
Extended AnB for Web Services

Allan Asp Olsen

Kongens Lyngby 2012
IMM-M.Sc.-2012-63

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-M.Sc: ISSN 0909-3192

Summary

Formal protocol analysis is an important tool for computer security. While there
has been a lot of formal mathematical analysis of cryptology the usual security
problems in practice are the results of poorly applied cryptology or security
problems in the programs themselves. For example some protocols have flaws
that aren’t found in several years after their publication. While one solution
might be to just use well defined protocols this is not always possible. E.g.
Sometimes new protocols need to be invented. While security protocols have
been analysed for many years by hand it is often easy to miss mistakes in the
design of the protocol.

This has led to the development of several tools for formal analysis of protocols.
This includes Casper, Common Authentication Protocol Specification Language
(CAPSL)[1] and Open-Source Fixed-Point Model-Checker (OFMC)[4][5]. The
purpose of this thesis is to extend on the Alice and Bob notation (AnB) which is
used for specifying protocols, these can be analysed with OFMC or similar tools.
Classic AnB lacks support for problems that require a more persistent storage
than a single protocol run. One such protocol is ASW[3] which allows users to
digitally sign a protocol in a fair way (ie. one participant of the negotiation
cannot have a signed contract without the other part acquiring one). This may
require a trusted third party in the case that they disagree and this trusted
third party has to act differently depending on the messages received so far.

To accomplish it’s task OFMC translates from AnB to Automated Validation
of Internet Security Protocols and Applications Intermediate Format(AVISPA
IF). To extend AnB into the language which we refer to as Web Service Alice
and Bob notation (WS-AnB) it was necessary to define a formal description of

ii

the translation from these additions into AVISPA IF as well.

Acknowledgements

I thank my supervisor Sebastian Alexander Mödersheim, he has provided me
with much help throughout the project.

iv

Contents

Summary i

Acknowledgements iii

1 Classic AnB 1
1.1 Overview . 1
1.2 Specification . 1

2 Strands 3
2.1 Overview . 3

3 AVISPA IF 7
3.1 Overview . 7
3.2 Specification . 7

4 WS-AnB 9
4.1 Motivation . 9
4.2 Specification . 9

vi CONTENTS

Chapter 1

Classic AnB

1.1 Overview

Alice and Bob Notation (also known as AnB), is a language for specifying pro-
tocols in an easily readable way. It can then be used for analysis by computer
programs.

1.2 Specification

An AnB specification starts with a protocol name, then a type specification
listing (honest) agents, variables, and functions used in the protocol. Then
the knowledge of each participating agent is specified followed by the concrete
actions that makes up the protocol. Finally the specification ends with a set of
security goals that need to be verified. It is of note that nothing in the AnB
specification refers directly to the intruder.

2 Classic AnB

1.2.1 Example

The following is an example of the Needham-Schroeder protocol in AnB.

Protocol: NSPK

Types: Agent A,B,s;

Number Na,Nb;

Function pk

Knowledge: A: A, B, s, pk(A), inv(pk(A)), pk(s);

B: B, s, pk(B), inv(pk(B)), pk(s);

s: A, B, s, pk, inv(pk(s))

Actions:

A->s: (A, B)

s->A: {pk(B),B}inv(pk(s))

A->B: {Na,A}pk(B)

B->s: (B, A)

s->B: {pk(A),A}inv(pk(s))

B->A: {Na,Nb}pk(A)

A->B: {Nb}pk(B)

Goals:

A *->* B: Na

B *->* A: Nb

The Open-Source Fixed-Point Model-Checker(OFMC) can be used to analyse
this protocol specification. The final part of the specification is the goal states.
This also showcases an extra feature of the specification language. A star can
be used to denote a secure part of a channel. For a message transmission a star
at the end of the arrow indicates encryption with the public key(so the sender
can guarantee only the receiver can read it) and a star at the beginning is an
indication of public message signing(so the receiver can verify the identity of
the sender). As goal states this is then a similar specification but rather that
being a transmission it indicates that a message was transmitted during the run
of the protocol which had properties of that channel. In the example this states
that B will receive the message Na in such a way that only A could have send
it and only B can read it. Conversely Nb is send such that only A can read it
and only B could have send it.

