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ABSTRACT 
 

 

In the literature, traditional univariate and multivariate control charts have been designed to 

monitor uncorrelated variables. However, in real life the data collected in time often show 

serial dependency. Since this serial dependency affects the false alarm rate and the shift 

detection capability, traditional control charts are effected. In this research we use the X-chart 

for univariate case and Hotelling T-square control chart for the multivariate case. The first 

objective is to measure the shift detection performance of proposed methods in the 

combination of different autocorrelation levels and various magnitudes of shifts in the 

process mean. For the univariate case proposed methods are to use X-chart based on raw data 

and based on residuals. For the multivariate case, using the Hotelling T-square control chart 

based on raw data, residuals and reconstructed data with lagged variables are the proposed 

methods. Raw data is generated based on the univariate first order autoregressive, AR(1), and 

bivariate first order vector autoregressive, VAR(1), structure. The residuals are considered as 

an output of perfectly modelled raw data. Reconstructed data is considered as expanded data 

with two lagged variables. The second objective is to take autocorrelation into account by 

adjusting the control limits to in control ARL using the Hotelling T-square control chart 

based on proposed methods for the multivariate case in the combination of different 

autocorrelation levels and various magnitudes of shifts in the process mean. Finally, the shift 

detection performances of the proposed methods are compared by using average run length as 

performance measure. 
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Chapter 1 
 

 

Introduction 
 

Statistical process control (SPC) is a powerful method to increase the product quality and 

lower the production costs by controlling, monitoring and improving the process.  It was 

originally introduced by Walter Shewhart in the early 1930’s. Shewhart called a process that 

operates under the common causes variation as being in statistical control while the process 

with assignable causes indicates out of control. Common causes are usual or predictable 

whereas assignable causes are unusual or unpredictable variations in the system. The process 

with common causes could be described by a probability distribution. In SPC, it is often 

assumed that the quality characteristic is normally distributed. The parameters of this normal 

distribution are used to determine the control limits. For normally distributed statistics, 

control limits often cover the 99.73% of all statistics, which indicates control limits are at  3 

standard deviation distance from the mean. In control charts, if the plotted point falls within 

these control limits, the process is considered as in control process, but if plotted point falls 

either above or below the control limits, the control chart signals or an alarm is declared.  

In many statistical control applications the process would have more than one quality 

characteristics. Control charts for single variables, i.e. univariate control charts, can only 

monitor one quality characteristic, which means that the engineer should look at each quality 

characteristic separately. But by doing this, any correlation among the quality characteristics 

would be ignored. For that, traditional multivariate statistical process control (MSPS) charts 

such as Hotelling T-square (multivariate Shewhart), multivariate exponentially weighted 

moving average (MEWMA), multivariate cumulative sum(MCUSUM) control charts are 

used. Applications with multivariate statistical techniques contain the correlation information 

among the quality characteristics. So, considering the multivariate methods in the case of 

more than one quality characteristics would be better in comparison to univariate methods. 

The general assumption for multivariate control procedure is that the observations are 

uncorrelated or statistically independent over time. In real life, however, the data collected in 

time often show serial dependency. Many manufacturing and chemical processes yield 

multivariate data that have correlation between the successive observations and also cross 

correlation between the quality characteristics. It is expected that the autocorrelation affects 

the false alarm rate and the shift detection power. Therefore, when the assumption of 

independence is often violated, the control charts developed under the assumption of 

independence would be effected by this violation. In this study we investigate the impact of 

autocorrelation on the performance of univariate and multivariate control charts. We use X-
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chart for the univariate case and Hotelling T-square control chart for the multivariate case, 

which is one of the widely used techniques in multivariate statistical process control. 

In the literature there are two general approaches to deal with autocorrelation in the process. 

For the first method, when the univariate control charts are being used for autocorrelated 

data, it is suggested to fit univariate time series models such as ARMA to the data and 

monitor the residuals.  For multivariate autocorrelated data, multivariate time series models 

such as VARMA are used. For the second method, traditional control charts with modified 

control limits are used to monitor the autocorrelated data to account for autocorrelation. 

However a problem with multivariate time series model is the number of variables. When the 

number of variables is large, the model estimation would be difficult. The number of 

parameters would be estimated increases with the large number of variables. Therefore, the 

estimation of parameters with large number of variables would be almost impossible even 

with modern day’s computer. Alternatively, we also propose to fit univariate model to 

individual observations of multivariate data and consider the residuals by using Hotelling T-

square control charts. But this would ignore the cross correlation among the variables. 

Another method we consider for multivariate data is to expand the data by adding lagged 

variables, and use Hotelling T-square control charts based on the expanded data. Mason and 

Young (2002) suggest to add lagged variables to dataset and to monitor the process with 

Hotelling T-square control chart. The problem with that method in the case of large number 

of variables is how many lagged variables should be added to data matrix.  

Although the residuals from a time series model are uncorrelated, they may not be good 

enough to detect the process mean shift. Harris and Ross (1990), Longnecker and Ryan 

(1990)  and Zhang (1997) recognized that the control charts based on residuals from a first- 

order autoregressive, AR (1), process may have poor detection power to detect the shift in the 

process mean. Here we also examine these suggestions for univariate case by using X-chart 

and extend it to multivariate cases by using Hotelling T-square control charts. 

In this study, for the univariate case, we use univariate control charts based on raw data and 

the residuals of a univariate time series model, and for the multivariate case, we use 

multivariate control charts based on raw data, based on the residuals of a univariate and a 

multivariate time series model and expanded data matrix with lagged variables. For 

simplicity, proposed methods are based on Hotelling T-square control charts on raw data 

which has bivariate VAR (1) structure, residuals from bivariate VAR (1) and AR (1) model, 

and expanded data matrix with two lagged variables. The performance comparison of these 

proposed methods are made based on the combination of different autocorrelation levels and 

the magnitudes of the shifts in the process mean by calculating the average run lengths. Run 

length is the time that a process- monitoring scheme first signals. Average run length (ARL) 

is the average of the run lengths, or the average run length (ARL) is the average number of 

points that must be plotted before a point indicates an out of control condition (Montgomery, 

2009, p. 191), and in the literature it is used to evaluate the performance of the control charts . 

The fact that run length for good process has exponential distribution. In this study we 
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calculate the average run length either based on the exponential distribution of run lengths for 

good process or by simply taking the average of the run lengths.  

In chapter 2, literature review is examined on the existing statistical control applications 

based on autocorrelated data, in chapter 3 we try to compare the shift detection capability of 

X-chart based on raw data which have first order autoregressive structure and the residuals 

from AR (1) model in the combination of different autocorrelation levels and the magnitudes 

of shifts in the process mean. In chapter 4, the performance of Hotelling T-square control 

chart based on the data which have  first order bivariate vector autoregressive structure and 

the residuals of bivariate VAR(1) model are considered. Shift detection capabilities of these 

two methods are compared using different autocorrelation levels and the magnitudes of shifts 

in the process mean. In chapter 5, the performance of Hotelling T-square control chart based 

on the multivariate autocorrelated data reconstructed with lagged variables is considered. In 

chapter 6, the shift detection performance of the proposed methods in chapters 4 and 5 with 

one another method which is to fit AR model to the individuals in the multivariate 

autocorrelated data matrix is compared by adjusting the control limits in the combination of 

various magnitudes of shifts with the autocorrelation matrix corresponds to low, moderate 

and high autocorrelation levels. Finally, in chapter 7, conclusions and future studies are 

discussed for the proposed methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 2 
 

 

Literature Review 
 

The main assumption of many traditional univariate process control techniques is that the 

observations are independent over time. If the variables in the process exhibit correlation over 

time, this assumption may be violated since the autocorrelation may effect the false alarm 

rate and the shift detection power. Hence, traditional control charts would be effected by this 

violation. This problem has been studied by many authors, Vasilopoulos and Stamboulis 

(1978), Alwan and Roberts (1988), Harris and Ross (1991), Montgomery and Mastrangelo 

(1991), Maragah and Woodall(1992), Wardell, Moskowitz and Plante (1994), Superville and 

Adams (1994), Lu and Reynolds (1995), Schmid (1995,1997a,1997b). 

In the literature, in order to deal with this problem two general monitoring approaches are 

recommended. First method is to fit time series model to the data, and then apply traditional 

control charts such as Shewhart, EWMA (exponentially-weighted moving average) and 

CUSUM (cumulative sum control) charts to the residuals from the time series model. Second 

method is to use traditional control charts to monitor autocorrelated observations with 

modified control limits to account for autocorrelation. 

Alwan and Roberts (1988) show that if the correct time series model is known, using 

residuals from the time series model (ARIMA) may be appropriate to construct the control 

charts since the residuals of time series model of autocorrelated process are independent and 

identically distributed with mean 0 and variance   . Harris and Ross (1991) fit a time series 

model to the univariate observations, and then investigate the autocorrelation effect on the 

performance of CUSUM and EWMA chart by using residuals. Montgomery and Mastrangelo 

(1991) show that the EWMA (exponentially weighted moving average) control charts may be 

useful for autocorrelated data by applying control charts to the residuals of time series model. 

Wardell, Moskowitz and Plante (1994) show the ability of EWMA charts to detect the shift 

more quickly than individual Shewhart charts when the correlation is based on an ARMA 

(1,1) model. They also suggest that the residual charts are not sensitive to small process 

shifts. Lu and Reynolds (1995) study the EWMA control charts to monitor the mean of 

autocorrelated process. They suggest that for the low and moderate level of correlation, a 

Shewhart control chart of observations will be better at detecting a shift in the process mean 

than a Shewhart chart of residuals. For low and moderate shifts EWMA chart will be better 

than Shewhart chart. They also suggest that when there is high autocorrelation in the process, 

constructing control charts based on estimated parameters should not be used, instead, 

applying time series model would be appropriate for the construction of control limits. 

Schmid (1995, 1997a, 1997b) shows that if there is large shift in the process, using Shewhart 
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chart is appropriate while EWMA and CUSUM charts are sensitive to small and moderate 

shifts. Maragah and Woodall (1992) adjust the control limits for autocorrelated univariate 

data by taking autocorrelation into account. But the tables are needed to choose the critical 

value when the adjustment is necessary. For each structure, the control limits would be 

different. For the first order autoregressive process such tables are given by Schmid (1995, 

1997a, 1997b). But the residual charts need just one joint control limits which are based on 

independent and identically distributed case. Therefore, residual charts have an advantage on 

the construction of control limits than adjusting the control limits. Statistical process control 

applications generally focus on the residuals of univariate autocorrelated chart. However, the 

autocorrelation problem in univariate case also extends to multivariate cases. Therefore these 

studies are extended to multivariate cases by various authors.  The widely used control charts 

to detect the mean shift in multivariate processes are Hotelling T-square control charts, 

MEWMA (multivariate exponentially-weighted moving average) charts and MCUSUM 

(multivariate cumulative sum control) charts.  

Pan and Jarret (2004) propose using vector autoregressive model (VAR) to monitor 

multivariate process in the presence of serial correlation by using the residuals of the model. 

They examine the effects of shifts in the process parameters on the VAR residual chart. 

Kalgonda and Kulkarni (2004) propose a control chart called Z-chart for the first order vector 

autoregressive (VAR (1)) process. They also suggest using Z-chart to identify the source of 

the shift. Pan and Jarret (2007) extend Alwan and Roberts’s approach to multivariate cases, 

using the residuals from the vector autoregressive model on the Hotelling T-square control 

charts to monitor the multivariate process in the presence of serial correlation. They examine 

the effects of shifts in process parameters on the residuals of VAR model. They mention that 

using residuals from a VAR model on Hotelling T-square control chart is effective when the 

small changes occurred in the mean, covariance and autocorrelation coefficient. They use 

individual univariate Shewhart charts to further identify the variables which is responsible for 

the shift. H. Brian Hwang and Yu Wang (2010) propose a neural network identifier (NNI) for 

multivariate autocorrelated process and benchmark the proposed scheme with Hotelling T-

square control chart, MEWMA chart and Z chart. Snoussi (2011) study an approach which is 

a combination of multivariate residual charts for autocorrelated data and the multivariate 

transformation technique for independent and identically process observations of short 

length. 

However, some authors such as Harris and Ross (1990), Longnecker and Ryan (1990), Zhang 

(1997) suggest that for the univariate case, using X-chart based on residuals do not have the 

same properties as the X-charts for an independent process and show that when the process 

has mean shift, the detection capability of X-chart based on residuals and X-chart for an 

independent process are not equal. In this dissertation, we investigate whether the study made 

for univariate autocorrelated data is valid for the multivariate autocorrelated data. In addition, 

in the relevant literature, although the performances of Hotelling T-square control charts 

based on residuals from a VAR model have been used for multivariate autocorrelated 

process, there exists no study that shows the comparison with performances of Hotelling T-
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square control charts based on raw data which have VAR structure. Therefore, in this study 

these charts (Hotelling T-square charts based on residuals and raw data) are evaluated based 

on the first order vector autoregressive structure by using average run length as the 

performance measure.                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 3 
 

 

Monitoring Univariate Time Series 
 

There are generally two phases in statistical process control (SPC) applications. In Phase I, a 

historical set of data is considered to determine the in control process performance and 

understand the variation in the process over time. In Phase II, actual process monitoring is 

performed based on the control chart constructed in Phase I. 

The general assumption is that the data are normally and independently distributed with mean 

  and standard deviation   when the process is in control. If this assumption is violated, the 

control charts are effected by the violation of independence, and may not work well. In this 

dissertation we deal with two types of data which are univariate and multivariate data. For the 

univariate case, we use X-chart, and for the multivariate case, Hotelling T-square control 

chart is considered. In univariate X-chart, there are two important parameters which are mean 

value and the standard deviation. If we assume that the univariate process is normally 

distributed with mean   and standard deviation  , where   and   are known, then the 

following control limits with a center line can be used on X-chart for individual observations, 

         ⁄   

                                                                               

         ⁄   

It is usual to replace    ⁄  by 3, so that three sigma limits are employed, which means for 

normally distributed data, in control average run length of 370 with the 0.0027 false alarm 

rate. If an observation falls outside of these limits, then a signal is declared.  

The time which a control chart  first signals is called run length. The probability distribution 

of the run lengths is called run length distribution, and the average value of this distribution is 

called average run length or in other words, average run length is defined as the measurement 

of average number of points will be plotted on a control chart before an out of control 

situation is occurred, and it is a widely used indicator to have an idea about the effectiveness 

of a control chart. ARL can be expressed as, 

    
 

                                 
 

or, for in control ARL 
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where   indicates the probability of false alarm. If there is no change in the process or when 

the process is in control, the probability of false alarm indicates the probability of a sample 

point plotted outside the control limits, and it is sometimes called probability of a type I error. 

For univariate control chart, if α value indicates the probability of an observation plotted 

outside the control limits, it is expected 1/ α points will be plotted before a false alarm is 

indicated. 

Now assume that the parameters,   and  , are unknown, and when the process is in control 

they should be estimated from the preliminary or Phase I data. By estimating these 

parameters, control limits can be calculated, and considered control limits are used to monitor 

the process in Phase II. Estimation of mean value and variance is considered respectively as 

in the following, estimated mean value or sample mean is, 

 ̅  
 

 
∑   

 
                                                          (3.2) 

Estimated variance or sample variance is, 

   
 

   
∑      ̅   

                                                 (3.3) 

where,   is the number of observations taken from Phase I when the process is in control, and 

   is the ith observation in the process. Now the control limits can be constructed by the 

estimated parameters which are sample mean and sample variance with 3 sigma limits, 

     ̅     

             ̅                                                   (3.4) 

     ̅     

Until now we get the brief introduction about the construction of standard control limits for 

univariate X-chart. If the univariate data have some dependency over time such as 

autocorrelation which indicates the relationship between the observations at two different 

time points, then the construction of control limits will be dependent on the autocorrelation 

level. We know that the key parameters of any univariate normally distributed process are the 

mean and the variance, but if there is a relationship between observations for the different 

time periods, another parameter plays an important role for the construction of control limits. 

This new parameter is explained as the time series correlation which is defined as 

autocorrelation function (ACF). Autocorrelation function shows the autocorrelation 

coefficient which is the measurement of the correlation between observations at different 

times.  For lag k operator, autocorrelation function is defined as, 

   
∑                  

   

∑        
 
   

                                               (3.5) 
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However, if we consider the sample data, then we need to use sample autocorrelation 

function which is expressed as, 

   
∑      ̅        ̅    

   

∑      ̅   
   

                                                  (3.6) 

where   indicates the sample autocorrelation between observations k lags apart and  ̅ denotes 

the sample mean. 

