
Automatic parallelization with
flow programming

Christian G. Kalhauge

Kongens Lyngby 2012
IMM-BSc-2012-17

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-BSc-2012-17

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modeling at the Technical University of Denmark in fulfillment of the require-
ments for acquiring an BSc. in Informatics.

The thesis deals with the automatic parallelization of a flow based language.

Lyngby, 28-June-2012

Christian G. Kalhauge

ii

Acknowledgements

I would like to thank my supervisor Christian W. Probst to allow me to work
on this big project.

I would also like to thank Luke A. D. Hutchison, MIT CSAIL, for the friendly
advices and a giving dialog about flow based languages.

A thank is needed to Tobias Bertelsen, Bjarke Wanstrup, and my dad, for
correcting spelling and other errors in the report and helping me making it
readable in general.

I like to thank my fellow students for not insisting to me drink with me every
night, and my vector groups for doing it any way.

Last I like to thank my family for the food and shelter, doing the final process,
and my dog, Kvast, for company.

iv

Contents

Preface i

Acknowledgements iii

1 Introduction 1

2 Analysis and Design 3
2.1 Do we need a new Programing Language? 3

2.1.1 Is Parallel Programing Important? 3
2.1.2 Short description of important terminology 4
2.1.3 What is out there right now? 5
2.1.4 What does Flow need to be able to do 6

2.2 Flow design . 7
2.2.1 Explicit dataflow . 8
2.2.2 How it is done in Flow ? 10

2.3 FlowCode . 17
2.3.1 Syntax . 17

2.4 Compiling Flow . 19
2.4.1 Task parallelism . 20
2.4.2 Data parallelism . 21
2.4.3 Memmory Management 21

3 Implementation 23
3.1 Flow . 23

3.1.1 FlowElements . 24
3.1.2 Visitor . 25
3.1.3 Function . 28
3.1.4 Types . 29
3.1.5 FlowSize . 32

vi CONTENTS

3.1.6 Module . 32
3.1.7 Code Securing . 32

3.2 FlowCode Translator . 33
3.2.1 General Translation . 33
3.2.2 FlowCodeFinalizer . 37
3.2.3 Modules . 40
3.2.4 Exceptions and Traceability 41

3.3 Compilers . 41
3.3.1 Tikz compiler . 42
3.3.2 Code Compiler . 43

4 Proof of Concept 49
4.1 Experiment 1 - Setup . 49
4.2 Experiment 2 - Hello World . 50

4.2.1 Reflections . 52
4.3 Experiment 3 - Parallel Program 52

4.3.1 Reflections . 55
4.4 Experiment 4 - Mapping and Lists 55

4.4.1 Reflections . 58
4.5 Experiment 5 - Recursion and Select 58

4.5.1 Reflections . 60
4.6 Experiment 6 - Flattening and Structs 60

4.6.1 Results . 65
4.7 Experiment 7 - FlowSize and Multible List Mapping 65
4.8 Results . 66

5 Discussion 67
5.1 Flow . 67

5.1.1 Language . 67
5.1.2 Tools and Optimizations 68
5.1.3 What misses? . 69
5.1.4 Testing . 71

5.2 Translator . 71
5.2.1 FlowCode . 71
5.2.2 GUI based languages . 72
5.2.3 Imperative programing languages 73

5.3 Compiler . 74
5.3.1 Tikz . 74
5.3.2 Simple . 74
5.3.3 Job finding . 75
5.3.4 Interpretation vs Compilation 75
5.3.5 GPU . 75

6 Conclusion 77

CONTENTS vii

A FlowCode Specification 79
A.1 Basic Features . 79

A.1.1 Pipes and Functions . 80
A.1.2 Functions . 80
A.1.3 Pipes . 80
A.1.4 Combining Function . 80
A.1.5 Defining Functions . 81
A.1.6 Empty function . 82
A.1.7 Empty Pipe . 82
A.1.8 Multifunctions . 82
A.1.9 Types . 82
A.1.10 Standart Types . 83
A.1.11 Type defining . 83
A.1.12 Interfaces . 84
A.1.13 Structs . 85
A.1.14 Push / Pull . 85
A.1.15 Operators . 85
A.1.16 Unary . 86
A.1.17 Binary . 86
A.1.18 Select . 86
A.1.19 Main . 87

A.2 Advanced Features . 87
A.2.1 Mapping . 87
A.2.2 Templates . 89
A.2.3 Modules . 90

B Simple Code 91
B.1 Test2 . 91
B.2 Test3 . 92
B.3 Test4 . 94
B.4 Test5 . 97
B.5 Test6 . 100
B.6 Test7 . 103

C FlowCode Standard Library 105
C.1 IO . 105
C.2 String . 106
C.3 Math . 106

Bibliography 109

viii CONTENTS

Chapter 1

Introduction

We are currently moving in a quickly against the biggest problem in the com-
puter world since the Y2K problem. We are constantly putting more and more
processors in a computer but we have not changed the way we program.

The current programming languages makes it hard to program as they gives the
programmer the felling that there is a linear workflow. This means that it is
hard to program parallel programs, and in the future it will only be the best
programers that can use the entire power of the computer.

This is why we need a new way to program. Flow is an intermediate language
which purpose is to enable automatic parallelization of code, and guarantees
that the output program does not contain deadlocks or race conditions.

The project is a excavation of the possibilities of flow based languages. I will
touch subjects as automatic parallelization, code testing, memory handling, and
static/dynamic CPU scheduling on multiprocessing systems, and how to parse
and compile code.

2 Introduction

Chapter 2

Analysis and Design

This chapter contains the analysis and design consideration made throughout
the project. First I will analyse what the language needs to be able to do. Then
I will go through the different stages of the translation of FlowCode into Flow
and how to compile Flow into parallel code.

2.1 Do we need a new Programing Language?

2.1.1 Is Parallel Programing Important?

During the last decade we have reached a clock-rate on CPUs, that seams to
be the fastest we can reach, with the current technology. The problem lies in
that changing the voltage in electrical systems builds up heat. So if we build
our CPUs with a higher frequency, they would burn. The solution is to build
multiple processors onto one chip, and making them run at a lower frequency,
this both saves power and gives lower temperatures on the cores.

We can therefore expect to see an increase in the number of processors in our
computers. The problem of the increase in processors is that our current pro-
graming languages do not accommodate for the different nature of the new

4 Analysis and Design

platform. It is not a big problem now, as the number of processors in a home
computer is around eighth cores. This means that we do not need to make the
programs parallel, as we often run more than one application at one time, which
are directly parallelized by the operation system. But this is about to change,
as we might soon have CPUs with more than a thousand cores spread around
the computer optimized for doing different tasks [JJK+11].

In the future we need programs that allows for fine grained parallelism by run-
ning them on more processors. The biggest problem now, is that our current
code is no longer processed in a strictly ordered manner, which means that our
normal approaches and algorithms become unreliant, and parallelism may even
hurt their performance.

Our current imperative languages does handles parallelism very badly as they
allow for a lot of parallel errors like race conditions and deadlocks. If we keep
on using these languages we will end up with a lot of buggy code. The worst
problem with race conditions is that they are not necessarily found at tests, and
if they occur they can be extremely hard to reproduce.

Of cause programs written as parallel is at least as good as serial code translated
into something that is parallel, but to rewrite old code is often a costly affair.
So if the programing language should have a impact on the world it requires
that we can translate old code into the new without changing it too much.

We need a new solution than can make another layer between the programer and
the hardware to protect the programmers, and enable them work with multiple
cores without knowing it, or at least without they need to think about it.

2.1.2 Short description of important terminology

Data-parallelism is when the parallelism arises from the use of different data.
If we parallelize a for-loop, we perform the same operation, but as we do
it on different data it can be done in parallel.

Task-parallelism is when the parallelism comes from running different tasks
on the same data. An example would be to count the number of names
in the phone book that starts with "A" while summing all the phone
numbers.

2.1 Do we need a new Programing Language? 5

2.1.3 What is out there right now?

Before I started the project I started a analysis, of the current market, and what
was already out there. So I have look at some of the leading parallel programing
languages:

C It is possible to code parallel in C, but it is hard without extensions like
OpenMP. The standard way is to use parallel tools like pthreads or the
Windows equivalent. The risks of making errors is high, as all checking is
done by the programmer, but on the other hand there is a lot of power
to do what you want. The problems behind OpenMP, and other paral-
lelization extensions to C is that as they want to keep the power with the
programer. This means that the parts of the code that should be run par-
allel is often manually chosen, and these parts often only focusses on the
for-loop, or data-parallelism. C is by default extremely hard to automat-
ically parallelize as it uses pointers, which makes it hard for the compiler
to predict the idea of the program.

Java Java is like C, but has a build in functionality for parallel programing.
The parallel part focuses on the monitor-pattern which isn’t build for
speed but for security. That makes sense giving that Java is also used for
server programing-language. There is also a lot of different classes that
allow for some sort of data-parallelism, but this is also manually chosen.

X10 is a solid parallel programing language, it looks like Java but there is
added more functionality to improve the parallel experience. It is possible
to do both data and task parallelism, but there is still no automatically
parallelization.

StreamIt is a stream based language, almost in the degree of a turing machine.
Parallelism is reached through reading and writing to streams and let dif-
ferent functions work on them. This language uses implicit parallelization
but is not build as a high performance language but a language to work
on streamed data, like when decoding a video stream.

ZPL where the programing language that should substitute C, but was last
updated in 2004. ZPL is a data parallelism based programing language
which is based on automatic parallelization of arrays.

OpenCL is set of instructions, developed for other languages, that allows the
programer to access all the processing units on the computer. This lan-
guage is exciting as it allows for much better usage of the resources of
the computer. The base problem behind OpenCL is that it is difficult to
use, and all the parallelism used in the program is manually chosen by the
programmer.

6 Analysis and Design

Fortran A lot of work has been done on automatically parallelize fortran, but
again the main focus of this automatic parallelization has been focusing
on loops.

Map-Reduce is a programing model suggested by google. It is based on the
idea that some parallel problems are easily distributed across multiple
servers. This can be done by mapping the problem out to the servers, and
afterwards collecting the data. The collection of data is called the reduce
step. The base problem with this model is that it is especially designed
to work on servers, and that it focuses on data-parallelism.

2.1.4 What does Flow need to be able to do

After analyzing the languages I found that a very few of them in fact tried to
support checks against parallel errors. This has for a long time been left to the
programmer. I want to take some power from the programmers and instead give
them a platform that produces guaranteed thread safe code.

The idea behind Flow is that it should support the current software develop-
ment community by helping it evolve from the use of obsolete serial programing
languages to the full-blown parallel programing languages. This should be done
without Flow becoming a temporary solution.

To summarize, Flow needs to be:

Completely parallelizable , thereby ensuring that when we get more cores
in the computer, they are used correctly and efficiently. Compilers using
Flow should be able to produce code without race conditions, deadlocks
or other synchronization problems. I.e. Flow should be guaranteed thread
safe.

Hardware and operation-system independent meaning that Flow should
only coded once and then it should be able to run fast on any hardware or
operation system. This also ensures forward portability as each platform
can compile Flow to their own code.

Flow is not a programing language , but an intermediate language. The
programing language should be separate from Flow . Flow should be a
guarantee, so if a language can translate into Flow , then it can use the
parallel Flow compilers.

2.2 Flow design 7

2.2 Flow design

This section contains the how the design considerations of Flow

To accommodate the requirements we need a very modular structure. There are
three steps, translation, optimization, and compilation. At translation we try
to translate the language into Flow by finding the control flow of the language.
It is not always possible to translate an imperative language to Flow as the
control flow of the language is not known at compile time. Most declarative
languages should be directly translatable.

The compile step is the exciting step, as it is here the parallelization happens. It
is my hope that when a hardware producer creates a new processing unit, then
in the same way as they need to build a new assembly compiler, they should also
present a Flow compiler. Operating systems should decide how the compilation
happens, which hardware compilers to use and how to distribute the problem.
This could both be compiled at runtime, as in OpenCL, or completely compiled
as in C.

Figure 2.1 shows the intended stages of compiling.

Code Translator

Flow

Compiler Platforms

FlowCode

Java

Python

...

CPU

GPU

Servers

...

Optimization

Figure 2.1: The Flow compile structure

The Idea is that many syntaxes can be translated to Flow , and Flow can
compile to many platforms. So by hooking up to Flow you automatically get
the parallelization and the guarantee that your program runs without parallel
errors.

8 Analysis and Design

The programers should be able to tab into this structure at any time. They
should be able to translate fully or use it embedded in an existing programing
language. Let us say that we have developed a program in Java, and we want to
have a part that uses the full capacity of the computer, then we would translate
that part of the code to Flow , which in turn could be compiled parallel to the
Java Intermediate Language.

It would of cause be better if we could use parallel languages that gave the
programmer a feeling of programming in parallel, because the decisions made
by the programmer is then reflected directly in the execution, and is not guessed
by a compiler. But by allowing all languages to try to translate to Flow , it
could work as a bridge between the serial coding of today and the parallel coding
of tomorrow.

In this project I will make a prototype of Flow . To prove the idea I will
also create a language FlowCode that can be translated to Flow and a Flow
compiler that can compile Flow to parallel code.

2.2.1 Explicit dataflow

This sections notion of the directed acyclic graph, and its features is build on
work made by Luke Hutchison[Hut11].

But how can we guarantee that a race condition cannot occur? A race condition
can occur when the order of the access to a variable is not specified. Figure 2.2
is an example of a typical race condition. As we can see is the access of var
not controlled by the programmer but by the execution of the processes. The
example can, with var being 0, produce 3 different results, -3, 0 and 3. And
this only gets worse when more variables is in play.

Process A Process B
reg <- read(var);
reg <- reg + 3;
write(var,reg);

reg <- read(var);
reg <- reg - 3;
write(var,reg);

Figure 2.2: A typical race condition situation written in pseudocode

The problem is that when we read from the variable, we don’t know which state
it is in. Process A could have changed the state of var, before process B got a
change to read, and visa versa. To prevent this we make an assumption:

2.2 Flow design 9

Rule 1 A variable cannot be written to after its instantiation. This makes
them immutable and from now on I will call them values.

Lemma 2.1 We can efficiently describe any program that follows Rule 1 as a
directed acyclic graph, where nodes are the values, and the edges are functions.
I call this the data flow graph, as it represents the movement of the data.

Proof. The graph is directed since functions per definition has a direction,
and the graph is without cycles as a function cannot write to a variable after
its instantiation.

It is important for the directed acyclic graph, in order to be parallel and guaran-
tee no race condition, that a function does not have a state. If a state is stored
in a function it cannot be represented as an edge in the graph.

Rule 2 A function is stateless and does not depend on previous functions, only
the input.

When the data flow graph is acyclic thens the runtime data flow is known
completely by the compiler, that makes the program unambiguous. And when
a program is unambiguous then the risk of race conditions and deadlocks is
completely removed. Race conditions do not occur, because the order the reads
and writes is known, thereby eliminating the race. And the deadlock can not
occur because a system only deadlocks if it is in a cyclic lock, which is prevented
by the acyclic nature.

Before we continue I will introduce the dependency graph , which is reverse
data flow graph, see Fig. 2.3. The edges of the dependency graph describes
the dependencies of the node. So if some data A depend some other data B,
illustrated by a arrow, then B needs to be calculated before A. The dependency
graph is also a directed acyclic graph, and as we do not have any cycles we can
describe it as a layered graph. We distribute the nodes in the layers, with the
rule that all dependencies of a node must be in a layer lower than the node.

Using Rule 2 and the layered dependency graph we can see that all functions
producing data to the same layer can be executed in parallel. This can be done
as we know that running a function does not alter anything but the data, and
that all data is present, when we have reached the layer.

To reach a higher level of parallelism, we could run layers from independent
parts of the program separately, or make some sort of lazy interpretation. The
point is that we get implicit parallelization of the functions in the same layer.