Chapter 2

Strands

2.1 Overview

The notion off a strand is closely tied with message sequence diagrams, they
follow very easily from AnB. A message sequence diagram of NSPK can be seen
in figure 2.1.

This is also a good figure for understanding strands. To show how this can be
translated into a strand I will give the example for the agent B. See figure 2.2.

This shows an important difference from the earlier specifications, rather than
A and NA the values are now replaced by X1 and X2, the reason for this is that
the agent B has no way at the time to confirm the contents of these messages.
For the purpose of this thesis this difference has been abstracted away.

This leaves us with a good visual representation of what a strand is. Later I
will extend this notion from a list of messages send and received to a tree-like
structure.

4 Strands

Figure 2.1: NSPK as message sequence diagram

A : A,B, s, pk(A),
inv(pk(A)), pk(s)

��

s : A,B, s, pk,
inv(pk(s))

��

B : B, s, pk(B),
inv(pk(B)), pk(s)

��

•

��

A,B // •

��
•

��

•

��

{pk(B),B}inv(pk(s))oo

•

��

{Na,A}pk(B) // •

��
•

��

•

��

B,Aoo

•

��

{pk(A),A}inv(pk(s)) // •

��
•

��

•
{Na,Nb}pk(A)oo

��
•

��

{Nb}pk(B) // •

��
• • •

2.1 Overview 5

Figure 2.2: Strand of NSPK

B : B, s, pk(B),
inv(pk(B)), pk(s)

��
•

��

{X1,X2}pk(B)oo

•

��

B,X2 //

•

��

{pk(X2),X2}inv(pk(s))oo

•

��

{X1,Nb}pk(X2) //

•

��

{Nb}pk(B)oo

•

6 Strands

Chapter 3

AVISPA IF

3.1 Overview

the Automated Validation of Internet Security Protocols and Applications In-
termediate Format(hereafter just refereed to as IF or AVISPA IF) is a language
used internally in OFMC as well as other tools for analysing protocols.

Rather than specifying messages that are sent or received AVISPA works on a
lower level, specifying knowledge of the intruder and state changes of the agents.
On one hand this gives access to a more expressive language than AnB on the
other hand it is a lot harder to read and write.

3.2 Specification

A specification in IF starts with a signature section, this section typically spec-
ifies the internal state of the participating honest agents. This is followed by
a section specifying the possible initial states of the protocol. Then the state
changes are described for each agent. Finally a list of goals to be achieved is
specified. IF states are sets of facts such as intruder knowledge or the state of
an agent.

8 AVISPA IF

Chapter 4

WS-AnB

4.1 Motivation

Although regular AnB is very easy to read and understand it has some limita-
tions, the goal of this thesis is to show how such an extension could be made
to extend AnB in a conservative manor. One could of course skip AnB entirely
and work directly on the IF level but as described in the AVISPA IF chapter
this is rather complicated due to the low-level nature of IF.

One of the goals with this extension is to keep WS-AnB as simple as possible
while making it expressive enough to cover what we need. Another important
goal is to make it a conservative extension meaning that the original AnB is left
intact(both semantically and syntactically).

4.2 Specification

The translation from WS-AnB to IF has two steps, first it is translated into
agent specific strands and then from strands into IF. This choice was made for
several reasons, going to strands first makes it easier to later incorporate a split

10 WS-AnB

between the knowledge of the agents. It is also easier to understand the two
minor steps than one big step. Lastly having the strands makes some procedures
simpler, for instance finding out which variables are fresh is easier to understand
when the translation to strands has completed.

