Botnet Detection by Correlation
Analysis

André Orvalho

Kongens Lyngby 2012
IMM-M.Sc.-2012-53

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk IMM-M.Sc.-2012-53

Summary (English)

When a bot master uses a control and commander (C&C) mechanism to assem-
ble a large number of bots, infecting them by using well known vulnerabilities,
it forms a botnet. Botnets can vary in C&C architecture (Centralized C&C
or P2P are the most common), communication protocols used (IRC, HTTP or
others like P2P) and observable botnet activities. They are nowadays one of the
largest threats on cyber security and it is very important to specify the different
characteristics of botnets in order to detect them, the same way a hunter needs
to know its prey before preparing methods to catch it. There are 2 important
places to look for botnet activity: The network and the infected host.

This project intends to present a study that correlates the behavior on the
network with the behavior on the host in order to help detection, studies like
[SLWLQ7| (based on network behavior) and [SMQ7| (based on host behavior)
are two good start points to help on the research. The choice of the architecture
was done by looking at the botnet characteristics especially the capacity of
changing and evolving which makes methods for detection by misuse obsolete.
The system is designed to first look at 4 features of system calls on the host
side: First which system call it is, second the name of the application using the
system call, third the time between this system call and the last system call and
for last the sequence of the past three system calls. A technique of unsupervised
learning (the K-means algorithm) will be used to calculate the values for the
threshold using an unclassified training set. when on the real world the collection
is used to calculate the values to compare with the threshold. If it passes the
threshold than the necessary information is passed to the network evaluation
block. On the network side and before receiving any data from the host side, it
will calculate the threshold for the flows given on the training set. When using

the data from the host to narrow down the number of flows to look at, it verifies
if their values pass the threshold. The feature used to calculate the threshold is
the time between flows. If the network finds flows that pass the threshold for
the network evaluation block than it will emit reports and alarms to the user.

The small experiences done show some promising signs for use on the real world
even though a lot more further testing is needed especially on the network bit.
The prototype shows some limitations that can be overcome by further testing
and using other techniques to evolve the prototype.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modeling at the Technical University of Denmark, under supervision of Profes-
sor Robin Sharp and Sead Muftic, professor at the School of information and
communication technology from the Royal Institute of Technology in Sweden. It
is included on the Erasmus Mundus program in fulfillment of the requirements
for acquiring a M.Sc. in security and mobile computing. It presents the efforts
of a six month study on the subject.

It deals with the problem of botnet detection co-relating information both from
the host and from the network. Even though it is a very present and relatively
big problem, researchers haven’t been able to find an acclaimed solution for its
detection and prevention. Research on the area is undergoing in many different
universities in many different countries, trying to advance with a solution that
can give a minimal guarantee of success.

The choice of the subject was done based on the intereste in security and the
challenging nature of the problem. The security breach provoked by such a
threat is hard to quantify but it is well known to be very present and trouble-
some. It is a problem with a lot of variants to look at and the available solutions
do not look to be sufficient. The ability of contributing to the efforts to solve
this problem gives a sentiment of served duty to the author. Hopefully this will
help further work in the right direction, might the solution provided not be the
most suitable one.

The thesis consists of the idea to a prototype to help detection of botnets based
on the hypothesis that good behavior and bad behavior have different patterns
either on the host and the network and that those patterns are co-related. This

was done by studying the behavior at the host and then using that information
to correlate with what’s happening on the network, trying to find evidence of
malicious behavior on the system to alert the system administrator allowing it
to take the necessary measures.

Lyngby, 30-June-2012

André Orvalho

Acknowledgements

I would like to thank both my supervisors for the support and counseling during
the produced work. I would also like to thank all my colleagues at both schools
for the good group work and challenging opportunities to work with so many
different people and so many different brilliant minds. To finalize I would like
to thank my parents for all the support given my whole life until now and the
good preparation for my next step.

Contents

[Summary (English)|
[Prefacel

|Acknowledgements|

[1__Introductionl

|2 Taxonomy of botnets|
2.1 C&C Architecturel

2.2 Communication protocols|
2.2.1 TRC protocol|

viii CONTENTS

[4.1.3 Unsupervised Learning{. 26

4.2 Experiment| Lo o 27
............................. 29

M22 vesultd o o o 29
[6_Network based behavior] 31
.1 Experiment| 32
............................. 33

B2 resulfsl . . . o oo e 33

6 __Global correlated behavior] 35
§ Algorithm| o 35

7 Conclusion 39
[7.1 Discussion & limitationsl 39
[(.2 Further workl 40
IA_Host Based results| 43
IB_Network Based results| 51

Bibliography/ 53

CHAPTER 1

Introduction

A bot is a host which is controlled from another location. A bot master is a
host which controls others from afar. When a bot master uses a control and
commander (C&C) mechanism to assemble a large number of bots, infecting
them by using well known vulnerabilities, it forms a botnet[SLWLOT7]. Normally
the attack is performed by first infecting the host. For example using an email
with an image, that when it’s rendered, installs the botnet code on the host.
Once the host is running, the botnet code will induce the host to connect to
a Rendezvous point, in order to communicate with the bot master. Then and
through the Rendezvous point, the bot master will give orders to the host. These
orders can include the request of all the information collected by the zombie or to
send more SPAM to its network in order to infect other hosts. This process can
differ considering the botnet architecture and its purpose. Figure 1 represents
the typical process of infection and contact to perform attacks.

Introduction

—

M

Bot Master

orders to complete
Malicious activities

Rendez-vouz point

network

. infection

host

Identification as a bot

Attack traffic

N,

Figure 1 - infection and attack — example of one possible communication

protocol

Botnets can vary in C&C architecture (Centralized C&C or P2P are the most
common), communication protocols used (IRC, HTTP or others like P2P) and
observable botnet activities. Classifications on which attacks they perform or
the evasion techniques used by botnets can also be done, but they are out of
scope of the problem|Mic06].Those characteristics have been target of studies
and are often used to implement techniques helpful to the detection of botnets.

This is one of the largest threats on cyber security nowadays since these mecha-
nisms are one of the biggest forces used for distributed DOS (Denial-o-Service)
attacks, malware/spam distribution and phishing/identify theft|[Mic06]. Those
threats figure on the top of attacks found online. The biggest problem to detect
and prevent these kinds of attacks has to do with the mechanism used. The
attacker is separated from its victim by a layer of other hosts, creating a level
of indirection, consequentially becoming very hard to detect where the attack
comes from[SLWL0T7]. The amount of power of the botnet is directly related to
its size, as more hosts, bigger bandwidth will be at its disposal and of course

increasing the reachability of the attacker.

Normally the detection of the C&C structure would solve the problem on a
centralized architecture. But first the level of indirection makes it very hard to

identify the machine or machines which the orders are being sent through. And
the growing usage of new architectures like P2P makes it even harder to find it.
In these architectures if one C&C mechanism is destroyed does not mean that
the whole bot has been deactivated. Also if a bot uses a protocol like HTTP to
communicate, it turns the task of detecting its activity much harder once the
biggest percentage of traffic on the network belongs to that protocol. Time is
one of the keys for detection. In Almost every bot the execution of its activities
is timed correlated, which means, every X minutes/hours the same behavior can
be observed. The problem is most of the times the botnet code is not provided,
which makes it harder to know how far to look back, turning this choice into
something like looking for a needle on a haystack.

There is 2 important places to look for botnet activity: The network and the
infected host. On the network one can look at the content or at the flow char-
acteristics. Looking at the contents it is a long shot since most of them will be
encrypted. But looking at the flow characteristics is not an easy task either,
since they are too many and a decision must be made to find which ones show
more relevant evidence of botnet activity. On the host itself, the search must be
made looking at the processes behavior registering features like which programs
can be used by the infected host to perform the botnet code(examples: TRC
client or browser) and which kind of system calls are done by these programs
that can be suspicious and be under control of botnet code.

The goal is to present a study that correlates the behavior on the network with
the behavior on the host in order to help detection, but until now the author
could not find any work that tried to do this. One research could be found that
could use information from any of those two types of behavior [OKAT10|, but
either only network or either only host based. Here the author presents a tool
that studies communities through a given model. This model is defined using
a few chosen parameters which are used to train the algorithm to monitor the
activity. These parameters can either be host or network based. The study
uses the average of those parameters values on a community (thus avoiding
noisy individual applications) to verify if passes a certain threshold which is
provided on the model as what is acceptable. Once it is detected hosts values
pass the given threshold they are classified as possible to show botnet evidence
and measures are taken.

