DANMARKS TEKNISKE UNIVERSITET

System for development of
functional accept-test
specifications

Svante T. H. Jgrgensen
Kongens Lyngby 2012

IMM-B.Eng-2012-13

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

Technical University of Denmark

Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-B.Eng-2012-13

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

1 Foreword

| would like to thank associate professor at DTU Edward A. Todirica for his support and good advice during
this project. If not for his willingness to take extras time to understand this obscure tool called Cucumber
and what | wanted to do with it, | am sure my project would have been much less successful.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

2 Summary
In this project | develop tools to help people write software tests more efficiently.

More specifically | will analyze the current problems with writing tests for the Cucumber test tool and
design and implement solutions to those problems. The main focus will be on automating the steps where
most time can be saved with least effort.

The result of the project is a plug-in for the Eclipse Integrated Development Environment (Eclipse IDE) that
assists users in writing Cucumber tests.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

3 Intended audience
This report is intended for developers who want to use the Cucumber test tool more efficiently and want to
learn ways of making tools for this purpose in the Eclipse IDE.

The reader is expected to have some experience with development and test of non-trivial computer
systems and the general knowledge that this implies. Knowledge of Eclipse and Java is helpful but not
required.

Because the Cucumber tool is relatively obscure and not yet used very widely in the industry, | will go into
some details about how it works before | introduce my solutions.

4 Report organization and conventions
This report is divided in four main chapters.

Introduction chapter
Context of the problems and the Cucumber tool is introduced and explained.

Objectives chapter
Problems and how they should be solved is discussed.

Design chapter
Design of the solution is explained.

Implementation chapter
Implementation is presented and discussed.

In the end | will document the tests of my solution and reflect on its usefulness and future potential.

4.1 External reference convention
When external sources are referenced, they are marked with a superscript number corresponding to their
number in the References chapter.

Example: | used a book named Eclipse Plug-ins’.

The above example means that “Eclipse Plug-ins” is listed as number 1 in the References Chapter.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

5 Table of Contents

R o 1oAY Vo] o R PP PUPPUPTOURRUPRRIOt ii
p U [4110 o - o 2P PP PPPPPPPOPPPPPPPPPPPPPRt iii
I (01 7= oo [=To I TU e 11T ol T SO P PRSP UTUPPTOPRRPPRRPRIN iv
4 Report organization and CONVENTIONSccocciiiiiiiiiiee et e et e e e etre e e e ebte e e e sbeeeeesbeaeeesreneeeanns iv
4.1 External reference CONVENTIONco..iiiiiieee ettt e s iv

oI [4o Yo [V 4 o] o F T O T T TP PP PR TOUSPPR 1
6.1 0P e s 2
6.2 Cucumber and the Gherkin LAangUAEEccoocuiiii ittt et sree e e 2

/2 O oY1= Tot 41V PR 4
7.1 Gherkin syntax highlighting (The Obscurity Problem).........ccocoeiiiiiiiccie e 4
7.2 Context Sensitive Assistance (The Commonality Problem)........ccooeeiiiiiiiecieecceceeee e 5
7.2.1 OVEIVIEW OFf the PrOCESS . uviiiiiiiiie ittt e e e e st e e e sbteeeesbteeessbteeeessseaeaesans 5

7.3 Template System (The Multiplicity Problem)cccvieiiieicie et 6
7.3.1 Creating @ TEMPIATE ..eei ettt e e e et e e e e s bte e e e ebteeeeebteeeeentaeeesseaeaeanns 6
7.3.2 THE StEP DEF STING coeeeeeiie e e e e e e e et e e e e et e e e e e areeeeeabeeeeeeaseeeeenrens 7
7.3.3 O 1Y = T =T 1 o o] P <SPS 8

I D 1T 14 o OO PP P PPPPUPPPPPPRO 10
8.1 B =10 02 Y[a] o= PSP 10
8.2 SYSTOIM OVEIVIEW .. .eiiiiiiiiee ettt e e e s sttt e e e e s sttt e e e e e e s e s abbbeaaeeessssassbssaeeeesssnssssssnneees 10
8.3 Gherkin syntax highlightingoccuviii ettt e e e tre e e s erteeeeeaes 11
8.4 Context SENSItIVE ASSISTANCE ...ciiiiiiiii e e s e e e 11
8.4.1 Levenshtein DiStance d@SIZNueeiieiiiii ettt eetee e e e tre e e e e e e e sbae e e eeabeee e enres 13

8.5 TEMPIAtE SYSLEM oot e e e et e e e e st e e e e s b e e e e e abe e e e e abaeeeenraaeeenrees 14
8.5.1 (01T | (=l =10 Y o] - (ISR 16
8.5.2 Ta T =T o o] o T =T g g Yo = T PP 18

S B [0 Y o] (=T 0 o T=T o = 4 To] o F USROSt 21
9.1 B =10 00V L 0T] [oT =4 USSR 21
9.2 TOOIS AN FrAMEWOIKS ...ttt b et e bt sttt e b e e be e sbeesbeesaeesaneeane 21
9.2.1 Eclipse Software Development Kitccoociiiiiiiiiie e 21
9.2.2 Eclipse Integrated Development ENVIFONMENTccccviiiiiiiiie it 22

9.3 Creating a Text Eitor plug-in iN EClIPSE ..ceuei ittt e e e e e e e 22
9.4 Gherkin syntaxX highlightingooee oo e s e e e 22

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

9.5 Context SENSItIVE ASSISTANCEcciviiiiiiiiiii i 23
9.5.1 The Levenshtein distance AlGOrithmocuviiiiiii i 24

9.6 =T 00Y o] E LIS A (=] o o TSR 25
9.6.1 Create TemMPlate SYSTEM ...t e e s rta e e e s abaeeesnnnreee s 26
9.6.2 Insert from TempPlate SYSEEM ..ouuiiii it ree e e s sbee e s 28

10 L= PP PP OPPPP 31
10.1 TSt MELNOUOIOZY ...eeii ittt e et e e e et e e e et e e e e ebteeeesbteeeesnsteeesensteeesssenaananns 31
10.2 TESE RESUIES .ttt ettt b e sttt et e bt e s bt e s ae e st e st e e b e e nbeesbeesaeeenneenreens 31
11 T LT o Y] LU PI 33
11.1 Gherkin Syntax HighligRTiNGccooouiiiiiiiiee e e s rte e e s sneeeeeeans 33
11.2 Context SENSItIVE ASSISTANCE ...cciiiriiii ittt ettt ettt e st e e s st e e s sbee e e s sneeeessnaeeessaneeeessans 34
I B =T o o) =1 YV =T o o USRI 34
12 Discussion of fULUre IMPrOVEMENTScciccuiiiiiciiiee ettt e et e e e era e e e esabeeeesensaeeeensaeeesnnsaeeens 36
13 (6o 0ol [V o T RO OO OO PSP PP PP USRI 36
14 RETFEIEINCES ..ttt ettt ettt ettt e s bt e sttt e st e e s bt e e sabeesabeeesabeesabeesnbeesabeeenareeas 37
15 TADIE OF FIGUIES «eeeeiiiieee ettt ettt e e et e e e et e e e e sbteeessabteeeessteaeesseeeessnsteeessseneesanns 38
16 Appendix 1: GherkinEdit Installation iNStruCtioNS........ciiiiiiiiice e i
17 APPENdiX 2: USEI IMANUAL ...eiiiiiiiee ettt et et e e e e e tte e e et e e e eeaba e e e eenbeeaeesabeeeeeeaseneeennsenas ii
17.1 Setting up an Eclipse project to use GherkinEditcccceeeeiiiiiiiiiee e e e ii
17.2 Using Syntax Nighlighting........oooo i e e e e e e ebae e e et ae e e e aaee e e nrees iii
17.3 Using Context SENSITIVE ASSISTANCEuiiiiiiiiiiiiiieieee ettt e e s e s sirrte e e e s s s s ssabeaeeeeessssssnreneeeessssssnnsns iv
17.4 Using the TemMplate SYSTEMccii it e st re e e s sabae e e e sabeee s e sabree e ennsees Vi
17.4.1 Creating @ TeMPIAte couuiee e e st e e e s e e e s s ab e e e e e abe e e e esnreeeeennrees Vi
17.4.2 Inserting from @ TeMPIAtEciii ettt e e e et bee e e e sabe e e e enree e e e nneas Vi

Vi

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

6 Introduction

A common software development challenge is how to make sure you build the product that your customer
want, and not just what he says he wants. Furthermore, it is usually difficult and/or very time consuming to
make sure that completed features do not break as a result of further development on new features or
changes to old ones.

Without a clear picture of what you need to build and a good architecture for your system there is little
hope of meeting these challenges. However, there are ways to make sure that you find and correct
misunderstandings and errors as soon as possible.