10 Analysis and Design

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 2.3: A layered dependency graph

This way of structuring the dependency graph also allows us to make automatic
memory allocation. When we reach the layer after of the last reader of the data,
then we know that all the functions that need the data has run, and program
can therefor safely deallocate the data. We also know exactly when to allocate
new memory, without the programmer explicitly stating so.

2.2.2 How it is done in Flow ?

Essentially Flow is a layered dependency graph, with some tools added to give
the programer control over the parallelization. Flow contains of two main
components, the pipes and the functions. These are represented as nodes in a
graph.

The graphs of Flow will be shown as data flow graphs as they are easier to
read.

The Pipe is the value holder in the program it transfers the information from
one function to an other. A pipe have a in-degree of 1, and a arbitrary
out-degree. The node from the end of the in-edge is called the writer, and
the nodes from the end of the out-edges are called the readers. The writer
and the readers are always functions.

2.2 Flow design 11

Pipe

The Function is, as the name suggests, the function of Flow . Functions
calculate on the data of the pipes they read and writes the result of the
calculations to others pipes. A function has arbitrary in- and out-degree,
the nodes from the end of the in-edges is called sources and the nodes from
the end of the out-nodes is called targets. Targets and Sources are only
allowed to be pipes.

Function

This structure is checked at compiler time not to contain cycles, to ensure that
it is still a directed acyclic graph.

The functions is a bit different from functions in C-like programing languages,
because they can have more return values. This adds an extra level of com-
plexity, but it is needed for the pull function to work, which we will see in
section 2.2.2.1

A small example about how the data flow of a statment:

A = 10 + 2

would look like pictured in Fig. 2.4. 10 and 2 is given and we then calculate A
to 12 by adding them.

Internally is Flow build up the same way as most declarative languages eval-
uates, opposite the data flow, see Fig. 2.5. This is actually the dependency
graph that I mentioned before. It means that there is a clear evaluation order,
which is important when building algorithms, that depends on an incremental
build up.

12 Analysis and Design

10

2

+ 12

Figure 2.4: Small example of the data flow of A = 10 + 2

10

2

+ A

Figure 2.5: The Flow dependency graph for the same example

2.2.2.1 Types in Flow

Each pipe does also hold a type. In a production version of Flow , a Type
should be a transparent object without any information other than its name.
The size of the node and its representation should be decided by the compiler,
within the design specifications of Flow .

Structs A modern intermediate language needs to support some sort of struc-
turing of data, to allow for object oriented programing. This can be a problem
to control when using parallel programing, because creating large objects or
structs heavily affect the parallelism. We often se programing languages locking
entire objects when handled by a thread. This means that a lot of processing
time has a risk of getting lost.

To prevent this a push and a pull function has been added.

The pull function, pulls a field from the object, and locks it. The push function
then pushes the value back into the field, and marks the field as unlocked again.
This is never felt at runtime, as the locking and freeing is only done in the
compiler to check that a value is never pulled twice without pushing it back in
the meantime.

As an example lets look at a Point struct that we want to calculate on. We
want the x field to be doubled and the y field to be halved. If we lock the entire
struct we cannot run these calculations in parallel. What we do is to pull x and
pass the Point over to the y calculation function. The y calculation function

2.2 Flow design 13

cannot pull the x value so we can do the calculations on x without fear of a
race condition. And on the same time we can calculate on y without problems,
because locking x does not lock y.

Signals One of the big problems running parallel code on a computer is that
some hardware and software resource access is by nature serial, and that the
resource has a state. This means that there is a risk of race conditions. Often
these problems are handled by the operating system, but in some cases it needs
to be controlled by the programmer.

A good example is when we draw on a screen. If we write to it in a uncontrolled
fashion we could risk that some of the background images gets in front if the
foreground. In such a case it is important that we can control the access, so
that we draw the objects in the right order.

To ensure the correct order of access of the resources, the transparent type
Signal is introduced. The Signal is a Flow representation of a resource that
isn’t directly in the memory system. To make use of the Signal the developer
make a set of functions that uses the Signal. A good example is the print
functions that need a Printer signal to print.

Some resources should not be accessed by multiple threads at one time. To
prevent that, we can declare these signals as atomic, which means that pipes
controlling the signals only can have one reader, except in special cases; see
Select 2.2.2.2. When pipe only have one reader then there can not get more of
them.

Set, List and Dictionary There is three build in collection types in Flow
. These are are the List, the Set and the Dictionary. They all have special
abilities, that makes them better to what they do in a parallel environment.

Set The Set is a unordered collection of data that is especial optimized to get
accessed by multiple threads, without giving problems or loosing perfor-
mance. It is primarily used for collecting calculations in a parallel envi-
ronment. The set is the most parallelizable of the three types, because
the nature of the set empowers the compiler to decide the order of the
calculations, when mapping over a set.

List The List is an ordered collection of data, but does not allow for random
access. It is primarily used to aid problems that need vectors and matrixes,
where we can map over the structure.

14 Analysis and Design

Dictionary The Dictionary allows for random access. It is possible to cal-
culate on the values in a dictionary in parallel. But the Dictionary is
primarily used to store results while calculating on a list in a parallel en-
vironment. A lot of constrains is based on the dictionary, which makes
the structure more "serial" than the two other.

2.2.2.2 Special functions

Besides the function and the pipe, I have also introduced some other control
flow altering nodes; the select, the map, and the recall node. These nodes are
special functions.

Select The select is the logical data flow changing element. It has 3 sources
and 1 target. The first input should be a boolean and the next two should be
of the same type as the target. If the boolean is true we take the first source
and pass it to the target otherwise we parse the second.

Figure 2.6: The select node

At runtime we can choose not to evaluate the true or false source before we
get the boolean, or if can evaluate the true and the false pipe with a smaller
priority. It can be a great advantage to, when we have idle processors, that we
can start calculating the possible sources before we know whether the boolean
is true or false.

Map To loop over an collection is a very serial approach to a problem that is
often implicitly parallelizable. Flow does contain a notion that describes that
all the elements in one or more collections need to be calculated, by a given
function. This node is called a Map and it runs a function for each element in
the collections.

2.2 Flow design 15

Flow demands that all lists in a Map environment can at compile time be guar-
anteed to have the same number of elements. This ensures that we do not get
array out of bounds failiurs, and there is also no problem with deciding the
number of iterations needed. In this case it is important to point out that at
compile time we do not need to know the exact size of the lists, only that they
are of the same size.

I

J

+ R

i1

i2

...

in

j1 j2 . . . jn

+

+

.. .

+

r1

r2

...

rn

Figure 2.7: Map example for the addition of two lists I and J

In the Map the Set is seen as a type that all threads working in the Map envi-
ronment can write to. This is especially important in situations where we want
to filter data and only want a part of the data. It is of cause also possible to
map over a Set but sets cannot map with other collections, because sets are
unordered.

It is also possible to use a dictionary in a Map function, especially if the dictionary
maps values to a Set. The fact that the set is a part of structure makes the the
dictionary accessible for all threads working on it.

Fig. 2.8 shows a case of advanced mapping, were we both have lists, sets and
dictionaries. The example shows a parallel way to make a statistic over how
many times a letter is used in a string. What happens is that we map over
the String H, illustrated by "hello", with the function addOneForLetter, that

16 Analysis and Design

H

A

addOneForLetter B sum C

’h’

’e’

’l’

’l’

’o’

addOneForLetter

addOneForLetter

addOneForLetter

addOneForLetter

addOneForLetter

A

e← 1

h← 1

l← 1, 1

o← 1

B

sum

sum

sum

sum

e← 1

h← 1

l← 2

o← 1

C

Figure 2.8: Advanced mapping

looks up the letter in a dictionary and then adds 1 to the found set. A is a
Dictionary of Sets of Integers. As adding to a set is a parallel operation, we see
that the two ones added to the ’l’ entry, is put in a single set. The Mapping
returns a Dictionary of Sets of Integers we call B. We want to be able to find
the occurrences of a letter in the string, when we query the dictionary, not a
Set of ones. This means we need to sum the sets. We do this by mapping over
B with the sets sum function and this produces a new Dictionary of Integers,
that describes the occurrences of the letters.

Recall As Flow does not allow for loops at all, a special function has been
added to optimize recursion. Of cause it is always possible to reference the
function we are currently running, but recursion, if done wrong can take a
heavy memory toll, especial if we have something that should mimmic a infinite
loop, like a rendering cycle.

The function is called recall and it looks exactly as a normal recursive call,

2.3 FlowCode 17

but it is guaranteed that no operations is made on the output, thereby it is the
last function called in the parent function. The parent function is thereby per
definition tail recursive. The big advantage of this system is that it is possible
to translate the function to a stack free loop call, which saves memory.

2.3 FlowCode

To make a proof of concept and to ease the testing of Flow . I have created a
syntax that is easily translated to Flow . It is called FlowCode .

When I read through the different versions of syntaxes and compilers for parallel
languages it hit me, that one of the key points was to try to take the program-
mers serial code and translate it to parallel code. I think that it is a mistake.
If we want to make a parallel language, then the programmer should be aware
that they are writing parallel code. One of the biggest problems in imperative
parallel programing languages is the implicit workflow. The program is all ways
run from the top to the bottom. This gives a lot of complications, especially
when working with multiple threads and thereby also two pieces of separate im-
plicit workflows. Suddenly we do not know which of the workflows, that should
be executed next. It is therefore important that the workflow of FlowCode is
explicit, and got a parallel feeling to it.

So we got some demands to what FlowCode should do:

Explicit Workflow FlowCode should have a explicit workflow. The program-
mer should have a total control over which function is run next time on
which data.

Easy Translated FlowCode should look as much as Flow as posible. Meaning
that it should contain notions of a pipe and a function, and functions
names are the same as in Flow .

Allow Experiments FlowCode should implement the Flow functionality, and
to ease the actual compiling of the Flow it should be able to inject C code.

2.3.1 Syntax

I have created a total syntax description in the appendix. But here is the overall
idea. The basic construct of Flow is the statement. A statement is a continuous

18 Analysis and Design

string of functions and pipes separated by colons. Statements are terminated
with a semicolon.

Pipes Function
[a,b,c]
[12,0]
["HelloWorld",p]

afunction
+
print

Figure 2.9: The Pipes and Function construct

Figure 2.9 gives some examples of functions and pipes. If some pipes is connected
to a function like [a,b]:function, then the pipes a and b are sources of the
function, and the function is the reader to a and b. And the same thing happens
when function:[d,e,f], then d, e, and f are targets of the function, and the
function is of cause the the writer to d, e and f. If we use the example from
before with

A = 10 + 2

this is coded in FlowCode in Figure 2.10.

[10,2]:+:[A];

Figure 2.10: The equivalent FlowCode of A = 10 + 2

It is possible to connect pipes with pipes and functions with functions, but this
automatically adds an extra pipe section or function between them to uphold
the rules of Flow , as it is seen in Figure 2.11.

FlowCode Same as

[a,b]:[c,d]; [a,b]:doNothing:[c,d];

[a,b]:+:negative:[c]; [a,b]:+:[value]:negative:[c];

Figure 2.11: The Pipes and Function construct

To make a program we can connect multiple of these flows, but since the lan-
guage has an explicit workflow the line order is irrelevant. An example of this
is showed in Figure 2.12.

The language also holds notions of structs, functions, methods, modules, tem-
plates and interfaces, but to know more of this and see more code-examples look

2.4 Compiling Flow 19

Method 1 = Method 2

[10,2]:+:[A];
[15,3]:+:[B];
[A,B]:-:[C];
// result C = 6

[A,B]:-:[C];
[15,3]:+:[B];
[10,2]:+:[A];
// result C = 6

Figure 2.12: Example of explicit workflow

in the Appendix. But as teaser I will just show an "Hello World" example in
FlowCode and the corresponding Flow graph, see Figure 2.13.

module helloworld;
import flow.IO;

def [IO in]:main:[IO out] {
[in]:pull<stdout >:[p,io]; // remove stdout from IO
["Hello World !\n",p]:print:[p_1]; // print "Hello World!"

// in the terminal.
[p_1 ,io]:push<stdout >:[out]; // put the stdout back.

};

IO

pull<stdout>

init(String)

IO

Printer

String

print Printer push<stdout> IO

Figure 2.13: Hello World in FlowCode

2.4 Compiling Flow

But how can we convert the Flow into parallel code? The strict ordering of the
layered dependency graph ensures us that if we run all dependencies of a node,
before running the node itself, then every thing is run in the correct order.

20 Analysis and Design

The general idea is that we can run the nodes dependencies in parallel, since
no state is stored in the functions. One of the most unforgiving things about
parallelizing code is that it at max can give a linearly, over the number of
processors, speed up. This means that understanding the nature of the hardware
is important, as every optimization counts.

But this does prove to give some complications as the hardware is not tuned
for small problems, but for large continuous problems. I have found these point
important.

Synchronization Often in parallel code there is a lot of synchronization in-
structions, keeping the threads from making errors. This is bad instruc-
tions as they don’t contribute to the final product. We would like to
minimize this as much as possible, meaning that the threads should work
on the same data as little as possible.

Coherence The modern CPU is pipelined, which means that there is a startup
and cool down period on calculations. So to make two processors work,
changing between problems, could give a worse performance than one
running it all. To counter this effect we need to group similar instructions
together, thereby making the workflow coherent.

2.4.1 Task parallelism

Task parallelism is when the threads is running different tasks at a time. This
can be done by running functions from the same layers of the dependency graph.

There are two approaches to Solve the problem of parallelization. Either we can
do it statically at compile time or dynamically at runtime.

2.4.1.1 The Statical Solution

The statical solution would mean, that the code is already distributed amongst
the processors at compile time. As we already know what the processors need
to run, then compiler can make a lot of preprocessing optimizations. Which
heighten our coherence and the processor would preform better in this solution.
But this approach would give more synchronization time, and in worst case
cause a thread to unnecessarily wait on other treads to finish.

2.4 Compiling Flow 21

2.4.1.2 The Dynamical Solution

This solution tries to minimize the waiting between the threads by making
the threads pull jobs from a job queue. If these jobs are to small then this
create a problem, as the time used in switching between the jobs will take more
time than the running the jobs. To counteract this problem, we could make
a serial decomposition of the graph, meaning that if a path does not allow for
parallelization, we group it together into one job.

2.4.2 Data parallelism

Data-parallelism is when we do the same function for an collection of data. This
can be done by mapping over collections.

2.4.3 Memmory Management

Memmory management is a hard topic as it needs to be done completely auto-
matic when compiled from Flow . We want to use as little memory as possible
without suffering to much on the performance.

There is different approaches to memory allocation. They are listed from the
memory heaviest to the lightest.

All allocated This is the crude version. At compile time we find out how much
memory needed to contain all the pipes values without reusing space. This
would be easiest to program. But it uses memory for each operation. So
the longer the program the larger amount of memory needs to be allocated.
In cases where there is some sort of recursion, then the total memory usage
can not be determined at compile time.

Max allocated Determined the maximum concurrent accessed memory used.
And then allocate the memory at the start of the runtime. Then the
compiler ensures that when some memory is guaranteed not to be used
the memory space, then a function is allowed to write a new value to
it. This can both be done at compile time with a memory cost, and at
runtime with a processing cost.

Dynamic allocation This is finest grained version of the three memory solu-
tions. Here is all allocation and deallocation calculations done at run time.

22 Analysis and Design

This make this the most memory efficient version, but constant allocations
and deallocations do take a toll on the performance.

2.4.3.1 Versioning

One of the biggest challenges is that we need to store a copy of each active
version of all the data. This not a problem on primitive types as Integers and
Doubles, but when we need to use it on a struct we get a problem. If we change
one fields, then, if we do not do anything smart, we need to copy the entire
struct.

By using the pull and push we do not have to copy anything, except if the
struct is needed by another function. But with the use of a partial persistent
data structure we could keep the extra data used at a minimum, and still find
the struct at the correct time.

2.4.3.2 Lists, Sets and Dictionaries

Because we do not know the size of all lists, when we compile, we need to allocate
lists at runtime. This does also count for Sets and Dictionaries, but they are
more dynamically allocated.