On studies about detection using network based behavior, the most significant
would be [SLWLQT7|, where the author uses as an hypothesis if it’s possible
to find botnet evidence only using the traffic flows and not its content. First
it applies a sequence of filters and after tries to classify them using machine
learning algorithms, concluding it does not give any advantage, thus bypassing
the classification stage. Next he will correlate the flows in pairs, finding the most
correlated ones and using it to the final stage to apply some social engineering in

4 Introduction

order to detect how the botnet is acting. There is also other relevant works such
as [KRHO7|, which tries to find a methodology to track botnets on tier-1 ISP’s.
Using what the author calls a scalable non-intrusive algorithm, follows some
steps to achieve the goal: first it will detect hosts with suspicious behavior like
scanning ports, emailing spam or DDoS traffic generation. Second uses details
from the packets header to correlate them in the same control conversations
(equal IP source and destination, ports, etc...). After it calculates which ones
have a stronger correlation in order to release alarms and/or reports. The
article [GPZL07] is based on the assumption that bots belonging to the same
botnet will likely have the same kind of behavior and show a spatial-temporal
correlation. Here the flows are separated by who is talking to whom and who
is doing what. Aggregating flows with the same packet header parameters and
using an ad-hoc algorithm to correlate the flows in the end. Using the same
assumption, [GZL08] will use the information on statistical algorithms to detect
botnets with theoretically bounds for false positives (FP) and false negatives
(FN) rates.

About detection concerning the usage of the host based behavior information
fewer examples can be found. On [SM0T7], the author uses as bottom line that
processes which use parameters that come from the network to its system calls,
are likely to show remote control. Without relying on any botnet structure or
C&C protocol it uses techniques to show that by looking at those system calls
receiving tainted arguments it can achieve acceptable results with low FP and
FN rates. The author in [HFS9§|, uses temporal models to represent normal
user behavior. These models are built by monitoring special processes and then
using a specification language to write the special privileges for each process.
These temporal models can then be used to distinguish normal behavior from
the malicious one.

There is other methods for detection of botnets and there is some work done.
For example, monitoring the IRC traffic at the standard port and analyzing the
payload for known botnet commands is what is done at [CIDO05|. For the work
done on [RFDOG], the author bases himself on assumption that the bot masters
will look up on the DNS black lists trying to find its bots. Using heuristics
based on possible techniques used by the bot masters to do the lookups it will
try to distinguish legit lookups from the ones done by bots.

The present work is structured the following way: On chapter 2, taxonomy of
botnets is provided. Chapter 3 Describes the Design of the solution for the given
problem. The work developed on the host side behavior is described on chapter
4 and chapter 5 will describe what is done on the network side. Finally chapter
6 will give a description how these behaviors are correlated and chapter 7 will
present the conclusions, discussion and further work.

Botnets are serious and complex threats, hard to detect and very resilient.
Achieving a solution that can detect and help solving this problem might also
require complex and elaborated tools. The goal of this project is to find a way
to correlate behaviors in order to help on detection even though no published
work could be found using the same technique.

Introduction

CHAPTER 2

Taxonomy of botnets

Botnets are new-adopting, trendy and fast-evolving targets. Their features vary
from the way they propagate, passing through the C&C architecture and com-
munication mechanism to the way they perform attacks and which activities we
can observe from it[BCJX09]. The knowledge base about these threats is still
being populated and there is not a perfect understanding of the whole problem
due to the reasons stated above.[Mic06]

It’s very important to specify the different characteristics of botnets in order to
detect them, the same way a hunter needs to know its prey before preparing
methods to catch it. First because botnets are complex structures: They can
spread as easy as a worm, prevent detection like a virus and include different
attacks as it was a toolkit.[CJDO05| Second a strategy is needed to know where
to look, accounting botnets are so complex, there is many different ways and
it’s not feasible to try every option.

Given the scope of the problem, the chapter presents specifications of the Bot-
nets variations according to C&C architecture, communication protocols used
and observable botnet activities.

8 Taxonomy of botnets

2.1 C&C Architecture

The C&C architecture relates to the way the botnet structures the communica-
tion between the bot master and its zombies, basically defining the topological
model the botnet is using.

This characteristic is as important to understand as C&C’s are to botnets. The
C&C is believed to be the bottleneck of the botnet[Mic06]. Most of the times
and depending on the architecture used, If an IDS(Intrusion detection system)
is able to find the server or servers used by the bot master to make is C&C
structure run and break it, it takes down the communication link between the
bot master and a large number of bots. Without that communication link the
botnet is not able to launch attacks in a bigger scale, since its power is directly
connected to its size(number of bots available). This makes the C&C structure
essential to the botnet.

Moreover the C&C mechanism is very unique and unlikely to change on every
different bot and its variants, yet it’s important to denote, that new architectures
can emerge which have never been seen or that some of these architectures can
be implemented with certain tweaks to complicate detection.

Three different C&C architectures have been identified: Centralized, P2P and
random model.[Mic06]

2.1.1 Centralized Architecture

As the name indicates, the bot master choses a single central host to be the
point, where every zombie connects to, when infected. This host is important
to have high bandwidth since all communications pass through him. It can
be the bot master itself but it would lose the advantage of indirection on the
communications. Usually should be a compromised host[Mic06], even though
there are open IRC servers, for example, that can be used.

After the infection and once it communicated with the central host, the zombie
will be redirected to the rendezvous point. There the master will give the
orders to the bots, to launch attacks, infect other hosts or simply return logs
of information retained from that host. A representation of this architecture is
given on Figure 2.

2.1 C&C Architecture 9

Paint

Attacker

[
L

Zombie

Command and
Control Channel

Figure 2 - Representation of a centralized architecture on an IRC-based

botnet[SLWLOT]

This architecture still has high survivability on the real world since there is
not great countermeasures against botnets. Even though sys admins are more
aware of this problem and little mechanisms like captcha’s and black lists are
being used to prevent bots from attacking certain systems, not all of them use
it and most are still vulnerable. The existence of many options on tools to
implement and customize such a bot make it very easy to setup and because of
these reasons, this architecture is still the most prevailing on the internet until
today.

It has other advantages like the small messaging latency which makes it much
easier to coordinate and launch the attacks. The major drawback is that here
there is only one C&C structure being the only source of connection between
the bot master and the zombies. So once found and deactivated the bot master
has no way of contacting the botnet and that makes the botnet useless. Very
Known bots use this architecture such as AgoBot and SDBot.

2.1.2 P2P architecture

On this architecture the bot master organizes the bots and the C&C’s as if
it was P2P network. It can either be structured or unstructured. [DGL07
This technology is much more resilient to detection and deactivation than the
centralized model, accounting that it is not dependent on a few single servers
so once one is deactivated that has almost no effect on the deactivation of the
whole botnet. This characteristic is the main reason why this architecture is

10 Taxonomy of botnets

a growing trend between the attacker community. Figure 3 shows a possible
organization for such a structure.

CE&C or peer
communication

-
Malicious.
activity

Figure 3 - representation of a P2P architecture [GPZLOT|

Obviously this architecture comes with a price. Its major drawback is the scal-
ability problem. It only supports conversations between small groups which
makes it harder to launch big attacks. Also there is no guarantee on message
delivery and has a higher latency associated with message propagation when
comparing to the centralized model. This brings serious problems to the coordi-
nation on how the bots deploy to attack, but brings a much more robust model
to the table.

2.1.2.1 Structured

On a structured model the bot master use well defined criteria and algorithms
to structure the way bots and resources are organized. This is held to make sure
any bot can find its way to another, even when not directly connected. They are
very similar to other C&C architecture, the random model, where every node
has almost the same degree of importance for the network.[DGL0T7]

This defined criteria and algorithms are very important to robustness of the
net but it can be the bottleneck of this structure at the same time so it’s very
important they are chosen carefully and accounting the botnet requirements.

