that only few people master.

The financial markets are constantly changing and adapting to their en-
vironments, by continuously inventing new products and abandoning old
ones. One of the more recent favourites on the world exchanges is ex-
change traded funds, which are the topic of this thesis. Much debate
persists about whether exchange traded funds are the root of all evil (=
volatility) or whether they provide a harmless and much needed opportu-
nity for the average investor to join the investment game [1|. — Regard-
less of the debate, exchange traded funds have become progressively more
popular among professional and individual investors alike, over the last
two decades since the first exchange traded fund was introduced in 1993.

As of June 2012, 7,510 exchange traded funds were listed for trading,
with a monthly trading volume of $ 668,576.5 M |2]. According to Dansk
Aktiongerforening the Danish population have DKkr 135.000 per capita
and the United States have DKkr 192.000 per capita invested in ETFs [3].



2 Introduction

These numbers signify the importance of ETFs as investment products
and validate the need for thorough analysis.

A complete analysis of exchange traded funds is not the objective of this
thesis. Instead the primary focus will be on statistical finance, applied
towards determining the ability of the funds to mirror the underlying
index. As the funds claim to offer an opportunity to indirectly invest in
the underlying index, the quality with which the fund replicates the index
is of immense importance to the reputation of the product in general and
to the involved investor in specific.

The second part of the thesis returns to the question of when to buy and
when to sell. Is detailed information about the individual fund sufficient —
or perhaps preferred, or is general knowledge of the surrounding financial
market required? — Four model frameworks are established and tested in
out of sample predictions to determine this.

Outline

Chapter 2 provides the foundation for understanding exchange traded
funds as investment vehicles. ETFs and some of the more popular com-
peting products are described, as well a motivation for investing in ETFs.
Chapter 3 describes the necessary measures applied to prepare data for
analysis, and section 4 contains a description and introductory analysis
of the funds. Chapter 5 provides an analysis of the tracking performance
of the funds, as well as the theoretic foundation for the models. The
aim of Figure 5 is to determine to which extend the funds deliver as
promised, and if the indices can be applied as proxies for the funds in
further analysis. Chapter 6 goes on to make predictions about the future
return of the funds, using four different model frameworks. The chapter
also contains an evaluation of the methods applied. Finally Figure 7 ap-
plies the predictions towards asset allocation under different investment
strategies. In chapters 8 and 9 the content and implications of the thesis
will be summarised and discussed.



CHAPTER 2

The concept of Exchange
Traded Funds

The subject of analysis in this thesis is a financial product known as ex-
change traded funds. An ETF, as the name suggests, is a predetermined
basket of securities (fund) which trade on the exchanges in the same way
as normal company stock. Typically the content of the basket is deter-
mined by a financial index, like the S&P500 or the Dow Jones Industrial
Average, which the fund replicates, following some defined guidelines.
This is called an index fund, and is the most common practise.

The ETFs are issued and managed by so-called investment companies.
An investment company is essentially a business that specialise in pool-
ing funds from individual investors and investing them based on some
investing guidelines. Essentially the investor owns a fraction of all of the
securities held by the fund, corresponding to the value of the investment.
For example the DIA ETF aims at providing investors with a security
whose initial market value is approximately one-hundredth (1/100th) the
value of the Dow Jomnes Industrial Average index, meaning that one share
of DIA roughly corresponds to one-hundredth of each of the 30 stocks in
the Dow Jones Industrial Average index [4].



4 The concept of Exchange Traded Funds

When it comes to investment companies methodology distinguishes be-
tween actively and passively managed funds. Where as the manager of an
actively managed fund will seek to outperform the investment benchmark
by actively trading, the passively managed funds seek only to replicate
as closely as possible the investment benchmark. Typically the actively
managed funds come with higher fees, due to the increased costs of the
active management. Both types of investment company experience great
success, and the most common types are listed here

e Managed investment companies. These include closed end
funds and open end mutual funds. Trading is conducted directly
with the fund. Due to this process orders may be received through
out the day, but will only be settled end-of-day at the closing price.

¢ Un-managed investment companies. This include most ETFs.
The funds trade at the exchange and very close to the net asset value
(NAV, ref (2.1)) because of the possibility of arbitrage between the
ETF and the basket of securities it represents.

NAV — Market value of assets — Liabilities (2.1)
Shares outstanding

e Other investment organizations. This includes REITS which
invest in real estate or real estate related assets and hedge funds.

An index fund can adopt many different replication techniques. In the
considered data the relevant forms are physical replication under which
the fund manager replicates the index by acquisition of securities held in
it. Thus the fund consists of all or a representative subset of the securities
in the index. One of the selected funds employ synthetic replication under
which the fund lends its assets to a counter party via a collateralised
repurchase agreement, and then swap the yield on that loan for the total
return of the underlying index. For the purpose of this analysis it suffices
to know that there is a difference, and that the replication techniques
carry different risks.
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2.1 Diversification

The appeal of ETFs for investment purposes are several, but the most
distinct is the increased possibility of portfolio diversification, it represents
to the private investor.

Diversification in the context of finance refers to the action of distributing
your means of risk and income over several, non or negatively-correlated
areas. The financial markets present periodic up- and downturns in every
sector. A perfectly diverse portfolio ensures that at any given time some
fraction of investments will be the market winners. At the same time
some investments will be temporary losers. — Because of the effects of
diversification, an investor will never receive the highest return possible
from a single asset. However, the investor will also never receive the
lowest return. More importantly, even though an investor does give up
the potential “home run” investment, the reduction in return is more than
offset by the reduction in risk. In other words, you give up a little return
for a lot less risk. Financial theory shows that the expected return on a
portfolio of equally weighted securities is exactly equal to the unweighted
average of the expected returns on the individual securities. But the
standard deviation of such a portfolio is less than the unweighted average
of the standard deviations of its individual securities. Thus diversification
among securities reduces risk, but not return.

Below is shown the algebraic proof for the diversification benefit where
risk is defined as variance of return. C.f. [5] portfolio variance is defined

as
O'z = Z w?o? 4 2 Z Z wWiW; Cov; j, Z w; =1 (2.2)
i

i g>i i
In this expression w; refers to the portfolio weight of asset ¢ and o; to the
standard deviation of the return of asset .

For large portfolios w? ~ 0 meaning that (2.2) is reduced to
0'2 ~ 2 Z Z W;W;COV; 5
i j>i
showing that the contribution of each assets variance is (almost) elimi-
nated and the contribution of the covariance terms increase. Hence the
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behaviour of each individual asset only matters in relation to the portfolio.

From (2.2) it is apparent that the more non or negatively correlated assets
in a portfolio the lower the aggregate variance and the more secure the
return. This insight is an important factor in understanding why ETFs
have become so popular. Also notice that while perfectly negatively cor-
related assets will completely cancel out the effect of each other, leaving
the portfolio at status quo, non-correlated assets may experience growth
respectively decline on the same periods, or may just as likely move oppo-
site each other. It is thus possible to benefit from an increase in one asset,
as it will not be neutralized by a descent in another asset. Thus to mirror
the long term growth of the economy a portfolio must be composed of
non-correlated assets. Yet, to shield from the periodic ups and down of
various markets, negatively correlated assets are advised.



CHAPTER 3

Preprocessing cause of
action

Data analysed in this thesis consists of daily observations of the net asset
value, (2.1), from 20 different funds and their underlying index. Data
is extracted from four different sources, namely the iShares webpage,
the SPDR webpage, Bloomberg and http://www.bullionvault.com/gold-
price-chart.do. These institutions operate in different parts of the world,
meaning they operate with different calenders and banking holidays. As
data consists of price registrations, consequently there will be no obser-
vations on banking holidays where the exchanges will be closed. In order
to make the funds comparable, similar date vectors must be defined so as
not to compare April 2nd in one fund to April 4th in a different fund or
risking that a vector of 1000 observations in one fund covers a longer pe-
riod than a vector of 1000 observations in a different fund. This imposes
some instances of missing values in the sets where some countries/institu-
tions have celebrated a banking holiday while other countries/institutions
have been working and registering prices. Apart from the banking holi-
days, additional few instances of unexplained missing observations occur
in all of the datasets. Lastly, few instances of very extreme observations
occur. A threshold is set for determining how extreme an observation
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can be, relative to its adjacent observations, before it is categorised as an
erroneous registration and treated as missing. This will be elaborated on
shortly.

A number of operations are implemented to prepare data for analysis.
These are described in the following.

Merge data columns to contain all unique dates This step builds
one vector for each set, containing all business days between the earliest
and the latest date. These are extracted and the function interpolates
with daily intervals, omitting weekends. Afterwards the NAV observa-
tions are added, implying NA values where there is no price. NAs are
overcome by interpolation, as described in the next step.

Remove missing data The data gaps are interpolated. When a miss-
ing value is detected, the cell is interpolated using the previous value and
the first real value going forward and calculating the number of missing
values in between:

a = min(which(!is.na(x[i:length(x)])))
if(i>1)
{
if (i<5)
{
sd = sd(x[(i+2):(i+a+10),j], na.rm=T)
e = rnorm(1,mean = 0, sd = sd)
x[i,j] = x[i-1,j] + (x[i+-1,j]1-x[i-1,j])*1/a + e
}else
{
sd = sd(c(x[(i-5):(i-1),j]1, x[(i+a):(i+a+b5),jl), na.rm=T)
e = rnorm(1,mean = 0, sd = sd)
}
x[i,j] = x[i-1,j]1 + (x[i+a-1,jl1-x[i-1,j1)*1/a + e
}

A small amount of noise, e, is added to the interpolation. e is normally
distributed with zero mean and the standard deviation is determined



based on the standard deviation of observations in a small interval on
either side of the relevant point. It is possible that the real number of
observations used to compute the standard deviation of the noise are fewer
than intended going ahead of the relevant point, due to the possibility of
small intervals of missing observations. Thus fewer points are used to
determine the standard deviation. It should also be noted that points in
the end of such an interval will be added noise with standard deviation
computed using up to four artificial observations.

For few missing values a linear interpolation is our best guess and a rea-
sonable estimate. Yet for larger gaps of missing data, it is no longer
reasonable to assume that a linear interpolation in suitable. In the exam-
ined data the gaps span from 1 to at most 5 missing observations. Within
this range the method is considered applicable without loss of quality in
data. Table 3.1 shows how the amount of missing data effect each pair.
The length of the interval is determined by the time period used for anal-
ysis of difference in returns, that is the time since the fund inception date.
The fractions stated here are representative for the fractions of missing
data over the lifetime of the index as well, with one exception.

TOPIX fund is the dataset most widely affected by missing data, with a
fraction of 5.55 percent of the final dataset being computed.

When expanding the focus area to the lifetime of the index, RWX carry
only monthly observations in the period January 1st, 1993 to December
31st, 1998. In this period the method of expanding data to contain all
banking days leaves 21-23 missing values for every one observed value.
In this case the above described method for determining the standard
deviation of added noise is not applicable. Instead it is assumed that
the standard deviation over the period is fixed, which is supported by
figure 3.1. The standard deviation of the added noise is computed as
the standard deviation of the gaps between the observations, adjusted
for the number of values to be interpolated (on average 22 days). The
applied standard deviation is 1.99. This is marked by the red line in the
bottom panel of figure 3.1. It is seen that 1.99 roughly corresponds to the
standard deviation in observations 4500-5000 of data. This period of the
observed data is what closest resemble the interpolated period, thereby
supporting the computed standard deviation of 1.99.
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Index Fund
Date Length  Missing  Fraction Missing Fraction
DGT 2978 112 3.76 3 0.10
ELR 1641 58 3.53 28 1.71
EMBI 1139 50 4.39 50 4.39
FEZ 2442 111 4.55 65 2.66
FXC 1940 24 1.24 24 1.24
GLD 1920 74 3.85 59 3.07
TBCI 1659 23 1.39 23 1.39
IBGL 1384 22 1.59 22 1.59
IBGS 1518 22 1.45 22 1.45
IEEM 1659 18 1.08 18 1.08
THYG 1194 60 5.03 0 0
IJPN 1954 28 1.43 28 1.43
IMEU 1234 16 1.30 16 1.30
INAA 1519 18 1.18 18 1.18
LQDE 2314 55 2.38 55 2.38
RWX 1357 48 3.54 0 0
STN 2735 49 1.79 2 0.07
STZ 2735 49 1.79 2 0.07
TOPIX 1621 42 2.59 90 5.55
XOP 1486 51 3.43 30 2.02

Table 3.1: A specification of the amount of missing data in pairs. TOPIX fund
is the dataset with the highest fraction of missing data, with 5.55 percent of the
points in the final dataset being computed.

iNAV
300 400
| I

200
I

100

59
°
7 0
© - 1 1 1 1
0 1000 2000 3000 4000 5000

Figure 3.1: The top panel shows the NAV process for index RWX. The blue
line is the interpolated part where 22 out of every 23 values have been generated
by interpolation. The bottom panel shows the one-point standard deviation for
the observed data. The green line is a 200 point moving average and the red
line is the applied standard deviation of 1.99.
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Level outliers This step identifies the extreme outliers in data and lev-
els them by interpolation. It is assumed that extreme outliers are a result
of erroneous registration. Thus there is an issue in defining the limit for
what is accepted likely effects of the market, and what is the threshold for
which the deviation can no longer be ascribed to valid market dynamics.
By default the threshold is set to a factor of 2.5 relative to the previous
value.

A noteworthy part of the outliers come in pairs of two. Thus, interpolating
with the immediate neighbour will result in “half a mis-registration”. The
standard deviation is computed using the adjacent 10 point on either
side of the relevant observation. Going forward the first adjacent point is
skipped, due to the often seen pairing of outliers. This is also the reason
to expand the interval of points used to compute the standard deviation.
By expanding the interval, any extreme events in the interval will become
linearly less prominent in computing the standard deviation. The script
is shown below, where y defaults to 2.5 and x is the relevant data:

a = as.numeric(x[1: (length(x)-2)1)

b = as.numeric(x[3:length(x)])

for(i in

first non-NA combination of a and b :

last non-NA combination of a and b

& i > 5 && i < (b-4))
if (abs(x[i-11/x[i]) > y || abs(x[i-11/x[il) < 1/y)
{
sd = sd(c(x[(i-5):(i-1)],x[(i+1):(i+5)])
e = rnorm(1,mean = 0, sd = sd)
x[i] = (x[i-11+x[i+1]1)/2 + e
}

This method presents some problems in either end of the vector, where
it is not possible to compare the observations to observations before and
after, respectively. In these cases outliers are detected by deviation from
a y multiple of the mean of the proceeding respectively trailing 10 obser-
vations.
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3.1 Data transformation

There is a tradition in econometrics for considering the log returns instead
of the simple return. This transformation is implemented to improve the
behaviour of data in relation to modelling purposes. Log transformation
will decrease the magnitude of extreme events, making it easier to es-
tablish a model. Further, log transformation might have beneficial effect
on factors such as stationariness in mean and volatility and normality.
However, as data takes on numerically small and very close values, the
transformation is irrelevant. In this dataset the transformation did not
impart substantial improvement in data quality. Tests for normality as
well as stationariness in mean and volatility were performed and produce
equal results for either data series.

For this reason the simple return, as depicted in (5.1), is considered, in
order not to impose any more complexity to the models than what is
necessary.

The KPSS test for the null hypothesis that data is level or trend stationary
[6] was performed and confirm stationarity in all processes with p-values
exceeding 0.1. The Shapiro-Wilks test for normality |7] uniformly reject
normality with p-values smaller than 5.7e-04.



CHAPTER 4

The funds and indices
examined

The considered funds are listed in table 4.3 in which each fund is rep-
resented by its short-name and listed with the name of the underlying
index as well as the morningstar® asset class classification. Data is col-
lected from various sources but have some common features. All data as
a minimum contain observations of the NAV assuming reinvested divi-
dends along with a registration of the date of the observation. Thus, for
the models to be correct the investor must reinvest all gains, when the
fund does not reinvest automatically. SPDR supply data about the fund
only. Information about the related indices is obtained from Bloomberg.

All data related to the iShares funds is supplied by the issuer and is
available on the description page for each fund on the internet!. An
illustrative subset of data on an iShares UK administered fund is shown
in table 4.1. The 20 pairs of fund and index NAV are shown in appendix
section A.2.

le.g http://uk.ishares.com/en/rc/products/IEEM?utrack=true,
https://www.spdrs.com/product /fund.seam?ticker=ELR
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Date NAV  Total Re- Total Net Shares in  Benchmark

turn NAV ~ Assets issue level

(000)

04/05/12  187.58  187.58 525,235 2,800,000 N/A
03/05/12 187.32 187.32 524,524 2,800,000 190.2568
02/05/12  186.99  186.99 523,591 2,800,000 189.9174
01/05/12 186.93 186.93 523,430 2,800,000 189.8713
30/04/12 186.93 186.93 523,410 2,800,000 189.8713

Table 4.1: Illustrative subset of iShares UK data.

DGT ELR EMBI FEZ FXC
Fund  25/09/2000 08/11/2005 17/12/2007 15/10/2002 05/10/2004
Index 11/09/2008 31/21/1999  30/06/2006 26/02/1998  16/03/2001

GLD IBCI IBGL IBGS IEEM

Fund  12/11/2004 18/11/2005 08/12/2006 05/05/2006 18/11/2005

Index - 31/12/1999  31/12/1998  31/12/1997  31/12/1987
IHYG 1JPN IMEU INAA LQDE

Fund  10/07/2007 01/10/2004 06/07/2007 02/06/2006 16,05/2003
Index 31/12/2005 31/12/1969 31/12/1987 31/12/1969  31/12/1998

RWX STN STZ TOPIX XOP
Fund  15/12/2006 06/08/2001 06/08/2001  28/10/2005 19,/06/2006
Index 31/12/1992  31/12/1969 31/12/1969 04/01/1989  04/01/1989

Table 4.2: Fund and index inception dates.

Table 4.2 shows for each pair the fund and the index inception dates.

4.1 Fund correlation

Table 4.3 shows the diversification amongst the selected funds which rep-
resent various different markets. As was stated in section 2.1, the primary
concern when building a portfolio is the correlation between the portfolio
and the individual security. For this reason the correlation matrix for
the weekly returns of the 20 funds is shown in table 4.4. The correlation
has been computed based on the 1078 most recent observations, from
December 18th, 2007, marking the latest inception date, until February
third, 2012. The progression in fund NAV is shown in figure 4.2 where
the date December 18th, 2007 is marked with a vertical line. The funds
have been indexed to 100 at that date, to facilitate comparison. It is
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important to note that the following discussion is based on correlation
coefficients obtained on returns during or after the recent crisis. Figure
4.2 gives reason to believe that the correlation between funds is different
today than it was before the crisis.

To clarify table 4.4 the correlation is illustrated in a heatmap in figure 4.1.
GLD, IBCI, IBGL, IBGS and LQDE have low correlation with the rest of
the funds, although some correlation, in the amount of fifty to sixty per-
cent, is seen between IBCI, IBGL and IBGS. IBCI, IBGL and IBGS all
hold European government bonds, which explains their mutual correla-
tion. A complete analysis of the funds in relation to table 4.4 can be found
in appendix Figure A3.

In figure 4.2 the coloured lines
show the five funds GLD, IBCI,
IBGL, IBGS and LQDE. The
funds in question are moving with
the remaining funds before the be-
ginning of the crisis in late 2007 -
2008, but are clearly affected dif-
ferently afterwards, at what point
all funds continue a steady growth
as opposed to the equity funds
which uniformly decline. The gold
fund is seen to rapidly and steadily
increase over the observed period.
This is consistent with the development in the price of gold, as illustrated
in figure 4.3 where monthly observations of the gold price going back 20
years is plotted in blue. Evidently the price of gold has been largely unaf-
fected by the intervening crises. It can also be noticed that the monthly
return (in black) is reasonably stable over the period, supporting the sta-
bility and uncorrelated nature of the gold market to the dynamics which
drive the stock market.

Figure 4.1: Absolute correlation be-
tween the funds.
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iNAV indexed to 100 at 2007-12-21
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Figure 4.2: The indices move with the remaining indices before the crisis, but
are clearly affected differently afterwards, at what point they continue a steady
growth as opposed to the remaining indices which uniformly decline.
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Figure 4.3: Price of gold over 20 years is shown in blue on the right vertical
axis. The black line shows the return over the same period on the left vertical
axis. The return is stable over the period, despite several crises and unstable
markets.
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Ticker  Index Asset class
DGT The Global Dow Index International large cap equity
ELR Dow Jones U.S. Large Cap To- U.S. large cap equity
tal Stock Market Index™
EMBI JP. Morgan EMBI™Global Emerging markets govern-
Core Index™ ment bonds
FEZ EURO STOXX 50® European large cap equity
FXC FTSE China 25 Index Emerging markets large cap eq-
uity
GLD Gold bullion Gold bullion
IBCI Barclays Capital Euro Govern- FEUR inflation linked govern-
ment Inflation-Linked Bond In- ment bonds
dex
IBGL Barclays Capital Euro Govern- EUR government bonds
ment Bond 15-30 Year Term In-
dex
IBGS Barclays Capital Euro Govern- EUR government bonds
ment Bond 1-3 Year Term Index  (short term)
IEEM MSCI Emerging Markets Index  Global emerging markets eg-
uity
IHYG Markit iBoxx Euro Liquid High EUR high yield bonds
Yield Index
IJPN MSCI Japan Index Developed Asia large cap eq-
uity
IMEU MSCI Europe Index Europe large cap equity
INAA MSCI North America Index U.S large cap equity
LQDE  Markit iBoxx $ Liquid Invest- USD corporate bonds
ment Grade Top 30 Index
RWX Dow Jones Global ex-U.S. Se- Global (ex-U.S.) real estate
lect Real Estate Securities In-
dex™
STN MSCI Europe Energy Sector equity Energy
STZ MSCI Europe Financials Sector equity Financials
TOPIX Tokyo Stock Price Index Developed Asia large cap eq-
uity
XOP The oil and gas exploration and Sector equity energy

production sub-industry por-
tion of the S&P Total Markets
Index™

Table 4.3: The selected funds listed along with the index each of them attempt
to track and the morningstar® asset class classification.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 DGT
2 ELR 0.96
3 EMBI 0.62 0.61
4 FEZ 0.91 0.83 0.61
5 FXC 0.70 0.67 0.62 0.69
6 GLD 0.08 0.04 0.13 0.15 0.27
7 IBCI 0.08 0.00 0.02 0.15 0.09 -0.04
8 IBGL -0.21 -0.23 -0.06 -0.17 -0.08 -0.09 0.63
9 IBGS -0.10 -0.13 -0.08 -0.06 -0.04 -0.01 0.61 0.51
10 IEEM 0.86 0.82 0.76 0.85 0.87 0.27 0.06 -0.21 -0.10
11 IHYG 0.43 0.45 0.41 0.44 0.39 0.04 0.19 -0.07 -0.03 0.48
12 IJPN 0.61 0.55 0.48 0.61 0.62 0.03 0.24 0.01 -0.00 0.63 0.47
13 IMEU 0.91 0.89 0.63 0.88 0.67 0.02 0.06 -0.20 -0.07 0.84 0.48 0.58
14 INAA 0.96 1.00 0.62 0.84 0.68 0.06 0.01 -0.23 -0.13 0.84 0.46 0.57 0.90
15 LQDE 0.07 0.04 0.33 0.08 0.19 -0.17 0.35 0.37 0.17 0.15 0.44 0.38 0.07 0.05
16 RWX 0.82 0.78 0.70 0.85 0.74 0.13 0.12 -0.12 -0.08 0.86 0.53 0.74 0.84 0.80 0.26
17 STN 0.81 0.79 0.56 0.78 0.61 0.11 -0.04 -0.24 -0.13 0.78 0.39 0.52 0.88 0.80 0.05 0.74
18 STZ 0.85 0.81 0.57 0.87 0.61 0.01 0.14 -0.10 -0.04 0.76 0.48 0.55 0.92 0.82 0.06 0.81 0.73
19 TOPIX 0.82 0.77 0.56 0.80 0.64 0.08 0.08 -0.16 -0.13 0.76 0.41 0.85 0.79 0.78 0.18 0.81 0.72 0.72
20 XOP 0.82 0.82 0.57 0.76 0.63 0.22 0.02 -0.27 -0.15 0.79 0.41 0.54 0.78 0.84 0.05 0.74 0.83 0.65 0.71

Table 4.4: Correlation between weekly fund returns.



CHAPTER 5

Performance of funds
relative to indices

The previous chapters have focused on the concept of ETFs and specifics
of the EFTs analysed in this thesis. This chapter will examine the funds
in relation to the indices they aim to track. One of the problems inherent
in ETF investing is the lack of history and experience. Referring to table
4.2 the fund are at most 12 years active, and some of them have as little as
five years of history. This is not an atypical time frame to be facing when
dealing with ETFs. As mentioned, ETFs are fairly new to the investment
scene and have only recently become popular. This means that while
ETFs posses a number of theoretically appealing features, there is a lack
of historic performance available to support the investment decision.

This motivates the following chapter. A thorough analysis of the funds
in relation to the indices is performed, exemplified by a modelling of the
difference in returns between the two series, referred to as tracking error
or deviance.

The return is considered, as opposed to the raw NAV for two reasons.
Firstly the return posses attractive statistical properties for analysis. The
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return is a stationary process and further the returns provide a scale free
assessment of the performance of the asset.

In general, tracking error is considered the single most important factor
in the analysis of an index fund performance [8]. Tracking error can be
defined in a variety of ways, for example by computing the difference in
returns between the fund and the index, which is the approach taken is
this thesis. Another approach is to compare the volatility of the fund
with that of the benchmark, thus defining tracking error as the standard
deviation of the difference between the return of the fund and that of the
index,

TE = V(M’ (Ti —Tf)

where 7; denotes the return of the index and r; is the return of the fund.
Thirdly tracking accuracy can be measured by the correlation between
the fund return and the index return. Both of the mentioned measures of
tracking error are illustrated in table 5.1 for daily and weekly data. Mea-
sured solely on correlation especially IHYG greatly stands out, as does
IBGS when considering the volatility of the deviance in returns. Because
the goal of the present analysis is to extract information which can be ap-
plied towards giving information about the expected future performance
of the funds, by examining past performance of the indices, we need a
measure, not only of the volatility of the difference, but a way to model
it. For this reason tracking error is defined as difference of returns.

For completeness the full dataset of daily observations as well as a re-
duced set of only weekly observations are analysed. The analysis carried
in either example is the same. The reduced datasets consist only of ob-
servations made on Fridays, so the datasets have been reduced by four
fifths. The argument for reducing the dataset is twofold. For once the
weekly observations present with a more easily interpretable structure.
Secondly, the aim of the analysis is to develop models for describing the
deviance of the fund from the underlying indices. This is to be utilised
for four week predictions, which further supports the notion to consider
weekly data. Yet, for completeness, both datasets will be analysed, after
which a decision about further progress will be made.

In figures 5.1, 5.2, 5.3 and 5.8, 5.9, 5.10 data is illustrated in low and high
frequency.
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Correlation ODeviance
Fund Weekly Daily Weekly Daily
DGT 0.9348 0.8132 0.0096 0.0085
ELR 0.9758 0.9131 0.0065 0.0064
EMBI 0.971 0.6168 0.0044 0.0055
FEZ 0.6735 0.431 0.0362 0.024
FXC 0.9499 0.8948 0.0138 0.0102
GLD 0.9619 0.7946 0.0087 0.0091
IBCI 0.9802 0.9355 0.0018 0.0013
IBGL 0.9922 0.957 0.0017 0.0017
IBGS 0.9876 0.9527 4e-04 3e-04
IEEM 0.9618 0.943 0.0112 0.0055
IHYG 0.432 0.1768 0.0398 0.0196
IJPN 0.9746 0.9694 0.006 0.0037
IMEU 0.9707 0.8999 0.0087 0.0073
INAA 0.9582 0.9684 0.0091 0.0039
LQDE 0.955 0.7471 0.0031 0.0031
RWX 0.9671 0.884 0.0105 0.008
STN 0.9904 0.9672 0.0048 0.0042
STZ 0.933 0.9284 0.0169 0.0075
TOPIX 0.8458 0.443 0.0159 0.0165
XOP 0.7238 0.5105 0.0389 0.0253

Table 5.1: Two alternative measures of tracking error. Correlation between
index and funds returns is shown in columns two and three. Columns four and
five show the standard deviation of the deviance processes.

Figures 5.1 and 5.8 show the difference in returns between the index level
and the fund net asset value over the life span of the fund. The return is
computed as a simple return

NAV,; — NAV,_;
NAVZ'_l
Index level; — Index level;_4

fund return; =

index return; = Tndex Tovel
i—1

DiffReturn = index return — fund return (5.1)

In figure 5.1 the second axis has been distorted in several of the plots by
a few extreme observations. Figure 5.2 shows a subset of figure 5.1 where
the second axis has been fixed. When manually fixing the second axis
to only show a limited interval around the mean, the structure of data is
made clear and it is evident that several of the series display periods of
volatility clustering. As an increase in volatility is a sign of instability or
insecurity, and instability tend to breed more instability, it is expected
that the volatility clusters are more distinct with the high risk assets.
However, this seem not to be unambiguously the case.
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The difference in return between the fund NAV return and the

index level return, as computed by (5.1), for each of the 20 series. The plots

show clear examples of volatility clustering in several of the processes.

Figure 5.1
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Figure 5.2: Zoom on six selected processes also displayed in figure 5.1. In this
scale it is possible to see the volatility.

5.1 GARCH models

While the examined data is technically a derivative of two sets of financial
data, it presents with certain characteristics, typical for financial data.
A general high volatility is a common observation and the mentioned
volatility clusters are a result of dependence on past volatility as well as
dependence on past observations and has also been documented in surveys
of financial return series [9] [10]. These characteristics of financial data
are similar to the characteristics of prices in the electricity market, c.f.
description of data in [11]. For electricity price forecast various models
have been applied. |[l1] finds that the GARCH framework outperforms
the general time series ARIMA model when volatility and price spikes are
present, as is observed in the present data.

Based on the volatility clustering depicted in figures 5.1 and 5.2, as well
as lessons of before mentioned studies, a generalised autoregressive condi-
tional heteroskedastic model (henceforth abbreviated GARCH) is applied



24 Performance of funds relative to indices

to the series.