Chapter 3

Implementation

In this chapter I will walk thru the implementations of Flow , a Translator
and a Compiler. All implementations is done in Java. I have chosen Java of
two reasons. The first is that it is a hard typed object oriented programming
language. That makes the development faster as many errors are caught at
compile time. The second reason is that Java is the language that have used
most in my study, which means I can draw on knowledge from other projects.
The drawbacks is that Java is slower than compiled languages, but as I am only
developing a prototype the focus is on rapid development.

3.1 Flow

Flow is just a directed acyclic graph, with some special nodes. And a graph
is easily represented in Java by making objects referring to each other. I have
chosen to make the graph double linked, but I recommend only to use the
references to sources and writers, i.e. query in the direction of the dependency
graph.

The Flow implementation contains of two declarations; types and functions.
The type declaration is just the description of a new type. A function declara-

24 Implementation

tions is a small dependency graph describing the functionality of the function.
The dependency graph of a function is described as a collection of FlowElements.

3.1.1 FlowElements

There are two key classes: The FlowNode and the FlowPipe. These are con-
nected to make the graph. The FlowNode represents the function in Flow and
the FlowPipe is the representation of the pipe.

FlowNode has two arrays containing FlowPipes, one called targets and one called
sources. The arrays is accessed by giving a slot id, represented by an integer.
This presents some problems when connecting the FlowPipe to the FlowNode,
as if we also need to supply in which slot the FlowPipe is connected to the
FlowNode. Therefore have I added another class called FlowSlot that describes
at which FlowNode and which slot the Pipe is connected.

3.1.1.1 FlowPipe

A FlowPipe has a FlowSlot writer and an collection of FlowSlot being the
readers. Besides the direct Flow oriented values. The FlowPipes do also contain
of a Type (see section 3.1.4) and a FlowSize (see section 3.1.5). The Type
can be used for memory management and for strong type checking. FlowSize
is a class with no attributes that can be used to check whether lists is of the
same size.

3.1.1.2 FlowNode

FlowNode is an abstract class and is implemented by the build-in functions,
like DoNothing, Select, Recall, Push, Pull, Map, and then of cause by all the
user defined functions. A class diagram picturing the dependencies is shown in
Fig. 3.6. FlowNode in itself does only contain the Flow oriented values, but
the subclasses implements other relevant values.

FlowFunctionNode is the core part of the nodes, and most of the nodes in a
complete program will be of this type. FlowFunctionNode extends the
FlowNode with a Function field referring to a function declaration. The
Allowed types of sources and targets are now decided by the Function.

3.1 Flow 25

FlowMapNode contains a FlowSize and a Function (see section 3.1.3). The
FlowSize is used to guarantee that the pipes we are mapping over have
the right sizes. The Function is the internal Flow , that is run for each
of the map-iterations.

3.1.1.3 Unmodifiable

The original Idea was that the graph should be unmodifiable after creation to
ensure that no operations destroyed or altered the graph. This should prevent
that running a compiler altered the Flow . Sadly, it was to complex to make
an entire graph without making changes, especially in the stages where a Map
was inserted automatically when translating.

Instead of a completely unmodifiable structure, I added a possibility for the
programmer to knowingly changing the structure. This was done by adding a
reset operator for most of the set operators that affected the structure. The
beauty in this solution, is that we can check whether if a programmer is trying
to set a property twice, and then we can throw an exception. But if he knows
that he wants to reset writer he can do that without getting the exception.

3.1.2 Visitor

All the classes described here implements the FlowElement interface. The reason
is that the entire flow implements a visitor pattern that enables us to build tools
to Flow without altering in the structure of Flow . A Visitor allows us to build
different compilers using the same structure.

The FlowVisitor is an abstract class that can be extended to build tools that
works on Flow .

Listing 3.1: The FlowVistors abstract methods
public abstract class FlowVisitor {

...
public abstract void visit(FlowSelectNode node);
public abstract void visit(FlowFunctionNode node);
public abstract void visit(FlowMapNode node);
public abstract void visit(FlowPipe pipe);
public abstract void visit(FlowRecallNode node);
public abstract void visit(FlowPullNode node);
public abstract void visit(FlowPushNode node);

26 Implementation

*1

*

<<interface>>
FlowElement

+ accept(v : FlowVisitor) void

FlowNode

+ getTargetType(slot : int) : Type
+ getTargetSize(slot : int) : FlowSize

FlowPipe

+ type : Type
+ size : FlowSize

FlowSlot

+ slot : int

FlowRecallNode

FlowSelectNode

FlowDoNothingNode

FlowPushNode

FlowMapNode

+ mapSize : FlowSize
+ function : Function

FlowFunctionNode

+ function : Function

FlowPullNode

Figure 3.1: Class diagram over FlowElements

3.1 Flow 27

public abstract void visit(FlowDoNothingNode node);
}

Using a visitor pattern gives many advantages. First of all can we build tools
to Flow without altering the classes. Second of all is the pattern extremely
robust; We get an compilation error if we do not remember to implement the
handling of some of the FlowElements, and the visitor is guaranteed to reach all
elements, and do it in the same order every time. This makes it easier to make
a compiler, because all the transversing is done by the visitor.

Disadvantages with the system is that we can not store data in the structure
which means if we want to store associative data, we need to store it in a
collection on the side.

The FlowVisitor contains some additional features. It make sure that every
element is only visited once, this is not something that the programer needs to
think about at all. Internally the checking is done by looking up the element in
a Set with all the visited elements.

Besides that, the FlowVisitor also allows for an easy way to run the program
and catch exceptions:

Listing 3.2: The FlowVistors run method
public void run(FlowElement element)

throws FailedFlowVistingException {
try { element.accept(this); }
catch(FlowVisitorException e){

throw new FailedFlowVistingException(e);
}

}

run catches all exceptions of type FlowVistingException, which is a runtime
exception, and transforms it to a Exception that the programer needs to handle.
This gives the programer a secure way of throwing exceptions while developing
tools for Flow .

I have developed some tools that uses this visitor-pattern, to show the idea.

FlowCodeFinalizer is a tool developed simultaneous with the FlowCode trans-
lator. And it checks that everything is put correctly together. A more
detailed description can be found at section 3.2.2.

28 Implementation

FlowFlattener is a tool that flattens the flow. Often when building programs
we would like to build them modular so that we can reuse code we have
written. This is sadly not good for performance, because sometimes a
function can start the calculations with only half of the arguments.

An Example is a function that returns a random number between two
doubles. The function would then take three arguments; two doubles and
a random generator. To calculate this we usually we start with getting a
random number from the generator between 0.0 and 1.0. We multiply this
number by the difference of the min and the max value and then add the
min value. The problem is that if we do not flatten the function, we can
risk, even though we have the min and max values, that we can not begin
calculating the difference before we have the random generator. And we
can not get a random value from the generator before we have the min
and max value.

This is where the FlowFlattener comes in handy. It takes all functions
that is not recursive and chain them on the existing Flow .

The FlowFlattener is build in with a ability to check for recursion, because
if a function is recursive we cannot flatten it. The idea behind the check is
simple, every time we reach a function we would like to flatten, we create a
new FlowFlattener that knows it has been called from the current flattener,
and the function it’s currently trying to flatten. When a suspect function
emerges the sub flattener can ask if its equal to the function its working
on, if it is not, then it ask its parent whether the function is something
that the parent is working on and so does the parent and so on.

If the function is a recursive call the flattening of the function is skipped
using an exception callback.

The FlowFlattener returns an complete new Flow separate from the input.

FlowSizeSetter is a small tool, used by the FlowFlattener to sets the sizes of
the pipes after completion. This is a separate tool to make programing
easier.

3.1.3 Function

The Function is a packaging device for Flow , so that small parts of a program
can be build separately and used from a module. The Function is mainly used
in the FlowFunctionNode, that uses the Function to check if it is connected
correctly. Therefore a Function needs to know its source types and its target
types. A special method called is can be used to check that the function is
called correctly, and a method called getTargetType can get the type of the
target at a certain slot.

3.1 Flow 29

To support the checking of the sizes of Lists in the Flow it is possible to query
a target size in a function. The method is called getTargetSize. A special ap-
proach is needed to find the size, because the size cannot be transferred directly
from the internal Flow of the function. The reason for this lies in how we check
the size, see section 3.1.5. The Idea is to return the number of the source,
that the output has the same size as, and to return -1 if none of them matches.

Here is a walkthrough of some of the function subclasses that can be seen in
Fig. 3.6.

FlowFunction The flow function is the main function in Flow , it contains a
sub flow that can be run.

CodeFunction As this project is only a prototype I have added simple C code
injections for basic features like + and -. In a final product this would
have been substituted by a dynamic set of classes that the compiler could
implement.

InitFunction The init functions makes new pipes, so that functions can use
them. The reason that they have been given their own classes is because
they do not have an internal flow, and that the operations are directly
associated with memory allocation which is not something that we would
like to inject.

3.1.4 Types

Types is used when testing that the pipes are connected correctly to the func-
tions in the Flow . The types class diagram, see Fig. 3.3, describes the current
definition of the type. The types is one of the parts that I have worked less on,
and it is therefor also longer from the final product, than the other features.

First of all the CodeType would not exist, as with the functions, the formulation
of the build in types should be let up to the compiler within the definitions of
Flow . The RenamingType is a artificial type that I have added to Flow to
allow FlowCode to redefine names easily. The proper way to rename a type,
would have been to build it into the checking system.

The staying parts of the types hierarchy would be the Type, the TemplateType,
the StructType, and the ListType. Besides this a SetType, a DictType, and a
DefinedType should be added. The TemplateType is just a abstract class that
allows for a template.

30 Implementation

Function

+ ID : string
+ sources[0..*] : Type
+ targets[0..*] : Type

+ is(srcTypes[0..*] : Type, template : Template) : boolean
+ getTargetType(slot : int) : Type
+ getTargetSize(slot : int) : int

FlowFunction

+ sources[0..*] : FlowPipe
+ targets[0..*] : FlowPipe

CodeFunction

+ sources[0..*] : String
+ targets[0..*] : String
+ code : String

InitFunction

InitWithValueFunction

+ value : Object
InitStructFunction

InitListFunction

+ template : Template

InitListWithListFunction InitListWithSizeFunction

Figure 3.2: Class diagram over Functions

3.1 Flow 31

*

1

Type

+ ID : string

TemplateType

+ template : Template

ListTypeStructType

SignalType

+ atomic : boolean

RenamingType

CodeType

+ codeName : String
+ size : int

Figure 3.3: Class diagram over Types

32 Implementation

The List, Set and Dict types is special types that represent the Mappable types.
The Struct type is a bit more interesting, as it holds a structure associating
field names with types. The SignalType is a build in type that represents a
non-memory resource, and can safely be ignored by the Compiler. Lastly is the
DefinedType which is a type that we claim is a build-in part of Flow .

3.1.5 FlowSize

I have talked about the FlowSize before, but in this section I will talk a little
about the functionality of the class. FlowSize have no functionality at all,
except that it can compare itself with others objects of type FlowSize.

To be able to compare the sizes of single object like a Integer, and the sizes of
List and Sets, I have created a Static instance of FlowSize called SINGLE. The
instance is pointed to by all single objects, all collections point to their own
instances or an other collections instance. If two collection points to the same
instance of FlowSize, Flow guarantees that they have the same size.

The fact that FlowSize comparison are context depended also explains why it
is impossible to compare the sizes of a flow directly with the sizes in a function.
The function could be called with different sizes and should accommodate all.

Internally the FlowSize is set by functions like InitListWithListFunction or
by mapping operation, and hopefully by a padding function in the future.

3.1.6 Module

The top structure in Flow is the Module. It is contains the set of function and
type declarations, that are associated with the Flow and an ID. This can be
used to precompile packages to speed translations.

3.1.7 Code Securing

I have tried to make Flow as robust as possible by testing, almost every
move done by translator. If something goes wrong the Flow will throw a
FlowBuildWrongException, which is a runtime exception. When building a
Translator then the FlowBuildWrongException should be handle like a NullPointer-
Exception, by prevention. This means that a FlowBuildWrongException should

3.2 FlowCode Translator 33

not be caught, as it indicates a error in the logic of the Translator, not in the
translated code.

3.2 FlowCode Translator

I have build the Translator using Java, which is the same language used in Flow
. The translator starts by building a parse tree using ANTLR.

ANTLR is a program that produces code to Java, or another platform, from
Parser and Lexer code. As I have already use ANTLR in some of my previous
courses it was an obvious choice. ANTLR allows for both extraction of auto
generated parse trees and for Java code injection. The code injection enable me
to build my own parse tree. I have chosen to use a parse tree that I designed
myself, to get better control over the process, and because it was the approach
that I used before. But the other approach could possible spared me some
developing time, especially because changes in the structure would have been
directly implemented, without changing anything but the ANTLER code.

I will not get into the details of the parse tree and the ANTLR code, as this is
pretty much strait forward, but cumbersome.

3.2.1 General Translation

I translate FlowCode to Flow in two stages first we define and then we translate.
The first stage defines the elements to the TranslateEnvironment and then the
second stage completes the translation of the product.

The stages are important because FlowCode does not require the programmer
to write the functions in a linear fashion. The FlowCode translator uses a two
passes.

3.2.1.1 TranslateEnvironment

The TranslateEnvironment is a vital part of the translation. It holds all in-
formation about the current translation. When defining something on the en-
vironment a new declaration is added to the environment which allows other
declarations to use it. We therefore have two classes a FunctionDefinition and

34 Implementation

a TypeDefinitions which helps The TranslateEnvironment to keep track of the
Types and Functions defined.

FunctionDefinition The function definition holds function declarations of the
same name, as overloaded functions in FlowCode , i.e. function declara-
tions with the same name but different source types. Because we use
automatic mapping, collections of a type is equal to the type when com-
paring source types.

The Function declarations are stored internally in a list, and to get the a
specific declaration out again, the following method can be used.

getFunction(srcTypes[0..*] : Type, template : Template) : Function

The method check thru all the functions in the definition and returns the
first function that gives a match. The method can certainly be optimized,
but it wasn’t important for the prototype.

TypeDefinition Works a lot like the FunctionDefinition, the major differ-
ence is that we store type declarations instead of function declarations and
that the method used to get the Type is:

getType(template : Type) : Type

which uses the build-in hasTemplate method of the Type, to find the
correct type.

But before we can put the function and type declarations in the Definition
Objects we need to define them in a way so we can reference them.

To do this a Factory pattern is used. The Factory pattern allows us to create
some temporary object that can build the type and function declarations, which
is useful as we then can translate the parse tree in stages. A class diagram over
the Factories is given in Fig. 3.4.

The definition step is simply to create an empty function or type and fill in the
necessary informations so that it can be used in a flow. One Problem is that a
function needs the types of the arguments to be defined. The define procedure
is first to define the types, then the Structs, because they may need a type
template, and then lastly we define the function.

This brings us to the next stage, the translation. The translation is done in the
same order as the definition. The strict ordering is again needed, as the struct
fields are used when we translate the Function.

3.2 FlowCode Translator 35

FlowCodeFactory

+ translateEnvironment : TranslateEnvironment

+ define() : void

FunctionFactory

+ translate : Function

StructFactory

+ ParseTreeStructDefinition
+ StructType

+ translate : StructType

TypeFactory

+ ParseTreeTypeDefinition
+ Type

+ translate : Type

FlowFunctionFactory

+ ParseTreeFunctionFlowDefinition
+ FlowFunction

CodeFunctionFactory

+ ParseTreeFunctionCodeDefinition
+ CodeFunction

Figure 3.4: Class diagram over Factories

TypeFactory The translation of types is strait forward as they are already
translated when defined, except if it is a renamingType, where we need to
find its associated type.

StructFactory To translate the Struct we find the associated Types in the
TranslateEnvironment, and then assign them in the structure under the
field names.

CodeFunctionFactory In the CodeFunctionFactory, we just add the the C
code to function.