2.1 C&C Architecture 11

2.1.2.2 Unstructured

Here no requirements are imposed to the way things are organized. Peers relate
in ad-hoc fashion and in the ideal world this kind of model would have no
centralized command, but in reality it can be found in 3 different ways: pure,
Hybrid and centralized. The pure one is where every node has the same degree
and there is only one routing layer with no preferred nodes. The Hybrid is mix
between pure and centralized where there are some nodes called super nodes
which have a higher degree of command. The centralized is where a single
server is used to tag the functionalities and to setup the whole system, but the
connections between the peers are in no way controlled by any algorithm.

The major drawback of this implementation is that sometimes when trying to
find information(which is done by flooding) from some node or contact it to
attack, it might be hard to find it, if it’s not well connected around the net or
the net is very congested, which can happened because of the flooding.

2.1.3 Random

This description comes up on [CJD05| as a possible model, but was not found
vet on the real world. Here the zombies do not use the C&C to contact the
bot master, but instead, they wait for the bot master to recruit them for an
activity. After infection the bot does not look for its master, instead it does
nothing waiting to be summoned by the master. When wanting to launch an
attack, the bot master scans the network looking for infected machines and
sending them the necessary information to launch it. It’s very important that
the bot master knows which networks to scan, keeping the information of which
networks were infected in a database. It is possible to see the way bot masters
probe for zombies on networks on figure 4

12 Taxonomy of botnets

Probing for zombies on
hoston known to be
infected networks

CE= ol =l
Zombie Zombie Zombie

Figure 4 - How the random model does the probing operation botnet

This would have all sort of advantages. First it has very high survivability
because there is not so much botnet activity correlated behavior with time that
can be used to detect it. Second it is very easy to implement, since the protocol
is pretty simple. And finally it is hard to discover and destroy because of lack
of information and lack of connection between the bot master and its bots.

The biggest problems associated with this structure are the way in which detec-
tion of bots is done, the probing technique is easy to detect by a well programmed
firewall and the message propagation latency, which can be huge depending on
how far bots are from each other.

2.2 Communication protocols

The communication protocols used by botnets to exchange information are of an
enormous use for the researchers and system administrators. The understanding
and knowledge of how they communicate can answer a lot of questions, like
where to look for evidence used in detection and what kind of traffic to look at.
First because if we know the protocol being used we can monitor where normally
that traffic is sent through and filter the inbound as well for that kind of traffic.
And second we can define a normal pattern of what a packet or flow for that
protocol is like and filter what looks suspicious. Besides that, this information
provides understanding on what the botnet is based, where it came from and
what possible software tools are being used. The task is not easy and has more

2.2 Communication protocols 13

constrains and obstacles than as described above but still this information is of
high value.

2.2.1 IRC protocol

Still the most used protocol by bot masters to contact their bots as it was
the place where the first bots appeared. The IRC protocol is designed mainly
for communications between large groups but it allows private communications
between single entities, which gives the master the right tool to communicate in
an easy and flexible way.[Mic06| Typically the bots will all connect to the same
IRC channel on the C&C designed server or on a free IRC server. Here the bot
master will issue a command and the bots will use their parser to understand
those commands and follow the order, either for attacking or other malicious
activity. Omne could think by examining the content of IRC traffic, that we
could detect botnet commands, but first the IRC channels allow users to have
a password on the channel encrypting the messages and second every bot has a
different syntax and since there is a lot of families and hundreds of variations,
it’s impossible to try every possibility.

On most corporate networks the use of IRC clients or servers is normally blocked,
which makes it easier to know if a bot is acting since there is no IRC traffic and
if there is it means someone has been infected. But, nowadays and to pass
this obstacle, bots been able to tunnel IRC traffic under HTTP, which makes it
harder for detection methods to find it. There are already some IDS(Intrusion
detections system) which can detect this kind of traffic.[Mic06]

Even though at corporate locations some measures been taken to detect this
kind of activity, most of the homes and small companies are not well protected
against this and that makes this protocol a very capable tool for attackers to
use since there is a huge number of different software mechanisms that make it
very easy to setup and use.

2.2.2 HTTP Protocol

The popularity of using this protocol has been related to the attention that has
been paid to the usage of IRC. The main advantage is basic to see, most of the
traffic on the internet is HTTP so it’s much harder to find malicious activity
since the target to examine is much bigger.

It works simply using the url to post the necessary codes. After being infected,

14 Taxonomy of botnets

the bot visits an url with its id, which is on the server controlled by the bot
master, the server answers with a new url which is going to be parsed by the
bot to understand the orders for malicious activity.

Normally the firewalls block inbound traffic of IRC but they cannot do the
same for HTTP (or they would block every legit request), then they would have
to apply the right filters for abnormal headers or payload if not encrypted.

The practice of malicious activities using this protocol tends to grow and maybe
one day might be the most used, the advantage of bypassing firewalls in an easy
way and the presentation of a much higher percentage of traffic to look at,
makes it a powerful tool. Maybe the major drawback is the latency inherent to
contacting a big number of bots and joining forces to launch a big attack.

2.3 Other Observable activities

This is where real work can be done. The information given above about other
bot characteristics is very important to understand how they work. Also it
influences which other botnet activities to look at. But the detection of the C&C
structure or the bot master is complicated by the level of indirection present on
the communications between bots and the bot master. And the detection of the
botnet activity by simply looking at the protocol used is very hard given that
most of the messages are encrypted and, for the example of HTTP, the amount
of traffic is huge and takes a long time to look at.

All these reasons make it important to account other activities which can poten-
tially help to discover the botnet activity and deactivate it. When communica-
tions between the zombies and the command happens, certain patterns can be
extracted and used to detect malicious behavior. Examples like abnormal DNS
queries when hosts are found to query for improper domain names or if the IP
address associated to a particular domain keeps changing. As well as looking at
the network traffic flow and its characteristics or the system calls that happen
from a certain software tool which are uncharacteristic.

The detection of malicious activity can be done using 2 different ways: Misuse
or Anomaly detection. The misuse detection is done by having a database of
known patterns of bad behavior(signatures) and detecting similar activities. The
anomaly detection is based on the assumption that the attacker is unknown and
creates a database with all patterns of normal behavior of the system, detecting
everything that falls out of those as abnormal. [FHSLI6]

2.3 Other Observable activities 15

Here is presented 3 types of activities that can be observed: Network based,
Host based or Global correlated behaviors.

2.3.1 Network-Based behavior

On a network level when the communications between the zombies and the bot
master is taking place some observable patterns can be detected. For example,
apart of differences between bots and the way they practice their attacks, they
always have to connect using the C&C server on someway(unless using the
random architecture, which was never found on the wild yet) or bot masters
have to pass their orders to the bots somehow and that can produce observable
behaviors.

There is 2 main ways of doing this. One is by looking at the packets headers
and contents. For example on an IRC based bot, one could try to intercept
the packets on the standard port for IRC traffic and examine the content for
botnet commands. But there are a big number of problems with this approach.
First the standard port is only a good practice advice, there is no rule that
obligates the attacker to send the traffic through that port. On other hand the
traffic can easily be encrypted which makes it impossible to examine for bot
commands. Bots are hundreds and every single one can have a different syntax
making it very hard to keep an updated database of which commands can be
used. Finally there is also the question of privacy when looking at the content
of other people’s conversations.

The other approach is to look at the flows and their characteristics. The main
problem is which flow characteristics to look at. Basically there are a lot and
correlating the results of groups of them is a big field of research. It can be
a statistical problem, creating filters to select the flows that can have mali-
cious activity which comes with a percentage of FP(False positives) or FN(False
negatives) associated. One can also use machine learning algorithms to try to
classify the flows in different groups|[SLWL07|. One simple example on how to
filter flows is looking at host activity on the network that can be helpful. Infor-
mation on which hosts are trying to scan ports, emailing spam and generating
DDoS traffic can indicate which flows to analyze[SLWLQ7]. On the classification
of flows, there is a set of characteristics like bandwidth or packet timing that
can evidence bursty activity which can evidence automated answers showing
outside control on the host network activity.

One drawback of using this type of behaviors is that most of the times its
observation is limited by the peering edge, not involving large number of flows
happening on the backbone or on the whole enterprise network traffic [BCIX09].

16 Taxonomy of botnets

2.3.2 Host Based behavior

The execution of botnet code inside the host will output sequences of system
calls that can be observed and studied to build patterns. For example, correlated
when the host is infected and must contact the bot master with its id or when it
receives orders to perform malicious activities this triggers a sequence of system
calls that are of interest. This sequence can be characterized by as many features
as needed from the host activity or the system calls itself.