The GARCH model was originally proposed by Engle in [9] as an ARCH(q)
model, and in 1986 generalised by Bollerslev in [10] to the generalised form
applied in this analysis. The model is given by

Y =7 te
etltpi—1 ~ N(0,07) (5.2)

q P
2 2 2
oy =w+ E Qi€ + E Bioy;

i=1 i=1

where

q>0, p>0
w>0, >0, i=1,---,¢q (5.3)
52207 2:1,,]7

and «y is some function determining the mean structure of y; and ;1 =
Y1, - ,Yi—1 denotes the information set at time t. For p = 0 the pro-
cess reduces to an ARCH(q) process and for p = 0, ¢ = 0 ¢ is simply
white noise with variance w. The error terms are considered conditionally
normally distributed.

The non-negativity constraints on the GARCH parameters ensure a non-
negative conditional variance. If non-negativity is ensured in all GARCH
parameters then the unconditional variance is given by

w

Var(e) = E(of) = 5.4

(@) = Bo}) = —5ra s (5.4

Clearly this requires > a+ > 8 < 1 in order to be meaningful, in which
case the process is wide-sense stationary [10].

5.1.1 GARCH likelihood expression

The parameters in the GARCH model are estimated by maximum likeli-
hood estimation. Given the observations ,,, we estimate ® as the values
of the parameters for which the likelihood is maximized. C.f. [12] the
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likelihood expression to be optimized is given by the conditional likeli-
hood

n

n—1 l — 1 e +1
o) =— 5 log(2m) — 5 > log(o?) - 3 > t02 (5.5)
t=2 t=q+1 ¢

where ® = (w,a,3)T is the parameter vector. The error terms are
determined by

€& =Yt — E(@t‘wt—h 0) (5.6)

where y; is the observation at time ¢, 1;_ is the information set at time ¢
and E(g¢|1i—1,©) is the expected value of g, given the parameter values
and all previous observations. E(9:|¢:—1,®) is the mean process struc-
ture; in the GARCH model framework

E(gthl}t*lv 6) =7 + E(Et) =7

5.1.2 Limitations of GARCH

The general limitations of the GARCH framework include first of all the
assumption that only the magnitude and not the sign of the lagged error
determines the conditional variance going forward. This has been proven
wrong, as evidence is found that volatility tends to rise in response to
bad news (negative error) and to fall in response to good news (positive
error) |13].

A technical concern is the model parameters, on which a non-negativity
constraint is imposed to enforce a positive conditional variance. If a
GARCH model is estimated on a time series that contains parameter
changes in the conditional variance process and these parameter changes
are not accounted for, a distinct error in the estimation occurs: The sum
of the estimated autoregressive parameters of the conditional variance
converges to one. Simulations of the GARCH model show that the ef-
fect occurs for realistic parameter changes and sample sizes for financial
volatility data |[14].

Lastly, it is not possible to include time dependent parameter values. This
is to some extend accounted for by the time varying conditional variance,
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but more flexibility can be obtained by allowing more parameters to be
time dependent.

5.2 Modelling the deviance series

The software used to model the processes is the fGarch package in R,
specifically the garchFit () function. This can possibly operate with four
different optimisation algorithms in the likelihood maximisation, namely
nlminb, Ibfgsb, nlminb+nm and Ibfgsb+nm. Initially five randomly cho-
sen funds were selected and nine models of different orders were tested on
daily as well as weekly observation sets. The optimiser which succeeded
in estimating a model most often out of the 90 attempts were selected
as default algorithm for further progress. The success criteria is that a
given model structure is applicable in all five datasets, given the specific
optimiser. Reversion to the cause for estimation failure is in Table 6.2.2.

On daily data L-BFGS-B outperformed the other algorithms in robustness
by succeeding to estimate a model in five out of nine attempts. nlminb
and nlminb+nm failed to estimate a single model in all five cases and
Ibfgsb+nm succeeded in two cases. Considering weekly data nlminb and
nlminb+nm each succeeded in estimating one model, and lbfgsb succeeded
twice while lbfgsb+nm successfully estimated three different model struc-
tures in all five sets. For the sake of consistency only one optimisation
algorithm is chosen for all models, and the following models have been
estimated using the L-BFGS-B optimisation algorithm [15].

Under the L-BFGS-B optimisation algorithm the central difference ap-
proximation for evaluating the hessian proved to perform superiorly to
the alternative, the optimHess() function in R.
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XOP show significant auto correlation in lag one.
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Figure 5.3 shows the auto correlation of the 20 series of weekly obser-
vations. Several of the series display significant auto correlation in lag
1, indicating serial dependence on past observations. Thus in (5.2) ~ is
computed as an ARMA(m,n) process, so consequently the deviance se-
ries are modelled as ARMA-GARCH. Where as the traditional ARMA
framework assumes constant variance in the error terms, this expansion
allows the conditional variance to be a function of past errors as well as
past conditional variance. The framework used to model the difference in
returns (5.1) is, c.f. (5.2)

m n
ye=pA Y i+ » bieite
i=1 i=1

€t|the—1 ~ N(0,0’?) (5.7)

q P
2 _ Z 2 Z 2
Ut =w + Oliet_i + ﬁio't_i
i=1 i=1
where

p>0, ¢g>0, w>0
04120 Z:177q
5@207 Z:177p

5.2.1 ARMA-GARCH likelihood expression

The expression of the likelihood in the ARMA-GARCH framework is
identical to that of the GARCH framework, with a single adjustment to
the structure of the error terms and to the parameter vector ©, such that
O = (u,¢,0,w,a,B). Inthe ARMA-GARCH framework the error terms
are again determined by

e =y — E(e|ti—1, O)

with the same notation as in (5.6). The adjustment to this revolves the
expectation term under which the mean structure is altered to include
the ARMA parts. In an ARMA-GARCH process the conditional mean is
determined by

E(§|Yi-1,0) = p+ Z GiYi—i + Z Oier—;
i1 i=1
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Limitations of fGarch in R

The fGarch package has some limitations. One of them is an inability to
handle pure GARCH(0,p) processes. While this is in line with the model
constraints, it proved to impose some restrictions on modelling the de-
viance processes. The function can handle GARCH(q,0) processes, as well
as ARMA(0,0)-GARCH(q,0) processes. But it also cannot handle pure
ARMA(m,n) processes. For this purpose auto.arima from the forecast
library is applied.

Also, the package is unable to include seasonality in the models.

During the work with data it further became apparent that the fGarch
package does not impose non-negativity constraints on the GARCH pa-
rameters. The user must thus be aware that negative conditional variance
may occur.

5.3 Low frequency data, results

Estimating the models entails numerous attempts of different model or-
ders. In selecting the preferred model emphasis is put first and foremost
on parameter significance. A model with insignificant parameters is re-
jected, and a model nested by a larger model is rejected in favour of the
larger model. In the case of two or more un-nested, relevant models, AIC
is used to select the preferred model. This approach leads to the models
listed in table 5.3, where the preferred model is highlighted in grey. ELR,
IMEU and XOP did not exhibit significant ARMA parameters.

Columns five to eight state the estimated values along with correspond-
ing uncertainty of the mean values of respectively the ARMA and the
GARCH parts. Generally the mean deviance between the index return
and the fund return is very low, in the magnitude of 1073 to 1076. 13
of the 20 processes have zero mean deviance and two of the 20 processes
have a negative mean value, meaning that they on average produce a
higher return than the index they are tracking. This is the case in STN
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Est. o tvalue Pr(>t) Est. o tvalue Pr(>t)

pn o -0.00 0.00 -2.33 0.02 pn o -0.00 0.00 -2.27 0.02

b1 0.86 0.06 14.52 0.00 w 0.00 0.00 1.59 0.11

01 -095 0.03 -29.49 0.00 a1 0.08 0.03 2.97 0.00

w 0.00 0.00 13.93 0.00 B1 0.89 0.04 23.75 0.00
a1 042 0.12 3.58 0.00

(a) STN modelled by arma(0,1) + (b) XOP modelled by an arma(0,0) +
garch(1,0) model. garch(1,1) model.

and XOP. The fitted model coefficient for funds STN and XOP are given
in tables 5.2a and 5.2b.

The mean conditional variance, w is in all instances non-negative, but in
one instance, XOP, insignificant. This is a violation of the model con-
straints, as given by (5.3). The model coefficient matrix is shown in table
5.2b. In addition to the non-significant mean conditional variance, the
sum of the remaining GARCH parameters exceed 1 in the 95 percent con-
fidence intervals. This implies a non-stationary process. But subject to
the overall dubious fit to this particular process, the parameter estimates
are revised with caution.

The process IBGS proved impossible to model in the applied framework
in both high and low frequency data. Inspecting the raw data suggests
a certain pattern, rejecting the premise of complete randomness. It is
outside the scope of this thesis to investigate alternative models, and the
fund will no longer be a subject of analysis. Plots of the deviance process
as well as ACF and PACF are given in appendix Figure A.4
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ARMA GARCH

(Hl,Il) (pvq) AlIC H Tp w Tw

DGT 0,1 1,1 -6,579126  1,24E-3 2.85E-4 1,35E-5 4,47E-6
DGT 1,0 1,1 -6,577468

ELR 0,0 1,0 -7,654219 3,06E-4 2,78E-4 2,39E-5 2,02E-6
EMBI 2,0 1,1 -8,360577 1,91E-3 246E-4 941E-6 1,42FE-6
FEZ 1,1 1,0 -3811546 3,81E-3 1,57E-3 1,09E-3 9,14E-5
FXC 2,0 1,1 -6,593415  6,66E-4  3,69E-4 1,59E-5 2,10E-6
GLD 2,0 1,1 -7,202282 5,13E-4 339E-4 1,84E-5 5,35E-6
GLD 0,1 1,1 -7,163977

IBCI 1,1 1,0 -10,26134  6,43E-5 4,55E-5 1,85E-6 1,49B-7
IBGL 1,0 1,0 -10,40312  7,76E-6  7,70E-5 1,55E-6 1,36E-7
IBGL 0,1 1,0 -10,38829

IBGS - - - - - -
IEEM 1,0 1,0 -6,713379

IEEM 0,1 1,0 -6,719467 -3,10E-4 2,82E-4 6,37E-5 5,14E-6
IHYG 1,0 1,1 -3,825355

IHYG 0,1 1,1 -3.832723 -1,43E-3 1,64E-3 1,53E-4 5,99E-5
1JPN 1,0 1,0 -7,954982 557E-4 2,17E-4 1,77E-5 1,37E-6
IMEU 0,0 1,0 7,257321 -2,33E4 3,93E4 3,65E5 3,36B-6
INAA 0,1 1,1 -8,127345 -1,83E-4 3.83E-4 8,04E-6 1,78E-6
INAA 1,0 1,1 -7,080148

LQDE 3,0 1,1 -9,809857

LQDE 3,1 1,0 -9,827306 -4,45E-7  1,93E-6 1,79E-6 1,59E-7
RWX 2,0 1,0 -6,690533 6,81E-4 5,05E-4 6,20E-5 5,74E-6
RWX 0,1 1,0 -6,669214

STN 1,1 1,0 -8,238585 -9,34E-5 4,00E-5 1,24E-5 8,89E-7
STZ 1,0 1,0 -6,214845

STZ 0,1 1,0 -6,215137 -3,85E-4  3,12E-4 1,09E-4 6,72E-6
TOPIX 1,0 1,0 -5,803026 6,16E-4 6,53E-4 1,37E-4 1,63E-5
XOP 0,0 1,1 112,44596 -4,57E-3  2,01E-3 5,89E5  3,70B-5

Table 5.2: Best fit models for each dataset in the low frequency data. Column
two and three states the orders of the ARMA and GARCH parts respectively.
The grey highlight points out the selected model for each process.

The model residuals are evaluated based on a Jarque-Bera test for nor-
mality [16], and a Ljung-Box test for independence in the residuals [17],
as well as visual inspection of various plots of the residuals.

The p-values for the Jarque-Bera test are zero or extremely close to zero in
all of the models, indicating that the hypothesis must be rejected and that
the residuals are not normally distributed. The p-values of the Ljung-Box
test for accepting independence in the residuals, using 95 percent confi-
dence intervals, span from 0.98 to 0 in the selected models. However,
performing a small test proves that the Jarque-Bera test is extremely
sensitive to outliers. When generating 1000 random numbers from a nor-
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mal distribution the hypothesis of normality is accepted, with a p-value
of 0.24. However, when adding one single outlier to the same dataset, the
null hypothesis is rejected with a p-value of 0.0091. Once again, a simple
test proves that also the Ljung-Bow test is sensitive to outliers, although
not as sensitive as the Jarque-Bera test. 10 data points are added to a
1000 point dataset to distort the independence. To emphasise the sen-
sitivity of these tests, data is plotted in figures 5.4a and 5.4b, and the
outliers are emphasised in red.

T T T T T T T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000

(a) Jarque-Bera (b) Box-Ljung

Figure 5.4: Sensitivity of residual tests

By observing the data series depicted in figure 5.1 it is apparent that every
dataset contains a number of extreme events. In some series the outliers
occur on a regular basis and are caused by quarterly distributions from the
fund, while others occur irregularly and are caused by less obvious market
effects. The method in question is not able to detect single outliers and
thus these will be mirrored in the residuals. For this reason, not much
attention is paid to the two test statistics, and the models are instead
selected based on parameter significance, AIC and visual inspection of
the residuals.

AIC provides a measure of the trade-off between size and goodness of fit
in a statistical model. It is computed

AIC =2k — 2log(L)

where k is the number of parameters in the model and L is the maximised
value of the likelihood function. The selection criteria is to pick the model
with the smallest AIC.
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When inspecting the residuals attention is focused on a simple visualisa-
tion of the standardised residuals (top panel), the autocorrelation of the
standardised residuals (bottom left panel) and a QQ-Plot of the standard-
ised residuals (bottom right panel). The plots are inspected for patterns
in the residuals which could indicate an inadequate model which fails to
capture the structures of data. Firstly, figure 5.5 shows an example of a
well fit model. No autocorrelation is left in the residuals and only few
observations deviate from the QQ line.

IHYG arma(0, 1) + garch(1, 1)
Standardized Residuals
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Figure 5.5: This series is well described by the model. The standardised
residuals are uncorrelated and the residuals are largely unaffected by extreme
observations.

Figure 5.6 shows the residuals of an inadequate model. Judged by the
autocorrelation of the standardised residuals a seasonal trend seems to
be present. But the applied R package cannot include seasonal trends.
The depicted residuals come from an ARMA(2,0)-GARC(1,1) model of
EMBI. Extending to model to an ARMA(3,3)-GARCH(1,0) — which is
the highest obtainable order of the AR respectively MA parts — reduces
the autocorrelation of the residuals, but does not correct for the seasonal
trend.
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Standardized Residuals

R L
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gnorm — QQ Plot

ACF of Standardized Residuals

Figure 5.6: This series is inadequately described by the model. The standard-
ised residuals are correlated and show signs of a seasonal trend.

Extending the autocorrelation plot to include more lags reveals, in figure
5.7, that the seasonality persists, well beyond lag 3, explaining why the
extended model did not suffice either.

1
1

0.6
L
0

T
- I l' LIS 18 L 8

o -
|

-0.2 0.2

0 10 20 30 40 50 0 10 20 30 40 50
(a) ACF (b) PACF

Figure 5.7: ACF and PACF of model with seasonal trend, extended to lag
52 (one year). The plots show that the seasonality persists, thus disabling non-
seasonal models from adequately describing data.
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The remaining models all present residual plot similar to those of figure
5.5, although some models are more affected by outliers than others. Also
some models remain with a small amount of autocorrelation in the resid-
uals at lags 13-15, suggesting regular quarterly events. This is explained
by quarterly distributions from the funds. As only a small amount of au-
tocorrelation remains in these models, and an unambiguous explanation
exists, no further action is taken to find a model structure which capture
the quarterly trends. It thus remains up to the investor to take this into
account.

In the fitted models FXC and LQDE have GARCH parameters summing
to exceed one, and DGT, ITHYG and XOP have GARCH parameters which
sum exceed one if including the uncertainty. This suggest models which
are not stationary, and contradicts tests confirming stationarity as well
as plots showing no signs that the processes be non-stationary

Residual plots for all models along with coefficient matrices similar to
those of tables 5.2a and 5.2b are given in appendix B.

5.4 High frequency data, results

The same analysis as described above applies to these datasets.

Data is depicted in figures 5.8, 5.9 and 5.10. The obtained model orders
are depicted in table 5.3. STN and XOP show a negative mean deviance
between the fund and the index returns, as was seen in the low frequency
data.

12 models present with insignificant mean deviance, while no models are
fitted with insignificant mean conditional variance and also no models
are fitted with negative GARCH parameters. In the fitted models ELR,
EMBI, IBGL, IEEM, 1JPN and IMEU have GARCH parameters sum-
ming to exceed one, and DGT, FEZ, GLD, THYG, STN, TOPIX and
XOP have GARCH parameters which sum exceed one if including the
uncertainty. This suggest models which are not stationary, and contra-
dicts tests confirming stationarity as well as plots showing no signs that
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the processes be non-stationary

Residual plots for all models along with coefficient matrices similar to
those of tables 5.2a and 5.2b are given in appendix B.

5.5 Discussion of deviance in returns

The increase in models fitted with GARCH parameter estimates exceed-
ing 1 between the weekly and daily deviance in return processes is quite re-
markable. This suggests non-stationary processes, although both datasets
are confirmed to be stationary by KPSS test. The suspected cause of this
behaviour is an increase in noise and extreme observations. This will be
discussed further in the succeeding chapters.

In spite of the estimation challenges, there clearly is a structure to the way
the funds deviate from their underlying indices in returns over time. This
can widely be modelled by ARMA in the conditional mean and GARCH
in the conditional variance. The models present with largely uncorrelated
residuals but many outliers. QQ plots are of varying quality — in the worst
case as few as one third of data points lie on the QQ-line (GLD weekly).
On an overall view, approximately half or two thirds of the data points
lie on the QQ-line. Further, all models are fitted with a mean deviance
in the range of [-4.57e-3, 3.81e-3| on weekly returns and [-1.13e-3, 8.54e-
4| on daily returns. This, however, is subject to reservations due to the
mentioned challenges in fitting the models.

A large fraction of the weekly residual series present with a small amount
of autocorrelation around lag 13-15. This periodic trend is due to quar-
terly distributions from the funds. The models presented in tables 5.2
and 5.3, as well as the model coefficient tables and residual plots listed in
appendix Figure B, are the largest possible models, following the model
selection guidelines described. As the example of low frequency EMBI
showed, the way to capture the quarterly trend will be to include a sea-
sonality in the models. This is not a feature of the applied R package.

It is interesting to note that most of the 13-week autocorrelation is posi-
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The plots

index level return, as computed by (5.1), for each of the 20 series.

show clear examples of volatility clustering in several of the processes.
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ARMA GARCH

(m,n) (p,q) AlIC I ou w ow

DGT 1,1 1,0 -7,132836

DGT 2.0 1,1 7,204607 1,51B-4 1,07E-4 7,40E-6 1,13E-6
ELR 0,1 1,0 7871961  6,77E-5 2,37E-5 1,58E-5 2,08E-6
ELR 2,0 1,0 -7,834532

EMBI 2,0 1,1 -8,333665

EMBI 3.3 1,0 8580423  427B-4  3,14E-5 56986 427E-7
FEZ 3,0 1,2 -4,951145 8,54E-4 3,81E-4 1,25E-5 2,91E-6
FEZ 0,1 5,0 -4,900276

FXC 0,0 3,0 -6,993581

FXC 0,2 1,2 7,055985  5,84E-5  3,08E-5 2,81E-5 2,36E-6
GLD 0,2 1,1 719076  7,57E-6  4,78F-6 841B-7 3,52E-7
GLD 0,3 1,0 -7,189512

IBCI 0,1 1,1 11,4171

IBCI 3,0 1,0 11,44323  6,79E-6  1,86E-5 5,23E-7 1,92E-8
IBGL 2,0 1,0 -10,88397  4,80E-5 242E-5 835E-7 3,56E-8
IBGL 1,2 1,1 -10,88311

IBGS - - - - - - -
[EEM 4,0 3,0 8,859649 2,52B-6  5,02BE-5 1,17B-6 245E-7
IEEM 0,2 3,0 -8,764289

HYC 3,0 1,1 5330347 -122E-4 4,16E-4 4,13F-6 1,64E-6
IHYG 1,1 3,0 -5,172578

LJPN 4,0 2,0 9,162141 1,17B-4  5,18E-5 49386 1,67E-7
LJPN 0,2 1,0 -9,143911

IMEU 0,4 2,0 -8,596118 1,73E-5 7,39E-5 8,01E-6 3,45E-7
IMEU 1,0 2.1 -8,578448

INAA 0,1 1,2 -9,270186

INAA 2.0 1,1 9272207 1,08B-5 5,82F-5 3,66B-6 4,07E-7
LQDE 3,2 2,1 -9,46963

LQDE 0,2 1,1 9,792716  1,56B-6  4,53E-6 3,00BE-8 4,63E-9
RWX 1,1 1,0 -7,296514  -7,24E-6  4,28E-5 3,51E-5 1,49E-6
RWX 2,0 1,0 -7,286354

STN 3,0 1,2 -8,968861

STN 0,1 1,2 8,96934 -1,19E-4 3,23E5 3,84E-6 2,18E-7
STZ 1,0 1,1 754554  3,00B-6 9,05B-5 234E-5 1,94E-6
STZ 0,1 1,0 -7,510444

TOPIX 3,0 1,1 -6,082997

TOPIX 0,2 1,1 -6,212725 9,02E-5 1,78E-5 5,42E-6 1,10E-6
XOP 3,0 2,0 -4,806823

XOP 0,1 1,1 4942836 -1,13E-3 3,63E-4 4,84F-6 1,67E-6

Table 5.3: The table shows the best fit models for each dataset when the high
frequency data. Column two and three states the orders of the ARMA and
GARCH parts respectively. The grey highlight points out the selected model
for each process.
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Figure 5.9: Zoom on six selected processes also displayed in figure 5.1. In this
scale it is possible to see the volatility.

tive. In conjunction with the general negative or zero mean deviance, this
shows that the return on the fund increase around the time the distribu-
tions are paid. As the funds assume distributions are reinvested, this is
expected as the fund increases its value.

The residuals are of equal quality in both high and low frequency models.
But the parameter estimation is generally more reliable in the weekly
returns. In addition, for the purpose of long term investing as well as
four week predictions it is more reasonable to consider weekly data. For
this reason the remainder of the thesis deal only with weekly data.

The numerically small mean deviances show that the well fitted models
can be used as proxies for funds, in estimations of future performance.
Caution should be demonstrated regarding the models which were fitted
with dubious GARCH parameters.
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Auto correlation in the deviance processes. All series show sig-

Figure 5.10

nificant, negative auto correlation in lag one. Some auto correlation is inherent

in lag two in five of the processes.



CHAPTER 6

Scenario generation

The aim of this chapter is to test and apply a model for generating four
week predictions of weekly fund returns. The scenarios are to be applied
towards robust asset allocation using the funds.

It was concluded in chapter 5 that generally it is well-founded to apply the
indices as proxies for the funds. Due to the lack of historic information on
the funds, this proxy will be adapted, and the following analysis will be
conducted on index returns. The indices for analysis are selected based
on the amount of historical data it was possible to obtain. On this ground
the nine indices DGT, ELR, FEZ, GLD, RWX, STN, STZ, TOPIX and
XOP are selected and the considered period is December 24th, 1999 to
February 3rd, 2012, that is 12 years of data and 633 observations of weekly
return for each index. Amongst these DG'T and XOP deviance processes
were modelled with dubious GARCH parameters. Both were within limits
in the estimate, but not when including the uncertainty. The indices are
applied here after all, as the overall impression from Figure 5 validate
this.

The NAV progression of the indices is shown in figure 6.1, where it is also
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Figure 6.1: NAV of the nine selected indices. The left panel shows the full
picture, while the right panel shown a zoom on the seven indices in the bottom
of the lefts panel.

depicted that the considered period of time covers several up and down
turns, thus providing a sound foundation for estimation. Return and
ACF of returns is shown in figures 6.2 and 6.3. Indices DGT, RWX, STZ
and XOP display signs of a seasonal trend of 13 weeks. RWX, STZ and
XOP employ quarterly rebalancing of the indices. But this is also true for
ELR and STN, without this being depicted in the autocorrelation of the
index return, so the rebalancing is not the only reason for the observed
seasonality. Measures as described in section 3.1 are taken and confirm
mean stationariness in the returns with p-values > 0.1.

A correlation matrix of the index returns
is shown in table 6.1 and further in figure
6.4. Figure 6.4 is highly similar to what
was seen in figure 4.1, which is of cause ex-
pected, given the high correlation between
the funds and the indices (c.f. table 5.1).

FEZ

ELR
In the following, four frameworks will be  per

applied towards scenario generation in the
indices.  First scenarios will be boot-

Figure 6.4: Absolute correla-

tion between the indices.
strapped. This method was applied by

[18] and [19] and will serve as base ref-
erence for the succeeding methods. Secondly an ARMA-GARCH frame-
work similar to what was implemented in Figure 5 will be applied towards
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Figure 6.2: Return of the nine selected indices. The processes are seen to be
mean stationary with volatility clusters primarily around the period of 2008-
2009.
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Figure 6.3: Autocorrelation of return series on the nine selected funds. DGT,
RWX, STZ and XOP display some autocorrelation in lag 13, indicating a sea-
sonal trend.
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1 2 3 4 5 6 7 8 9

DGT 1.00

ELR 093 1.00

FEZ 0.69 0.62 1.00

GLD 0.12 0.02 0.20 1.00
RWX 086 0.81 0.55 -0.01 1.00

STN 0.68 0.61 0.72 0.04 0.71 1.00

STz 082 074 051 -0.05 0.89 0.67 1.00

TOPIX 0.58 0.41 0.35 0.09 0.42 034 0.41 1.00
XOopP 0.86 0.81 0.55 -0.01 1.00 0.71 0.89 042 1.00

W00~ U WK~

Table 6.1: Correlations of returns in the 9 selected indices over the observed
period, from 1999-12-24 to 2012-02-03.

the index returns. Following this, a regime approach will be introduced,
first in a Markow Switching Autoregressive model where the indices are
considered individually and subsequently in a dependent mixture model
where the covariance matrix of the indices is included.

6.1 Bootstrap

As a base reference scenarios are generated using simple bootstrapping.
The scenarios are generated following the directions outlined below.

for(j in seq(0,floor(length(dates)/2),4))
{
j.date = floor(length(dates)/2)+j

index[,1] = sample(j.date,l,prob=dnorm(1i:j.date,1,5), replace=T)
for(t in 2:4)

{

index[,t] = sample(j.date,l,

prob=dnorm(1:j.date,index[t-1],5), replace=T)
}

}

The index of the existing return vector to replicate, index[,t] is sampled
on the space [1,j.date] which is the length of the considered subset of
data iteratively expanded by four observations. The sampling probability
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is specified to be normally distributed with mean equal to the previous
index and standard deviation of five weeks. The optimal value of the mean
and standard deviation in the bootstrapping procedure were examined,
and determined to be as applied, by [18] and [19]. In each time period, j,
250 scenarios are generated.

6.1.1 Results

The scenarios are evaluated based on their distribution relative to the
observed return in each period. From the four one-week predicted returns
one four-week return is derived. This is compared to the observed four-
week return over the same period. The aim of the asset allocation will
not be on short term, thus the weekly returns are of little interest.

For each period and for each index 250 returns are generated. Referenc-
ing figure 6.5 the second axis shows which fraction of the 250 generated
returns exceed the observed and along the first axis is the number of the
relevant round of scenarios (1 = 2006-02-10, 2 = 2006-03-10, etc.). The
plots are inspected for patterns indicating that the predictions are gen-
erally too high, too low or are not capturing the level changes in data.
Assuming the generated scenarios and the observed returns follow the
same distribution, that is the scenarios truly capture the dynamics of
data, fractions should be uniformly distributed along the [0;1] space on
the vertical axis. The black line is a linear smoothing of the points, and
is shown to emphasise the patterns in data. The trendline should be flat,
indicating that the scenarios at all times “pull” equally from the top and
bottom.

For a more exact analysis of the scenarios, the fractions are examined in a
variety of tests. Firstly the fractions are transformed from gaussian densi-
ties and the autocorrelation is examined to reveal patterns. Additionally
the Kolmogorov-Smirnov test is performed to test for uniformity in the
fractions and lastly the variance of the fractions is determined and com-
pared to the theoretical variance of uniformly distributed numbers. The
theoretical variance of uniform numbers is 15 (max — min)? [20]. Since we
are considering fractions, max = 1 and min = 0 implying a theoretic vari-

ance of 11—2 ~ (0.0833. These measures are shown in figure 6.6 where the
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Figure 6.5: Fractions of scenarios which exceed the observed return (second
axis) in each period (first axis).

ACF is plotted and the p-value for the Kolmogorov-Smirnov test along
with the observed variance is written in the plots.

The results of bootstrapping the scenarios are clearly poor. As many as
six of the nine examples are rejected by the Kolmogorov-Smirnov test for
uniformity. GLD is accepted, but just barely and with a noticeably low
variance. DGT and STZ are accepted as uniform, but the trendlines reveal
a remarkable drop around period 40, and there are distinct white areas
in the fraction plots. Period 40 is the four weeks trailing February 6th,
2009. In other words, these plots indicate that the bootstrap generated
scenarios do not capture the economic crisis indicating a general inability
to capture the changes in the economic environment.

A different way to illustrate and compare the scenarios distribution rel-
ative to the observed return is in a boxplot where the 79 periods of 250
scenarios are summarised in a boxplot with the usual marks. In figure 6.7
such a plot is depicted. It clearly shows that the distribution of the boot-
strapped scenarios is largely identical over the 79 periods. The median
and 25th and 75th percentile hardly change. It also shows that in the
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Figure 6.6: Autocorrelation of the 79 fractions along with p-value for test for
uniformity as well as sample variance of the fractions.

worst case (RWX), the scenarios appear to have no coherence with the
observed returns. In STZ the scenarios seem to have detected the mean
return, but otherwise are in no way following the observed returns.