 

 3.1     AR (p) Models 
 

When the observations at different time points are correlated, the data is commonly modeled 

as an ARMA (p,q) process given as, 

                                                             (3.7) 

or 

     ∑           ∑       
 
   

 
                                          (3.8) 

 

where c is the constant value,        are the autoregressive parameters,        are the 

moving average parameters, p and q are the lag orders of the process,     is the error term 

which is assumed to be uncorrelated and normally distributed with mean is 0 and variance 

  
 . For simplicity, in this section autoregressive (AR) processes will be investigated since the 

further studies will be based on autoregressive processes. In autoregressive models, the 

observed time series    depends on a weighted linear sum of the past values of    and an 

error term   . Autoregressive, AR (p), model is expressed as, 

                                                              (3.9) 

or 

     ∑          
 
                                                 (3.10) 

where    denotes the time series observations, c is a constant value,    indicates the error 

term and         indicates the autocorrelation coefficient of the model. In that formula the 

value of p is called order of the AR model. Sometimes autoregressive processes are expressed 

in the literature by using the lag operator L, which is defined as, 
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Now we can write the AR (p) process with lag operator L, 

              
         

                                  (3.11) 

(         
       

 )                                     (3.12) 

where (         
       

 ) indicates the polynomial of lag operator which is 

called lag polynomial. So,      (         
       

 ) represents the polynomial 

of order p and then  

                                                                 (3.13) 

The stationarity of the process is an essential assumption to define a time series process. In 

stationary time series, it is assumed that the mean, variance and autocorrelation structure do 

not change over time. Therefore, we should consider the following equations for univariate 

stationary time series processes, 

                                                                 (3.14)                 

         [       ]   [         ]     [         ]    
               (3.15) 

              [              ]     [(      )(        )]           (3.16)     

where         
  and     respectively denote finite autocovarince, finite variance and finite 

mean.  As it is seen from the equations (3.14) and (3.15) both the mean and the variance are 

constant while the covariance changes as a function of the k indices in equation (3.16). For 

the AR (p) process, if the absolute values of roots of the lag polynomial,     , lie outside the 

unit circle, then AR(p) process is considered as stationary or stable. Consider the AR (1) 

process which is first order autoregressive process, and expressed by, 

                                                               (3.17) 

where constant value c is omitted,    is a white noise process with mean zero and unknown 

but fixed variance   
 . For AR (1) process, the stationary condition is computed as in the 

following, 

                                                               (3.18) 

                                                              (3.19) 
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The characteristic equation to find the root is         , then     ⁄   

If |  ⁄ |        ⇒     | |                                           (3.20) 

For AR (1) process, stationary condition is found as | |   . After determining the stationary 

condition for AR (1) process, we can compute the expected mean, variance and covariance of 

a stationary AR (1) process as in the following since we will use these parameters later for 

our simulation. Now we assume that the time series are stationary, and the expected mean is 

the same for all values of time t  as in equation (3.14), if the mean is denoted by µ, then the 

expected value of stationary AR(1) process is found by, 

 

                          

                          

         

  
 

   
                                                                     

If c constant value is considered as 0, then the mean becomes 0. The second moment, 

variance, for the stationary AR (1) process is computed as, 

                                   

                      
  

  
      

    
  

  
  

  
 

    
                                                                   

Furthermore, the autocovariance and the autocorrelation coefficients can be computed 

respectively for the stationary AR (1) process by the following equations,  

             
    

 

    
         

                                

For a stationary AR (1) process, autocorrelation function (ACF) is defined as       . Until 

now we get the brief introduction about the parameters of the stationary first order 

autoregressive, AR (1), processes. Now we need to construct a control chart for an AR (1) 

process. Estimation of control limits for the stationary AR (1) time series process is 

constructed by considering the equations (3.21) and (3.22) as following, 
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  √

  
 

    
 

            
 

   
                                                            

    
 

   
  √

  
 

    
 

 

In the equation (3.23) control limits of a stationary AR (1) process on the raw data is 

expressed by taking the autocorrelation coefficient into account. 

 

3.2     Determination of the number of observations in Phase I 
 

Now we have two methods to construct the control limits for a stationary AR (1) process, one 

of them is calculated by ignoring the autocorrelation effect in the process, other is constructed 

by taking the autocorrelation into account. Here we will compare these two methods for 

different number of observations in Phase I. But first we try to investigate how the impact of 

autocorrelation effects the distribution of the run lengths for these two methods. We generate 

5000 datasets with 5000 observations each. For the first method we use the control limits in 

equation (3.4), and the sample mean  ̅ and the sample standard deviation   are estimated 

from the 5000 observations which is considered as good enough to estimate the parameters. 

For the second method, we use the equation (3.23) in which autocorrelation level is taken into 

account.  

In Figure 1, it can be seen the q-q plot of 5000 run lengths and the histogram of the run 

lengths which are acquired from 5000 datasets in the case that the parameters are unknown 

and known when there is no autocorrelation in the process. The case with unknown 

parameters indicates the calculations based on the control limits with estimated parameters 

while the case with known parameters indicates the calculations based on the control limits 

calculated in equation (3.23). Since the observations are normally distributed with mean is 0 

and variance is 1, the control limits for the case with known parameters in which       will 

be expressed as, 
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       √
 

    
   

                                                                                     

       √
 

    
    

 

The average of 5000 run lengths when there is no autocorrelation is 372.59 for the 

calculations based on the method in which unknown parameters are considered. The average 

of the run lengths is 372.64 when the known parameters are considered. In Figure 1, q-q plot 

is based on the exponential distribution for the run lengths since the fact that run lengths for a 

good process have exponential distribution. According to the Figure 1 exponential 

distribution for the run lengths seems valid when the observations are normally distributed 

but not autocorrelated.  

 

 

 

Then we generate the 5000 datasets with autocorrelation level 0.7. Figure 2 shows the q-q 

plot of 5000 run lengths and the histogram of the run lengths with autocorrelated observations 

based on the control limits with known and unknown parameters. For the method with 

unknown parameters, we estimate the sample mean and the sample variance from the 

autocorrelated observations, and construct the control limits based on these estimated 

parameters. The average run length is 468.56 for this method. For the method with known 

Figure 1 Distribution of the run lengths and histogram of the run lengths with known and unknown parameters when 𝝓  𝟎 
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parameters, we use the control limits in equation (3.23) with the autocorrelation level 0.7, and 

the control limits based on the known parameters for the autocorrelated process (AR(1)) in 

which error term is normally distributed with mean 0 and variance 1, 

       √
 

      
     

                                                                                         

       √
 

      
      

The average run length is 469.13 in the case of using the control limits in equation (3.25) 

when the process is autocorrelated with the level of 0.7. 

Figure 2 shows the q-q plot of the run lengths and the histogram of the run lengths based on 

autocorrelated observations with known and unknown parameters. According to the q-q plots 

of the run lengths, exponential distribution for the run lengths seems valid when the 

observations are autocorrelated. However the average run length changes with the 

autocorrelation level. 

 

 

Until now we consider 5000 observations so that at least one of the observations gives signal 

in each dataset. But now we will try to calculate the average run lengths for different number 

of observations in Phase I to see whether we can use exponential distribution for the run 

Figure 2 Distribution of the run lengths and histogram of the run lengths with known and unknown parameters when 

𝝓  𝟎 𝟕 
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lengths in the case of small number of observations in Phase I. To calculate the average run 

lengths for small number of observations by using exponential distribution, we calculate the 

number of datasets for which we have a signal. The ratio of this number to total N number of 

datasets is used as an estimate for the probability of run lengths is less than n (Pr(RL<n)) 

where n is the dataset size and run lengths are exponentially distributed with certain   

(RL EXP( )). Hence we can estimate 1/λ which is used for ARL. Also note that this method 

fails if all datasets signal. However what we look for is when not all datasets signal anyway 

since sample average of the run lengths will not be appropriate as some run lengths are 

capped at n. Since we consider that the exponential distribution for the run lengths seems 

valid when we use 5000 observations in the case of known and unknown parameters, now we 

will try to compare the average run lengths which are acquired by the use of control limits 

based on equations (3.4) and (3.23) for small number of observations. Here we generate 

different number of observations based on the first order autoregressive process (AR (1)) in 

which correlation coefficients are considered as, 

                                         . 

For the method in which we use the known parameters, the mean of the data generated with 

first order autoregressive structure is assumed to be 0, error term is normally distributed with 

mean 0 and standard deviation 1, and the control limits based on the considered 

autocorrelation levels by using the equation (3.23) are, 

 

  UCL LCL 

0 3 -3 

0.3 3.14 -3.14 

0.5 3.46 -3.46 

0.7 4.20 -4.20 

0.9 6.88 -6.88 

-0.3 3.14 -3.14 

-0.5 3.46 -3.46 

-0.7 4.20 -4.20 

-0.9 6.88 -6.88 

Table 1 Control limits with known parameters for AR (1) process 

 

When we are taking autocorrelation into account, the control limits above are considered to 

calculate the average run length based on X-chart for the data which has first order 

autoregressive structure. Table 2 shows the average run lengths in the combination of 

different autocorrelation levels and the different number of dataset size for the AR(1) process. 

The ARLs under the ‘known parameters’ column is calculated in terms of the control limits 

considered in Table 1 while the ARLs under the column of ‘unknown parameters’ is 

calculated by the use of control limits constructed with estimated parameters as in equation 

(3.4) by ignoring autocorrelation. 
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  Knowm parameters Unknown parameters 

n   Exponential Average Exponential Average 

50 0 373 24 352 24 

 0.3 395 25 337 24 

 0.5 395 25 299 25 

 0.7 477 24 281 24 

 0.9 817 25 179 23 

100 0 375 47 364 47 

 0.3 372 48 346 48 

 0.5 407 49 352 48 

 0.7 475 47 362 47 

 0.9 833 48 361 47 

200 0 366 92 364 91 

 0.3 376 90 361 90 

 0.5 399 91 370 90 

 0.7 459 93 405 91 

 0.9 808 95 517 92 

300 0 377 129 373 129 

 0.3 372 131 364 131 

 0.5 392 132 375 131 

 0.7 459 134 415 132 

 0.9 832 138 604 135 

400 0 364 165 363 165 

 0.3 377 164 373 163 

 0.5 397 169 381 168 

 0.7 459 168 431 166 

 0.9 855 183 666 178 

500 0 363 194 361 194 

 0.3 379 195 375 194 

 0.5 395 199 385 197 

 0.7 472 205 441 202 

 0.9 810 223 672 217 

600 0 367 219 364 219 

 0.3 376 222 370 221 

 0.5 392 228 382 226 

 0.7 452 236 434 234 

 0.9 832 266 701 259 

700 0 365 247 363 246 

 0.3 379 248 374 247 

 0.5 395 251 388 250 

 0.7 454 267 434 263 

 0.9 812 301 703 294 

Table 2 ARLs obtained by using  X-chart based on the raw data in the combination of different autocorrelation levels 

and different number of observations in Phase I for AR (1) process 
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  Knowm parameters Unknown parameters 

n   Exponential Average Exponential Average 

800 0 369 265 368 265 

 0.3 370 268 367 268 

 0.5 400 273 393 271 

 0.7 461 288 442 285 

 0.9 829 338 726 328 

900 0 373 281 372 281 

 0.3 384 287 381 285 

 0.5 406 295 402 293 

 0.7 455 315 439 310 

 0.9 839 368 748 360 

1000 0 367 303 367 303 

 0.3 375 303 373 302 

 0.5 400 310 395 307 

 0.7 457 332 445 328 

 0.9 823 397 755 387 

2000 0 374 356 374 356 

 0.3 384 373 384 372 

 0.5 390 380 388 377 

 0.7 441 441 434 436 

 0.9 823 639 786 623 

3000 0 369 367 369 366 

 0.3 427 373 427 372 

 0.5 383 390 383 388 

 0.7 440 458 440 454 

 0.9 826 755 804 739 

4000 0 NA 369 NA 368 

 0.3 NA 374 NA 374 

 0.5 NA 397 NA 395 

 0.7 469 464 469 460 

 0.9 838 798 817 783 

5000 0 NA 371 NA 370 

 0.3 NA 373 NA 373 

 0.5 NA 396 NA 395 

 0.7 NA 458 NA 456 

 0.9 810 819 797 807 

6000 0 NA 371 NA 371 

 0.3 NA 383 NA 383 

 0.5 NA 397 NA 396 

 0.7 NA 465 NA 463 

 0.9 892 818 868 801 

 

 

In Table 2, ‘Exponential’ indicates the ARLs which are calculated according to exponential 

distribution of the run lengths, and ‘Average’ indicates the simple average of the run lengths. 

For the method in which parameters are estimated from the generated datasets, if the number 

of observation is less than 200, the impact of the autocorrelation may not be detected by 

considering exponential distribution of the run lengths. As it is seen, when the number of 

observation is 50, the average run length decreases if the level of autocorrelation increases. 

Also if the number of observation is 100, it is not easy to see the impact of the autocorrelation 

since the calculations of the  average run lengths based on exponential distribution for the run 

lengths are around 360 in the case of different autocorrelation levels. Another result for the 

method in which parameters are estimated to construct the control limits is that when the  

Table 2 Continued 
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number of observations is increasing, the average run length values which are calculated 

based on exponential distribution of the run lengths are approaching the average run length 

values that we found in the case of exponential distribution of run lengths with the use of 

control limits based on equation 3.23 in Table 1 (Known parameters). But, if the number of 

observations are higher than 3000, since all datasets signal for some autocorrelation levels, 

consideration of ARL may not be possible by using the exponential distribution of run 

lengths based on the control limits constructed with known and estimated parameters. For 

example, when the number of observations is equal or higher than 4000, and the 

autocorrelation level is 0.5, NA indicates that the calculation of exponential distribution of 

run lengths based on the ratio of the datasets for which we have a signal to total number of 

datasets does not give meaningful result since each dataset shows a false alarm. But if it is 

considered to take high number of observations such as 4000 and above, taking the average 

of the run lengths with known and unknown parameters gives more meaningful results. Also 

there is no significant difference between average values of the run lengths based on known 

parameters and the average values of the run lengths based on estimated parameters for all 

different number of observations. They are small if the number of observations is small, since 

we consider the average of the run lengths by ignoring the data which do not signal.  

As a result, from Table 2, we can say that for the small number of observations in the dataset 

which has AR (1) structure, to calculate the average run lengths it is possible to use 

exponential distribution of the run lengths based on the control limits constructed with known 

parameters by taking autocorrelation into account, and also it is possible to calculate the 

average run length by taking the average of the run lengths based on the control limits with 

known parameters in which autocorrelation is taken into account and unknown parameters in 

which parameters are estimated when the number of observation is higher than 4000. 

  

3.3     Residuals of AR (1) Models 
 

To fit an ARMA (p,q) model, we need to determine the order p and q. To do this the plots of 

autocorrelation (ACF) and partial autocorrelation functions (PACF) are required. ACF shows 

the coefficients of correlation between    and      for k=1, 2,…. PACF is the autocorrelation 

between    and      after removing any linear dependency on other lags. The orders p and q 

are determined by the behaviors of ACF and PACF. After identifying the order of time series 

model, parameter estimation should be considered based on the model. In our simulations we 

used maximum likelihood estimation method to estimate the parameters of model. By using 

these estimated parameter residuals of the model are calculated to assess the adequacy of the 

model. Residuals are the differences between actual observation value and the fitted value. 

Since the assumption is that the residuals are independent and identically distributed, then it 

should be checked whether the residuals behave like white noise by applying the traditional 

control charts.  
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Suppose that  ̂ is an estimate of  ,   ̂ and  ̂ 
  are the estimates of   and   

  obtained from the 

preliminary data of the AR process where error term          
    and  ̂  is the fitted value 

of   . Then the residuals can be calculated for AR (1) process as 

                                                                          

       ̂                                                                      

      [ ̂   ̂     ] 

      [    ̂   ̂   ̂     ] 

      [ ̂   ̂        ̂ ] 

where    indicates the residual at time t, and these residuals are assumed to be approximately 

normally distributed with mean is zero and constant variance   
 for stationary process. 

For simplicity, first we generate 1000 datasets which have first order autoregressive (AR(1))  

structure with no change in the mean. Since we use 100 observations in Phase I, it is expected 

to use exponential distribution of the run lengths to calculate the in control ARL based on the 

control limits constructed with known parameters. However, we show that if the sample size 

is large such as 4000 and above in Phase I, it is also expected to get reasonable results by 

using the control limits constructed with estimated parameters since the uncertainty for the 

estimation of parameters will be low. In Phase II, we use 5000 observations so that we have 

at least one false alarm for each dataset. When the each dataset signals, the total number of 

run lengths would be 1000. Taking the average of these run lengths is considered as the ARL 

of the process. 

In our simulation, when we are constructing the control limits we use known parameters such 

as,   

                                  

                                                                       

For the X-chart (individuals chart) of the observations with the parameters assumed to be 

known, the control limits are constructed by taking the autocorrelation into account for the 

AR(1) process as following, 

       √
 

    
 

                                                                                  

       √
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As we consider before, we can use the exponential distribution of run lengths to calculate the 

average run lengths for small number of observations in Phase I since there is no significant 

difference if we consider the average of the run lengths in the case of the number of 

observation higher than 4000 observations in Phase I where almost at least one observation 

signals for the each data simulation.  

Table 3 shows the in control ARL under the column of ‘Average’, which is the average 

number of observations before an out of control signal generated with corresponding 

autocorrelation levels using X-chart with 3 sigma control limits based on known parameters 

in which autocorrelation level is taken into account when the number of observations is 5000 

for AR(1) process. Also under the column of ‘Exponential’ we can see the in control ARLs 

calculated by the use of exponential distribution of run lengths based on X-chart with known 

parameters when the number of observation is 100.  

There is no significant difference between taking the average of the run lengths of 1000 

datasets in which each dataset has 5000 observations and ARL based on the exponential 

distribution of the run lengths when the number of observation is 100 in Phase I in the case of 

different autocorrelation levels. The increase in the average run length is explained by the 

increase of autocorrelation level, or in other words, when the autoregressive parameter   is 

getting larger, the in control ARLs increase when the X-chart for AR(1) process is 

constructed with known parameters by taking the autocorrelation into account. 

 

 Average Exponential 

  N=5000 N=100 

0 369 372 

0.25 374 375 

0.5 397 392 

0.75 503 498 

0.95 1205 1192 

                                                  Table 3 ARLs obtained by using X-chart based on the  

                                                  raw data with exponential distribution and taking  

                                                  the average of run lengths  in Phase I for AR(1) process 

                                                      

Since we consider the control limits constructed with known parameters, corresponding 

residuals are calculated with these known parameters such as 

              

As we mention before, residuals are assumed to be independent and identically distributed 

with mean is zero and variance is one, i.e.           , the construction of the control limits 

for residuals with 3 sigma limits are made as following, 
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where, expected value of residuals based on AR(1) model is assumed to be zero and standard 

deviation is one. Now we can use these control limits (3.28) and (3.29) to monitor the 

process. Until now we assume that all the parameters that we need are known. Control limits 

of X-chart based on raw data which have AR(1) structure and the residuals of AR(1) model 

are calculated in terms of these known parameters.  