In this area agile software development methods have been very successful. Developing in short cycles with
tests and live demos at the end of each cycle will, in the worst case, quickly let you know that there are
problems with the software for whatever reason, or in the best case give you confidence and assurance
that what you are building is correct.

The faster you find your errors the less time will have been spent building on those errors, and you quickly
realize that to get the most out of this approach, you have to test and demo as frequently and broadly as
possible while using as little time as possible doing it.

A good approach for saving time on test, is test automation. Test automation tools are basically programs
that assist in developing computer-executable tests that would otherwise be done by a human tester or
user. All automatic tests have in common that they take longer to build than manual tests. But after they
have been built they can be executed again and again, often in a fraction of the time required by a human.

One of these tools is called Cucumber. It's premier advantage over other test automation tools is that the
steps executed in a test is defined in a natural language with very few grammatical rules on top of the
common language (English or other national languages). This language is called Gherkin. The natural
language serves to narrow the gap between the technologists understanding of what the system under
development is supposed to do and the understanding of the non-technologists, who just want the system
to “work”. One of the problems with Cucumber is that there are few tools to help with writing Gherkin and
lots of time is wasted doing steps that could be done automatically.

While the Cucumber test automation tool offers good functionality and great potential, it is in its early
development, and is still very much a developer’s tool. Not much thought has been put in how to help the
customer or non-technical specification professionals write these test definitions.

So what are the steps that could be done automatically, and what would a tool look like that automated
these tasks? That is what this project will try to answer.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

6.1 Scope

This project will only look at Cucumber on the Java platform in the form of the Cucumber-Java library. The
focus will be on the process of writing Gherkin sentences and not on implementing them in test code,
running the tests, or all the automatic things that the Cucumber tool does to tie these things together
behind the scenes.

6.2 Cucumber and the Gherkin Language

The Cucumber test framework, as illustrated in Figure 1, consists of the system under test, the test code,
and the Gherkin sentences. Cucumbers job is basically to read the Gherkin sentences and execute the
matching test code. The test code will in turn perform the tests on the system under test.

Cucumber

Figure 1 - Cucumber system overview

The idea behind Gherkin is to use natural language to formulate tests or functional specifications, which in
turn can be linked to machine-executable code representing the tests. English is the main language, but
many other natural languages are supported.

In Gherkin, a test or functional specification is called a “Scenario” (see Figure 2, point 2). Each Scenario
consists of zero or more sentence describing the starting conditions (called a “Given sentence” — see Figure
2, point 3), at least one sentence describing an action (called a “When sentence” see Figure 2, point 4) and
at least one sentence describing the desired outcome of the action (called a “Then sentence” — see Figure
2, point 5).

Feature: As a system administrator,
when I log in to the system, the system log is displayed.

2 Scenario:

Given I am at the log in screen

When I log in as a system administrator
Then the status of the system is displayed

[QS =S S]

Figure 2 - Gherkin Example

The grammatical rules are the keywords “Feature: ”, “Scenario: ”, “Given ”, “When ” and “Then ”. The text
after the Feature keyword (see Figure 2, point 1) is a short description, only meant for human
understanding and is thus free form. The text after the Given, When and Then keywords are also free form
text, but are captured and matched against pieces of test code which will actually do what the text
describes.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

On top of the basic syntax there are also so-called “Tags” which have the function of declaring features or
scenarios so they can be referenced later. This is very useful when the number of tests grow and you wish
run only a subset of the tests. A Tag is defined as starting with a @-sign and ending with a space or line
break (whichever comes first). An example could look like this:

@VeryNiceTag

Furthermore there are Comments, which will be ignored by the text matcher. Comments start with a #-sign
and ends with a line break. An example could look like this:

#This is a comment

Each “Given”, “When” and “Then” sentence must have a matching piece of code to actually do what they
describe. This is done with methods with annotations called “step definitions”. An example can be seen in
Figure 3. Each method has an annotation (beginning with a @-sign) which contains a regular expression
which in turn is matched with the Gherkin sentences in the feature. If they match the code in the method is
run. Each matche

import cucumber.annctation.en.®;

public class GherkinSteps2 {
@aiven("~I am at the log in screen3™)
public wvoid goToTheLogInScreen() 1
'/ Navigate to login screen
¥

fwhen{"~I log in as a system administrator$”)
public void logInAsSystemAdministrator() {

'/ Log in with System Administrator credentials
b

@Then({"~the status of the system is displayed$")
public void checkStatusDisplayed() {

/f Find the text "System Status:
¥

Figure 3 - Example of step definitions

The point of Gherkin, which creates a layer of abstraction over the code that actually executes the test
steps, is to have a common definition of system features between customer and developer. It is important
because it provides a common language in which both developer and customer can express their
expectations of what the system should do.

One other neat thing this makes possible is to use the test definitions as documentation and accept-test of
the system. When the developer and customer have to agree if the system actually does what it is
supposed to, these test definitions can be used to impartially judge if it is the case.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

7 Objectives
In this chapter | will try to identify the most critical problems with writing Gherkin features in terms of how
much time and energy is used on things that could be automated.

The Obscurity Problem

When writing long features, it can be hard to get a good overview of the feature structure and much time
can be wasted on reading and formatting the text to get a good overview. An easy way to identify specific
parts of the feature is critical in any Gherkin editor.

The Commonality Problem

n u

Many steps are similar, like “Given | am at the log in screen”, “Given | am at the settings screen” and “Given
| am at the help screen”, where the corresponding code to execute that step also often will be very similar
and could be generalized. There is currently no tool for this kind of reuse in any Gherkin-capable editors.

The Multiplicity Problem

Every unique step (Given ..., When ..., Then ...) in the test definitions require a set of machine instructions
for it to be executed. This should encourage reuse of steps, as to minimize the amount of new code
required, but there is currently no software which supports the writer of Gherkin features in this, other
than to look through the code base.

The solution

So how could these problems be solved, or at least mitigated? | propose a new editor for writing Cucumber
features called “GherkinEdit” with the following features.

7.1 Gherkin syntax highlighting (The Obscurity Problem)
To give the user of the editor a better overview of a features structure, the keywords should be highlighted
with colors to visually separate them from the other text.

The colors chosen are strong primary colors (red, green, blue) to give the best possible contrast.
Highlighting the example from Figure 2 - Gherkin Example, it would look something like this:

Feature: As a system administrator, when I log in to the system, the system log
is displayed.

Scenario:
Given I am at the log in screen
When I log in as a system administrator
Then the status of the system is displayed

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

7.2 Context Sensitive Assistance (The Commonality Problem)

To help the user reuse and remember Gherkin sentences that has already been used before and
implemented as test code, GherkinEdit should provide Context Sensitive Assistance. The Context Sensitive
Assistance function is activated by writing the beginning of a sentence and pressing the Ctrl+Space keys. A
list with similar sentences that has already been implemented in code appears, and the similar sentences
can be selected and automatically inserted in the document to finish the sentence the user was writing.

7.2.1 Overview of the process
1. The user writes the beginning of a Gherkin sentence

=] testl.feature &3

Feature: Great Functionality
SJcenario: Use the great functionality
Given the program is started
WThen I use the great functionality
@ Then it |

2. The user presses a key combination that activates the Context Sensitive Assistant

3. The Context Sensitive Assistant captures the written sentence before the cursor

|~ testi.feature 3

Feature: Gres
Scenari(‘ functionality
G iggd started
Wher & use t 5 functionality
@ Then it |

4. All source files in the project is searched and all Cucumber annotations are captured

f— 2 @Then (""it is blue$")
| = ——> @Then (""it is red$")
| | ———> @Then ("~I see an error$")

5. The Cucumber annotations have their special syntax stripped so they look like normal Gherkin
sentences

@Brhen [™it is bluef™)

l @Then (""it is blues$")
Then it is blue

6. Each Cucumber annotation is compared with the written sentence to see if the written sentence
matches the beginning of the Cucumber annotation

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

[Then it is blue]

beginning of? ———{Then it is red|
() |Then I see an error

7. If they match, the Cucumber annotation is displayed as a suggestion to complete the written
sentence.

|~ testl.feature 3
Feature: Great Functionality
Scenario: Use the great functionality
Given the program is started
When I use the great functionality

Then it |
is blue
is red

@

8. If none of the scanned Cucumber annotations starts with the written sentence, then all annotations
are suggested to the user — but sorted according to their Levenshtein distance to the written

sentence. (see Levenshtein Distance design chapter)

7.3 Template System (The Multiplicity Problem)

When writing Cucumber features, step definitions can be written very narrowly and only support a specific
step in a feature. But this is very time consuming when writing many step definitions, and steps will often
be very similar to previously written steps — for example “When | press the ‘Home’ button” and “When |
press the ‘Next’ button”. This makes it an advantage to make the step definitions more general and one
step definition could likely cover all forms of button pressing.