The conclusion is, that bootstrapping returns to obtain prediction of fu-
ture returns will likely capture the mean, but only by random chance
will it capture the periodic market fluctuations. Judged by the severity
and duration of the crises in the considered period of time, implying re-
turn oscillation of considerable magnitude, held together with concurrent
lack of adaptability in the scenarios, bootstrapping will be plain wrong
in unstable times.

6.2 GARCH

In line with common practise within econometrics, and following the
lessons from Figure 5, the indices are also modelled in an ARMA-GARCH
framework. Causes of action will be to determine the best fit model struc-
ture for each dataset, using the full length of data, and subsequently to
generate a series of four week predictions using the chosen models.
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Figure 6.7: Distribution of the 250 bootstrap scenarios in each period repre-
sented by boxplot. Shown along with observed return in red.
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ARMA GARCH Jarque Box-Ljung

(p,a) (p,a) Bera
DGT 0,0 1,1 0 0.9497
ELR 1,1 1,1 0 0.8725
FEZ 1,1 1,1 0 0.4342
GLD 2,1 1,1 0 0.3499
RWX 0,0 1,1 0 0.3561
STN 0,0 1,1 0 0.6499
STZ 0,0 1,1 0 0.6143
TOPIX 0,0 1,1 0 0.8659
XOP 0,0 1,1 0 0.7579

Table 6.2: ARMA-GARCH model structure of the nine series of index returns.

6.2.1 Models

Following the approach described in section 5.2 the resulting models are
given in table 6.2. The models generally produce satisfactory residuals.
However, RWX, STN and XOP leave a small but significant amount of
autocorrelation in lag 13 in the residuals. This shows that the seasonal
events in the indices are unaccounted for in the model, and thus transfers
to the residuals. Referencing figure 6.3 these funds clearly have the most
significant autocorrelation in lag 13.

6.2.2 Scenario generation

As mentioned previously this analysis aims at generating a series of four
week predictions of the index returns. For each index the model structure
outlined in table 6.2 is applied. The scenarios start half way trough the
observed dataset and are re-run for every four weeks going forward. That
is, on the base date, January 13th, 2006, a number of four week predictions
are made. The model parameters have at that point been re-estimated
using only data available at the time, that is data from the period 1999-
12-24 — 2006-01-13. The next round of predictions are started four weeks
later, at February 10th, 2006 using data from the period 1999-12-24 —
2006-02-10. This repeats until the end of the observed dataset, resulting
in 79 periods of 250 four-week predictions for each of the nine indices.

Because the dataset used to estimate the model parameters change along
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the course, the best fitting model on the full set might not be the best
fitting model along the course of the 79 subsets of data. The approach
taken is to successively update the model parameters, but maintain the
model order. This imposes some limitations on quality. Firstly the model
order might not be correct for the current subset of data. The model
may be too large, leaving insignificant parameters, or it may be too small,
meaning a better fit and thus more accurate predictions could have been
obtained. |21] also employs this approach to successive model estimation
in a number of model structures, but uses AIC to select the model order
in each consecutive estimation. He finds that successively updating the
model order is generally not changing the model orders from the ones
determined on the full dataset. It is the experience here that estimation
error and subsequently execution failure do occur. This happens when
the model order is wrong, causing the residuals to break the underlying
assumptions of normality or leaving the Hessian non-invertable.

In the case of insignificant parameters or the possibility of an insufficient
model, the obtained model is applied. The argument is that the model
structure has been determined as optimal for the particular index. Fur-
ther, parameters which are determined insignificantly different from zero
will carry very small coefficients, and thus will not affect the predictions
greatly. There are two cases of modelling errors. One result in a warning
that the Hessian is singular and cannot be inverted to obtain the pa-
rameter uncertainty. This usually means that the obtained optimum is a
saddle point, and thus not a true optimum. When this happens the esti-
mation is re-attempted using a Nelder Mead [22] optimisation algorithm
(Ibfgsb4+nm in R). The second type of error is complete failure to model
data. In that case the parameter values obtained in the previous round
are re-used. The argument for this is that the difference between two
rounds is only four observations. Thus the estimate of one round will be
a reasonable proxy for the estimate of the second round. In the special
case that the model fails in the very first round, so that no prior model
is available, a random walk with mean and standard deviation obtained
from data is applied instead, thereby eliminating any ARMA or GARCH
effects. This is reasoned by the original low model-orders, implying that if
these models do not apply, a random walk will be a reasonable estimate.

In total 66 attempted model fits out of 711 fail and the Nelder-Mead
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Figure 6.8: Fractions of scenarios which exceed the observed return (second
axis) in each period (first axis). ELR, FEZ and GLD fail.

algorithm is applied. Of these 66, 34 attempts also fail under the Nelder
Mead algorithm, and the model is substituted by it predecessor.

6.2.3 Results

Considering figure 6.8 clearly three of the models did not generate well
fitting scenarios. Referring to table 6.2 the three models producing very
poor scenarios are the ones estimated by the bigger ARMA-GARCH mod-
els. A study of the relevant models over the 79 periods reveal that only
very few of the estimated model turn out to be a good fit for the relevant
subsets of data. In the vast majority of periods only (; — that is the
GARCH parameter, is significant. This means that the model estimate
is a random walk with zero mean and conditional variance relative to the
previous ditto.

The results in figure 6.8 indicate that although the model structure out-
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Figure 6.9: Fractions of scenarios which exceed the observed return (second
axis) in each period (first axis). ELR, FEZ and GLD under reduced model.
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lined in table 6.2 proved to be the better fit on the full dataset, this is
not the case for the subsets. For that reason the three indices are instead
estimated in the smaller model ARMA(0,0)-GARCH(1,1), effectively the
simplest version of a pure GARCH(p,q) process. This produce the frac-
tion plots illustrated in figure 6.9 where the generated scenarios are seen
to be nicely distributed over the whole interval.

Referencing figures 6.8 and 6.9 the smoothed curves lie in the area of
0.5, although all of the nine indices show a more or less radical drop
around period 40. Further DGT, STN, STZ and XOP show a similar drop
towards the end of the periods, corresponding to the increased volatility
displayed in figure 6.2 in that same period.

According to the Kolmogorov-Smirnov test illustrated in figure 6.10 all
except STZ produce uniformly distributed fractions. There is hardly any
autocorrelation and the observed variance is in line with the theoretical,
although low in TOPIX and XOP. ELR and TOPIX show a high density
of fractions around 0.4 which is also reflected in the lowered variance.
XOP is also clustering around the middle of the plot, and further shows
signs of a trumpet shape in the scenario fractions. DGT and RWX seems
to be nicely distributed, but the trendline shows a clear pattern i the
fraction, that the scenarios do not respond to the financial downturn.

The boxplots of the scenarios are shown in figure 6.11. The result of
the GARCH effect is clearly depicted. The range of the scenarios clearly
increase in unstable times. The situation in the financial markets over
the past 12 years is accurately depicted in the scenarios, where very low
volatility is observed prior to 2008 after which the same level of stability is
never completely restored. In addition most of the indices show beginning
increase in volatility towards the end of the considered period, accurately
depicting what is seen in figure 6.2.

There seem to be a tendency towards a small delay in the volatility of
the scenarios to increase, relative to when the observed return begin to
show signs of financial distress. In seven of the indices there is a steep
drop in the observed returns at time 36. This is captured at time 37
by the model fits, where the drop triggers an increase in the conditional
variance. In the affected models the subsequent graduate decrease of
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scenario-volatility follows the observed returns.

6.2.4 Discussion

4.7 percent of the model fits failed and were replaced by previous mod-
els. The most common error is negative w and « parameters, causing
the conditional variance to be negative. This impose inaccuracy in the
scenario generation. Still the scenarios are following the observations
nicely, judged from the boxplot, but perhaps too tight judged by the
fraction plots. These show that still a noticeable amount of structure
is undetected by the scenarios. The conclusion is that while volatility
does follow data the delay has implications. Also, although the volatility
increase, the median of the scenarios is more or less constant over the pe-
riods, because the mean of the generating model is constant. This means
that the oscillations in return can only be captured by a small fraction of
the scenarios.

An thorough analysis of selected failed models is enclosed in appendix
Figure A.6.

6.3 Considering data as classified into regimes

The volatility clusters detected in figure 6.2 inspired the application of
GARCH methodology to capture the non-constant variance. In the fol-
lowing a different approach will be applied. Instead of capturing the
volatility clusters with the adaptive learning approach of GARCH, the
perspective is altered and instead data is looked upon as regime depen-
dent, where the regimes have different characteristics. As such separate
models are fitted in each regime. Several studies [18] [19] [21] [23] [24]
[25] have employed this approach towards similar data!. In choosing the

1123] describes a dataset with characteristics similar to what is witnessed in the
present data. [24] models the US GNP and [21] consider the unemployment rate
and argues it is an important business cycle indicator. As such both are considered
structurally similar to the business cycles modelled in this thesis. [25] consider real
estate prices which are assumed similar to RWX.
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means of how to switch between regimes the most common practise in
the literature is to compare a Self-Excited Threshold Autoregressive (SE-
TAR) model with that of a Markov Switching Autoregressive (MSAR)
approach. The most fundamental difference between the models is that
the state variable is not observed in the case of the Markov model, but
must be specified in advance in the SETAR model. A priori specification
of a switching variable could be viewed as either an advantage or a dis-
advantage of the SETAR formulation. Either there may not be a single
variable which determines the state of the series, or this state variable
may not be readily observable. Additionally, in the case of a univariate
time series the regime shifts are necessarily determined by past realisa-
tions of the process. It should be noted, though, that if we can specify
an appropriate state variable, we will know with certainty which regime
the system is in at any given time, rather than merely having some prob-
abilistic knowledge of it, as in the Markov switching framework.

[21] and [25] find that the methods perform equally well in describing
and predicting data, while [23] find that MSAR is superior to SETAR.
To avoid the problem of defining the threshold for regime shifts this study
will proceed only with the MSAR framework.

6.4 MSAR

The MSAR model provides a framework for modelling data as indepen-
dent AR processes in the regimes and assumes that an unobserved under-
lying process governs the switching. For an R regime model with data in
each regime characterised by an AR(mpg) process, the MSAR(R;my,--- ,mp)
model is given by

Msy

Yo = fis + D Pisy Yimi + Os€ (6.1)
=1

where ¢, ~ N(0,1) and o7 is the variance of the noise process in the kth
regime and s; is the sequence of regimes. Thus the regime at time ¢ is
determined only based on the regime at time ¢ — 1, meaning that

P(sy = j|si—1 =1, 8t—2, - ,S0) = P(st = j|si—1 = 1), Vi, j,t
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For the two-regime case this corresponds to the transition matrix

P:[ p 1—19]
1-q ¢

where p denotes the probability of staying in regime 1 once there, 1 — p
subsequently corresponds to leaving regime 1. In a similar fashion ¢ is the
probability of staying in regime two once there, and 1—gq is the probability
of transitioning to regime one from regime two.

The parameters are estimated using the EM algorithm, which is a two-
step algorithm where likelihood maximisation is obtained through alter-
nating between determining the expectation of the regime sequence, given
the parameters, and adjusting the parameters to maximise the likelihood,
given the expected regime sequence. If ® = (61, 05, 63) is the general pa-
rameter vector consisting of three sub-vectors with parameters for the
prior model, transition model, and response models respectively the joint
log-likelihood is given by

10g P(thn, 5n|®) = log P(s1]61) + > _log P(s]s-1,62)

t=2
n
+ Z log P(yt|st, 03) (6.2)
t=1
where S, is the vector of regimes assigned to each time t € 1,--- ,n and

Yn =Y1, ,yn and 01 j =7, O ; =P and 03 ; = (,uj,¢j,crj2.) where 7
is the initial state probability, P contain the transition probability matrix
and (uj, @5, ajz) contain the AR model parameters.

The marginal log-likelihood of the observations is expressed by
Ir = log (P(yltr-1)) = log ®, (6.3)
t=1 t=1

where ®; = "% (i) and

©01(j) = P(y1,s1 = j) = m;b;(y1)

() = P(ye, st = jlr—1) (6.4)
R
= Z (0t—1(i)Pijb;(ye)) x (1)~

=1
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and
mj = P(s1=j)
1 2 1 5
€t(035) =yt — E(J|v1-1,035) (6.6)

P;j = P(si41 = j|s¢ = 1)

In these expressions bj(y;) provides the conditional densities of observa-
tions, y; given regime j and is supplied by [26],

M,

E(i-1,035) = ps, + Z@myt—i
=1

In (6.3) P(y¢|ti—1) reduces to P(y|y;—1) because of the Markov property
[27] and n denotes the number of observations. In (6.4) j is the regime
and runs from 1 to R. In this model we consider two regimes, so R = 2.
s¢ is the regime at time ¢.

b; in expression (6.5) is not directly maximised in the applied algorithm,
but it can be shown that the applied algorithm asymptotically maximises
that likelihood. For a detailed walk-though of the parameter estimation
process please refer to [23] or [28].

6.4.1 Models

To model data in the MSAR framework a library of functions has been
supplied by Pierre-Julien Trombe, PhD student at Department of Infor-
matics and Mathematical Modelling at the Technical University of Den-
mark, to which minor modifications have been made. The functions ap-
plied do not yield the model residuals nor the fitted model. It was beyond
the scope of this thesis to alter the existing functions in such a way as to
supply this. For that reason the criteria for model selection had to rely on
other parameters than residuals. In selecting the models emphasis is put
first and foremost on model BIC. BIC provides a measure of the trade-off
between size and goodness of fit in a statistical model. It is computed

BIC = log(n)k — 2log(L)
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Index AR(m,n) Intercept BIC Exp. duration Par. significance
DGT 0,0 X -5236,286 12.50857 63.87707 int 2
ELR 0,0 X -5155,773 58.94034 78.02196 int 2
FEZ 0,0 x -2238,147 28.39696 230.35163 int 2
GLD 0,0 X -5525,087 36.58532 19.04899 int 2
RWX 0,0 x -4468,917 17.43270 31.74602 int 2
STN 0,0 X -3756,508  9.412034 116.849997 int 2
STZ 0,0 X -3763,724 60.44992 30.81178 int 1
TOPIX 1,1 -4967,782 22.68193 12.62767 AR(1)1
XOPp 0,0 X -5499,034 40.10461 70.62847 int 2

Table 6.3: Selected models in each index. Column three indicate whether the
model was fitted with different intercepts in the two regimes.

where k is the number of parameters in the model and L is the maximised
value of the likelihood function of the relevant model and n is the number
of observations. BIC differs from AIC in the penalty put on model size.
For samples larger than 75 data points log(n) > 2 and thus BIC penalises
model size harder than AIC. BIC is selected in evaluation of the MSAR
models based on the learnings from Figure 6.2 which point towards a
general tendency that smaller models perform better through out the
subsets of data. As with AIC the selection criteria is to pick the model
with the smallest BIC. Table 6.3 show the selected models. The process
of model estimation is illustrated in table A.2 in appendix Table A.7
represented by a large subset of rejected models.

Apart from BIC also parameter significance and the transition matrix
is considered. From the transition matrix it is possible to derive the
expected duration of stays in each regime. This is computed by

1 P -t _ (length of expected stay in regime 1
q ~ \length of expected stay in regime 2
where the result is interpreted in weeks. The idea is to consider the

economic sense in the expected duration of stays. As it turns out, within
each set of data this is very similar.

The last consideration in this model selection is parameter significance.
Parameter significance is computed based on the Hessian of the optimisa-
tion function at the estimated maximum. Parameter standard deviation
is derived from the diagonal of the Hessian and the confidence intervals
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are determined the usual way by subtracting respectively adding a mul-
tiple of 2 standard deviations to the estimate. The estimates which are
significantly different from zero in the confidence intervals are given in
the rightmost column of table 6.3. Generally the selected models are
ARMA(0,0) models with one intercept significantly different from zero.
The exception is TOPIX which is best modelled by an AR(1) process is
in both regimes, each with zero mean. For TOPIX the preferred model is

Ri: gy = —0.002433 ;1 + €, € ~ N(0,0.04124)
Rs: ye = 0.003017y—1 + €, € ~ N(0,0.01797)

p_ 0.9559 0.04409
~\0.07919  0.9208

The difference between the regimes lie both in the AR parameter and the
variance of the error term. The high volatility regime has negative AR
parameter meaning that the return shift sign every period. This corre-
sponds to a high volatility, and also makes sense in relation to unstable
financial markets. The transition matrix reveals that this index is ex-
pected to remain in the calm regime for approximately twice as long as
the regime representing economic instability.

The remaining eight indices are modelled with intercept and without AR
dependence. Below is shown an example of such a model, here exemplified
by ELR

Rl LYt = €, € ~ N(O, 003777>
Ry : yr = 0.002341 + ¢, € ~ N(0,0.01560)

pP_ 0.9830 0.01697
~\0.01282  0.9872

The high volatility regime has zero mean, while the other regime is less
than half as volatile and has positive mean return. The transition matrix
tells that the duration of a stay in each regime is approximately equally
long, with a favour towards the calm regime. The sign of the mean return
in each regime differs between models.

Column five in table 6.3, shows that the indices respond differently to the
financial environment. FEZ and STZ hardly use the second regime while
ELR uses both regimes with almost equal emphasis. Figure 6.12 illus-
trates three different examples. The lines show the estimated probability
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Figure 6.12: The lines show the estimated probability of being in regime 1 at
time ¢. Red is STN, blue is STZ and black is ELR.

of the model being in one regime at time ¢. Thus the black line shows a
model which is sensitive towards the market dynamics and thus jump be-
tween regimes in unstable periods (ELR). The red line on the other hands
illustrate a semi-stable index which is largely unaffected by market insta-
bility (STZ). The blue line shows an index which is almost completely
unaffected by the market dynamics of the depicted period (STN). STN is
the European financial sector. The blue line indicates that the financial
industry generally is unaffected by the market dynamics, or at least it is
unaffected to an extend where the mean return is not significantly altered
unless in very extreme events.

6.4.2 Scenario generation

As in the previous frameworks, a model is fitted to data each four weeks,
every time using all past observations. Following the model fits the model
parameters are extracted for scenario generation.

From the ending values of the fitted model, predictions are made by gen-
erating values in (6.1). The first regime is sampled with probabilities
(p,1 — p) of being regime 1 respectively 2 where p is equal to the proba-
bility of the fitted model ending in regime 1 as extracted from the model.
The initial regime is used to determine the parameters used to generate
the first prediction. Subsequently the following regime is sampled as a
function of the current regime, now using the estimated transition prob-
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Figure 6.13: Ending regimes of the 9 indices over the course of the 79 periods.

abilities, also extracted from the fitted model. The new regime is used to
make the next prediction, etc.

The inferred ending regime of the 79 models fitted to each index is shown
in figure 6.13. The regime sequence jumps back and forth. Some indices
are more widely affected than others, but overall the models are fairly
certain of the current regimes to pass to the scenario generation, that is,
only few models end in a stage where the current regime is determined
with less than 80 percent certainty. This implies that the scenarios are
very likely generated from the depicted regimes through out the periods.

6.4.3 Results

The fraction of scenarios that exceeds the observed return is plotted in
figure 6.14. There was an error in the scenario generation on the TOPIX
index, making that plot invalid. TOPIX follows a different model struc-
ture than the other eight indices. Under the time restrictions of the
project the cause of error was not detected.

Considering figure 6.14 DGT looks evenly distributed, but with a steep
drop in the trendline around period 40. ELR and XOP both favour
the bottom half of the [0,1] interval and both show a tendency towards
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trumpet shape, where the fractions cluster around 0.5 in the left side of
the plots. This behaviour cause the Kolmogorov-Smirnov test to reject
uniformity in ELR and only barely accept it in XOP. The scenarios of
RWX are accepted as uniform, although they seem heavily biased towards
one regime, causing a concurrent overrating of the returns during the
housing crisis, periods 15-40. RWX also show a variance 20 percent
greater than the theoretic variance.

The boxplots in figure 6.16 show that the scenarios generally encapsulate
the observed returns prior to 2008. The range of the scenarios is overall
increased after 2008, but in the individual assets the volatility increase
does not perfectly reflect the times of change in the observed returns.
The 2008 crisis is well marked in most indices, but other regime shifts are
less distinct. The median of the scenarios is non-constant and adjust to
reflect the decreasing mean return during times of high volatility. But a
general delay in the scenarios means that the models in which the scenario
mediandoes decrease, the effect is diminished anyway. In the case of
RWX the boxplot shows that the model fits take too long to identify the
regime shift, causing the scenarios to be generated from the wrong regime.
Judging by the range of the scenarios the model fits have ended in regime 2
only in periods 38-44, while the observed returns indicate a highly volatile
period starting around period 28 and not ending until approximately
period 50. This is also reflected in the fraction plots. The boxplot also
reveals that the regime shift in FEZ is delayed and the volatility increase
overstated, in STN it is overstated and in STZ it is insufficient. Holding
together figures 6.13 and 6.16 and considering STN, the prior figure shows
that the ending regimes are uncertain towards the end. The boxplot
shows that in the last 7-8 periods the scenarios have been generated from
alternating regimes, with clearly different variance.

6.4.4 Discussion

Refering to figure 6.12 ELR is seen to be “indecisive” regarding one regime,
which is also reflected in the boxplot. Although figure 6.12 only shows the
regime shifts estimated in the last period, the pattern applies though out
the subsets. The result of this is clearly illustrated in figure 6.13 where in
particular ELR is seen to change regime basically every period. A part
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of the explanation for that is likely found in changing parameter values,
so simply the labels of the regime change. This claim is supported by the
boxplot in which a certain change in volatility is present in the models, but
yet not as bad as figure 6.13 might suggest. In further some of the indices,
data seem to be well fitted, GLD and DGT in particular. Yet in others
the increase in volatility is delayed, or the transition probabilities appear
to be erroneously estimated, causing the model fits to switch regime too
often. A third sign of inadequacy is that the variance terms in the regimes
are overstated (STN) or understated (STZ).

When the effect of figure 6.13 is not clear in the other figures it is assumed
that the parameter values adjust correspondingly, such that effectively
only the label of the regimes change, but the applied parameters — mean
and variance — remain largely unaffected. Additional plots which support
this claim are attached in appendix section A.8.1.

Rothman1998 examined regime shifting models in [21]. Under successive
model estimation, similar to what is carried here, he found that while
most of the examined methods were unaffected in the optimal model or-
ders, one systematic change did occur for the SETAR model. As the
sample size available for estimation increased, there was variation in the
value of the threshold identified. Rothman finds that the threshold for
changing regimes change. In MSAR there is no threshold to determine
the regime shifts, but some parallels can possibly be drawn to the con-
tinuously adjusting regime parameter values of these models.

6.5 Dependent mixture model

The MSAR framework is often applied towards modelling a single time
series [23] [24] [21] [25] [29] [30], yet as the purpose of this analysis is to
generate scenarios for asset allocation, the correlation between the indices
is of great importance and cannot be ignored.

The dependent mixture model, as applied in this section, models the in-
dices simultaneously. As such it is able to fit the transition model while
allowing for time dependent covariance matrices. Since it was concluded



6.5 Dependent mixture model 67

in the previous section that when applying regimes, the AR effect dis-
appears (in all but one instance), now both regimes are modelled as a
multivariate normal distribution. In the multivariate normal distribution
the mean and variance structure in each regime is determined by

pr=E(YR)
ZR:COU(YRiaYRj)7 /i:]-a"'797j:17'”79

where Yg is a vector of observations belonging to regime R. pg is a
vector of nine elements and X is a 9 x 9 covariance matrix.

The fundamental assumption of the dependent mixture model is that at
any time point, the observations are distributed as a mixture with R
regimes, and that time dependencies between the observations are due
to time-dependencies between the mixture components, that is transition
probabilities between the components. These latter dependencies are as-
sumed to follow a first-order Markov process on the finite space (1, , R)

[27].

The parameters in the dependent mixture model are estimated by the EM
algorithm also mentioned in section 6.4. Expression (6.2) gives the joint
log-likelihood of the observed data and the estimated regimes, given the
parameters. This is the same method as described above, with a modi-
fication to the parameter vector as well as the the observation densities,
b;(y:) which are now given by the expression

1 1 e
bj(yi) = —5log %] - S & ¥ &

which is the likelihood function for the multivariate normal distribution,
where in the usual notation

€=yt — Ee|vi—1,0) =y — pj

Referring to (6.3), (6.4) and (6.5) the observations, Y, is now a matrix
with nine rows and y; is a vector of nine observations of returns at time
t. In the parameter vector ®, 61 ; and 65 ; remain unchanged relative to
the previous specification, but 83 ; is updated in the dependent mixture
model to (p;,3;), that is the model parameters of the relevant model.
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6.5.1 Scenario generation

As in the previous frameworks, a model is fitted to data each four weeks,
every time using all past observations. Following the model fits the es-
timated parameters are extracted for scenario generation. As mentioned
the obtained model in each regime is very simple, as all dependence on
past observations has been removed. Thus predictions are made by gen-
erating one random multivariate normally distributed return, with mean
pr and covariance structure X in each regime. Additionally the pre-
diction start-off regime as well as the transition probabilities between
regimes are needed.

pr, Xr and P are extracted from the fitted models. The start-off regime
is the regime which the model fit has deemed the most likely regime of the
last observation. This probability, along with corresponding probabilities
for all previous observations, is also extracted from the model.

From the extracted parameter values, predictions are made. The first
regime is sampled with probabilities (p, 1 — p) of being regime 1 respec-
tively 2 where p is equal to the probability of the fitted model ending in
regime 1, as extracted from the model. The initial regime is used to deter-
mine the parameters used to generate the first prediction. Subsequently
the following regime is sampled as a function of the current regime, now
using the estimated transition probabilities, also extracted from the fitted
model. The new regime is used to make the next prediction, etc.

In figure 6.17 the estimated regime sequence for 9 iso-distant models are
shown. The figures depict the evolution in the regime sequence as more
observations are added to the model fitting. Kach plot is 32 observa-
tions apart, corresponding to approximately eight months. The black
line shows the estimated regime sequence in each time step, and the red
and green line shows the estimated probability of being in either regime
at each time step. Starting in the upper right corner, going from graph
1 to graph 2 the certainty of current regime between observations 50 and
150 is increased, and thus the number of shifts is reduced. Adding addi-
tional 32 points from graph 2 to graph 3 does not make a difference to
the estimated regime shifts.
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From graph 6 and onwards it is evident that the regime corresponding to
calm waters is easily determined while the other regime, corresponding
to financial instability, is a lot less obvious, resulting in periods with
numerous regime shifts in very short intervals. The explanation for this
is found, at least in part, by referring to figure 6.12, where it was seen that
the indices change regime at very different points in time. Exemplified by
ELR one regime is well determined, while the other regime is somewhat
undetermined and the state probabilities jump back and forth. The plot
illustrates the process of estimating the regimes as more observations are
included. Note in the last plot that the regimes have been shifted, so the
green regime is now e.g. high volatility where it was low volatility in the
previous models. This has no influence on the estimation.

When considering the correlation matrices in the regimes in figure 6.18,
it is apparent that the correlation is generally higher in one regime, thus
implying the indices “agree” about where they are, whereas the other
regime show less correlation. While there seem to be a general trend
similar to that of figure 6.4, the correlation is lower in figure 6.18b. The
correlation coefficient change slightly along the course of the 79 periods,
but the general trend as described remains. In the dependent mixture
model, as mentioned, the model must determine one common point in
time to change regime. Yet considering the very different behaviour of
data, this apparently causes the model to move the regime shifts back
and forth when new data is added to the estimation, causing the model
to appear confused.

The result is that the models along the course of the 79 periods end in
different regimes every other time. In figure 6.19 is shown the estimated
probabilities of the model ending in regime 1, through the course of the
79 periods. This is also the probability used to sample a starting regime
for the scenario generation. Due to the high probabilities in almost all
periods, this is with fair certainty also the start regimes for the scenario
generation. To be fair there is a short period of consistency around period
20 and again between 30 and 40. These are the only periods of time
where the nine indices have to a sufficient degree agreed on an appropriate
regime. — this despite their highly correlated returns.
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Figure 6.19: Sequence of scenario generation start regimes over the course of
the 79 considered periods.

6.5.2 Results

Evaluation of the method is carried following the same method as previ-
ously. Figure 6.20 shows that all of the trends apparent in the previous
similar plots are also present in this case, however at a less pronounced
level. The fractions are generally evenly distributed over the interval with-
out apparent white spots in the plots. XOP is trumpet-shaped, and is
only barely accepted as uniformly distributed. The variance is noticeably
lower than the theoretic ideal of 0.0833. ELR is rejected as uniformly dis-
tributed. There is a tendency that the fractions cluster towards the bot-
tom of the |0,1] interval. Whereas TOPIX also seem to have the fraction
points cluster, the fraction span most of the [0;1] interval, distinguishing
it from ELR.

Figure 6.19 shows that the regimes jump back and forth, but this is not
reflected in the variance of the scenarios, as depicted in figure 6.22. The
reason is that while the regimes jump back and forth, the model param-
eters do the same. The result is a realised mean return and variance of
returns as illustrated in figure 6.23. The plots show the model parameters
related to each period assuming the scenarios are generated from the ex-
iting regime of the model fit. Supporting plots are attached in appendix
Figure A.8.2.

Looking over figure 6.22 it is seen that there is a brief but consistent
increase in scenario variance in periods 15-17. There appear also to be
a permanent increase in scenario variance starting in period 22, although
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Figure 6.22: Distribution of the 250 dependent mixture model scenarios in
each period represented by boxplot. Shown along with observed return in red.
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Figure 6.23: Top panel shows the realised mean scenario return, where each
index is shown with a coloured dotted line and the mean is shown in fat black.
The bottom panel shows the realised variance, using the same notation.

this is less distinct. This is coherent with figure 6.23, although it is not
with figure 6.19, again supporting the idea of changing model parameters
during the course of the regime shifts.

The dotted lines in figure 6.23 show that the level for each index is differ-
ent, but the evolution is similar. Because of the nature of the model, all
indices experience the regime shift simultaneously. In figure 6.22 it is seen
to be a good fit for particularly STZ, and to some extend XOP and RWX,
while the remaining funds do not change behaviour until 10-15 periods
later. Thus for the majority of the indices, the compromise causes a long
period of undue volatility in the scenarios.