Then we consider the residuals of AR(1) model which is fitted to the datasets in which each 

dataset has 100 observations in Phase I. To calculate the ARLs based on these residuals we 

use exponential distribution of run lengths. Table 4 shows the average run lengths acquired 

by using X-chart based on residuals with different autocorrelations, in which control limits of 

residuals are considered as in equation (3.29). Each scenario has approximately the same in 

control ARLs, around 370.   

 

 Exponential  Exponential 

  N=100   N=100 

0 372 0 373 

0.25 375 -0.25 377 

0.5 371 -0.5 373 

0.75 376 -0.75 375 

0.95 374 -0.95 372 

                                   Table 4 ARLs obtained by using X-chart based on the residuals with  

                                   the exponential distribution of run lengths in Phase I for AR(1) process 

                                 

Many authors suggest that the control charts based on residual should be used to monitor to 

process. However, Harris and Ross (1990), Longnecker and Ryan (1990) discuss that the 

control charts based on residuals from a first-order autoregressive (AR (1)) process may have 

poor detection power to detect the process mean shift. Longnecker and Ryan (1990) discuss 

that control charts based on residuals may have high detection power to detect a shift in the 

process mean when the first residual is plotted, but if the control chart based on residuals fails 

to detect the shift when the first residual is plotted, then the subsequent residuals would have 

low probability to detect the shift for an AR(1) process with positive autocorrelations. Zhang 

(1997) studies detection capability of X-chart based on residuals for general stationary 

univariate autoregressive process such as AR (1) and AR (2), furthermore, compares 

detection capability of X-chart based on residuals with the traditional X-chart based on raw 

data and shows that when the process has a mean shift, the detection capability of X-chart 

based on residuals for which observations are perfectly modeled and the traditional X-chart 

based on raw data for an independent process are not equal. Here, we also show when the X-

chart based on residuals from AR (1) process will have poor performance to detect the shifts 

in the process mean. If there is a shift in the process mean given as 

                                                                              

Then the mean of the residual at time t=T is, 

   [  ]           
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                   [    ]     [         ]                           

As it is seen, since the expected value of residuals at     is bigger than the expected value 

of residuals at      , (            ), most of the shift proportion is captured by 

the first residual, subsequent residuals capture just a proportion of first residual, which 

depends on the autocorrelation level. Since standardized residuals are related to residual 

control charts, we have 

   
    

  
 

      
    

  √    
  

   

  √    
 

 

√    
                                        

        
           

  √    
  

          

  √    
 

        

√    
                              

From the equations above, for AR (1) process, it is seen that   
√    ⁄  of the shift is 

captured by first residual (3.31), and  
      

√    ⁄  of the shift is captured by 

subsequent residuals (3.32). The problem is that, if the shift is not detected by the first 

residual, then it will take more time to detect the shift with subsequent residuals when the 

autocorrelation is positive. But the situation will change when the autocorrelation is negative, 

subsequent residuals would have higher probability of detecting the shift than the first 

residual.  

 

  First Subsequent    First Subsequent 

0 1 1 0 1 1 

0.25 1.032 0.774 -0.25 1.032 1.291 

0.5 1.154 0.577 -0.5 1.154 1.732 

0.75 1.511 0.378 -0.75 1.511 2.645 

0.95 3.202 0.160 -0.95 3.202 6.244 

                                         Table 5 The detection capability of first and subsequent residual  

                                          based on X-chart for AR(1) process 

 

Table 5 shows the detection capability rate of the first and the subsequent residuals for 

different autocorrelation levels. As it is seen, for positively autocorrelated dataset which has 

AR(1) structure, first residual have high probability to detect the shift, but if the shift could 

not be captured with first residual, then the subsequent residuals have less probability to 

detect the shift than it would do with independent data. Also if the positive autocorrelation 

level is getting higher, then the first residual detection probability increases while the 

detection probability of subsequent residuals decreases, for different negative autocorrelation 

levels, subsequent residuals have higher detection probability than the detection probability 
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of first residual, and also the detection probability of subsequent and first residual increases 

with the higher negative autocorrelation. 

Now suppose that different magnitudes of shifts based on standard deviation unit (3.30) in the 

process mean is produced, and resulting average run lengths obtained by the use of X-chart 

constructed based on the control limits with known parameter by taking different 

autocorrelation level into account are calculated. For this, we generate 1000 datasets which 

have AR (1) structure with the dataset size of 100 observations in Phase I. To be able to 

calculate the more reasonable ARLs in Phase II, we consider the number of observation to be 

generated in Phase II as 5000 so that each dataset shows at least one false alarm. By this way, 

we will have 1000 run lengths and taking the average of these run lengths would be 

satisfactory. Here we show how the in control average run length changes in the the 

combination of different magnitudes of shift and autocorrelation level. In Table 6, we can see 

the performance of X-chart based on raw data comparison with the X-chart based on 

residuals from AR (1) process by considering the average run lengths in the combination of 

various amounts of shifts with different autocorrelation levels. In Table 6,   and   indicate 

respectively autocorrelation level and the amount of standard deviation unit shift in the 

process mean, and the values under the column of ‘RESIDUAL’ shows the ARLs of X-chart 

based on residuals of AR(1) model in which observations are perfectly modelled while the 

values under the column of ‘RAW’ express the ARLs of X-chart based on raw data which has 

AR(1) structure. 
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    RAW RESIDUAL 

0.25 0 381.4 373.2 

 0.5 168.9 217.3 

 1 48.8 77.1 

 2 8.2 12.6 

 3 3.1 2.8 

    

0.5 0 383.3 376.3 

 0.5 178.3 258.6 

 1 54.9 119.8 

 2 9.9 23.1 

 3 3.5 4.5 

    

0.75 0 508.4 370.5 

 0.5 246.1 304.4 

 1 88.9 196.3 

 2 15.4 38.4 

 3 4.4 3.1 

    

0.95 0 1314.3 365.7 

 0.5 724.3 360.3 

 1 277.4 145.8 

 2 56.9 1 

 3 7.2 1 

    

-0.25 0 368.8 382.1 

 0.5 157.5 105.4 

 1 44.7 22.8 

 2 7.1 3.5 

 3 2.8 1.6 

    

-0.5 0 404.2 376.3 

 0.5 165.1 62.2 

 1 47.4 10.5 

 2 7.1 2.1 

 3 2.8 1.3 

    

-0.75 0 519.6 378.2 

 0.5 188.8 22.4 

 1 58.1 3.5 

 2 9.1 1.5 

 3 2.7 1.1 

    

-0.95 0 1365.4 379.3 

 0.5 445.1 2.7 

 1 142.4 1.4 

 2 22.1 1 

 3 2.7 1 

                 Table 6 ARLs obtained by using X-chart based on raw data and residual from AR(1) process  

                  in the combination of different autocorrelation levels and various magnitudes of shifts 

 

                                     

ARLs obtained by using X-chart based on residuals and the X-chart based on raw data are 

calculated for AR (1) process with autocorrelation levels, 0.25, 0.5, 0.75, 0.95, -0.25, -0.5,      

-0.75,-0.95. The comparison is made in the combination of different amounts of shifts and the 

autocorrelation levels. Throughout the simulated examples, it is shown that when the 

autocorrelation level is 0.95, since the first residual detection capability is 3.20 while 

subsequent residual detection capability is 0.16,  the X-chart based on residuals can detect the 

shift earlier than the X-chart based on raw data for all combination of shifts considered. Also 
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if the amount of shift is 3, then X-chart based on residuals can detect the shift earlier when 

the autocorrelation level is 0.75 and 0.95. For negative autocorrelation levels, since the 

detection capability of the subsequent residual is higher than the detection capability of first 

residual, X-chart based on residuals detects the shift earlier than the X-chart based on raw 

data. From the Table 6, ARLs obtained by using the X-chart based on residuals for negative 

autocorrelation levels are lower than the ARLs obtained by using the X-chart based on raw 

data for all combination of autocorrelation levels and the magnitudes of shifts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 4 
 

 

Monitoring Multivariate Time Series 
 

In many statistical process control (SPC) applications, it is often the case that we have more 

than one quality characteristic to monitor. Monitoring these quality characteristics 

simultaneously is important since the correlation among the variables should be taken into 

account, or in other words, individual or univariate monitoring of variables will ignore the 

correlation among the variables. In real life, it is also reasonable to observe serial dependency 

for data collected in time. Therefore, in many SPC applications, it is assumed that the 

observations in the data matrix are correlated over time and the variables would have some 

correlation with each other. Ignoring these dependencies may cause incorrect interpretations 

when monitoring the data. In multivariate statistical process control applications, since 

several variables are of interest, multivariate control charts should be used. In the literature, 

there are three main multivariate control charts which are Hotelling T-square control chart, 

multivariate exponentially-weighted moving average (MEWMA) and multivariate 

cumulative sum (MCUSUM) control charts. Here, we use Hotelling T-square multivariate 

process control technique for monitoring simultaneously several correlated and 

autocorrelated quality characteristics. Hotelling T-square control chart is a multivariate 

extension of univariate control chart.  

At the first part of this chapter, we apply Hotelling T-square control charts to the bivariate 

autocorrelated data, and in the second part, we use a bivariate time series model which is 

vector autoregressive model to take into account the autocorrelation, which is the multivariate 

extension of the univariate autoregressive model used in the previous chapter. Then we 

monitor the residuals of the vector autoregressive model by using Hotelling T-square control 

chart. These applications are made in the case of different autocorrelation levels with the first 

order vector autoregressive model (VAR (1)) as the reference model. We then as in the case 

from the previous chapter study the performance of the two Hotelling T-square control charts 

(one based on raw data and other based on the residuals from a VAR (1) model) in detecting 

a shift in the mean. Hotelling   T-square control charts for raw data and the residuals from the 

first order vector autoregressive model are compared in terms of average run length 

performance measures. In Hotelling T-square calculations, it is expected that, in Phase I, the 

process parameters, sample mean and sample variance- covariance matrix are estimated. In 

that phase it is aimed to get the in control sample mean vector and sample variance 

covariance matrix, then they are used to obtain the Hotelling T-square statistics. But here we 

assume that the mean vector and the variance covariance matrix of the process are known.  
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4.1     Multivariate Normal Distribution 
 

In univariate case, generally the process is assumed to be normally distributed. This 

assumption can be used for the multivariate case. Multivariate normal distribution is an 

extension of the univariate normal distribution to multiple variables. The generation of the 

random values from a p-dimensional multivariate normal distribution will have the following 

probability density function, 

  
 

       | |     
 

 
              

                                              (4.1) 

where, µ represents     mean vector of p variables   represents the     variance-covariance 

matrix of p variables, the diagonal elements of that matrix are the variances of each variables 

and off-diagonal elements are the covariances.  x represents the vector of      random 

variable,              . Hence we have       µ  ), in our simulations, the mean vector 

µ was set as zero vector, 

  (          )                                                     (4.2) 

and variance-covariance matrix generally was unless otherwise specified set to     diagonal 

matrix 

  (

          

          

    
          

)  (

    
    
    
    

) 

where               and                   represents the correlations among the 

quality characteristics. When the diagonal elements are set as one, this matrix is equivalent to 

correlation matrix. If any off-diagonal element is different from zero, then it means 

corresponding variables are correlated. In addition, the covariance matrix   should be 

symmetric positive definite for multivariate normality assumption. It means that all 

eigenvalues of covariance matrix should be positive and   must be symmetric. In our 

simulations, after defining the mean vector and the correlation matrix which is symmetric 

positive definite, we generate the matrix of a dataset which is multivariate normally 

distributed as, 

(

          

          

    
          

) 

The above matrix represents the p dimensional multivariate normal distribution in which each 

dimension has n observations. In our simulations, first we assume that the variables are 

uncorrelated and the dataset has p dimensional multivariate normal distribution with mean 
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zero and identity covariance matrix  .  But in real life the variables would often be 

correlated. Therefore, we made some changes in the covariance matrix for the further 

monitoring simulations to make comparison in the manner of different correlations among the 

variables. Here we assume that we know the mean vector and the covariance matrix of the 

multivariate normal distribution. If the parameters are unknown, we should calculate the 

sample mean vector and sample covariance matrix of the multivariate distribution. If we have 

a sample from a multivariate normal distribution such as,  

            

where n is the number of observations in which ith sample vector contains observations on 

each of the p variables  

 

              

Then the sample mean vector is 

 ̅  
 

 
∑   

 
                                                          (4.3) 

and the sample covariance matrix of multivariate normal distribution is 

  
 

   
∑      ̅      ̅   

                                         (4.4) 

where diagonal elements are the sample variances and off-diagonal elements are sample 

covariances which is expressed, 

    
 

   
∑ (     ̅ )      ̅  

 
                                   (4.5) 

where           and            for    . For the dataset which has multivariate 

normality, sample mean vector and sample covariance matrix are unbiased estimators of the 

population, which are expressed                                                                                                                                                                                                 

   ̅                                                          (4.6) 

                                                             (4.7) 

where   and    are population mean vector and population covariance matrix respectively. 

 

 

 

 



Monitoring Multivariate Time Series  

 

29 

 

4.2     Hotelling T-square Control charts 
 

As we mention before, if there is no correlation among the quality characteristics, then 

univariate control charts may be applied to determine whether the process is control or not. 

However, applying individual control chart to the each quality characteristics which has 

correlation with others may give erroneous conclusions. Therefore, in this study, Hotelling T-

square control charts are used.  

Hotelling T-square multivariate control charts are the multivariate extension of univariate 

Shewhart control charts. The main parameters for Hotelling T-square calculations are mean 

value of each variable and the variance-covariance matrix. These parameters are estimated 

from preliminary samples when the process is assumed to be in control. In the literature, 

Hotelling T-square control charts are expressed for subgroup data and for individual 

observations. 

For the subgrouped data, consider a multivariate normally distributed data with p variables, 

and the population mean and population covariance are known, then     distribution would be 

used to monitor the mean and determine the control limits, the statistics of    control charts is 

expressed as, 

  
     ̅          ̅                                                    (4.8) 

where   [          ] is the vector of population mean which is known,  ̅  

[ ̅   ̅     ̅ ] is the vector of sample mean, n is the sample size, Σ is the covariance matrix 

of population. Suppose that we have m samples. The sample means are calculated from each 

sample as, 

 ̅   
 

 
∑     

 
                                                        (4.9) 

where           and          ,      is the ith observation on the jth quality 

characteristic in the kth sample. 

For only two variables    and   , the equation (4.8) becomes 

   
 

  
   

     
 [  

   ̅     
    

   ̅     
        ̅       ̅     ]       (4.10) 

where   ̅  and  ̅  are the sample averages of two quality characteristics computed from a 

sample size n,          are the population means of these variables,    and     are the 

standard deviations of    and    and     is the covariance between    and   .  

The lower control limit for the statistic in (4.8) is zero and the upper control limit with known 

parameters         has the following equation with the specified false alarm rate and the 

number of variables, 
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                                                            (4.11) 

If the mean vector and the variance covariance matrix of the multivariate data are unknown, 

they should be estimated from the in control data which is called Phase I with enough number 

of observations.  These estimates are used in Phase II. In addition, when the true population 

values are not known, Hotelling T-square statistics are used instead of    statistics. When the 

parameters are unknown and the samples have subgroups, the Hotelling T-square calculation 

is expressed as following, 

      ̅   ̿       ̅   ̿                                           (4.12) 

where  ̅ is the vector of sample mean,  ̿ is the vector of grand averages of variables. 

Estimated mean value and covariance matrix for subgrouped data are calculated as in the 

following equation, 

 ̿  
 

 
∑  ̅  

 
                                                        (4.13) 

 ̿  is the grand average of variable j where           and          . The  ̿  are the 

elements of vector  ̿ which is an unbiased estimate of µ when the process is in control. 

Sample variance of variable j, 

 ̅ 
  

 

 
∑    

  
                                                      (4.14) 

where    
  is the sample variance on the jth variable in the kth sample, and  ̅ 

   is the jth 

diagonal element of covariance matrix. 

 ̅   
 

 
∑     

 
                                                            (4.15) 

where   ̅   are the off-diagonal elements of sample covariance matrix S. Then sample 

covariance matrix for subgrouped data is expressed with matrix notation 

  

[
 
 
 
 
 
 ̅ 
  ̅   ̅    ̅  

 ̅ 
  ̅    ̅  

 ̅ 
   ̅  

  
 ̅ 
 ]
 
 
 
 
 

 

This sample covariance matrix S is an unbiased estimate of Σ when the process is in control.  

 

The control limits for Hotelling T-square control chart is dependent on which phase we are 

monitoring. For in control process, Phase I with subgrouped data, where sample mean and 

sample covariance matrix is estimated, the control limits are, 
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                                                  (4.16) 

                                                                                    (4.17) 

To monitor the process in Phase II, control limits are 

    
           

        
                                                   (4.18) 

                                                                                     (4.19) 

where p is the number of variables, m denotes the number of samples, n shows the sample 

group size, α is the false alarm rate. 