The problem is to know how far to look back on the sequence of system calls
and what other features use to characterize the system calls that can be helpful.
The size of the sequence will dictate, how many similar patterns can be found
and how they can be correlated. Because of that, this choice must be done
carefully. The process can either be done by looking at normal activities from a
botnet like writing on a log file the entrances from the keyboard and verifying
how many system calls are needed for that and use that number, or by empirical
experience until finding the right pace for the right correlated sequences.

There is many ways in which these sequences can be looked at. Examples are
the temporal orderings, the type or parameters passed, the instructions between
the system calls or the interactions with other processes|[HFS98]. When looking
at the temporal ordering, the creation of the database or pattern is done by
looking at how they relate in time, in another words, which system call comes
after the other. The types of parameters passed can be used to see, for example,
what kind of system calls happen after one process which received a parameter
from a suspicious source like the internet or another process already flagged
with malicious activity. Instructions between system calls are important and
can be used to narrow down which sequences we should be looking at. This is
when instructions that are out of the normal pattern are used by that process, it
means the next sequence might be interesting. And the interactions with other
processes can also be a clue to where to look at. For example when processes use
others to copy important information and transmit it, then those sequences are
important to be flagged and put in quarantine looking for repetitions of those
instructions.

Other kinds of behavior can be used for detection. The act of Monitoring special
files like /etc/host.equiv which contains the processes allowed executing system
calls as root without having to introduce a password[HES98|. The observation
of the number of introduced failed passwords or number of times protection
violations are triggered can be monitored in order to detect host based behavior
that is not correct.[Den87]

2.3 Other Observable activities 17

2.3.3 Global Correlated behavior

Basically is a question of union is strength. One must correlate behavior from the
network that might influence the host behavior, with that same host behavior
and vice-versa. The problem here is how to correlate them since there is so
many choices and obviously without hugely increasing the inherent overhead.
One example would be to correlate in time flows with bursty characteristics
with the number of failed input of passwords or the system calls from a certain
process that received parameters from the internet or untrusted entities.

There is many ways of correlating these behaviors. Using the time to corre-
late would tell which behavior preceded the other and could be used to create
the signatures of patterns to detect the equal bots or to register good behavior
patterns to detect abnormal activities. Another way to correlate them would
be application based, simply looking at the flows and system calls related to
that application. Finally, one could also correlate by other means like the pa-
rameters passed from network based behavior process to a host based one or
when one process on the network interacts with another process on the host.
An explicit and consistent definition of the ways of correlating behaviors from
both worlds has not been given anywhere yet and needs to be extended to be
better understood and used.

This can give from the point of view of efficiency one great weapon to be used
since it would give a more global snapshot of what is happening, but, it is key to
find the right behaviors which can lead to good results. The major drawbacks
would be the infinity world of choices and how hard would it be to setup on the
real world. First the choices must be made, then tried on a safe environment
and after should be tried on the real world. This is a process which is most
empirical and takes a long amount of time. Also the problem of setting up a
safe environment is that is hard to get the real experience to train a database
on the case of anomaly detection. Since the real world is more complex than a
safe environment and accounting the risk of false positives is very high it may
take a few tries and a long time on training further in the real world to create a
usable tool. For the case of misuse, having a database of signatures might never
be enough and need daily update since in the real world the threats are always
evolving and different variants of bots appear all time.

18

Taxonomy of botnets

CHAPTER 3

Design

3.1 Motivation

The usage of techniques for detection by misuse is obsolete. The evolving nature
of botnets and the number of families and variations on the wild make it almost
impossible to create a credible database to be used on a tool like a scanning
anti-virus to detect botnet evidence. The time inherent to such a task makes it
a powerless weapon against a fast-attacking technology like a botnet. The neces-
sity nowadays is towards a generic scanner that has no demand of updating the
information to be able to recognize something is wrong. That’s the example of
techniques for detection by anomaly where patterns of good behavior are drawn
and everything else that is detected is considered to be abnormal [WDEFT03].

On chapter two were presented many reasons why techniques like looking at the
traffic for packet content or at a standard port are not suitable for the given
problem. Moreover the best results found on related work were all either related
with host based behavior or when looking at the network and trying to correlate
flows through its characteristics|[SLWLO7| [SM07] [OKA10]. Even though those
works show some good results, they still look like missing something or show
some limitation which cannot be overcome just by the presented work. For
example on [SLWLO07] it was only developed to be useful for IRC centralized
botnets which is obviously a limitation accounting to the growing trend of other

20 Design

C&C structures. It alerts also to the importance of choosing carefully the meth-
ods to solve the statistical problem of classifying traffic in order to avoid high
rates of FP’s and FN’s. Moreover, it explains how co-relation is fundamental
on the detection since evaluation on isolated traffic flows might not be enough.
The system described on [SM07] has limitations when the parameters passed to
the system calls (the main element to classify the system call as tainted or not
and possible evaluation) suffers an out-of-band encryption or the act of passing
a parameter can be spoofed as being from a legit user. To finalize [OKA10] is
based on the results by community and if only a few machines on that com-
munity are infected the results might not detect it. Scalability is also an issue
which must be solved, even though the author gives guidelines on how to do it.

After reading all the available information on detection of botnets one must
think if there is not a possibility to gather all those techniques and trying to
use the best of each building a strategy that will give more certainty on detec-
tion. After all, union is strength. When using a lot of techniques on one, more
information is needed. This necessity will certainly increase the overhead but if
properly used, more information means also more accuracy and more accuracy
will give smaller rates of FP’s and FN’s. Thus is very important to find a bal-
ance between overhead and accuracy when choosing the amount of information
necessary.

Accounting these reasons, the choice of the architecture was based on trying
to be as generic as possible not basing it on any known bot architecture or
protocol, but looking more on how a machine would behave on both sides (host
and network) giving just enough information to create a faster scanner.

3.2 Architecture

Figure 5 represents the architecture of the purposed prototype for detection. It’s
a simplistic view of what is happening on the prototype. First the information
about what is happening on the host is passed to the host evaluation block.
Here the data is processed to be used on the K-means algorithm (see chapter 4)
and if there is reason for alarm (if the given threshold is passed - see chapter 6
for the definition of the thresholds), the necessary information is passed to the
network evaluation block. The network evaluation block receives the information
from what happened on the host, especially the times of the possible to be
malicious activity and the information from what happened on the network
(flow characteristics). This information is going to be correlated in order to
give a stronger evidence of malicious activity and if once again the threshold
is passed the prototype will output alarms to the user and a report explaining

3.2 Architecture 21

what kind of applications are performing these malicious activities and at what
times such activities are happening.

Network
Host information
information of

possible
Host malicious
. . activities

information Host evaluation | Host evaluation

block block

Alarms & reports

Figure 5 - Prototype architecture

On the host side the inputs will be vectors containing information of system calls
on four points: The name of the system call, the application/process running it,
the time between the present system call and the last one and the registration
of the past three system calls. On the network side the input will be first a
report from the host side with the times from the suspicious activities and from
the network the time that flows were registered and the time intervals between
them. The output will be the name of the application, the times that malicious
activity was registered by it and the reasons why it was registered as malicious,
meaning, the values that passed the thresholds.

22 Design

The choice of looking at host based behavior first and then use it to narrow
down the information on the network behavior was done based on the idea that
the network will have much more operations running since it treats the data of
all the hosts. Obviously the number of flows would be much higher making it
harder to search for the important information. On the presented architecture,
we collect both kinds of data at the host, which means we get the system calls
form the host and the flows that only relate to that host. So the network flows
will only be analyzed for the flows timely correlated with suspicious activity on
the host, helping narrowing down the data to look at.

The design was chosen attending the botnet characteristics and the tendencies
of their evolution. This prototype is host based and presents a simplistic ar-
chitecture in order to help to turn detection into a softer operation, retaining
information from both sides and giving a tool capable of detecting any different
kind of malicious activity.

CHAPTER 4

Host based behavior

On this chapter a description is given of what kind of host based behavior is
important to collect and how that information will be treated in order to help
detection.