In the multivariate normal distribution the scenarios are generated from
a mean value and a covariance matrix. Thus the parameter determining
the range of the scenarios is the covariance matrix, ¥ p. X is illustrated
in a heatmap in figure 6.24. These heatmaps only show the covariance
matrices for the last period. The covariance is subject to change through-
out the subsets of data, but the plots illustrate the difference between the
indices, in relation to the behaviour witnessed in figure 6.22. The dif-
ference in level of variance between the regimes is almost five times. It
is also interesting to note that in the calm regime emphasis is on the
variance terms. In the unstable regime all covariance terms increase, and
in particular FEZ, STN and XOP display high levels of covariance with
the other indices, meaning that the behaviour of each index to a greater
extend affect the predictions in the other indices.
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Figure 6.24: Full dataset covariance matrices of the nine indices in respectively
regime 1 and 2.

6.5.3 Discussion

This method accounts for correlation in the market, which was missed in
the previous methods. But it does not consider the assets individually.
As the models are fitted to all indices simultaneously, the predictions on
each index will be generated by a model which is not fitted specifically
to that index. Regime shifts are determined based on the portfolio, as
a compromise between the considered assets, and the result is a loss of
accuracy with regards to the individual assets. This, however, is not
reflected in figures 6.20 which show very good results. It is reflected in
the boxplot, from which it appears that the model philosophy is “better
safe than sorry” causing it to conservatively increase variance and decrease
expected return at the first sign that one index is unstable.

Further, while the ability to model and predict data is undeniable, plots
show that the characteristics of each regime almost consistently change
with the addition of only four points. For the estimation the label of
the regimes is clearly not important, but if the model is intended for
extracting information about the portfolio, it is a problem. — The regime
label will tell nothing about the current state, as this could today mean
the opposite of what it meant yesterday. Likewise is the current volatility
of the portfolio useless in trying to make a guess at the regime. Thus in
order for this model to be useful, you need all the information. But if you
have all the information, you do not need the model.
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6.6 Discussion of scenario generation

The visualisations of the scenarios, in figures 6.5, 6.8, 6.9, 6.14 and 6.20 as
well as figures 6.7, 6.11, 6.16 and 6.22 show that while bootstrapping does
not catch any changes in data, the other methods capture some dynamics
in an increased variance. Bootstrapping is in all regards inferior to the
remaining methods and will be left out of further comparison.

Neither of the applied methods manage to fully transfer the dynamics of
data to predictions. This is proved by the trendlines in figures 6.8, 6.9,
6.14 and 6.20 which for each index are very similar. The same trends and
tendencies appear three times, although with decreasing magnitude. The
dependent mixture model performed better than the two previous models
on this measure.

When turning to the boxplots the conclusion is another. In these plots
the GARCH generated scenarios to a significantly wider extend reflect
the volatility of the individual assets. This is of cause due to the GARCH
model, under which changes in volatility are triggered by data itself. Un-
der the regime models changes in volatility within the scenarios result
from probability. In only four predictions a change in regime is unlikely.
The conclusion is that any difference in quality of predictions is due to
the quality of the model fit used to generate the predictions.

The GARCH scenarios fall short in following the observed return when
this decrease in high volatility periods. This is nicely captured by MSAR,
although with delay. The dependent mixture model is encapsulating the
observed returns almost completely, and generate data which replicate
the characteristics of the financial markets very well. Yet, it is also very
conservative in determining the applied variance, causing the predictions
in most periods to be generated with excess volatility. Due to the model
specification the changes in mean return are considerably less accurate
than in MSAR, but instead follow a common trend. GARCH and MSAR
produce tighter scenarios, with no excess volatility. The 25 to 75 per-
centiles span around half the range of the observed returns in the close
proximity. Subsequently, the range of the 25 to 75 percentiles increase
when the range of the returns increase. Again, a very tight fit is obtained.
But this also calls for periodic mis-estimations, which these models are
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seen to be more prone to than the wide-ranging dependent mixture model
scenarios.

For that reason the dependent mixture model with two multivariate gaus-
sian processes will be the recommendation for the risk aware investor. But
the investor is also advised to remember that the model predictions re-
flect the general state of the economy rather than the expectation of the
specific assets. This recommendation is based on the fact that MSAR
is delayed in decreasing the mean returns anyway, and GARCH model
the volatility with higher accuracy. To obtain predictions on one specific
asset GARCH is recommended. To obtain a complete impression both
models should be applied. This will reveal not only the general state of
the economy, but also provide a basis for understanding the individual
assets.

While praising the dependent mixture model, it should be noted that six
of the considered indices are highly correlated, making it plausible that
one common trend can adequately describe all indices.

It was outside the scope of this thesis to examine the implications of
modelling with more than two regimes. The extensive use of the highly
volatile regime in both MSAR and the dependent mixture models suggest
that a third regime, to describe the period after the 2008 crisis, would be
in place.

From the persistent drops of the trendlines in the fraction plots it is
clear that the exact behaviour of data cannot be predicted, in any of the
considered models. But the boxplots show that all except bootstrapping
are able to accurately detect changes in volatility, and subject to the
desired application purpose, well describing models have been detected.
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CHAPTER 7

Asset allocation

Studies have shown that asset allocation is the most significant factor in
determining the performance of a portfolio. When deciding on the asset
allocation the investor must have an investment strategy, including a risk
profile. The risk profile is determined by factors such as tolerance for loss
and risk averseness in regards to gains and losses of the investor.

In constructing the portfolio the investor must keep in mind the invest-
ment strategy and select asset classes and weights accordingly. For exam-
ple, equity is associated with a higher degree of risk than fixed income,
but also comes with a significantly higher expected return. Precious met-
als are basically uncorrelated with any other asset (refer to table 4.4),
making it a much used tool for diversification [31] [32] [33]. According to
the Capital Asset Pricing Model [34], two different risk measures are rel-
evant to a portfolio manager — the portfolios total risk and its systematic
risk. Total risk is measured by the variance of the portfolio. Systematic
risk is measured by the portfolio’s beta. The total risk of a portfolio is
a function of the correlation coefficients and variances of the different in-
vestments that form the portfolio. The key to reducing the total risk of
a portfolio is diversification, c.f. (2.2).
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When investing in ETFs the investor improves the possibility of diversi-
fication and frees himself of the decision about which particular asset to
invest in, thereby reducing the decision to determining weights in each
asset subcategory and choosing between the ETFs represented in the rel-
evant fields.
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Figure 7.1: Dynamic Max Average (risk lover) under the four scenario gener-
ation methods

7.1 Asset allocation under different strategies

The scenarios generated in Table 6 are applied in portfolio optimisation,
under three different investment strategies. As optimisation is not a topic
of this thesis, the task of constructing the portfolios was performed by
Kourosh Marjani Rasmussen, from the Management Engineering depart-
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ment at the Technical University of Denmark. The strategies are

¢ DynamicMaxAvg Risk loving investor. The return of the portfo-
lio is maximised each period, regardless of the associated risks. No
consideration for diversification or market risk in the assets. This
strategy carry high risk, which should result in a greater return.

e MaxRiskAdjustedReturn Risk neutral investor. Assemble the
portfolio by selecting assets which increase the portfolio return while
maintaining or reducing portfolio risk (relative to the risk free asset.)

¢ DynamicMinCVaR Risk averse investor. The selection strategy
is to minimise the five percent greatest losses each period. Formally
the conditional variance at risk (CVaR) at 95 percent confidence
level is minimised. See [35] [36] for elaboration on CVaR.

In figures 7.1, 7.2 and 7.3 asset allocation under the three strategies is
illustrated. The asset allocation is performed based on the generated
scenarios, and in fulfilment of the above stated guidelines. In the cap-
tions are given the average annual return on each portfolio. Each panel
represent one method of scenario generation.

The return on portfolios in Figure 7 is a weighted average of the returns
of the nine assets. Thus as TOPIX is excluded from MSAR these portfo-
lios cannot be included in the asset allocation analysis. Yet, considering
the risk loving strategy, neither of the three other methods facilitate the
use of TOPIX in the portfolio, so with reservations for the unknown, it
is plausible that the portfolios are comparable under this strategy. Like-
wise arguments apply to the risk neutral strategy, under which the other
methods only to a very limited extend use TOPIX. Under the risk averse
strategy TOPX plays a significant role in ARMA-GARCH as well as
the dependent mixture model, so these portfolios cannot be compared
to MSAR. It is interesting to note, how the optimisation have replaced
TOPIX under this strategy. Around mid-2009 there is a slightly increased
emphasis on STZ but otherwise the weight assigned to TOPIX in ARMA-
GARCH and Dep. mix. is equally distributed amongst the other assets
in MSAR.
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What is apparently most significant about the portfolios is the consis-
tent emphasis on XOP in all of the bootstrapped scenarios (7.1a, 7.2a,
7.3a), regardless of risk profile. Additionally, the bootstrapped portfolios
generally use fewer different assets, relative to the three other considered
methods. Given that the bootstrap scenarios were rejected as represen-
tative for the observed returns, the portfolios based on them are now
exhausted.

Secondly, the risk lover takes on a very narrow portfolio consisting pri-
marily of FEZ. This is the case in all methods (fig. 7.1). While the
ARMA-GARCH generated scenarios produce an average annual return of
17.07 percent the numbers for MSAR respectively the dependent mixture
model are 13.05 and 9.16 percent. As the portfolios are roughly identical
the difference must lie in the mean prediction under each method.

Finally, the methods are distinguished by their use of DGT, ELR and
FEZ. In the risk neutral strategy FEZ is approximately taking the place
of DGT and ELR. This suggests that when taking the correlation be-
tween indices into consideration, the highly correlated indices become
obsolete. Referring to table 6.1, ELR and DGT are highly correlated in
both regimes. Also FEZ is correlated with this group with coefficients
of respectively 0.69 and 0.62. Given the relatively higher return of FEZ,
more emphasis is put on FEZ.

GLD is overrepresented in the dependent mixture model generated sce-
nario portfolios. The exception is the risk lover strategy, where emphasis
is solely on return. In the two risk-considering portfolios, the exposure to
gold bullion is enhanced, underlining the risk-decreasing feature of this

asset [31] [32] [33].

Figure 7.4 shows how the value of each portfolio progress. Disregarding
the bootstrap portfolios the dependent mixture model is generally pro-
ducing lower returns. This is a result of the extensive use of high volatility
and corresponding low returns. MSAR and AG are very similar, indicat-
ing that the apparent excessive use of regime 2 under MSAR is in fact
averagely corresponding to the effect of the constant mean in the AG
models.



CHAPTER 8

Discussion

In Figure 5 it was concluded that the deviance processes can in fact be
modelled. Weekly and daily returns were considered, and due to similar-
ity in quality of the residuals and consistently better model fits, weekly
returns were preferred.

The deviance processes were visually determined to exhibit volatility clus-
ters. For that reason a GARCH framework was applied. Autocorrelation
of the processes revealed a serial dependence on past observations, inspir-
ing an ARMA specification of the conditional mean. The fGarch package
in R was applied. This turned out to contain important shortcomings
which may have restricted the modelling. The unimplemented model as-
sumptions, intended to ensure non-negative conditional variance was not
an issue in Figure 5, but proved to be of importance in Table 6.

The fitted models in Figure 5 are fitted with parameter values induc-
ing > a; + > 08 > 1, implying deviance processes with non-finite un-
conditional variance. As this is not observed in the visualisation of the
processes, nor tests for stationarity, it is suspected that the erroneous pa-
rameter estimation results from the outliers. While the index returns are
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fitted nicely in small models and are producing satisfactory results, the
deviance processes are fitted in models with as many as nine parameters
and generally produce acceptable, but not impressive, residuals.

Neither the problem with GARCH parameter estimation occurred in the
nine models fitted to the index returns, although these carry many of
the same characteristics as the deviance processes, with the exception
that the index returns do not have the extreme observations seen in the
deviance processes. This supports that the main problem with fitting the
deviance processes lie in the extreme observations.

Preceding Figure 5 the optimisation algorithms in garchFit were tested
on data for robustness and L-BFGS-B was selected. Yet, in Figure 6.2 it
was found that it is disposed towards settling on points which are not true
minima (e.g. saddle points), thus causing the parameter estimation to fail.
The Nelder Mead optimisation algorithm was introduced to estimate the
models which failed under L-BFGS-B. This of cause raises the question
of whether the algorithm should have been introduced sooner, and how
it would perform on the deviation processes. However, as stated, the
L-BFGS-B algorithm proved more robust on data, and consistency was
prioritised.

It is important to emphasise that outperforming the underlying index is
not a goal of the fund, and should not be considered a label of quality.
In fact, outperforming the indices, which are widely undiversified, should
be an easy task, as the funds are free to employ any investment policy
they desire. Thus, within the small deviances observed, perhaps a better
measure of replication-ability is found in the correlation between fund
and index returns.

The funds are generally highly correlated with the indices. The correla-
tion coefficients are in all funds higher on weekly returns relative to daily
returns, meaning that the funds may observe ultra-short term fluctua-
tions, but overall replicated the returns of the index very accurately. On
the bottom line only the result counts in finance, but as index fund invest-
ing is in itself rather obscure, the investor is helping himself by selecting
funds which comply with their index.
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Four methods were tested towards scenario generation. Bootstrapping
was applied as a base reference and proved unable to capture the dynamics
of data. Under ARMA-GARCH all ARMA parts were insignificant and
consequently the index returns were modelled solely in GARCH frame-
work. The addition of time dependent conditional variance in ARMA-
GARCH proved to very accurately model data, and showed significant
improvement to the base reference, as expected.

Thirdly a new approach was applied under which the observed changes
in volatility were captured by regimes. This approach was applied in two
models, namely the Markov Switching Autoregressive model and a depen-
dent mixture model. In MSAR the AR effect disappears when regimes are
introduced. This means that dependence on previous observations, error
terms or conditional variance, is unfounded in data, but solely serves to
capture the important fluctuations in financial markets. Thus all models
support the weak form market efficiency hypothesis that information of
past returns are useless in predicting future returns. The last step was to
apply a dependent mixture model under which each regime is modelled
as a multivariate random walk with time dependent covariances.

The scenarios definitely show improvement over the four considered meth-
ods, yet the strongest improvement is found from bootstrap to ARMA-
GARCH, in which case time dependent volatility is introduced. It can
be concluded that regardless of the specific methods, time dependent
model parameters are essential. The fraction plots show subtle improve-
ment going forward from bootstrap. But the boxplots expose that the
improvement in the dependent mixture model is primarily based on a
considerably higher variance in the scenarios. The bootstrapped scenar-
ios are generated with constant variance, which is expressed in the plots
by homogeneous scenarios. The remaining methods allow the conditional
variance to change, which is reflected in the range of the scenarios and
the presence of outliers.

Separating the observations into regimes imposed a lack of accuracy, rel-
ative to the results of ARMA-GARCH. Both MSAR and the dependent
mixture model accurately refrain from returning to regime 1 after the
2008 crisis, but with the cost that the predictions are generated with
excess variance. This inspires the application of additional regimes, to
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characterise post-crisis markets, where naivety and blissful ignorance fol-
lowing a decade of prosperity, have been replaced by financial markets
under constant pressure and highly alert players.

In all three methods the parameter most influential to the volatility of
the predictions is the estimate of current volatility / regime at the end of
the observed period. Followed by only four predictions the impact of the
predictions to radically alter that is limited.

The asset allocation in Figure 7 does not consider the deviances between
the indices and the funds. The asset allocation is performed solely on the
scenarios, generated on index returns. Thus, as the investor cannot invest
directly in the indices, he must collate these results with the results of
Figure 5.

The returns of the portfolios in the asset allocation in an indication of
the level of the mean prediction under the different methods. Considering
the high risk strategy, the portfolios are roughly identically assembled,
but the ARMA-GARCH portfolio produce higher returns. As ARMA-
GARCH does not adjust the mean return during high volatility periods,
this is expected.

8.1 Sources of inaccuracy

The limitations of the fGarch package, which may have resulted in better
fitting models not being identified due to e.g. convergence error. Addi-
tionally, the ARMA-GARCH generated scenarios suffered under negative
GARCH parameters. In the scenario generation the model structure for
each index is determined using the full dataset, while the scenarios are
generated using only subsets of this. As was seen in the ARMA-GARCH
case the initially optimal models may not be the best along the course of
the 79 periods. This practise is a source of inaccuracy, which affect the
scenario generation to an undocumented extend. Finally the asset allo-
cation is imprecise and lacks comparability between scenario generation
methods due to the error in MSAR.



CHAPTER 9

Conclusion

The thesis set out to examine the replicative capacity of 20 widely di-
versifies index funds. Both daily and weekly returns were examined, and
it was found that the deviances in returns can generally described by
a GARCH process with ARMA mean structure. The mean deviance is
in most cases statistically zero, and in any case numerically very small.
Thus it is concluded that the funds do in fact replicate their underlying
indices.

This paved the way for substituting the underlying indices for the funds,
in a scenario generation intended towards portfolio optimisation. Four
methods for scenarios generation was applied, of which one was intended
as a point of reference. Expectedly, the three methods imposing time
dependent variance strongly outperformed bootstrapping in capturing the
dynamics of data. The results are inconclusive regarding the ranking of
the linear ARMA-GARCH and the non-linear dependent mixture model.
However, for the risk averse investor the latter will be the cautious choice,
while the risk loving investor may prefer the accurate modelling of each
asset, produced by ARMA-GARCH.
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9.1 Future work

During the work with the present thesis many questions and ideas arose.
Due to the time restriction of the project, many were left untouched. This
section collects some of these ideas.

Include negatively correlated assets in the scenario generation. This is
interesting in the dependent mixture model under which the covariance
of the assets is included in the estimation. Neither of the bond indices
from section 4 are represented in the scenario generation. Due to the low
correlation between the bond funds and the other funds, combined with
the higher correlation amongst the bond funds, this would have been
an interesting addition to the scenario generation. However, sufficient
historical data was not acquired.

Based on figure 6.19 and the corresponding inconsistency in adjacent
models, it is of interest to examine the behaviour if including a third
regime. This is intended to describe the post crisis situation, where the
markets in fact are more volatile than seen prior to 2007, yet no-where
near as flighty as they were during 2007-2009.

Considering the ARMA-GARCH models in Table 6 the indices showing
correlation in the residuals are all purely GARCH processes. This could
perhaps be overcome by introducing arma parameters. However, these
were not ruled significant / errors were produced by the software. This
inspires a study of the different optimisation algorithms available in the
fGarch package. Further, the models fitted in Figure 5 leaves room for
improvement, by e.g. including a seasonal trend. Further, high model
orders were obtained, often due to failure in simpler models. Perhaps
this could be improved by considering a different optimisation algorithm
in the relevant cases.

Consider external regressors as explanatory for future stock performance.
For the purpose of scenario generation and portfolio optimisation, con-
sidering the stock price as a function of previous values as well as under
influence of external regressors may definitely be an interesting study.
[25] also suggest to employ the use of external regressors in determining
the current regime. This idea is supported in this dataset by the supe-
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rior performance of the dependent mixture model, which suggests regime
shifts should be determined based on market dynamics rather than single
asset behaviour.
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Conclusion




APPENDIX A

Additional

A.1 ETFs as investment products

As an investment product, ETFs in general allow investors to gain from
intraday moves of an index since they trade as individual company stocks
do, with continuously updated bid/ask quotes. Thus, if investors believe
that large, stable companies are going to have a good (bad) day on aver-
age, but are unable to pinpoint exactly which of the relevant companies
might experience the most significant price increases (declines), buying
into an ETF which invest in said large, stable companies provide a vehi-
cle with which they can try to profit from their expectation. This is not
possible with a traditional index mutual fund, since these funds calculate
their net asset value once a day, after the markets have closed, so buyers
and sellers of shares do so at the same price. Additionally, unlike mutual
funds, ETFs can be sold short to gain if the index is expected to decline.
This is usually not recommended for private investors, which is why it is
only listed as a benefit for professional investors.

The appeal of ETFs for investment purposes are several, but the emphasis
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is slightly different between different types of investors. Common for all
investors is a significant reduction in fees, compared to competing prod-
ucts. The expenses on regular mutual funds may take a lot of the return.
This means that the ETFs are significantly more return-efficient than
many of the open-ended funds. Another real return optimising feature is
favourable taxation compared to the discussed competing products. In
Denmark, ETFs purchased by means of available funds are taxed like
capital income, so the rate is subject to the total income of the investor.
For comparison share income is taxed at 27 percent for annual income
less than Dkkr. 48,300 and 42 percent for annual income in surplus of
Dkkr. 48,300 [37]. ETFs purchased with retirement funds are taxed at a
substantially lower rate [3]. In The United States, which account for the
majority of the ETF market, taxation on ETFs is in general advantageous
to the taxation of e.g. mutual funds [38]. Yet for the private investor the
primary benefit lies in the combination of ease of access, low costs and
ease of diversification and entrance to high barrier markets. The profes-
sional investor also benefits from the low costs and particularly from the
speculation enabled by the exchange trading.

However, the diversification benefit is distinct with private investors who
invest with limited funds. Achieving a diversified portfolio can be a de-
manding task which requires many hours spend on research and a substan-
tial amount of money available to invest. For the private investor funds
are usually strictly limited, and in most cases so is the time available for
research. The vast majority of private investors do not have the necessary
funds to build a well-diversified portfolio. Instead they own shares in a
few companies that they for some reason feel familiar with. Now imagine
a private investor who wants to enter the real estate market as a strategic
step towards greater diversification in his portfolio, and perhaps believes
that real estate prices in Spain are undervalued. Making just a single
investment in the Spanish real estate market requires a heavy investment
and this might be too much for the private investor. Additionally, mak-
ing a huge investment in one area could create too much exposure on this
particular area, and consequently reduce the overall diversification.

The investor also faces the question of which particular investment to
make, in the desired asset class. To overcome these issues he can buy
shares in an ETF which invests in European real estate. These will typ-
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ically sell for as low as $100/share. Thereby the investor achieves the
desired diversification of his portfolio. Many of the ETFs sell for less
than $100 per share, making it possible for everyone to benefit from this.
Now, while it is reasonable to think that European real estate is a rather
broad investment to engage in, when only Spanish summerhouses was
the original intention, the diversification of this fund provides insurance
against fluctuating prices in the markets represented. This means that
while Spanish summerhouses may be a blooming market, Greek summer-
houses may be simultaneously crashing. By taking on both investments
as part of the security basket that is the fund, the full potential gain of
the Spanish market will never be realized. However, neither will the full
potential loss of the Greek market, and on average the total outcome is
a net gain. This effects is quantified in the term diversification which is
a key factor in the theory known as Modern Portfolio Theory.
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A.2 Fund and index NAV and deviance processes
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A.3 Fund correlation analysis

GLD, IBCI, IBGL, IBGS and LQDE have low correlation with the rest
of the funds, although some correlation, in the amount of fifty to sixty
percent, is seen between IBCI, IBGL and IBGS. IBCI, IBGL and IBGS
all hold European government bonds, which explains their mutual cor-
relation. This also serves to explain the negative correlation with the
remaining funds of which the majority hold equity. It is a well known
fact that bonds and equity tend to move opposite each other, as they are
considered alternative investments [39] [10]. However, in times of very low
interest rates and low inflation, the return on fixed income is reduced, and
the asset classes become more correlated. This fact is supported in the
examined data where it is seen that IBGL and IBGS are only slightly
negatively correlated with the remaining funds. The exceptions are IBCI
which is also a European bond fund, LQDE which hold the 30 largest,
most liquid investment grade US corporate bonds and IJPN with which
IBGL and IBGS are practically uncorrelated. IJPN is an equity fund,
and as such, negative correlation is generally expected.

LQDE is generally little but positively correlated with the other funds.
The only exception is GLD which track the price of the gold bullion.
Historically gold exhibit low correlation with all other assets [33] - less
than fifty percent for all except silver, and generally less than 40 percent
to all major asset classes [31]. The present data confirms this, also in
today’s market. Here GLD exhibit correlations of -17 percent up to 27
percent, which is low enough to consider gold an independent asset which
will enhance diversification in any portfolio. This is documented in [33]
and [32]. Table 4.4 also show that the highest correlation with GLD is
found in XOP. XOP is holding oil and gas related stock, making it an
applicable proxy for oil as a commodity. As such the value of the basket
is closely related to the crude oil price, with which gold is relatively high
correlated, c.f. [31].

GLD, IBCI, IBGL, IBGS and LQDE are moving with the remaining funds
before the beginning of the crisis in late 2007 - 2008, but are clearly af-
fected differently afterwards, at what point all funds continue a steady
growth as opposed to the equity funds which uniformly decline. The gold
fund is seen to rapidly and steadily increase over the observed period.
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This is consistent with the development in the price of gold, as illustrated
in figure 4.3 where monthly observations of the gold price going back 20
years is plotted in blue. Evidently the price of gold has been largely unaf-
fected by the intervening crises. It can also be noticed that the monthly
return (in black) is reasonably stable over the period, supporting the sta-
bility and uncorrelated nature of the gold market to the dynamics which
drive the stock market.

Apart from the funds mentioned in the analysis in Table 4.1 data con-
sists of additional two fixed income funds, namely EMBI and THYG.
Along with IJPN these are medium correlated (up to 65 percent) with
the remaining funds. EMBI holds 80 percent government bonds issued
by emerging market countries and 20 percent corporate bonds issued by
companies registered in emerging markets. Around 50 percent of its hold-
ings are in BBB rated bonds while another 45 percent are split roughly
evenly between ratings BB, B and Not rated, leaving a mere 6 percent
for A rated bonds. IHYG holds EUR denominated high yield corporate
bonds, where High yield is a label used to mark a bond with a certain
low credit rating of BBB- or below from Standard and Poors or Ba or
below from Moody’s. The two rating agencies characterize these ratings
as“Considered lowest investment grade by market participants” [11] re-
spectively “Obligations rated Ba are judged to have speculative elements
and are subject to substantial credit risk.” [12]. 90 percent of the holdings
mature within 7 years, with approximately 30 percent of the holdings in
each category 1-3 years, 4-5 years, 6-7 years and the remainder in the cat-
egory 8-10 years to maturity. Naturally time to maturity is considerably
important when investing in high yield bonds.

The remaining funds (DGT, ELR, FEZ, FXC, IEEM, IMEU, INAA,
RWX, STN, STZ, TOPIX, XOP) are highly correlated with coefficient
between 0.60 and 0.98. Very high correlations (>90 percent) are seen
between DGT:ELR, DGT:FEZ, DGT:IMEU, DGT:INAA, ELR:INAA,
IMEU:STZ. Again referring back to table 4.3 it is seen that these all rep-
resent large cap equity indices. Further DGT is an international index
covering both developed and emerging countries and holding as many as
150 equities. Thus this index is a wide representation of the equity mar-
ket in general. The ELR fund holds as many as 750 different company
shares, selected to represent the top 750 US companies ranked by capi-
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talization. Intuitively this is a very good proxy of the DGT, which is also
mirrored by a correlation coefficient of 0.96. Similar reasoning apply to
FEZ, IMEU and INAA which all represent the large cap equity category
of the worlds leading developed regions. INAA and ELR are both hold-
ing USD large cap equity, explaining the perfect correlation between the
two. From the correlation between IMEU (EUR large cap equity) and
STZ (EUR financials sector) it is deduced that STZ primarily hold large
cap stocks. This is confirmed by consulting the relevant morningstar®
webpage, listing that 53 percent of the funds holding are giant cap, 34
percent are large cap and merely 13 percent are medium cap.

Due to the high correlation between these indices they can to a wide
extend be used interchangeably in a portfolio.
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IBGS DiffReturn daily and weekly
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Figure A.1: The raw data of IBGS DiffReturn in high and low frequency
data. The top panel shows the processes, and the bottom panels show the
autocorrelation and partial autocorrelation of the daily and weekly observations.
The plots clearly reject any resemblance to independent random data.

A.4 Modelling failure of IBGS

The process IBGS proved impossible to model in the applied framework
in both high and low frequency data. Inspecting the raw data suggests
a certain pattern, rejecting the premise of complete randomness. This is
illustrated in figure A.1. It is outside the scope of this thesis to investigate
alternative models, and the fund will no longer be a subject of analysis.
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A.5 Sensitivity of Jarque-Bera and Ljung-Box tests

If the residuals are normally distributed, the Jarque-Bera statistic is
asymptotically x? distributed with two degrees of freedom. It is com-
puted

N R Y
YR

where
% Z?:l (re — ﬂr)g
(23 =) "
LSy (e — )’
<% >t (re = ﬂr)2>2

S:

K=

that is, .S is the skewness of the distribution and K is the excess kurtosis.
r¢ and [, denotes the return at time ¢ and the sample mean return,
respectively.

The Box-Pierce test is computed

h 9

Pk
BL=n(n+2) g —E
k:ln—k

where py, is the sample autocorrelation at lag k£ and h is the number of lags
being tested. The hypothesis of independence in the residuals is rejected
for BL > X%—a,h where « is the significance level and h is the degrees of
freedom.

The p-values for the Jarque-Bera test are zero or extremely close to zero in
all of the models, indicating that the hypothesis must be rejected and that
the residuals are not normally distributed. However, performing a small
test proves that the Jarque-Bera test is extremely sensitive to outliers.
When generating 1000 random numbers from a normal distribution the
null hypothesis is accepted. However, when adding one single outlier to
the same dataset, the null hypothesis is rejected.
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> x = rnorm(1000); jarque.bera.test(x)
Jarque Bera Test

data: x
X-squared = 2.8493, df = 2, p-value = 0.2406

>y = c(x, 5); jarque.bera.test(y)
Jarque Bera Test

data: vy
X-squared = 9.403, df = 2, p-value = 0.009082

Additionally the residuals are inspected for independence qua the Ljung-
Box test. The p-values for this test, using 95 percent confidence intervals,
span from 0.98 to 0 in the selected models. Once again, a simple test
proves that also the Ljung-Box test is sensitive to outliers, although not
as sensitive as the Jarque-Bera test. 10 data points are added to the 1000
point dataset to distort the independence.

