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Abstract

Studies indicate a correlation between mental illnesses and the human genome.
If mental illnesses can be determined by the genome, it is possible that these
gene abnormalities could result in alterations of the facial morphology, i.e. cause
birth defects.

This thesis presents a database of 3D facial scans, which has been annotated
manually in respect to a 73-landmark scheme. The extracted mouth features has
been aligned by the generalized Procrustes analysis and statistically analysed
by the principal component analysis. In the principal component space, the
K-means clustering algorithm is used to divide the population into groups of
similar characteristic mouth features.

The results from the clustering showed a differentiation of the population based
upon the mouth features. The method described in this thesis hereby presents
a possibility of dividing people in groups based upon their shared characteristic
mouth features.

Keywords: Principal Component Analysis, Generalized Procrustes Analysis,
K-means Clustering, 3D Facial Scans, 3D Feature Extraction, 73-Landmark
Scheme.
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Resumé

Undersøgelser viser en sammenhæng imellem psykiske sygdomme og det men-
neskelige genom. Hvis psykiske sygdomme kan være bestemt af genomet, er
der mulighed for at gen-abnormaliteter kan resultere i ændringer af ansigtets
morfologi, dvs. foresage medfødte defekter.

Denne afhandling præsenterer en database af 3D ansigts-scanninger, som er
blevet annoteret manuelt i forhold til en 73-punkts protokol. Udtrækning af
mundens karakteristika er blevet bragt i samme refererings ramme af den gen-
eraliserede Procrustes analyse og analyseret statistisk ved principal komponent
analyse. I rummet udgjort af principal komponenterne, er K-means clustering
algoritmen anvendt til at opdele populationen i grupper med similære mund
karakteristika.

Resultaterne fra denne gruppering viste en differentiering af befolkningen baseret
p̊a mundens karakteristika. Metoden beskrevet i denne afhandling præsenterer
dermed en mulighed for at opdele mennesker i grupper baseret p̊a deres fælles
mund karakteristika.

Nøgleord: Principal Komponent Analyse, Generaliseret Procrustes Analyse,
K-means Clustering, 3D Ansigts-Scanninger, 3D Karakteristika Udtrækning,
73-Punkts Protokol.
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algebra, statistics and image analysis.
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Chapter 1

Introduction

Diagnosis of mental illnesses and syndromes is a challenging area for physicians
and a task only suitable for the experienced physicians. Experienced physicians
are able to diagnose patients almost merely by identifying facial characteristics
associated with specific dysmorphic1 syndromes [5]. These facial dysmorpholo-
gies along with personal interaction with the patient are used in diagnosing the
mental disorders. It takes a lot of practise to master these skills but unfortu-
nately, due to the limited exposure to these kinds of disorders during training,
the techniques are learned on the job instead. It would be of great help if inexpe-
rienced physicians could acquire these skills during their training. Fortunately,
3 dimensional (3D) facial scans could be the solution to this problem.

The facial characteristics of a person is filled with information. Take for instance
Fig. 1.1, where four mouths, which all differ more or less from each other,
are shown. As one can see, a lot of geometric information is available within
the features of the mouth, information which can be captured by 3D facial
scans. With focus only on the mouth, we intend to explore the possibilities
for dividing a population into groups. By this we hope that the people in
each group share some sort of mouth characteristics, based upon 3D feature
extraction. Feature extraction is used in various fields and studies, as in [3],
where feature extraction is used in the field of facial recognition. In order to work
with large databases in facial recognition, it is important that it is automatic.

1Abnormal structural features or birth defects
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A way of doing so is to make an algorithm which automatically sets predefined
anatomical correct placed landmarks on the facial scans. This is perfected by
”teaching” the algorithm where to annotate these landmarks by performing a
lot of manual annotation. During the process of this thesis, a great deal of
time has been used to do just that. By this, we have been contributing with
valuable data to the studies regarding [3]. In addition, a thorough description
on how to annotate correctly has been made in order to ensure consensus when
annotation is performed by different people. This annotation guide can be found
in appendix A.

Figure 1.1: Four different mouths show the diversity among people.

There are studies indicating a linkage between mental illnesses and the human
genome. The field of biological psychiatry has been around since the late 1980s
and is a field of medicine. It is an approach to psychiatry in the pursuit of
understanding mental disorders in terms of the biological functions of the ner-
vous system [6]. In the late 1980s, research groups discovered genes which were
associated with the mental disorders manic depression and schizophrenia [10].
These studies are, how ever, complicated by several factors. One example, is
the fact that psychiatric diagnosis relies on the opinion of the physician based
on the interaction with the patient. Several known disorders are characterised
by facial dysmorphologies, where Williams syndrome and Noonan syndrome are
two examples of such [5].

We will during this thesis extract 3D facial features from 3D facial scans and
process the data using various mathematical tools, such as generalized Pro-
crustes analysis (GPA) and principal component analysis (PCA). In the end
we will perform a cluster analysis, using the K-means clustering method, to
divide the dataset in to a number of groups and describe the results so that it
is humanly understandable. Through analyses of the extracted facial features
we wish to determine whether this new knowledge, gained from the clustering,
would be helpful in applications like the ones already mentioned and others to
be discussed.
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1.1 Mathematical Notations

The reader is expected to be familiar with linear algebra. The mathematical
notations are listed below and will be shown throughout this thesis as follows:

Scalars are represented by a lower-case Latin or Greek letter.

x (1.1)

Vectors are denoted with lower-case non-italic Latin or Greek letters. Column
vectors are used in this thesis.

x = [x1 , x2 , · · · , xn ]
T

(1.2)

In this thesis, matrices are denoted with capital non-italic Latin or Greek letters.

X =

[
a d
c b

]
(1.3)

Objects which occur in groups are presented in vectors with curly braces.

{a, d, c, b} (1.4)

The indexing of a matrix is represented with a row-column subscript of a scalar
or a vector.

Axy = Ax, x = [x , y ] (1.5)

Of a specific dataset, the mean vector is denoted with lower-case non-italic Latin
or Greek letters with an overhead bar.

x (1.6)
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Chapter 2

Previous Work

3D facial analysis is an area with great potential as a tool in the process of
diagnosing a mental illness. In [5],

”...the potential of computer-based models of 3D facial morphol-
ogy to assist in dysmorphology training...”

Hammond, P. [4]

is described. Average faces of groups of children with various syndromes (Noo-
nan, William, velocardiofacial and fragile X) and of a control group with no
known genetic disorder are being used in demonstrating dysmorphology. Even
though the efficacy of this model, in helping trainees recognising dysmorphic
syndromes, has yet to be tested it surely shows potential. For an overview of
[5], see [4].