FlowFunctionFactory This the the most complicated part of the translation,
and it is explained in its own section. See section 3.2.1.2.

3.2.1.2 FlowFunctionFactory Translation

I will just introduce some terminology: The ParseTrees FlowFunctions are sub-
divided into statements. A statement is a continuous stream of sections and a
section can either be a pipe collection or a function.

36 Implementation

The first thing we do to translate the function is to add the argument pipes to
a HashMap, called pipes, that associates the names of the pipe to the actual
pipe. We later use this to connect the functions with the pipes.

Then we translate the statements one at a time in a function called

handelStatement(statements : ParseTreeFlow)

We can not assume a special ordering of the statements, which means that the
first statement could be the last in the ordering.

handelStatement divides the Statement into sections and then calculate them
one at at time. In the sections there are an implicit ordering, therefore can we
make assumptions according to the last section. The algorithm for calculating
a Statement is as seen in algorithm 1

Algorithm 1 handelStatement
function ← null
pipes ← null
while |sections| > 0 do

s← next(section)
if s ∈ F then . s is a Function section

if function 6= null then . The last section was a function
pipes ← pipe[function.numberOfTargets]
function.targets ← pipes

end if . pipes are now set if possible
function ← createFunction(s)
function.sources ← pipes
pipes ← null

else if s ∈ P then . s is a Pipes section
if pipes 6= null then . The last section was a pipe

function ← doNothingFunction
function.sources ← pipe

end if
pipes ← getPipes(s) . If pipes do not exist in the HashMap, create
if function 6= null then . This section is not the first

function.targets ← pipes
end if
function ← null

end if
end while

The algorithm tries to create the data flow, while knowing the the former section.

3.2 FlowCode Translator 37

The type of the section is decided by whether the pipes and function is null or
not. If both the pipes and the function is null then the section we are working
on is the first in the statement. If the function is not null the function was the
last read, and the same goes for the pipes.

Every time we handle a pipes section we need to either find them in HashMap
or create them and put them there. If we do not do this we cannot find the
pipes again, if look for them, when we handle the rest of the sections.

The FlowFunctionFactory translation is ended by running the FlowCodeFinalizer
tool on the flow.

3.2.2 FlowCodeFinalizer

The FlowCodeFinalizer is a tool using the visitor pattern of Flow . It inherits
the FlowVisitor class and as such it is guaranteed to reach the entire construc-
tion.

The approach to building this was relatively simple.

• The First thing the tool was build for was to give all Pipes a type and
to ensure that all the functions was loaded. In this functionally lies an
automatic check that the pipes are connected correctly.

• The next part of this tool is to build maps, as FlowCode has implicit
mapping this does at the same time check that all lists that uses the same
map are of the same size.

• To a certain extend the finalizer checks that the pull/push relationship of
a struct has not been violated. But this functionality has not yet been
extended to check within functions. Structs are at the time not permitted
to enter functions with some of its fields locked.

• Lastly we also check that the system do not use pipes that are the targets
of a recall function.

The Type checking is remarkably easy when using the visitor pattern and the
functionality of Flow . The actual logic for setting the types for all the pipes
can be done in a very few lines of code.

Listing 3.3: FlowPipe Handling in FlowCodeFinalizer

38 Implementation

public void visit(FlowPipe p) {
try {

// set the type and size of the FlowPipe
if (p.getWriter () != null) {

p.setType(p.getWriter (). getTargetType ());
p.setSize(p.getWriter (). getTargetSize ());

}
// Checking that all is set for the cases where there
// is no implicit writer.
if (p.getType () == null || p.getSize () == null)

throw new PipeNeverWritenToExecption(p);
} catch (CouldNotTranslateException e) {

throw new FlowVisitorException(p,e);
}

}

The checking is done automatically when we evaluate the functions, because
when we try to get a function from the TranslateEnvironment it needs to be
declared, if it is not a FunctionNotDefinedException will be thrown.

Listing 3.4: FlowFunctionNode Handling in FlowCodeFinalizer
public void visit(FlowFunctionNode p) {

try {
// Get types from pipes.
List <Type > types = p.getSourceTypes ();

// Get current function
Function function = p.getFunction ();

if(function == null) {
// If currently don’t have a function ,
// then try to find a new one.
function = getEnv (). getFunction(

p.getID(),
types ,
p.getTemplate ());

// NOTE : that this function will fail with an
// exception , if no function pressent
p.setFunction(function);

} else if(! function.is(types , p.getTemplate ()))
// We have function but it doesn ’t fit our pipes.
throw new WrongArgumentsToFunction(

function ,types ,p.getTemplate ());
...

3.2 FlowCode Translator 39

} catch (CouldNotTranslateException e) {
throw new FlowVisitorException(p,e);

}
}

To build the map is pretty simple. First we check if anything needs mapping,
this is done by comparing the output of the FlowCode source checker with the
Flow source checker. Because the FlowCode source checker sees List of a type
as the type itself when checking and the Flow source checker does not, then if it
is correct in FlowCode and not in Flow we need to make it into a map. To make
the FunctionNode into a map is relatively easy. First the Map takes over the
FunctionNodes function, then we move all the sources pipes to point to the Map
instead of the FunctionNodes, and lastly the same is done with the targets. The
FunctionNode now completely detached from the Flow , should be deallocated
by the garbage collector.

Listing 3.5: FlowMapNode Creation while Handling the FlowFunctionNode

// Trying to pass to a map;
if(! function.is(types , p.getTemplate ())){

// Because the isSameTypes call does not differ between
// List <A> and A, and is does. We can see that if is
// doesn ’t pass we need to map this function.
FlowMapNode mapnode = new FlowMapNode ();
mapnode.setInternFunction(p.getFunction ());
// Set the Function
for(int i = 0; i < p.getNumberOfSources (); i++) {

// Move the source pipes;
mapnode.setSource(i, p.getSource(i));
p.getSource(i). removeReader(new FlowSlot(i, p));
p.getSource(i). addReader(new FlowSlot(i, mapnode));

}
for(int i = 0; i < p.getNumberOfTargets (); i++){

// Move the target pipes;
mapnode.setTarget(i, p.getTarget(i));
p.getTarget(i). resetWriter(new FlowSlot(i, mapnode));

}

mapnode.accept(this);
}

}

After this we make the mapnode accept the FlowCodeFinaliser, where a check
is made that all pipes that is mapped is of the same size as the Map.

40 Implementation

The tools also checks that the pushing and pulling is done correctly. To keep
track of in which state the different structs are, I have added a Struct checker
class. The Struct checker has two functions, to store the state of the Structs
fields, and to enable easy checking of these field. Each Struct checker class is
associated with several pipes, the FlowNodes that do not alter the struct can
associate the targets of the FlowNodes with Struct checker of the source. That
we pull and push correctly, is checked in the push and pull nodes.

We check that we do not call anything with a locked pipe in the function and
the recall node, by the following code snippet:

Listing 3.6: The locking check for recall and struct
// Check that none of the pipes is locked;
for(int i = 0; i < p.getNumberOfSources (); i++) {

if(isRecallLocked(p.getSource(i))
|| isStructLocked(p.getSource(i)))
throw new PipeLockedAndCantBeAlteredException(

p.getSource(i));
}

The isStructLocked method, checks that none of the fields in the struct are
locked.

The isRecallLocked method is part of the last thing that the FlowCodeFinal-
izer checks. After a recall all targets get locked, regardless of type, this means
that they cannot be used by any thing but the select node. Ensuring that the
resulting flow is tail recursive. The locking is controlled by a simple HashMap.
When the true or false source of a select node is locked, the target will be locked
too.

3.2.3 Modules

Its a vital part of the syntax to be able to import modules, which allows for
better reuse of code. FlowCode uses the build in Modules from Flow to do the
job. This section will put together all the implementations from the previous
sections.

The process of translating a module is strait forward, and is done in the FlowCodeTranslator.

1. Check that the Module hasn’t been loaded before. This works to a certain
extend but this feature isn’t vital for the prototype.

3.3 Compilers 41

2. Find the src code in the filesystem from a module name. A module name
is like the filesystem names but divided by dots like in Java and Python.
The TranslationEnvironment holds the library directories that should be
searched in.

3. Run the ANTLR Lexer and Parser on the file.

4. Import and translate necessary modules, this is done recursively with the
FlowCodeTranslator.

5. Define types, structs and functions, using the factories.

6. Translate types, structs and functions.

7. Add the types, structs and functions to the module and return it.

3.2.4 Exceptions and Traceability

If there is errors in the code then it is important that the translation fails. The
easiest way to do this is to use the exception structure of Java.

All my exceptions inherit the same CouldNotTranslateException, which all
can take a Message and an Exception as parameters. This allows me to build a
structure where each layer of the translation throws its own subclass of Could-
NotTranslateException. If an exception is throw in one of the low layers the
next layer will throw a new exception of its own, convoluting the exception.
That way there is full traceability down the layers and when we in the end
output the Exception, we get a complete and almost readable message.

Listing 3.7: An error message
Couldn’t translate module test7, problem while translating caused by:
CouldNotTranslateFunctionException − Problem in main, while checking caused by:
FailedFlowVistingException − Exception raised in <Pipe: null argument > caused by:
PipeNeverWritenToExecption − The Pipe never written to <Pipe: null argument >

The Error messages notes that the pipe was never written to, while checking
the internal Flow of the function main, which is a function of the module test7.

3.3 Compilers

The compilers I have provides are both using the visitor pattern, Which makes
them stron

42 Implementation

3.3.1 Tikz compiler

To show that the FlowCode translated correctly, and to illustrate that it is
possible to build a compiler to Flow , I have created a tool that compiles the
Flow to Tikz code. The Tikz code is then renderd to something like this:

IO

pull<stdout>

init(String)

IO

Printer

String

print Printer push<stdout> IO

Figure 3.5: Finished product

Tikz is a extension to Latex that makes it easy to make vector graphics. You
simply write the Tikz code and embed it in a latex document to make it run.
I have created a little piece of example code, that shows a small part of the
functionality.

Listing 3.8: Tikz example code
\begin{tikzpicture}

\node (A) [draw=red] at (0,0) {$a_\text{label }$};
\node (B) [draw=blue] at (2,0) {$b_\text{label }$};
\path (A) edge (B);

\end{tikzpicture}

alabel blabel

Figure 3.6: Output of small example of tikz

It is of course possible to add different styles and stuff to both the edges and
the nodes.

I wanted the drawing to be a layered data flow graph. The Idea behind the
compilations was to give all elements a level ID describing when they were met.
And then group nodes with the same level IDs together in a column, in the
order of the level IDs.

The way I have implemented this is by using a HashMap, associating the element

3.3 Compilers 43

to a level ID, and then an Arraylist of List, containing the pipes of each level.
I assign the ID’s by a simple algorithm:

Arguments to the function we want to compile get 0 and calls to functions with
no arguments get the value 1. Then after this we set the level ID for the next
elements to be the value of its writer or the max value of its sources level IDs
plus one. The transversal uses the Visitor tool from Flow to make sure that all
nodes are visited.

The actual compiling to code is simple as we just print the elements as nodes,
which we bundle in matrices. This produces automatic centering. The naming
of the nodes, is based on layer-<layer number>-<number in layer>. The names
is kept in a HashMap, so when we need to connect the nodes we can lookup the
names fast.

Listing 3.9: Example of the layering.
\matrix (layer 1) [layer] at ($(layer0) + (3.0cm ,0)$){

\node (layer -1 -0)[func]{pull <stdout >}; \\
\node (layer -1 -1)[func]{init(String)}; \\

};

The connections are made after each matrix is appended to the code. We only
connect backwards so we do not need to worry about that some of the nodes is
not instantiated.

Listing 3.10: Example of the paths.
\path (layer -3-0)

edge [dir ,out=150,in=0] (layer -2-1)
edge [dir ,out=-150,in=0] (layer -2-2);

To make the edges between the nodes easier to separate, edges will curl. This did
give some problems because there is a bug in the Latex complier that presentates
itself when the compiler tries to make long curly edges. I have fixed this by only
making edges curly if they are connecting bode less that 13 levels away.

3.3.2 Code Compiler

I did not implement a C compiler, because even though that it would definitely
proof that Flow can be translated into parallel code, it is a very complex and
time consuming process.

44 Implementation

An important part of this project is, if not to compile Flow into parallel code,
to make it plausible that it is possible to compile Flow into parallel code.
Therefore I have developed a Compiler that produces parallel pseudocode. I
call this pseudocode "Simple".

The pseudocode is based on some assumptions.

• That we can access all memory from all positions in the code.

• That we have a structure, where we can add and remove snippets of code,
called jobs. It also needs a feature that allows one job to give the green
light to other jobs. This could be handled thru the OS with the use of
threads, or properly more efficient directly in the code.

The pseudocode will not differentiate between types, and generally not work
with memory management. The creation of the pseudocode is done the same
way that a compiler would create parallel C code. The compiler first subdivides
the tree into serial jobs, consisting of actions. An action could be a calling of a
method, allocating memory or allowing an other job to run.

A part of the structure is represented in Fig. 3.7. And it is not pretty. Therefore
not to make it even harder to see I have not included the last three actions. Even
thought they are similar important.

ExitAction The exit Action tells the function that the computations is done,
this is essential when clean up operations are needed to be run.

MapAction The Map Action takes a function call action, and a memory po-
sition of the size of the Map.

RecallAction The Recall Actions contains two lists of parameters, the first
is the current input memory positions, and the second is the memory
positions of the function. The idea is that before calling the recall the
function simply moves the data from its input parameters to the input of
the function, and then runs it again.

All these Actions are then implemented by the specific language compiler to
produce the correct kind of code.

To build the Jobs I use a tool based on FlowVisitor. It runs through the Flow
and creates the jobs. We could of cause just create a job for each node in the

3.3 Compilers 45

*

*

args
*

functionId

2

logic

Job

ID

+ number : int

<<interface>>
Identifiable

+ getIDPrefix() : String

MemoryPos

MemoryListPos

<<interface>>
Action

+ writeCode(b : StringBuilder, ind : int) : void

CallFunctionAction

AllowActionSelectAction

Figure 3.7: Class diagram over the Code-compiler

46 Implementation

Flow , but that would not be efficient. So the algorithm needs to join jobs if
they cannot be run in parallel.

The direct implementation is a bit messy, but the overall approach is simple.

• All pipes get the Job of their writer, If they don’t have a writer they create
a new job.

• The nodes is then treated like this.

1. we find the possible dependencies by running through all the sources
of the node and finding the associated jobs.

2. for each of these dependencies we check that they don’t depend on
each other. If a job depend on a second job, we can remove the second
job from the dependency list as it is already represented by the first
job. The dependency check walk trough the entire graph, unless we
give it a max depth. The max depth is currently set to 3.

3. if there is only one dependency left after the filtering, and that the
dependency is open for serial access, we can just extend it. A job is
open for serial access by a node if one of the node’s pipe’s writer are
the last node added to that job.

4. if there are more, or zero dependencies we need to make a new job
and add all the dependencies as dependencies to it.

3.3.2.1 Problems

During the coding of the Job-compiler I had some problems, the worst of these
was with the SelectAction. The select in itself is different from the other nodes
as the exact behavior of the select is first known at runtime.

The current problem occurs when one of the, true or false source is dependent
on the other. If we only want one to run the other may be blocking it. It
is therefore necessary to check for this. Currently I have chosen the simplest
possible solution, to allow the sources to compute to the very last step that
needs permission to run from the select.

3.3.2.2 Simple

The pseudocode is then produced by implementing the classes with the writeCode
method. I have implemented one class for each of the Actions that describes

3.3 Compilers 47

how they are supposed to translated to code.