> x = rnorm (1000); Box.test(x, type="Ljung")
Box-Ljung test

data: x
X-squared = 0.0035, df = 1, p-value = 0.9527

>y = c(x[1:500] ,rep(4,10), x[501:1000]); Box.test(y, type="I
Box-Ljung test

data: vy
X-squared = 15.864, df = 1, p-value = 6.806e-05

Ljung")
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A.6 Failed models under ARMA-GARCH sce-
nario generation

The ARMA-GARCH models experienced a number of problems during
the recursive model estimation in the scenario generation. In the follow-
ing the problems with FEZ, which was most widely affected, are described
in details. The described models are the ones which failed to be prop-
erly fitted, and were thus replaced by their predecessor in generating the
scenarios. In such cases the model parameters are estimated, but the
hessian is non-invertable causing the uncertainty on the parameters to
remain unknown. Additionally the conditional variance takes negative
values. Out of the initial 66 failed attempts under the L-BFGS-B al-
gorithm the Nelder Mead algorithm managed to successfully estimate a
model in 32 cases, while also failing the remaining 34. This suggests that
the Nelder Mead optimisation algorithm is more robust on the selected
data.

Table A.1 shows the range of the FEZ scenarios over the 79 periods,
prior to replacing the erroneous models. Pointing out that the scenarios
represent four week returns on a stock, the range in period two, three, 10
and 11 is clearly wrong. The estimation of these models caused a warning
that some parameters could not be properly estimated, as described in
Table 6.2.2.

In periods two and three, the conditional variance explode, ending at
7.27e+72, thereby causing the range of the generated returns to explode.
In periods 10 and 11 « and § are both estimated to be 1. This causes the
conditional variance to continually increase with a slope of w, in this case
0.0055, thereby causing the error terms to be increasingly bigger. The
implications for the unconditional variance is a denominator of -1 and
thus an unconditional variance of —w which is meaningless. In period 18
and 20 the scenario generation fail. In these cases the model parameters
are very similar to those in period 2 and 3, yet slightly shifted, causing
the conditional variance to be negative, ending at respectively -3.58e+65
and -5.45e-+68. This happens because the GARCH parameters obtain
negative values in the model estimation. This is a violation of the model
assumptions, c.f. (5.3). When the conditional variance remain positive
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in the first two cases, it has to do with the level of the three relevant
parameters.

Period w o B8

2+3 -0.000309 -0.151 1.72
10 + 11 0.00549  0.999 0.999
18 -0.000358 -0.325  1.51
20 -0.000377  -0.331 1.52

Periods 2, 3, 18 and 20 violate the non-negativity constraint. In 2 and 3
the relationship between « and § cause the conditional variance to remain
positive, while in 18 and 20 the conditional variance is negative after 4
observations. Due to the very high, positive coefficient to g in either of
the cases, the remaining parameters are not sufficient to turn the effect
of B, thereby causing the conditional variance to explode, towards oo in 2
and 3 and towards —oo in 18 and 20. 10 and 11 fulfil the non-negativity
in coefficient condition, but o + 8 > 1.

Periods 2 and 3 respectively 10 and 11 are identical due to the procedure
described in Table 6.2.2 for handling erroneous models. At the time of
writing the author is not able to explain why some models are detected
as erroneous, causing the procedures to be followed as described, while
other erroneous models remain undetected by the algorithm.
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1 2 3 4 5 6 7 8 9 10
min -0.20 -2.7e147 -2.4e147 -0.19 -0.19 -0.22 -0.20 -0.19 -0.18 -1.1e3
max 0.27 1.7e147 2.5e147 0.28 0.24 0.24 0.33 0.26 0.26 877.09

11 12 13 14 15 16 17 18 19 20
min -860.82 -0.10 -0.18 -0.19 -0.17 -0.18 -0.17 NA -0.12 NA
max 1.3e4 0.16 0.29 0.24 0.28 0.18 0.26 NA 0.20 NA

21 22 23 24 25 26 27 28 29 30
min -0.23 -0.14 -0.14 -0.13 -0.16 -0.17 -0.14 -0.17 -0.18 -0.16
max 0.22 0.21 0.19 0.23 0.19 0.17 0.22 0.22 0.21 0.27

31 32 33 34 35 36 37 38 39 40
min -0.15 -0.16 -0.14 -0.15 -0.16 -0.18 -0.64 -0.44 -0.62 -0.55
max 0.29 0.24 0.25 0.32 0.30 0.23 0.73 0.83 1.40 1.67

41 42 43 44 45 46 47 48 49 50
min -0.42 -0.38 -0.36 -0.29 -0.32 -0.42 -0.36 -0.25 -0.27 -0.31
max 0.53 1.16 0.61 0.42 0.73 0.41 0.57 0.44 0.37 0.49

51 52 53 54 55 56 57 58 59 60
min -0.26 -0.23 -0.24 -0.25 -0.21 -0.19 -0.14 -0.28 -0.21 -0.37
max 0.46 0.27 0.32 0.24 0.28 0.31 0.37 0.33 0.35 0.38

61 62 63 64 65 66 67 68 69 70
min -0.23 -0.20 -0.18 -0.16 -0.24 -0.15 -0.10 -0.16 -0.21 -0.19
max 0.36 0.37 0.31 0.25 0.27 0.26 0.21 0.24 0.21 0.24

71 72 73 74 75 76 7 78 79
min -0.17 -0.15 -0.23 -0.34 -0.24 -0.37 -0.31 -0.45 -0.33
max 0.27 0.37 0.25 0.58 0.36 0.47 0.46 0.76 0.70

Table A.1: Range of FEZ predictions in 79 periods

A.7 Rejected MSAR models

This table shows a large subset of rejected models for the nine indices.
The index return series were attempt fitted with MSAR models of varying
model orders and the preferred models were selected based on BIC and
parameter significance. The selected models are highlighted in grey.
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Data AR(m,n) Intercept BIC Exp. duration Par. significance
DGT 0,0 X -5236,286 12.50857 63.87707 int 2
DGT 1,0 X -5229,38 12.30991 63.85709 int 2
DGT 1,1 x -5223,393 12.54744 63.86098 int 2
DGT 1,1 -5220,875 77.57261 13.23333 -
DGT 1,2 -5212,853
DGT 2,2 x -5206,185
ELR 2,2 -5125,857 57.30306 83.98200 -
ELR 1,1 x -5153,799 60.53816 81.21398 int2, AR(1)2
ELR 2,1 x -5142,2 61.83453 82.16936 int2, AR(1)2
ELR 1,1 -5142,901 -
ELR 1,0 x -5152,991 57.04495 78.84465 int 2
ELR 0,0 X -5155,773 58.94034 78.02196 int 2
FEZ 1,0 X -2232,454 27.43766 230.28821 int 2
FEZ 1,1 -2229,735 246.97633 28.19155 -
FEZ 1,1 X -2229,645 236.51295 29.18852 int 2
FEZ 2,2 X -2214,764
FEZ 2,2 -2214,754
FEZ 0,0 x -2238,147 28.39696 230.35163 int 2
GLD 0,0 X -5525,087 36.58532 19.04899 int 2
GLD 1,0 x -5520,308 18.93800 36.35756 int 1, int 2
GLD 1,1 x -5513,447 36.72257 19.17539 int 2
GLD 1,1 -5521,103 36.30355 18.63641 -
RWX 1,1 -4459,042 37.34789 17.48983 -
RWX 1,1 x -4457,353 32.34645 17.27798 int 1, int 2
RWX 2,1 x -4450,383
RWX 2,1 x -4450,383
RWX 1,0 x -4463,665 17.34338 32.14350 int 2
RWX 0,0 x -4468,917 17.43270 31.74602 int 2
STN 1,1 -3755,718 10.06519 96.83689 AR(1)1
STN 1,1 X -3748,526 9.401092 113.925817 int 2
STN 2,1 X -3736,797
STN 2,2 -3737,111
STN 1,0 X -3754,182 9.229262 104.100518 int 2
STN 0,0 X -3756,508 9.412034 116.849997 int 2
STZ 1,1 -3750,986 74.27124 29.02466 -
STZ 1,1 X -3753,655 30.64846 64.25441 int 2
STZ 2,1 x -3741,793
STZ 2,1 -3744,173
STZ 2,2 x -3737,398
STZ 1,0 x -3757,203 30.06586 60.80649 int 2
STZ 0,0 -3763,724 60.44992 30.81178 int 1
TOPIX 1,1 -4967,782 22.68193 12.62767 AR(1)1
TOPIX 1,1 x -4913,229
TOPIX 2,1 x -4897,65
TOPIX 2,1 -4960,304 12.97564 22.68945 AR(1)2
TOPIX 2,2 -4953,364 13.16962 22.57209 AR(1)2
TOPIX 1,0 X -4956,674 12.79537 19.23521 int 2
TOPIX 0,0 -4959,791 21.11069 11.81463 -
XOP 1,1 -5480,799 51.16639 86.88108 -
XOP 1,1 X -5487,764 70.81641 38.26960 int 2
XOP 2,1 X -5475,016
XOP 2,1 -5469,474
XOP 2,2 -5469,558
XOP 1,0 x -5493,07 39.13828 70.61969 int 2
XOP 0,0 x -5499,034 40.10461 70.62847 int 2

Table A.2: The process of selecting the best models in the MSAR framework.
The selected models are highlighted in grey. Column three indicate whether the
model was fitted with different intercepts in the two regimes.
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Figure A.2: Evolution in the mean scenario and variance in each index of the
scenarios over the course of the 79 periods. The black line show the mean of
the nine processes which are each represented by a coloured dotted line.

A.8 Regime estimation

A.8.1 MSAR

Figure A.2 shows in the top two panels the estimated mean return for the
two regimes, over the course of the 79 periods. The values are extracted
from the fitted models, used to generate scenarios from. The bottom two
panels show the estimated variance in each regime. All of the indices are
to a wide extend in agreement about the mean return, but the variance is
different. Regime one shows a wide range of boundaries for the variance
to change level, especially towards the end there is a wide disagreement.
This is also present in regime two, but to a lesser extent, and generally
the indices go together most of the way.

Figure A.3 shows the applied mean and variance, considering the selected
regimes in each period. This plots clearly illustrate that the level of
volatility and mean return is not very correlated.
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Figure A.3: Applied mean and variance over MSAR scenarios over the course
of the 79 periods. The black line show the applied mean and the red line show
a parallel shifting of the variance. The variance has been shifted by -0.1 for
improved visibility.

A.8.2 The dependent mixture model

Figure A.4 shows the evolution in the mean scenario and variance of the
scenarios over the course of the 79 periods. The black line show the mean
of the nine processes which are each represented by a coloured dotted
line. Similar to the regime sequence the mean and variance associated
with each regime fluctuate and are highly inconsistent.

The dotted lines show that the level for each index is different, but the
evolution is similar — due to the nature of the model.
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the course of the 79 periods. The black line show the mean of the nine processes
which are each represented by a coloured dotted line.
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APPENDIX B

ARMA-GARCH models

B.1 Weekly data
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DGT

Estimate Std. Error t value Pr(>t)

mu 0.00 0.00 4.35 0.00

mal -0.15 0.05 -2.88 0.00

omega 0.00 0.00 3.02 0.00

alphal 0.27 0.06 4.23 0.00

betal 0.61 0.07 8.25 0.00

Table B.1: Estimated model coefficient and related uncertainty for DGT mod-
elled by an arma(0, 1) + garch(1, 1) model.
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Standardized Residuals

o | ‘
~ - |
N i | A
o MLJMQWMMWWJWWQM‘WWMJ i_mwwwvxw
A |
3 % 100 %o 20 20 3k
ACF of Standardized Residuals
gnorm — QQ Plot
St .
§ & 1 15 2 2 5 2 1 6 1 2 3
ELR
Estimate Std. Error t value Pr(>1t)
mu 0.00 0.00 1.10 0.27
omega 0.00 0.00 11.83 0.00
alphal 0.32 0.10 3.19 0.00

Table B.2: Estimated model coefficient and related uncertainty for ELR mod-
elled by an arma(0, 0) + garch(1, 0) model.
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Standardized Residuals
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EMBI
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 7.77 0.00
arl -0.51 0.07 -6.97 0.00
ar2 -0.15 0.06 -2.68 0.01
omega 0.00 0.00 6.63 0.00
alphal 0.37 0.15 2.48 0.01

Table B.3: Estimated model coefficient and related uncertainty for EMBI
modelled by an arma(2, 0) + garch(1, 0) model.
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FEZ arma(0, 0) + garch(1, 0)
Standardized Residuals
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FEZ

Estimate Std. Error t value Pr(>1t)

mu 0.00 0.00 2.43 0.02
omega 0.00 0.00 11.95 0.00
alphal 0.16 0.06 2.62 0.01

Table B.4: Estimated model coefficient and related uncertainty for FEZ mod-
elled by an arma(0, 0) + garch(1, 0) model.
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ARMA-GARCH models

FXC arma(2, 0) + garch(l, 1)
Standardized Residuals
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FXC
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 1.81 0.07
arl -0.51 0.15 -3.41 0.00
ar2 0.33 0.16 2.12 0.03
omega 0.00 0.00 7.56 0.00
alphal 1.00 0.22 4.50 0.00
betal 0.53 0.04 12.07 0.00

Table B.5: Estimated model coefficient and related uncertainty for FXC mod-
elled by an arma(2, 0) + garch(1, 1) model.
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GLD arma(2, 0) + garch(1, 1)
Standardized Residuals
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GLD
Estimate Std. Error t value Pr(>1t)
mu 0.00 0.00 1.52 0.13
arl -0.63 0.08 -8.30 0.00
ar2 -0.31 0.07 -4.77 0.00
omega 0.00 0.00 3.45 0.00
alphal 0.22 0.09 2.32 0.02
betal 0.43 0.15 2.83 0.00

Table B.6: Estimated model coefficient and related uncertainty for GLD mod-
elled by an arma(2, 0) + garch(1, 1) model.
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IBCI arma(0, 1) + garch(1, 0)
Standardized Residuals
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IBCI
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 1.41 0.16
mal -0.42 0.12 -3.53 0.00
omega 0.00 0.00 12.46 0.00
alphal 0.17 0.07 2.34 0.02

Table B.7: Estimated model coefficient and related uncertainty for IBCI mod-
elled by an arma(0, 1) + garch(1, 0) model.
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IBGL arma(1, 0) + garch(1, 0)
Standardized Residuals
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Estimate Std. Error t value Pr(>1t)
mu 0.00 0.00 0.10 0.92
arl -0.24 0.08 -2.89 0.00
omega 0.00 0.00 11.37 0.00
alphal 0.23 0.09 2.55 0.01

Table B.8: Estimated model coefficient and related uncertainty for IBGL mod-

elled by an arma(1, 0) + garch(1, 0) model.
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IEEM arma(0, 1) + garch(1, 0)
Standardized Residuals
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Estimate Std. Error t value Pr(>t)

mu -0.00 0.00 -1.10 0.27
mal -0.41 0.10 -4.15 0.00
omega 0.00 0.00 12.38 0.00
alphal 0.18 0.08 2.39 0.02

Table B.9: Estimated model coefficient and related uncertainty for IEEM
modelled by an arma(0, 1) + garch(1, 0) model.
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IHYG arma(0, 1) + garch(1, 1)
Standardized Residuals
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IHYG
Estimate Std. Error t value Pr(>1t)
mu -0.00 0.00 -0.87 0.38
mal -0.26 0.07 -3.59 0.00
omega 0.00 0.00 2.55 0.01
alphal 0.12 0.05 2.42 0.02
betal 0.77 0.07 10.63 0.00

Table B.10: Estimated model coefficient and related uncertainty for IHYG
modelled by an arma(0, 1) + garch(1, 1) model.
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1IJPN arma(1, 0) + garch(1, 0)
Standardized Residuals
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IJPN

Estimate Std. Error t value Pr(>t)

mu 0.00 0.00 2.57 0.01
arl -0.34 0.09 -3.76 0.00
omega 0.00 0.00 12.94 0.00
alphal 0.46 0.20 2.30 0.02

Table B.11: Estimated model coefficient and related uncertainty for IJPN
modelled by an arma(1, 0) + garch(1, 0) model.
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IMEU
Estimate Std. Error t value Pr(>1t)
mu -0.00 0.00 -0.59 0.55
omega 0.00 0.00 10.88 0.00
alphal 0.47 0.24 2.00 0.05

Table B.12: Estimated model coefficient and related uncertainty for IMEU
modelled by an arma(0, 0) + garch(1, 0) model.
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INAA arma(1, 0) + garch(1, 1)
Standardized Residuals
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Estimate Std. Error t value Pr(>t)

mu -0.00 0.00 -0.48 0.63
arl -0.48 0.08 -5.95 0.00
omega 0.00 0.00 4.52 0.00
alphal 0.06 0.02 2.71 0.01
betal 0.80 0.04 20.22 0.00

Table B.13: Estimated model coefficient and related uncertainty for INAA
modelled by an arma(1, 0) + garch(1, 1) model.



B.1 Weekly data 129

LQDE arma(3, 1) + garch(1, 0)
Standardized Residuals
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LQDE

Estimate Std. Error t value Pr(>t)
mu -0.00 0.00 -0.23 0.82
arl 0.55 0.07 8.17 0.00
ar2 0.15 0.03 5.40 0.00
ar3 0.08 0.03 2.67 0.01
mal -0.97 0.01 -175.36 0.00
omega 0.00 0.00 11.21 0.00
alphal 1.00 0.14 7.03 0.00

Table B.14: Estimated model coefficient and related uncertainty for LQDE
modelled by an arma(3, 1) 4+ garch(1, 0) model.
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Standardized Residuals
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RWX
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 1.35 0.18
arl -0.44 0.11 -4.10 0.00
ar2 -0.19 0.07 -2.70 0.01
omega 0.00 0.00 10.80 0.00
alphal 0.23 0.10 2.39 0.02

Table B.15: Estimated model coefficient and related uncertainty for RWX
modelled by an arma(2, 0) + garch(1, 0) model.
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STN arma(1, 1) + garch(1, 0)
Standardized Residuals
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STN

Estimate Std. Error t value Pr(>1t)

mu -0.00 0.00 -2.33 0.02
arl 0.86 0.06 14.52 0.00
mal -0.95 0.03 -29.49 0.00
omega 0.00 0.00 13.93 0.00
alphal 0.42 0.12 3.58 0.00

Table B.16: Estimated model coefficient and related uncertainty for STN
modelled by an arma(1, 1) + garch(1, 0) model.
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STZ arma(0, 1) + garch(1, 0)
Standardized Residuals
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STZ

Estimate Std. Error t value Pr(>t)

mu -0.00 0.00 -1.23 0.22
mal -0.32 0.10 -3.19 0.00
omega 0.00 0.00 16.28 0.00
alphal 0.25 0.11 2.25 0.02

Table B.17: Estimated model coefficient and related uncertainty for STZ mod-
elled by an arma(0, 1) + garch(1, 0) model.



B.1 Weekly data 133

TOPIX arma(1, 0) + garch(1, 0)
Standardized Residuals

o~ I ( |
1 JW WW"WM | /N r VWWV\M/UWW”\
0 50 100 150 200 250 300
ACF of Standardized Residuals gnorm - QQ Plot
°] N Y I A
o | H ,,,,,, U SO B SUN [
8§ 5 1t 5 2 2 3 2 1 6 1 2 3
TOPIX
Estimate Std. Error t value Pr(>1t)
mu 0.00 0.00 0.94 0.35
arl -0.41 0.06 -6.80 0.00
omega 0.00 0.00 8.36 0.00
alphal 0.26 0.11 2.37 0.02

Table B.18: Estimated model coefficient and related uncertainty for TOPIX
modelled by an arma(1, 0) + garch(1, 0) model.
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XOP arma(0, 1) + garch(1, 1)
Standardized Residuals
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XOP
Estimate Std. Error t value Pr(>t)
mu -0.00 0.00 -2.27 0.02
omega 0.00 0.00 1.59 0.11
alphal 0.08 0.03 2.97 0.00
betal 0.89 0.04 23.75 0.00

Table B.19: Estimated model coefficient and related uncertainty for XOP
modelled by an arma(0, 0) + garch(1, 1) model.

B.2 Daily data
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DGT arma(2, 0) + garch(1, 1)
Standardized Residuals
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Estimate Std. Error t value Pr(>1t)
mu 0.00 0.00 1.41 0.16
arl -0.40 0.02 -16.79 0.00
ar2 -0.14 0.02 -5.92 0.00
omega 0.00 0.00 6.54 0.00
alphal 0.30 0.04 7.68 0.00
betal 0.63 0.04 14.96 0.00

Table B.20: Estimated model coefficient and related uncertainty for DGT
modelled by an arma(2, 0) + garch(1, 1) model.
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ELR arma(0, 1) + garch(1, 0)
Standardized Residuals

|
+ | |

0 )

o WHJW\LUJLNMVM)WLJJ‘WVJ/\W’Aﬂ UJ’WM» JJ%MMJWIAMJ@MJ‘%

9. ‘

I

0 500 1000 1500

ACF of Standardized Residuals gnorm - QQ Plot

@ | o]

o —

3 - _/

Yl S chiseonse o]

e e FI'7 T T T T T T T
0 5 10 15 20 25 30 -3 -2 -1 0 1 2 3

ELR
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 2.85 0.00
mal -0.82 0.02 -33.43 0.00
omega 0.00 0.00 7.58 0.00
alphal 1.00 0.32 3.10 0.00

Table B.21: Estimated model coefficient and related uncertainty for ELR
modelled by an arma(0, 1) + garch(1, 0) model.
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EMBI arma(3, 3) + garch(1, 0)
Standardized Residuals
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EMBI
Estimate Std. Error t value Pr(>1t)
mu 0.00 0.00 13.57 0.00
arl -0.54 0.06 -9.61 0.00
ar2 -0.71 0.05 -14.56 0.00
ar3 0.18 0.05 3.83 0.00
mal -0.16 0.02 -10.21 0.00
ma2 0.16 0.02 7.47 0.00
mad3 -0.88 0.03 -34.88 0.00
omega 0.00 0.00 13.33 0.00
alphal 1.00 0.09 10.55 0.00

Table B.22: Estimated model coefficient and
modelled by an arma(3, 3) + garch(1, 0) model.

related uncertainty for EMBI
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FEZ arma(3, 0) + garch(1, 2)
Standardized Residuals
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Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 2.24 0.02
arl -0.20 0.02 -9.04 0.00
ar2 -0.07 0.02 -3.17 0.00
ar3 -0.04 0.02 -2.10 0.04
omega 0.00 0.00 4.28 0.00
alphal 0.10 0.01 7.49 0.00
betal 0.13 0.05 2.45 0.01
beta2 0.75 0.05 13.87 0.00

Table B.23: Estimated model coefficient and related uncertainty for FEZ mod-
elled by an arma(3, 0) + garch(1, 2) model.
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FXC arma(0, 2) + garch(1, 2)
Standardized Residuals
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FXC
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 1.47 0.14
mal -0.64 0.06 -12.51 0.00
ma2 -0.11 0.05 -2.29 0.02
omega 0.00 0.00 1191 0.00
alphal 0.25 0.05 5.44 0.00
betal 0.21 0.07 2.98 0.00
beta2 0.12 0.04 2.76 0.01

Table B.24: Estimated model coefficient and related uncertainty for FXC
modelled by an arma(0, 2) + garch(1, 2) model.
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GLD arma(0, 2) + garch(l, 1)
Standardized Residuals
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GLD

Estimate Std. Error t value Pr(>t)

mu 0.00 0.00 1.58 0.11
mal -0.88 0.03 -33.66 0.00
ma2 -0.09 0.03 -3.41 0.00

omega 0.00 0.00 2.39 0.02
alphal 0.01 0.00 3.90 0.00
betal 0.97 0.01 98.23 0.00

Table B.25: Estimated model coefficient and related uncertainty for GLD
modelled by an arma(0, 2) + garch(1, 1) model.
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IBCI arma(3, 0) + garch(1, 0)
Standardized Residuals
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IBCI

Estimate Std. Error t value Pr(>t)

mu 0.00 0.00 0.36 0.72

arl -0.55 0.04 -13.53 0.00

ar2 -0.32 0.03 -9.70 0.00

ar3 -0.13 0.03 -3.66 0.00

omega 0.00 0.00 27.21 0.00

alphal 0.74 0.12 6.35 0.00

Table B.26: Estimated model coefficient and related uncertainty for IBCI
modelled by an arma(3, 0) + garch(1, 0) model.
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IBGL arma(2, 0) + garch(1, 0)
Standardized Residuals
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Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 1.99 0.05
arl -0.35 0.02 -15.64 0.00
ar2 -0.49 0.03  -16.59 0.00
omega 0.00 0.00 23.46 0.00
alphal 1.00 0.11 9.07 0.00

Table B.27: Estimated model coefficient and related uncertainty for IBGL
modelled by an arma(2, 0) + garch(1, 0) model.
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IEEM arma(4, 0) + garch(3, 0)
Standardized Residuals
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IEEM
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 0.05 0.96
arl -0.49 0.03 -14.11 0.00
ar2 -0.18 0.03 -5.94 0.00
ar3 -0.45 0.07 -6.68 0.00
ard 0.26 0.04 7.01 0.00
omega 0.00 0.00 4.76 0.00
alphal 0.56 0.09 6.15 0.00
alpha?2 0.82 0.19 4.31 0.00
alpha3 1.00 0.16 6.15 0.00

Table B.28: Estimated model coefficient and related uncertainty for IEEM
modelled by an arma(4, 0) + garch(3, 0) model.
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IHYG arma(3, 0) + garch(1, 1)

Standardized Residuals
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IHYG
Estimate Std. Error t value Pr(>t)
mu -0.00 0.00 -0.29 0.77
arl -0.10 0.03 -3.25 0.00
ar2 -0.08 0.03 -2.64 0.01
ar3 -0.10 0.03 -3.40 0.00
omega 0.00 0.00 2.51 0.01
alphal 0.10 0.02 6.17 0.00
betal 0.89 0.02 57.65 0.00

Table B.29: Estimated model coefficient and related uncertainty for IHYG
modelled by an arma(3, 0) + garch(1, 1) model.
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IJPN arma(4, 0) + garch(2, 0)
Standardized Residuals
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IJPN
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 2.25 0.02
arl -0.49 0.05 -9.62 0.00
ar2 -0.32 0.03 -9.52 0.00
ar3 -0.08 0.03 -2.38 0.02
ard -0.11 0.02 -6.39 0.00
omega 0.00 0.00 29.52 0.00
alphal 1.00 0.13 7.50 0.00
alpha2 0.07 0.03 2.24 0.03

Table B.30: Estimated model coefficient and related uncertainty for IJPN
modelled by an arma(4, 0) + garch(2, 0) model.
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IMEU arma(0, 4) + garch(2, 0)
Standardized Residuals
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Estimate Std. Error t value Pr(>t)

mu 0.00 0.00 0.23 0.81
mal 0.49 0.07 6.62 0.00
ma?2 -0.28 0.08 -3.50 0.00
mad3 -0.30 0.06 -5.11 0.00
ma4 -0.08 0.03 -2.80 0.01

omega 0.00 0.00 23.23 0.00
alphal 1.00 0.24 4.22 0.00
alpha2 1.00 0.31 3.20 0.00

Table B.31: Estimated model coefficient and related uncertainty for IMEU
modelled by an arma(0, 4) + garch(2, 0) model.



B.2 Daily data

147

INAA arma(2, 0) + garch(1, 1)
Standardized Residuals

20
I

of iy WH ’ | k.;LL_TmL%_L_W

10
I

-10

T T T
0 500 1000 1500

ACF of Standardized Residuals gnorm - QQ Plot
e s ™
0 5 10 15 20 25 30 3 2 -1 0 1 2 3
INAA

Estimate Std. Error t value Pr(>t)

mu 0.00 0.00 0.19 0.85

arl -0.40 0.10 -4.03 0.00

ar2 -0.26 0.06 -4.53 0.00

omega 0.00 0.00 8.99 0.00

alphal 0.37 0.09 3.96 0.00

betal 0.25 0.08 3.31 0.00

Table B.32: Estimated model coefficient and related uncertainty for INAA

modelled by an arma(2, 0) + garch(1, 1) model.
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LQDE arma(0, 2) + garch(1, 1)
Standardized Residuals
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LQDE
Estimate Std. Error t value Pr(>t)
mu 0.00 0.00 0.34 0.73
mal -0.80 0.03 -31.70 0.00
ma2 -0.06 0.03 -2.18 0.03
omega 0.00 0.00 6.47 0.00
alphal 0.02 0.00 8.82 0.00
betal 0.97 0.00 331.16 0.00

Table B.33: Estimated model coefficient and related uncertainty for LQDE
modelled by an arma(0, 2) + garch(1, 1) model.
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RWX arma(1, 1) + garch(1, 0)
Standardized Residuals
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RWX
Estimate Std. Error t value Pr(>t)
mu -0.00 0.00 -0.17 0.87
arl 0.34 0.09 3.97 0.00
mal -0.74 0.05 -13.85 0.00
omega 0.00 0.00 23.49 0.00
alphal 0.31 0.08 3.82 0.00

Table B.34: Estimated model coefficient and related uncertainty for RWX
modelled by an arma(1, 1) + garch(1, 0) model.
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STN arma(0, 1) + garch(1, 2)
Standardized Residuals
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STN

Estimate Std. Error t value Pr(>t)

mu -0.00 0.00 -3.47 0.00
mal -0.35 0.05 -7.56 0.00
omega 0.00 0.00 17.59 0.00
alphal 0.45 0.06 7.82 0.00
betal 0.08 0.03 3.03 0.00
beta2 0.25 0.03 8.49 0.00

Table B.35: Estimated model coefficient and related uncertainty for STN
modelled by an arma(0, 1) + garch(1, 2) model.
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STZ arma(1, 0) + garch(1, 1)
Standardized Residuals
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STZ

Estimate Std. Error t value Pr(>t)

mu 0.00 0.00 0.03 0.97
arl -0.33 0.06 -5.62 0.00
omega 0.00 0.00 12.07 0.00
alphal 0.37 0.08 4.71 0.00
betal 0.18 0.06 3.04 0.00

Table B.36: Estimated model coefficient and related uncertainty for STZ mod-
elled by an arma(1, 0) + garch(1, 1) model.
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TOPIX arma(0, 2) + garch(1, 1)
Standardized Residuals
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Estimate Std. Error t value Pr(>t)

mu 0.00 0.00 5.07 0.00
mal -0.86 0.03  -30.69 0.00
ma2 -0.07 0.03 -2.49 0.01

omega 0.00 0.00 4.93 0.00
alphal 0.14 0.02 7.09 0.00
betal 0.83 0.02 39.40 0.00

Table B.37: Estimated model coefficient and related uncertainty for TOPIX
modelled by an arma(0, 2) + garch(1, 1) model.