System calls are used as information in order to create profiles of good behavior
of the system. Obviously it is impossible to register every system call and the
information that concerns it, so a set of features must be chosen to be used to
create the profile. The choice is for a simple set in order to be efficient and give
the information that is strictly necessary but not insufficient. The first thing
is to decide which system calls to look at. For example, when looking at the
main botnet activities presented on Figure 6 all of them perform read or writes
like when changing of C&C server or at the creation of a port redirect which
between the presented activities for the given botnet species on the paper are
among of the most common. Hopefully these activities will present different
patterns from the normal activity and maybe will happen more often or timely
correlated (changing the C&C server for example is performed quite regularly
and sending data to the bot master is performed normally with the same time
interval). The chosen system calls are the read and writes plus the information
about which application has done it(giving the information if it was done from
or to the network) and the relative time when it was done(giving us the time
difference between system calls) as well as the three system calls to happen
before the registered one.

24 Host based behavior

capability __55;) D
change C&C server
create/manage clone
clone attacks

create spy
kill process v

open/execute file JE ~
keylogging N |

| create directory

[delete file/directory
| list directory

| move file/directory
DCC send file

act as http server
create port redirect
other proxy
download file

| DNS resolution
UDP/ping floods
other DDoS floods
| scan/spread
Spam__

visit URL

X |evil | G-SyS| sd 83}

221219
i

<
<l

78 N S R S P
<] |e]elele]adalatatatal

|l 1=

e B i F e B B B B
<)
<) <l L L] <

= <]

Figure 6 - Shows the capabilities for certain families of botnet studied in

[SMO7]

4.1 Classification

Classification is the process of mapping items onto categories|L.S98]. This pro-
cess is important to distinguish different types of traffic and allow to filter or to
find what’s necessary. Many techniques from statistical analysis to data mining
can be used for classification. It can be a very slow process and it must deal
with a certain rate of false positives and false negatives so the choice of the
method must be adequate to the problem otherwise these drawbacks will come
to haunt you.

Statistical methods are very powerful but normally depend on assumptions
about the distributions that might not correspond to reality leading to a high
false alarm rate [m, a good example of this technique is the Naive
Bayesian algorithm. The study in [MZ05] uses some variants of this algorithm
to classify network flows. Data mining techniques are algorithms that allow
researchers to build models from which they can infer patterns useful for classi-
fication of certain items, being artificial neural networks(ANN) one of the best
examples on this case. In this paper [NSBI0|] there is an example of a work
that uses an ANN to classify traffic and distinguish if it looks like a pattern
of good or bad behavior. Many other investigations used ad hoc classification

4.1 Classification 25

techniques like for example on [RY08|, where the traffic is aggregated by traffic
packets characteristics and host similarities.

On the present case, sequences of system calls must be mapped into good be-
havior and bad behavior. To perform the classification on the experiment, the
K-means algorithm an unsupervised learning technique will use system calls and
its characteristics as input vector.

4.1.1 Artificial Neural Networks

Artificial neural networks are machine learning techniques that can be used
for pattern recognition. They are formed by a set of neurons based on the
animal neuron, having a layer on the input and output, and depending on the
topology, they can have an intermediate one as well. They can be seen as a
non-linear function between the input and the output, which the transition is
done normally by an activation function. Each Neuron is a linear automata,
realizing a weighted sum from several inputs [DMS92]. On the beginning they
have no knowledge base and have to be trained using a training set, mapping
input vectors to output ones, adjusting the weights for better results. The
training can either be supervised, unsupervised(also known as competitive) or
by reinforcement. One of their best characteristics is the capacity to as soon as
correlation is found it is taken in account as well as if an input is irrelevant it
will be able to neutralize the weight of that neuron, this if well trained to do so.

They figure as good solutions to unstructured problems containing daedal rela-
tionships between variables, i. e., when the rules to classify the target input are
hard to identify. But normally don’t give good results when human reasoning is
necessary. One big advantage comparing to statistical models is their capability
to find non-linear relationships on confusing data [FB07] as well as the capacity
to adapt easily to other systems(unless re-training is necessary which can be
costly in terms of time). Another advantage is the scalability provided for large
sets of data.

The major drawbacks are the high computation intensity required and the long
training cycles for the learning to be satisfactory. There is one problem that one
must address and is very hard to calculate before testing: the size of the neural
network. Normally the entrance should have as many neurons as the input
vector size. And the output depending on the goal, can have one or more. But
on topologies with an intermediate layer, tests must be done to realize which
number of neurons better suits the solution of the problem.

26 Host based behavior

4.1.2 Supervised Learning

On supervised learning the training set is given in the form of input and the
expected output. To train a neural network using supervised learning, the input
is given and the expected output is compared to what came out on the neural
network. If they do not correspond then the network uses a learning algorithm
which will correct the weights in order to correct the output.

A typical example would be the multilayer perceptron with the back-propagation
error learning algorithm. This kind of neural network would be from the feed-
forward type. It starts by pre-defining a N sized window sample from the train-
ing set (in a sequential form) and it learns how to predict the next value on the
series. [DMS92]. The training is finished after the algorithm reaches its point of
convergence and during this process the weights at the neurons go from random
on the start to the desired function in the end.

The usage of such a network has many drawbacks: to begin with N (the sample
size) is initially fixed and cannot be changed during the network life or a change
would require a complete retraining. This same number can act as bottleneck
for the network: if its value is too high the process can be perturbed with
unnecessary information or if it is too low the accuracy of the system can be
affect with the lack of relevant information. These kinds of network don’t have a
high rate of adaptability since a partial retraining can lead to forget everything
it has learned before. On the present case this problems can be solved by testing
many different N’s and choosing the one with better results.

Recurrent networks are other type of supervised learning networks where part
of the output is sent back into the network, creating memory inside of the it.
The input is the most recent element and the output is feed backed to keep
trace of past events on internal memory. The long term memory is coded on the
connections and the short time one is coded on the neurons. This memory is
limited by the number of neurons and connections. There are several drawbacks
associated to this topology as well: First the decision of the size of the network
is a problem hard to address. Second and on experiences done by [DMS92| there
is values the network never learns and there are states where the configurations
are unstable and it is hard to understand why.

4.1.3 Unsupervised Learning

On this case no solutions are provided on the training set. The distributions are
unknown but the number of neurons on the input of the neural network is the

4.2 Experiment 27

same as the K classes of input. So in this case the neurons "compete" between
themselves to see which one is fired first, for that to happened they must be in a
full mesh in order to know each one’s state. The learning algorithms are based
on structure presented on figure 7.

X

Figure 7 - How competitive neural networks work [Roj96]

Other techniques can be used for unsupervised learning besides a neural net-
work. Algorithms for clustering techniques like K-means are widely used in help
for classification. The K-means algorithm is one of the most used clustering al-
gorithms and has a simple idea of identifying the k-centroids of the clusters
of the data in order to minimize the mean square distance from each point to
its nearest center[KMNT02|. The K number of clusters to form must be given
in advance. It starts by choosing randomly k-centroids(some variants use an
heuristic to do this) from the data set and then goes from there measuring the
distance between points and their centers. This randomly chosen centers can
be updated at the end of the calculations for each vector or a few iterations.
This algorithm can be slow to converge depending on the way the centroids are
chosen but it is proven to always terminate, thus without a promise of finding
the optimal solution. One way to reduce this problem is to run the algorithm
more than once [FB07].

4.2 Experiment

The Experiment consists on collecting data (system calls information) from
a machine and using that to find different patterns. On the present case the
collected data is not classified so a technique for unsupervised learning is needed.

28 Host based behavior

Since K-means is a very common solution, one of the more studied [KMNT02]
for the clustering problem and is proven to always terminate, it was the chosen
approach. This gives also the possibility of exploring more approaches(different
k’s or heuristics for choices of the centroids). The latency to converge is not a
problem in the present training set because is not that big and the patterns are
very regular, but finding an heuristic to calculate the initial centroids in order
to find an optimal solution should be explored in further work.