I have called the compilation Simple as it is an simplification of the features of
C. And it looks like this:

Listing 3.11: Output from running of test2
flowFunction0 [String : arg0]

init the String into arg0
end

flowFunction1 c-code [String : o]
printf ("%s",*((char **)o));

end

Main []

on call {
Allocate local space (2)
run Job0
run Job1

}

Job0 depend on ()
allow Job2 to run

end

Job1 depend on ()
call flowFunction0 with [Memory (2135760193)]
allow Job2 to run

end

Job2 depend on (Job0 , Job1)
call flowFunction1 with [Memory (2135760193)]
Allow Function to exit

end

on exit {
Deallocate local space (2)

}
end

The first thing we se in the top is the function names, these are found using a
tool that transverses the Flow and finds all required functions. After this we
see the actual Main function. It has no arguments, but the first thing we see
is the "on call" event. Everything in the event is executed when we call the
function; It allocate some local space, and starts Job0 and Job1.

48 Implementation

The jobs the allow each others to run in an orderly fashion.

There is also a "on exit" event that cleans up after the function.

As we can see the algorithm for finding jobs is not optimal jet. Fig. 3.8 shows
that a more optimal solution could be found. Job0 does not do anything in our
example.

Current job dividing

Optimal job dividing

Figure 3.8: Job dividing

Chapter 4

Proof of Concept

This chapter is focused on illustrating the features of Flow . The goal of
this project has not been to produce failsafe code but to showing and proving
that it is possible to create a functioning compiler using a flow approach. The
presentation will not cover all cases, but will only cover special cases of interest.

A problem with illustrating Flow is that it is a declarative language, which
means that each test needs a purpose to be able to run. This makes building
simple test cases harder.

All the SimpleCode is also in the appendix.

4.1 Experiment 1 - Setup

In this Experiment, I will talk about the testing environment, which is used by
the the other Experiments. I have implemented some standard features in a
flow package. To see the entire FlowCode Standard Library see appendix C.

Setup for the test is simple. First I translate the tests, which is done using
the FlowCodeTranslater. From that I get a Module from which I compile all

50 Proof of Concept

functions to Tikz. I also compile a version of each function after they have been
optimized with the flow flattener.

The Simple compiler is only run on the flattened main function of the module,
because the compiler compiles a program.

A class runs all the tests after each other and the tests are named after the
experiment they are a part of.

4.2 Experiment 2 - Hello World

Experiment 2 is a simple Hello World program and is the example that is used
most throughout the report. It covers the features of pulling and pushing a field
from a struct and printing it. The Program also checks that the import function
works and that the pipes can connect correctly to the functions.

Listing 4.1: The FlowCode of test2
module test2;
import flow.IO;
import flow.string;

def [IO in]:main:[IO out] {
[in]:pull<stdout >:[io ,p];
[p,"Hello World !\n"]:print:[p_1];
[io ,p_1]:push<stdout >:[out];

}

We have already seen both the Tikz graph and the Simple code, as they is used
as illustrations in the

The Tikz generated graph is shown in Fig. 4.1.

which looks like this in simple code:

Listing 4.2: Simple code from test2
flowFunction0 [String : arg0]

init the String into arg0
end

flowFunction1 c-code [String : o]
printf ("%s",*((char **)o));

end

4.2 Experiment 2 - Hello World 51

IO

pull<stdout>

init(String)

IO

Printer

String

print Printer push<stdout> IO

Figure 4.1: Graphical representation of test2

Main []

on call {
Allocate local space (2)
run Job0
run Job1

}

Job0 depend on ()
allow Job2 to run

end

Job1 depend on ()
call flowFunction0 with [Memory (2135760193)]
allow Job2 to run

end

Job2 depend on (Job0 , Job1)
call flowFunction1 with [Memory (2135760193)]
Allow Function to exit

end

on exit {
Deallocate local space (2)

}
end

52 Proof of Concept

4.2.1 Reflections

We can see that we can create a Flow from input and that we can compile the
Flow into something that looks like an imperative language. The Tikz graph
looks is nice.

The memory management is working, beacuse we can see that the same string
that is instantiated is also used by the printer. Notice that the localspace
allocated is 2 this is do to do with that a String is a List, and a list also has a
size.

On the bad side is the job creation in the simple output not optimal, and
the instantiation of the list size is not show. But this was expected as the
functionality was not implemented.

4.3 Experiment 3 - Parallel Program

Experiment 3 is a test that shows that special operator like names is allowed for
functions, see the ’+’ function, and it also produces something that is implicitly
parallelizable. The two first plus operations can be run in parallel.

Listing 4.3: The FlowCode of test3
module test3;
import flow.math;
import flow.IO;

def [IO in]:main:[IO out] {
[10 ,2]:+:[a];
[12 ,3]:+:[b];
[a,b]:+:[c];
[in]:pull<stdout >:[io ,printer];
[printer ,c]:print:endl:[printer_3];
[io ,printer_3]:push<stdout >:[out];

}

But as the code gets longer so does the Tikz-graph which is shown in two parts;
see Fig. 4.2.

The Simple code is also longer than it was before, so I only present the part of
the main where the Jobs is.

4.3 Experiment 3 - Parallel Program 53

IO

pull<stdout>

init(Integer)

init(Integer)

init(Integer)

init(Integer)

IO

Printer

Integer

Integer

Integer

Integer

+

+

Integer

Integer

+ Integer print Printer endl Printer push<stdout> IO

IO

pull<stdout>

init(Integer)

init(Integer)

init(Integer)

init(Integer)

IO

Printer

Integer

Integer

Integer

Integer

+

+

Integer

Integer

+ Integer print Printer endl Printer push<stdout> IO

Figure 4.2: Graphical representation of test3

54 Proof of Concept

Listing 4.4: Simple of test3
Job0 depend on ()

allow Job8 to run
end

Job1 depend on ()
call flowFunction0 with [Memory (1109376982)]
allow Job3 to run

end

Job2 depend on ()
call flowFunction1 with [Memory (845913220)]
allow Job3 to run

end

Job3 depend on (Job2 , Job1)
call flowFunction2 with [Memory (1109376982) ,

Memory (845913220) , Memory (921745400)]
allow Job7 to run

end

Job4 depend on ()
call flowFunction3 with [Memory (1975391989)]
allow Job6 to run

end

Job5 depend on ()
call flowFunction4 with [Memory (315976503)]
allow Job6 to run

end

Job6 depend on (Job4 , Job5)
call flowFunction2 with [Memory (1975391989) ,

Memory (315976503) , Memory (2037510537)]
allow Job7 to run

end

Job7 depend on (Job6 , Job3)
call flowFunction2 with [Memory (921745400) ,

Memory (2037510537) , Memory (665360297)]
allow Job8 to run

end

Job8 depend on (Job0 , Job7)
call flowFunction5 with [Memory (665360297)]
call flowFunction6 with []
Allow Function to exit

4.4 Experiment 4 - Mapping and Lists 55

end

4.3.1 Reflections

The graph is fine and it shows that we should be able to calculate the two plus
operations in parallel. We can also see that the parallelism is reflected in the
simple code, if we follow the dependencies of the two jobs 6 and 3 which is
the jobs associated with the parallel plus operations. Function 2 is the plus
operation.

The Compiler also claims that we can run the instanciation of the 4 init function
in parallel, which is both a good and a bad thing. It is a good thing because
it is right, it is possible to run those in parallel, but the bad thing is that the
instanciation of data is often very fast, so the bonus we get by parallelizing the
code is often lost in the time of the synchronization.

4.4 Experiment 4 - Mapping and Lists

Experiment 4 illustrates that we are able to make a mapping, and that we are
able to use functions defined in flow. The test calculates the Caesars code of a
string.

The caesars code is a coding algorithm where you take each letter in a message
and then translates it up or down the alphabet. If we use Caesars code with a
value of 2 on this sentence, it would look like:

Kh"yg"wug"Ecguctu"eqfg"ykvj"c"xcnwg"qh"4
"qp"vjku"ugpvgpeg."kv"yqwnf"nqqm"nkmg

The beautiful about this encryption algorithm is that it is perfect for mapping
as the algorithm doesn’t need knowledge about the former or the next fields in
the list, or data from computations of other fields.

The mapping function of the Caesars code has a graphical representation like
this:

It takes 2 Bytes and produces one Byte.

56 Proof of Concept

Byte

Byte

+ Byte

Figure 4.3: Graphical representation of Caesars Code function

Listing 4.5: The FlowCode of test4
module test4;
import flow.IO;
import flow.string;
import flow.math;

def [IO in]:main:[IO out] {
[in]:pull<stdout >:[io ,p];

["Hello World"]:[hello];
[1]: toByte :[b];
[-1]: toByte :[mb];
[hello ,b]: ceasarsCode :[code];
[code ,mb]: ceasarsCode :[decode];

[p,hello]:print:endl:[p_2];
[p_2 ,code]:print:endl:[p_3];
[p_3 ,decode]:print:endl:[p_4];
[io ,p_4]:push<stdout >:[out];

}

As we can see is hello a list of bytes and b is a byte with value 1. FlowCode
uses automatic mapping if the function can map. So the the mapping is done
over the list with Caesars code keeping the b constant to 1.

The graphical illustration is cut up in 3 parts, and can be seen in Fig. 4.4. The
red functions is the once that is mapped and the red arrows means that this is
done for each value in the list. Notice that the the single Byte is not red, this
means that Flow do not map over this.

The Simple Code is to long to show here but I would like to show the succeeded
builded map.

Listing 4.6: Mapping in simple

4.4 Experiment 4 - Mapping and Lists 57

IO

pull<stdout>

init(String)

init(Integer)

init(Integer)

IO

Printer

String

Integer

Integer

print

toByte

toByte

Printer

Byte

Byte

endl

ceasarsCode

Printer

List<Byte>

print

ceasarsCode

Printer

List<Byte>

endl Printer print Printer endl Printer push<stdout> IO

IO

pull<stdout>

init(String)

init(Integer)

init(Integer)

IO

Printer

String

Integer

Integer

print

toByte

toByte

Printer

Byte

Byte

endl

ceasarsCode

Printer

List<Byte>

print

ceasarsCode

Printer

List<Byte>

endl Printer print Printer endl Printer push<stdout> IO

IO

pull<stdout>

init(String)

init(Integer)

init(Integer)

IO

Printer

String

Integer

Integer

print

toByte

toByte

Printer

Byte

Byte

endl

ceasarsCode

Printer

List<Byte>

print

ceasarsCode

Printer

List<Byte>

endl Printer print Printer endl Printer push<stdout> IO

Figure 4.4: Graphical representation of test4

58 Proof of Concept

Job7 depend on (Job6 , Job4)
Map from i : 0 to Memory (1545595021):

call flowFunction6 with [Memory (1083228271)[i],
Memory (1764128329) , Memory (853323835)[i]]

end
allow Job8 to run
allow Job10 to run

end

I haven’t done that much on this part as parallel mapping is already an well
explored matter in C. But notice that it uses a specific memory position to map
to and if we look at the hole output we can see that it is the same as in the
other mapping.

4.4.1 Reflections

The mapping work perfect both in the graphical representation and in the simple
code.

4.5 Experiment 5 - Recursion and Select

Experiment 5 experiments with the use of recursive functions. The program
should print out the numbers from 0 to 4, using the function printRange. print-
Range uses both the recall and the select functionality.

Listing 4.7: The FlowCode of test5
module test5;
import flow.IO;
import flow.math;

def [Printer in , Integer from ,Integer to]:printRange:[Printer out] {
[from ,to]:lt:[bool];
[from ,1]:+:[nextIter];
[in ,from]:print:[p];
[p,nextIter ,to]:recall:[true_out];
[bool ,true_out ,in]: select :[out];

}

def [IO in]:main:[IO out] {
[in]:pull<stdout >:[io ,p];

4.5 Experiment 5 - Recursion and Select 59

[p,0,4]: printRange :[p_1];
[io ,p_1]:push<stdout >:[out];

}

For once is the code not to large represent graphically so here is the main
function.

IO

pull<stdout>

init(Integer)

init(Integer)

IO

Printer

Integer

Integer

printRange Printer push<stdout> IO

Figure 4.5: Graphical representation of test5’s main function

The main function is not that interesting, because all of the nice features hap-
pens in the printRange function, which can be seen in Fig. 4.6.

Integer

Integer

Printer

lt

print

init(Integer)

Boolean

Printer

Integer

+ Integer recall Printer Printer
True

False

Printer

Figure 4.6: Graphical representation of test5’s printRange function

We see that every thing is represented nicely. This also transfers nicely to Simple
code. The entire code can be found in the appendix, but here is a sample of the
select based code.

60 Proof of Concept

Listing 4.8: Example of Select simple output
Job2 depend on (Job1 , Job0)

call flowFunction2 with [Memory (880403204) ,
Memory (774321798) , Memory (275558166)]

if Memory (275558166) is true:
allow Job7 to run

else
allow Job8 to run

end
Allow Function to exit

end

and a example of the recall code.

Listing 4.9: Example of Recall simple output
Job7 depend on (Job1 , Job6 , Job4 , Job2)

Put Memory (1418257117) in Memory (880403204)
Put Memory (774321798) in Memory (774321798)
Recall

end

If you notice that the two last operations before the recall, moves the source
data of the recall onto the source data of the function. This is done so that the
functions can be run again with no reallocation of memory.

4.5.1 Reflections

Nothing much to say about this example except that exact execution of the
simple select is a bit unclear at the moment. And a bit more thinking is needed
when we need to translate it to C.

4.6 Experiment 6 - Flattening and Structs

Experiment 6 is about advanced struct control and a test of the FlowFlattener
tool. The program does simply add values on a Point and then it prints it
using a function. A feature that has not been directly tested before is the struct
creation.

Listing 4.10: The FlowCode of test6

4.6 Experiment 6 - Flattening and Structs 61

module test6;
import flow.math;
import flow.IO;
import flow.string;

struct Point {
x : Integer ,
y : Integer

};

def [Printer p, Point point]:print:[Printer p_5] {
[point]:pull<x>:[point -x,x];
[point -x]:pull<y>:[_,y];
[p ,"["]:print:[p_1];
[p_1 , x]:print:[p_2];
[p_2 ,","]:print:[p_3];
[p_3 , y]:print:[p_4];
[p_4 ,"]"]:print:[p_5];

}

def [IO in]:main:[IO out] {
[in]:pull<stdout >:[io ,p];
Point:[point];
[point]:pull<x>:[point -x,x];
[point -x]:pull<y>:[point -x-y,y];
[10,x]:+:[new_x];
[10,y]:+:[new_y];
[point -x-y,new_x]:push<x>:[point+x-y];
[point+x-y,new_y]:push<y>:[point+x+y];
[p,point+x+y]:print:endl:[p_1];
[io ,p_1]:push<stdout >:[out];

}

I have of cause also made a graphical representation of the two functions, first
one of both of them without the use of the FlowFlattener, Fig. 4.10 & Fig. 4.8,
and then the one that that is the product of the flattening, Fig. 4.9.

The simple code does not do anything new in this, because we always run the
simple compiler on a flat Flow .