There are many tools used within the area of statistical analysis. One, is the
principal component analysis (PCA) which was derived by Pearson in 1902 [8].
PCA was developed as a basic statistical tool used to transform data and was
also used in [4].

PCA can be applied on all sorts of data such as geographical or image data. In
Daultry [1], a definition of PCA is presented and applied, as an example, on a
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geographical set of data. PCA is basically a rotation of axes in a coordinate
system and is sometimes useful for looking at data from another perspective.
Think for example about the difference between looking at an object at a normal
perspective and looking at it from a birds perspective. From the birds perspec-
tive we tend to get a more overall perception of the geographical features of
the object. In this example we rotate the given axes and that is basically the
concept of PCA.

Another tool, which we will use before performing PCA on our data, is the
generalized Procrustes analysis (GPA). In Greek mythology, Procrustes was an
innkeeper with an iron bed in which he invited passers to sleep in. The passers
never fitted the bed so Procrustes would either stretch or cut off their limbs in
order for them to do so. In shape analysis, it is easiest to compare multiple
shapes of objects when they are in the same frame of reference. So just like the
bandit Procrustes, we sometimes want to ”stretch” our data in order to make
a proper comparison of two or more shapes of objects. GPA is mostly used
for aligning the shapes by translating, scaling and rotating them into a chosen
mean shape. This is essentially what GPA does. GPA can be used to compare
all sorts of things, whether it is shapes of objects or peoples personal opinion of
which ice cream they like the most, GPA can align the data. One shape or one
persons opinion in an entire survey is therefore referred to as one configuration.
GPA is a developed version of the original Procustes analysis (PA) and first
introduced by Kristof and Wingersky in 1971 and later popularized by Gower
in 1975 [11]. The original PA was first introduced by Green in 1952 and Hurley
and Cattel in 1962 and is not applicable to more than two configurations [11].
GPA, on the other hand, is applicable to as many configurations as desired.
This makes it possible for us to compare our data in the best possible way by
first aligning the data with GPA and then reducing the number of dimensions
with PCA.

After preprocessing our data with GPA and PCA, we want to do a cluster
analysis of the data. By this, our intention is to get an idea of how unique the
mouth features makes us as individuals. A cluster analysis is basically a method
to divide a dataset into smaller groups of data points, where the points in each
group is more similar to the other points within the same group than with any
other point in the set. By this logic, if we get as many groups as we have got
points then every point is unique because each point is not similar to any other
point in the set. On the other hand, if we only get a very small number of
groups then all the points are somehow similar to each other and are nowhere
near unique. This tells us that the greater the number of groups we get, the
more the mouth features of a person will differentiate that person from other
people and vice versa. There exists numerous of different methods of clustering
but one of these which we will focus on is the K-means clustering method. The
K-means clustering method dates back to James MacQueen in 1967, although
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the standard algorithm first was described by Stuart Lloyd in 1957 [7]. Basically,
it is a method for dividing data points into k clusters (groups), where k is chosen
by the user to be any integer, as long as k is lesser than the number of points
in the dataset. By randomly choosing k ”means”1 amongst a dataset, it is
possible to assign each point in the set to the nearest ”mean” and thereby
divide the points into k clusters. The current estimated ”means” is constantly
repositioned so that we in the end get the best possible fit.
A more comprehensive description of the K-means algorithm can be found in
the Chapter 3.

1Randomly picked points assigned as a mean value.
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Chapter 3

Theory

In this chapter we will go through some mathematical operations which have
been used in this thesis. These operations are not general knowledge for students
at our own level which is why we will include a short introduction to them here.
In the end of this chapter, we will go through an example where we use the
described operations on a small set of data.

3.1 GPA

As mentioned earlier, GPA can be used to align data in such a way that the
comparison of multiple configurations has the best possible basis. In this thesis
we will only use GPA to align the multiple shapes of objects that is our data.
When performing GPA, there is a number of steps to be followed and they are
as follows:

1. Define a shape of reference.

2. Align the remaining shapes to the reference shape.

3. Rescale the new mean shape of the aligned shapes.
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4. Compare the calculated mean shape with the reference mean. If they are
different continue back to step 2. Otherwise the true mean shape has been
found.

If the data consists of a certain number of shapes, the first thing to do is to
define a shape of reference. This can be done easily by simple choosing the first
shape in the set as the reference shape. Move all shapes to a common centre
(i.e. possibly the origin). Now the shapes are being scaled and rotated to fit
the reference shape best possible. Afterwards a new mean is calculated from
the aligned shapes and compared to the reference mean. If the calculated mean
has changed more than a certain threshold, then step 2-4 is repeated.

3.2 PCA

PCA is a linear transformation which can be used in dimension reduction of a
specific dataset. It rotates the axes of the original coordinate system so the new
axes will be defined by the variance in the data. The first axis will be parallel to
the greatest variance of the data, the second axis will be parallel to the second
greatest, and so forth. All the new axes is orthogonal to each other and therefore
uncorrelated. PCA is very difficult to illustrate in dimensions greater than 3. In
Fig. 3.1 you can see an example of a PCA of a 2-dimensional dataset. From the
PCA, we get a set of values, or scores, which are the values of the data points
after the transformation. The number of values assigned to each score in the
new coordinate system is the same as the number of principal components.

Figure 3.1: PCA of a 2-dimensional dataset depicted with the two new rotated
axes PCA1 and PCA2 [3].
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3.2.1 Mathematical Approach to PCA

Given a dataset

X = [x1, x2, ..., xn ] , (3.1)

where xn is a column vector representing each patient. This can also be written
as

X =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

. . .
...

xd,1 xd,2 · · · xd,n

 , (3.2)

where n is the number of samples and the number of variables determines the
dimension d.

The mean of X is used and represented by

Mean {X} = x =

[∑n
i=1 x1,i

n
,

∑n
i=1 x2,i

n
, ...,

∑n
i=1 xd,i

n

]
, (3.3)

where x is a column vector consisting of the mean of each variable. X̂ is the
existing dataset with a new origin and is calculated by subtracting x from X

X̂ = [x1 − x, x2 − x, · · · , xn − x] , (3.4)

which again can be written as

X̂ =


x1,1 − x1 x1,2 − x1 · · · x1,n − x1

x2,1 − x2 x2,2 − x2 · · · x2,n − x2

...
...