When the sample group size n=1 in the multivariate simultaneous monitoring applications, 

and the parameters are known than    statistic with upper and lower control limit is 

calculated as following 

                                                               (4.20) 

        
                                                                 (4.21) 

                                                                          (4.22) 

But if they are unknown and must be estimated from the preliminary data, the sample mean 

of the variable j to be estimated is 

 ̅  
 

 
∑   

 
                                                                  (4.23) 

where m is the number of observations. Sample covariance matrix of individual multivariate 

data, 

  
 

   
∑      ̅      ̅   

                                                   (4.24) 

where    is the vector of ith observations of each variable and  ̅ is the vector of sample means 

of variables. Then the Hotelling T-square equation which is dependent on sample mean 

vector and sample variance covariance matrix is, 

  
      ̅         ̅                                                    (4.25) 

Tracy, Young, and Mason (1992) consider that if the observations are individual 

observations, Hotelling T-square statistics would be based the beta distribution as in the 

following, 

  

  
   

      

 
  

 
 
     

 

                                                          (4.26) 
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where,   

 
 
     

 

 is a beta distribution with parameters   ⁄            ⁄ . 

Hence, the Phase I limits should be based on beta distribution and the phase I limits with   

rate calculated as, 

  

     
      

 
 

  
 

 
 
     

 

                                                             (4.27) 

                                                                                   (4.28) 

where,    
 

 
          is the upper α percentage point of beta distribution with parameters     

and          . The Phase II control limits are based on F distribution, which are 

    
           

     
                                                      (4.29) 

                                                                                   (4.30) 

 

4.3   Determination of UCL for different number of observations in Phase I 
 

To see the effect of sample size used in Phase I on the performance of the T-square control 

chart, we consider two methods to obtain more accurate upper control limit for Hotelling T-

square statistics. We compare the performance of Hotelling T-square control charts based on 

the theoretical value of upper control limit as described above and the simulation based 

method in which upper control limit is found by the simulation in the case of different sample 

sizes.  

For the simulation based method, we generate1000 multivariate normal datasets with two 

variables and calculate the Hotelling T-square control statistics for each datasets. Then we 

take the maximum values of Hotelling T-square values of each datasets. Now we have 1000 

maximum values, then we sort these in a descending order of maximum values. According to 

individual false alarm rate considered as 0.0027 which is equal to average run length 370, we 

found the overall α value for different size of samples as, 

                       

Then, on the descending order of maximum values, we found the (                    value 

and we considered that value as our upper control limit. This is the UCL found by the 

simulation based method that we use below. We compare upper control limit which is found 

by simulation based method with the theoretical value of UCL for different sample sizes by 

considering average run lengths. Table 7 shows the calculated upper control limits and 

average run lengths for different number of observations. In Table 7, the ARLs under the 

column of ‘Exponential’ is calculated by using the exponential distribution of run lengths and 
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the ARLs under the column of ‘Average ’ is calculated by taking the average of the run 

lengths from the 1000 datasets. To calculate the average run lengths for different number of 

observations by using exponential distribution, the same procedure which is considered in 

chapter 3 for the calculations of ARLs based on X-chart is used. But here, the calculations of 

ARLs are based on Hotelling T-square chart. ‘Theoretical UCL’ values are the upper control 

limits found by using the beta distribution in equation (4.27). 

 

   Exponential Average Value 

Observation 

number n 

Theoretical 

UCL 

Simulation 

Based UCL 

Theoretical Simulation 

Based 

Theoretical Simulation 

Based 

100 11.25 11.33 354 371 49 49 

200 11.54 11.62 351 368 92 92 

300 11.64 11.72 354 370 131 132 

400 11.68 11.78 350 369 166 168 

500 11.71 11.81 351 367 196 198 

600 11.73 11.84 351 372 224 228 

700 11.74 11.85 353 374 247 252 

800 11.75 11.86 353 372 266 273 

900 11.76 11.86 352 371 282 289 

1000 11.77 11.86 351 369 297 305 

1100 11.77 11.88 350 370 309 319 

1200 11.78 11.89 348 370 320 331 

1300 11.78 11.91 350 373 327 341 

1400 11.78 11.92 353 378 329 344 

1500 11.79 11.92 353 376 339 355 

1600 11.79 11.93 350 377 344 365 

1700 11.79 11.95 347 379 348 371 

2000 11.79 11.97 339 380 357 386 

2500 11.80 12.15 181 381 363 427 

3000 11.80 12.33 88 365 367 471 

4000 11.81 12.91 NA 468 365 628 

Table 7 ARLs obtained by using Hotelling T-square control chart based on independent data with theoretical UCL 

and simulation based UCL 

  

As it is seen in the Table 7, upper control limits found by the simulation based method is 

bigger than the theoretical UCL, and also they increase as the number of sample size 

increases. Average run lengths calculated with the theoretical UCL by using exponential 

distribution of run lengths express the average run length around 350 until the number of 

observation of 1700. For the sample size 2500 and above, this method is not working well to 

calculate the average run lengths. Exponential distribution of the run lengths for the small 

number of observations by using UCL obtained by simulation based method is giving more 

reasonable results. ARLs are almost around 370 which is expected for 0.0027 false alarm 

rate. But it gives high average run length, 468, for the large sample size such as 4000. 

For the large sample sizes, calculating the average value of the run lengths by using 

theoretical UCL is giving more accurate results. Also calculating the average value of run 

length by using simulation based method is not giving expected ARL. Taking the average 

value of run lengths for small number of observations is giving incorrect results since it is 

ignoring the datasets which do not have a false alarm, so small average run length values are 

obtained. As a result, unless the sample size is high (>2000), we recommend using 
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exponential distribution of run lengths in Phase I with the upper control limits which are 

calculated based on simulation based methods. 

 

4.4     Hotelling T-square Control Charts for Multivariate Autocorrelated 

Data 
 

To control the multivariate processes, the traditional control charts require the assumption of 

the process data should be independently distributed. When the observations in the 

multivariate datasets are autocorrelated, the common approach is to reduce or remove the 

autocorrelation from the process by using appropriate time series models and use the 

residuals from the time series model to monitor the process. Since the residuals would be 

uncorrelated after using appropriate time series model, then the assumption of traditional 

control charts will be satisfied. But for the multivariate case, model selection would not be 

easy as the univariate case since the number of variables to be monitored simultaneously can 

be large. If the number of variables is large, then the number of parameters to be estimated 

would also be large. In multivariate cases, the commonly used multivariate time series model 

is the vector autoregressive moving average model (VARMA). Let’s see how many 

parameters we need to estimate if we consider VARMA (p,q) models for multivariate 

autocorrelated process with k dimensional multivariate time series. VARMA (p,q) model is 

given as, 

                                                             (4.31) 

where        are kxk autoregressive parameter matrices while        are moving 

average parameters with also kxk matrices, c is a kx1 vector of constants,     is a kx1 vector 

of error terms which are multivariate normally distributed with mean vector is 0 and variance 

covariance matrix     . If we write the equation (4.31) in matrix notation, 
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As it is seen there are many parameters to be estimated in a VARMA process. For example if 

the number of variables in the process is 5, and VARMA(1,1) model is used, then the number 

of parameters to be estimated would be; for constant term vector (5x1) 5, autoregressive 

parameter matrix (5x5) 25, moving average parameter matrix (5x5) 25, error term matrix 
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which is Σ, 5(diagonal)+10(off-diagonal)=15. Since the total number of parameters to be 

estimated is 70, fitting an appropriate time series model for multivariate autocorrelated data 

would not be easy with even 5 variables. Still if we assume that the number of variables is 2, 

k=2, the total number of the parameters to be estimated is 13 (2 constant terms,4 parameters 

for autoregression matrix, 4 parameters for moving average matrix and 3 parameters for error 

term matrix). Therefore, for simplicity we will consider VAR (1) process with 2 variables, 

then the number of parameters to be estimated would be 9 (2 constant terms, 4 autoregressive 

parameters, 3 error term parameters). The advantage of using VAR model is that it can be 

estimated easily compare to the VARMA models, but we should remember that we need 

large sample sizes to have good estimations of parameters. 

 

4.5     VAR(p) Models 
 

In time series analysis, it is generally assumed that the observed values of a variable is 

dependent on some immediate past value. The vector autoregressive model (VAR) is a 

popular multivariate time series model as it is easy to apply and interpret. It is an extension 

form of univariate autoregressive model to multivariate data. The basic p lag vector 

autoregressive (VAR (p)) model with k variables can be expressed with matrix notation, 
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or 

                                                          (4.32) 

where,   denotes an kx1 vector of time series variables at time t, c is a kx1 vector of 

constants,         are kxk autoregressive parameter matrices,     is a kx1 vector of error 

terms which are multivariate normally distributed with zero mean vector and variance 

covariance matrix     . 

Here we consider the number of variables k=2. Bivariate vector autoregressive model for the 

p-lag is expressed by the following form, 
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For simplicity, the easiest applicable model in multivariate time series models is bivariate 

first order vector autoregressive model which has two quality characteristics. The bivariate 

VAR (1) model can be written as, 

                                                                (4.33) 

or in matrix form, 

(
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where the autocorrelation coefficient matrix is, 

  (
      

      
) 

constant vector c is, 

  (
  
  

) 

and the error term vector is  

   (
    
    

) 

   has the multivariate normal distribution with mean vector is zero and covariance matrix 

is       

For the stationarity of the process, all eigenvalues (  ) of autocorrelation coefficient matrix   

in a VAR (1) model should be within the unit circle or absolute value of    should be less 

than one, (|  |   ). Now we assume that the all absolute eigenvalues of autocorrelation 

coefficient matrix   less than one, and process variables have finite mean and finite variance. 

So we can compute the expected value and the covariance matrix of a stationary first order 

vector autoregressive model (VAR(1)) as in the following.  

                                                                   (4.34) 

                                                                   (4.35) 

                                                                    (4.36) 
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                                                                      (4.37) 

where,   is the vector of expected values of each variable,   is the identity matrix,   is the 

matrix of autocorrelation coefficients,   is the vector of constant terms. In this study, the 

mean vector of the multivariate time series is assumed to be zero. Then the covariance matrix 

of a stationary first order vector autoregressive model (VAR (1)) is computed by using the 

following equation, 

                                   

                                                                (4.38) 

where,     is the covariance matrix of  the data which have first order vector autoregressive 

structure,   is the matrix of autocorrelation coefficients, and   is the covariance matrix of 

errors. As it is seen from the equation above, covariance of the first order vector 

autoregressive process is dependent on the autocorrelation coefficients and the covariance 

matrix of the error terms. Therefore, in this chapter we will see how the changes in these 

parameters effect the process by using average run length as the performance measure. In the 

previous chapter, since we assume that the univariate autocorrelated time series is perfectly 

modeled and control limits are constructed by taking autocorrelation into account, here for 

the multivariate autocorrelated time series we also assume that the multivariate time series 

are perfectly modeled and theoretical control limits are used. In addition, for multivariate 

time series, we know that if the parameters are unknown, Hotelling T-square statistics is 

dependent on sample mean vector and sample variance covariance matrix, but here we will 

use the true values instead of sample mean vector and sample covariance matrix by taking 

autocorrelation into account, which are considered in equations (4.37) and (4.38). 

In this chapter, we discuss the effect of autocorrelation in Hotelling T-square control chart 

based on multivariate autocorrelated raw data which is generated in terms of bivariate first 

order vector autoregressive structure. The same procedure will be applied for the residuals of 

bivariate first order vector autoregressive model. Since we consider that the time series will 

be perfectly modeled, instead of sample mean vector of residuals and sample variance 

covariance matrix of residuals, respectively we will use zero vector and true covariance 

matrix of error terms in the calculation of Hotelling T-square statistics for the residuals of 

first order vector autoregressive model. We will see how the effect of autocorrelation changes 

for different levels of autocorrelation. Then we will add various levels of shifts in the means 

of the variables. Shifts will be based on standard deviation unit. The comparison between the 

ARLs which are obtained by using the Hotelling T-square chart based on raw data and ARLs 

obtained by using the Hotelling T-square chart based on residuals of first order vector 

autoregressive model will depend on the combination of autocorrelation level of each 

variable and the amount of shift in the mean of each variable. Lastly, we will add correlation 

between the errors, and then we will see how the correlation in the errors affects the 

autocorrelated process in the case of various amount of shifts in the process mean. 
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At first, we will look at the Phase I data in which the process is assumed to be in control by 

considering different levels of autocorrelations in the variables and the correlation between 

the error terms. The following VAR (1) model is used, 

  

(
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The eigenvalues of   matrix should be within the unit circle or absolute value of eigenvalues 

should be less than one, and the error terms are generated as multivariate normally distributed 

with mean vector is zero, and covariance matrix of error terms is 

  (
  
  

) 

As it is seen correlation between the error terms,    (   
    

)   .  

The Table 8 shows the averages of 1000 run lengths obtained by the use of Hotelling T-

square control charts based on generated bivariate data under the column ‘RAW’ and the 

averages of 1000 run lengths obtained by the use of Hotelling T-square control charts based 

on residuals from VAR (1) model under the column ‘RESIDUAL’ when the    (   
    

)  

 . The ARLs based on raw data and ARLs based on residuals with          false alarm 

rate are considered with different autocorrelation levels, 

 

                           

and  
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As it is seen from the Table 8, ARLs obtained by the use of the Hotelling T-square control 

charts based on raw data increases while the absolute value of autocorrelation level in any 

variable increase when the autocorrelation level of other variable is fixed. The ARLs obtained 

by the use of Hotelling T-square control charts based on residuals for different 

autocorrelation levels are close to 370 which is ARL value of in control process when the 

false alarm rate is 0.0027. In Phase I studies, using the Hotelling T-square control chart based 

on residuals is effective when reducing or removing time dependency from the process.  

Now we will check whether the correlation between the error terms effects the average run 

lengths in Phase I. To do this we just change the off- diagonal element in variance covariance 

matrix of error term,    (   
    

)      which is a high level of correlation between the 

error terms. 

  (
    
    

) 

 

 

 

       
   

      
   

       
   

       
   

        RAW RESIDUAL         RAW RESIDUAL 

0 0 368.68 368.68 0 0 364.49 364.49 

0.25 385.76 381.29  -0.25 364.07 349.34 

0.5 363.57 351.99  -0.5 376.21 373.45 

0.75 405.61 361.57  -0.75 393.14 377.26 

0.95 569.25 372.35  -0.95 530.19 371.17 

0.25 0 360.70 362.23 -0.25 0 374.85 370.57 

0.25 378.86 372.68  -0.25 388.63 366.66 

0.5 397.50 366.35  -0.5 394.80 366.90 

0.75 401.05 371.12  -0.75 404.25 363.63 

0.95 542.44 370.12  -0.95 537.02 376.70 

0.5 0 362.19 362.81 -0.5 0 384.76 372.28 

0.25 383.23 374.94  -0.25 355.44 359.78 

0.5 392.01 373.61  -0.5 410.63 373.95 

0.75 430.59 360.52  -0.75 427.87 357.88 

0.95 570.53 354.54  -0.95 597.93 383.69 

0.75 0 396.91 366.55 -0.75 0 409.01 351.91 

0.25 425.15 367.28  -0.25 401.58 386.63 

0.5 412.15 364.29  -0.5 433.69 354.77 

0.75 486.20 373.16  -0.75 477.89 355.98 

0.95 677.14 380.79  -0.95 695.39 371.20 

0.95 0 553.34 374.77 -0.95 0 537.86 361.41 

0.25 549.86 383.66  -0.25 556.60 368.79 

0.5 585.05 363.55  -0.5 587.20 358.18 

0.75 712.71 360.16  -0.75 677.72 383.43 

0.95 1234.46 358.40  -0.95 1236.99 373.02 

Table 8 Comparison of the ARLs obtained by using Hotelling T-square control charts based on raw 

data and residuals from VAR(1) process in Phase I for different autocorrelation levels and various 

magnitudes of shifts 
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Table 9 shows the ARLs obtained by the use of Hotelling T-square control charts based on 

raw data and the residuals with    (   
    

)     . Although we consider    (   
    

)  

   , the trend in the average run lengths given in Table 9 for different autocorrelation levels 

within the variables are similar to the average run lengths values in Table 8. Here we see that 

in the case of considering autocorrelation only within the variables or in other words when 

the off-diagonal elements are zero in the autocorrelation coefficient matrix, the correlation 

among the error terms does not effect the average run lengths significantly in terms of the use 

of Hotelling T-square control charts applied to raw data or residuals from VAR (1) model.   

To make our study comparable to previous chapter in which univariate time series, AR (1), 

and residuals of AR(1) model with a change in the mean is considered, we add different 

amounts of shifts to each variable of bivariate first order autoregressive process.  

                                                              (4.39) 
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where    
        

 are equal zero since we assume that the expected value of variables in 

phase I is zero,    
        

 are the amounts of shifts for each variable,    
        

 are the 

       
   

      
   

       
   

       
   

        RAW RESIDUAL         RAW RESIDUAL 

0 0 356.80 356.80 0 0 393.67 393.67 

0.25 368.15 360.30  -0.25 379.36 365.41 

0.5 393.16 367.78  -0.5 426.99 375.21 

0.75 485.57 376.79  -0.75 462.97 379.25 

0.95 608.90 377.37  -0.95 588.41 370.35 

0.25 0 377.55 361.74 -0.25 0 368.79 359.11 

0.25 378.21 376.52  -0.25 387.51 377.39 

0.5 401.37 382.97  -0.5 391.59 367.01 

0.75 452.36 362.85  -0.75 423.80 374.53 

0.95 601.96 354.23  -0.95 592.51 349.05 

0.5 0 420.39 367.09 -0.5 0 414.47 368.20 

0.25 385.06 354.46  -0.25 398.70 373.38 

0.5 397.70 355.67  -0.5 384.47 347.45 

0.75 435.11 351.50  -0.75 473.30 362.67 

0.95 601.08 368.95  -0.95 644.51 376.06 

0.75 0 461.03 363.49 -0.75 0 465.64 360.40 

0.25 491.86 370.35  -0.25 462.94 369.84 

0.5 455.92 357.35  -0.5 452.54 372.69 

0.75 485.87 380.54  -0.75 471.18 388.43 

0.95 739.39 357.98  -0.95 773.12 374.92 

0.95 0 560.02 366.76 -0.95 0 588.82 343.38 

0.25 586.66 387.45  -0.25 636.32 369.09 

0.5 658.71 371.18  -0.5 632.30 377.76 

0.75 769.38 385.35  -0.75 766.97 369.11 

0.95 1172.95 389.74  -0.95 1224.63 374.06 

Table 9 Comparison of the ARLs obtained by using Hotelling T-square control charts based on raw data and 

residuals from VAR(1) process in Phase I for different autocorrelation levels and various magnitudes of shifts with 
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standard deviations of each variable. As it is seen from the equation (4.39), shift is considered 

in standard deviation unit. 