B.2 Daily data 153

XOP arma(0, 1) + garch(1, 1)
Standardized Residuals

N |
0 500 1000 1500
ACF of Standardized Residuals gnorm - QQ Plot
o, N y
e R L8 Rt s et et BN
0 5 10 15 20 25 30 3 2 1 0 1 2 3
XOP
Estimate Std. Error t value Pr(>t)
mu -0.00 0.00 -3.11 0.00
mal -0.22 0.03 -8.21 0.00
omega 0.00 0.00 291 0.00
alphal 0.05 0.01 5.79 0.00
betal 0.94 0.01 86.73 0.00

Table B.38: Estimated model coefficient and related uncertainty for XOP
modelled by an arma(0, 1) + garch(1, 1) model.



154 ARMA-GARCH models




APPENDIX C

R code

C.1 Functions

rm(list=1s())
options(width=150)
library(lattice)
library(xtable)
library(forecast)
library(fGarch)
library(chron)
library (mvtnorm)
library(depmixS4)
setwd("C://Users//Mie//Dropbox//Speciale//CSVdata")
load(".RData")

# Function to collect and isolate all unique dates in two date
vectors.
All.Dates = function(x,y)
{
start.date = min(c(x$Date, y$Date), na.rm=T); slut.date = max(c(x$
Date, y$Date), na.rm=T)
all.dates = seq(from = chron(as.numeric(start.date)), to = chron(
as.numeric(slut.date)))
all.dates = all.dates[!is.weekend(all.dates)]
}

# Fucton to merge two datasets. Used to merge fund and indez data.
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Add.Data = function(x,y){merge(x, y, all.x=T)}

# Interpolate N4 values in z and adds normally distributed noice.
Remove .NA = function(x)

{
if(is.null(dim(x)))
{
for(i in which(is.na(x[-length(x)]1)))
{
firstnonNA.after.i = min(which(!is.na(x[i:length(x)]1)))
if (i>1)
{

e = rnorm(1l,mean = 0, sd = sd(c(x[(i-5):(i-1),j]1, =x[(i+
firstnonNA.after.i):(i+firstnonNA.after.i+5),jl), na.rm
=T))

x[i] = x[i-1] + (x[i+firstnonNA.after.i-1]-x[i-1])*1/
firstnonNA.after.i + e

3
¥
} else
for(j in 2:dim(x) [2])
{
for(i in which(is.na(x[-dim(x)[1]1,31)))
{
if (length(which(!is.na(x[i:dim(x)[1]1,31))) < 1)
{break} else
firstnonNA.after.i = min(which(!is.na(x[i:dim(x)[1]1,31)))
if(i>1)
{
if (i<5)
{

e = rnorm(l,mean = 0, sd = sd(x[(i+2):(i+firstnonNA.
after.i+10),j], na.rm=T))

x[1,j] = x[i-1,3j] + (x[i+firstnonNA.after.i-1,j]-x[i-1,
jl)*1/firstnonNA.after.i + e

}else
{

e = rnorm(1l,mean = 0, sd = sd(c(x[(i-5):(i-1),j], =x[(i+
firstnonNA.after.i):(i+firstnonNA.after.i+5),j1),
na.rm=T))

}
x[i,j] = x[i-1,j] + (x[i+firstnonNA.after.i-1,j]-x[i-1,]
1)*1/firstnonNA.after.i + e
}
T
¥
return(as.data.frame(x))
3

# Removes outliers by interpolation of the adjecent cells.

# The sensitivity defaults to 2.5, but can be adjusted as an input
to the function.

Remove.Outliers = function(x,y=2.5)

{

if (is.null(dim(x)))
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{
for(i in (First.combi.nonNA(x,x)+2):(Last.combi.nonNA(x,x)-2))
{
if (abs(x[i-11/x[il) > y || abs(x[i-11/x[il) < 1/y)
1{
e = rnorm(l,mean = 0, sd = sd(c(x[(i-5):(i-1),j], x[(i+1):(i
+5),3j1), na.rm=T))
x[i] = (x[i-1]1+x[i+2]1)/2 + e
¥
¥
} else
for(j in which(names(x) %in% c("fNAV", "iNAV")))
{
a = as.numeric(x[1:(length(x[,j])-2),3j1)
b = as.numeric(x[3:length(x[,j1),j]1)
for(i in First.combi.nonNA(a,b):Last.combi.nonNACa,b))
{

if(!'is.numeric(x[i,j1))

{
x[i,jl =1
}
if(i < 3)
{
if(abs(x[i,j]) < 1/y*mean(x[(i+1):(i+10),31) || abs(x[i,jl1) > y
*mean (x[(i+1) : (i+10),3j1))
{

e = rnorm(1l,mean = 0, sd = sd(x[(i+1):(i+10),j], na.rm=T))
x[i,j] = mean(x[(i+1):(i+10),j]1) + e

}

3

else if(i > Last.combi.nonNA(a,b))

{
if(abs(x[i-2,31/x[i,3]1) > y || abs(x[i-2,j]1/x[i,3j]) < 1/y)
{

e = rnorm(l,mean = 0, sd = sd(x[(i-10):(i-1),j], na.rm=T))
x[i,3j] = (x[i-2,j]1+x[i-3,j1)/2 + e
}
T
else
if(abs(x[i-1,3j1/x[i,j1) > y |l abs(x[i-1,j]1/x[i,j1) < 1/y)
{
e = rnorm(l,mean = 0, sd = sd(c(x[(i-5):(i-1),3j], x[(i+1):(i
+5),j1), na.rm=T))
x[i,j] = (x[i-1,jl+x[i+2,j]1)/2 + e
3
¥
¥
return(as.data.frame(x))

}

Return = function(x){c(0,(x[-1]-x[-length(x)])/x[-length(x)]1)}

LogReturn = function(x){c(0,log(x$iNAV[-1]/x$iNAV[-length(x$iNAV)])
- log(x$£fNAV[-1]/x$£fNAV[-length(x$£ENAV)I))Z

# Finds the first non-N4 cell in a wector

First.combi.nonNA = function(x,y){min(which(!is.na(x+y)))}
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Last.combi.nonNA = function(x,y){max(which(!is.na(x+y)))}
Find.NA = function(x){which(is.na(x))}

# Scale z relative to y. y defaults to 100.

Skalering = function(x,y = 100)

{
if (length(y)==1){factor = x[1]; z = x/factor*y; return(z)ltelse
faktor = y[First.combi.nonNA(x,y)]/x[First.combi.nonNA(x,y)]; z
= xxfaktor; return(z)
3

# Transform data from datily to daily, weekly or monthly and add
return columns.

# a defaults to Friday.

# b default to the day of the month which contains more
observations.

# y accepts the values "daily", "weekly”" and "monthly"

# ¢ is a data.frame to be reduced.

Periodic = function(x,y,a = "fredag",b = min(which(table(as.P0SIX1lt
(x$Date)$mday)==max(table(as.PO0SIX1lt(x$Date)$mday)))))

{
if (y=="daily"){x=x}
else if(y=="weekly"){x=x[which(weekdays(x$Date)== a),]}
else if(y=="monthly"){x=x[which(as.P0SIX1lt(x$Date)$mday == b),]}

x$iReturn = Return(x$iNAV)
x$fReturn = Return(x$£fNAV)
x$DiffReturn = x$iReturn - x$fReturn

return(as.data.frame(x))

}
C:/Users/Mie/Dropbox/Speciale/R /Speciale /Funktioner—print.R

C.2 Dataload

lec = C("DGT" "ELR" UWEMBI" UEEZY WEXC" "GLD" "IBCI" “IBGL"
"IBGS", "IEEM", "IHYG",
"TJPN" “IMEU" HTNAAY "LQDE" URWX" HgTN" ugTZ" WTOPIX" "
X0P")

##% Load and merge fund and indez data.
## Data.frame reduced in both ends to span the lifetime of the fund

[ R RN R E R E R S R R RN R E N ST T
filmatrix = matrix(NA, ncol=2, nrow=length(lec))

for(i in 1:length(lec))
{

filer = paste(lec[i], c("f.csv","i.csv"), sep="")
filmatrix[i,] = filer

rm(filer)

¥
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for(i in 1:length(lec))

{
for(j in 1l:ncol(filmatrix))
{
fil = read.table(filmatrix[i,j], sep= ";", header = TRUE, dec = "
L na.strings=c("", "N/A", "NA", "Na", "null", O))
fil$Date=as.Date(substr(fil$Date ,1,10), "%d-%m-%Y")
fil$NAV = as.numeric(£fil$NAV)
fil = fil[sort.list(fil$Date),]
names (£fil) [names (fil)=="NAV"]=paste(substr (filmatrix[i,j]l, (nchar(
filmatrix[i,j]) -4),nchar(filmatrix[i,j]) -4),"NAV", sep="")
£ilIJ = paste("fil", j, sep="")
assign(£filIJ, £il)
¥

all.dates = data.frame(Date=All.Dates(fill, fil2))

dat = Add.Data(all.dates,fil2)

dat = Add.Data(dat,fill)

dat Remove .NA(dat)

dat dat [(First.combi.nonNA(dat$iNAV, dat$fNAV)+1):Last.combi.
nonNA (dat$iNAV, dat$fNAV),]

data = Remove.QOutliers(dat)

data$iNAV.raw = data$iNAV

data$iNAV = Skalering(data$iNAV, data$fNAV)

data$Date = as.Date(data$Date)

dl = fili$Date[min(which(fill$Date >= min(data$Date))) :max(which(
fili$Date <= max(data$Date)))]
d2 = fil2$Date[min(which(fill$Date >= min(data$Date))):max(which(
filli$Date <= max(data$Date)))]
dd = all.dates$Date
a = which(dd %in% d1)[-1]-which(dd %in% d1)[-length(which(dd %in%
d1))]1-1
b = which(dd %in% d2)[-1]-which(dd %in¥% d2)[-length(which(dd %in%
d2))]1-1

assign(lec[i], data)

assign(paste("a", lec[i], sep="."), a)
assign(paste("b", lec[il], sep="."), b)
}
df = mget(lec, envir=.GlobalEnv)
all.a = mget(paste("a", lec, sep="."), envir = .GlobalEnv)
all.b = mget(paste("b", lec, sep="."), envir = .GlobalEnv)

##% Load indez data. Data.frame spans the lifetime of the indez.
R Ry R R R R N R N R N R R R R R R R R R R S 2]

ind = c(’lDGT"’ ’lELR"’ ||FEZ’|’ ||GLD’| , ||RWX||, "STN", "STZ", ’lTOPIX" , "
X0P")

filer = paste(lec[!(lec %in% ind)], "i.csv", sep="")

filer = c(filer, paste(ind, "i2.csv", sep=""))

filer = filer[sort.list(filer)]
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for(i in which(filer!="RWXi2.csv"))

{

fil = read.table(filer[i], sep= ";", header = TRUE, dec = ".", na
.StringS=C("", ’lN/A"’ ’lNAll’ llNall’ ’lnullll, O))

fil$Date=as.Date (substr (fil$Date ,1,10), "%d-%m-%Y")

fil$NAV = as.numeric(fil$NAV)

fil = fill[sort.list(fil$Date),]

names (fil) [names (£il)=="NAV"] = "iNAV"

fil$iNAV = Skalering (£fil$iNAV)

all.dates = data.frame(Date=All.Dates(fil, fil))

dat = Add.Data(all.dates,fil)

dat = Remove.NA(dat)

data = Remove.Qutliers(dat)

data$Date = as.Date(data$Date, "}%d-%4m-%Y")

data = Periodic(data, "weekly")

data = datal[,which(names(data) %in% c("iNAV", "Date", "iReturn"))
]

dl = fil$Date[min(which(fil$Date >= min(data$Date))):max(which(
fil$Date <= max(data$Date)))]

dd = all.dates$Date

a = which(dd %in% d1)[-1]-which(dd %in% d1)[-length(which(dd %in%

d1))71-1
assign(paste("a", lec[i], sep="."), a)
assign(paste("index",lec[i], sep="."), data)
T

# CORRECTING RWX TO ADD NOISE TO0 THE INTERPOLATION OF THE FIRST
COUPLE OF YEARS.
[ R R N R RN R E R E R SR R R R R RN ST ET
i = which(lec == "RWX")
fil = read.table(filer[i], sep= ";", header = TRUE, dec = ".", na.
strings=c("", "N/A", "NA", "Na", "null", 0))
fil$Date=as.Date (substr(fil$Date ,1,10), "%d-%m-%Y")
fil$NAV = as.numeric(fil$NAV)
fil = fil[sort.list(fil$Date),]
names (fil) [names (fil)=="NAV"] = "iNAV"
fil$iNAV = Skalering (£fil$iNAV)
all.dates = data.frame(Date=All.Dates(fil, fil))
dat = Add.Data(all.dates,fil)
x = dat$iNAV
for(ii in which(is.na(x[-length(x)1)))
{
firstnonNA.after.i = min(which(!is.na(x[ii:length(x)]1)))
last.observed = max(which(!is.na(dat$iNAV[1:ii])))
if (ii>1)
{
sd = sd(diff(dat$iNAV[which(!is.na(dat$iNAV[1:15611))1))
e = rnorm(l,mean = 0, sd = sd/sqrt(22))
ter[j] = e
x[ii] = x[ii-1] + (x[ii+firstnonNA.after.i-1]-x[ii-1])=*1/
firstnonNA.after.i + e
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}
}
## Plot of the added noise.
sd5 = c(); sd10=c()
for(i in 1:(length(dat$iNAV) -10))
{
sd5[i] = sd(dat$iNAV[i:(i+1)], na.rm=T)
sd10[i] = sd(dat$iNAV[i:(i+22)], na.rm=T)
}
graphics.off ()
nf <- layout(matrix(c(2,1),2,1,byrow=TRUE), heights=c(5,3), TRUE)
par (mgp=¢(2,0.7,0), mar=c(3, 3, 0, 1))

plot(sd5, type="1", ylab = "st.dev.", main="", xlab="")
lines(c(rep(NA,1568) ,rollmean(sd5[which(!'is.na(sd5))], 150)), col
=3, 1lwd=2)

abline (h=2, co0l=2, lwd=2)

par(mar=c(0.5,3,1,1))

plot (dat$Date ,dat$iNAV ,type=>1’,xlab="’,ylab=2iNAV’, col=3, xaxt="n
||’ main=’|’|)

lines (dat$Date, x ,xaxt=’n’,xlab=’time step’,ylab=’iNAV’, col=4)

lines(dat$Date, dat$iNAV)

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//data//"

dev.print(device=pdf, height = 5, width = 8, file = paste(path,"
RWXdatagen.pdf", sep=""))

fX ¥

dat$iNAV = x

data = Remove.Outliers(dat)

data$Date = as.Date(data$Date, "}%d-%4m-%Y")

data = Periodic(data, "weekly")

data = data[,which(names(data) %in% c("iNAV", "Date", "iReturn"))]

dl = fil$Date[min(which(fil$Date >= min(data$Date))):max(which(fil$
Date <= max(data$Date)))]

dd = all.dates$Date

a = which(dd %in% di1)[-1]-which(dd %in% d1)[-length(which(dd %in%

di))J1-1
assign(paste("a", lec[i], sep="."), a)
assign(paste("index",lec[i], sep="."), data)
rm(list=objects(pattern = "a.")[1:20])
i.df = mget(ls(pattern = "index."), envir = .GlobalEnv)
names (i.df)=lec
rm(list=objects(pattern = "index.")[-21])

for(i in 1:length(lec))
{

print (range(i.df[[i]]$Date))
}

# select dates for common span of the indices.

# MIN DATA RANGE

min.date = max(min(i.df$DGT$Date),
min(i.df$ELR$Date),
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min(i.df$FEZ$Date),
min(i.df$GLD$Date),
min(i.df$RWX$Date),
min(i.df$STN$Date),
min(i.df$STZ¢$Date),
min(i.df$TOPIX$Date),
min(i.df$X0P$Date))

# MAX DATA RANGE

max.date = min(max(i.df$DGT$Date),
max (i.df$ELR$Date),
max(i.df$FEZ$Date),
max (i.df$GLD$Date),
max (i.df$RWX$Date),
max (i.df$STN$Date),
max(i.df$STZ¢$Date),
max (i.df$TOPIX$Date),
max (i.df$X0P$Date))

dates = unique(c(i.df$DGT$Date,
i.df$ELR$Date,
i.df$FEZ$Date ,
i.df$GLD$Date,
i.df$RWX$Date,
i.df$STN$Date,
i.df$STZ$Date,
i.df$TOPIX$Date,
i.df$X0P$Date))
dates = dates[sort.list(dates)]

dates = dates[which(dates==min.date):which(dates==max.date)]
data = data.frame(Date = dates)

for(i in which(names(i.df) %in% ind))

{
names (i.df[[i]]) [which(names(i.df[[i]])=="iReturn")] = lec[i]
data = Add.Data(data, i.df[[i]][,-which(names(i.df[[i]])=="iNAV")

1

names (i.df[[i]]) [which(names(i.df[[i]])==1ec[i])] = "iReturn"

3

index .matrix = data

rm(data)

## historic price of gold bullion.
HERARRR AR R R Rt e
GOLD20Y = read.table("GOLD20years.csv", sep=";", header=TRUE, dec="
"
M)
GOLD20Y$Date = as.Date(substr (GOLD20Y$Date ,1,10), "%d-%m-%Y")
GOLD20Y = GOLD20Y[,-c(5,6,7)]

rm(all.dates ,dat,fil,filmatrix,e,filer ,firstnonNA.after.i,i,ii, ind,
last.observed,lec,nf,obs,path,sd,sd10,sd5,x)

C:/Users/Mie/Dropbox/Speciale/R /Speciale /Dataload—print.R
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C.3 Analysis of difference in returns

# INDEX ANF FUND NAV WITH DEVIANCE

graphics.off ()

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//data//"
for(j in seq(1,20,5))

{

pdf (paste(path, "test", j, ".pdf", sep=""), width=5.5, height=8)
par (mar=c(2,3.5,2,3.5), mgp=c(2,0.7,0), mfrow=c(5,1)) #4DJUST THE
MARGINS

temp = Periodic(df[[jl], "weekly")
plot(i.df[[jl]1$Date, i.df[[jI]1$iNAV, type="n", ylab="", xlab="",
ylim=c(min(temp$DiffReturn) ,max (temp$DiffReturn)), yaxt="n",
main = names(df)[j1)

lines (temp$Date, temp$DiffReturn, type="1", col=3, xaxt="n", yaxt
="n", xlab="", ylab="", main = names(df)[j])

axis(4, col.axis=3)

mtext ("Return deviance", side=4, line=2, co0l=3)

par (new=TRUE)

st.date = which(i.df[[j]l]$Date == min(Periodic(df[[jl], "weekly")
$Date))

plot(i.df[[jl]1$Date, i.df[[jI1]1$iNAV, col=1, type="1", ylab="",
xlab="" R

ylim = c(min(min(i.df[[j]1]1$iNAV) ,min(df[[j1]$£ENAV/Af[[jI11$

fNAV[1]#i.df[[j1]$iNAV[st.date])), max(max(i.df[[jI]$
iNAV) ,max(df [[j]1]1$£NAV/Af [[j1]1$£NAV 1] *i.df [[j11$iNAV st
.datel]))))

lines(df [[j]l]$Date, df[[j11$EfNAV/AE[[j]1]$ENAV 1] *i.df[[jII$iNAV[

st.date], col=2)
mtext ("Index, Fund NAV", side=2, line=2, col=1)
legend ("topleft",col=c(1,2,3),pch=19,legend=c("Index Level",6"Fund
NAV", "Tracking error"), bty="n")
for(i in (j+1):(j+4))

{
temp = Periodic(df[[i]], "weekly")
plot(i.df[[i]]$Date, i.df[[i]J]$iNAV, type="n", ylab="", xlab=""
ylim=c(min(temp$DiffReturn) ,max(temp$DiffReturn)), yaxt="n
", main = names(df)[i])
lines (temp$Date, temp$DiffReturn, type="1", col=3, xaxt="n",
yaxt="n", xlab="", ylab="", main = names(df)[i])

axis (4, col.axis=3)
par (new=TRUE)

st.date = which(i.df[[i]]$Date == min(Periodic(df[[il], "weekly
")$Date))

plot(i.df[[i]]$Date, i.df[[i]J]1$iNAV, col=1, type="1", ylab="",
xlab="",

ylim = c(min(min(i.df[[i]J1$iNAV) ,min(Af[[i]]$EfNAV/AE[[i]]$
fNAV[1]*i.df[[i]]$iNAV[st.date])), max(max(i.df[[i]]$
iNAV) ,max(df [[i]]$ENAV/Af [[1]I$£fNAV[1]*i.df [[iJ]$iNAV[
st.datel))))
lines(df [[i]l]$Date, df[[i]]$fNAV/Af[[i]]$EfNAV[1]*i.df[[i]]$iNAV
[st.date], col=2)
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dev.off ()
}

## warious measures of tracking error

for(i in 1:20)

{
x = Periodic(df[[i]], "daily")
y = Periodic(df[[i]], "weekly")
a=First.combi.nonNA(x$fReturn, x$iReturn)
b=Last.combi.nonNA(x$fReturn, x$iReturn)
c=First.combi.nonNA(y$fReturn, y$iReturn)
d=Last.combi.nonNA(y$fReturn, y$iReturn)
print(c(lec[i], round(cor(y$fReturnlc:d], y$iReturnlc:d]) ,4),

round (cor (x$fReturnlfa:b], x$iReturnla:b]) ,4),
round(sd(y$DiffReturnlc:d]) ,4), round(sd(x$DiffReturnfa:b
1),4)))
3
rm(x,y,a,b,c,d)

# Difference in volatility between diff return and diff log return

for(i in 1:20)

{

= Periodic(df[[i]], "daily")

= a$DiffReturn

Periodic(df[[i]], "daily")

= log(y$iNAV[-1]/y$iNAV[-length(y$iNAV)]) - log(y$£fNAV[-1]/y$
fNAV[-length(y$£NAV)])

print(paste(lec[i], round(sd(a), digits=5), round(sd(x), digits

=5), round((sd(a)-sd(x))/sd(a)*100, digits=2), sep="&"))

M pop
1l

¥

rm(a,x,y)

# Compare ACF of diff return and diff log return
par(mfrow=c(4,5))
for(i in 1:20)

{
a = Periodic(df[[i]], "daily")
¢ = a$DiffReturn
acf (c)

3

par(mfrow=c(4,5))
for(i in 1:20)

{
a = Periodic(df[[i]], "daily")
b = log(a$iNAV[-1]/a$iNAV[-length(a$iNAV)]) - log(a$fNAV[-1]/a$
fNAV[-length(a$£fNAV)])
acf(b)
¥

rm(a,b,c)

# plot of density distributions of diff return and diff log return,
relative to normal distridbution.
for(i in 1:length(lec))
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{
a = Periodic(df[[i]], "daily")
a = a$DiffReturn
assign(names (df)[i], a)

}

tDiffReturn = mget(lec, envir=.GlobalEnv)
#rm(list=1lec)
graphics.off ()
par (mfrow=c(1,3))
for(i in ¢(3,4,19))
{
y = Periodic(df[[i]], "daily")

x = LogReturn(y)

z = y$DiffReturn

plot (density(x, na.rm=T), main = lec[i], ylab = "", xlab = "")
lines(density(z, na.rm=T), col = 3)

lines(seq(min(x, na.rm=T) ,max(x, na.rm=T),(max(x, na.rm=T)-min(x,
na.rm=T))/500),
dnorm(seq(min(x, na.rm=T) ,max(x, na.rm=T),(max(x, na.rm=T)-
min(x, na.rm=T))/500),

mean = mean(x, na.rm=T),
sd = sd(x, na.rm=T)),
col = "red")
}
cpgram(z, main = "Periodogram")

rm(a,x,y,z)

# Shapiro Wilks test for normality in diff return and diff log

return.
for(i in 1:20)
{
x = Periodic(df[[i]], "weekly")
y = LogReturn(x)
z1 = shapiro.test(x$DiffReturn)
z2 = shapiro.test(y)
print (c(z1$p.value, z2$p.value))
}

# test for stationaritet.
library (tseries)
for(i in 1:20)

{
x = Periodic(df[[i]], "daily")
y = LogReturn(x)
z1l = kpss.test(x$DiffReturn, null="Level")
z2 = kpss.test(y, null="Trend")
print(c(z1$p.value, z2$p.value))

}

rm(x,y,zl,z2)

## PLOTS OF DIFF RETURNS AND ACF

HREBRRRRRE R AR ER AR R R R AR RBER AR R AR * R

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//data//"
y = "daily"
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if(y=="daily") ¢ = ¢(3,7,8,13,14,18) else c=c(5,7,8,13,14,18)

graphics.off ()

par(mfrow=c(4,5), mgp=c(2,0.7,0), mar=c(2,3,1.5,1))

for(i in 1:20)

{
a = Periodic(df[[i]], y)
plot(a$Date, a$DiffReturn, type="1",
xlab = "", ylab = nn
main = substitute(paste(RSS), list(RSS
3

dev.print(device=pdf, height = 5.5, width
,"DiffReturn4xb", y, ".pdf", sep=""))

graphics.off ()

par(mfrow=c(3,2), mgp=¢(2,0.7,0), mar=c(2,

for(i in ¢)

lec[il])))

.7, file =

3,1.5,1))

lec[il1)),

{
a = Periodic(df[[il], y)
plot(a$Date, a$DiffReturn, type="1",
Xlab = ||||’ ylab = ||||’
main = substitute (paste(RSS), list(RSS
ylim = c(mean(a$DiffReturn)+min(a$DiffReturn) /20,
DiffReturn)+max(a$DiffReturn)/20)
)
T

dev.print(device=pdf, height = 6, width
DiffReturn2x3", y, ".pdf", sep=""))

graphics.off ()

par(mfrow=c(4,5), mgp=c(2,0.7,0), mar=c(2,2,1,1))

a = Periodic(df[[1]], "weekly")

paste(path

mean (a$

file = paste(path,"

acf(a$DiffReturn, lag.max = 30, ylab = xlab = "")
legend ("topright", lec[1], bty="n"
for(i in 2:length(lec))
{
a = Periodic(df[[i]], y)
acf(a$DiffReturn, lag.max = 30, ylab = xlab = "", xaxt = "n"
yaxt="n")
legend("topright", lec[i], bty="n"
¥
dev.print(device=pdf, height = 5.5, width 11.7, file = paste(path
,"DiffReturnACF4x5", y, ".pdf", sep=""))
rm(y,a)
## JARQUE-BERA AND BOX-LJUNG SENSITIVITY TESTS
graphics.off ()
par(mgp=c(2,0.7,0), mar=c(2.5, 2.5, 1,
path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//ARMA -GARCH/

/Il

# PROOF OF SENSITIVITY IN JARQUE-BERA TEST.
# FAILS WHEN ONE SLIGHT QUTLIER IS INTRODUCED.

x = rnorm(1000); jarque.bera.test(x)
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y = c(x, 5); jarque.bera.test(y)

plot(y[1:1001]1, pch=20, ylab="", xlab="")

points (1001,y[1001], pch=19, cex = 1.1, col=2)

dev.print (device=pdf, height = 6, width = 8, file = paste(path,"
jarque -bera.pdf", sep=""))

PROOF OF SENSITIVITY IN BOX-LJUNG TEST.

FAILS WHEN FEW OUTLIERS ARE INTRODUCED.