. . .
...

xd,1 − xd xd,2 − xd · · · xd,n − xd

 (3.5)

The new origin is where the principal components will intersect and define the
new coordinate system. The new situation is shown in Fig. 3.2.
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Figure 3.2: A new origin is defined by a PCA of a 2-dimensional dataset.

The covariance matrix ΣX̂ is now calculated by

ΣX̂ =
1

n
X̂X̂T , (3.6)

which is the general method. If the number of dimensions exceeds the number
of samples it is more economical to calculate the covariance matrix as follows:

ΣX̂ =
1

n
X̂T X̂ (3.7)

This method is a better choice when a dimension reduction is needed because
the result would be a n× n matrix instead of a d× d matrix.

The Eigenvectors ΦX̂ of the covariance matrix represents the new axes which
are called the principal components.

ΣX̂ΦX̂ = ΦX̂ΛX̂ (3.8)

Here ΛX̂ is a diagonal matrix with Eigenvalues λd in the diagonal. There will be
min(d, n) non zero Eigenvalues which will be arranged in either a descending or
an ascending order. In this thesis a descending order is used. λ1 is the greatest
Eigenvalue and therefore represents the greatest variance i.e. the first principal
component.

ΛX̂ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λd

 (3.9)
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The sum of all Eigenvalues will be equal to min(d, n).

min(d, n) =

d∑
i=1

λi = Tr {Λ} (3.10)

The corresponding Eigenvectors ΦX̂ to ΛX̂ is therefore arranged in the same
order with φ1 as the first Eigenvector corresponding to the highest Eigenvalue
λ1.

ΦX̂ = [φ1, φ2, · · · , φd ] (3.11)

For more details, on the mathematical approach to PCA, see [1].

3.3 K-means Clustering

K-means clustering is, as mentioned, an iterative method used to divide a num-
ber of data points into k clusters, where k is chosen by the user. The algorithm
chooses k mean values randomly amongst the points and each point is then
appointed to the nearest mean. All points associated with a mean value j1, is
then called cluster j. When k clusters have been chosen, the current estimated
mean value is then repositioned so that the sum of squared distances from all
the points in a particular cluster is minimized, i.e. the centroid2 of that partic-
ular cluster is appointed the new estimated mean value. Now, all the points are
again appointed to the nearest of the new estimated mean values and a new set
of clusters are created. This goes on until no further changes of the estimated
means occur and can be described as the four steps of the K-means algorithm
as follows:

1. k mean values is chosen randomly amongst the points.

2. Each data point is appointed to the nearest mean value and k clusters are
created.

3. The centroids of these k clusters becomes the new estimated mean value.

4. Step 2 and 3 are repeated until no further changes occur.

1j = 1, · · · , k
2Center of gravity of a given cluster j.
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When no further changes occur, it means that convergence of the mean values
has been reached and the output will be the best possible grouping of the data
points with that particular value of k. An issue of importance to be considered
is of course the choice of k, which if chosen badly, will result in a bad definition
of the clusters. In the end it is up to the user to choose a k which can always
be re-evaluated if it has been found inaccurate.

3.4 Example

Through this example we will show how GPA, PCA and the K-means clustering
will be used in this thesis. The data used in this example is 19 images taken of
Aslak which will be sufficient in order to show the usage of these three methods.
We will show the impact of GPA on both the entire facial features and the
mouth features, but only perform PCA and K-means clustering on the mouth
features. We start with the raw data, i.e. the 19 digital images. The features of
the 19 faces and 19 mouths extracted from the digital images can be seen before
GPA in Fig. 3.3 and Fig. 3.4, respectively.

Figure 3.3: 19 faces from Aslak before GPA.
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Figure 3.4: 19 mouths from Aslak before GPA.

It is easy to see the facial characteristics in Fig. 3.3, but with different people
and more images it would undoubtedly be more difficult to see. In the following,
the effects of GPA is shown on the faces and the mouths in Fig. 3.5 and Fig.
3.6, respectively. See that the points are aligned and become more comparable.

Figure 3.5: 19 faces from Aslak after GPA.
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Figure 3.6: 19 mouths from Aslak after GPA, were the mean mouth shape is
marked by the red line.

Now we want to perform PCA of the aligned data. By the use of MATLABs
own function princomp, we can see the different principal components which
account for the total variance in the data set. The first three principal compo-
nents are shown in a 3D space in Fig. 3.7 and the two first principal components
are shown in a plane in Fig. 3.8, respectively. Please note that in order to visu-
alize this correctly, one would have to see it in as many dimensions as there are
principal components.

Figure 3.7: The first three principal components shown in a 3D space.
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Figure 3.8: The first two principal components shown in a plane.

Another way of displaying the importance of each principal component can be
seen in Fig. 3.9. This shows that the six first principal components accounts
for over 95% of the total variance in the data set.

Figure 3.9: The first six principal components and how much variance they
account for.

In Fig. 3.10, the PCA scores corresponding to a certain mouth is plotted with
their respective shapes. We see the mouth shapes in a PCA space and only with
the first two principal components as axis. This includes only 19 pictures of one
person but with varying facial expressions, which explains the outliers in Fig.
3.10.

In an example like this, it is possible to do some sort of visual clustering but with
a greater number of data points it becomes very difficult and highly unlikely to
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Figure 3.10: The PCA scores and corresponding mouth shapes shown in a PCA
plane.

do better than the computer. For example, one could say that 5 clusters should
suffice and, by visual clustering, be created like in Fig. 3.11.

Figure 3.11: A visual clustering with 5 clusters.

Now, we can use the computer to do a K-means clustering on the same scores
as before and the result can be seen in Fig. 3.12. Here we see that the computer
chooses the clusters differently.

With a greater number of points, one could say that the choice of k is very dif-
ficult to make. This is one problematic issue regarding the K-means clustering.
But, after a K-means clustering one can always look and decide whether or not
it looks realistic. If not, a new k can be chosen and the analysis can be resumed.
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Figure 3.12: A K-means clustering with 5 clusters. Here the centroids are
represented by

⊗
.

Or as we intend, one can do the K-means clustering with several numbers of k
and afterwards choose the most appropriate clustering.
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Chapter 4

Materials, Set-Up and
Method

Through this chapter we will provide the reader with information regarding the
whole set-up of the equipment used in the process of collecting the data. All
data has been collected at Glostrup Blodbank located at Glostrup Hospital.
The facial imaging system is made by Candfield and the model is VECTRA
M3. In addition to the data which we received from Glostrup Blodbank, we
took pictures of our selves and they can be seen in appendix B.