The choice of the features was done carefully thinking in what, patterns of
botnets, can be built on. First the choice of the system calls to look at was
done based on one of the most used by regular processes and by botnet activity,
read and writes. Those happen most of the times right after commands have
been given to a botnet or infection as well as in legit processes they will be
very regular on their patterns. The second feature is the type of process using
that system call to perform its activity, it’s either a process that can receive
parameters from the network or not. This process requires human intervention,
where one should define which processes can be receiving external parameters
from the network and the ones that do not. This pre-classification is kept on
a database and once one finds a system call to classify, looks at the process
invoking it and compares if it is on the database, if not, classifies it as possible
to receive information over the network(default behavior). One more feature to
look at is the time spent between system calls, giving an average of how long it
takes for a new one to happen. This is done by subtracting the time of the given
system call with the time of the last system call. Besides giving information if
something unusual is happening if the time patterns are very different, it gives
us the time slot to also know which network flows to look at(for correlation).
The last feature and one of the more important is the pattern of system calls.
For every system call it will record the past 3 ones giving a window of 4. This
should help K-means evaluating better the clusters for different activities on
the same process, or same activities for different processes depending on which
regularities and centroids K-means will find. On figure 8 a description of the
possible values for each feature is given.

Feature System call type Interacts with Time difference Combinations of
previous syscalls
Value Read Host only Can be a numeric read,read,read
write Metwork value over 0 write,read,read

read,write,read
read,read,write
write,write,read
write,read,write
read,write,write
write, write, write

4.2 Experiment 29

Figure 8 - Possible values for each feature

4.2.1 setup

The collection of data was done on the network of the department of Informatics
and Mathematical Modeling at the Technical University of Denmark, during 10
minutes only, giving over 250 megabytes of information and almost 3 million
system call occurrences. Most of the information is supposed to represent good
behavior since the network is well isolated from external intrusions but since
there is no way to be 100% sure of such a thing the choice of using unsuper-
vised learning methods seemed more appropriated. The choice for such a small
amount of time was because the machine was collecting too much information
since tcpdump(see chapter 6 for more information) was running at the same
time.Also the given information was of high regularity, not needing such a big
sample. An experience of 30 minutes was giving over four gigabytes of informa-
tion which was being impossible to process on the machine. Still this 10 minutes
are very representative of what was happening, since the 30 minute file was just
repeating itself.

The machine to perform the task was a Dell optiplex 990 using an AMDG64 as
processor and FreeBSD 9.0 installed as operative system. The tool to collect
the information was Dtrace, which is the standard tool that comes with this
FreeBSD distribution for debugging and collecting information about the ma-
chine. It uses what it calls probes to collect the information. The script to
choose the probes to find the necessary information is the following;:

syscall:iread:ientry,
syscall:iread:return,
syscall:mwrite:return,
syscall:twritezentry
{
@num [probefunc] = count({;
printf("%d s M= (Md, Gxic, M4d)", timestomp, execname, probefunc, orgd, argl, arg2);
h

Figure 9 - The script used to collect system calls from the hosts

The software chosen for execution of K-means was WEKA a very well-known
tool for applying machine learning techniques to large sets of data. A script in
java was developed to represent the data in an acceptable form for WEKA (arrf).
K-means was run with three different values for the number of clusters, 2, 3 and
4.

30 Host based behavior

4.2.2 results

For the K-means instance with k = 2 the obtained results are presented on
figures 10 and 11 in Appendix A.

For the K-means instance with the k = 3 the obtained results are presented on
figures 12 and 13 in Appendix A.

For the K-means instance with the k = 4 the obtained results are presented on
figures 14 and 15 in Appendix A.

CHAPTER 5

Network based behavior

The choice of what network based behavior to look at is dependent on the
information collected on the host. This choice was done based on the idea that
the network will have much more operations running since it treats the data of
all the hosts. The presented architecture is set to first look at the host and only
after to its network activity (in case of suspicion). Here a description of what
are the reasons for the choices done on the network side and how those choices
can help detection is provided along with an explanation of how the data was
collected and treated.

As explained on chapter two, there is two different ways of collecting informa-
tion on the network that can be useful for detection. Either by looking at packet
headers/contents or flow characteristics. Looking at packet contents is an op-
tion that has several disadvantages (listed in chapter 2), but when looking at
the flow characteristics or packet headers one can use the same techniques spec-
ified on chapter four for classification. For example using temporal models to
detect bursty activities or detect flows on the same conversation can be achieved
implementing classification. Classification (using other parameters) was used in
[SLWLO7| but the author decided to bypass that step since none of the algo-
rithms used gave results good enough that provided an advantage. Attending
that the overhead inherent to such an activity is large and it is already being
performed on the host evaluating block. The decision for using other techniques
seems more logic. This decision must be done between what flow characteristics

32 Network based behavior

or packet headers information can be used and how they should be treated in
order to provide a good hint of botnet activity

The first choice is what features can help to identify botnet evidence after what
was collected on the host. The choice was only one feature: packet timing’s.
Normally if the machine is doing activities which are controlled from afar that
will show some automated code running and the response times will be faster
than normal because if it was a human responding to a request it would do it
slower than an automated machine. That’s what packet timing gives us; if the
time between flows has smaller values than usual then it might indicate we are in
the presence of botnet activity. The main reason for choosing this feature is that
it is independent from any protocol that the bot can be using and does not need
to look at any packet contents, just by looking at the flows and obtaining the
arriving times one can use it to calculate and compare it to the normal behavior.
Also it does not use any information on the packet that can be spoofed (like the
sending address, etc...) since it is the time that it arrived to our host or sent by
it.

The technique to treat the information is a very simple ad hoc algorithm which
uses a simple statistic technique. The times between flows will be registered in
order to calculate the mean and the standard deviation of the sample taken from
the network. Then these values will be used to calculate the threshold. Normally
creating a pattern of how the system should behave. Once the prototype is active
on the system and it receives the information of the times where suspicious
system calls happened on the host. It will verify if the average times between
flows happening near the given times are smaller than the defined threshold
(more information on these values on the next chapter).

The techniques that exist to treat information at the network side are as vast as
on the host side. The choice was done by a more simple approach comparing to
the host side since equilibrium between accuracy and overhead was necessary to
achieve and the host evaluating block is already providing a big dose of overhead.
The presented algorithm and flow characteristic were used on an experiment for
the values on the provided training set as explained on the next section.

5.1 Experiment

The experiment consisted in using a tool to collect flow information at the same
time the system calls were being collected, thus having the times that each
one occurred at and be able to co-relate them. Than use this information to
calculate the threshold and use the information provided from the experience

5.1 Experiment 33

on the host side to verify if the flow timings were correct. Since this flows were
collected on the same conditions as the host based information, the probability
of finding any flows to be suspicious is very low and also this are the values that
are being used to calculate the threshold so that possibility is even more tiny.

5.1.1 setup

The setup is the same as the experience for the host based information since
it was done at the same time (necessary for the co-relation). But in this case
tcpdump was the tool used to collect the information about the flows. Tecpdump
is the standard packet analyzer that is installed on the FreeBSD existing on the
machine used for the experience. It works by simply listening on the given port
connected to the network and registering the times the flows came in and got
out. The 10 minute experience gave us a file with over 11 thousand flows and
1,4 megabytes. To calculate the average and the standard deviation, the data
was passed to an arrf file with the same script used before to treat the data from
the host system calls and passed to WEKA.

5.1.2 results

The results after collecting and treating all data for the flows, are represented
on figure 16 at the Appendix B.

34

Network based behavior

CHAPTER 6

Global correlated behavior

The use of correlated behaviors is the goal of the whole project. The prototype
is based on the idea that the correlation of behaviors from the host activity
with the ones from the network activity will help finding some botnet evidence.
On this chapter a description on how this can be achieved and the base for an
experience on the real world with this activities will be given in detail.

6.1 Algorithm

To correlate the information from both sides we must define the numbers that
will give us the thresholds to mark system calls and traffic as suspicious. One
must define the amount of data that must be evaluated and how that can be
used to calculate the limits. The system will collect data during an interval of
time, verify if the data passes the threshold on the host side, and if so pass the
information to the network side which will verify if it passes its threshold and
if so, it will output the alarms and/or reports.

The first one to define must be at the host based side. Here several experiences
were done grabbing the system calls and since they represent the biggest amount
of data to collect, they will define the space of time where the system will collect
data until the evaluation. Here we collected information during 30 min and 10

36 Global correlated behavior

min. The 30 min experience grabbed a total of 20 million system calls which
represented an amount of four gigabytes of memory. This was a way too large
set that the computer could not treat. The 10 min set grabbed a 250 Megabyte
file with almost 3 million system calls on it, which represented a large amount,
sufficient to give a description for the behavior patterns. The problem is that
imagining this on a real time system, it would be impossible to be doing this
verification every 10 min. A solution in the middle would be the best giving three
verifications every hour: a 20 min interval. For the purposes of the experience
it was used a 10 min interval, but it is strongly believed that a 20 min would
be better on a real world to reduce the overhead.