For practical reasons (primarily performance issues) many steps are usually
added together. This aggregation runs from one receive to the next. This
can be done without changing the properties of the protocol(intuitively one
can consider the agents to do such calculations locally so the intruder can’t
interfere)[2]. This is another transformation that works well on the strand level.

An IF state transition rule has 3 basic components, the left hand side is a set of
facts that must hold for the state change to be possible. The right hand side is
a set of facts that will hold after the transition and in the middle(as part of the
arrow) there can be a set of new variables which must be introduced to state
the right hand side. An important note is that any fact not mentioned at all
will remain unchanged, if a fact is specified only on the left hand side it will
be removed and if specified on only the right hand side it will be introduced.
Lastly if specified on both sides it will remain.

4.2.1 Abstract syntax of WS-AnB

The basic grammar of WS-AnB actions are defined as:

S ::=A→ B

|S1;S2

|if(C) then S1 else S2 fi

|?M
| ∼?M

|+M

| −M
|A→ B : M or S

|ε

Where ε is the empty string, M is a message on the classic AnB form:

4.2 Specification 11

M ::=identifier

|{M1}M2

|{|M1|}M2

|M1,M2

|identifier′(′identifier(, identifier)∗′)′

|′(′M ′)′

Where ’(’ and ’)’ is used to denote the string (and) rather than the grammar
rules.

C is a condition of the form:

C ::=?M

|M1 = M2

| ∼ C

and A and B are agent names. One example of such a specification is ASW[3]:

Protoco l : ASW
Types :

Agent O, R, t ;
Number No , Nr ;
Function h , cont rac t ;

Knowledge :
O: O, R, t , inv (pk (O)) , pk (O) , pk (R) , pk (t) , cont rac t ;
R: O, R, t , inv (pk (R)) , pk (O) , pk (R) , pk (t) , cont rac t ;
t : inv (pk (t)) , pk (O) , pk (R) , pk (t) , cont rac t ;

DB(t , pa i r (O, pk (O)))

Act ions (Exchange) :
O −> R: {pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O))
R −> O: {{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O))

,h(Nr) } inv (pk (R)) OR Abort
O −> R: No OR ResolveO
+ std ,{{ pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,h

(Nr) } inv (pk (R)) ,No , Nr

12 WS-AnB

R −> O: Nr OR ResolveR
+ std ,{{ pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,h

(Nr) } inv (pk (R)) ,No , Nr

Act ions (Abort) :
O −> t : {aborted ,{ pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) }

inv (pk (O)) } inv (pk (O))
i f (? re so lved ,{ pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (

pk (O)))
then

t −> O: {{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O
)) ,

{{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,h (Nr) }
inv (pk (R)) } inv (pk (t))

else
+ aborted , {pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk

(O))
t −> O: {aborted ,{ aborted ,{ pk (O) , pk (R) ,T, cont rac t (O,R,

T) ,h(No) } inv (pk (O)) } inv (pk (O)) } inv (pk (t))
f i

Act ions (ResolveO) :
O −> t : {pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,
{{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,h (Nr) }

inv (pk (R))
i f (? aborted ,{ pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk

(O)))
then

t −> O: {aborted , {pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No)
} inv (pk (O)) } inv (pk (t))

else
+ reso lved ,{ pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk

(O))
t −> O: {{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O

)) ,
{{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,h(Nr) }

inv (pk (R)) } inv (pk (t))
f i

Act ions (ResolveR) :
R −> t : {pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,