4.1 Hardware and Software

The hardware used in the VECTRA M3 system is actually rather simple equip-
ment. Six high resolution cameras are used to shoot three different pictures at
three different angles simultaneously, thus capturing the depth of an object and
making the visualization of that object in 3D possible. The six cameras are
positioned on a tripod in pairs of two, so that two cameras are shooting head on
in a slightly downwards direction and the other two pairs are shooting slightly
from either side in an upwards direction. A picture of the set-up can be seen
in Fig. 4.1, although it should be noted that the computer screen and table is
not a part of the originally set up from Candfield. The software used is the
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standard MIRROR software installed by Candfield from the beginning. The
user only has to take the pictures and the software completes the 3D rendering
by itself. If the reader is more interested in the specifics of these products see
[9].
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Figure 4.1: The Candfield VECTRA M3 set-up.
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4.2 Procedure

The patient is positioned on a stool and is faced directly towards the centre
camera pair in such a way that the patient is able to look him/her self in the
eyes in a mirror placed below the centre camera pair as can be seen in Fig. 4.1.
In this way the patient is at the right height in order for the 3D capturing to
work. The person controlling the imaging software is in charge of taken the
pictures and is able to see a preview of the three pictures at the same time prior
to taking them. On the preview screen, there are lines displayed which are used
to position the patient correctly. In the following, you can see the three images
taken by each of the three camera pairs in Fig. 4.2 - 4.4 and the finished 3D
reconstructed image in Fig. 4.5.

Figure 4.2: Picture taken from the front.
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Figure 4.3: Picture taken from the right side.
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Figure 4.4: Picture taken from the left side.
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Figure 4.5: The 3D reconstructed image made from the three pictures.
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4.3 Data Processing

After the data has been stored as 3D facial scans it is time to process them.
This was done in several steps as part of the analysis that we wanted to do. We
were given a rather large dataset consisting of 620 facial scans from Glostrup
Blodbank. All of these, including the images we obtained of our selves, were an-
notated by us according to the 73-landmark scheme. Information of the scheme
and the method regarding correct annotation is presented in appendix A. The
overall process can be described in a number of steps as follows:

1. Loading the obtained data into MATLAB.

2. Extracting the facial features as points by the 73-landmark scheme.

3. The points defining the mouth features are placed in a matrix and ready
for the GPA algorithm.

4. After the GPA, the mean mouth is subtracted from the GPA matrix.

5. When the mean is subtracted, the data is ready for a PCA.

6. The PCA returns the Eigenvalues and Eigenvectors of the dataset and the
scores are shown in a scatter plot, which presents the opportunity for an
statistical analysis. This means that we are able to see how much each
mouth vary from one another.

7. From this scatter plot a K-means clustering is performed with various
values of k.

The list of source-code files can be found in appendix D.
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Data

In the following, a dataset consisting of a total 622 facial scans is presented.
One facial scan each of Søren and Aslak is presented in Fig. 5.1 and Fig. 5.2,
respectively, and all scans can be found in appendix B. In addition to these 2
facial scans, a set of 620 facial scans from Glostrup Blodbank is being used in
this thesis but are not presented due to confidentiality reasons.

Figure 5.1: The third facial scan of Søren taken at Glostrup Hospital.
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Figure 5.2: The third facial scan of Aslak taken at Glostrup Hospital.

5.1 Raw Data

In this section the raw data is plotted as can be seen in Fig. 5.3 and Fig. 5.4,
where the raw landmarks are shown for the face and mouth, respectively. The
faces and the extracted mouths are clearly not aligned.

Figure 5.3: The 622 facial scans as raw data equal to a number of 622 × 73
points.
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Figure 5.4: The 622 extracted mouth shapes as raw data.

5.2 GPA

In this section the results from performing a GPA on the data from Fig. 5.3
and Fig. 5.4 is displayed. The effect is clearly visual as can be seen in Fig. 5.5
and Fig. 5.6, which show the faces and mouths, respectively.

Figure 5.5: The result of performing GPA on the data.
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Figure 5.6: The result of performing GPA on the extracted mouth data.

5.3 PCA

In this section the results from performing PCA of the data are shown. In Fig.
5.71, the mean mouth shape and the mean mouth shape ±σ along the first
principal component (PC1) are plotted.2

Figure 5.7: Mean = Red, Mean − σ1 · PC1 = Green and Mean + σ1 · PC1 =
Blue.

The PCA scores, which are the coordinates for the mouths in the PCA space,

1σ1 is the standard deviation along PC1.
2σ is the standard deviation.
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are shown in a two dimensional scatter plot including the corresponding mouth
shape in Fig. 5.8.

Figure 5.8: The 622 PCA scores including their corresponding mouth shapes in
a PCA plane.
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5.3.1 Principal Component Variance

The total variance explained by the principal components are shown in Fig. 5.9.
This helps in the process of determining the number of principal components,
which should be taken in to account, when the data analysis is performed. We
choose only to use the first three principal components and the total variance
explained by them is 59.43 %.

Figure 5.9: The variance explained by the Principal components in %.
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5.4 K-means Clustering

The K-means clustering method is used to divide the data in groups of 3, 6, 9,
12, 15 and 18. Only the scenarios where k = 3 and k = 6 are shown here. The
other scenarios can be found in appendix C. We have chosen these values because
we believe the data is then best described so it is humanly understandable and
this will be discussed further later on.
For every value of k we get k clusters each represented by k centroids. These
centroids are each translated into a mouth shape according to their position in
the PCA space. For k = 3, the K-means clustering and the centroids from the
clustering are shown in Fig. 5.10 and Fig. 5.11, respectively. The same is shown
for k = 6 in Fig. 5.12 and Fig. 5.13. In Fig. 5.14, three randomly picked mouth
shapes from cluster 1 are displayed. The randomly picked mouth shapes from
clusters, where k = 3 and k = 6, can be found in appendix E. Every point in
the scatter plot represents a mouth shape consisting of ten points, each with
three coordinates, which defines the circumference of the mouth. We only see
the mouth shapes in 2 dimensions(2D) but keep in mind that they are in fact
3D shapes.
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Figure 5.10: K-means clustering, with k = 3, performed on the 622 facial scans.
The centroids are marked by

⊗
.

Figure 5.11: The 3 centroids from Fig. 5.10.
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Figure 5.12: K-means clustering, with k = 6, performed on the 622 facial scans.
The centroids are marked by

⊗
.

Figure 5.13: The 6 centroids from Fig. 5.12.
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Figure 5.14: Three randomly picked mouth shapes from the cluster represented
by the unnatural centroid.
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5.4.1 Centroid Classification

In order to appoint a mouth shape to a certain cluster, one calculates the eu-
clidean distance to all centroids and the closest centroid is the one to which
a mouth is appointed. In Fig. 5.15 - 5.18, the centroid closest to the mouth
shapes are shown for Søren and Aslak. The two mouth shapes are extracted
from the scans shown in Fig. 5.1 and Fig. 5.2.