This is all well and good, but when the steps and the step definitions are written by different people, as is
often the case, it can be very difficult to keep track of what kind of steps are already supported by step
definitions.

In this project | propose a new system to solve this problem which | call the “Template System”. The
Template system is a way for the person writing the step definition (the step definition writer) to tell the
person writing the Cucumber feature (the feature writer), which general step definitions he has written,
and how to use/reuse them in different contexts. The idea is that the step definition writer creates
Template, which is a kind of skeleton for at feature sentence, and the feature writer fills in the blanks to
create a full feature sentence which is guaranteed to be supported in test code. This will save a lot of time
for the feature writer, since he does not have to look through all the test code to find the exact sentences
that are supported. This would otherwise be necessary even if he has a very good idea of what he wants to
express, because Cucumber matches character by character.

7.3.1 Creating a Template
To create a template, the system will go through two general steps:

1. Gather information from the user about what the step definition supports

2. Store the information in a format so it can be used to help another user create steps supported by
the step definition.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

The process

1. The user selects the “Create Template” command:

[GherkinEdit Templates] Window Help

Create Template a

Insert From Template -
Js.ja

2. The useris presented with the “Create Template” dialog:

= Create New Template I. = ﬁ]

Create a new Template

Enter the name and step definition template to create a new Template

MName |

Step Def Template

b

3. The user enters the name and Step Def string of the template:

= Create New Template [=l -zhl

Create a new Template

Enter the narme and step definition template to create a new Template

Mame Find text with specific size

Step Def Template Then I can see the text "(Text to match)” in size (Text size in pt5]|

i

Lia‘" [Finish l [Cancel

)

e

4. The information is converted to XML and saved as a file in the workspace.

7.3.2 The Step Def string

The template Step Def string can be thought of as a text with a series of blocks which can be either text or
input. The text blocks provide context and information so you know what is going to happen, and the input

blocks gives the template flexibility in what data it is going to work on.

As an example take the following Step Def:
Then | can see the text "(Text to match)" in size (Text size in pts)

The string contains two text blocks, Then | can see the text " and " in size. They tell us that the test is going
to test if it can find a specific text with a specific size, and the test will be positive if it finds it.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

The string also contains two input blocks marked with parentheses, (Text to match) and (Text size in pts).
They tell us that the test wants a text to search for and the size of the text it should search for.

7.3.3 Using a Template
To use a template, the system will go through four general steps:

1. Present the user with a list of available templates and ask him which one he wants to use

Retrieve the information on how to use the supported step definition

N

3. Guide the user in using the step definition as it is intended
4. Write the resulting step to the feature
The process

1. The user selects the “Insert From Template” command:

[GherkinEdit Templates | Window Help

Create Template a

Insert From Template i
i3

2. The editor finds all the available templates and the user is presented with the list of templates:

£ B

Select Template to insert

Choose Temnplate to insert:

Find text with specific size

@ < Back Next > Finish

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

3. The selected template is parsed by the system and presented as a input dialog for the user:
& é El &1

Enter Template input

Enter the input for the Template

Template String: Then I can see the text "(Text to match)" in size (Text size in pts)
Text to match:

Text size in pts:

4. The user enters the desired input:
[a B o |

Enter Template input

Enter the input for the Template

Template String: Then I can see the text "(Text to match)” in size (Text size in pts)
Text to match: Hello World

Textsizein pts | 24|

@j Mext > [Finish] ’ Cancel

5. The system writes the resulting step in the editor:

Then I can see the text "Hello World™ in size 24

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

8 Design
This chapter will describe the design choices in building the GherkinEdit editor and the alternatives if
applicable.

8.1 Terminology
In this chapter several symbols and colors are used to represent parts of the system and relationships
between them.

A black arrow means a reference. See Figure 4. The component at the beginning of the arrow uses and/or
depends on the component at the end of the arrow.

A box with a blue background is a component of the feature being described. See Figure 5.

A box with a white background is a component independent of the feature being described. Typically a
Framework component. See Figure 6.

A box with an orange background is a system service, such as File System or Network Adapter. See Figure 7.

T Framework System
component service
Figure 4 - Reference K . . .
Figure 5 - Component Figure 6 - Framework Figure 7 - System service
component

8.2 System overview

One of the first design choices was to base the editor on the Eclipse Integrated Development Environment
(Eclipse IDE). Eclipse IDE is specialized in tools for code development, and it has a plug-in framework which
is very modular and encourages extensions and reuse of functionality. It provides a basic text editor with all
the features you would expect from a Notepad-style program, such as text editing, file saving and loading,
and undo/redo functionality. These features are essential for most text editors and provide a great
platform to build on.

To keep the complexity as low as possible, the proposed features are split up into three independent parts.
But since | don’t want users to install a lot of different plug-ins they are wrapped in the GherkinEdit Plug-in
Package, which will let the features be installed as one plugin, as shown in Figure 8.

10

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

Eclipse Integrated
Development
Environment

/ A

GherkinEdit Plug-in Package

Figure 8 - GherkinEdit system overview

8.3 Gherkin syntax highlighting

The purpose of the syntax highlighting function is to make it easier for at user to read and write Gherkin
features. With syntax highlighting it is easier to spot keywords, separate sentences and recognize text with
special meanings such as Comments and Tags.

The syntax highlighting function consists of three main parts; Document Reconciler, Document Damager
and Document Repairer. See Figure 9.

Eclipse Text Editor

Gherkin Syntax Highlighting

Figure 9 - Gherkin Syntax Highlighting

Every time the user changes the document (the feature being written in the editor), the Document
Reconciler is called. The Document Reconciler first asks the Document Damager which parts of the
document have changed so much that it needs to be repaired. Then it executes the Document Repairer on
the “damaged” parts of the document. The Document Repairer recognizes the patterns in the changed
parts that need to be painted and paint them in specific colors.

8.4 Context Sensitive Assistance
The purpose of the Context Sensitive Assistance feature is to make it easier to find Gherkin sentences that
are already supported by test code. Normally the person writing the Gherkin sentences would have to look

[11

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

through the test code base or talk to the developer every time he wants to write a sentence and be sure it
is already supported. The Context Sensitive Assistance feature tried to make this process significantly easier
by searching through the test code base, and matching the users sentence to sentences supported in the
test code base.

The Context Sensitive Assistance feature consists of 3 main components. See Figure 10.

Eclipse Text Editor

Context Sensitive Assistance

Figure 10 - Content Sensitive Assistance

When the user activates the Context Sensitive Assistance function, the line marked by the cursor is
captured (see Figure 11) and sent to the Content Assist Processor.

Feature: Gred
Scenari functionality

Gy C started
3 functionality

Figure 11 - Text capture

First the Content Assist Processor requests all implemented Gherkin sentences from the Gherkin Sentence
Crawler. The Gherkin Sentence Crawler requests the file system for all the .java files in the project directory
tree, and captures all the Cucumber annotations. See Figure 12.

ZGThen ("*it is blueS$")
Q—% @Then ("*it is red$")
—— @Then ("~I see an error$")

Figure 12 - Finding Cucumber annotations

[12

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

Next, the Gherkin Sentence Crawler strips the annotation syntax from the annotations, and it returns the
list of implemented Gherkin sentences to the Content Assist Processor. See Figure 13.

@Then (""it is bluas")
Brhen [Jit is bluef"]

Then it is blus

Figure 13 - Removing annotation syntax

With the list of supported Gherkin sentences, the Content Assist Processor now filters the list so only the
sentences which starts with the String that was sent to the Content Assist Processor is left. If there are any
left after the filtering, the list is returned to the user to choose from, and the chosen sentence is inserted in
the document.

However, if none of the supported Gherkin sentences starts with the users String, the supported Gherkin
sentences are then sorted by their Levenshtein Distance to the users String, and then returned to the user
to choose from. For more on this, see the “Levenshtein Distance design” chapter below.

8.4.1 Levenshtein Distance design
The Levenshtein distance between two strings is equal to the lowest number of character insertions,
deletions and substitutions it takes to make one string match the other.

For example, the distance between “dogs” and “dung” is 3, because to get from “dogs” to “dung” using
character delete, insert or substitute, | have to use 3 steps:

0. original dogs

1. substitute the “0” for a “u” | dugs

2.insert a “n” after the “u” dungs

3. delete the “s” dung

The Levenshtein distance is a good measure of similarity between strings and the algorithm can be run
relatively quickly on even a large collection of strings.

The context assist uses the Levenshtein distance algorithm if no direct matches can be found between the
written sentence and the Cucumber annotations in the project.