Here we will show how the shifts in the means are caught by the Hotelling T-square control 

charts. In the literature there is not enough theoretical analysis of how the shifted mean 

effects ARLs obtained by the use of Hotelling T-square control charts based on raw data and 

the residuals from VAR models. The amount of shifts in standard deviation unit considered 

for each variable are, 

    
            and     

           

Table 10 shows the ARLs obtained by the use of Hotelling T-square control chart based on 

raw data and the residuals from the VAR (1) model when at least one of mean of the variable 

is shifted to a new value. 

 

       
     

      
   

      
     

      
     

      
   

      
   

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 204.61 204.61 127.37 127.37 65.20 65.20 

0.25 198.04 196.58 136.14 157.84 67.23 67.12 

0.5 207.94 205.48 139.78 172.95 69.39 65.14 

0.75 207.55 192.45 151.58 191.80 71.43 66.09 

0.95 253.66 201.09 217.47 185.81 77.94 68.80 

0.25 0 203.31 247.01 126.78 151.34 70.77 106.55 

0.25 210.01 245.46 130.75 186.05 73.62 110.49 

0.5 205.41 244.32 139.46 199.90 67.92 106.94 

0.75 229.09 265.21 159.39 219.36 75.01 116.18 

0.95 278.20 245.15 208.41 235.16 86.12 114.58 

0.5 0 206.60 273.43 136.27 166.25 80.01 159.39 

0.25 218.23 299.39 136.30 202.78 75.81 165.26 

0.5 225.53 295.49 146.98 249.69 76.86 167.55 

0.75 251.09 290.06 158.98 263.48 81.34 160.51 

0.95 282.07 294.94 226.45 283.34 93.53 169.73 

0.75 0 262.03 342.03 152.06 187.03 104.56 245.41 

0.25 249.87 339.92 164.41 235.18 99.67 242.94 

0.5 268.35 348.12 172.10 267.58 97.45 240.37 

0.75 274.86 326.87 184.68 289.61 108.38 249.04 

0.95 362.41 327.68 296.39 298.21 128.27 232.25 

0.95 0 395.95 343.50 219.27 206.13 207.90 172.21 

0.25 412.78 337.71 213.08 229.25 206.83 160.54 

0.5 426.25 351.96 238.98 281.11 205.16 180.22 

0.75 482.63 341.15 272.75 319.46 239.99 187.31 

0.95 826.36 349.54 588.26 303.71 339.04 186.15 

Table 10 Comparison of the ARLs obtained by using Hotelling T-square control charts based on raw data and 

residuals from VAR(1) process in Phase II for different positive autocorrelation levels and various magnitudes of 

shifts 

 

 

 

 

 



Monitoring Multivariate Time Series  

 

42 

 

 

       
   

      
     

      
   

      
   

      
   

      
   

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 51.41 51.41 27.02 27.02 9.07 9.07 

0.25 54.03 57.63 27.74 36.29 9.49 9.38 

0.5 53.64 64.25 29.92 46.77 9.61 9.51 

0.75 57.66 64.70 35.49 54.62 9.87 9.57 

0.95 72.01 65.82 50.02 29.06 10.27 9.41 

0.25 0 53.17 77.47 28.34 37.06 10.49 20.63 

0.25 54.20 90.53 29.20 52.23 10.53 19.78 

0.5 56.37 101.58 31.18 68.77 10.71 19.75 

0.75 59.45 108.32 37.74 88.97 10.68 20.41 

0.95 74.14 103.73 55.06 50.85 11.22 18.24 

0.5 0 56.17 104.37 29.35 45.94 12.46 43.50 

0.25 59.74 118.55 31.32 69.24 12.55 39.41 

0.5 62.08 143.25 33.68 95.27 13.14 41.40 

0.75 69.32 163.17 42.81 128.86 13.12 40.28 

0.95 81.97 154.43 60.16 73.95 14.74 39.93 

0.75 0 74.67 145.55 36.07 52.15 17.78 67.79 

0.25 78.83 169.41 39.02 84.19 17.64 68.95 

0.5 77.62 192.46 40.42 123.91 18.66 74.47 

0.75 89.04 222.96 52.66 160.13 18.99 67.94 

0.95 123.25 210.64 74.99 97.26 21.44 69.30 

0.95 0 132.07 114.96 52.70 32.71 47.60 1.15 

0.25 124.29 119.46 57.81 53.60 48.48 1.32 

0.5 145.40 148.37 63.01 76.17 52.28 1 

0.75 174.68 142.36 83.14 92.22 52.23 1 

0.95 280.61 131.12 173.13 46.75 64.50 1.48 

 

       
   

      
     

      
   

      
   

      
   

      
   

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 9.29 8.29 6.50 6.50 2.96 2.95 

0.25 9.24 8.34 6.59 7.18 3.29 3.91 

0.5 9.56 8.73 6.57 7.47 3.71 4.67 

0.75 10.67 9.22 7.25 7.66 4.04 3.96 

0.95 11.11 7.72 7.99 3.87 4.93 1 

0.25 0 10.40 17.25 7.04 11.03 3.14 3.78 

0.25 10.15 16.98 7.40 14.66 3.40 5.32 

0.5 10.27 16.47 7.64 14.98 3.60 6.62 

0.75 11.27 19.36 8.07 16.06 4.18 6.54 

0.95 12.81 17.61 9.40 7.87 5.28 1.01 

0.5 0 12.70 30.51 8.26 18.01 3.45 4.25 

0.25 12.32 32.94 8.10 22.23 3.76 6.99 

0.5 12.45 35.74 8.72 27.77 4.06 10.02 

0.75 13.08 37.95 10.10 31.41 4.80 10.41 

0.95 16.42 33.32 11.55 12.39 6.27 1 

0.75 0 18.26 47.28 11.31 21.58 4.06 3.81 

0.25 17.14 52.86 11.10 30.89 4.32 6.44 

0.5 18.80 61.03 12.48 43.08 5.06 10.03 

0.75 20.09 68.02 13.43 45.68 5.95 10.56 

0.95 23.48 49.56 16.96 13.21 8.70 1 

0.95 0 40.04 1 19.69 1.03 4.89 1 

0.25 42.69 1.03 20.35 1 5.49 1 

0.5 46.44 1.75 24.81 1.23 6.57 1.01 

0.75 54.86 1.06 29.61 1 9.19 1 

0.95 77.06 1 49.71 1 19.96 1 
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        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 2.53 2.53 2.43 2.43 2.29 2.29 

0.25 2.55 2.57 2.52 2.55 2.24 2.24 

0.5 2.63 2.64 2.35 2.33 2.31 2.31 

0.75 2.61 2.54 2.55 2.51 2.16 2.07 

0.95 2.47 2.41 2.56 2.10 2.33 1.33 

0.25 0 2.87 4.23 2.77 3.96 2.32 3.04 

0.25 2.76 4.09 2.76 4.07 2.41 3.34 

0.5 2.91 4.40 2.81 4.13 2.36 3.33 

0.75 2.94 4.50 2.68 3.76 2.52 3.42 

0.95 2.94 4.38 2.78 3.37 2.75 1.83 

0.5 0 3.31 7.20 3.31 6.31 2.68 4.19 

0.25 3.43 7.69 3.12 6.32 2.84 5.04 

0.5 3.33 7.32 3.36 6.22 2.85 5.27 

0.75 3.55 7.11 3.38 7.47 2.90 5.34 

0.95 3.50 7.55 3.33 5.62 3.01 2.16 

0.75 0 4.68 6.02 4.34 4.13 3.71 3.32 

0.25 5.02 5.84 4.59 5.81 3.74 3.58 

0.5 4.95 6.48 4.84 6.28 3.44 4.41 

0.75 4.70 6.29 4.76 5.62 3.97 3.74 

0.95 5.23 6.63 4.98 4.05 4.31 1.31 

0.95 0 12.15 1 10.78 1 6.33 1 

0.25 12.43 1 9.76 1 7.15 1 

0.5 11.95 1 10.83 1 8.05 1 

0.75 14.72 1 12.99 1 8.99 1 

0.95 17.06 1 15.02 1 11.99 1 

 

       
   

      
   

      
   

      
   

        RAW RESIDUAL RAW RESIDUAL 

0 0 1.59 1.59 1.19 1.19 

0.25 1.57 1.58 1.24 1.25 

0.5 1.63 1.61 1.28 1.21 

0.75 1.71 1.34 1.25 1.03 

0.95 1.80 1 1.29 1 

0.25 0 1.69 1.85 1.24 1.23 

0.25 1.68 2.01 1.21 1.26 

0.5 1.75 1.95 1.27 1.26 

0.75 1.78 1.6 1.29 1.04 

0.95 1.79 1.01 1.32 1 

0.5 0 1.8 1.81 1.19 1.11 

0.25 1.79 2.25 1.24 1.27 

0.5 1.91 2.68 1.28 1.25 

0.75 1.95 2.27 1.31 1.04 

0.95 2.18 1 1.44 1 

0.75 0 1.90 1.29 1.21 1.04 

0.25 2.04 1.62 1.29 1.08 

0.5 2.23 1.70 1.37 1.06 

0.75 2.53 1.19 1.42 1.01 

0.95 2.77 1 1.66 1 

0.95 0 2.42 1 1.28 1 

0.25 2.61 1 1.35 1 

0.5 3.08 1 1.45 1 

0.75 3.99 1 1.61 1 

0.95 6.50 1 2.41 1 
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In Table 10 we show how the average run lengths change in the combination of different 

autocorrelation level and different magnitudes of the shifts which are considered in standard 

deviation unit in the process mean. In the comparison of ARLs obtained by the use of 

Hotelling T-square control chart based on raw data and the Hotelling T-square control chart 

based on residuals from the VAR (1) model, the lower ARLs obtained by the use of Hotelling 

T-square control chart based on residuals than ARLs obtained by the use of Hotelling T-

square control charts based on raw data are marked with red color.  

As it is seen from the Table 10, Hotelling T-square control charts with the residuals shows 

better performance when the     and     are larger than 0.75 for all magnitudes of shifts. 

We can see the same interpretation was valid for the univariate autocorrelated chart in the 

previous chapter. In Table 7 in chapter 3, when the autocorrelation level of variable is larger 

than 0.75 for all magnitudes of shifts, X-chart based on the residuals from the first order 

autoregressive model detect the shift earlier than the X-chart based on the raw data. 

Therefore, we can say that if both of the variables have high autocorrelation level such as 

0.95, or the first and the second eigenvalues of autocorrelation matrix is 0.95, then the 

Hotelling T-square control charts based on residual statistics can detect the shift earlier than 

Hotelling T-square charts based on raw data, or in other words, out of control ARLs obtained 

by the use Hotelling T-square control chart based on residuals  is less than that of ARLs 

obtained by the use of Hotelling T-square control chart based on raw data when at least one 

of the process variable has standard deviation unit shift in the process mean. 

Another result from Table 10 is that if any autocorrelation level of any variable is as high as 

0.95 and any of the variable has at least 2 standard deviation unit shift in the process mean, 

then the Hotelling T-square chart based on residual statistics performs better than the 

Hotelling T-square charts based on raw data. If one of the variables has no autocorrelation, 

then the Hotelling T-square control charts based on residual statistics shows better 

performance for all combination of autocorrelation level and the amount of shift for the 

second variable. When both variables have at least 2 standard deviation unit shift, or one of 

the variable has at least 3 standard deviation unit shift and the other has at least 0.5 standard 

deviation unit shift in the process mean, then the Hotelling T-square control chart based on 

the residual performs well if the one of the variable has not autocorrelation and the other has 

high autocorrelation level such as 0.75 and 0.95. 

Finally we observe that if the shift in standard deviation unit for both variables is as high as 3, 

then the Hotelling T-square control chart based on residual performs well to detect the shift in 

the process mean almost for all combinations of moderate and high autocorrelation levels. 

This result may also be seen for the univariate autocorrelated process in chapter 3 in which 

when the process shift is 3 standard deviation unit, residual chart performs well.                

Now we will see how the correlation between the error terms effects the average run lengths 

in Phase II when the process mean shifted to a new value. As we consider in Phase I, we 

assume the correlation level between the variables as 0.9, i.e.    (   
    

)      
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) 

Table 11 with the correlation effect between the error terms can be seen with different 

autocorrelation levels and different amounts of shift in the process mean. 

 

       
     

      
   

      
     

      
     

      
   

      
   

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 50.09 50.090 186.50 186.50 5.60 5.60 

0.25 65.29 48.64 192.86 194.22 9.29 6.25 

0.5 113.25 49.30 193.86 157.07 20.21 6.06 

0.75 176.11 47.44 223.05 110.52 43.86 5.68 

0.95 266.69 51.52 242.08 49.12 69.64 6.00 

0.25 0 69.79 85.17 193.41 181.54 9.71 11.82 

0.25 49.37 82.78 202.31 250.22 6.64 11.66 

0.5 78.29 90.48 211.20 251.88 11.72 11.68 

0.75 146.74 85.56 242.18 189.20 32.05 11.50 

0.95 262.05 87.06 283.03 93.02 68.59 11.95 

0.5 0 125.71 140.46 206.42 146.96 26.77 25.66 

0.25 81.71 135.35 209.86 227.12 13.55 25.41 

0.5 63.21 143.41 208.04 303.82 8.66 26.62 

0.75 104.40 139.32 263.27 265.65 19.19 23.98 

0.95 268.59 143.66 322.85 156.29 69.80 24.00 

0.75 0 235.74 219.60 209.28 106.51 71.87 36.42 

0.25 191.89 219.65 239.22 184.69 54.90 44.99 

0.5 131.85 202.24 273.92 266.44 28.17 44.73 

0.75 84.74 203.45 275.67 325.23 11.74 39.04 

0.95 276.25 214.92 404.86 244.96 67.85 39.71 

0.95 0 411.83 118.96 243.89 50.87 200.62 1.00 

0.25 451.10 131.94 273.93 90.32 198.15 1.00 

0.5 425.47 115.89 313.60 148.61 183.89 1.00 

0.75 428.22 128.57 420.92 237.97 157.42 1.00 

0.95 277.13 118.87 760.32 318.87 45.31 1.00 

Table 11 Comparison of the ARLs obtained by using Hotelling T-square control charts based on raw data and 

residuals from VAR(1) process in Phase II for different positive autocorrelation levels and various magnitudes of 

shifts with    (   
    

)      
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        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 32.02 32.02 67.93 67.93 1.10 1.10 

0.25 38.20 21.72 68.30 65.03 1.26 1.10 

0.5 56.59 15.49 69.10 40.64 2.09 1.09 

0.75 67.90 11.97 65.24 19.15 4.55 1.11 

0.95 79.24 7.72 73.66 1.18 8.80 1.10 

0.25 0 41.42 82.02 61.60 59.89 1.33 1.11 

0.25 32.20 57.76 65.77 104.22 1.10 1.09 

0.5 44.83 41.88 72.22 99.59 1.36 1.12 

0.75 67.78 27.89 77.38 52.94 3.18 1.12 

0.95 85.11 19.03 78.71 1.23 8.75 1.12 

0.5 0 74.66 171.74 68.54 38.64 2.69 1.08 

0.25 53.96 133.37 69.69 98.69 1.51 1.08 

0.5 37.67 100.31 71.93 162.97 1.13 1.05 

0.75 58.24 75.34 84.46 129.75 2.11 1.05 

0.95 93.72 46.61 96.13 3.68 9.16 1.07 

0.75 0 116.87 161.78 67.42 20.19 9.20 1.00 

0.25 113.59 185.06 76.56 50.82 5.58 1.00 

0.5 92.28 190.76 86.77 138.58 2.61 1.00 

0.75 55.24 173.38 102.27 237.08 1.21 1.00 

0.95 118.06 119.93 150.11 19.70 7.65 1.00 

0.95 0 182.67 1.26 68.78 1.10 43.09 1.00 

0.25 194.24 1.14 81.43 1.46 42.73 1.00 

0.5 224.09 1.03 96.97 3.46 33.83 1.00 

0.75 273.37 2.35 140.46 20.85 22.63 1.00 

0.95 182.49 54.52 334.50 168.21 1.67 1.00 

 

       
   

      
     

      
   

      
   

      
   

      
   

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 1.64 1.64 3.69 3.69 8.52 8.52 