Figure 5.15: Sørens mouth shape and the centroid closest to him, when k = 3.

Figure 5.16: Aslaks mouth shape and the centroid closest to him, when k = 3.



40 Data

Figure 5.17: Sørens mouth shape and the centroid closest to him, when k = 6.

Figure 5.18: Aslaks mouth shape and the centroid closest to him, when k = 6.
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Discussion

In the following we will comment and discuss the results of our analyses and
mainly focus on the results from the K-means clustering analysis.

6.1 K-means Clustering

From the PCA we see that the total amount of variance explained by the first
three components is almost 60 %. Of course, this is just a consequence of our
choice of numbers of principal components. In addition to this, we only display
the clusters in two dimensions because it appears messy and non intuitive when
showing a 3D space on a 2D paper. In 2D it becomes much simpler and as
one can see the clusters are well defined as long as one keep in mind that the
scatter plot is a 3D point cloud projected into the plane. Due to this, there will
be times where points from different clusters are mixed together, but in reality
(3D) they are clearly in different cluster.

As mentioned earlier, all points in the scatter plot represent a specific 3D mouth
shape. This means that we do not see the third dimension (z) of the mouth
shapes. Therefore, we cannot get a clear visualization of the relative position
of the ten points to each other. Here, the ten points are the ones defining each
mouth shape.
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With this clustering method, as mentioned earlier, we plan to determine whether
we are able to interpret our data and describe it in such a way that it is humanly
understandable. It is a question of finding the optimum number of clusters, i.e.
the value of k, by which we get a clear differentiation of a population. By this
we mean, dividing the population into well defined groups where each group is
somehow different from all other groups in respect to the mouth features and are
represented by a common shape, i.e. the centroids. Keep in mind, the centroids
representing a cluster are synthetic created shapes and are defined by the point
in space to which they are assigned. They are placed at the point clouds center
of gravity which makes them the average shape from a given cluster.

Earlier we saw that with a smaller dataset and with relatively great variance, it
was possible to do some sort of visual clustering in 2D. How ever, in regards to
the used dataset, we do not find it possible nor logical to try and perform such
a clustering.

6.1.1 Choice of k

The values of k used in this thesis are, as mentioned, 3, 6, 9, 12, 15 and 18.
The reason for focusing merely on the scenarios when k = 3, 6 is that when
k = 9, 12, 15, 18, the centroids become too similar in shape. It then becomes
very difficult to assign a person to a single cluster without further and more
comprehensive data analysis. In addition, when k = 9, 12, 15, 18, it seemed that
the possibility of the centroids approaching an ”illegal”1 shape got higher.

6.2 Cluster Classification

When we look at the centroids from the K-means clustering where k = 3 in Fig.
5.11, we see that they differ most from each other by the curvature of the upper
lip. The second and third centroid have a rather flat Cupids bow, where the
first centroid have a very distinct Cupids bow. The second and third centroid
appears to be similar in shape even though they clearly are far from each other,
as can be seen on Fig. 5.10.

By looking at the K-means clustering where k = 6, we see that the centroids
from cluster 2, 3 and 5 are much alike. Centroid 1, 4 and 6 stands alone, where
centroid 1 looks to have the most illegal (unnatural) shape of them all. As can
be seen on Fig. 5.12, the clusters 2, 3, 4, 5 and 6 seem relatively dense with the

1A shape that does not seem humanly plausible.
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exception of a few outliers. Cluster 1 (red), how ever, is spread out widely which
makes it more likely that the centroid takes on an illegal shape. Here meaning,
in a widely spread and low density cluster, there are large variance between the
points. Thereby, when making a linear combination between extremity points,
the result will mostly end up more extreme than for a low variance and high
density cluster. Looking at the three randomly picked mouth shapes from this
distinct cluster in Fig. 5.14, we, of course, see three natural shapes but the
variance between them are bigger than with any of the other clusters. This can
be seen by comparing the mouth shapes in appendix E. It seems as though there
is some sort of relationship between the density of points in a cluster and the
possibility of the centroid taking on a humanly plausible shape. The greater
the variance in a cluster is, the greater the distance will get between each real
shape, i.e. the centroid will most likely be placed at an illegal shape. This is
a pattern which can be seen through all of the additional K-means clustering
scenarios, where k = 9, 12, 15, 18, and can be seen in appendix C.

6.2.1 Classification of our own Mouth Shapes

As can be seen in Fig. 5.15, 5.16, 5.17 and 5.18, we see that the shape of our
own mouths are in the same cluster at both values of k. Comparing the 2D
shapes, one sees that the mouth of Aslak has a more round circumference with
a rather flat Cupids bow and the mouth of Søren has a more edgy circumference
with a more marked Cupids bow. To determine whether this classification seems
plausible, we compare the shapes with each centroid of each cluster. Here, we see
that the choice of centroid with k = 3 is a plausible classification. Even though
it is difficult to distinguish between centroid 2 and 3, we find it reasonable
that our mouth shapes lies within cluster 2. By looking at the three randomly
picked mouth shapes from each cluster in appendix E, Fig. E.1, we see the same
characteristics as we do in Fig. 5.15 and Fig. 5.16. Doing the same for k = 6, we
see that there seems to be other centroids which appears to be more appropriate
choices based on the 2D shape. Even though, by looking at the randomly picked
mouth shapes in appendix E, Fig. E.2, we still find it a plausible classification
due to the same reasons as before.

6.3 Reflection

In general, the majority of the mouth shapes within the clusters will share some
of the same characteristics as the representing centroids. In each case there will
be outliers which will not share the same characteristics as the centroids but in



44 Discussion

general the mouth shapes will resemble the centroid in one or the other way.

The main reason for some of the mouths and centroids having the same shape,
is that each point in the mouth has three coordinates. On 2D we do not see
the variation in the third dimension. Because of this, we cannot differentiate
between the mouth shapes degree of ”bulkiness”2. Some shapes look alike in 2D
but has different degrees of bulkiness, which makes it difficult to describe the
clusters and differentiate them from each other. We do not get a visualization of
the depth of the shapes as explained earlier in this chapter. This is a factor which
is necessary to take into account and makes this clustering a bit uncertain in its
definition of groups. If you removed the the third dimension from the beginning
of the analysis, you would be free of this problem but of course you would lose
a lot of the 3D information. If ones interest only lies within the 2D shape of
the mouth this would be the way to do it, but this has not been the approach
in this thesis.