1. Each annotation has its Levenshtein distance to the written sentence calculated
All the annotations gets sorted according to their Levenshtein distance (ascending, so highest
similarity first)

3. Thellist is presented as suggestions to the user

13

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

8.5 Template System
The purpose of the Template System is to let the test code developer easily describe how to use the test
code, and for the Gherkin sentence writer to take advantage of this when writing sentences.

When writing test code to support Gherkin sentences, it is often an advantage to generalize the step
definitions. Take the following Gherkin sentence as example:

“Then | see the text ‘Hello World’ in size 16”
Now, the fast and easy way to support this in test code would be to write:

@Then({"~I see the text ‘Hellc World' in size 16%")
public woid findHelloWorldInSizels() {

'/ Find 'Hello World' in size 16
h

But what if | change my mind and want to see the text in size 20? Or if | want to see the text ‘Hello
Denmark’ instead? With this way of doing it | end up with a lot of test code.

Luckily the Gherkin annotation supports regular expression capturing. This is automatically done when the
regular expression contains a so called “group” which is marked with parentheses and another regular
expression. This makes the following test code possible, which can handle any text in any size:

@Then("~I see the text “{[a-z]*)* in size ([@-9]*)%")
public wvoid findTextInSize(String text, String Size) {
'/ Find String text in size String size

h

The ([a-z]*) capture group means “capture all letters here from a to z”, and the ([0-9]*) capture group
means “capture all numbers here from 0 to 9”.

Now the test code can handle finding any combinations of text and size, but how does the person writing
the Gherkin sentences find this information? Normally he would have to look through the code base and
read and understand all the regular expressions. In the Template system the person writing the test code
can now create a template representing the general test code and guide the person writing Gherkin
sentences in using it.

The Template System consists of 2 main parts. The Create Template feature and the Insert From Template
feature. See Figure 14.

14

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

Eclipse Text
Editor

/N

Template system

N/

File system

Figure 14 - Template system overview

The only place where the Create Template and Insert From Template features overlap is in the design of
the data structure used to save and load Templates.

The special data structure is needed to save the Templates persistently beyond the scope of runtime.
Templates are saved in files with the ending .getemplate (short for “GherkinEdit Template”).

The content of the file is plaintext XML in the form shown in Figure 15.

<template>

<name>Find text with size</name:

<templateString>Then I can see the text " (text to match)" in size (size to match).</templateString:
</template>

Figure 15 - GherkinEdit Template Example

The XML have one main element called “template”, which contains two elements “name” and
“templateString”. The “template” element is a container which marks the start and end of the template.
The “name” element is a short description of the template, and the “templateString” element is the
definition of the template.

If we take a look at the template string in Figure 15, four parts can be identified. The first part “Then | can
see the text "e;” is a static text that cannot be changed by the user of the template. The next part
“(text to match)” is an input field which the users of the template have to fill with the desired input. It can
be identified by the parentheses. The text inside the parentheses is used as a description of the input the
user is expected to input as shown in Figure 16 - Input prompt when using Template.

15

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

ré Eli:hw

Enter Template input

Enter the input for the Template

Template String: ThenI can see the text "(Text to match)” in size (Text size in pts)
Text to match:

Text size in pts:

|/§"I

Mext > Finish Cancel

Figure 16 - Input prompt when using Template

The parentheses also result in the limitation that static text cannot contain parentheses. This type of
marking is chosen because it is already a limitation in Gherkin sentences not using the template system,
where parentheses have to be escaped with the backslash character. This is because it is a reserved
character in regular expressions used for grouping as mentioned earlier.

The reason for choosing XML is that it is a well-known standard with many free tools and libraries to read
and write it, which makes it easier to implement, but also easier for Cucumber tool developers to
understand, interface with or adopt. It is also very easy to extend in case future templates need more (or
less) data to define them.

8.5.1 Create Template

The purpose of the Create Template system is to let test code developers express and communicate how
their test code can and should be used, and as a result save time for the person writing the Gherkin
features.

The Create Template system consists of a Command Handler, Template, XML Handler, Wizard and Page for

the Wizard. See Figure 17 - Create Template System.

16

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

Eclipse Menu Eclipse Text
framework Editor

N/

Create Template System

Figure 17 - Create Template System

The core of the Create Template system is the Command Handler. The Command Handler is activated (and
registered on) the Eclipse Menu framework. This creates a drop-down menu in Eclipse with the item
“Create Template” in it as illustrated in Figure 18 - Create Template Eclipse menu item.

| GherkinEdit Templates | Window Help

Create Template a

Insert From Template i
—_— e il

Figure 18 - Create Template Eclipse menu item

When the Create template menu item is activated, the Create Template Command Handler is called. First it
calls the Create Template Wizard, which in turn displays the Create Template Page as illustrated in Figure
19.

r ™
= Create New Template E‘E‘g

Create a new Template

Enter the name and step definition template to create a new Template

Mame |

Step Def Template

@

Figure 19 - Create Template Page GUI

[17

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

After capturing the Name and Step Definition of the new Template a Template object is created with the
data and the XML handler is used to convert the object into a XML representation as illustrated in Figure
15. As the last step the XML String is saved as a file in the file system in a designated directory in the Eclipse
project root directory.

8.5.2 Insert from Template

The purpose of the Insert from Template System is to help the user use an existing Template to create a
Gherkin sentence that is guaranteed to be supported by the test code and used as the test code developer
intended.

The Insert from Template System is designed very similarly to the Create Template System. See Figure 20.

Eclipse Menu Eclipse Text
framework Editor

N/

Insert Template System

Figure 20 - Insert from Template System

When the Insert from Template menu item is activated, the Command Handler reads all the Template files
in the designated Template directory in the Eclipse projects root directory. All the XML-encoded templates
are parsed by the XMLhandler and a Template object is created for each stored Template. This list is then
sent to the Insert Template Wizard which displays the Insert Template Page 1. Here the user is asked to
choose the Template to be inserted in the current document in the Eclipse Text Editor. See Figure 21.

T I

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

-

= Dﬁlg-‘

Select Template to insert

Choose Template to insert:

Find text with specific size

@ < Back Mext >

Figure 21 - Selecting Template to be inserted

When the user has selected the template, page 2 of the Wizard is shown with the details of the template
and input fields required for the given template. See Figure 22.

-

et ESEE™)

Enter Template input

Enter the input for the Template

Template String: ThenI can see the text "(Text to match)” in size (Text size in pts)
Text to match:

Text size in pts:

Figure 22 - Prompting user for template input

Finally the Command Handler receives the user input and chosen template, compiles the resulting Gherkin

sentence, and inserts the sentence in the document in the Eclipse Text Editor. The Gherkin sentence is now
inserted in the editor as illustrated in Figure 23.

19

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

¥y -
Platfo i
al I

GherkinEdit Templates Window Help
-&?@v [9[5{;,:'7 .. - v’fi::l{::lv -

& testfeature 23 [J] GherkinSteps.java Test Template.getemplate

Feature: Some terse yet descriptive text of what is desired

@TestTag

Scenario: Some determinable business situation
Given I am at the start page

When I click the Start button

Then I can see the text "Hello World” in size 24|

Figure 23 - Final result of inserting a template

20

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

9 Implementation
This chapter will describe the choices made in implementing the solution, and the core steps to build it.

9.1 Terminology
In this chapter several symbols and colors are used to represent parts of the system and relationships
between them.

A white arrow means an inheritance. See Figure 24. The class at the beginning of the arrow is a child of the
class at the end of the arrow.

A black arrow means a reference. See Figure 25. The object at the beginning of the arrow uses and/or
depends on the object at the end of the arrow.

A box with a blue background is a class in the part of the program being described. See Figure 26.

A box with a white background is a class independent of the feature being described. Typically a Framework
Component. See Figure 27.

A box with an orange background is a system service, such as File System or Network Adapter. See Figure
28.

Framework System
component service
Figure 24 - Inheritance Figure 25 - Reference Figure 26 - class Figure 27 - Framework Figure 28 - System
component service

9.2 Tools and frameworks
In this chapter | introduce the Tools and frameworks | used for the implementation of the GherkinEdit plug-
in.

9.2.1 Eclipse Software Development Kit

When it comes to building a specialized text editor, few frameworks look as promising as the Eclipse SDK.
The whole Eclipse software suite is extremely modular and extendable, and with software development in
mind Eclipse SDK provides a lot of help with common text editor features such as copy/paste, undo/redo,
opening and saving files and so forth.

The code that reads and manipulates text is completely open and extendable, and the extensions can easily
be packaged as a plugin that other people can install in their Eclipse installation, or with a bit more effort
packaged as a stand-alone application (a so-called Rich Client).