{{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,h (
Nr) } inv (pk (R))

i f (? aborted ,{ pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk

4.2 Specification 13

(O)))
then

t −> R: {aborted , {pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No)
} inv (pk (O)) } inv (pk (t))

else
+ reso lved ,{ pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk

(O)))
t −> R: {{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O

)) ,
{{pk (O) , pk (R) ,T, cont rac t (O,R,T) ,h(No) } inv (pk (O)) ,h(Nr) }

inv (pk (R)) } inv (pk (t))
f i

4.2.2 Translation from WS-AnB to WS-Strands

The translation function from WS-AnB to WS-Strands is defined as the func-
tion trα(A,B,AnB) where A is the agent for which the translation is run-
ning(basically the function is called once with each participating agent). B
is the currently active agent in the sense that only this agent can send mes-
sages(this should be initially called as the first agent to act since otherwise it
will cause errors). And AnB is the WS-AnB statements to be translated. This
function is the recursively defined as follows.

trα

(
A,B,

B → A : Mk

S

)
=

��
•

��

Mkoo

trα(A,A, S)

Intuitively this is the agent A receiving a message from the network (presum-
ably from B but A cannot verify this). Since the intruder has full control of
the network this corresponds to the intruder knowing a message which fits the
pattern of Mk as perceived by A.

trα

(
A,C,

B → A : Mk

S

)
= error

Even though A cannot verify the identity of B we cannot replace B with another
agent, in order to send a message an agent has to be active. So if a non-active

14 WS-AnB

agent tries to send a message we give an error message.

trα

(
A,A,

A→ B : Mk

S

)
=

��
•

��

Mk

//

trα(A,B, S)

Intuitively this is the agent A sending a message over the network (with the
intended recipient being B). Since the intruder has full control of the network
this corresponds to giving the information to the intruder.

trα

(
A,A,

DMk

S

)
=

��
D Mk

��
trα(A,A, S)

Where D can be ’+’, ’-’, ’?’ or ’∼?’ This is the notation for A manipulating
the database, if D is ’+’ the message is added to the database of A. Since an IF
state is a set of fact no special care is taken to see if the data is already in the
database.

if D is ’-’ the message is removed from the database of A. Due to the nature of
IF states this may make impossible transitions since something has to match on
the left hand side. This may seem problematic at first but by adding a branch
before the - statement testing for the presence of the message(Mk) it can cover
both situations, without always splitting states which may be quite inefficient
when there are multiple removals in a row (n removals would lead to 2n possible
state transitions). It is assumed that mostly when messages are removed from
a database they are known to be present before hand.

If D is ’?’ the database is checked for the knowledge Mk and locking up if it
is not there(similar to the notion of an assertion in C or Java). It is a simple
way to truly and immediately abandon a protocol and as such should be kept
to a minimum(assuming that most agents would prefer to have a safe fail-over
rather than a crash). Similarly ’∼?’ can be used for the opposite case, i.e. to

4.2 Specification 15

ascertain that the database does not contain Mk.

trα

(
A,B,

DMk

S

)
=

��
trα(A,B, S)

Database manipulations are local to a particular agent, so nothing to do here.

trα

A,A,

if(C)
then
S1

else
S2

fi
S3

=

trγ(A,p,C)

t| ppppppppppp

ppppppppppp
trγ(A,n,C)

"*NNNNNNNNNNN

NNNNNNNNNNN

trα(A,A, S1;S3) trα(A,A, S2;S3)

This is the classical if sentence, intuitively this is an unconditional jump with a
condition on each branch that are assured to be mutually exclusive. While the
branching is done by A care should be taken that other agents will be able to
tell which branch A took on the first message(to prevent indeterminism which
may lock the other agents in unwanted states). The translation function trγ is
defined in section 4.2.5.

trα

A,B,

if(C)
then
S1

else
S2

fi
S3

=

t| ppppppppppp

ppppppppppp

#+NNNNNNNNNNN

NNNNNNNNNNN

trα(A,B, S1;S3) trα(A,B, S2;S3)

The choice is made by the active agent so intuitively if B makes the choice A
has to be ready to accept either outcome, as described above this might be a
problem. Luckily we have already covered that only one agent is active at a
time so in order for A to act A has to receive a message first or make a timeout.