Another reason for some of the shape similarities between the different groups,
can be found at the periphery of the clusters. Here, shapes close to the dividing
line between clusters will obviously resemble some of the shapes right across the
line in a different cluster. In addition, if these periphery shapes are relatively far
from their respective centroids, there will properly be an even greater similarity
between the borderline shapes than between the shapes and their respective
centroids. This is of course an inevitable consequence of any form of clustering
within a relatively compact dataset.

Judging from Fig. 5.10, we believe that the performed clustering is fairly rea-
sonable, because almost all points are within well defined lines of each cluster.
It is almost like having a big cake and dividing it in 3 even pieces, where each
piece is a 3D point cloud of mouth shapes. Even though we do not visualize the
3D shapes, we still get a division of the population where each group is more
or less different from each other. With 6 clusters, as seen in in Fig. 5.12, we
do not see the same kind of structure which makes it difficult to describe the
differences. Further more, the outliers have less bad influence on the clustering
when k = 3, because the relationship between ”normal” points and outliers is
greater than with k = 6.

Considering all of this, the variance explained by the first three principal com-
ponents, could possibly be increased through a fully automated annotation al-
gorithm. If so, this could result in a more precise and true clustering and the
elimination of the humanly bias aspect of annotation.

To fully succeed in dividing the population into well defined groups and to make

2The volume and density of the lips
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the result humanly understandable, one would have to consider the aspect of
displaying the mouth shapes as a 3D surface. By this, one would properly have
greater success in both explaining and visualizing the differences between the
clusters.

6.4 Future Work and Possible Applications

The method described in this thesis needs further work in order for it to be a
robust clustering approach. It would be interesting to examine the use of other
statistical tools and/or clustering methods. Instead of PCA, independent com-
ponent analysis (ICA) could be a candidate in helping to explain the dataset.
Other clustering methods could involve non centroid based clustering methods.
To increase the level of details of the mouth features, one could try and incor-
porate the points which defines whether the lips are closed or open. By this,
one would be able to get more detailed information from each mouth regarding
the thickness of the lips. This could be of interest when looking at syndromes
where the lips suffers from great dysmorphologies.

We believe that this method of clustering could be helpful within some phases of
facial recognition. Imagine a data base of the entire Caucasian race as 3D facial
scans, divided in k clusters, and it is wanted to match a random person with one
from that database. One extracts the wanted facial features and calculates the
distances to each centroid. The closest centroid then indicates which cluster to
examine first and if this fails, the second closest centroid would indicate which
cluster to examine next, and so on. By this, one can eliminate a great number
of people before the actual facial recognition process.

In [5], they use average faces of people with specific syndromes that effects the
facial morphology to train physicians in noticing these dysmorphologies. From
these average faces, one could assign the 3D shape of the mouth as a form of
centroid. This would, of course, require more work on our method but if the
entire mouth surface within the landmarks where detailed extracted with clear
lip boundaries, we see a possible usage in clustering a great number of people
at the same time. By a potential clustering of large populations, one could
calculate the distance from each mouth shape to the various centroids, thereby
determining the risk of having one of these syndromes. This would, how ever,
only apply to the syndromes where the morphology of the mouth are effected
but the procedure could apply to all areas of the face.

Otherwise, this clustering method could be used in various statistical analyses
of the population and could be altered to extract other features within the
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73-landmark scheme.



Chapter 7

Conclusion

As scientists are investigating the correlation between mental illnesses and the
human genome, the possibility of diagnosing patients using digital images in-
creases. It is already known that some syndromes causes alterations in the facial
morphology so the possibility of discovering new relations are very plausible.

The objectives of this thesis were to: Extract facial features from 3D facial
scans, concentrating on the features of the mouth; perform statistical analyses
of the dataset, such as GPA and PCA; perform a clustering analysis, thereby
dividing the population into groups and describing the results so that it was
humanly understandable.

Using the 73-landmark scheme, which is described in appendix A, we manu-
ally annotated the 3D facial scans provided from Glostrup Blodbank, thereby
extracting the facial features. In Chapter 5, this thesis presents an overview
of the results from the statistical analyses and the K-means clustering. The
success of dividing the population into groups of different mouth features, i.e.
the clustering, is described and discussed in Chapter 6.

Even though the clustering of the data could have been better visualized by
the use of 3D shapes, we still find the last objective satisfying. If we were to
start from the beginning with the knowledge we have now, we would change the
method for presenting the results. Here, we would try and present the mouth
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shapes in 3D, as discussed, which would make the visual differentiation of the
clusters easier and more understandable. In addition, we would look into the
possibility of getting more of the variance explained, for example by working
with a higher number of principal components.

The method presented in this thesis could be used to cluster other facial features,
because it could easily be adapted to extract other facial features within the 73-
landmark scheme. In addition, this method could be used in other applications,
as discussed in Chapter 6.

In this thesis, a method which could be used as an assisting clustering tool in
the process of digital detection of facial dysmorphologies1 has been presented.
A small contribution towards the hope of a future digital diagnostic tool for
mental illnesses has been made.

1As a tool for assisting the work in [5]
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Additional Note

During the aftermath of this thesis, we discovered that we have misled the
reader about the number of principal components which were used in this thesis.
Instead of three principal components, as we have written during this report,
we actually use all thirty principal components. This means that we look at
the results with 100 % variance explained, instead of the 60 % we claim we do.
How ever, this does not change our conclusion other than we would not like to
get more variance explained.
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XT Transposed matrix of X

X̂ New matrix made by(X− x)

x Mean of X

σ Standard Deviation from PCA

σ2 Variance from PCA

d Number of dimensions

k Number of mean values in K-means
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n Number of samples

x Scalar

Acronyms

2D Two Dimensional/Dimensions

3D Three Dimensional/Dimensions

Fig. Figure

GPA General Procrustes Analysis

ICA Independent Component Analysis

OPA Ordinary Procrustes Analysis

PA Procrustes Analysis

PC Principal Component
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Appendix A

Annotation Guide to a
73-Landmark Scheme

A.1 Annotation Scheme

In this thesis we have used the 73-landmark scheme for annotation in order to
add further data to the IMM Frontal Face Database [2]. In [2], a 73-landmark
scheme is presented and described. However, we will in the following guide try
to give a more detailed description regarding the placement of these landmarks.