Once K-means was run for the training set, its results will be used as benchmarks
to define the threshold on the host side. After a sample of 20 minutes is collect,
The values will be classified (looking at which centroid is more near). If the
percentage of system calls for the smallest cluster is bigger than the one found
on the training set than the times for all the system calls from that cluster should
be evaluated on the network side. The host block should have the flexibility for
the user to choose using a training set for a K-means using just 2, 3 or 4 clusters,
depending on which one gives better results. On the case that the user decides
to choose 4 clusters, the comparison of percentages, should be done on the two
smallest clusters. For example if in one system the training set is used on a
K-means evaluation of 3 and 4 clusters. On the 4 clusters evaluation it gives
percentages like 23%, 24%, 26% and 27% and on the 3 clusters: 42%, 38%, and
20%. The best choice would be for the 3 cluster solution since it has a bigger
difference between the smallest and the others.

On the network side, training will gives us the mean and the standard deviation
values for the time between flows. The difference between the mean and the
standard deviation is the defined threshold to be used to compare the values
on the real system. First and using the 20 min sample it will calculate the
values and keep it on the database. Once it receives the information from the
host block with the times of the suspicious activities and the flows times, it will
calculate for each system call timestamp the average value of times between
the 10 previous and the 10 after flows. Then it will compare the average time
between this 20 flows with the calculated threshold. If the value on the new
sample is smaller than the one on the training set, it might mean we are in the
presence of automated responses and this system calls/flows information should
be reported as suspicious to the user. The choice of the number of flows to look
at must be adjusted on further tests with values from a real botnet activity,
evaluating which one will give a smaller rate of false positives.

The definition of the thresholds is very important for the whole function of the
prototype and their definition should always be adjustable to the system and
the environment they are in. The provided algorithm is the proposition done

6.1 Algorithm 37

for the provided training set. The interval of time to collect information should
be adjustable due to performance reasons depending on which machine is being
used and after the running of K-means adjusting the values to right K and the
calculation of the best number of flows to look at, then the algorithm should be
prepared to find evidence of malicious activities.

38

Global correlated behavior

CHAPTER 7

Conclusion

7.1 Discussion & limitations

One of the most important things the performed experiences wanted to show
was that the prototype should be flexible in choosing the number of clusters on
the host based information. As shown on figures 10 and 11 for a k equals to
two, the information is divided uniformly, giving both clusters almost around
50% each of the registered system calls. Figure 11, shows the distribution of
registers through the clusters concerning each feature in which we can see there
is no particular patterns for any of the clusters. All of them include samples
of all different values of the features, giving no advantage on the process of
classification for which behaviors are more common and normal. On figure 14
and 15, the results for four clusters are presented. This results show two very
big clusters and two small clusters. On this case the 2 small clusters could
be used to detect the abnormal behavior, but figure 15 shows that those two
clusters have the same problem has in the example of k = 2: There are samples
of all different values of the features for almost every feature. It gives a better
classification than k=2 but does not look sufficient to distinguish between good
behavior and bad behavior.

The results for k = 3, seem to fit. First There are 2 clusters with a very
big percentage of the registers and a smaller one that represents behavior less

40 Conclusion

regular (Figure 12). Then this cluster on Figure 13, shows evidence of only of
one value of some of the available features, especially on the type of application
(the graphic on the left up side) and time interval (the graphic on the right
down side). Since it is expected that the malicious behavior comes from the
network, this cluster helps finding the less normal behavior that comes from it.
The values on the time interval for this cluster will be for the biggest periods
without a system call which can normally happen on bursty activity by a botnet,
with periods of intense activity and periods of silence.

Unfortunately the times registered by the Dtrace tool were not correct and
couldn’t be corresponded to the ones on the network side not allowing to test
the values on the network side. But since this is the same values that were used
by the training set to calculate the mean the standard deviation is probable
that the values would not pass the threshold and not giving evidence of any
malicious activity.

One limitation to our work is the pre-classification done on the type of applica-
tions at the host side. This classification must be done by human intervention,
which gives room to flaws and mistakes. It is very important to be done care-
fully. As well if it is not done makes the feature useless to the algorithm making
it weaker. it is a sensible point and should be paid attention while the setting
up of the purposed prototype.

Another limitation is the case where botnets use defenses to fake the response
times. If a botnet is using an automated algorithm that delays the answers to
the received commands it will bypass our defenses, this phenomena is known as
stealth. This can be overcome by looking if the times are too near the average.
Which means we need to calculate the mean and the standard deviation for the
given sample and verify if the standard deviation was too small comparing to
the value from the training set. If so this kind of traffic could be flagged as
automated as well.

The use of these features to classify and detect botnet evidence show promising
signs on the host side, where it seems to be possible with those features to find
profiles of good behavior. On the network side it is more complicated since
without testing the number of flows to look at on the real world, thus finding
the best number for a small rate of False positives, it is hard to say if it would
work or not. The limitations seem to be not big obstacles if tweaks are done on
further work.

7.2 Further work 41

7.2 Further work

Some Aspects of the prototype need to be further tested in order to be sure
they work on the real world. Also there are alternatives to the choices made
in algorithms, parameters and thresholds that can be overviewed for a better
solution to the problem.

The tests were only done on data that was not classified but is almost a 100%
sure to not be tainted with any botnet activity. That said it should be important
to obtain results on the K-means algorithm on a data said known to contain
botnet code and if possible to know which system calls were done by it. If so
one could verify if the biggest percentage of those system calls would group
together on a single cluster and chose the K number of clusters that would
better characterize it. Using that cluster as the one to verify if there were any
system calls that belong to it. This classification could also be used (if the
results were good) to train a neural network giving a more reliable and already
automated tool to calculate if a system call belongs or not to botnet activity.
The percentage could still be the threshold used to trigger the information to
the network side.

The number of system calls used on the last feature should also be tested for
different values since it would be interesting to see which one would give a
smaller rate of FN and FP. The best results obtained on previous works were
always with small windows, but numbers like the past 5, 6 or 7 system calls
could be used to test and find the balance between accuracy and overhead.

On the network side, other features like the application related to that flow
or the addresses that communications are happening with could be useful to
classify the flows and help co-related them with the system calls. These ways
should be explored to better understand the feature that gives best results.

There is a lot of solutions that should be tested in order to compare which one
is more efficient and since this is based on information from the system itself,
it should be implemented with the possibility of using different solutions for
different systems.

42

Conclusion

APPENDIX A

Host Based results

44 Host Based results

=== Huh 1htormation ===

Scheme :weka.clusterers.SimplekMeans -N 2 -A "weka.core.EuclideonDistonce -R first-lost" -1 E@A -5 18
Relation: training
Instonces: 2944413
Attributes: 4
ayscall
time_interval
app_type
past_syscal ls
Test mode:evaluate on training data

=== Model and evaluation oh training set ===

kMeans

Humber of iterations: 8
Within cluster szum of szquared errors: 321833.182438909554
Mizsing wvalues globally reploced with mean/mode

Cluster centroids:

Clusterd
Attribute Full Data 2] 1
(2944413 (1468621) (1483792}
ayscall read read write
time_interval 426439 B3 .6652 21.9283
app_type network network network
past_syscal ls read,read ,read read,read ,read write,write,write

Time token to build model (full troining dota) : B1.96 seconds
=== Model and evaluation on training set ===
Clustered Instances

a 1468621 { 5BE)
1 1483792 { 5B%)

Figure 10 - results obtained by running K-means for 2 clusters: centroids and
percentages

45

Plottraining_clustered Plottraining_clustered

0 x < e
E i f: E = = = i = = -

Class colour Class colour

clusterQ clusterl clustero clusterl

Plot:training_clustered Plot:training_clustered

My

i

| ang(m.l
-

b

Class colour Class colour

clusterd clusterl cluster) clusterl

Figure 11 - results obtained by running K-means for 2 clusters: point disposal
for each feature, per cluster.