62 Proof of Concept

IO

pull<stdout>

Point

init(Integer)

init(Integer)

IO

Printer

Point

Integer

Integer

pull<x>

Point

Integer

pull<y>

+

Point

Integer

Integer

push<x>

+

Point

Integer

push<y> Point print Printer endl Printer push<stdout> IO

IO

pull<stdout>

Point

init(Integer)

init(Integer)

IO

Printer

Point

Integer

Integer

pull<x>

Point

Integer

pull<y>

+

Point

Integer

Integer

push<x>

+

Point

Integer

push<y> Point print Printer endl Printer push<stdout> IO

IO

pull<stdout>

Point

init(Integer)

init(Integer)

IO

Printer

Point

Integer

Integer

pull<x>

Point

Integer

pull<y>

+

Point

Integer

Integer

push<x>

+

Point

Integer

push<y> Point print Printer endl Printer push<stdout> IO

Figure 4.7: Graphical representation of test6’s main function

4.6 Experiment 6 - Flattening and Structs 63

Printer

Point

init(String)

pull<x>

init(String)

init(String)

String

Integer

String

Point

String

print

pull<y>

Printer

Integer

print Printer print Printer print Printer print Printer

Printer

Point

init(String)

pull<x>

init(String)

init(String)

String

Integer

String

Point

String

print

pull<y>

Printer

Integer

print Printer print Printer print Printer print Printer

Figure 4.8: Graphical representation of test5’s print function

64 Proof of Concept

IO

pull<stdout>

init(String)

Point

init(Integer)

init(Integer)

init(String)

init(String)

IO

Printer

String

Point

Integer

Integer

String

String

print

pull<x>

Printer

Point

Integer

pull<y>

+

Point

Integer

Integer

push<x>

+

Point

Integer

push<y> Point pull<x>

Integer

Point

print

pull<y>

Printer

Integer

print Printer print Printer print Printer endl Printer push<stdout> IO

IO

pull<stdout>

init(String)

Point

init(Integer)

init(Integer)

init(String)

init(String)

IO

Printer

String

Point

Integer

Integer

String

String

print

pull<x>

Printer

Point

Integer

pull<y>

+

Point

Integer

Integer

push<x>

+

Point

Integer

push<y> Point pull<x>

Integer

Point

print

pull<y>

Printer

Integer

print Printer print Printer print Printer endl Printer push<stdout> IO

IO

pull<stdout>

init(String)

Point

init(Integer)

init(Integer)

init(String)

init(String)

IO

Printer

String

Point

Integer

Integer

String

String

print

pull<x>

Printer

Point

Integer

pull<y>

+

Point

Integer

Integer

push<x>

+

Point

Integer

push<y> Point pull<x>

Integer

Point

print

pull<y>

Printer

Integer

print Printer print Printer print Printer endl Printer push<stdout> IO

Figure 4.9: Graphical representation of test6’s main function after the flow
flattening

4.7 Experiment 7 - FlowSize and Multible List Mapping 65

4.6.1 Results

If we look at the tree graphs we can see that the flattened graph is more parallel,
that the first graph, because allot of the instantiation can be done in parallel.
But when we look at the flow we could like that the structs could be unravelled
so that the x and the y could be calculated in parallel, as they are newer actual
needed by the same function. It could shorten the calculation by 4 pull/push
operators thereby making the computation more parallel.

4.7 Experiment 7 - FlowSize and Multible List
Mapping

Experiment 7 is a test of the mapping with multiple lists. This program therefore
also test the compile-time checking of multiple lists and give an example on how
to setup such list so they are compatible.

Listing 4.11: The FlowCode of test6
module test7;
import flow.math;
import flow.IO;

def [IO in]:main:[IO out] {
[in]:pull<stdout >:[io ,p];
[10]:List <Integer >:[A];
[A]:List <Integer >:[B];
[A,B]:+:[C];
[p,C]:printList:[p_1];
[io ,p_1]:push<stdout >:[out];

}

Just to walk though the program, first we create a list of size 10. Then we create
a List of similar size. We now assume that there is something in these lists and
then we add them field for field using the build in add function. And then we
print It.

Currently is the printList not filled with correct c-code, as the actual c formu-
lation of the list is not yet known.

The graph is actual not that big this time.

66 Proof of Concept

IO

pull<stdout>

init(Integer)

IO

Printer

Integer

List List<Integer> List List<Integer> + List<Integer> printList Printer push<stdout> IO

IO

pull<stdout>

init(Integer)

IO

Printer

Integer

List List<Integer> List List<Integer> + List<Integer> printList Printer push<stdout> IO

Figure 4.10: Graphical representation of test7

There is nothing new in the simple code but you can of cause inspect it in the
appendix.

4.8 Results

The test shows that it is possible to statically check list sizes. Especially for
this test is the graphical output a bit clumsy, which is something that would be
needed to

Chapter 5

Discussion

In this chapter I will review the project. I will talk about what is done, what
can be done and what this prototype means. I have subdivided the discussion
acording to the layers of the Flow ; Flow , translator, and compiler.

5.1 Flow

In this section I will discuses the features of Flow .

5.1.1 Language

I chosen Java as the programing language when developing the prototype, be-
cause I knew that it would make the developing time shorter, but is it also the
language that I recommend for the real representation of Flow ?

Java is safe to program in which will definitely reduce the maintenance of the
Flow compiler. It is easy to develop from and to implement frameworks, which
would make the lives of the compiler developers easier. It works on almost

68 Discussion

every platform, which makes it portable and it is one of the faster interpreted
languages.

What I don’t like about Java is that if we base Flow upon it, Flow will depend
on development of Java. Besides, some developers might want to build their
own Flow interpreters in other languages.

Because Portability is one of the big focuses in Flow , I think that the best way
to go is to produce a simple and understandable binary intermediate language
that can be translated to and read from by any platform.

But to build the translator and the compiler I would recommend using a lan-
guage like Java because of its build-in type safety. In a final product a Flow
framework, should be developed both for both Java and for C.

5.1.2 Tools and Optimizations

The visitor pattern works very well and have proven itself in the development.
Many of the tools develop, even the larger compilers, only took a couple of hours
to build.

The visitor pattern does have some disadvantages. First, its very rigid structure,
which also is it strength, makes it hard to use advanced algorithms on the Flow
. Secondly the transversal of the tree is done by function calls, which will
give a unintended memory and performance issue when working with very huge
programs.

The visitor is a great way to build fast typed algorithms for Flow , and I think
that with a more iterative solution the visitor should be part of any framework
developed to Flow . But when that is said I do not think that the Visitor
should be the only way to access the internal parts of Flow , mostly because it
reduces some of the options what you can do with it.

5.1.2.1 Possible Optimizations

Besides the Flow Flattener, I can think about a lot other optimizations. Each
of these optimizations could be a project in them selves.

Operation Optimization simply evaluating as much as the code as possible

5.1 Flow 69

before compiling. So if it wants to add two integers known at compile time
we can evaluate the result and remove the operation form the flow.

Recall finding running though the recursive function and try to optimize the
flow so that we can use a recall function instead of a recursive function
call.

Map concatenation if multiple maps are running in serial, we could optimize
the flow by concatenating them and thereby having them in the same map.

Advanced FlowSize checks if two list is instantiated with the same Integer,
they should be evaluated to have the same size. But such a check would
require an advanced approach.

and much more .

5.1.3 What misses?

This section is about the shortcomings of Flow .

5.1.3.1 Traceability

Traceability is when we can walk back thru the code and find the exact position
of the problem, no matter which optimizations we have run on the Flow .
Currently is the traceability of Flow is all most non existing. The traceability
has been sacrificed to make Flow as independent from the former steps as
possible.

A solution would be to add an class to the nodes, that can hold the trace
information and help us to trace back errors to the source code. This class
could be implemented by different translates to allow for customized tracings.

Optimizations could prove to be a big problem, as they could easily disturb the
traceability.

Luckily is the need for traceability not as necessary in Flow as in other lan-
guages, because we can catch most of the problems at translation.

70 Discussion

5.1.3.2 Running times

A nice feature to add would to be the ability to calculate the asymptotic and
average running time of a program before its run. That would allow for better
optimization and better compilations, because the optimizer and the compiler
will know how and what to optimize.

One simple approach could use List as they is already given dynamic sizes at
compile time. This is the same as associating the list size with a variable n.
The when we map over the list we know that at least n computations will be
made, if this then is nested in a map over an other list of length m, then the
asymptotic running time would be O(n×m).

It is not that simple when we work with recursive functions that runs on num-
bers, as there is no way to ensure how many iterations there will be done, except
if we fill in some key-functions where the user can hint what they want. An ex-
ample would be in a case where we want to recourse over an integer where we
always want to decrease it by one for each iteration. Then instead of using the
minus operator a decrement operator could tell the optimizer that this integer
is getting smaller for each step, and if we abort when it zero. We know that the
asymptotic running time must be the integer. The solution could be transferred
to similar cases like transversing lists, etc.

5.1.3.3 List, Sets, Dictionaries

In the design chapter I talked about the Set and Dictionaries, but I never actually
implemented them, most of all because I did not have the time. The set and
the dictionary is are a crucial part of a programing language and is needed in
most algorithms.

The set is especially important as it is a part of the reduce pattern used in many
parallel algorithms.

There are also some vital important features of the List that isn’t implemented.
A List should be able to tell in which indexing it wants to be accessed by a
Map. This means if we want to calculate a[i] + a[i+1], we do not have to
use the Dictionaries. And then there is the padding feature, which allows the
program to map over two list guaranteed of the same size. It should be able to
enable for different types of padding.

I think that keeping these three definitions of collections, is crucial to make an

5.2 Translator 71

effective and secure mapping where the compiler is not supposed to guess.

5.1.4 Testing

The fact that functions do not have a state, does give some nice side effects
besides that the code can be run in parallel. The most nameworthy is that the
functions are completely predictable from their inputs. This means that a com-
piler could implement automatic dynamic programing on functions. Collection
the outputs associated with the inputs. But more importantly is it possible to
create unit test on the single function without thinking about the rest of the
program.

There are two approaches to testing a flow, the first would be to list a number
of cases of input and the the required outputs. And the the tester would run
the function with all the inputs and test that the outputs are in equal to the
requested outputs.

The second approach would be to set some requirements of the function, i.e. that
a number should always be positive, with all inputs. Then the compiler should
be able to determine if this is true by reverse engineering of the function. The
checker could use the proven properties of subfunctions to prove new functions,
and so on. I know this is an extensive functionality but on the other side, this
could end up with software we can "prove" to run correctly.

5.2 Translator

This section is dedicated to the translation of Flow .

5.2.1 FlowCode

I have found that ANTLR is a perfect tool for parsing the code and the transition
from FlowCode to Flow went, from a developers view, almost without problems.

72 Discussion

5.2.1.1 Syntax

FlowCode turned out to be exactly what I think that a programing safe pro-
graming language should look like, as there is no doubt on what is done, and
in which order things are executed. Sadly the effect of the explicit workflow, is
that the language is also a bit more clumsy to work with and code can quickly
become confusing, and spaghetti code might be an undesired side effect of al-
lowing the programmer to put the code in a arbitrary order. This problem can
be met by a good coding discipline and by divide the problem up in chunks and
put them in smaller functions thereby reducing the number of lines per function.

Programing in FlowCode would require that we change the way we think about
programming, which is something that I think the worlds need. But due to the
cost of reeducating the current programmers there will probably go some years
before a language like FlowCode can be used in actual production.

5.2.1.2 Modules

The coded module functionality is currently not as good as it could be. This is
mainly due to a relative module loader. Sometimes a module is loaded twice,
or more which is a waste of time. I have not uses so much time on this part, as
it was not needed for the proof of the concept.

5.2.2 GUI based languages

The original idea was that Flow should be programmed with some kind of
GUI graph tool. This would make the feel of the graph more present to the
programmer and the idea of parallelism more real. This would also force the
programmer away from the serial thinking of the linear coding system.

The GUI based language would be the preferred final solution to how to program
Flow . Currently this kind of programming is used, but mostly in creative
themed programming, like developing movies or composing music. This method
is also used in event driven programming, as LEGO Mindstorms, where it helps
keeping an overview in a maybe complex computation.

5.2 Translator 73

5.2.3 Imperative programing languages

One of the biggest challenges of the future is that we have a lot of code that
do not run in parallel. Therefore there is a demand for a smart compiler that
can compile serial code to parallel code. Often this is not possible because the
programmer could be using tricks that makes the parallelization impossible.

If we want to translate a program to Flow we need to pull out the idea of the
program instead of the code itself. First of all we would like to build up the
control flow, like in Flow , this requires that we know if variables are pointing to
the same value. Sometimes we can we find out, if this is the case by analyzing the
code, but sometimes, especially with C, it can be almost impossible to determine
the real value of the function before running it.

But the basic idea is to analyze what we think the programmer wants:

a = 10;
a += 10;
b = a;
c = a + b;

could be translated to Flow like this (represented in FlowCode).

[10]:[a];
[10,a]:+:[a_2];
[a_2]:[b];
[a_2,b]:+:[c];

And with some analysis we could shorten it down to something as simple as:

[40]:[c];

Even though it is simple in this cases it gets harder when pointers or objects
is introduced. To transform a complete imperative language into Flow is more
in the category of a masters project or a Ph.D. I do not even claim that it is
possible, what I claim is that if it is possible to transform the language into
Flow , it can compile to all the platforms that compiles Flow .

74 Discussion

5.3 Compiler

This part is dedicated to discuss the compile layer of Flow .

5.3.1 Tikz

The Tikz graphical compiler is working without doubt, but sometimes the rep-
resentation is a bit flawed. The way I draw the edges in the graphs tend to cross
over the node, and sometimes to be placed so that they are hard to differentiate.

In the future I would like to have that pipes are drawn over multiple layers
if they are used in another layer so that we also illustrate how long a pipe is
allocated. This could really help the memory optimization process, because then
the developer could se the exact effect of the optimization.

Tikz is a genius tool for creating graphs with LATEX. I think that a distribution
of Flow should be delivered with a graph compiler, to help developers checking
their programs, but I don’t think that Tikz is the way to go. This is due to
multiple factors.

• The output of a Tikz compiler is static, which makes it almost useless as
documentation.

• Tikz uses the LATEX compiler which is really slow, and some what buggy.

• The output is in PDF, and if the compiler should be a web server we would
like to use a format like SVG that is embedable in webpages.

5.3.2 Simple

The Simple compiler is build to test whether it is possible to transform Flow
into code that could be run on a processor. Even though Simple is not close
to contain all the features of Flow , it has shown some weaknesses and some
strong points in Flow .

I did not expect that it was so difficult to skip over the non processing nodes, and
I think that a special approach is needed to correctly handle the select. Memory
management is on the other hand a walk in the park, it is easy to evaluate how
much memory is needed and when to allocate and deallocate memory, but to

5.3 Compiler 75

do it efficiently we need to know the targets of the nodes. The recall function
did also prove to be easy to implement,just a while loop.

5.3.3 Job finding

As I also described in the Proof of Concept and Implementation chapters, is the
current Job finding algorithm not as good as we could request. Accurate Job
finding is important if we want the programs to run fast and stable.

Since Job finding is an essential part of any compilations, a job finding algorithm
should be provided within the framework of Flow , so that the compiler builders
can focus on optimizing code to their specific platform.

5.3.4 Interpretation vs Compilation

Currently I have only worked with the idea that Flow needs to be compiled,
but we could also interpret the code on the go. It can be as efficient to interpret
the code as it can be to compile it in cases where there is are frequent access to
the hardware. The reason is that interpreted code can get super-optimized to
the platform while it is running, with a small overhead.

Interpreted code does also have the advantage that it can be run on a sever
without a compile delay. This is crucial especially in the future where the
internet connections are going to be faster, so it is actually profitable to run
programs on one ore more servers instead of directly on the local computer.

Compiled code is of cause much of the way faster, and I think that most of the
energy should be focused on developing a compiler to Flow , but there is no
reason not to make both.

5.3.5 GPU

One of the fundamental ideas behind Flow is "write once, run everywhere",
and of cause a modern language should be able to compile directly to a GPU.

The current structure of the GPUs is that they interpret some C-like code at
runtime1. In that optic it is not long from running Flow natively, which could

1see CUDA and OpenCL

76 Discussion

be interpreted in the same way as C-code. The main focus for GPU performance
would be in places where simple operations are done many times. The map is
actually made for this, the decision whether to calculated the map on the CPU
or the GPU could be made at runtime.

Chapter 6

Conclusion

Based on the points in the discussion, I have come to the conclusion that flow
based languages has a future. Flow based languages has the advantage that the
code can be checked for most errors at compile time. It is especially important
that it eliminates the risk of race conditions and deadlocks.

When we reach the multi core era, current programming languages will not
suffice. To make the transition from the current languages to new parallel
languages as easy as possible, it is important to start the development now.
The approach to design the flow based language as an intermediate language,
would make it a solution that could help not only in the transition but also
after.

Overall, I am convinced, that after removing some of the rough edges, flow based
programs could become a solution to the Multicore Dilemma.