21

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

9.2.2 Eclipse Integrated Development Environment

In theory it is possible to develop Eclipse Plug-ins in any editor you can write Java in, but almost all Eclipse
plug-ins are written in Eclipse since it provides a host of features that makes development easier. So in
practice it does not make much sense to develop Eclipse plug-ins in anything else than Eclipse.

All my experience with Cucumber has been from command line or Eclipse. Eclipse is open source, free and
multiplatform compatible. But best of all | know that Eclipse plays well with Cucumber and | see it as a big
advantage to be able to write Cucumber features and the definitions that run them in the same
development environment.

9.3 Creating a Text Editor plug-in in Eclipse

To create the base of the Text Editor plug-in | followed the excellent tutorial “Building an Eclipse Text Editor
with JFace Text”’
Clayberg for a more thorough understanding of the basics.

, and read “Chapter 2. A Simple Plugin Example”" from the book Eclipse Plug-ins by Eric

After creating the basic Text Editor plug-in, which has functionality comparable to Notepad (edit text,
undo/redo and save/load files in the file system), working with the Eclipse Framework is mostly a matter of
finding which class provides the functionality you want to tap into, extend the class and override the
correct methods. Finding these methods and figure out how to change them to get the desired effect
proved quite time consuming and gave a steep learning curve. But after figuring it out it was a pleasure to
work with.

9.4 Gherkin syntax highlighting

The Gherkin syntax highlighting feature consists of four classes (blue) as illustrated in Figure 29.

SourceViewer RuleBased
TextEditor Configuration Scanner

Figure 29 - Implementation of Syntax highlighting

To use the Eclipse TextEditor the class GherkinEditor is created and declared as extending TextEditor. In
GherkinEditor the GherkinViewerConfiguration class is set as the new SourceViewerConfiguration. This is
done with the following command in the GherkinEdit Constructor:

| setSourceViewerConfiguration(new GherkinviewerConfiguration(coclerManager));

22

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

The GherkinViewerConfiguration instructs the GherkinEditor to use the GherkinScanner which in turn
applies the rules that Gherkin keywords, comments and tags is painted in their respective colors, with the
following code:

5 public class GherkinScanner extends RuleBasedScanner {

)

= public GherkinScanner({ColorManager manager) {
IToken comment = new Token({new TextAttribute(manager.getColor({IGherkinColorConstants.COMMENT)));
IToken tag = new Token(new TextaAttribute(manager.getColor(IGherkinColorConstants.TAG)));
IToken keyword = new Token(new TextaAttribute(manager.getColor({IGherkinColorConstants.KEYWORD)));

=
& WOCa

IRule[] rules = mew IRule[187];

//Add Comment rule

rules[®] = new EndOfLineRule("#", comment);
//Add Tag rule

rules[1] = new SingleLineRule("@", null, tag);
//Add Feature rule

rules[2] = new SinglelineRule("Feature:",
//Add Scenaric

[
P T T Y

woco

&

» keyword);

2 rules[3] = new SingleLineRule("Scenaric:™, " ", keyword);
3 //Add Given rule

= rules[4] = new SinglelLineRule("Given", " ", keyword);

5 //Add When rule

B

rules[5] = new SingleLineRule("When",
//Add Then rule
rules[6] = new SinglelLineRule("Then",

» keyword);

]

s keyword);

: //Add And rule

@ rules[7] = new SinglelLineRule("And”, " ", keyword);
//Add But rule
rules[8] = new SinglelLineRule("But™, " ", keyword);

// Add generic whitespace rule
rules[9] = new WhitespaceRule(new GherkinWhitespaceDetector());

[S Yy o

setRules(rules);

L I I~ I T S T T S T I N
h A .

=

J
C

The RuleBasedScanner requires the rules to implement IRule. Instead of implementing it from scratch the
EndOfLineRule, SingleLineRule and WhitespaceRule classes are used. The EndOfLineRule is a rule that
applies for a specific pattern (here a “#”) and everything following it until the next line delimiter. The
SingleLineRule is a rule that matches a String beginning with the first parameter and ends with the second
parameter or a line delimiter, whichever comes first.

To generate the color objects, GherkinScanner uses the ColorManager.

9.5 Context Sensitive Assistance

As with the syntax highlighting, plugging in the Context Sensitive Assistance is also a matter of overriding
existing functionality. The Eclipse TextEditor component already supports content assistance, it is just not
enabled by default. See Figure 30.

23

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

SourceViewer
TextEditor Configuration

Figure 30 - Context Sensitive Assistance implementation

The GherkinContentAssistProcessor is registered with the GherkinViewerConfiguraion which in turn is
registered with the GherkinEditor. This results in the GherkinContentAssistProcessor being asked for a list
of suggestions whenever the user presses the hotkey for content assistance (Ctrl+Space).

The GherkinContentAssistProcessor then asks the GherkinSentenceCrawler for a list of the supported
Gherkin sentences. First the GherkinSentenceCrawler uses the FileSystemUtils to read all java files in the
Eclipse project directory and collects all the test code annotations and return them to the
GherkinContentAssistProcessor.

Now, the GherkinContentAssistProcessor uses the StringUtils to strip the annotations of the annotation
syntax and are left with the pure Gherkin sentences. If the users String sent to the
GherkinContentAssistProcessor is the beginning of any of the collected Gherkin sentences, all sentences
where this is true will be sent back to the GherkinEditor and presented as suggestions.

However, if none of the Gherkin sentences starts with the users String, each Gherkin sentence is compared
with the users String and given a score of how similar it is. This score is calculated with the Levenshtein
distance Algorithm which is described in the chapter below.

Finally the Gherkin sentences are returned as suggestions sorted by their similarity to the users String.

9.5.1 The Levenshtein distance Algorithm

To let the Context Sensitive Suggestion feature find the Cucumber annotations similarity to the written
sentence, this project implements the Levenshtein distance algorithm. This chapter will explain how it is
done.

Let’s take “dogs” and “dung” as an example.

[24

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

dlo|g]|s
d
u
n
g
1. The two strings’ characters are put in a matrix(i,j) with one string horizontally in the top and the
other vertically to the left, both with 2 spaces from (0,0).
dlo|g]|s
0[1](2|3]4
d|1
ul?2
n|3
gl 4
2. The characters’ position in the string (one-based) is written under the first string and right of the
other.
3. For each remaining cell, calculate the cost as: if the character above the cell and the character to
the left of the cell are the same, then the cost is 0. Otherwise it is 1.
4. Calculate the value of the cell as the minimum of
a. The above cell-value plus 1 (matrix(i-1,j)+1)
b. The left cell-value plus 1 (matrix(i,j-1)+1)
c. The cell-value above and to the left plus the cost (matrix(i-1,j-1)+cost)
dlo|g]|s
0|1(2|3]|4
dj{1|0(1(2]|3
ul2|1(1|2|3
n{3(2(2(2|3
gl4|3(3|3]|3
5. After all the cells have been calculated (step 3 and 4 repeated), the result will be in the lower right

corner cell.

9.6 Template System
The Template system consists of two parts. The Create Template function and the Insert from Template
function. These can be accessed from the Eclipse menu bar as illustrated in Figure 31.

[GherkinEditTempIates] Window Help

Create Template a

Insert From Template -
A5 jan

Figure 31 - Accessing the Template system functions

To insert menu’s and menu items in the Eclipse menu bar, the menu and menu items are registered in the
plugins plugin.xml file. The plugin.xml file is a special file with, among other things, information on which

25

Svante T.H. Jgrgensen

extension points the plug-in plugs in to and commands registered for the plug-in. Commands are an Eclipse

Framework concept which is used to let plug-ins interface with other plug-ins.

To add the “GherkinEdit Templates” menu to the menu bar, the following XML is inserted in plugin.xml:

|1
o kLn -

]

L=

= M W R =&

(s B I I B R B, B B B A o S A Y
Woca

Il.T: [y
[% I T]

o
B3

<extension

point="org.eclipse.ui.menus">
<menuContributicn

locationURI="menu:org.eclipse.ui.main.menu?after=additions">

<menu

id="testtest.menus.TemplateMenu”
label="GherkinEdit Templates"
mnemonic="M">
<command
commandId="gherkinedit.commands.CreateTemplateCommand”
id="gherkinedit.menus.CreateTemplateCommand"
mnemonic="C"»
</ command
<command
commandId="gherkinedit.commands.InsertFromTemplateCommand™
id="gherkinedit.menus.InsertFromTemplateCommand"
mnemonic="I"%
</ command >

</menuz
</menuContributionz
</extensions

Line 45 defines the extension point, which is the Eclipse menu bar. Line 49-50 inserts the “GherkinEdit
Templates” menu in that extension point, and lines 53-54 and 58-59 inserts the “Create Template” and
“Insert from Template” menu items in the menu as well as defines the command ID the action should

trigger.