Facial Features Annotation Landmarks
Right eyebrow 1 – 8
Left eyebrow 9 – 16
Right eye 17 – 24
Left eye 25 – 32
Right eye pupil 33
Left eye pupil 34
Nose 35 – 46
Mouth 47 – 62
Jaw 63 – 73

Table A.1: The facial features are defined by the 73 annotation landmarks[2].
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A.2 Annotation

It is important to understand the concept of annotation correctly in order to
place the landmarks at the correct anatomical position. Therefore, it is nec-
essary to be advised by someone to whom annotation is familiar. In that way
the landmarks can be placed with minimum variance compared to the correct
anatomical position. We present in the following a guide which covers all aspects
and should make one able to annotate correctly.

A.2.1 Guidelines

Some areas, regarding the face, are difficult to annotate the same time over and
over again. Some of the areas we have had trouble with are:

1. The Eyebrows

2. The Eyes (Pupils and Iris)

3. The Mouth

A.2.1.1 The Eyebrows

Regarding annotation of the eyebrows, it is a good idea to start by marking the
two ends before surrounding the rest of the hairline. Point 5 and 13 should be
placed in the ends but a lot of people have many thin hairs between the two
brows. If so, try and make a small circle so the outline of the circle covers the
thin hair and then place the point in the centre of that circle. At point 1 and
9, at the other end of the brow, it is easier to locate the end points. In general,
try and place the points which surround the brows in such an order that point
2 and 8, 3 and 7, 4 and 6, 14 and 12, 15 and 11 and 16 and 10 are placed on
the same vertical line. Try and place the points equidistant between each other
as can be seen in Fig. A.1 and Fig. A.2.
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Figure A.1: Eyebrows and eyes from Aslak where the numbers indicate where
the individual points must be placed.

Figure A.2: Eyebrows and eyes from Søren displayed without the indicating
numbers.
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A.2.1.2 The Eyes (Pupils and Iris)

Regarding the eyes, it is usually easier to locate the right places because of
the contrast between the white eye and the skin colour. Start by adjusting the
circles around the iris’ and the pupils. This makes the remaining points easier
to place. Point 21 and 29 should be placed at the medial canthus of the patients
right and left eye, respectively. Point 17 and 25 are also easy to place at the
lateral canthus. When placing the rest of the points on the eyelid margin, try
again and place them in the same order as with the eyebrows, i.e. place point
18 and 24, 19 and 23, 20 and 22, 30 and 28, 31 and 27 and 32 and 26 on the
same vertical line. Make sure that all points lies on the eyelid margin and try
placing them as shown on Fig. A.1 and Fig. A.2 so point 18 and 24, 20 and 22,
30 and 28 and 32 and 26 is aligned with the edge of the iris. Place point 33 and
34 in each of their pupil centre and try to align them with point 19 and 23 and
31 and 27, respectively. In Fig. A.3 and Fig. A.4 you can see close ups of the
pupils and iris annotation.

Figure A.3: Eyes from Aslak with correct annotation.
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Figure A.4: Eyes from Søren with correct annotation.
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A.2.1.3 The Mouth

The mouth is actually quite easy to annotate but in some situations it can be
difficult to distinguish between the colour of the lip and the colour of the skin.
Point 47 and 53 are easy to locate and should be placed in the corners of the
mouth. Point 49 to 51 marks the Cupids bow and are also fairly easy to locate.
Point 48 and 52 should be placed equidistant between point 47 and 49 and 53
and 51, respectively. Point 54 to 56 should also be placed equidistant between
each other. Point 57 to 62 describes whether the mouth is closed or open. If
open, place point 58 and 61 in the middle of the lower and upper edge of the
lip, respectively. Point 57, 59, 60 and 62 should be placed as can be seen on
Fig. A.5 and Fig. A.6.

Figure A.5: Mouth from Aslak with cor-
rect annotation displayed with numbers.

Figure A.6: Mouth from Søren with cor-
rect annotation displayed without num-
bers.
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A.2.2 Annotation of the Remaining Landmarks

A.2.2.1 The Nose

The nose is quite easy to annotate but it is difficult to describe the anatomical
placements. Therefore, pay extra attention to Fig. A.7 and Fig. A.8 in this
section. Point 35 and 45 should be placed on either side of the nose on the same
horizontal line as the medial canthus and where the nose bone connects to the
cheek bone. Point 36 and 44 should be placed as can be seen in Fig. A.7 right
at the notch. Point 37 and 43 should be placed at the broadest point along the
nose flip. Point 38 and 42 should also be placed at the broadest point where the
nostrils connects to the face as it can be seen in Fig. A.7 and Fig. A.8. Point
39 and 41 should be placed in the middle of the nostrils and at the edge. Point
40 marks the spot where the nasal columella connects to the face and point 46
marks the tip of the nose.

Figure A.7: Nose from Aslak with cor-
rect annotation displayed with numbers.

Figure A.8: Nose from Søren with cor-
rect annotation displayed without num-
bers.
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A.2.2.2 The Jawline

Regarding the jawline, start by placing the two outer points 63 and 73 at each
of their ear flip. Then, place point 68 at the middle of the chin. In this way it
is very easy to place the rest of the points along the jawline, but try again to
place them equidistant between each other as can be seen in Fig. A.9 and Fig.
A.10.

Figure A.9: Jawline from Aslak with correct annotation displayed with numbers.

Figure A.10: Jawline from Søren with correct annotation displayed without
numbers.
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A.2.2.3 Concluding Remarks

In general, make sure that all points are placed correctly, i.e. make sure that
point 2 is not placed at the location of point 8 and vice versa. In the beginning
it is a good idea to confirm with the figures until you feel confident enough to
annotate without them. It is very important that the annotation is being done
in the same way regardless of whom performs the annotation. In Fig. A.11 and
Fig. A.12 you can see the manually annotation and automatically annotation
of Aslak, respectively. In Fig. A.13 and Fig. A.14 you can see the manually
annotation and automatically annotation of Søren, respectively.

Figure A.11: Aslak with correct manually annotation.
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Figure A.12: Aslak with automatic annotation.