16 WS-AnB

trα

(
A,B,

B → A : Mk OR S1

S2

)
=

u} rrrrrrrrrrrr

rrrrrrrrrrrr

!)LLLLLLLLLL

LLLLLLLLLL

•

��

Mkoo trα(A,A, S1)

trα(A,A, S2)

Intuitively this is the time-out statement. In practice S1 is replaced by an
identifier specifying a protocol to jump to at the choice of the inactive agent
waiting on receiving Mk. As the translation shows, this will always result in
this agent becoming the active one. This is exactly the desired behaviour of a
time-out in an agent, rather than wait for a message the agent takes action.

Lastly there is the case of missing statements inside if statements or what to do
when there are no more statements in general. Covering this case requires the
introduction of the empty statement denoted ε. trα

(
A,B, ε

)
= ε

4.2.3 Strand preprocessing

Before translating from Strands into IF it is important to have a preprocessor
that runs through the strands and finds all variables not already known to the
agent(either as initial knowledge or through messages received or generated by
the agent) which needs to be either send or put into the database. The full
specification for this is not interesting for this thesis and is rather complicated.
Figure 4.1 has an example of how to do it for agent B of the NSPK example.

As described earlier this is also a got place to make an aggregation of multiple
states so that each transition runs from one receive to the next. To avoid this
complication the following translation deals with only a small part of a strand
at a time.

4.2.4 Translation from WS-Strands to IF

The translation is defined as the function trβ(Nr, Strand), where Nr is a unique
identifier of the state that the agent is in. Usually this is initialised to be 0,
and Strand is a strand initialised with the initial knowledge of the agent. The
function is defined as follows.

4.2 Specification 17

Figure 4.1: Fresh variable detection in NSPK

B : B, s, pk(B),
inv(pk(B)), pk(s)

��
•

��

{X1,X2}pk(B)oo

•

��

B,X2 //

•

��

{pk(X2),X2}inv(pk(s))oo

Generate {Nb}

��
•

��

{X1,Nb}pk(X2) //

•

��

{Nb}pk(B)oo

•

18 WS-AnB

In IF the knowledge of the intruder is specified as iknows. Since the model of
the intruder that IF

trβ

Nr, A: K

��
•

��

Mkoo

Rest

=

stateA(Nr,K).
iknows(Mk)

⇒
stateA(s(Nr),K ∪ var(Mk))⋃

trβ

s(Nr), A: K ∪ var(Mk)

��
Rest

This is essentially giving the message to the intruder.

trβ

Nr, A: K

��
•

��

Mk

//

Rest

=

stateA(Nr,K)
⇒

iknows(Mk).
stateA(s(Nr),K)⋃

trβ

s(Nr), A: K

��
Rest

Generating fresh variables in IF has a special notation.

4.2 Specification 19

trβ

Nr, A: K

��
Generate V

��
Rest

=

stateA(Nr,K)
= [existsV]⇒

stateA(s(Nr),K ∪ V)⋃

trβ

s(Nr), A: K ∪ V

��
Rest

Adding knowledge to the database is a right-hand side statement.

trβ

Nr, A: K

��
+ Mk

��
Rest

=

stateA(Nr,K)
⇒

db(A,Mk).
stateA(s(Nr),K)⋃

trβ

s(Nr), A: K

��
Rest

Similarly removing knowledge from the database is a left-hand side statement.
It is worth noting that this may get the agent stuck if the knowledge is not
contained in the database.

20 WS-AnB

trβ

Nr, A: K

��
- Mk

��
Rest

=

stateA(Nr,K).
db(A,Mk)
⇒

stateA(s(Nr),K)⋃

trβ

s(Nr), A: K

��
Rest

When (positively) querying the database the ”db” statement will appear on
both sides, as seen above removal has no special symbol in IF and anything on
the left-hand side which is not repeated on the right-hand side is removed.

trβ

Nr, A: K

��
? Mk

��
Rest

=

stateA(Nr,K).
db(A,Mk)
⇒

db(A,Mk).
stateA(s(Nr),K)⋃

trβ

s(Nr), A: K

��
Rest

Negatively querying the database is very similar, except that a ”not” is put in
front of the ”db” statement on the left-hand side and it is not mentioned on the
right hand side.