9.6.1 Create Template system
When the Create Template system is activated through the Eclipse menu item, the
CreateTemplateCommandHandler is called. See Figure 32.

System for Development of Functional Accept-test Specifications

26

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

Abstract Wizard Wizard
Handler Page

Figure 32 - Create Template implementation

The CreateTemplateCommandHandler then calls the CreateTemplateWizard. The Wizard framework is part
of the Eclipse Framework and makes it easier to create GUI’s in a wizard form. A wizard is a popular
graphical linear dialog concept where the user can move back and forward between pages, will be
presented with information and asked to provide input. Figure 33 illustrates the Create Template Wizard.

P ™
= Create New Template Elm

Create a new Template

Enter the narme and step definition template to create a new Template

Marme Find text with specific size

Step Def Template ThenIcan see the text "(Text to match)” in size (Text size in pts]|

@ [Enish || Cancel

Figure 33 - Create Template Wizard

This particular Wizard only has one page, but if there were more pages a “Back” and a “Next” button would
be visible left of the “Finish” button.

The Create Template Wizard is created from CreateTemplateCommandHandler with the following code:

IWorkbenchiWindow window = HandlerUtil.getdctivehorkbenchiWindowChecked(event);

WizardDialog wizardDialog = new WizardDialog(window.getShell(), new CreateTemplateWizard()});
wizardDialog.open();

[27

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

The CreateTemplateWizard then adds the Wizard page with the following code:

@verride

public void addPages() {
pagel = new CreateTemplateWizardPagel();
addPage(pagel);

The CreateTemplateWizardPagel class’ job is to create the labels and input fields for the wizard page that
captures the input of the user required for creating the Template.

When the user presses “Finish”, the text in the input fields are sent back to the CreateTemplateWizard class
which first creates a Template object and then sends it to the XMLHandler to save it to a file.

The XMLHandler uses the XStream?® library to convert Java objects to XML code, and the FilesystemUtils

class to save it to afile:

public static wold saveTemplate(Template template) |
XStream xstream = new XStream();

xstream.alias("template”, Template.class);
String xml = wstream.toXML(template);

String relativePath = "\\GherkinEditTemplates\\";
String filename = template.getName() + ".getemplate”;
FilesystemUtils.saveStringdsFileInProject({relativePath, filename, xml);

The resulting file looks something like this:

<template>

<name>Find text with size</name:

<templateString>Then I can see the text "(text to match)" in size (size to match).</templateString>
</template:

9.6.2 Insert from Template system
The objective of the Insert from Template system is to let the user use Templates to create Gherkin
sentences quickly and efficiently, with the guarantee that the sentences are supported by the test code.

The implementation of the Insert from Template system is quite similar to the Create Template system. See
Figure 34.

28

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

Abstract Gherkin . _
Handler o Wizard WizardPage

Figure 34 - Insert from Template implementation

Again, the CommandHandler receives the command from the user activating the Eclipse menu item. The
CommandHandler starts the Wizard, but this Wizard has two pages:

r

a m@g‘re D@g‘

Select Template to insert

Enter Template input
Enter the input for the Template

e Ve i T Template String: Then I can see the text "(Text to match)” in size (Text size in pts)
Find text with specific size
Text to match: Hello Woerld

Text sizein pts: | 24

@ < Back Mext > B @ Next > [Enish [conce |

The first page asks the user to choose which Template to use. The next page is generated based on the
chosen template and asks the user for the required input.

To get the list of Templates, CreateTemplateWizardPagel asks the XMLHandler for a list of all the created
Templates. The XMLHandler in turn uses the FilesystemUtils class to read all the Template files, and the

XStream” library is used to turn the XML from the template files into Template objects with the following
code:

[29 L

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

public static List<Template: getTemplates() {
List<File> templateFiles = FilesystemUtils

List<Template> templates = new ArrayList<Template>();

KStream xstream = new XStream();

xstream,setClassloader(Template.getClassloader());

xstream.alias("template”, Template.class);

for (File file : templateFiles) {
templates.add(({Template)xstream. from¥ML(file));

}

return templates;

¥

.getFilesByExtension(FilesystemUtils. getCurrentProjectRootDirectory(), “"getemplate™);

Of special note is the xstream.setClassLoader(...) call which is nessesary because the Eclipse framework,
which the plug-in is executed in, is based on the Open Services Gateway initiative® (0SGi) framework. This
means that the Template class is not guaranteed to be loaded by the same class loader as the XStream
class. This is why XStream must be specifically told what class loader to use.

30

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

10 Test

10.1 Test methodology

Because this is a one-man project of relatively short duration | decided not to do automated testing. In my
experience small projects tend to benefit a lot less from automated testing than bigger projects. There is a
certain overhead in setting up automated testing, and finding tools that let your test code interface with
the running program can be a project in itself. In the case of Eclipse plug-ins, Eclipse has its own Eclipse Test
Framework’. Because the single most time consuming part of this project was figuring out the Eclipse Plug-
in Framework, | thought it was probably not worth a big part of my project time to learn another Eclipse
framework at the same time.

So in the end | decided that my test methodology would be to just manually test the functionality as the
project grew.

10.2 Test Results
Gherkin Syntax Highlighting

Test Result Comment

Highlights “Feature: ” keyword blue
Highlights “Scenario: ” keyword blue V
Highlights “Given ” keyword blue
Highlights “When ” keyword blue

<
<
Highlights “Then ” keyword blue V
o
b=

Highlights Comments green
Highlights Tags red

Only works after user presses Enter after the

Tag
Context Sensitive Assistance
\ Test Result Comment

Retrieves and suggests implemented Gherkin V
sentences
Inserts selected Gherkin sentence V
Inserts selected sentence instead of the . . L

. . = It inserts it after the selected line instead
selected line in the feature file
Only shows the sentences that begin with the For some reason this works when the plug-in is
selected line V run from the GherkinEdit project, but this

functionality does not work when exported to
a .jar file to be distributed.
If no sentences begin with the selected line, the For some reason this works when the plug-in is
sentences are ranked by their Levenshtein V run from the GherkinEdit project, but this
distance to the selected line functionality does not work when exported to
a .jar file to be distributed.

[a1 L

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

Template System

Result

Template menu is shown in Eclipse menu bar

Create Template wizard receives user input

Create Template wizard creates template file
after successful completion

Create Template wizard does not create
template file if wizard is aborted

Insert from Template wizard loads all existing
Templates and present them to the user

Insert from Template wizard asks the user for
correct input for selected template

Insert from Template wizard inserts the chosen
Gherkin sentence with user input in document
after successful termination

Insert from Template wizard does not insert
anything in the current document if the it is
canceled.

\'4
\'4
\"4
\"4
\"4
\"4

[2 L

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

11 Result analysis
Even though not all tests passed, | am still quite satisfied with the result. | have not had time to iron out all
the bugs but | think GherkinEdit clearly shows the promise of the tools | have created.

In the following chapters | will compare the old ways of making Cucumber tests to the way it can be done
with GherkinEdit. The scenarios of how it is traditionally done is based on my experience in a student job
where | worked on a project where Cucumber where used for all automated tests.

11.1 Gherkin Syntax Highlighting
Before Gherkin Syntax Highlighting, the features would just look like this:

5 testbt B2 | @ featurel feature & feature? feature

@TestTag
Feature: Test
A very good test.

#This is a comment

Scenario: This is a test
Given I am a good tester
When I test
Then I find lots of bugs!

Scenario: This is another test
Given the program is started
When I press the Home button
Then the text "Hello World" is shown

Now, they look like this:

|5 test.ba & featurel feature &7 | 4 feature feature

@TestTag
Feature: Test
A very good test.

#This is a comment

Scenario: This is a test
Given I am a good tester
When I test
Then I find lots of bugs!

scenario: This is another test
Given the program is started
When I press the Home button
Then the text "Hello World™ is shown

It is in my opinion a vast visual improvement that makes it much easier to recognize which part of the test
does what and how to interpret it.

33

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

11.2 Context Sensitive Assistance

Before, when you wanted to reuse implemented Gherkin sentences, you had to read through the entire
(sometimes huge) test code base and identify the Gherkin sentences they supported:

public class Gherkinsteps {
@aiven(”~the webpage ([a-z]*) exists§™)
public void theWebpageExists(String webpage) {

}

@when("~I press the ([a-z]*) link3")
public void pressLink(String link) {
//press a link

}

@Then("~I can see the ([a-z]*) text$")

public void checkForText(String text) {
/fcheck text

¥

@Then("~I can not see the ([a-z]*)} text$")

public void checkThatTextIsNotThere(String text) {
//check that text is not there

¥

@Then({"~I see the text “Hello World® in size 163"}
public woid findHelloWorldInSizel6() {

/f Find 'Hello World' in size 16
¥

—_———————————————1g size

}

@Then (" : size ([@-9]%)3")
public +| What does all this mean? |&, string Size) {

With the Context Sensitive Assistance system, all the sentences are available by pressing Ctrl+Space:

Given the webpage ([a-z]") exists

When I press the ([a-z]*} link

Then I can see the ([a-z]*) text

Then I can not see the ([a-z]*) text

Then Isee the text ‘Hello World' in size 16
Then I see the text '([a-z]%)" in size ([0-9]%)
Given I am at the log in screen
WhenIlogin as a systern administrator
Then the status of the system is displayed

It even tries to guess which sentences you want by analyzing the line you are currently writing, and displays

them first.