Figure A.13: Søren with correct manually annotation.
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Figure A.14: Søren with automatic annotation.
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Appendix B

All Scans of Søren and Aslak

This appendix shows all of the scans that were made of Søren and Aslak at
Glostrup Hospital.
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(a) Søren Frontal 1 (b) Søren Frontal 2 (c) Søren Frontal 3

(d) Søren Frontal 4 (e) Søren Frontal 5 (f) Søren Frontal 6

(g) Søren Frontal 7 (h) Søren Frontal 8 (i) Søren Frontal 9

Figure B.1: The 1 - 9 facial scans of Søren taken at Glostrup Hospital.
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(a) Søren Frontal 10 (b) Søren Frontal 12 (c) Søren Frontal 13

(d) Søren Frontal 14 (e) Søren Frontal 15 (f) Søren Frontal 16

(g) Søren Frontal 17 (h) Søren Frontal 18 (i) Søren Frontal 19

Figure B.2: The 10 - 19 facial scans of Søren taken at Glostrup Hospital.
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(a) Søren Frontal 20 (b) Søren Frontal 21 (c) Søren Frontal 22

(d) Søren Frontal 23 (e) Søren Frontal 24 (f) Søren Frontal 25

(g) Søren Frontal 26

Figure B.3: The 20 - 26 facial scans of Søren taken at Glostrup Hospital.
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(a) Aslak Frontal 1 (b) Aslak Frontal 2 (c) Aslak Frontal 3

(d) Aslak Frontal 4 (e) Aslak Frontal 5 (f) Aslak Frontal 6

(g) Aslak Frontal 7 (h) Aslak Frontal 8 (i) Aslak Frontal 9

Figure B.4: The 1 - 9 facial scans of Aslak taken at Glostrup Hospital.
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(a) Aslak Frontal 10 (b) Aslak Frontal 12 (c) Aslak Frontal 13

(d) Aslak Frontal 14 (e) Aslak Frontal 15 (f) Aslak Frontal 16

(g) Aslak Frontal 17 (h) Aslak Frontal 18 (i) Aslak Frontal 19

Figure B.5: The 10 - 19 facial scans of Aslak taken at Glostrup Hospital.
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(a) Aslak Frontal 20 (b) Aslak Frontal 21 (c) Aslak Frontal 22

(d) Aslak Frontal 23 (e) Aslak Frontal 24

Figure B.6: The 20 - 24 facial scans of Aslak taken at Glostrup Hospital.
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Appendix C

K-means Clustering Plots

In this appendix, the remaining results from the K-means clustering are dis-
played. The figures show the results for the k-values 9,12,15 and 18.
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C.1 K-means for k = 9

Figure C.1: K-means performed on the 622 facial scans, where k = 9.
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Figure C.2: Centroids from the K-means clustering, where k = 9
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C.2 K-means for k = 12

Figure C.3: K-means performed on the 622 facial scans, where k = 12.
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Figure C.4: Centroids from the K-means clustering, where k = 12
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C.3 K-means for k = 15

Figure C.5: K-means performed on the 622 facial scans, where k = 15.
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Figure C.6: Centroids from the K-means clustering, where k = 15
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C.4 K-means for k = 18

Figure C.7: K-means performed on the 622 facial scans, where k = 18.
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Figure C.8: Centroids 1 - 9 from the K-means clustering, where k = 18
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Figure C.9: Centroids 10 - 18 from the K-means clustering, where k = 18
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List of Source-Code Files

The listed files are use for the data analysis in this thesis. The scripts are
placed on a usb-stick and contains the data from Søren and Aslak. The files
from Glostrup Bloodbank are not on the usb-stick due to security reasons.

D.1 Scripts Created During This Thesis

1. Main.m

(a) This is the main script in which all the other scripts are run from.

(b) There are some options to choose in the script.

i. path1 = ’MATLAB:\A’; - This is the path for the scans of Aslak.

ii. path1 = ’MATLAB:\S’; - This is the path for the scans of Søren.

2. Centroid.m

(a) This script is used for the K-means clustering of our data. The script
finds the centroids and displays the plotted data from the K-means
clustering.

3. CentroidsAandS.m
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(a) This script is used when we only look at the scans of either Søren or
Aslak. It then performs the K-means clustering like the script above
but does not find the cluster containing Søren nor Aslak because the
clusters are made only with the data from Søren or Aslak.

4. ClusterMouths.m

(a) In this script you will have to choose a number between 1 and 6 to
choose the centroid which has an unrealistic shape. Then you will
have to name the titles for the subplot, and it should be ’Cluster−−”Number
from before”−−’, then the title will be, ex: Number chosen 6, ’Cluster−−6−−’
then the title becomes Cluster−6−344.

5. CentroidHelpAandS.m

(a) This script finds the cluster in which Søren and Aslak are assigned
to, when all the data is loaded.

D.2 Pre-Existing Scripts

The scripts listed in this section, are not made by Søren and Aslak but were
pre-existing when we started the project. Some of the scripts have been found
on the internet, others have been provided by Jens Fagertun.

1. sampleScript.m

(a) This script uses some of the help functions. This was given to us by
Jens Fagertun and used for annotation of the data.

2. test.m

(a) This script was also given to us by Jens Fagertun, and used for cre-
ating the data files used after the annotation.

3. Help functions - These functions are used for the sampleScript.m during
the annotation and the test.m for creating the final data we analyse. We
use GPA and OPA1 during our analysis, they are Procrustes functions.

(a) Help function sampleScript.m

i. AsfAnnoTool.m

ii. readasf.m

1Ordinary Procrustes analysis.
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iii. writeasf.m

iv. get3DAnnoFrom2DTextureAnno.m

v. intersectLines.m

vi. medianLine.m

vii. createCircle.m

(b) Help functions test.m

i. cutMeshfromPath.m

ii. cutPathIntoMesh.m

(c) Help functions Main.m

i. GPA.m

ii. OPA.m

D.3 Toolboxes

1. toolbox−fast−marching

2. toolbox−graph
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Appendix E

Randomly Picked Mouth
Shapes

The following appendix contains three randomly picked mouth shapes from the
clusters found by the K-means clustering, when the value of k = 3, 6.
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E.1 Randomly Picked Mouth Shapes From Clus-
ters for k = 3

(a) Three randomly picked mouth shapes
from cluster 1 for k = 3

(b) Three randomly picked mouth shapes
from cluster 2 for k = 3

(c) Three randomly picked mouth shapes
from cluster 3 for k = 3

Figure E.1: Randomly picked mouth shapes from the three clusters for k = 3
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E.2 Randomly Picked Mouth Shapes From Clus-
ters for k = 6

(a) Three randomly picked mouth
shapes from cluster 1 for k = 6

(b) Three randomly picked
mouth shapes from cluster 2 for
k = 6

(c) Three randomly picked mouth
shapes from cluster 3 for k = 6

(d) Three randomly picked
mouth shapes from cluster 4 for
k = 6

(e) Three randomly picked mouth
shapes from cluster 5 for k = 6

(f) Three randomly picked mouth
shapes from cluster 6 for k = 6

Figure E.2: Randomly picked mouth shapes from the six clusters for k = 6
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