78 Conclusion

Appendix A

FlowCode Specification

This was the first initial definition of FlowCode , and should be seen as a vision
for were I want programing a language to end. Some of the notions, like sets
and Dictionaries is not mentioned here.

This is the official specification of the FlowCode language. FlowCode is a data-
driven parallel programming language, that is designed to make parallel compu-
tations easy and serial hard. FlowCode is build on the petri-net, and functional
programing, and FlowCode is therefor a declarative programing language.

The basic design idea behind FlowCode is to part the computations up in two
basic elements functions and pipes. Functions is the only way to read from, and
write to pipes.

All code examples in this report is for illustrative purposes, and is not necessary
working with the current version of FlowCode .

A.1 Basic Features

This section contains the the basic features, syntax.

80 FlowCode Specification

A.1.1 Pipes and Functions

The simplest structures of the program language is the pipes and function. The
way the functions is connected defines the program.

A.1.2 Functions

The functions is the working part of the program. A function is state less, this
make them ideal for parallel programing. By making function state less there
is a

A.1.3 Pipes

A pipe connects the functions and that way creates a program. When a pipe
has connected two functions the output of the one function will be calculated
as an input in the next. When using pipes there some simple rules:

Rule 3 A pipe can not be the output of multiple functions, but can be the input
to any number of functions.

Rule 4 A pipe can not be connecting a function output of one type to the input
of an other type.

A.1.4 Combining Function

When combining functions with pipes we create a program. First a simple
example; a function connected to 2 input pipes and 2 output pipes would look
like this:

opr

a

b

c

d

Figure A.1: A simple function example

This could be written like this in FlowCode syntax:

A.1 Basic Features 81

Listing A.1: FlowCode syntax
[a,b]:opr:[c,d];

Whats happening is that we associate the pipe a and b as input pipe and c and
d as output pipes. This means that every time thats something is placed on the
a or b pipe, opr gets to calculate on it.

The next example illustrates two functions connected to one pipe:

A

B

C

a
b

c
t

Figure A.2: Double output pipe

Which is coded like this:

Listing A.2: FlowCode syntax of the double output pipe
[a]:A:[t];
[t]:B:[b];
[t]:C:[c];

A.1.5 Defining Functions

Defining new functions is done using the def keyword, followed by input pa-
rameters, function name and output parameters. In and output parameters
describes which pipes the functions can be connected to.

Listing A.3: FlowCode function definition
def [type_name b_1 ,..., type_name a_n]:f_name <template >:[type_name b_1 ,..., type_name b_m] {

/* Pipes and functions here. */
}

In this example <type> is a type like Integer or Double see more in types
section ??. <f_name> is the name of the function, and an eventual template
template parameter can be added, see section A.2.2

82 FlowCode Specification

A.1.6 Empty function

It is possible just to move the contents of one pipe to an other pipe.

Listing A.4: The empty function
[any T a]:[any T b];

A.1.7 Empty Pipe

If the output of a function is not use we can put it on the empty pipe, noted
as a _. In the next example we assume, that we need the output of the first
parameter but don’t care about the second.

Listing A.5: The empty pipe
[...]: function :[a,_];

A.1.8 Multifunctions

If we want the functions to be run in serial, and of output of the function
matches the input of the next function, we can remove the pipe and write it
more compact as:

Listing A.6: Linked function
[...]: function1:function2 :...: functionN [...];

And this line can be intersected by any number of pipes:

Listing A.7: Linked function with pipes
[...]: function1 :[...]: function2 :[...];

A.1.9 Types

Even though there is no variables in FlowCode there is a lot of types involved
to make the code safer. By convention all types are in Pascal Case.

A.1 Basic Features 83

A.1.10 Standart Types

The standard types are looking like the types of C++, see Figure A.3

Type C++
Integer int
Long long
Byte char
Float float
Double double
Boolean bool

Figure A.3: Standart types

These types has different properties meaning that they implement different in-
terfaces.

Type Interfaces
Integer Calculable, Comparable, Incrementable, Decrementable
Long Calculable, Comparable, Incrementable, Decrementable
Byte Calculable, Comparable, Incrementable, Decrementable
Float Calculable, Comparable
Double Calculable, Comparable
Boolean Negateable, Comparable

Figure A.4: Standart types, intefaces

The interfaces they are associated with explains witch functions works on the
Type.

An other build-in type is the List type. This is the optimized version of storing
list of information. The list is templated type, the template in this case declares
what the internal type is.

A.1.11 Type defining

Sometimes when using interfaces, or to make the program more modular, it is
needed to define a simple type. The syntax for that is simple and much like the
syntax in C.

Listing A.8: type definition
type type_name oldtype_name;

84 FlowCode Specification

An example would be that a String is a List of Byte elements.

type String List <Byte >;

This way we still use the String as a List<Byte>, but we don’t have to write it
each time, and we can write special functions that only works on Strings.

A.1.12 Interfaces

Interfaces is the type safety in FlowCode , making it possible for multiple types
of using the same functions. This also ensures the modularity of functions. A
interface is simply defined as such:

interface interface_name
inherit {other ,inter ,faces}
require {func , tions };

The interface construct has two names inherit and require, inherit describes
the interfaces the interface owner also needs to uphold, and require references
to the declared function needed to be defined by the types implementing the
interface.

A interface needs followed up by a definition for the referenced functions decla-
rations, using the interface. The syntax is to declare them, which means that
it has no function body, and no need for pipe names.

declare [type if_name T, ...]: function_name <templates >:[type if_name T ,...];

When using a interface in a function it is defined like this:

def [Man m, type Sitable a]: sitOn {...}

but if we want to return the Sitable object we’ll need to inform that its the
same, we do this by the using command.

using Sitable S {
def [Man m, S a]: sitOn :[S b] {...}

// other functions
}

A.1 Basic Features 85

This means that the function can’t be run with a chair and get a sofa as an
output.

A.1.13 Structs

Struct is a collection of types. When defined a Struct becomes a type , and is
not different from the standard types.

Listing A.9: Struct definition
struct struct_name <template > (parent_type) is inter ,faces {

a : type_1 ,
b : type_2

};

A struct can only have one parent, as multiple inherence is not allowed. When
a structs has a parent it inherit all the internal types, interfaces and functions.
When a struct is some interface, it promises to define all declared functions in
the interface. The body of the struct is the elements in the struct, named so
they can be referenced.

A.1.14 Push / Pull

To be able to access the information in the structs we add two commands, pull
and push. Their primary job is to fetch the internal information of the struct.

[type_name]:pull<v1>:[type_of_v1 , type_name];
[type_of_v1 , type_name]:push<v1>:[type_name];

The compiler will check that a type can only be pull one variable once before
it’s pushed back on the struct.

A.1.15 Operators

The programming language supports some standard features. To keep the sim-
plicity of the language, as few build in operations as possible will be supported.
The following should be seen as an example of some implemented functions.

86 FlowCode Specification

A.1.16 Unary

using Negateable T
declare [T a] : ! : [T d];

using Incrementable T
[T a] : incr : [T d];

using Decrementable T
[T a] : decr : [T d];

A.1.17 Binary

interface Comparable require {>,=,>=};
interface Calculable require {+,-,/,*};

using Comparable T {
declare [T a, T b] : > : [Boolean c];
declare [T a, T b] : = : [Boolean c];
declare [T a, T b] : >= : [Boolean c];
}
using Calculable T {
declare [T a, T b] : + : [T c];
declare [T a, T b] : - : [T c];
declare [T a, T b] : * : [T c];
declare [T a, T b] : / : [T c];
}

A.1.18 Select

To be able to make the program depend on the input we have added a feature
called the select. A Branch takes an input and put it onto one of to pipes:

Listing A.10: The select
[Boolean logic , any T in_true , any T in_false]: select :[any T out]

If the boolean is true then the in_true pipe will be transferred to out, and else
the in_false will be transferred to out. The power of this function is compiler
can decide how much it want to calculate so if the logic is false then only the
instructions needed to calculate the in_false is executed.

A.2 Advanced Features 87

A.1.19 Main

As in most programing languages there is a main function, it looks like this:

Listing A.11: Main function
def [IO io_in]:main:[IO io_out] {

/* do something */
};

The IO in pipe and out pipe, is the place where the functions of the operating
system is found. An example is the std-out, a file-manager, or the graphic card.
The exact functions of the IO struct is not decided yet but it should be very
modular.

A.2 Advanced Features

A.2.1 Mapping

Mapping is one of the more exiting features of FlowCode . When a function that
only takes a single element of type A gets a list of A’s then it calls the function
for each element of the list, and places the output in an list of same size.

Its possible to do this with all of the input or only some of the input. If one or
more of the inputs is not at list, then the function will see this as a constant
and it will be distributed over the entire array.

If two lists is used on one function then the function will be called once for each
element in the lists. The map is checked at compile time to ensure that the lists
is of the same size.

To handle problems before they occur, It is not allowed both to have two func-
tions with the same name and same number of arguments, where the one func-
tion holds a list of the type the other is defined with.

Listing A.12: Error because multiple ambiguous declared functions
def [Printer p, Integer a]:print:[Printer out] {...};
/* -------- Wrong --------- */
def [Printer p, List <Integer > a]:print:[Printer out] {...};
/* -------- Right --------- */
def [Printer p, List <Integer > a]:printList:[Printer out] {...};

88 FlowCode Specification

A.2.1.1 Examples

Basic Lets look at +.

Listing A.13: + function
[Calculatable T a, Calculatable T b]:+:[Calculatable T c];

First basic example a contains 1 and b contains 2, this will result in that 3 is
put on pipe c. But what if a contains an List of [1,2,3], then the function will
put [1+2,2+2,3+2] = [3,4,5] on c. But if b also contains a List [5,6,7],
then the result would be [1+5,2+6,3+7] = [6,8,10].

If the two arrays were of different size, then the program would not be able to
compile.

Advanced When working with Lists of list, a problem emerges. When using
a function expecting a list of any types, the compiler always takes the outer
type. But if we want to use function on the inner values how is that programed.
Lets say that a is a list of list of integers and we want the first value of each
sublist, then this is wrong:

Listing A.14: Wrong element access
[aList ,1]: List.getElement :[bList];

As this only results in the first element in aList is put in bList. The correct way
to do this is the following:

Listing A.15: Right element access
// Other place.
def [List <Integer > aList ,Integer i]: auxGetElement :[bList]

[aList ,i]:List.getElement :[bList];

// In Function
[aList ,1]: auxGetElement :[bList];

As aList is not a List of integers, but its a list of list of integers, it is possible
to map over the elements in aList. Hopefully a better solution will be found in
later versions of FlowCode .

A.2 Advanced Features 89

A.2.2 Templates

Templates is a big part of FlowCode as it is one of the ways to make your
programs and modules modular. Templates can be used in both functions and
in types. In List the template is the what is filled in the List, in the other can
also be used when functions need a special, hardcoded property.

An example of a struct template definition.

Listing A.16: Template example struct
struct Complex <type Calculable T> is Calculable {

R : T,
I : T

};

Allows to both use all different types as long that they are Calculable.

It’s also possible to use templates with functions. Here we se an example where
we create a list of type T, where we increment the value for per fields, with an
integer of size S for each element.

Listing A.17: Template example function
def [Interger length]: createIncrList <type Calculable T,Integer S>:

[List <T> out] {
[0]: List.create <T>:[f_out];
[[length]:derc]: createIncrList <T,S>:[list];
[list ,[lenght ,S]:*]: List.addBack :[t_out];
[[length ,0]:>,t_out ,f_out]: select :[out]:

}

This is of cause a constructed example, made to illustrate different points like
select and recursion. In real life we will write it like this.

Listing A.18: Template example real situation
def [Interger length]: createIncrList <type Calculable T,Integer S>:

[List <T> out] {
[0,length]:List.range <T>:[templist];
[S,templist]:*:[out];

}

90 FlowCode Specification

A.2.3 Modules

You denote the name of the module in the top of each file. This is done like
this:

Listing A.19: Module declaration
module module_name;

And it needs to be the first thing written in the file, and have the same name
as the file. After the module declaration we can declare any imports.

import directory.subdirectory.module_name [as other_name];

The imports declare the path to module, from the directory the compiler is run
in, from the directory of the file, and from the libraries path. The syntax also
enable the programer to choose a other name for the reference.

After the module declaration and the imports, the definitions of the functions,
interfaces and structs appear.

To call a function from a module is simple and like many programing languages
like this:

Listing A.20: Module usage

//in imports
import flow.list as List
import flow.algorithms

//in function
[100]: List.createRandom <Integer >:[list];
// calling sort from algoritms
[list]:sort:[sortList];

Appendix B

Simple Code

B.1 Test2

Listing B.1: Simple code from test2
flowFunction0 [String : arg0]

init the String into arg0
end

flowFunction1 c-code [String : o]
printf ("%s",*((char **)o));

end

Main []

on call {
Allocate local space (2)
run Job0
run Job1

}

Job0 depend on ()
allow Job2 to run

end

92 Simple Code

Job1 depend on ()
call flowFunction0 with [Memory (2135760193)]
allow Job2 to run

end

Job2 depend on (Job0 , Job1)
call flowFunction1 with [Memory (2135760193)]
Allow Function to exit

end

on exit {
Deallocate local space (2)

}
end

B.2 Test3

Listing B.2: Simple code from test3
flowFunction0 [Integer : arg0]

init the Integer into arg0
end

flowFunction1 [Integer : arg0]
init the Integer into arg0

end

flowFunction2 c-code [Integer : a, Integer : b, Integer : o]
((int) o) = * ((int*) a) + * ((int*) b);

end

flowFunction3 [Integer : arg0]
init the Integer into arg0

end

flowFunction4 [Integer : arg0]
init the Integer into arg0

end

flowFunction5 c-code [Integer : i]
printf ("%d",*((int*)i));

end

flowFunction6 c-code []
printf ("\n");

B.2 Test3 93

end

Main []

on call {
Allocate local space (7)
run Job0
run Job1
run Job2
run Job4
run Job5

}

Job0 depend on ()
allow Job8 to run

end

Job1 depend on ()
call flowFunction0 with [Memory (1109376982)]
allow Job3 to run

end

Job2 depend on ()
call flowFunction1 with [Memory (845913220)]
allow Job3 to run

end

Job3 depend on (Job2 , Job1)
call flowFunction2 with [Memory (1109376982) ,

Memory (845913220) , Memory (921745400)]
allow Job7 to run

end

Job4 depend on ()
call flowFunction3 with [Memory (1975391989)]
allow Job6 to run

end

Job5 depend on ()
call flowFunction4 with [Memory (315976503)]
allow Job6 to run

end

Job6 depend on (Job4 , Job5)
call flowFunction2 with [Memory (1975391989) ,

Memory (315976503) , Memory (2037510537)]
allow Job7 to run

94 Simple Code

end

Job7 depend on (Job6 , Job3)
call flowFunction2 with [Memory (921745400) ,

Memory (2037510537) , Memory (665360297)]
allow Job8 to run

end

Job8 depend on (Job0 , Job7)
call flowFunction5 with [Memory (665360297)]
call flowFunction6 with []
Allow Function to exit

end

on exit {
Deallocate local space (7)

}
end

B.3 Test4

Listing B.3: Simple code from test4
flowFunction0 [String : arg0]

init the String into arg0
end

flowFunction1 c-code [String : o]
printf ("%s",*((char **)o));

end

flowFunction2 c-code []
printf ("\n");

end

flowFunction3 [Integer : arg0]
init the Integer into arg0

end

flowFunction4 c-code [Integer : a, Byte : o]
((char) o) = (char) *((int*) a);

end

flowFunction5 c-code [Byte : a, Byte : b, Byte : o]
((char) o) = * ((char*) a) + * ((char*) b);

B.3 Test4 95

end

flowFunction6 [Byte : arg0 , Byte : arg1 , Byte : arg2]

on call {
Allocate local space (3)
Put arg0 in Memory (621631806)
Put arg1 in Memory (257820787)
run Job0
run Job1