= rnorm (1000); Box.test(x, type="Ljung")

y = c(x[1:500] ,rep(4,10), x[501:1000]); Box.test(y, type="Ljung")
plot(y, pch=20, ylab="", xlab="")

points(c(501:510), rep(4,10), pch = 19, col=2)

dev.print (device=pdf, height = 6, width = 8, file = paste(path,"box
-ljung.pdf", sep=""))

Moo

rm(x,y)

## RANDOMNESS OF IBGS
graphics.off ()
layout (matrix(ec(1,1,2,3), 2, 2, byrow = TRUE))

x = Periodic(df$IBGS, "daily")
y = Periodic(df$IBGS, "weekly")

ddd = acf(x$DiffReturn, plot=FALSE, max.lag=20)
www = acf(y$DiffReturn, plot=FALSE, max.lag=20)
ddd1 pacf (x$DiffReturn, plot=FALSE, max.lag=20)
wwwl pacf (y$DiffReturn, plot=FALSE, max.lag=20)

par (mgp=c(2,0.7,0), mar=c(2, 3.5, 2, 1))

plot (x$Date ,x$DiffReturn, type="1", lwd=1.5, xlab="", ylab="", main
="IBGS DiffReturn daily and weekly")

lines(y$Date ,y$DiffReturn, col=2, lwd=1.5)

legend ("bottomright", c("Daily","Weekly"), col=c(1,2), pch=19, cex
=1, ncol=2, bty="n"

plot (ddd$lag-0.2, ddd$acf, type="h", lwd=3, col=1, main="ACF", xlab
="", ylab="", ylim=c(-0.5,1), xlim=c(0,20))

lines (www$lag+0.2, www$acf, type="h", 1lwd=3, col=2)

abline (h=0)

abline (h=qnorm(0.975) /sqrt(ddd$n.used), lty="dashed", col=1)

abline (h=-qnorm(0.975)/sqrt(ddd$n.used), lty="dashed", col=1)

abline (h=qnorm(0.975) /sqrt(www$n.used), lty="dashed", col=2)

abline (h=-qnorm(0.975)/sqrt(www$n.used), lty="dashed", col=2)

plot (ddd1$lag+0.2, dddi$acf, type="h", lwd=3, col=1, main="PACF",
xlab="", ylab="", ylim=c(-0.6,0))

lines(wwwl$lag-0.2, wwwl$acf, type="h", 1lwd=3, col=2)

abline (h=0)

abline (h=-qnorm(0.975)/sqrt(dddi$n.used), lty="dashed", col=1)

abline (h=-qnorm(0.975)/sqrt(wwwi$n.used), lty="dashed", col=2)

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//data//"
dev.print(device=pdf, height = 6, width = 8, file = paste(path,"
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IBGSrandomness .pdf", sep=""))
rm(x,y,ddd,www,dddl ,wwwl)

C:/Users/Mie/Dropbox/Speciale/R/Speciale/Diffreturn—analysis.R

C.3.1 ARMA-GARCH models

i =3

y = Periodic(df[[i]], "weekly")

x = y$DiffReturn

model = garchFit(formula = ~“arma(1,0)+garch(1,0), data = x, trace =
F, algorithm = "lbfgsb" , hessian = "rcd")

summary (model)

assign(paste ("AGweekly" ,names(df)[i], sep="."), model)
xtable (model@fit$matcoef,
caption = paste("Estimated model coefficient and related
uncertainty for ", names(df)[i], " modelled by an ",
model@formula, " model.", sep="")[3],

label = paste("tab:",names(df)[i]l, "AGweekly",sep=""))

graphics.off ()

layout (matrix(c(1,1,2,3), 2,2, byrow=T))

par(mgp=¢c(2,0.7,0), mar=c(2, 2, 4, 1))

plot (model, which = 9)

title(paste(names(df)[i], model@formula, sep=" ")[3], outer=T, line
=-1)

plot (model, which = 10)

plot (model, which = 13)

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//ARMA-GARCH/
/ll

dev.print(device=pdf, height = 6, width = 8, file = paste(path,"w",
names (df) [i],".pdf", sep=""))

mod = auto.arima(x)
summary (mod)

## PLOTS OF RWY 52 week ACF and PACF

IR R R N N R R R N N N R R N N N R R N N Ry R R R N TSN

std.res = model@residuals/model@sigma.t #4Gmodels.weekly$
AGuweekly.RWX@residuals/AGmodels.weekly$dGuweekly. RiX@sigma.t

acf(std.res, lag.max = 52, main = "ACF of Standardized Residuals")

pacf(std.res, lag.max = 52, main = "PACF of Standardized Residuals"
)

HRHERERERERERBRERE R BB R RE R RR AR R R AR R R

C:/Users/Mie/Dropbox/Speciale/R /Speciale/ GARCHmodeller—print.R
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C.4 Scenario generation

REREE R R R R R R R R R R R R R R R R R R R R R H
## BOOTSTRAP
REREE R R AR R R R R R R R R R R R R R R R R R R RH
returns = matrix(NA,633,10)
for(i in 1:9)
{

returns[,i+1] = as.numeric(ind.matrix[,i+1])

}

set.seed (1)
scen.list.bootstrap<-list()
scen.collect.bootstrap<-numeric(0)

obs.afkast.bootstrap = c()
a.bootstrap = list(); models.bootstrap = list()
1 = 250

for(j in seq(0,floor(length(ind.matrix$Date)/2) ,4)[-80])
{
j.date = floor(length(ind.matrix$Date)/2)+]j
w=matrix (NA,1,4)
wl[,1] = sample(j.date,l,prob=dnorm(1:j.date,1,5), replace=T)
for(t in 2:4)
{
wl,t] = sample(j.date,l,prob=dnorm(1l:j.date,w[t-1],5), replace=
T)
¥

ytpoveryO.bootstrap = (returns[(w[,1]),-1]+1)*(returns[(w[,2])
,-1]+1)*(returns [(w[,3]),-1]1+1)*(returns[(w[,4]),-1]1+1)
scen.bootstrap = ytpovery0O.bootstrap-1

rownames (scen.bootstrap) = paste("scen",1:1, sep="")

colnames (scen.bootstrap) = names(ind.matrix)[-1]

date0.bootstrap = as.character(ind.matrix[which(ind.matrix$Date==
"2006-01-13")+j+4,1])

scen.collect.bootstrap <- c(scen.collect.bootstrap, paste(dateO.

bootstrap,".",rep(names (ind.matrix)[-1],each=1),".scen",1:1,"
",scen.bootstrap,sep=""))
date0.ind = which(ind.matrix$Date == dateO.bootstrap)
a.bootstrap[[date0.bootstrap]] = ((ind.matrix[date0.ind-3,-1]+1)*

(ind .matrix[date0.ind-2,-1]+1)*
(ind .matrix[date0.ind-1,-1]J+1)*(ind.matrix[date0.ind,-1]+1)) -1
obs.afkast.bootstrap = c(obs.afkast.bootstrap, paste(dateO.
bootstrap,".",names(ind.matrix)[-1],".obs"," ",ind.matrix[
date0.ind,-1] ,sep=""))
scen.list.bootstrap[[date0.bootstrap]l]]l<-scen.bootstrap
}
obs.afkast = a.bootstrap
rm(returns ,scen.list.bootstrap,scen.collect.bootstrap,obs.afkast.
bootstrap, a.bootstrap)
rm(l,j.date,w,ytpovery0.bootstrap,scen.bootstrap,date0.bootstrap,j,
i,y,obs,scen,dat2)
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[ XS EEEE RS E TS ST SRR RS SRS TR RS TS E NSRS R SRR LTS
## ARMA-GARCH

HABRERBRRB R RN H
data=ind.matrix

set.seed (1)

scen.list.AG<-1list ()

scen.collect.AG<-numeric (0)

models.AG = list ()

1 = 250

taller = 0

last.warning <<-NULL

for(j in seq(0,floor(length(data$Date)/2),4)[-80])
{
scen.AG = matrix(NA, 1, ncol(data)-1)
for(i in 2:10)
{
taller = taller + 1
y<-data[l:(which(data$Date=="2006-01-13")+3j),1i]

form<-switch(names (data)[i],

GLD = “arma(0,0)+garch(1,1), #7arma(2,1)+garch
(1,1),

ELR = ,

FEZ = “arma(0,0)+garch(1,1), # arma(1,1)+garch
(1,1),

~“arma(0,0)+garch(1,1))

mod = try(garchFit(formula = form, data = y, trace = F,

algorithm = "1lbfgsb" , hessian = "rcd"))

if (inherits(mod, "try-error")) mod.na = 0 else mod.na = sum(
which(is.na(mod@fit$matcoef)))

if(mod.na > 0 | !is.null(warnings()) | inherits(mod, "try-error
ll))

{

last.warning <<-NULL
mod = try(garchFit(formula = form, data = y, trace = F,

algorithm = "lbfgsb+nm" , hessian = "rcd"))
print(c(taller, "Nelder-Mead"))
¥
if (inherits(mod, "try-error")) mod.na = 0 else mod.na = sum(
which(is.na(mod@fit$matcoef)))
if(mod.na > 0 | !is.null(warnings()) | inherits(mod, "try-error
ll))
{
if (j==0)
{

mod<-models.AG[[taller-1]]

mod@fit$matcoef<-cbind(Estimate=c(mu=mean(y) ,omega=var(y)),

NA,NA,NA)
mod@fit$§series$x<-y
mod@fit$series$h<-rep(mod@fit$matcoef [2,1],length(y))
mod@fit$series$z<-y-mod@fit$matcoef [1,1]
print(c(taller,"Manuelt"))
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}

}else
{
mod = models.AG[[taller -9]]
print(c(taller ,"prev-modell"))
}
}
if(taller > 9 && sum(is.na(mod@fit$matcoef)) > 0 | min(mod@fit$
series$h) < 0)
{
mod = models.AG[[taller-9]]
print(c(taller,"prev model2"))
}

models.AG[[taller]] = mod

fitParm = numeric(7)
names (fitParm) = ¢( "mu", "arl", "ar2", "mal", "omega", "alphal
Il’ llbetalll)

fitParm[match(rownames (mod@fit$matcoef) ,names(fitParm))] =
mod@fit$matcoef [,1]

lz = length(mod@fit$series$z)

z = matrix(rep(c(mod@fit$series$z[(1lz-1):1z],rep(NA,4)),1),
nrow=1l, byrow=T)

h = matrix(rep(c(mod@fit$series$h[(1lz-1):1z],rep(NA,4)),1),
nrow=1l, byrow=T)

x = matrix(rep(c(mod@fit$series$x[(1lz-1):1z],rep(NA,4)),1),
nrow=1l, byrow=T)

for(t in 3:6)

{
h[,t] = fitParm[5] + fitParm[7]*h[,t-1] + fitParm[6]x*z[,t
-1]1-2
for(k in 1:1)
{
z[k,t] = rnorm(l,mean=0,sd=sqrt(h[k,t]))
}
x[,t] = z[,t] + fitParm[1] + sum(fitParm[2:3]*x[,(t-1):(t-2)
1) + fitParm[4]*z[,t-1]
}
scen.AG[,i-1] = ((x[,31+1)*(x[,41+1)*(x[,5]+1)*x(x[,6]1+1))-1
}
rownames (scen.AG) = paste("scen",1:1, sep="")
colnames (scen.AG) = names (data)[-1]
date0.AG <- as.character(data$Date[which(data$Date=="2006-01-13")
+j+41)
scen.collect.AG <- c(scen.collect.AG, paste(date0.AG,".",rep(
names (data) [-1] ,each=1),".scen",1:1," ",scen.AG ,sep=""))

scen.list.AG[[date0.AG]]<-scen.AG

rm(scen.collect.AG, scen.list.AG, models.AG, a.AG, obs.afkast.AG,

date0.AG, rets.AG,scen.AG)

rm(h,x,z,fitParm,form,i,j,k,1,1z,mod,t,taller,y, cb,wh, scen.list,

obs.afkast ,scen)
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B AR R AR R AR R R R RN R R R R AR R R AR AR R

A# MSAR

(XX R R R R R R R R N R R R R N S R E R RN E RS
lgt = 250

scen.2.collect = numeric(0)

a = list ()

obs.afkast .2 = numeric(0)

scen.list.2 = list ()
models .MSAR = list ()
taller = 0

for(j in seq(0,floor(length(data$Date)/2) ,4)[-80])
{
scen.2 = matrix(NA,lgt,(length(names(data))-1))
for(i in c¢(1:9))
{
taller = taller+l
print(c(i,j))
y = data[l:(which(data$Date=="2006-01-13")+j),(i+1)]
Regimes <- 2
if (names (data) [i+1]=="TOPIX"){intercept0 = 0; orderARO = c(1,1)
; ARpar = c(-0.11, 0.01); int=c()} else
{intercept0 <- 1; orderARO = ¢c(0,0); ARpar = c(); int = c(0.1,
-0.1)}
#if(interceptO==1){int = c(0.1, -0.1)} elsefint=c()}
pARO <- matrix(0,nrow=Regimes,ncol=max(orderARO)+interceptO,
byrow=TRUE)
pARO[1,]<-c(int[1], ARpar[1])
pARO[2,]1<-c(int [2], ARpar[2])
PO <- matrix(0.2,nrow=Regimes,ncol=Regimes)
diag(P0) <- 0.8
sigd <- ¢(2,2)
indexMissing0<-flagNA(y,nhor=1,orders=1:max(orderAR0),exogen=
FALSE)
orderX0 <- ¢(0,0)
x <- rep(0,length(y))

models .MSAR[[taller]] <- fitMSARX(R=Regimes ,y=y,orderAR=
orderARO ,x=x,orderX=orderX0,pARX=pAR0,P=P0,sig=sig0,
intercept=interceptO,
indexMissing=
indexMissing0)

dat = models.MSAR[[taller]]
delta = dat$more$deltaT[length(dat$more$deltaT)]
sd = dat$est_sig
rt = i.df[[which(names(i.df) == names(data)[i+1])]]$iReturn[dat
$more$Tnew]
if (names (data) [i+1]=="TOPIX")
{
int = rep(0,length(delta))
AR = dat$est_pARX
} else{int = dat$est_pARX[,1]; AR = dat$est_pARX[,-1]}
= matrix(NA, ncol=5, nrow=lgt); r[,1] = rt
matrix(NA, ncol=5, nrow=1lgt)

o H
]
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R[,1] = sample(2, 1lgt, prob = c(l-delta, delta), replace=T)
for(t in 1:4)
{
index = R[,t]==1
sid = sum(index)
r[,t+1] = int[R[,t]] + ifelse(is.na(AR[R[,t]]1*r[,t]), 0, ARI[R
[,t]11*r[,t]) + rnorm(lgt,0,sd[R[t1])
R[which(R[,t]==1) ,t+1] = sample(2, length(which(R[,t]l==1)),
prob = dat$est_P[1,], replace=T)
R[which (R[,t]==2),t+1] = sample(2, length(which(R[,t]==2)),
prob = dat$est_P[2,], replace=T)
}

ytpovery0.2 = ((r[,2]+1)*(r[,3]+1)*(r[,4]+1)*(r[,5]1+1))
scen.2[,i] = ytpovery0.2 - 1
¥
rownames (scen.2) = paste("scen", 1:1gt, sep="")
colnames (scen.2) = names(data)[-1]
date0.2 = as.character(data$Date[which(data$Date=="2006-01-13")+]j
+47)
scen.2.collect = c(scen.2.collect, paste(date0.2, ".", rep(names(
data) [-1], each=1gt), ".scen.", 1:1gt, " ", scen.2, sep=""))
a[[date0.2]] = ((datal[which(data$Date == date0.2)-3,-1]J+1)*(datal
which(data$Date == date0.2)-2,-1]+1)*(datal[wvhich(data$Date ==
date0.2)-1,-1]+1)*(datalwhich(data$Date == date0.2),-11+1))
-1
obs.afkast.2 = c(obs.afkast.2, paste(date0.2,".",names(data)[-1],
".obs"," ",data[which(data$Date == date0.2),-1],sep=""))
scen.list.2[[date0.2]]<-scen.2
}

scen.list.MSAR = scen.list.2
models .MSAR = mod
rm(scen.list.2, mod)

rm(lgt,scen.2.collect ,a,obs.afkast.2,scen.list.2,mod,j,scen.2,i,y,
Regimes ,interceptO0, orderARO,ARpar,int,pARO,PO,sig0,
indexMissing ,orderX0 ,x)

rm(dat ,delta,sd,rt,AR,r,R,index,t,sid,ytpovery0.2,date0.2)

ERRE R R R R R RN R R R AR R
## DEPHIX
ERR R R R AR R R R R R R R R R R R R R AR R AR H

set.seed (1)
scen.list.depmix<-1ist ()
scen.collect.depmix<-numeric(0)

1 = 250

models .depmix = list()

taller=0

for(j in seq(0,floor(length(data$Date)/2),4)[-80])
{

taller=taller+1
y<-with(data[l:(which(data$Date=="2006-01-13")+j),],cbind(DGT,
ELR, FEZ, GLD, RWX, STN, STZ, TOPIX, XO0P))
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rModels <- 1list()
rModels [[1]] <- list(MVNresponse(y~1))
rModels [[2]] <- list(MVNresponse(y~1))

trstart=c(0.9,0.10,0.05,0.95)

transition <- 1list ()

transition[[1]] <- transInit(~1,nstates=2,data=data.frame (1),
pstart=c(trstart[1:2]))

transition[[2]] <- transInit(~1,nstates=2,data=data.frame (1),
pstart=c(trstart [3:4]))

instart=runif (2)
inMod <- transInit(~1,ns=2,ps=instart,data=data.frame (1))

mod <- makeDepmix(response=rModels,transition=transition,prior=
inMod)

fm2 <- fit(mod)

models.depmix[[taller]] = fm2

delta = fm2Q@posterior [nrow(fm2@posterior) ,2:3]
sigma = list(sigmal = show(fm2Q@response[[1]][[1]]), sigma2 = show
(fm2@response [[2]1]1[[111))
rt = datal[which(data$Date=="2006-01-13")+j,-1]
int = list(intl = fm2Q@response[[1]J][[1]] @parameters$coefficients,
int2 = fm2@response [[2]][[1]]@parameters$coefficients)
prob = matrix(c(fm2Q@trDens) ,2,2, byrow=T)

rets = list ()
R = matrix(NA,1,5); R[,1] = sample(2, 1, prob = delta, replace=T)

for(t in 1:4)

{
indexl <- R[,t]==1
sidl <- sum(index1)
rets [[t]]<-matrix(NA,1,9)
if (sid1>0){
rets[[t]][index1,] = rmvnorm(sidl, mean = int[[1]], sigma =
sigma[[1]1])
Rlindex1,t+1] = sample(2, sidl, prob = prob[1,], replace=T)
¥
if ((1-sid1)>0){
rets[[t]][!index1l,] = rmvnorm(l-sidl, mean = int[[2]], sigma
= sigmal[[2]])
R[!'index1l,t+1] = sample(2, 1l-sidl, prob = prob[2,], replace=T
)
¥
}

ytpovery0O.depmix = (rets[[1]]1+1)x(rets[[2]1]1+1)*(rets [[31]1+1)*(
rets [[4]]+1)
scen.depmix<-ytpovery0O.depmix -1

rownames (scen.depmix) = paste("scen",1:1, sep="")
colnames (scen.depmix) = names(data)[-1]
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dateO.depmix <- as.character(data$Date[which(data$Date=="
2006-01-13")+j+4])

scen.collect.depmix <- c(scen.collect.depmix, paste(dateO.depmix,
".",rep(names(data)[-1],each=1),".scen",1:1," ",scen.depmix,
sep=" "))

scen.list.depmix[[date0.depmix]]<-scen.depmix

}

rm(scen.list.depmix,scen.collect.depmix,l,models.depmix,taller,j,y,
rModels ,trstart ,transition,instart,inMod ,mod)

rm(fm2,delta,sigma,rt,int ,prob,rets,R,indexl,sidl,ytpobery0.depmix,
scen.depmix ,date0.depmix ,obs,scen,dat2)

C:/Users/Mie/Dropbox/Speciale/R /Speciale/scengen—print.R

C.4.1 MSAR library

HBER R AR BB
R R R R R E R RN RS EEEEE]

#function interfacing R and the .C function
loopMSARX _wrap<- function(Tnew,R,denst,Pvec,delta,indexMissing,nll2
,deltaT) {
res.2loops<-.C("loopMSARX" ,Tnew=as.integer (Tnew) ,R=as.integer(R),

denst=as.double(denst),Pvec=as.double (Pvec),delta=as.double (
delta),indexMissing=as.integer (indexMissing) ,nll=as.double(
nll2) ,deltaT=as.double(deltaT))

}

HHAERERRR AR R R RHRRRRRRERARRHRRRER

RERBERE AR R AR R AR R R R AR K

flagNA<-function(y,nhor ,orders,exogen)q{
bool<-rep(1l,length(y))
orderMAX<-max (orders)
for (ii in (orderMAX+mnhor):length(y)) {
dataVect<-y[(ii-nhor+il-orders)]
if (exogen==FALSE) {
dataVect<-c(y[ii],dataVect)
}
if (any(is.na(dataVect))) {
bool[1i]<-0
}
¥
bool[1:(orderMAX+nhor-1)]1<-0
return(bool)
}
X R R R R R R R R RN SR NN
BERRE R R R R R R R AR AR RN R

fromNATtoWORK <- function(R,pARX,P,sig,intercept,orderAR,orderX) {
#This function transforms natural parameters into working
parameters (to avoid constrained optimization)
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tP<-c ()
for (ii imn 1:R) {

tP<-c(tP,log(P[ii,-1ii]/P[ii,ii]))
}
if (intercept)

#tmpVect<-pdRX[,1]

tmpVect<-pARX[,1]
else

tmpVect<-numeric (0)
for (i in 1:R){

if (orderAR[i]>0)

tmpVect<-c(tmpVect ,pARX[i,intercept+(1:orderAR[i])])

}
if (any (orderX>0)){

for (i in 1:R){

if (orderX[i]>0)
tmpVect<-c(tmpVect ,pARX[i,intercept+max(orderAR)+(1:orderX[
i1

¥
}
#wkVect<-c(as.vector(t(pdRX)),tP,log(sig))
wkVect<-c(tmpVect ,tP,log(sig))

indexNA<-which(is.na(wkVect))

if (length(indexNA)>0) {
wkVect<-wkVect [-indexNA]

}

return(wkVect)
3
RERB AR R R R R R R R R R R R
[N N N Ny N F EE TS TSR EE 2

fromWORKtoNAT <- function(R,orderAR,orderX ,wkVect,intercept) {

#This function transforms working parameters into working back
into natural parameters

PARX<-matrix (0,nrow=R,ncol=(intercept+max (orderAR)+max(orderX)))
index<-0
for (ii im 1:R) {
pARX[ii,1:(intercept+orderAR[ii]+orderX[ii])]<-wkVect[(index+1)
:(index+intercept+orderAR[ii]+orderX[ii])]
index<-index+intercept+orderAR[ii]J+orderX[ii]

}

P <- matrix(0,nrow=R,ncol=R)

for (ii in 1:R) {
P[ii,-1ii] <- exp(wkVect[(index+1) :(index+(R-1))])/(1+sum(exp(

wkVect [(index+1) : (index+(R-1))1)))

PLii,ii] <- 1/(1+sum(exp(wkVect[(index+1) :(index+(R-1))1)))
index <- index+(R-1)

}

delta <- try(solve(t(-diag(R)+P+1),rep(1,R)))

if (inherits(delta,’try-error?)) {
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print("Continuing")
print (P)
delta<-rep(1/R,R)

}

sig <- exp(wkVect[(index+1):(index+R)])

return(list (pARX=pARX ,P=P,sig=sig,delta=delta))
}
HRHERERRRER AR ERE RN R RRR R
BERRR AR AR RN AR R BB R R BB R AR R

nllMSARX <- function(parVect,R,Z,y,orderAR,orderX,intercept,

indexMissing,listOut=FALSE) {

parNat <- fromWORKtoNAT(R=R,orderAR=orderAR,orderX=orderX ,wkVect=

parVect ,intercept=intercept)

pARX <- parNat$pARX

P <- parNat$P

sig <- parNat$sig

delta <- parNat$delta

delta_t<- matrix(parNat$delta,nrow=1)

nll <- 0
#print (p4dRX)

T <- length(y)
orderMAX <- max(c(orderAR,orderX))

yHat<- Z % * % t(pARX)

dens_t<-matrix(0,nrow=T-orderMAX ,ncol=R)
for (ii in 1:R) {
dens_t[,ii]<-dnorm(as.vector(y[(orderMAX+1):T]) ,mean=as.vector(
yHat[,11i]) ,sd=rep(sigl[ii],T-orderMAX))
}

indexNA<-which(is.na(apply(dens_t,1,sum)))
dens_t[indexNA ,]<-1

### C variable
Pvec<-as.vector (P)
Tnew<-T-orderMAX
denst<-as.vector(dens_t)
nll<-0

deltaT<-denst*0 #rep(0,R)
X2

msarxC<-loopMSARX _wrap(Tnew,R,denst ,Pvec,delta,indexMissing[(
orderMAX+1) :T],nll,deltaT)
nll <- unlist(msarxC[7])

if (is.na(nll) | is.infinite(nll)) {
nll<-.Machine$double.xmax
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}

else {
nll<--nll

}

#print (nll)

if (listOut){
msarxC

}

else
nll

HERRARRRRRR AR R RR R R BB
HERRRR AR R H R R R

prepDataMSARX <- function(R,y,orderAR,x,orderX,intercept) {

T<-length(y)
orderMAX <- max(c(orderAR ,orderX))
if (intercept==1) {
Z<-rep(1,T-orderMAX)
}
else {
Z<-c()
}
if (orderMAX >0){
for (ii in 1l:max(orderAR)) {
Z<-cbind(Z,y[(orderMAX+1-1i):(T-11)])
¥
}
if (max(orderX)>0) {
for (ii in 1l:max(orderX)) {
Z<-cbind(Z,x[(orderMAX+1-1i):(T-1ii)1)
¥
}
return(Z)

¥

HARRRAR AR AR AR AR AR
HERRER LR R R R R

fitMSARX <- function(R,y,orderAR,x,orderX,pARX,P,sig,intercept,
indexMissing,stepmax=10) {

wkVect0 <- fromNATtoWORK(R=R,pARX=pARX,P=P,sig=sig,intercept=
intercept ,orderAR=orderAR ,orderX=orderX)

Z<-prepDataMSARX(R,y,orderAR ,x,orderX,intercept)

estMSARX <- nlm(nllMSARX ,p=wkVectO,R=R,Z=Z,y=y,orderAR=orderAR,
orderX=orderX,intercept=intercept,indexMissing=indexMissing,
iterlim=2000, hessian=TRUE,stepmax=stepmax)

moreOut <- nllMSARX(p=estMSARX$estimate ,R=R,Z=Z,y=y,orderAR=
orderAR ,orderX=orderX,intercept=intercept, indexMissing=
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indexMissing, 1listOut=TRUE)

estVect <-fromWORKtoNAT(R=R,orderAR=orderAR,orderX=orderX,wkVect=
estMSARX$estimate ,intercept=intercept)

nll <- estMSARX$minimum

nllNorm<-nll/(sum(indexMissing))

nbParam <- R*(R-1) + R*intercept + sum(orderAR)+sum(orderX) + R #
Rx (orderZt+1)

AIC <- 2*(nll+nbParam)

BIC <- 2#*nll+nbParam*log(sum(indexMissing))

list(est _pARX=estVect$pARX ,est_P=estVect$P,est_sig=estVect$sig,
nll=nll,nllNorm=nllNorm ,BIC=BIC,AIC=AIC,code=estMSARX$code,
more=morelOut, hessian=estMSARX$hessian)

C:/Users/Mie/Dropbox/Speciale/R/Speciale/ MSARlibrary.R

C.4.2 Plots for Table 6

# NINE SELECTED INDICES INAV RAINBOW PLOT
BRREE R R AR R R R R R R AR R R R AR R R R RN

min.da = c¢(); max.da = c()
for(i in which(names(i.df) %in% ind))
{

min.da = c(min.da, min(i.df[[i]J]$Date))
max.da = c(max.da, max(i.df[[i]]$Date))
}
graphics.off ()
par (mgp=¢(2,0.7,0), mar=c(2, 3.5, 1, 1))
plot(i.df [[19]1]1$Date[400:12056], i.df[[191]1$iNAV[400:1205]/1i.df
[[19]1]1$iNAV[which(i.df[[19]]$Date == max(min.da))],
type="1", ylab="", xlab="", cex.lab=1.5, main="", ylim=c
(0.2,1.8), cex=2)
abline (h=1, v=max(min.da), col="grey60")
j =0
for(i in which(names(i.df) %in% ind))
{
jo= g+
a i.df [[i]J]$iNAV/i.df[[i]]$iNAV[which(i.df[[i]J]$Date == max(min
.da))]
lines(i.df[[i]]$Date, a, col = rainbow(9)[jl)

}

legend("topleft", legend = ind, col = rainbow(9), pch = 19, ncol =
3, cex = 1.5,box.col="white", inset=0.005) #bty="n")

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//"

dev.print(device=pdf, height = 5, width = 8, file = paste(path,"
RainbowIndices2.pdf", sep=""))

rm(min.da,max.da,j,a)
R E N R N R R RN R R R RN N R N N Y]

# NINE SELECTED INDICES IRETURN PROCESSES
I E N R R R RN R R R R R R E N R R R RN R R E S LTS
min.da = c¢(); max.da = c()
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a=c()
for(i in 1:9)
{
a = cbind(a, datal,i+1])
3

dat2 = data.frame(Return = as.numeric(a), time = rep(datal,1], 9),
index = rep(names(data)[-1], each=length(data$Date)))
xyplot (Return~time|index ,data=dat2, type="1", xlab="", ylab="Index
return",
scales=1list(x=1list(rot=45, cex=1.2), y=list(cex=1.2)),
layout=c(3,3,1),
index.cond= list(c(7:9, 4:6, 1:3)))
dev.print(device=pdf, height = 5, width = 8, file = paste(path,"3
x3iReturn.pdf", sep=""))
HRARRRRRR R R R R AR R AR

## ACF OF NINE SELECTED INDEX RETURNS
XX R R R R R R R R R R N S R E R RN E RS
par (mgp=c(1,0.7,0), mar=c(1.5, 1.9, 0.5, 0.1), mfrow=c(3,3))
acf(ind.matrix[,2], xlab="", ylab="")
legend("topleft", ind[1], cex=1.5,bty="n"
for(i in 3:10)
{
acf(ind.matrix[,i], xlab="", ylab="", xaxt="n", yaxt="n"
legend("topleft", ind[i-1], cex=1.5, bty="n")
3
dev.print(device=pdf, height = 4, width = 6, file = paste(path,"3
x3iACF.pdf", sep=""))
X R R R R N Ny R N R E N E R R N E N N N R N ST T X2

## FRACTION OF PREDICTIONS TUO EXCEED UOBSERVED RETURN PLOT
HHARRRB AR B R R RRRRRRERRRRHRRRBRRERRERRRRH
path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//"
y = matrix(NA,79,9)
for(i in 1:9)
{
for(j in 1:79)
{
obs = obs.afkast[[j]1][,i]
scen = scen.list.AG[[j11[,i]
y[j,i]l = sum(scen > obs)/length(scen)
}
3
dat2 = data.frame(Fraction = as.numeric(y), Time = rep(1:79, 9),
index = rep(ind, each=79))
par (mgp=c(2,0.7,0), mar=c(3.5, 3.5, 1, 1))
xyplot (Fraction ~ Time | index , data = dat2,
panel = function(x, y){panel.grid(h=-1,v=-1, col="grey", 1ty
=3);
panel.xyplot(x,y, pch=20);
panel.loess(x,y, col=1, evaluation
=50, span = 1/4)},
layout=c(3, 3, 1),
index.cond= 1list(c(7:9, 4:6, 1:3)))
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dev.print (device=pdf, height = 6, width = 8, file = paste(path,"
AGFraction.pdf", sep=""))
HREERA R R R AR R AR RRR R AR R R R RR R R R

## TEST FOR UNIFORM DISTRIBUTION OF FRACTIONS

BRR R R R AR R R R R R R R R AR R R R AR AR R R RN

par (mgp=¢(1,0.7,0), mar=c(1.5, 1.9, 0.5, 0.1), mfrow=c(3,3))

acf (gqnorm(y[,1]1) [is.finite(gnorm(y[,1]1))], xlab="", ylab="")

legend("top", paste(c("p","var"), c(round(ks.test(y[,1], "punif")$p
,4), round(var(y[,1]) ,4)), sep="="), bty="n")

legend ("topleft", ind[1], bty="n"

for(i in 2:9)