0.25 2.04 1.56 4.25 2.74 8.98 8.25 

0.5 3.71 1.58 6.63 2.38 9.40 4.92 

0.75 6.94 1.68 8.81 2.23 8.96 2.01 

0.95 9.62 2.02 10.27 1.40 7.71 1.00 

0.25 0 2.38 2.33 5.07 9.40 9.17 8.04 

0.25 1.79 2.10 3.92 6.17 9.47 18.29 

0.5 2.37 1.96 4.64 4.47 10.37 15.74 

0.75 5.57 2.14 8.08 3.69 10.03 4.30 

0.95 10.14 2.49 11.90 1.77 10.29 1.00 

0.5 0 5.88 3.85 11.00 20.52 8.88 4.54 

0.25 2.85 2.99 7.63 17.77 10.30 15.09 

0.5 1.90 2.70 5.00 12.81 11.13 35.50 

0.75 4.07 3.07 7.14 8.21 13.29 17.71 

0.95 11.43 4.66 14.02 3.52 12.93 1.00 

0.75 0 18.40 1.74 20.92 3.81 8.66 1.92 

0.25 12.08 1.29 19.72 8.15 10.67 4.50 

0.5 6.08 1.25 15.29 11.23 13.34 19.00 

0.75 2.48 1.63 7.26 14.70 17.82 65.16 

0.95 12.19 6.06 18.19 14.85 21.71 1.00 

0.95 0 54.19 1.00 35.14 1.00 7.97 1.00 

0.25 56.40 1.00 36.94 1.00 9.24 1.00 

0.5 56.57 1.00 48.66 1.00 11.66 1.00 

0.75 46.35 1.00 61.66 1.00 19.61 1.00 

0.95 7.09 1.00 23.99 1.00 64.24 1.00 
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        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 1.00 1 1.00 1.004 1.05 1.05 

0.25 1.00 1 1.03 1.00 1.15 1.06 

0.5 1.08 1 1.24 1.00 1.44 1.09 

0.75 1.48 1 1.89 1.01 2.09 1.23 

0.95 2.32 1 2.60 1.27 2.48 1.50 

0.25 0 1.00 1 1.03 1.00 1.17 1.06 

0.25 1.00 1 1.00 1.00 1.06 1.06 

0.5 1.00 1 1.03 1.00 1.20 1.07 

0.75 1.22 1 1.49 1.01 1.96 1.17 

0.95 2.29 1 2.63 1.21 2.70 1.51 

0.5 0 1.08 1 1.33 1.00 2.01 1.00 

0.25 1.00 1 1.04 1.00 1.27 1.01 

0.5 1.00 1 1.00 1.00 1.07 1.02 

0.75 1.03 1 1.14 1.00 1.43 1.10 

0.95 2.35 1 2.87 1.09 3.13 1.65 

0.75 0 2.09 1 3.35 1.00 4.55 1.00 

0.25 1.43 1 2.12 1.00 3.44 1.00 

0.5 1.05 1 1.18 1.00 1.77 1.00 

0.75 1.00 1 1.00 1.00 1.09 1.00 

0.95 1.91 1 2.37 1.00 3.37 1.23 

0.95 0 10.42 1 12.73 1.00 11.30 1.00 

0.25 8.76 1 12.80 1.00 12.39 1.00 

0.5 6.62 1 11.48 1.00 13.43 1.00 

0.75 2.93 1 6.69 1.00 11.96 1.00 

0.95 1.00 1 1.04 1.00 1.25 1.00 

 

       
   

      
   

      
   

      
   

        RAW RESIDUAL RAW RESIDUAL 

0 0 1.78 1.78 2.40 2.40 

0.25 1.92 1.61 2.49 2.26 

0.5 2.26 1.59 2.41 1.59 

0.75 2.61 1.56 2.14 1.02 

0.95 2.32 1.00 1.70 1.00 

0.25 0 2.25 2.92 2.46 2.25 

0.25 1.96 2.38 2.52 3.46 

0.5 2.20 2.15 2.74 3.04 

0.75 2.70 1.77 2.62 1.06 

0.95 2.82 1.00 2.07 1.00 

0.5 0 3.35 2.28 2.34 1.60 

0.25 2.94 3.94 2.67 2.91 

0.5 2.26 3.47 3.10 6.00 

0.75 2.69 2.77 3.31 1.72 

0.95 3.52 1.00 2.76 1.00 

0.75 0 4.19 1.00 2.23 1.03 

0.25 4.64 1.00 2.60 1.07 

0.5 4.80 1.03 3.24 1.55 

0.75 3.04 2.39 4.24 5.52 

0.95 4.70 1.00 4.39 1.00 

0.95 0 4.00 1.00 1.69 1.00 

0.25 4.85 1.00 2.03 1.00 

0.5 7.12 1.00 2.63 1.00 

0.75 11.01 1.00 4.74 1.00 

0.95 8.82 1.00 13.48 1.00 
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In Table 11, firstly, we see that the number of ARLs in red color increases when we add the 

correlation between the error terms, so we can say that if the error terms in one variable are 

highly correlated with the error terms of other variable, the detection capability of Hotelling 

T-square control chart based on residual statistics increases. When there is a some amount of 

difference between the shift such as at least 1.5 standard deviation unit difference, and the 

error terms are highly correlated,    (   
    

)     , then we can say that the Hotelling T-

square control chart based on the residual statistics works well to detect the shift than 

Hotelling T-square charts based on raw data. 

In the previous chapter, when the autocorrelation level is negative, the detection capability of 

X-chart based residuals was better than the X-chart based on raw data. Here we can see the 

same interpretation for all combination of negative autocorrelation levels and the amount of 

shifts.  The out of control ARL of by the use of Hotelling T-square control chart based on 

residual statistics for the first order vector autoregressive process with  

                           and                             is smaller than the 

ARLs of Hotelling T-square control chart based on raw data. The tables with negative 

autocorrelation levels can be seen appendix in Tables A.1 and A.2. When the amount of shift 

is low and the negative autocorrelation level is high, the detection capability of Hotelling T-

square control chart based on residuals is significantly better than the detection capability of 

Hotelling T-square control charts based on raw data. For example,    
            

   

,the Hotelling T-square control chart based on raw data detect the shift at 540 while Hotelling 

T-square control chart based on residual detect the shift at 3.204. ARLs in each combination 

of autocorrelation level and shift show that the residual chart is better. If the correlation 

coefficient between the error terms is high and the variables are negatively autocorrelated, 

when the variables have same amount of shift, the ARLs for each combination of 

autocorrelation level in the variables increases, compared to the tables without any 

correlation between the error terms. For example when    
            

     the ARLs of 

each combination of autocorrelation level in Table 12 is lower than the ARLs of Table 11 in 

which    
            

     conversely, when the variables have different amounts of 

shifts, ARLs decrease. 

 

 

 

 

 

 

 

 



 

 

Chapter 5 
 

 

Hotelling T-square Statistics on Data Matrix 

with Lagged Variables 
 

Mason and Young (2002) suggest that the relationship between the process variables requires 

adding additional lag variables to the historical data since the observation of one variable at 

time t may be dependent to previous observations of other variables. For example suppose 

that the process has two variables      and      where t =1,2,….n, and the process has first 

order vector autoregressive procedure in which       and       are,  

                                 

                                 

As it is seen, variable      is dependent on the previous value of itself,       ,  and previous 

value of other variable       . Similarly      has relationship with         and       . 

Therefore, according to Mason and Young (2002) the dataset should be reconstructed in the 

form of 

[                                       ] 

where t=2,…,n. For the higher order autoregressive relationships, more lag variables can be 

added to the dataset.  

To see the effect of these time-lagged variables on the Hotelling T-square control chart, 

Mason and Young (2002) compare the T-square statistics without and with lag variables in 

the example of Reactor data. They decide the T-square statistics with lagged variables are 

more sensitive than the T-square statistics without lagged variables. They show that the T-

square statistics with lagged variables perform well in signal detection. 

In this chapter, we will work on the performance of reconstructed data with lagged variables. 

We will see the effect of these time lagged variables on T-square control procedure by using 

the average run length performance tool. Same combinations of autocorrelation levels and the 

amount of shifts will be considered for each variable. First we consider the Phase I in which 

each variables has first order autoregressive procedure. The data vector is reconstructed with 

one lagged variables as following, 

[                                    ] 
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The Table 12 shows the average run lengths for each combination of autocorrelation level for 

two variables in Phase I in which the process is in control. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it is seen from the Table 12, when the autocorrelation level increases, the average run 

length increases or in other words, false alarm rate of process decreases. While standard 

average run length values are 370 with 0.0027 false alarm rate, here with the lagged 

variables, this value increases. The reason of having these higher ARLs when the process is 

in control is the correlation which is occurred in the calculation of T-square statistics with 

lagged variables. If we focus on T-square calculation with lagged variables; 

 

  
                                                               (5.1) 

For identity matrix, we have 

  
                                                                  (5.2) 

where,  t =2,…,n 

  
  [        

            
                              ] [

        

          

        

          

] 

      
   

      
   

       
   

       
   

        LAGGED         LAGGED 

0 0 460.48 0 0 462.87 

0.25 483.09  -0.25 481.16 

0.5 438.77  -0.5 448.08 

0.75 459.08  -0.75 467.09 

0.95 454.40  -0.95 492.32 

0.25 0 455.42 -0.25 0 465.41 

0.25 440.91  -0.25 466.39 

0.5 464.28  -0.5 449.19 

0.75 449.44  -0.75 457.05 

0.95 503.96  -0.95 506.79 

0.5 0 452.72 -0.5 0 449.01 

0.25 461.61  -0.25 454.95 

0.5 483.30  -0.5 464.65 

0.75 483.94  -0.75 463.36 

0.95 492.69  -0.95 462.39 

0.75 0 467.25 -0.75 0 457.25 

0.25 461.24  -0.25 486.82 

0.5 446.66  -0.5 468.22 

0.75 460.41  -0.75 489.94 

0.95 515.36  -0.95 504.49 

0.95 0 461.59 -0.95 0 492.48 

0.25 485.05  -0.25 509.41 

0.5 488.31  -0.5 511.94 

0.75 506.58  -0.75 498.96 

0.95 501.17  -0.95 510.26 

Table 12 Comparison of the ARL obtained by using Hotelling T-square control 

charts based on data matrix with lagged variables in Phase I with different 

autocorrelation levels 



Hotelling T-square Statistics on Data Matrix with Lagged Variables  

 

51 

 

 

  
           

            
            

            
   

  
           

            
            

            
   

  
           

            
            

            
   

  

    
  (          

)
 
 (          

)
 
 (          

)
 
 (          

)
 
             (5.3) 

  
           

              
            

   (          
)
 
                   (5.4) 

As it seen from the equation 5.3 and 5.4,      
   and   

  has the same terms which are 

(          
)
 
   and  (          

)
 
. Each calculation uses the two terms which are used in 

previous calculation of T-square statistic. So, this is causing the high average run length 

values in the calculations. To observe how the performance of Hotelling T-square control 

chart of data with lagged variables in the case of standard deviation unit shift in the process 

mean with positive autocorrelation level, the results when the process is out of control can be 

seen in Table 13.  

        
     

      
   

     
     

    
     

      
   

      
   

      
   

    
     

      
   

      
   

      
   

      
   

      
   

    
     

        LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED 

0 0 230.79 125.67 59.13 44.18 21.25 5.78 5.56 

0.25 212.35 143.85 58.13 45.93 25.97 6.22 5.16 

0.5 219.05 159.05 57.48 51.13 31.37 6.15 5.63 

0.75 231.49 176.32 58.42 49.31 36.74 6.19 5.92 

0.95 226.45 206.47 63.02 57.00 44.18 6.49 5.70 

0.25 0 254.33 152.95 81.75 57.58 25.96 10.35 8.55 

0.25 261.12 165.42 84.69 63.10 32.73 10.29 8.84 

0.5 263.21 179.16 83.11 67.04 39.73 10.05 9.79 

0.75 260.63 206.21 85.70 70.31 47.86 10.28 9.48 

0.95 262.53 248.82 95.07 77.27 64.71 10.11 9.71 

0.5 0 301.97 158.83 116.56 74.88 31.30 16.83 13.51 

0.25 299.53 168.44 113.51 80.02 35.86 16.18 15.25 

0.5 294.50 209.42 109.06 93.77 48.14 16.39 15.35 

0.75 296.84 225.95 115.27 97.21 59.04 15.84 15.49 

0.95 316.29 251.77 121.08 107.52 73.34 16.83 16.41 

0.75 0 346.34 177.61 147.70 87.96 36.67 27.58 22.97 

0.25 323.85 202.67 151.92 101.09 47.39 29.50 23.34 

0.5 339.06 215.88 147.03 115.85 60.19 26.35 24.72 

0.75 329.08 247.02 154.62 121.46 75.95 28.68 25.81 

0.95 349.95 299.06 166.38 126.85 98.17 28.23 28.25 

0.95 0 402.85 219.05 222.85 131.07 44.55 63.36 41.94 

0.25 387.30 241.68 215.72 148.97 59.25 64.44 46.11 

0.5 359.44 251.88 230.44 157.89 79.54 64.19 53.92 

0.75 404.36 291.95 214.79 176.31 99.72 62.84 53.28 

0.95 407.63 333.02 245.04 199.99 141.84 63.01 59.46 

Table 13 Comparison of the ARLs obtained by using Hotelling T-square control charts based on data matrix with 

lagged variables in Phase II for different positive autocorrelation levels and various magnitudes of shifts 
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        LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED 

0 0 4.32 1.83 1.53 1.47 1.34 1.10 1.01 

0.25 4.37 2.27 1.58 1.47 1.42 1.15 1.03 

0.5 4.69 2.60 1.57 1.45 1.35 1.20 1.03 

0.75 5.17 3.18 1.44 1.47 1.43 1.23 1.06 

0.95 5.32 3.74 1.53 1.50 1.43 1.29 1.08 

0.25 0 6.32 2.25 2.34 2.14 1.83 1.24 1.03 

0.25 7.09 2.78 2.33 2.02 1.92 1.35 1.05 

0.5 7.58 3.73 2.30 2.03 2.03 1.44 1.07 

0.75 8.05 4.46 2.26 2.21 2.06 1.58 1.11 

0.95 8.33 5.36 2.47 2.29 2.04 1.61 1.26 

0.5 0 8.98 2.58 3.38 3.16 2.74 1.43 1.04 

0.25 10.23 3.63 3.71 3.26 2.99 1.63 1.11 

0.5 11.32 4.51 3.63 3.25 2.96 1.71 1.15 

0.75 12.94 5.92 3.67 3.38 3.09 2.11 1.34 

0.95 14.30 8.58 3.70 3.47 3.30 2.12 1.51 

0.75 0 12.57 3.03 6.79 5.11 3.95 1.76 1.06 

0.25 15.29 4.43 6.91 5.78 4.27 2.07 1.17 

0.5 17.43 6.01 6.82 6.02 4.47 2.48 1.40 

0.75 20.13 8.76 7.01 6.07 5.40 3.24 1.52 

0.95 23.77 12.72 7.37 6.18 5.77 3.72 1.83 

0.95 0 20.32 3.66 18.17 12.12 7.04 1.99 1.08 

0.25 25.92 5.61 17.66 11.43 9.27 2.597 1.28 

0.5 33.49 7.83 18.72 12.83 11.50 3.82 1.42 

0.75 39.57 12.66 16.83 14.09 11.19 5.37 1.94 

0.95 46.74 23.56 17.19 16.06 14.21 8.11 2.70 

 

From the Table 13, the average run lengths with higher autocorrelation levels indicate higher 

ARLs than the ARLs of lower autocorrelation levels. Also increasing amount of shift leads to 

decrease in the average run lengths for all different combinations of autocorrelation levels.  

Now we will consider that there is correlation between the variables such a 0.9 level. Table 

15 shows the Hotelling T-square control chart performance for the dataset which have lagged 

variables with    (   
    

)     . When there is at least 1.5 standard deviation unit 

difference between the process means, and the variable which has the biggest shift has low 

autocorrelation level such as 0.25, then the Hotelling T-square chart based on the data matrix 

with lagged variables may be an alternative to the Hotelling T-square control chart based on 

raw data to detect the shift early. For example when    
          

   and the     

             , the detection capability of Hotelling T-square control chart based on data 

matrix with lagged variables is better than the Hotelling T-square control charts based on raw 

data. Also when the amount of shift for each variable increases, the detection capability of 

Hotelling T-square control charts based on data matrix with lagged variables gets better 

compare to the raw data applications. For moderate and low autocorrelation level when 

   (   
    

)     , the detection capability of Hotelling T-square control chart based on 

data matrix with lagged variables is better than the Hotelling T-square control chart based on 

residuals from the VAR (1) model even ARLs are not set to 370.  