4.2 Specification 21

trβ

Nr, A: K

��
∼?Mk

��
Rest

=

stateA(Nr,K).
not(db(A,Mk))

⇒
stateA(s(Nr),K)⋃

trβ

s(Nr), A: K

��
Rest

Conditions are handled by trγ which is described in the section 4.2.5: Conditions
of WS-AnB. The positive case needs to have the result of that translation on
both sides.

trβ

Nr, A: K (C)

p

��
•

��
Rest

=

stateA(Nr,K).
C
⇒
C.

stateA(s(Nr),K)⋃

trβ

s(Nr), A: K

��
Rest

The negative case needs is similar except without having the result of that
translation on the right-hand side and of course the not on the left-hand side.

22 WS-AnB

trβ

Nr, A: K (C)

n

��
•

��
Rest

=

stateA(Nr,K).
not(C)
⇒

stateA(s(Nr),K)⋃

trβ

s(Nr), A: K

��
Rest

Lastly there is the case of the splitting strand. Here it is important to distinguish
between the two strands so rather than having one successor function s two
additional successor functions are added l and r. These are also important
markers for unifying strands.

trβ

Nr, A: K

w� vvvvvvvv

vvvvvvvv

�'HHHHHHHH

HHHHHHHH

Rest1 Rest2

=

trβ

l(Nr), A: K

��
Rest1

⋃

trβ

r(Nr), A: K

��
Rest2

Although we have chosen not to join strands it is possible to describe the cir-
cumstances in which this is possible. This might be an optimization because it
leads to a smaller IF specification. Briefly the join can be translated on IF level
as the pattern:

state_A(Z(l(S(0))),K)

4.2 Specification 23

state_A(Y(r(S(0))),K)

=>

state_A(s(S(Nr)),K)

Where S, Z and Y is a sequence of 0 or more successor calls. It is important
that the two S(0) match to prevent nested if sentences from breaking.

4.2.5 Conditions of WS-AnB

To handle double negations I start by converting the condition to a base form.
trγ(A, p,∼ C) = trγ(A,n,C)
trγ(A,n,∼ C) = trγ(A, p,C)
Then there are two kinds of conditions in WS-AnB. The first is equality of
messages.
trγ(A,O,M1 = M2) = O(equal(M1,M2))
The second is database checks.
trγ(A,O, ?M1) = O(db(A,M1))
Although it is possible to extend this to handle conjunctions or disjunctions we
have decided not to implement this. This is not a restriction on the language
however since it can be covered by nesting if sentences.

24 WS-AnB

Bibliography

[1] Grit Denker, Jon Millen, and Jon Millen. Capsl and cil language design - a
common authentication protocol specification language and its intermediate
language. 1999.

[2] Grit Denker and Jonathan K. Millen. Optimizing protocol rewrite rules of
cil specifications. In In CSFW, pages 52–62. IEEE Computer Society Press,
2000.

[3] Paul Hankes Drielsma, Sebastian Mödersheim, and Sebastian Mödersheim.
The asw protocol revisited: A unified view. pages 145–161, 2005.

[4] Sebastian Mödersheim. Algebraic properties in alice and bob notation. In
ARES, pages 433–440, 2009.

[5] Sebastian Mödersheim, Luca Viganò, and Luca Viganò. The open-source
fixed-point model checker for symbolic analysis of security protocols. 2009.

	Summary
	Acknowledgements
	1 Classic AnB
	1.1 Overview
	1.2 Specification

	2 Strands
	2.1 Overview

	3 AVISPA IF
	3.1 Overview
	3.2 Specification

	4 WS-AnB
	4.1 Motivation
	4.2 Specification