{
acf(qnorm(y[,i])[is.finite(qnorm(y[,1i]))], xlab="", ylab="", =xaxt
=llnll’ yaxt=llnll
legend ("top", paste(c("p","var"), c(round(ks.test(y[,i], "punif")
$p,4), round(var(y[,i]) ,4)), sep="="), bty="n"
legend ("topleft", ind[i], bty="n")
}

dev.print (device=pdf, height = 4, width = 6, file = paste(path,"
AGACF .pdf", sep=""))
B R R R R R R R R R BB RN R R R R R R R R AR R

## BOXPLOT SCENARIO FRACTION PLOT

ERRER R RN R AR R
load("0ObsAfkast.RData")

load("bootstrapscenarier.RData")

scen.list = scen.list.2
boxdata=c ()
for(i im 1:79)
boxdata = c(boxdata, scen.list[[i]])

dat2 = data.frame(returns = boxdata, time=rep(1:79, each=9x250),
index = rep(ind, 79, each=250))

graphics.off ()

pdf("C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//
MSARtest.pdf", width=5.5, height=8)

nf<- layout(matrix(c(1:11) ,11,1,byrow=TRUE), heights=c(0.8,rep(3,9)
,0.8), TRUE)

par(mgp = ¢(2,0.7,0), mar=¢c(0,3,0,0.5))

plot(rep(1,79), xaxt="n", yaxt="n", bty="n", type="n", ylab="",
xlab="")

boxplot (returns ~ time, data=dat2[which(dat2$index==ind[1]),], ylab
=ind[1], xlab="", xaxt="n")
axis(side=3, at=seq(0,80,10))
lines(sapply(sapply(obs.afkast, function(x) x)[1,], function(x) x),
col=2, lwd=2)

for(j in 2:8)
{
boxplot (returns ~ time, data=dat2[which(dat2$index==ind[j]l),],
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ylab=ind[j], xlab="", xaxt="n")
lines(sapply(sapply(obs.afkast, function(x) x)[j,], function(x) x
), col=2, 1lwd=2)
}

boxplot (returns ~ time, data=dat2[which(dat2$index==ind[9]1),], ylab
=ind[9], xlab="", xaxt="n")
axis(side=1, at=seq(0,80,10))
lines (sapply(sapply(obs.afkast, function(x) x)[9,], function(x) x),
col=2, lwd=2)
dev.off ()

rm(boxdata ,dat2)
rm(list=objects(pattern = "scen.list"))
R AR R R R R AR R R AR R R R R AR R R R AR R R AR R}

## MSAR MODELS POSTERIOR PLOTS
HERE AR R R R E R R R R AR R R R AR R R R R H
load ("MSARmodeller .RData")

par(mgp=¢(2,0.7,0), mar=c(3.5, 3.5, 1, 1), mfrow=c(4,4))
for(i in seq(1,711,9) [seq(1,79,5)1)
{
matplot (matrix (models.MSAR[[i]]l$more$deltaT, ncol=2), type="1",
lty=1, ylab="")
}

lmat = length(matrix(models.MSAR[[1]]$more$deltaT, ncol=2)[,1])

MSARregime=matrix (NA,ncol=9, nrow=1lmat)
MSARregime[,1] = rep(2,length(matrix(models.MSAR[[1]]$more$deltaT,
ncol=2)[,1]1))
MSARregime [which(matrix(models.MSAR[[1]]$more$deltaT, ncol=2)[,1] <
0.5),1]1 =1
plot (MSARregime[,1], type="1", col=rainbow(9)[1], ylim = c(0.9,

2.1))
for(i in 2:9)
{
MSARregime[,i] = rep(2,length(matrix(models.MSAR[[i]J]$more$deltaT
, ncol=2)[,1]1))
MSARregime [which(matrix (models .MSAR[[i]]l$more$deltaT, ncol=2)[,1]
< 0.5),i] =1
lines (MSARregime[,i], col=rainbow(9)[i])
3
dat2 = data.frame(Regime=as.numeric(MSARregime), time = rep(l:lmat,

9), index = rep(ind, each=1lmat))
xyplot (Regime ~ time | index, data = dat2, type="1")

graphics.off ()
plot (matrix(models.MSAR[[i]]$more$deltaT, ncol=2)[,1], type="1",
col=rainbow (9)[i])
for(i in 1:9)
{
lines (matrix(models .MSAR[[i]J]$more$deltaT, ncol=2)[,1], col=
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rainbow (9) [i])
}

rm(1lmat ,MSARregime ,dat2)
I R E NN N R E RN N N RN N E TS

## EXAMPLE (OF 2-DIMN MULTIVARIATE NORMAL DISTRIBUTION

REREE R R R R R R R R R R R R R R R R R R R AR R H

sigma = matrix(c(4,2,2,3), ncol=2)

x <- rmvnorm(n=2500, mean=c(3,2), sigma=sigma, method="chol")

plot(x, pch=20, col=4, xlab = "Index 1 (mu = 3, sd = 4)", ylab = "
Index 2 (mu = 2, sd = 3)")

points(colMeans (x)[1], colMeans(x)[2] , col=2, pch=19)

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//"

dev.print (device=pdf, height = 3, width = 4, file = paste(path,"
MVNeksempel .pdf", sep=""))

rm(sigma,x)
[ R R RN R R R R R N N RN NSRS S

##% HEATHAP OF COVARIANCE AND CORRELATION MATRIX DEPHNIX
I EE RSN R R R R N R R R R R R SR R R R R RS RS E TSR R T
covmatl = show(models.depmix [[565]] @response [[1]]1[[1]])
covmat2 = show(models.depmix [[55]]@response [[2]11[[1]1])

colnames (covmatl) = ind; rownames(covmatl)= ind
colnames (covmat2) = ind; rownames (covmat2)= ind
pal <- colorRampPalette(c("white","blue", "black"), space = "rgb")

par (mar=c(3,3.5,0.5,0.5), mgp=c(2,0.7,0))

levelplot (covmatl, xlab="", ylab="", col.regions=pal(100), cuts=45)

dev.print(device=pdf, height = 4, width = 4, file = paste(path,"
depmixCovmatl.pdf", sep=""))

rm(covmatl,covmat2,pal)
R E N E SN R R RN R E R E RN SN R N N LTS

##% MSAR COMPARISON OF REGINESHIFTS BETWEEN SENSITIVE AND STABLE
MODEL

[ EEEEE E EE E E E E EE EEEEEEEEREEEEEEEEEE NSRS EE RN

par (mfrow=c(1,2), mgp=c(2,0.7,0), mar=c(2,2,0.5,0.5))

model = models.MSAR[[708]]

matplot (matrix (model$more$deltaT, ncol=2), type="1", lty=1, ylab=""
)

model = models.MSAR[[701]]

matplot (matrix(model$more$deltaT, ncol=2), type="1", 1lty=1, ylab=""
s yaxt="n")

dev.print (device=pdf, height = 3, width = 5, file = paste(path,"
test.pdf", sep=""))

graphics.off ()

par (mgp=¢(2,0.7,0), mar=c(2,2,0.5,0.5))

modell = models.MSAR[[708]]

model2 = models.MSAR[[704]]

plot (matrix(model2$more$deltaT, ncol=2)[,1], col=1, type="1", 1ty
=1, ylab="", 1lwd=1)



184 R code

lines (matrix(modell$more$deltaT, ncol=2)[,1], col=2, type="1", 1ty
=1, ylab="", yaxt="n", lwd=2)

abline (h=0.5, 1lty=3)

dev.print(device=pdf, height = 3, width = 5, file = paste(path,"
test.pdf", sep=""))

rm(model ,modell ,model?2)
RERE R R R R R R R R R R R R R R AR R R R R R R H

## DEPMIX MODELS POSTERIOR PLOTS
AERE R R R R R R R R R AR R R R R R AR R R R R R R H
par (mfrow=c(3,3), mgp=¢(2,0.7,0), mar=c(2, 1.8, 1.5, 0.5))

matplot (models.depmix[[1]] @posterior, type="1", lty=1, xlab = "",
ylab = nw
main = paste("Trailing", ind.matrix[316+1%4,1],sep=" "))
for(i in seq(10,79,by=9))
{
matplot (models.depmix[[i]]@posterior, type="1", 1lty=1, xlab = "",
ylab = nu, yaxt="n"
main = paste("Trailing", ind.matrix[316+ix4,1],sep=" "))
}
dev.print(device=pdf, height = 5, width = 9, file = paste(path,"
regimesequence3x3.pdf", sep=""))

par (mgp=c(2,0.7,0), mar=c(3.5, 3.5, 1, 1))
rgb.palette <- colorRampPalette(c("white", "darkblue"), space = "
I‘gb n)
labl = show(models.depmix [[34]]@response [[1]]1[[1]])
corrmatl = cov2cor(labl)
colnames (corrmatl) = ind
rownames (corrmatl) = ind
levelplot(abs(corrmatl), col.regions=rgb.palette(200), cuts=50,
xlab = "", ylab = "", main = "Heatmap of numeric
correlation matrix",
scales = list(tch = 0, cex = 2))
dev.print(device=pdf, height = 6, width = 6, file = paste(path,"
depmixCorrmatl2.pdf", sep=""))

lab2 = show(models.depmix[[4]]@response[[2]][[111])

corrmat2 = cov2cor(lab2)

colnames (corrmat2) = ind

rownames (corrmat2) = ind

levelplot(abs(corrmat2), col.regions=rgb.palette (200), cuts=50,
xlab = "", ylab = "", main = "Heatmap of numeric

correlation matrix",
scales = list(tch = 0, cex = 2))
dev.print(device=pdf, height = 6, width = 6, file = paste(path,"
depmixCorrmat22.pdf", sep=""))

rm(labl,lab2,corrmatl,corrmat2)
X R R R N R R N R R R R R R N S TR X S

##% DEPMIX MODEL FINAL REGINE
R AR R R R R AR R R R AR R R R AR R R AR R AR R R}
load("C:/Users/Mie/Dropbox/Speciale/CSVdata/DepmixModeller .RData")
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Regime = c()
for(i in 1:79)
{
lpos = length(models.depmix[[i]]@posterior$state)
Regime = c(Regime, models.depmix[[i]]@posterior$state[lpos])
}

ProbRegime=c ()
for(i in 1:79)
{
lpos = length(models.depmix[[i]]@posterior$state)
ProbRegime = c(ProbRegime, models.depmix[[i]l]l@posterior$X2[lpos])
}
par (mgp=c(2,0.7,0), mar=c(2,3,0.5,0.5))
plot (ProbRegime, type="o", pch=19, at=seq(0,80,10), yaxt="n", ylab=
"Estimated probability of regime 1")
abline (h=0, col=4)
abline (h=1, col=4)
axis(side=2,at=c(0,0.5,1))
path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//"
dev.print (device=pdf, height = 4, width = 8, file = paste(path,"
depmixRegimes.pdf", sep=""))

rm(Regime , lpos)
HHERERER R E R AR R AR RR R R AR R R AR RR R R R

## DEPHMIX MODELS DEVELOPMENT IN MEAN AND VARIANCE
BRR R R AR R R R R R R AR R R R R AR R RN
#load ("DepmizNodeller.RData")

varl = c(); var2=c()
intl=c(); int2=c()
for(i in 1:79)
{
fm2 = models.depmix[[i]]
sigma = list(sigmal = show(fm2Q@response[[1]J][[1]]), sigma2 = show
(fm2@response [[2]1]1[[1]11))
int = list(intl = fm2Qresponse[[1]][[1]]@parameters$coefficients,
int2 = fm2@response [[2]][[1]]@parameters$coefficients)
varl = c(varl, diag(sigma[[1]]))
var2 = c(var2, diag(sigma[[2]]))

intl = c(intl, int[[1]])
int2 = c(int2, int[[2]])

temp.int.
temp.int.
temp.int

matrix(intl, nrow=79, byrow=T)
= matrix(int2, nrow=79, byrow=T)
list(temp.int.1, temp.int.2)

N =

temp.var.
temp.var.
temp.var

matrix(varl, nrow=79, byrow=T)
= matrix(var2, nrow=79, byrow=T)
list(temp.var.1l, temp.var.2)

(LI
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graphics.off ()

nf = layout(matrix(ec(1,2,3,1,1,4,5,1,1,1,1,1), 3,4, byrow=T),
heights=c¢(2.5,2.5,0.25), widths=c(0.3,4,4, 0.3), TRUE)

par (mgp=¢c(2,0.7,0), mar=c(0,0,0,0))

plot(rep(1,79), xaxt="n", yaxt="n", bty="n", type="n", ylab="",
xlab="")

matplot (temp.int.1, type="1", 1lty=2, xaxt="n")
lines(rowMeans (temp.int.1), lwd=2)
legend("bottomleft", "Means Regime 1", bty="n"

matplot (temp.int.2, type="1", lty=2, xaxt="n", yaxt="n"
lines (rowMeans (temp.int.2), lwd=2)
legend("bottomleft", "Means Regime 2", bty="n"

matplot (temp.var.1l, type="1", lty=2, yaxt="n"
lines(rowMeans (temp.var.1), lwd=2)
legend ("topleft", "Variance Regime 1", bty="n")

matplot (temp.var.2, type="1", 1lty=2, yaxt="n")
axis(side=4,at=seq(0,0.005,0.001))
lines(rowMeans (temp.var.2), lwd=2)
legend("topleft", "Variance Regime 2", bty="n"

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//
appendixplots//"

dev.print(device=pdf, height = 4, width = 8, file = paste(path,"
depmixmeanvar .pdf", sep=""))

rm(varl,var2,intl,int2,fm2,sigma,int,temp.int.1,temp.int .2, temp. int
,temp.var.1l,temp.var.2,temp.var,nf)

Regime = c()
for(i in 1:79)

{

lpos = length(models.depmix[[i]]@posterior$state)

Regime = c(Regime, models.depmix[[i]]@posterior$state[lpos])
¥
int.total = matrix(NA, ncol=9, nrow=79); var.total = matrix(NA,

ncol=9, nrow=79)
for(i in 1:79)

{
j = Regimel[i]
int.totall[i,] = temp.int[[j]]([i,]
var.total[i,] = temp.var[[j]][i,]
¥

graphics.off ()

nf = layout(matrix(c(1:3), 3,1, byrow=T), heights = ¢(3,3,0.5),
TRUE)

par (mgp=¢(2,0.7,0), mar=c(0,2,0,0.5))

matplot (int.total, type="1", 1lty=3, xaxt="n")

lines (rowMeans (int.total), lwd=2)
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legend("bottomleft", "Mean scenario return", bty="n"
matplot (var.total, type="1", 1lty=3, yaxt="n", xaxt="n"
axis(side=2, at=seq(0,0.004,0.001))

axis(side=1, at=seq(0,80,10))

lines (rowMeans (var.total), lwd=2)

legend("topleft", "Scenario variance", bty="n"

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//"

dev.print (device=pdf, height = 3, width = 6, file = paste(path,"
depmixmeanvar.pdf", sep=""))

rm(lpos ,Regime,int.total,j,var.total ,nf)
rm(models.depmix)
REREE R R R R R R R R R R R R R R K

## MSAR MODEL FINAL REGINE
HRERRR R R R RRR R AR R RER R AR R R AR RR R RRRRRRRRR R
load("C:/Users/Mie/Dropbox/Speciale/CSVdata/MSARModeller .RData")

graphics.off ()
par (mgp=c(2,0.7,0), mar=c(2,3,0.5,0.5), mfrow=c(3,3))
RegProb = matrix(NA,ncol=9, nrow=79)

taller=0
for(i in ¢(1:7,9))
{
RegimeProb = c()
taller=0
for(j in 1:79)
1{

taller=j*9-(9-1i)
len = models.MSAR[[taller]]l$more$Tnew
RegimeProb = c(RegimeProb, matrix(models.MSAR[[taller]]l$more$
deltaT ,ncol=2)[len,1])

}

RegProb[,i] = RegimeProb

plot (RegimeProb, type="1")

}

dat2 = data.frame(RegimeProb = as.numeric(RegProb), time=rep(1:79,
9), index = rep(ind, each=79))
xyplot (RegimeProb ~ timelindex, data=dat2,
ylab="Probability of Regime 1", xlab="",
panel = function(x, y){panel.abline(h=0.5, 1lty=3);
panel.xyplot(x,y, type="1")},
layout=c(3, 3, 1),
index.cond= list(c(7:9, 4:6, 1:3)))

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//"
dev.print(device=pdf, height = 4, width = 6, file = paste(path,"
MSARRegimes .pdf", sep=""))

rm(RegProb,taller ,RegimeProb,len,dat2)
rm(models.MSAR)
X R E NN N R R RN R N R SN N N S E T

##% MSAR MODELS DEVELOPMENT IN MEAN AND VARIANCE
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B AR R AR R AR R R R RN R R R R AR R R AR AR R

varl = c¢(); var2=c()
intl=c(); int2=c()
for(i in ¢(1:7,9))

{
for(j in 1:79)
{
fm2 = models.MSAR[[(j*9-(9-1))]]
sigma = list(sigmal = fm2$est_sigl[l], sigma2 = fm2$est_sigl[2])
int = list(intl = fm2$est_pARX[1], int2 = fm2$est_pARX[2])
varl = c(varl, sigmal[[1]])
var2 = c(var2, sigmal[[2]])
intl = c(intl, int[[1]11)
int2 = c(int2, int[[2]1]1)
}
}
temp.int.1 = matrix(intl, nrow=79, byrow=F)
temp.int.2 = matrix(int2, nrow=79, byrow=F)
temp.int = list(temp.int.1l, temp.int.2)
temp.var.1l = matrix(varl, nrow=79, byrow=F)
temp.var.2 = matrix(var2, nrow=79, byrow=F)

temp.var list(temp.var.1l, temp.var.2)

graphics.off ()

nf = layout(matrix(c(1,2,3,1,1,4,5,1,1,1,1,1), 3,4, byrow=T),
heights=c¢(2.5,2.5,0.25), widths=c¢(0.3,5,5, 0.3), TRUE)

par (mgp=c(2,0.7,0), mar=c(0,0,0,0))

plot(rep(1,79), xaxt="n", yaxt="n", bty="n", type="n", ylab="",
xlab="")

matplot(temp.int.1, type="1", lty=2, xaxt="n", ylim=c(-0.05,0.05))
lines (rowMeans (temp.int.1), lwd=2)
legend("bottomleft", "Means Regime 1", bty="n"

matplot (temp.int.2, type="1", 1lty=2, xaxt="n", yaxt="n", ylim=c
(-0.1,0.1))

axis(side=4, at=pretty(temp.int.2))

lines(rowMeans (temp.int.2), lwd=2)

legend ("bottomleft", "Means Regime 2", bty="n")

matplot (temp.var.1l, type="1", 1lty=2, ylim=c(0,0.07))
lines (rowMeans (temp.var.1), lwd=2)
legend ("topleft", "Variance Regime 1", bty="n")

matplot (temp.var.2, type="1", lty=2, yaxt="n", ylim=c(0,0.07))
axis(side=4,at=pretty(temp.var.2))

lines(rowMeans (temp.var.2), lwd=2)

legend ("topleft", "Variance Regime 2", bty="n")

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//
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Presentation//"
dev.print (device=pdf, height = 4, width = 8, file = paste(path,"
MSARmeanvar -appendix.pdf", sep=""))

rm(varl,var2,intl,int2,fm2,sigma,int,temp.int.1,temp.int .2, temp.int
,temp.var.l,temp.var.2,temp.var,nf)

Reg.mat=matrix (NA,ncol=9,nrow=79)
for(i in ¢(1:7,9))

{
Regime=c ()
for(j in 1:79)
{
fm2 = models.MSAR[[(j*9-(9-i))1]]
len = fm2$more$Tnew
Regime = c(Regime, which(matrix(fm2$more$deltaT,ncol=2) [len,] >
0.5))
}
Reg.mat[,i] = Regime
}
int.total = matrix(NA, ncol=9, nrow=79)
var.total = matrix(NA, ncol=9, nrow=79)
for(i im 1:79)
{
for(j in ¢(1:7,9))
{
m = Reg.mat[i,]j]
j = ifelse(j==9,8,j)
int.totalli,j] = temp.int[[m]][i,j]
var.total[i,j] = temp.var[[m]][i,j]
¥

graphics.off ()

nf = layout(matrix(c(1:3), 3,1, byrow=T), heights = ¢(3,3,0.5),
TRUE)

par (mgp=c(2,0.7,0), mar=c(0,2,0,2))

matplot (int.total, type="1", 1lty=3, xaxt="n", ylim=c(-0.02, 0.02))

lines (rowMeans (int.total, na.rm=T), lwd=2)

legend("bottomleft", "Mean scenario return", bty="n"

matplot (var.total, type="1", 1lty=3, yaxt="n", xaxt="n")

axis(side=4, at=pretty(var.total))

axis(side=1, at=seq(0,80,10))

lines (rowMeans (var.total, na.rm=T), lwd=2)

legend("topleft", "Scenario variance", bty="n")

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//
Presentation//"

dev.print(device=pdf, height = 4, width = 8, file = paste(path,"
MSARmeanvar -appendix2.pdf", sep=""))

graphics.off ()
plot (int.total[,i], type="1")
lines(var.totall[,i], col=2)
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dat2=data.frame(Mean = c(as.numeric(int.total[,1:7]1), rep(NA,79),
as.numeric(int.total[,8])),
variance = c(as.numeric(var.total[,1:7]), rep(NA
,79), as.numeric(var.totall[,8])),
time=rep(1:79, 9), index=rep(ind,each=79))
xyplot (Mean + (variance-0.1) ~ time|index, data = dat2, type="1",
lwd=2, col=c(1,2),
ylim = ¢(-0.1,0.05),
layout=c(3,3,1),
index.cond= list(c(7:9, 4:6, 1:3)),
ylab="Applied mean and variance", xlab="",
key=1list(text = list(names(dat2)[1:2]),
points=1list(pch=19, col=c(1,2)),
columns = 2))
path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//"
dev.print(device=pdf, height = 4, width = 7, file = paste(path,"
MSARmeanvar2.pdf", sep=""))

rm(lpos ,Regime ,int.total,j,var.total ,nf, dat2, Reg.mat,m,len)
rm(models.MSAR)
RERE R R R R R R R R R R R R R R AR R R R R R R R

## FOUR-WEEK RETURNS OF GLD HAS NEGATIVE MNEAN

HARAERB AR R AR H AR H AR R R R R AR R R R H
1ld = length(data$Date)

fwr = (datal[-(1:4),5]-datal-((1d4-3):1d) ,5]1)/datal[-((1d-3):1d),5]

par (mgp=c(2,0.7,0), mar=c(3.5, 3.5, 1, 1))

plot (fwr, ylim=c(-10,10))

abline (h=mean(fwr[which(is.finite(fwr))]), col=2)

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//Scengen//"

dev.print(device=pdf, height = 4, width = 8, file = paste(path,"
GLD4weekReturn.pdf", sep=""))

rm(1d, fwr)
R R R N R E RN E N R R E N E R N E N N N R S s X2

## EXPLORATION OF FEZ IN ARMA-GARCH SCENARIOS

R AR R R R R AR R R RN R R AR R R AR AR AR R
plot (models.AG[[156]]@fit$series$h, type="1")
models.AG[[156]]@fit$matcoef

(sapply(scen.list.AG, function(x){range(x[,31)}))

(lapply(models.AG, function(x){which(x@fit$matcoef[-1,] < 0)}))
[1:100]

(lapply(models.AG, function(x){which(x@fit$series$h < 0)}))[1:200]

(lapply(models .AG, function(x){sum(is.na(xQ@fit$matcoef))>0}))
[1:100]

models.AG[[84]]efit$matcoef
plot (models.AG[[105]]@fit$series$h, type="1")

xtable (sapply(scen.list.AG, function(x){range(x[,11)}))
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plot(sapply(scen.list.AG, function(x){range(x[,i]1)})[2,], type="1",
ylim=c(-max(sapply(scen.list.AG, function(x){range(x[,i]l)})
[2,], na.rm=T), max(sapply(scen.list.AG, function(x){range
(x[,i1)¥P [2,], na.rm=T)))
lines(sapply(scen.list.AG, function(x){range(x[,i]J)})[1,], col=4)

for(i in ¢(12,21,84,93,156,174))
{
mat = models.AG[[i]J]e@efit$matcoef[-1,1]
print (mat)
print (mat [1]/(1-mat[2] -mat [3]))
}
rm(mat)
I R N N R R RN R N R N R E TS

C:/Users/Mie/Dropbox/Speciale/R /Speciale/scengen—plots.R
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files = paste(c("MRAR", "DMA", "DMCV"), rep(c("depmix", "msar", "ag
", "bootstrap"), each=3), sep="")
files=files [1:3]

for(i in 1:length(files))

{
fil = read.table(paste(files[i], ".csv", sep=""), sep= ";",
header = TRUE, dec = ",", na.strings=c("", "N/A", "NA", "Na",
"null", 0))
fil$Date=as.Date(substr(fil$Date,1,10), "%Y-%m-%d")
for(j in 3:ncol(fil))
1{
fil[which(is.na(£il[,j1)),j1 = 0
¥
assign(files[i], fil)
}
allokeringer = mget(files, envir=.GlobalEnv)

rm(list=files)
rm(fil,i,files,)

## STACKED BAR PLOTS OF THE THREE STRAGETIES AND THE FOUR SCENGEN
METHODS

X E N N R N RN R N RN N N S TS

par (mgp=c(2,0.7,0), mar=c(2,3,1,0.5))

path = "C://Users//Mie//Dropbox//Speciale//Latex//figs//AssetAlloc/
/"

for(i in 1:length(allokeringer))

{

matr = as.matrix(allokeringer [[i]][,-¢c(1,2)])

rownames (matr) = as.character(allokeringer[[i]]$Date)

barplot (t(matr),col=rainbow(9) [which(ind%in%colnames (matr))],ylab
="Portfolio value")

legend ("topleft",colnames (matr), col=rainbow(9) [which(ind%in%
colnames (matr))], pch=19, ncol=3, bty="n"
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dev.print (device=pdf, height = 4, width = 6, file = paste(path,
names (allokeringer)[i],".pdf", sep=""))
}
rm(matr ,path)
HERERARBRER AR B R RRRRE R RRRR R AR R RR R AR R R R R R R

temp = sapply(allokeringer, function(x){rowSums(x[,-¢c(1,2)]1)})
graphics.off ()

par(mgp = ¢(2,0.7,0), mar=c(0,2,0,0.5), mfrow=c(4,1))

templ = temp[,which(substr(colnames(temp),1,3)=="MRA")]

ylim = range(temp[,which(substr(colnames (temp) ,1,3)=="MRA")])
plot(allokeringer [[1]]$Date, tempi[,1], type="1", col=rainbow(4)

[1], ylim=ylim, ylab="", xlab="", xaxt="n"
for(i in 2:4)
{
lines(allokeringer [[1]]$Date, templ[,i], col=rainbow(4)[il])
T

legend("topleft", substr(colnames(templ),5,nchar(colnames(templ))),
col=rainbow(4), pch=19,bty="n")
legend("top", "Maximum Risk Adjusted Return", bty="n"

templ = temp[,which(substr(colnames(temp),1,3)=="DMA")]
ylim = range(temp[,which(substr(colnames(temp) ,1,3)=="DMA")])
plot(allokeringer [[1]]$Date, tempi[,1], type="1", col=rainbow(4)

[1], ylim=ylim, ylab="", xlab="", xaxt="n"
for(i in 2:4)
{
lines(allokeringer [[1]]$Date, templ[,i], col=rainbow(4)[il])
T
legend ("top", "Dynamic Max Average", bty="n")

templ = temp[,which(substr(colnames (temp),1,3)=="DMC")]

ylim = range(temp[,which(substr(colnames(temp) ,1,3)=="DMC")])

plot(allokeringer [[1]]$Date, tempi[,1], type="1", col=rainbow(4)
[1], ylim=ylim, ylab="", xlab="")

for(i in 2:4)

{

lines(allokeringer [[1]]$Date, templ[,i], col=rainbow(4)[il)
3
legend("top", "Dynamic Min CVaR", bty="n"

dev.print(device=pdf, height = 4, width = 6, file = paste(path,"
test.pdf", sep=""))

rm(temp,templ,ylim)

## AVERAGE ANNUAL RETURN
AR R R R R RRRRRRRRRRRRRRRRBRRRR R AR
rets = lapply(allokeringer, function(x){rowSums(x[-c(1,2)]1)3})

(prod (1+(rets[[1]]-rets [[1]11[1]1)/)~(1/79)-1)*100

for(j in 1:12)
{
taller=0
a=c()
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for(i in seq(1,79,13)[-7]1)

{
taller = taller+1
altaller] =100*((1+(rets[[j]1]1[i+13]-rets[[j11[il)/rets[[1]1]1[1i])
-1)
¥
print (a)
print (c(j,mean(a)))
}
dat2 = data.frame(return = as.numeric(temp),
Date = rep(allokeringer [[1]]$Date, 12),
strategy = rep(c("MRAR", "DMA", "DMCV"), each=79,
4),
method = rep(c("depmix", "msar", "arma-garch", "
bootstrap"), each=79%3))
for(j in c("MRA", "DMA", "DMC"))
{
x11 ()
par(mgp = ¢(2,0.7,0), mar=c(2,2,3,0.5))
taller=0
temp = sapply(allokeringer, function(x){range(x$DGT)})
max.y = max(temp[,which(substr(names(allokeringer),1,3) == j)][is
.finite(temp[,which(substr(names(allokeringer),1,3) == j)1)1)
min.y = min(temp[,which(substr(names(allokeringer),1,3) == j)][is
.finite(temp[,which(substr(names(allokeringer),1,3) == j)1)1)
plot(allokeringer [[k]]$Date, rep(l,length(allokeringer[[k]]$Date)
), type="n",
ylim = c(min.y,max.y+1),ylab="", xlab="",
main = main)
for(k in names(allokeringer) [which(substr (names(allokeringer)
,1,3) == 1)
{
taller = taller+1
lines(allokeringer [[k]1]l$Date, allokeringer [[k]11$DGT, type="1",
col=taller)
¥
legend ("topleft", bty="n", legend=paste("DGT", c("depmix", "MSAR"
"AGY, "bootstrap"), sep="-"),
col=1:4, pch=19)
}

rm(taller,temp,min.y,max.y)

C:/Users/Mie/Dropbox/Speciale/R /Speciale/Asset Allocation—plots.R
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