 

Table 13 Continued 
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        LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED 

0 0 42.04 225.91 3.65 22.94 52.22 1.00 1.08 

0.25 45.84 205.08 4.33 19.27 56.11 1.00 1.14 

0.5 60.04 175.82 5.67 15.76 38.98 1.04 1.15 

0.75 62.76 140.73 7.05 14.10 22.45 1.08 1.16 

0.95 73.89 98.50 7.94 9.48 11.30 1.10 1.13 

0.25 0 67.17 212.53 7.82 49.58 48.84 1.05 1.80 

0.25 58.94 259.95 6.33 38.01 77.94 1.03 1.298 

0.5 73.41 264.86 7.73 34.18 72.09 1.07 1.49 

0.75 98.75 215.34 12.95 29.90 46.63 1.29 1.77 

0.95 121.90 160.37 16.96 23.53 27.86 1.58 1.71 

0.5 0 133.16 184.73 20.17 96.80 36.85 1.74 5.44 

0.25 107.51 245.09 14.54 73.83 77.54 1.26 3.07 

0.5 85.39 296.46 9.85 55.20 105.54 1.08 1.90 

0.75 114.96 264.58 17.57 51.09 98.54 1.46 2.59 

0.95 174.56 228.54 33.42 48.95 57.25 2.74 3.79 

0.75 0 235.27 140.97 61.61 131.32 22.93 6.54 21.26 

0.25 211.95 220.32 51.33 136.37 49.15 4.86 14.60 

0.5 169.68 281.68 34.92 118.85 100.85 2.50 8.15 

0.75 118.85 316.75 19.20 82.73 150.26 1.29 2.95 

0.95 235.11 315.14 57.40 96.21 128.56 5.73 8.70 

0.95 0 362.72 93.11 192.25 98.73 11.57 42.48 50.31 

0.25 372.79 157.07 198.22 145.30 26.16 40.96 64.50 

0.5 378.45 230.10 175.64 190.30 60.08 33.53 58.70 

0.75 343.95 330.95 145.06 219.24 129.53 21.95 48.87 

0.95 197.47 438.50 45.14 141.76 213.10 2.27 7.87 

Table 14 Comparison of the ARLs obtained by using Hotelling T-square control charts based on data matrix with 

lagged variables in Phase II for different positive autocorrelation levels and various magnitudes of shifts with 

   (   
    

)      

 

        
   

      
    

     
    

    
     

      
     

       
      

      
   

    
       

      
    

       
     

      
    

        
     

      
   

    
     

        LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED 

0 0 2.00 5.31 1.00 1.00 1.00 1.17 1.37 

0.25 1.72 5.42 1.00 1.00 1.00 1.09 1.38 

0.5 1.53 3.54 1.00 1.00 1.00 1.03 1.15 

0.75 1.41 2.12 1.00 1.00 1.00 1.01 1.01 

0.95 1.19 1.21 1.00 1.00 1.00 1.00 1.00 

0.25 0 5.13 5.28 1.00 1.00 1.04 1.92 1.38 

0.25 3.28 9.12 1.00 1.00 1.00 1.50 1.95 

0.5 2.91 8.73 1.00 1.00 1.00 1.32 1.92 

0.75 2.69 4.80 1.00 1.00 1.02 1.15 1.29 

0.95 1.94 2.08 1.00 1.01 1.01 1.02 1.02 

0.5 0 13.69 3.41 1.01 1.10 1.74 2.87 1.14 

0.25 9.25 9.01 1.00 1.01 1.17 3.19 1.85 

0.5 5.28 15.10 1.00 1.00 1.03 2.20 3.14 

0.75 5.25 12.47 1.00 1.02 1.10 1.79 2.57 

0.95 4.38 5.14 1.06 1.15 1.18 1.30 1.35 

0.75 0 21.35 1.97 1.39 3.07 5.83 2.07 1.02 

0.25 28.19 5.32 1.14 1.91 4.03 4.49 1.29 

0.5 19.84 12.78 1.03 1.15 2.21 5.63 2.75 

0.75 9.95 26.04 1.00 1.00 1.14 4.05 5.72 

0.95 14.00 18.06 1.34 1.53 2.13 3.31 3.23 

0.95 0 11.28 1.22 9.36 15.61 7.17 1.14 1.00 

0.25 23.12 2.14 8.77 15.23 11.64 1.76 1.02 

0.5 42.84 5.39 6.35 13.92 14.31 3.94 1.27 

0.75 63.45 17.81 3.35 6.88 13.41 10.71 3.46 

0.95 26.43 61.16 1.00 1.04 1.59 9.73 15.39 

Table 14 Continued 
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When there is high correlation between the variables, generally Hotelling T-square control 

charts based on residuals is better when the autocorrelation level of one variable is at high 

level, for the low autocorrelation level Hotelling T-square control chart based on data matrix 

with lagged variables, even in control ARLs are not set to 370, can be an alternative to the 

Hotelling T-square control chart based on raw data. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 6 
 

 

Comparison of Proposed Methods 
 

The ARL of each combination of autocorrelation level may be deceptive since the in control 

ARL is not all equal to 370. However, it is important to adjust the control limits to in control 

ARL to interpret the out of control performance of the proposed charts. In this chapter, in 

order to obtain in control ARL of 370, the upper control limit is adjusted 370. Datasets are 

generated based on three different autocorrelation matrices. These datasets are used to 

compare all the methods we propose until now. Comparison results are presented different 

combination of the amounts of shifts in the process mean with the covariance of error terms, 

  (
    
    

)     and         (
  
  

) 

The tables below indicate the performance of proposed methods with 3 different 

autocorrelation matrices.The first matrix that we consider is 

   (
      
      

)                                                                 

Adjusted limits for that matrix in terms of proposed methods with covariance matrix of error 

term   can be seen in the Table 15a below. In Table 15a,    indicates the covariance matrix 

of error terms of the generated datasets. In this matrix, if the off-diagonal element is different 

from zero, then it means the error terms of the generated variables are correlated. ‘RAW’ 

indicates the adjusted upper control limit in order to obtain in control ARL of 370 for the 

Hotelling T-square control chart based on raw data which have VAR (1) structure. ‘VAR’ 

shows the theoretical upper control limit for Hotelling T-square control chart based on 

residuals from VAR (1) model. ‘AR’ indicates the adjusted UCL for Hotelling T-square 

control chart based on residuals from an AR (1) model fitted to each variable individually. 

Since fitting AR (1) model to the variables ignores the cross correlation among th variables, 

UCL limit should be adjusted to 370. ‘LAG’ gives the adjusted upper control limit for 

Hotelling T-square control chart based on the data matrix with lagged variables. These 

adjusted upper control limits are considered for the autocorrelation matrix that we considered 

in (6.1). The results without adjustments in which theoretical UCL is used for all Hotelling T-

square control charts mentioned above can be seen in appendix C.  

In Table 15b, in the case of different combination of the amounts of the shifts, the values 

under the column ‘RAW’ indicates the ARLs obtained by using Hotelling T-square control 

chart based on raw data which have VAR(1) structure with the corresponding adjusted upper 

control limit, 10.35. ‘VAR’ shows the ARLs obtained by using Hotelling T-square control 
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chart based on residuals from VAR (1) model while the ‘AR’ shows the ARLs obtained by 

using Hotelling T-square control chart based on residuals from the individual AR (1) model 

fitted to each variable. ‘LAG’ mentions the ARLs of Hotelling T-square control chart based 

on the data matrix with lagged variables. For the above mentioned four cases of Hotelling T-

square control charts, upper control limits are adjusted in order to obtain the in control ARL 

of 370 when the process has no change in the mean. In this chapter the rest of the tables 

would have the same structure, but the autocorrelation matrix   and covariance matrix of 

error terms   would be different.  

∑ RAW VAR AR LAG 

(
  
  

) 10.35 11.81 12.75 15.56 

 

      
       

 RAW VAR AR LAG 

0 0 373.08 362.12 367.20 375.77 

0.5 165.83 309.23 345.20 220.08 

1 47.64 127.37 177.80 75.77 

2 6.18 1.16 1.56 10.58 

3 1.52 1.00 1.00 2.05 

0.5 0 147.11 293.28 330.01 209.40 

0.5 260.67 328.43 284.02 292.11 

1 122.09 152.24 138.48 168.85 

2 14.82 1.00 1.14 22.49 

3 2.26 1.00 1.00 3.52 

1 0 41.95 158.40 203.64 66.85 

0.5 96.93 183.89 167.20 142.90 

1 144.02 79.19 57.78 177.19 

2 28.01 1.00 1.00 41.08 

3 3.80 1.00 1.00 6.49 

2 0 6.32 7.12 18.80 9.48 

0.5 10.54 6.61 10.24 18.21 

1 18.57 2.79 4.22 30.03 

2 33.49 1.00 1.00 46.17 

3 9.61 1.00 1.00 14.87 

3 0 1.48 1.00 1.01 1.79 

0.5 1.85 1.00 1.00 2.57 

1 3.07 1.00 1.00 4.89 

2 6.43 1.00 1.00 9.99 

3 7.39 1.00 1.00 10.89 

 

 

 

                                        

The   matrix used in this case corresponds to high autocorrelation since the first eigenvalue 

is 0.96 and second eigenvalue is 0.74. When the level of shift is at low level, the shift 

detection capability of Hotelling T-square control chart based on raw data is better than other 

proposed methods while Hotelling T-square control chart based on residuals from VAR (1) 

model is better in catching the shift when the amount of shift is large such as at least 1  for 

any of the two variables. The Table 16a shows the adjusted control limits for the proposed 

methods with    (   
    

)      and the Table 16b shows the ARLs obtained by the use of 

Table 15a Adjusted upper control limits for Hotelling T-square control charts based on proposed 

methods with Φ matrix in (6.1) 

Table 16a Adjusted upper control limits for Hotelling T-square control charts based on proposed 

methods with   matrix in (6.1) 

Table 15b Comparison of the ARLs obtained by using Hotelling T-square 

control charts with adjusted upper control limits based on proposed 

methods with   matrix in (6.1) 
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Hotelling T-square control chart based on the four different proposed methods according to 

the considered   matrix in (6.1) with    (   
    

)     . 

∑ RAW VAR AR LAG 

(
    

    
) 10.32 11.81 13.14 15.55 

                

      
       

 RAW VAR AR LAG 

0 0 388.46 372.2 367.17 385.77 

0.5 15.78 11.03 35.70 23.10 

1 1.48 1.00 1.00 1.66 

2 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 

0.5 0 13.88 37.42 96.41 19.48 

0.5 292.59 325.17 274.78 320.39 

1 14.68 1.00 1.12 22.02 

2 1.00 1.00 1.00 1.00 

3 1.00 1.00 1.00 1.00 

1 0 1.55 1.00 1.13 1.68 

0.5 11.71 36.18 65.62 16.70 

1 153.16 42.21 30.14 178.74 

2 1.41 1.00 1.00 1.56 

3 1.00 1.00 1.00 1.00 

2 0 1.00 1.00 1.00 1.00 

0.5 1.00 1.00 1.00 1.00 

1 1.24 1.02 1.32 1.27 

2 37.39 1.00 1.00 55.52 

3 1.15 1.00 1.00 1.26 

3 0 1.00 1.00 1.00 1.00 

0.5 1.00 1.00 1.00 1.00 

1 1.00 1.00 1.00 1.00 

2 1.11 1.00 1.00 1.11 

3 9.98 1.00 1.00 14.97 

 

 

When the autocorrelation is at high level and the correlation between the variables is 0.9, 

residual based approach is generally better than the other proposed methods.  

The second matrix we considered is, 

  (
      
      

)                                                                         

This matrix is used in the case corresponds to moderate autocorrelation. Adjusted upper 

control limits for that matrix in terms of proposed methods are shown in the Table 17a, 

 

∑ RAW VAR AR LAG 

(
  
  

) 11.57 11.81 12.45 15.68 

 

 

Table 16a Adjusted upper control limits for Hotelling T-square control charts based on proposed 

methods with   matrix in (6.1) with    (   
    

)      

Table 16b Comparison of the ARLs obtained by using Hotelling T-square 

control charts with adjusted upper control limits based on proposed 

methods with   matrix in (6.1) with    (   
    

)      

Table 17a Adjusted upper control limits for Hotelling T-square control charts based on proposed 

methods with   matrix in (6.2) 
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 RAW VAR AR LAG 

0 0 376.99 361.12 368.02 371.26 

0.5 215.68 298.38 324.62 245.70 

1 80.07 180.75 244.51 105.03 

2 13.14 40.39 65.41 17.12 

3 3.23 4.03 7.47 3.54 

0.5 0 200.36 252.51 256.62 205.48 

0.5 174.37 276.06 227.16 206.47 

1 86.67 241.22 178.60 119.15 

2 17.54 64.93 57.00 23.38 

3 4.20 6.21 7.20 5.05 

1 0 65.25 106.01 110.45 68.75 

0.5 73.87 146.59 103.94 88.24 

1 53.52 155.59 86.41 70.96 

2 16.12 66.79 32.93 23.05 

3 4.23 6.03 5.04 5.60 

2 0 9.20 18.71 20.37 8.27 

0.5 11.57 24.57 20.74 11.04 

1 11.47 26.49 17.03 11.99 

2 7.44 15.87 7.57 8.90 

3 3.34 3.11 1.87 4.08 

3 0 2.60 3.75 4.53 2.03 

0.5 2.90 3.88 4.16 2.36 

1 2.96 4.26 3.79 2.60 

2 2.78 2.83 2.08 2.61 

3 1.87 1.22 1.14 1.91 

 

 

The first eigenvalue is 0.75 and second is 0.26 for the new   matrix which means moderate 

autocorrelation. From the Table 17b Hotelling T-square chart based on raw data is better than 

other methods to detect the shift. But when the amount of shift for both variable increases to 

3 , then the model based approach seems to be better. As it is seen when    
          

 

 , VAR and AR based methods detect the shift early than other methods. 

We then consider the correlation between error terms,    (   
    

)      with the   matrix 

in (6.2). The Table 18a below shows the adjusted upper control limits for proposed methods 

in order to obtain the in control ARL of 370. The Table 18b shows the ARLs obtained by the 

use of Hotelling T-square control charts based on proposed methods with    (   
    

)  

    in the case of shift in the process mean. 

 

∑ RAW VAR AR LAG 

(
    

    
) 11.47 11.81 13.6 15.67 

 

 

 

 

Table 17b Comparison of the ARLs obtained by using Hotelling T-square 

control charts with adjusted upper control limits based on proposed 

methods with   matrix in (6.2)  

Table 18a Adjusted upper control limits for Hotelling T-square control charts based on proposed 

methods with   matrix in (6.2) with    (   
    

)      
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 RAW VAR AR LAG 

0 0 389.13 375.48 380.52 378.92 

0.5 62.90 84.14 188.93 58.97 

1 8.92 6.34 34.13 6.52 

2 1.14 1.00 1.00 1.02 

3 1.00 1.00 1.00 1.00 

0.5 0 51.80 53.60 78.32 38.02 

0.5 225.35 299.54 204.78 245.04 

1 48.32 103.98 218.62 56.55 

2 2.06 1.01 1.78 1.49 

3 1.00 1.00 1.00 1.00 

1 0 6.80 6.03 12.82 4.07 

0.5 33.23 32.28 31.99 22.68 

1 83.46 152.33 66.42 93.66 

2 6.13 2.92 13.69 5.88 

3 1.09 1.00 1.00 1.02 

2 0 1.16 1.02 1.10 1.00 

0.5 1.74 1.40 1.93 1.12 

1 3.84 3.60 4.19 2.11 

2 14.61 21.86 8.26 13.99 

3 3.19 1.00 1.00 3.48 

3 0 1.00 1.00 1.00 1.00 

0.5 1.01 1.00 1.00 1.00 

1 1.07 1.03 1.08 1.00 

2 1.90 1.80 1.90 1.21 

3 3.68 1.66 1.36 3.31 

 

 

If the correlation between the variables is 0.9 with   matrix with less autocorrelation, then 

the detection capability of Hotelling T-square chart based on data matrix with lagged 

variables seems to be better if the amount of shift is low. For the large amounts of shifts, 

model based approach seems  better than the other methods to detect the shift in the process 

mean. 

 

The third   autocorrelation matrix that we considered is 

  (
      
      

)                                                                      

Adjusted upper control limits for that matrix in terms of proposed methods are given in Table 

19a without any correlation among the error terms. In the Table 19b, in the case of shift in the 

process mean, the ARLs calculated by the use of Hotelling T-square control charts based on 

the four different proposed methods with the   matrix in (6.3) can be seen. 

∑ RAW VAR AR LAG 

(
  
  

) 11.67 11.81 12.55 15.72 

 

 

Table 18b Comparison of the ARLs obtained by using Hotelling T-square 

control charts with adjusted upper control limits based on proposed 

methods with   matrix in (6.2) with    (   
    

)      

Table 19a Adjusted upper control limits for Hotelling T-square control charts based on proposed 

methods with   matrix in (6.3) 
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 RAW VAR AR LAG 

0 0 359.34 367.01 385.02 358.42 

0.5 208.73 269.05 265.90 218.28 

1 69.44 121.49 127.29 79.44 

2 10.37 21.95 25.59 10.32 

3 3.06 4.00 5.44 2.41 

0.5 0 197.02 279.61 286.08 218.55 

0.5 157.37 265.63 212.21 203.11 

1 66.82 163.40 107.69 90.88 

2 11.90 29.80 21.60 13.06 

3 3.25 4.92 4.92 2.85 

1 0 69.69 116.90 154.10 77.11 

0.5 71.14 156.00 129.72 88.09 

1 43.00 140.60 76.97 59.80 

2 11.22 32.70 19.01 13.11 

3 3.09 4.63 3.84 2.97 

2 0 10.42 20.79 33.74 9.61 

0.5 11.73 28.24 30.66 12.31 

1 11.18 35.02 23.31 12.64 

2 5.96 18.57 8.67 7.15 

3 2.45 3.44 2.46 2.61 

3 0 2.75 4.10 6.78 2.19 

0.5 3.22 5.17 6.56 2.75 

1 3.13 5.24 5.12 2.78 

2 2.54 3.90 2.81 2.55 

3 1.59 1.53 1.28 1.55 

 

 

 

This   matrix in (6.3) corresponds to low autocorrelation level since the eigenvalues are at 

low level, first eigenvalue is 0.57 and second is 0.23. To detect the shift earlier in the process 

mean, the Hotelling T-square control chart based on data matrix with lagged variables can be 

an alternative to the Hotelling T-square control chart based on raw data when one of the 

variable has large amount of shift in the process mean, such as    
         

    . But 

generally Hotelling T-square control chart based on raw data is better than other methods to 

detect the shift earlier when the autocorrelation level  is low. 