11.3 Template system

In traditional Cucumber test development, expressing how to use the test code to write supported Gherkin

sentences is quite time consuming. The developer either have to explain it in person to the test writers,
write documents or draw illustrations. In the case of explaining it in person, this has to be repeated every
time a new person wants to write tests. In the case of documents and drawings, first of all they are time

34

Svante T.H. Jgrgensen

System for Development of Functional Accept-test Specifications

consuming to make and second they need to be attached to the specific code project being worked on or

indexed in some other way.

With GherkinEdit the Template system is right where the users need it — in the code project itself. There is

only one dialog needed to create a description:

-

F

&

-
E Create Mew Template ="
Create a new Template
Enter the name and step definition template to create a new Template
Mame Then I see text with specific size
Step Def Template Then I see the text "(text to search)” in size (size in pts)
@ [Finizh] [Cancel
e
And only two dialogs needed to use it:
@ ——cl g

Select Template to insert

Enter Template input

Choose Template to insert:

Another Template (name)

Then I cee the text "(text to search)” in size (size in

Enter the input for the Template

Template String: Then I see the text "(text to search)” in size (size in pts)

Yet Another Template (name) (text to search) Hello World
(size in pts) 24|
@ < Back Next > Finish @ Nec> | [gnish | [Cancel

35

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

12 Discussion of future improvements

In the Gherkin Syntax highlighting there are a few situations where it does not behave as expected, for
example to color the tag string you need to press Enter after writing it. This is obviously something | would
like to fix. Also it would be nice to add support for customizing the colors and choosing which language
features should be highlighted and which should not.

Additionally, Cucumber supports many other languages than English, and it would be nice to support syntax
highlighting for these as well.

As for the Context Sensitive Assistant, it is the most unstable part of GherkinEdit. But besides fixing the
bugs so it works completely as intended, | don’t think there is much more | could ask it to do.

With the Template system | think there is a lot of potential for improvements. Right now all user inputs
when inserting a Template is Strings only. It would be great to be able to specify if an input should be plain
text, number or Enums (a specific set of options). Furthermore a system for organizing the Templates in
categories instead of just each project having a long list of Templates would also be a good improvement.

13 Conclusion

In this project | have analyzed the workflow of developing Cucumber tests, identified steps that where well
suited for automation, and proposed tools that could be used to automate these steps. The tools |
proposed was a syntax highlighting tool, an intelligent suggestion tool and a template tool. | then designed,
implemented and tested the tools.

In the end | reflected on the usefulness of the tools and how they could be improved in the future.

One of the most useful things | learned was how to use the Eclipse Plug-in framework. It has a very steep
learning curve and many novel design ideas which takes time to understand, but the usefulness and ease
with which plug-ins can be created to change or add almost any functionality in Eclipse more than makes
up for the effort.

| am also quite happy with my GherkinEdit plug-in. It saves a lot of time in writing Cucumber tests, and even
though it has some rough edges none of them makes it take longer to write tests. It is definitely a tool | will
use in the future.

Svante T.H. Jgrgensen

14 References

il e

g

Eclipse Plug-ins, 3. Edition, Eric Clayberg, 2008 (ISBN-13: 978-0-321-55346-1)

Levenshtein Distance, in Three Flavors (http://www.merriampark.com/Id.htm)

Levenshtein distance, Wikipedia page (http://en.wikipedia.org/wiki/Levenshtein distance)
Building an Eclipse Text Editor with JFace Text (http://www.realsolve.co.uk/site/tech/jface-
text.php)

XStream (http://xstream.codehaus.org/)

Open Services Gateway initiative framework (OSGi) — (http://en.wikipedia.org/wiki/OSGi)
Eclipse Test Framework

(http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.test/testframework.html?view=co)

System for Development of Functional Accept-test Specifications

37

http://www.merriampark.com/ld.htm
http://en.wikipedia.org/wiki/Levenshtein_distance
http://www.realsolve.co.uk/site/tech/jface-text.php
http://www.realsolve.co.uk/site/tech/jface-text.php
http://xstream.codehaus.org/
http://en.wikipedia.org/wiki/OSGi
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.test/testframework.html?view=co

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

15 Table of Figures

Figure 1 - CUCUMDET SYSTEM OVEIVIEW ..c.uvviiiiiiiiieeiciieeeeectiteeeseiteee s st e e s sstaeeesstaeeesnsaeeesssaaeesssaeeesnnsseeesnsssenenn 2
FIUre 2 - GRErkin EXAMIPI....co.eeeeee ettt e e e et e e e et e e e e ataeeesasaeeesnsaaeeensaeeesnsaeeesnnsaneenn 2
Figure 3 - Example of Step definitioNsc..eee it s e e e e raeee s 3
=V Y oY =Y oo RSP SPR 10
FIBUIE 5 - COMIPONENT e 10
Figure 6 - FrameWork COMPONENTuiiiiiie ettt e et e e s et e e e s e aae e e s eabeeeessbeeeeenreeeeennsens 10
FIUIE 7 - SYSTEIM SEIVICE ceeiiiiiiiiiiiieee ettt ettt et e e e ettt e e e e s s s e aabt e eeeeeeesaaanbeaaeaeessessnnsteaaeeessssnnnes 10
Figure 8 - GherkinEdit SYSTEM OVEIVIEWcciiiiiiieciiiie ettt e e e s e are e e e e e e e e s abaeesennraeeeennres 11
Figure 9 - Gherkin Syntax HighlIZhtingoviiiiiiii e e 11
Figure 10 - Content SENSITIVE ASSISTANCEuuiiiiiiii ittt e e e ee e e e e s e s sabr et e e e e e s s s sanbeeeeeeeesssnnnns 12
FIBUIE Ll - TeXt CaPtUI . i 12
Figure 12 - Finding Cucumber @annOtatioNsc..uiiiiciiiiicciee s e s are e e s ebae e e 12
Figure 13 - RemMOVIiNg aNNOTatioN SYNTAX...cccuiiiiiiiiiiiiiiiiieeee e ettt ee e s s ssseirtreeeeesssssaabraeeeeessssssssseseeesesssnssnnns 13
Figure 14 - Template SYSTEM OVEIVIEW........uiiiiiiiiie et e ettt e et e e e tte e e e st te e e s ttee e s eabaeeeeareeeeestaeeeesseeesennsens 15
Figure 15 - GherkinEdit TeEmMPlate EXamPIe ...cccuiiiiiiiiiec ettt e e s e e e s e e s e e e s nbee e e e nres 15
Figure 16 - Input prompt When Using TeMPIate.....cccvviiiiiiieecee e e e s 16
Figure 17 - Create TEMPIate SYSTEIM ...ooii et e e e e ee e e e e ate e e s e are e e s eareeeeeataeeeenreeeeennsens 17
Figure 18 - Create Template EClipSe€ MENU IEM ..ciiieiiiii it e e e aree e e 17
Figure 19 - Create TemMPIate PAge GUIueii ittt ettt e e st e e e s e e e s e e e e snbae e s enrees 17
Figure 20 - Insert from TemPlate SYSTEMocc i et e e et e e s e are e e e e are e e e eareeeeesraeeeennrens 18
Figure 21 - Selecting Template to b INSEITEM......cooiiiiiiiiieeee e e e e e 19
Figure 22 - Prompting user for template iNPULcccueiiiiiiiiieeece e e e ree e e 19
Figure 23 - Final result of inserting @ temMPIatecuveieeciiii e 20
=V e [o] o 1T a1 - ol YR UPPSPR 21
=V N Al £ U)o o =T o o RSP SPR 21
= VTR L SR o = 1SR 21
Figure 27 - Framework COMPONENTuiii ettt e e et e e e sate e e s saba e e s e sbeeeessbeeeeesreeesennsens 21
FISUIE 28 - SYSTEM SEIVICE coiiiiiiiiiiiiiieiee e ittt et e e e e sttt e e e e e s s ssabbe et eeeessssssbbasaeeeesssnssssseaaaeeesssnssssstseeeesssansssnns 21
Figure 29 - Implementation of Syntax highlightingcc.eeiiiii i 22
Figure 30 - Context Sensitive Assistance implementationccceciieiiiiiiieccce e 24
Figure 31 - Accessing the Template system fUNCLIONSueiiiiiiiiiecie e e e e 25
Figure 32 - Create Template implementation ... e e e e e e 27
Figure 33 - Create TemMPIlate Wizard.........ueee ittt e e s e e s e e e s abe e e s enbae e e enres 27

Figure 34 - Insert from Template implementation...........ccueeeeiiiiie e e 29

16 Appendix 1: GherkinEdit Installation instructions

1. Download Eclipse from http://www.eclipse.org/downloads/
(GherkinEdit been tested with the Windows builds of “Eclipse IDE for Java EE Developers” Indigo
and Juno in both 32 and 64 bit versions)

2. Install (extract) Eclipse to any directory
Put GherkinEdit_0.1.0.alpha.jar and XStream_1.4.2.jar in the plugins directory in the Eclipse
installation directory.