}

Job0 depend on ()
allow Job2 to run

end

Job1 depend on ()
allow Job2 to run

end

Job2 depend on (Job1 , Job0)
call flowFunction5 with [Memory (621631806) ,

Memory (257820787) , Memory (1719451110)]
Allow Function to exit

end

on exit {
Put Memory (1719451110) in arg2
Deallocate local space (3)

}
end

flowFunction7 [Integer : arg0]
init the Integer into arg0

end

Main []

on call {
Allocate local space (8)
run Job3
run Job4
run Job6
run Job9

}

Job3 depend on ()

96 Simple Code

allow Job5 to run
allow Job12 to run

end

Job4 depend on ()
call flowFunction0 with [Memory (1083228271)]
allow Job5 to run
allow Job7 to run

end

Job5 depend on (Job4 , Job3)
call flowFunction1 with [Memory (1083228271)]
call flowFunction2 with []
allow Job8 to run

end

Job6 depend on ()
call flowFunction3 with [Memory (1598675078)]
call flowFunction4 with [Memory (1598675078) ,

Memory (1764128329)]
allow Job7 to run

end

Job7 depend on (Job6 , Job4)
Map from i : 0 to Memory (1545595021):

call flowFunction6 with [Memory (1083228271)[i],
Memory (1764128329) , Memory (853323835)[i]]

end
allow Job8 to run
allow Job10 to run

end

Job8 depend on (Job7 , Job5)
call flowFunction1 with [Memory (853323835)]
call flowFunction2 with []
allow Job11 to run

end

Job9 depend on ()
call flowFunction7 with [Memory (917900179)]
call flowFunction4 with [Memory (917900179) ,

Memory (1773272052)]
allow Job10 to run

end

Job10 depend on (Job7 , Job9)
Map from i : 0 to Memory (1545595021):

B.4 Test5 97

call flowFunction6 with [Memory (853323835)[i],
Memory (1773272052) , Memory (605324898)[i]]

end
allow Job11 to run

end

Job11 depend on (Job8 , Job10)
call flowFunction1 with [Memory (605324898)]
call flowFunction2 with []
allow Job12 to run

end

Job12 depend on (Job3 , Job11)
Allow Function to exit

end

on exit {
Deallocate local space (8)

}
end

B.4 Test5

Listing B.4: Simple code from test5
flowFunction0 [Integer : arg0]

init the Integer into arg0
end

flowFunction1 [Integer : arg0]
init the Integer into arg0

end

flowFunction2 c-code [Integer : a, Integer : b, Boolean : o]
((char) o) = * ((char*) a) < * ((char*) b);

end

flowFunction3 [Integer : arg0 , Integer : arg1]

on call {
Allocate local space (5)
Put arg0 in Memory (880403204)
Put arg1 in Memory (774321798)
run Job0
run Job1

98 Simple Code

run Job3
run Job5

}

on recall {
run Job0
run Job1
run Job3
run Job5

}

Job0 depend on ()
allow Job2 to run
allow Job4 to run
allow Job6 to run

end

Job1 depend on ()
allow Job2 to run
allow Job7 to run

end

Job2 depend on (Job1 , Job0)
call flowFunction2 with [Memory (880403204) ,

Memory (774321798) , Memory (275558166)]
if Memory (275558166) is true:

allow Job7 to run
else

allow Job8 to run
end
Allow Function to exit

end

Job3 depend on ()
allow Job4 to run

end

Job4 depend on (Job3 , Job0)
call null with [Memory (880403204)]
allow Job7 to run

end

Job5 depend on ()
call null with [Memory (1331353030)]
allow Job6 to run

end

B.4 Test5 99

Job6 depend on (Job5 , Job0)
call null with [Memory (880403204) ,
Memory (1331353030) , Memory (1418257117)]
allow Job7 to run

end

Job7 depend on (Job1 , Job6 , Job4 , Job2)
Put Memory (1418257117) in Memory (880403204)
Put Memory (774321798) in Memory (774321798)
Recall

end

Job8 depend on (Job2)
end

on exit {
Deallocate local space (5)

}
end

Main []

on call {
Allocate local space (2)
run Job9
run Job10
run Job11

}

Job9 depend on ()
allow Job12 to run

end

Job10 depend on ()
call flowFunction0 with [Memory (352697688)]
allow Job12 to run

end

Job11 depend on ()
call flowFunction1 with [Memory (735176496)]
allow Job12 to run

end

Job12 depend on (Job10 , Job9 , Job11)
call flowFunction3 with [Memory (352697688) , Memory (735176496)]
Allow Function to exit

100 Simple Code

end

on exit {
Deallocate local space (2)

}
end

B.5 Test6

Listing B.5: Simple code from test6
flowFunction0 [String : arg0]

init the String into arg0
end

flowFunction1 c-code [String : o]
printf ("%s",*((char **)o));

end

flowFunction2 [Point : arg0]
init the Point into arg0

end

flowFunction3 [Integer : arg0]
init the Integer into arg0

end

flowFunction4 c-code [Integer : a, Integer : b, Integer : o]
((int) o) = * ((int*) a) + * ((int*) b);

end

flowFunction5 [Integer : arg0]
init the Integer into arg0

end

flowFunction6 c-code [Integer : i]
printf ("%d",*((int*)i));

end

flowFunction7 [String : arg0]
init the String into arg0

end

flowFunction8 [String : arg0]
init the String into arg0

B.5 Test6 101

end

flowFunction9 c-code []
printf ("\n");

end

Main []

on call {
Allocate local space (20)
run Job0
run Job1
run Job3
run Job4
run Job6
run Job10
run Job12

}

Job0 depend on ()
allow Job2 to run
allow Job14 to run

end

Job1 depend on ()
call flowFunction0 with [Memory (797130442)]
allow Job2 to run

end

Job2 depend on (Job1 , Job0)
call flowFunction1 with [Memory (797130442)]
allow Job9 to run

end

Job3 depend on ()
call flowFunction2 with [Memory (1368348708)]
allow Job5 to run
allow Job7 to run

end

Job4 depend on ()
call flowFunction3 with [Memory (434359633)]
allow Job5 to run

end

Job5 depend on (Job3 , Job4)
call flowFunction4 with [Memory (434359633) ,

102 Simple Code

Memory (985435678) , Memory (823554482)]
allow Job8 to run

end

Job6 depend on ()
call flowFunction5 with [Memory (948074059)]
allow Job7 to run

end

Job7 depend on (Job6 , Job3)
call flowFunction4 with [Memory (948074059) ,

Memory (2099532520) , Memory (1539259783)]
allow Job8 to run

end

Job8 depend on (Job7 , Job5)
allow Job9 to run

end

Job9 depend on (Job2 , Job8)
call flowFunction6 with [Memory (1751161119)]
allow Job11 to run

end

Job10 depend on ()
call flowFunction7 with [Memory (501544898)]
allow Job11 to run

end

Job11 depend on (Job9 , Job10)
call flowFunction1 with [Memory (501544898)]
call flowFunction6 with [Memory (591786211)]
allow Job13 to run

end

Job12 depend on ()
call flowFunction8 with [Memory (1154079020)]
allow Job13 to run

end

Job13 depend on (Job12 , Job11)
call flowFunction1 with [Memory (1154079020)]
call flowFunction9 with []
allow Job14 to run

end

Job14 depend on (Job13 , Job0)

B.6 Test7 103

Allow Function to exit
end

on exit {
Deallocate local space (20)

}
end

B.6 Test7

Listing B.6: Simple code from test7
flowFunction0 [Integer : arg0]

init the Integer into arg0
end

flowFunction1 [Integer : arg0 , List <Integer > : arg1]
init the List <Integer > into arg1

end

flowFunction2 [List <Integer > : arg0 , List <Integer > : arg1]
init the List <Integer > into arg1

end

flowFunction3 c-code [Integer : a, Integer : b, Integer : o]
((int) o) = * ((int*) a) + * ((int*) b);

end

flowFunction4 c-code [List <Integer > : list]
for(int i = 0; i < (*((List*) list)). getLength (); i++){

printf ("%d" ,(*((List*) list)).get);
}

end

Main []

on call {
Allocate local space (5)
run Job0
run Job1

}

Job0 depend on ()
allow Job2 to run

end

104 Simple Code

Job1 depend on ()
call flowFunction0 with [Memory (2064721795)]
call flowFunction1 with [Memory (2064721795) , Memory (590956692)]
call flowFunction2 with [Memory (590956692) , Memory (97255069)]
Map from i : 0 to Memory (330889316):

call flowFunction3 with [Memory (590956692)[i],
Memory (97255069)[i], Memory (1421571929)[i]]

end
allow Job2 to run

end

Job2 depend on (Job1 , Job0)
call flowFunction4 with [Memory (1421571929)]
Allow Function to exit

end

on exit {
Deallocate local space (5)

}
end

Appendix C

FlowCode Standard Library

C.1 IO

module flow.IO;
import math;
import string;
import list;
codeimport <stdio.h>;

type Printer signal atomic;

struct IO {
stdout : Printer

};

codedef [Printer in, List <Integer > list]:printList:[Printer out]
@start

for(int i = 0; i < (*((List*) list)). getLength (); i++){
printf("%d" ,(*((List*) list)).get);

}
@end

codedef [Printer in, String o]:print:[Printer out]
@start

106 FlowCode Standard Library

printf("%s" ,*((char **)o));
@end

codedef [Printer in, Integer i]:print:[Printer out]
@start

printf("%d" ,*((int*)i));
@end

codedef [Printer in]:endl:[Printer out]
@start

printf("\n");
@end

C.2 String

module flow.string;
codeimport <string.h>;
import math;
// import list as List;

type String as List <Byte >;

def [Byte char , Byte ofset]: ceasarsCode :[Byte code] {
[char ,ofset]:+:[code];

}

C.3 Math

module flow.math;

codedef [Integer a,Integer b]:+:[Integer o]
@start

((int) o) = * ((int*) a) + * ((int*) b);
@end

codedef [Integer a,Integer b]:-:[Integer o]
@start

((int) o) = * ((int*) a) - * ((int*) b);
@end

codedef [Integer a,Integer b]:*:[Integer o]

C.3 Math 107

@start
((int) o) = * ((int*) a) * * ((int*) b);

@end

codedef [Integer a,Integer b]:/:[Integer o]
@start

((int) o) = * ((int*) a) / * ((int*) b);
@end

codedef [Integer a,Integer b]:&:[Integer o]
@start

((int) o) = * ((int*) a) & * ((int*) b);
@end

codedef [Integer a,Integer b]:|:[Integer o]
@start

((int) o) = * ((int*) a) | * ((int*) b);
@end

codedef [Byte a,Byte b]:+:[Byte o]
@start

((char) o) = * ((char*) a) + * ((char*) b);
@end

codedef [Byte a,Byte b]:-:[Byte o]
@start

((char) o) = * ((char*) a) - * ((char*) b);
@end

codedef [Byte a,Byte b]:*:[Byte o]
@start

((char) o) = * ((char*) a) * * ((char*) b);
@end

codedef [Byte a,Byte b]:/:[Byte o]
@start

((char) o) = * ((char*) a) / * ((char*) b);
@end

codedef [Byte a,Byte b]:&:[Byte o]
@start

((char) o) = * ((char*) a) & * ((char*) b);
@end

codedef [Byte a,Byte b]:|:[Byte o]
@start

((char) o) = * ((char*) a) | * ((char*) b);

108 FlowCode Standard Library

@end

codedef [Integer a,Integer b]:lt:[Boolean o]
@start

((char) o) = * ((char*) a) < * ((char*) b);
@end

codedef [Integer a,Integer b]:gt:[Boolean o]
@start

((char) o) = * ((char*) a) > * ((char*) b);
@end

codedef [Integer a,Integer b]:gte:[Boolean o]
@start

((char) o) = * ((char*) a) >= * ((char*) b);
@end

codedef [Integer a,Integer b]:lte:[Boolean o]
@start

((char) o) = * ((char*) a) >= * ((char*) b);
@end

codedef [Integer a,Integer b]:=:[Boolean o]
@start

((char) o) = * ((char*) a) == * ((char*) b);
@end

codedef [Integer a]: toByte :[Byte o]
@start

((char) o) = (char) *((int*) a);
@end

Bibliography

[Hut11] Luke Hutchison. The flow programing language. http://www.
flowcode.net/, jun 2011.

[JJK+11] Daniel R. Johnson, Matthew R. Johnson, John H. Kelm, William
Tuohy, Steven S. Lumetta, and Sanjay J. Patel. Rigel: A 1,024-core
single-chip accelerator architecture. IEEE Micro, 31:30–41, 2011.

[Met04] Steven John Metsker. Design Patterns in C#, chapter 29. Addison-
Wesley, 2004.

[Res10] CITO Resarch. The multi-core dilemma. IEEE Micro, 2010.

http://www.flowcode.net/
http://www.flowcode.net/

	Preface
	Acknowledgements
	1 Introduction
	2 Analysis and Design
	2.1 Do we need a new Programing Language?
	2.1.1 Is Parallel Programing Important?
	2.1.2 Short description of important terminology
	2.1.3 What is out there right now?
	2.1.4 What does Flow need to be able to do

	2.2 Flow design
	2.2.1 Explicit dataflow
	2.2.2 How it is done in Flow ?

	2.3 FlowCode
	2.3.1 Syntax

	2.4 Compiling Flow
	2.4.1 Task parallelism
	2.4.2 Data parallelism
	2.4.3 Memmory Management

	3 Implementation
	3.1 Flow
	3.1.1 FlowElements
	3.1.2 Visitor
	3.1.3 Function
	3.1.4 Types
	3.1.5 FlowSize
	3.1.6 Module
	3.1.7 Code Securing

	3.2 FlowCode Translator
	3.2.1 General Translation
	3.2.2 FlowCodeFinalizer
	3.2.3 Modules
	3.2.4 Exceptions and Traceability

	3.3 Compilers
	3.3.1 Tikz compiler
	3.3.2 Code Compiler

	4 Proof of Concept
	4.1 Experiment 1 - Setup
	4.2 Experiment 2 - Hello World
	4.2.1 Reflections

	4.3 Experiment 3 - Parallel Program
	4.3.1 Reflections

	4.4 Experiment 4 - Mapping and Lists
	4.4.1 Reflections

	4.5 Experiment 5 - Recursion and Select
	4.5.1 Reflections

	4.6 Experiment 6 - Flattening and Structs
	4.6.1 Results

	4.7 Experiment 7 - FlowSize and Multible List Mapping
	4.8 Results

	5 Discussion
	5.1 Flow
	5.1.1 Language
	5.1.2 Tools and Optimizations
	5.1.3 What misses?
	5.1.4 Testing

	5.2 Translator
	5.2.1 FlowCode
	5.2.2 GUI based languages
	5.2.3 Imperative programing languages

	5.3 Compiler
	5.3.1 Tikz
	5.3.2 Simple
	5.3.3 Job finding
	5.3.4 Interpretation vs Compilation
	5.3.5 GPU

	6 Conclusion
	A FlowCode Specification
	A.1 Basic Features
	A.1.1 Pipes and Functions
	A.1.2 Functions
	A.1.3 Pipes
	A.1.4 Combining Function
	A.1.5 Defining Functions
	A.1.6 Empty function
	A.1.7 Empty Pipe
	A.1.8 Multifunctions
	A.1.9 Types
	A.1.10 Standart Types
	A.1.11 Type defining
	A.1.12 Interfaces
	A.1.13 Structs
	A.1.14 Push / Pull
	A.1.15 Operators
	A.1.16 Unary
	A.1.17 Binary
	A.1.18 Select
	A.1.19 Main

	A.2 Advanced Features
	A.2.1 Mapping
	A.2.2 Templates
	A.2.3 Modules

	B Simple Code
	B.1 Test2
	B.2 Test3
	B.3 Test4
	B.4 Test5
	B.5 Test6
	B.6 Test7

	C FlowCode Standard Library
	C.1 IO
	C.2 String
	C.3 Math

	Bibliography