Finished k=2

46 Host Based results

=== Run information ===

Scheme iweka.clusterers.SinplekMeans -N 3 -4 "weko.core.BEuclideanDistance -R first-last" -1 5@@ -5
Relation: training
Instonces: 29444173
Attributes: 4
syscall
time_interval
app_type
past_syscal ls
Test mode:evaluate on training data

=== Model and evaluation on training set ===

kHMeans

Humber of iterations: 9
Within cluster sum of squared errors: 321521.8879657758596
Miszing values global ly replaced with mean/mode

Cluster centroids:

Clusterd
Attribute Full Data Lal 1 2
(2944413) (1523183 (64) (1421248
swscall read read read write
time_interwal 42 6439 22.5847 TE4T776 6486 29.4147
app_tvpe network network network network
past_syscal ls read,read , read read,read , read read,read,reqd write,write,write

Time token to build model (full troining dota) : 68.79 seconds
=== Model and evaluation on training set ===

Clustered Instonces

] 1523189 { E2%)
1 &4 (B
2 1421248 { 48%)

Figure 12 - results obtained by running K-means for 3 clusters: centroids and
percentages

47

Plot:training_clustered Plot:training_clustered

n c '

. - r w wvVvwns
T P o f-;

:

L
C

h . l
ﬁﬁ | N e

clusterd cluster? read, wWrite, r
oy clustert o e, read, r write, rite,
Plot:training_clustered Plot:training_clustered
r- w " 1813973.810 sl |
a x
d
x
G0F086, 0005 ¥ .
2 o] i
™ e)
p ! Moy -

- & A

cluster) clusters Clusterd cluster?
clusterl clusterl

Class colour

clusterd clusterl clusterz

Figure 13 - results obtained by running K-means for 3 clusters: point disposal
for each feature, per cluster.

Finished k=3

48 Host Based results

| === Huh 1htormation ===

Scheme tweka.clusterers . SinplekMeans -M 4 -4 "weka.core.EuclideanDistonce -R first-lost" -1 B@A -5 18
Relation: training
Instaonces: 29444135
Attributes: 4
ayscal |
time_interval
app_type
post_syscalls
Test mode:evaluate on training data

=== Model and evaluation on training set ===

kMeans

Number of iterations: 18
Within cluster sum of squared errors: 321521 .5611763892
Missing walues globally replaced with mean/mode

Cluster centroids:

| Clusterd

| Attribute Full Data 2] 1 2 3

i (2044413} (1521927 (1893 (1421338 (63
syscal | read read read write read
time_interval 42,6439 7.8637 3E399.34 23.2333 77525 5526
app_type network network network network network
post_syscalls read ,read,read read ,read,read read,read,read write,write,write read ,read,read

Time token to build model (full training daota) @ 65.88 seconds
=== Model and evaluation on training set ===

Clustered Instances

i} 1621927 { 62%)

1 1893 { 8%
2
3

1421338 { 48%)
63 (B

Figure 14 - results obtained by running K-means for 4 clusters: centroids and
percentages

49

Plottraining_clustered Plot:training_clustered

f e

t %

Il

° * &

¥ £ 4

k.

», |

h

a x = » W

P ,

clusterd cluster2 : read, r read,w write, read,w

clusterl clusters write, read, r write, write,

Plot:training_clustered Plot:training_clustered

F i 181 210

4 & - % 1. 819

a

d

W 2

4

i -

e & 5 ’

clusterd cluster2 Clusterc

clusterl cluster3 clusterl Cluster3

Class colour

clusterd clusterl cluster2

Figure 15 - results obtained by running K-means for 4 clusters: point disposal
for each feature, per cluster.

Finished k=4

50

Host Based results

APPENDIX B

Network Based

results

Selected attribute

MName: time_interval

Missing: 0 (0%

Type: Numeric

Distinct: 5351 Unique: 45373 (13

Statistic Walue
Minimurm 0
Maximum 231344
Mean 103262.294
StoDew 21715.28¢

Class: time_interval (Mum)y

|v| visualize Al

T
115672

1
231344

Figure 16 - results obtained by calculating the mean and standard deviation
for the collected flows

52

Network Based results

Bibliography

[BCIX09]

[CIDO5|

[Den87]

[DGL07]

[DMS92]

[FB07]

[FHSL96]

[GPZLO07]

[GZLO8]

M. Bailey, E. Cooke, F. Jahanian, and Y. Xu. A survey of botnet
technology and defenses. 2009.

E. Cooke, F. Jahanian, and McPherson D. The zombie roundup:
Understanding, detecting, and disrupting botnets. In SRUTI
05:Steps to Reducing Unwanted Traffic on the Internet Workshop,
2005.

D. E. Denning. An intrusion-detection model. ieee transactions on
software engineering, 13 no 2:222-232, 1987.

D. Dagon, G. Gu, and C. P. Lee. A tazonomy of botnets structures,
chapter 8, page 22. 2007.

H. Debar, Becker M., and D. Siboni. A neural network component
for an intrusion detection system. 1992.

K. M. Faraoun and A. Boukelif. Neural networks learning improve-
ment using the k-means clustering algorithm to detect network in-
trusions. 2007.

S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A
sense of self for unix processes. 1996.

G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering
analysis of network traff ic for protocol- and structure-independent
botnet detection. 2007.

G. Gu, J. Zhang, and W. Lee. Botsniffer: Detecting botnet com-
mand and control channels in network traffic. 2008.

54 BIBLIOGRAPHY

[HFS98] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection
using sequences of system calls. 1998.

[KMN*02] T. Kanungo, D. Mount, N. S. Netanyahu, C. D. Piatko, R. Silver-
man, and A. Y. Wu. An efficient k-means clustering algorithm:
Analysis and implementation. 2002.

[KRHO7] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet de-
tection and characterization. 2007.

[LS98] W. Lee and S. J. Stolfo. Data mining approaches for intrusion de-
tection. 1998.

[LTG*T92] T.F.Lunt, A. Tamaru, F. Gilham, R. Jagannathan, C. Jalali, P. G.
Neumann, H. S. Javitz, A. Valdes, and T. D. Garvey. A real-time
intrusion-detection expert system(ides). Technical report, 1992.

[Mic06] Trend Micro. Taxonomy of botnet threats. page 15, 2006.

[MZ05] A. W. Moore and D. Zuev. Internet traffic classification using
bayesian analysis techniques. 2005.

[NSB10] A. Nogueira, P. Salvador, and F. Blessa. A botnet detection system
based on neural networks. 2010.

[OKA10] A. J. Oliner, A. V. Kulkarni, and A. Aiken. Community epidemic
detection using time-correlated anomalies. 2010.

[RFD06] A. Ramachandran, N. Feamster, and D. Dagon. Revealing botnet
membership using dnsbl counter-intelligence. 2006.

[Roj96] R. Rojas. Neural Networks. 1996.

[RY08] M. Reiter and T. F. Yen. Traffic aggregation for malware detections.
2008.

[SLWL07] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas. Botnet De-
tection Based on Network Behavior. 2007.

[SMO7] E. Stinson and J. C. Mitchell. Characterizing bots remote con-
trol behavior. In Botnet Detection Countering the Largest Security
Threat, 2007.

[WDF*03| J. Wang, P. S. Deng, Y. Fan, L. Jaw, and Y. Liu. Virus detection

using data mining techniques. 2003.

	Summary (English)
	Preface
	Acknowledgements
	1 Introduction
	2 Taxonomy of botnets
	2.1 C&C Architecture
	2.1.1 Centralized Architecture
	2.1.2 P2P architecture
	2.1.3 Random

	2.2 Communication protocols
	2.2.1 IRC protocol
	2.2.2 HTTP Protocol

	2.3 Other Observable activities
	2.3.1 Network-Based behavior
	2.3.2 Host Based behavior
	2.3.3 Global Correlated behavior

	3 Design
	3.1 Motivation
	3.2 Architecture

	4 Host based behavior
	4.1 Classification
	4.1.1 Artificial Neural Networks
	4.1.2 Supervised Learning
	4.1.3 Unsupervised Learning

	4.2 Experiment
	4.2.1 setup
	4.2.2 results

	5 Network based behavior
	5.1 Experiment
	5.1.1 setup
	5.1.2 results

	6 Global correlated behavior
	6.1 Algorithm

	7 Conclusion
	7.1 Discussion & limitations
	7.2 Further work

	A Host Based results
	B Network Based results
	Bibliography