4. Start Eclipse

Svante T. H. Jgrgensen

http://www.eclipse.org/downloads/

Svante T.H. Jgrgensen

17 Appendix 2: User Manual

System for Development of Functional Accept-test Specifications

This user manual will guide you through setting up an Eclipse project and using the different features of the

GherkinEdit plug-in. This user manual assumes that you have Eclipse IDE installed with the GherkinEdit

plugin (if not, please refer to Appendix 1).

17.1 Setting up an Eclipse project to use GherkinEdit

1. Start Eclipse and choose any directory for workspace (preferably an empty one)

2. Click File -> New -> Other... and choose “Java Project” and press Next

r

E Mew

L] O

Select a wizard

Create a Java project

Wizards:
type filter text

(& Class
& Interface

@ lava Project
E Java Project from Existing Ant Buildfile

S e .

@:l < Back Finish

Cancel

L

3. Write a project name and press finish.

-

ﬂ MNew Java Project

Create a Java Project

Create a Java project in the workspace or in an external location.

Project name: GherkinTest

[¥] Use default location

@

Finish

| [Cancel

"

4. |If asked if you want to open the Java perspective, just answer Yes.
5. Expand your new project in the project explorer.

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

File Edit 5Source Refactor Nawvigate Search Project Run GherkinEdit Templates

it | ® B [HFE- [|HB-0-@~ BB 5~
[# Package Explorer 52 | [<,}==c>| & =~ = 0
A'[b‘JGherkinTest

8 src

> B JRE System Library [JavaSE-1.7]

6. (Optional, but strongly recommended) install the cucumber-java library which avoids compile
errors when using Cucumber annotations in the Java test code:

a. Download the latest cucumber-java .jar file from
https://oss.sonatype.org/content/repositories/releases/info/cukes/cucumber-java/

b. Right-click your project (GherkinTest in this example) and select Build Path -> Add External
Archives..

c. Select the cucumber-java.x.x.x.jar file you downloaded and press Open.
Cucumber-java should now be located in your project under “Referenced Libraries”

17.2 Using Syntax highlighting

The syntax highlighting is done automatically in all files ending on “.feature”.

1. Right-click on your project (GherkinTest in this example) and press New -> File...

@] New File BT

File
Create a new file resource.
= |

Enter or select the parent folder:
GherkinTest

=
. 122 GherkinTest

File name: featurel feature]

@:l [Finish] ’ Cancel

b

2. Type any file name ending on .feature and press Finish.
3. When you edit the file the syntax highlighting should work like this:

https://oss.sonatype.org/content/repositories/releases/info/cukes/cucumber-java/

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

File Edit Mavigate Search Project Run GherkinEdit Templates BRun Window Help

L= Gl |#HE-[N|B-0-@-|Bc v -|
[Package Explorer &3 = O & featurel feature 57
== | 9 7 {TestTag
J GherkinTest) Feature: Test
4 b GherkinTes A very good test.
[osrc
> B JRE System Library [JavaSE-1.7 #This is a comment
& =, Referenced Libraries scenaric: This iz a test
. [cucumber-java-1.0.11 jar - Given I am a good tester

When I test

& featurel feature Then I find lots of bugs!|

17.3 Using Context Sensitive Assistance

Because the Context Sensitive Assist function only recommends Gherkin sentences that have already been
implemented in test code, we first need to create some annotated tests.

1. Right-click on the “src” folder and choose New -> Class
2. Type a name and click Finish:

-

ﬂ New Java Class l = é
Java Class —
Iy The use of the default package is discouraged. @
Source folder: GherkinTest/src
Package: (default)
[7] Enclosing type: Browse...
Mame: StepDefinitions
Modifiers: @ public () default private protected
[] abstract [final static
Sunerclass: iava.lann.Ohiect Browse...
@:J [Finish] ’ Cancel

3. Write a couple of test implementations of Gherkin sentences:

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

& *featurel feature [J] stepDefsjava &3

import cucumber.annotation.en.®;

public class stepDefs {
= [@aiven(""The program is startet$")
public void startTheProgram() {
//start the program
¥

= @when({"~I press the Home button$")
public wvoid pressHomeButton() {
ffpress the home button
¥

= @Then("~I can see the text Helloc World$")
public void checkForTextHelloWorld() {
//find the text "Hello World"
¥

h

4. Go back to the .feature file and press Ctrl+Space to get a list of the implemented sentences:

& featurel feature 52 [J] stepDefs.java

@TestTag
Feature: Test
A very good test.

#This is a comment

Scenario: This is a test
Given I am a good tester
When I test
Then I find lots of bugs!

Scenario:

Given the program is startet
When I press the Home button
Then I can see the text Hello Wrld

5. Choose the desired sentence to have it inserted into the document:

& *featurel feature 52 | [J] stepDefs.java

@TestTag
Feature: Test
A very good test.

#This is a comment

Scenaric: This is a test
Given I am a good tester
When I test
Then I find lots of bugs!

Scenario:
Given the program is startetl

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

17.4 Using the Template system
To use the template system, you only need an open .feature file.

17.4.1 Creating a Template

1. Inthe Eclipse menu bar, press GherkinEdit Templates -> Create Template:

Eile Edit Mavigate Search Project | GherkinEdit Templates | Bun Window Help
| w T EE | a a | I v Create Template B > |
Insert From Template

[Package Explorer 5% = . urel feature []

g .
= q~==b| A Feature: test2

-J .
4 1= GherkinTest Scenaric: Template test
PR

Given the program is started
> H3 (default package) When I press the home button
> B JRE System Library [JavaSE-1.7

2. Write the name of the Template and its Step Def Template an click Finish:

i8] Create New Template L@ﬂ_hJ

Create a new Template

-

Enter the name and step definition template to create a new Template

Mame Then I see text with specific size

Step Def Template Then I see the text "(text to search)” in size (size in pts)

@:‘ [Finish] [Cancel

The Template should now have been created. If you select your project and press F5, there should now be a
folder in your project called “GherkinEditTemplates” with the file representation of the template in it.

17.4.2 Inserting from a Template

1. Inthe Eclipse menu bar, press GherkinEdit Templates -> Insert From Template:

Vi

Svante T.H. Jgrgensen

System for Development of Functional Accept-test Specifications

File Edit Source

Refactor Mavigate Search Project | GherkinEdit Templates | Bun Windof
||f=“j‘-r%][r@ |r.='|$vﬂv(%v|'§\ Create Template r
Insert From Template
[Package Explorer 52 = O i@ *feature? fearare—rr—gTeaTTTETTERTTE

= <1'~=T>| & - Feature: test2
=l T

4 |Ml Scenaric: Template test

4 [src Given the program is started
» 3 (default package)

When I press the home button
& B JRE System Library [JavaSE-17

2. Select the desired Template to insert:

-

&

Select Template to insert

Choose Template to insert:

Another Template (name)

Then I see the text "(text to search)” in size (zize in pis)

Yet Another Template (narme)

@ < Back

3. Fillin all the input fields and press Finish:

F

&

Enter Template input

Enter the input for the Template

Template String: Then I see the text "(text to search)” in size (size in pts)
(text to zearch) Hello World
(size in pts) 24

® [Cama] wo ||

Einish || Cancel

The new sentence should now be inserted in the open feature file:

[i

Svante T.H. Jgrgensen System for Development of Functional Accept-test Specifications

File Edit [Mavigate Search Project GherkinEdit Templates Run Window Help

it S| 9 [HB-0-Q- | |HEG~- @S V-] O
[Package Explorer 53 = B8 & feature2 feature 2 4@ featurel feature [J] stepDefs java
=| <f‘&| o v Feature: test2

- -
4 (mi_GhverkmTes) scenario: Template test

4 (B src Given the program is started
- 3 (default package] When I press the home button
> B JRE Systern Library [JavaSE-1.7 Then I see the text "Hello Weorld™ in size 24

viii