The Table 20a below shows the adjusted upper control limits based proposed methods with 

  autocorrelation matrix in (6.3) when    (   
    

)     .  The table shows the ARLs 

obtained by the use of Hotelling T-square control chart based on the proposed methods in the 

case of shift in the process mean with    (   
    

)      

 

∑ RAW VAR AR LAG 

(
    

    
) 11.68 11.81 13.85 15.68 

 

 

Table 19b Comparison of the ARLs obtained by using Hotelling T-square 

control charts with adjusted upper control limits based on proposed 

methods with   matrix in (6.3)  

Table 20a Adjusted upper control limits for Hotelling T-square control charts based on proposed 

methods with   matrix in (6.3) with    (   
    

)      
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 RAW VAR AR LAG 

0 0 378.78 369.30 363.80 376.57 

0.5 44.06 63.31 83.04 37.57 

1 5.35 6.11 12.33 3.61 

2 1.05 1.00 1.03 1.00 

3 1.00 1.00 1.00 1.00 

0.5 0 39.95 44.96 112.27 30.98 

0.5 211.55 281.62 242.29 227.21 

1 32.61 59.46 50.33 30.82 

2 1.55 1.16 1.55 1.15 

3 1.00 1.00 1.00 1.00 

1 0 4.93 5.17 19.15 2.91 

0.5 26.17 29.70 106.01 18.97 

1 80.43 177.48 135.14 100.03 

2 3.68 4.03 4.44 3.00 

3 1.03 1.00 1.00 1.00 

2 0 1.05 1.02 1.13 1.00 

0.5 1.47 1.37 3.03 1.05 

1 3.12 3.40 15.69 1.90 

2 12.72 34.94 24.11 14.77 

3 2.25 1.50 1.72 2.03 

3 0 1.00 1.00 1.00 1.00 

0.5 1.00 1.00 1.00 1.00 

1 1.03 1.02 1.07 1.00 

2 1.76 1.75 5.65 1.20 

3 3.32 4.73 3.90 3.25 

 

 

When there is high correlation between the error terms with the matrix corresponds to low 

autocorrelation, detection capability of Hotelling T-square control chart based on data matrix 

with lagged variable is better than other methods when the amount of shift for one variable is 

different from the amount of shift of other variable. 

             

 

 

 

 

 

 

 

 

 

Table 20b Comparison of the ARLs obtained by using Hotelling T-square 

control charts with adjusted upper control limits based on proposed 

methods with   matrix in (6.3) with    (   
    

)      



 

 

Chapter 7 
 

 

Conclusion 
 

The main reason for using control charts in statistical quality control is to detect any out of 

control situation quickly. As we did in chapter 3, when there is autocorrelation between the 

successive observations of process, generally time series models are fit to remove or reduce 

the autocorrelation, and then residuals are monitored to detect the shift in process mean. 

However control charts based residuals do not have the same properties as the traditional 

control chart. We show that the X-chart based on residuals from the first autoregressive AR 

(1) process have poor detection capability to detect the shift in the process mean, since the 

first residual has the high probability to detect the shift than the subsequent residuals when 

the autocorrelation is positive. Conversely, when the autocorrelation is negative, the 

subsequent residuals have higher probability to detect the shift in process mean. Therefore, 

the use of X-chart based on residual is suggested when the process is negatively 

autocorrelated in the univariate case. They can be used to detect the larger shift such as 3 

standard deviation unit when the positive autocorrelation is high. But in this study we focus 

on the multivariate data since multivariate control charts consider also the cross correlation 

among the variables. We use Hotelling T-square control charts to observe the relation 

between the observations. Then we attempt to extend the case in univariate time series to the 

multivariate time series. For multivariate time series for simplicity, we use the data which 

have bivariate VAR (1) structure. In chapter 4 we compare the shift detection performance of 

Hotelling T-square control charts based on raw data with the Hotelling T-square control 

charts based on the residuals from the VAR (1) model. The results show that the if the 

autocorrelation level which is considered in terms of eigenvalue of autocorrelation matrix is 

at high level Hotelling T-square control chart based on residuals performs well if the model 

estimation is assumed to be perfect. Also if the amount of shift increases, such as 3  for two 

variables, then the detection capability of Hotelling T-square control chart based on residuals 

increases even the autocorrelation level decreases to 0.75. 

Then in chapter 5, we consider another method which is suggested by Mason and Young 

(2002). They propose to reconstruct the data with lagged variables, and to apply the Hotelling 

T-square control chart to the reconstructed data. But we show that even we assume that the 

data are independent, it still shows autocorrelation effect since in each calculation of 

Hotelling T-square statistic, previous observation is used. 

Last we fit individual AR models to the multivariate data, but since it ignores the correlation 

and cross correlation between the variables, we expect that using AR model for multivariate 

data may give misleading results. Finally to compare these proposed methods, we adjust the 
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control limits to give the same false alarm rate, then we consider the shift in the process 

mean. The results show that if the estimation of   matrix corresponds to high autocorrelation 

with    (   
    

)   , generally residual based approach is better to detect the shift when 

the amount of shift is large. Also when    (   
    

)     , the shift detection power of 

Hotelling T-square control chart based on residuals will increase. If the autocorrelation 

matrix indicates moderate autocorrelation with    (   
    

)   , it is suggested to use 

Hotelling T-square control chart based on raw data when the magnitudes of shifts are low or 

moderate. When the autocorrelation matrix corresponds to low autocorrelation with 

   (   
    

)   , Hotelling T-square control chart based on raw data generally detects the 

shift earlier than other proposed methods. But Hotelling T-square control chart based on data 

matrix with lagged variables can be an alternative to Hotelling T-square control charts based 

on raw data when the    (   
    

)       In addition if the off- diagonal elements in the 

autocorrelation matrix do not show high autocorrelation, Hotelling T-square based on 

residuals of individual AR model can be used as an alternative to the Hotelling T-square 

control chart based on residuals from the VAR model to detect the shift in the process mean. 

Also using Hotelling T-square control chart based on the residuals of individual AR model 

for each variable may be advantageous if the data have large number of variables compare to 

the Hotelling T-square control chart based on multivariate autoregressive model such as VAR 

model. 

In this study we focus on the performance of Hotelling T-square control charts based on 

bivariate data which has VAR structure, residuals from VAR model, residuals from AR 

models on the individual time series and the data matrix with lagged variables. Statistical 

performance of these proposed methods could be extended for more than two variables with 

different level of correlations and autocorrelations. In addition, other control charts such as 

MCUSUM and MEWMA may be used to see the detection capability when the process mean 

shift.  
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APPENDIX 
 

Here we add some supplementary tables which contain supporting information to understand the 

analysis we did.  

Appendix A 
 

 

       
      

       
     

       
      

        
       

      
     

       
      

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 193.50 193.50 125.36 125.36 68.16 68.16 

-0.25 195.12 192.03 124.70 99.00 66.99 65.56 

-0.5 208.74 205.09 132.22 65.76 68.86 67.77 

-0.75 227.48 208.54 143.22 29.13 72.40 70.80 

-0.95 259.99 197.35 194.37 3.04 82.35 67.78 

-0.25 0 211.03 148.22 132.40 105.03 67.99 36.75 

-0.25 200.50 145.53 122.58 81.41 65.60 34.78 

-0.5 209.05 150.87 138.45 57.17 65.63 35.55 

-0.75 208.39 149.40 141.37 24.66 66.99 35.89 

-0.95 272.88 148.43 196.30 3.02 79.95 35.15 

-0.5 0 203.19 93.58 137.53 70.98 69.98 16.23 

-0.25 199.18 89.64 136.29 56.29 67.69 15.91 

-0.5 205.08 92.36 136.75 39.98 70.85 15.60 

-0.75 219.97 92.62 146.51 19.73 70.75 16.08 

-0.95 277.39 99.20 212.73 2.92 78.69 15.78 

-0.75 0 219.46 31.73 142.86 27.95 77.92 4.74 

-0.25 232.45 34.41 144.38 26.37 76.90 4.62 

-0.5 227.69 35.65 144.55 20.90 84.84 4.68 

-0.75 237.25 34.92 160.01 12.54 81.57 4.54 

-0.95 297.05 34.39 232.89 2.73 92.53 4.56 

-0.95 0 346.86 3.24 193.12 2.93 137.24 1.54 

-0.25 339.18 3.26 209.83 3.11 127.01 1.54 

-0.5 365.21 3.17 196.84 2.89 143.32 1.54 

-0.75 375.85 3.29 211.42 2.73 151.53 1.54 

-0.95 540.62 3.20 374.14 1.97 202.60 1.50 

 

 

 

 

 

 

 

 

 

Table A.1 Comparison of the ARLs obtained by using Hotelling T-square control charts based on raw 

data and residuals from VAR(1) process in Phase II for different negative autocorrelation levels and 

various magnitudes of shifts  
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        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 54.30 54.30 27.78 27.78 9.11 9.11 

-0.25 52.61 44.54 29.50 19.02 9.52 9.45 

-0.5 50.01 33.05 28.23 9.44 9.54 9.46 

-0.75 52.80 17.33 27.94 3.65 10.09 9.83 

-0.95 62.14 2.79 37.53 1.48 9.98 9.24 

-0.25 0 52.26 30.67 25.66 17.46 8.94 4.46 

-0.25 49.32 25.37 26.71 12.78 8.56 4.52 

-0.5 50.78 20.96 26.55 7.85 8.87 4.41 

-0.75 50.23 12.81 28.69 3.40 9.09 4.50 

-0.95 70.87 2.66 41.95 1.44 9.81 4.54 

-0.5 0 50.83 14.37 27.00 9.36 8.76 2.37 

-0.25 55.98 12.59 26.72 8.04 8.80 2.47 

-0.5 53.93 11.10 28.23 5.63 9.41 2.48 

-0.75 55.98 7.77 31.07 3.06 9.61 2.43 

-0.95 66.46 2.46 40.92 1.41 9.98 2.44 

-0.75 0 56.58 4.46 29.71 3.81 10.86 1.64 

-0.25 59.21 4.14 28.71 3.44 10.16 1.61 

-0.5 59.93 4.17 30.40 2.98 10.01 1.62 

-0.75 63.46 3.51 33.28 2.28 11.32 1.60 

-0.95 80.67 2.12 47.40 1.40 11.69 1.62 

-0.95 0 89.03 1.49 38.57 1.47 19.20 1.00 

-0.25 93.39 1.52 39.78 1.46 20.16 1.00 

-0.5 100.48 1.52 42.70 1.46 19.04 1.00 

-0.75 101.01 1.50 47.12 1.40 23.37 1.00 

-0.95 166.06 1.40 84.15 1.11 23.79 1.00 

             Table A.1 Continued 

 

 

       
    

       
       

       
    

        
     

      
     

       
      

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 8.50 8.50 6.56 6.56 2.92 2.92 

-0.25 8.08 7.80 6.11 5.28 2.94 2.36 

-0.5 8.41 7.28 6.64 4.11 2.83 1.77 

-0.75 8.87 5.69 6.76 2.60 2.85 1.38 

-0.95 9.20 2.13 7.12 1.31 3.09 1.00 

-0.25 0 8.26 4.30 6.00 3.59 2.94 2.36 

-0.25 8.43 4.33 5.98 3.37 2.79 2.01 

-0.5 7.80 3.86 6.27 2.91 2.68 1.67 

-0.75 8.21 3.47 6.36 2.17 2.72 1.36 

-0.95 8.64 1.95 6.39 1.31 2.83 1.00 

-0.5 0 8.14 2.39 6.36 2.25 2.84 1.79 

-0.25 7.97 2.36 5.96 2.12 2.80 1.71 

-0.5 8.39 2.34 6.22 2.06 2.67 1.51 

-0.75 8.56 2.23 6.32 1.86 2.86 1.31 

-0.95 9.29 1.72 6.65 1.25 2.92 1.00 

-0.75 0 9.39 1.61 6.26 1.55 2.85 1.36 

-0.25 8.88 1.59 6.57 1.54 2.84 1.36 

-0.5 9.76 1.58 6.51 1.50 2.96 1.32 

-0.75 9.98 1.56 7.09 1.47 2.69 1.17 

-0.95 10.52 1.46 8.35 1.12 2.73 1.00 

-0.95 0 16.09 1.00 9.69 1.00 3.08 1.00 

-0.25 14.81 1.00 9.69 1.00 2.83 1.00 

-0.5 16.22 1.00 9.22 1.00 2.75 1.00 

-0.75 18.60 1.00 11.02 1.00 2.98 1.00 

-0.95 21.54 1.00 13.98 1.00 3.63 1.00 

             Table A.1 Continued 
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        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 2.47 2.47 2.41 2.41 2.25 2.25 

-0.25 2.49 2.50 2.57 2.52 2.17 2.07 

-0.5 2.61 2.59 2.46 2.31 2.17 1.90 

-0.75 2.49 2.49 2.42 2.09 2.19 1.61 

-0.95 2.70 2.61 2.57 1.55 2.37 1.14 

-0.25 0 2.39 1.80 2.32 1.75 2.04 1.63 

-0.25 2.44 1.82 2.43 1.75 2.04 1.65 

-0.5 2.48 1.82 2.28 1.70 2.01 1.55 

-0.75 2.42 1.81 2.29 1.67 2.09 1.46 

-0.95 2.51 1.83 2.31 1.44 2.05 1.11 

-0.5 0 2.18 1.44 2.19 1.42 1.95 1.38 

-0.25 2.27 1.42 2.16 1.40 1.98 1.39 

-0.5 2.31 1.48 2.17 1.42 1.96 1.37 

-0.75 2.26 1.45 2.24 1.41 1.98 1.32 

-0.95 2.42 1.44 2.30 1.33 1.98 1.07 

-0.75 0 2.09 1.10 2.09 1.11 1.91 1.08 

-0.25 2.21 1.10 2.05 1.12 1.81 1.07 

-0.5 2.16 1.11 2.01 1.11 1.81 1.08 

-0.75 2.26 1.11 2.14 1.09 1.90 1.07 

-0.95 2.29 1.09 2.11 1.06 1.88 1.01 

-0.95 0 2.40 1.00 2.23 1.00 1.94 1.00 

-0.25 2.35 1.00 2.21 1.00 1.88 1.00 

-0.5 2.42 1.00 2.18 1.00 1.84 1.00 

-0.75 2.32 1.00 2.18 1.00 1.87 1.00 

-0.95 2.54 1.00 2.54 1.00 1.82 1.00 

             Table A.1 Contuined 

 

 

           
    

       
     

      
    

        
     

        RAW RESIDUAL RAW RESIDUAL 

0 0 1.61 1.61 1.20 1.20 

-0.25 1.63 1.51 1.18 1.16 

-0.5 1.54 1.34 1.25 1.11 

-0.75 1.54 1.18 1.17 1.01 

-0.95 1.51 1.00 1.17 1.00 

-0.25 0 1.52 1.38 1.19 1.16 

-0.25 1.53 1.35 1.20 1.16 

-0.5 1.53 1.29 1.17 1.08 

-0.75 1.49 1.17 1.17 1.01 

-0.95 1.48 1.00 1.16 1.00 

-0.5 0 1.46 1.24 1.17 1.09 

-0.25 1.46 1.24 1.20 1.09 

-0.5 1.46 1.18 1.19 1.05 

-0.75 1.46 1.11 1.17 1.00 

-0.95 1.42 1.00 1.17 1.00 

-0.75 0 1.50 1.04 1.18 1.01 

-0.25 1.46 1.05 1.17 1.01 

-0.5 1.44 1.04 1.17 1.01 

-0.75 1.38 1.01 1.16 1.00 

-0.95 1.41 1.00 1.18 1.00 

-0.95 0 1.44 1.00 1.16 1.00 

-0.25 1.40 1.00 1.16 1.00 

-0.5 1.39 1.00 1.16 1.00 

-0.75 1.40 1.00 1.15 1.00 

-0.95 1.35 1.00 1.15 1.00 

                                   Table A.1 Contunied 
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        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 48.42 48.42 193.31 193.31 6.13 6.13 

-0.25 65.49 49.60 199.54 145.07 9.05 5.92 

-0.5 108.22 44.93 207.81 58.09 21.39 6.06 

-0.75 177.31 49.87 216.67 9.47 49.61 5.79 

-0.95 273.25 50.11 234.79 1.75 74.79 6.16 

-0.25 0 67.27 23.79 195.31 133.24 8.73 3.05 

-0.25 48.05 25.79 204.96 145.77 5.49 3.18 

-0.5 68.56 25.71 206.39 82.50 9.48 3.13 

-0.75 145.10 24.51 211.79 13.54 29.56 3.18 

-0.95 263.25 23.48 246.43 1.74 72.03 3.21 

-0.5 0 113.28 10.27 205.09 56.76 20.21 1.98 

-0.25 72.95 10.35 196.36 77.95 10.26 1.95 

-0.5 50.42 10.12 204.05 81.69 5.84 1.95 

-0.75 102.59 10.67 217.51 22.80 15.11 1.97 

-0.95 241.45 10.67 269.21 1.78 62.29 1.94 

-0.75 0 179.61 3.41 196.83 9.54 47.80 1.43 

-0.25 166.96 3.32 223.02 13.54 36.76 1.40 

-0.5 106.59 3.36 226.68 23.39 17.30 1.42 

-0.75 57.34 3.35 231.40 31.58 6.78 1.43 

-0.95 229.91 3.23 332.18 1.94 48.75 1.43 

-0.95 0 343.72 1.36 230.09 1.75 128.98 1.00 

-0.25 334.59 1.36 259.21 1.74 123.71 1.00 

-0.5 352.31 1.34 276.28 1.77 125.72 1.00 

-0.75 345.04 1.33 368.96 1.95 88.39 1.00 

-0.95 150.671 1.363 505.6999 3.112 [13.303 1.000 

 

       
    

       
       

       
    

        
     

      
     

       
      

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 30.75 30.75 61.80 61.84 1.12 1.12 

-0.25 39.58 46.57 60.96 32.74 1.26 1.11 

-0.5 57.57 66.94 57.96 8.28 2.22 1.11 

-0.75 75.01 31.01 60.67 2.15 4.85 1.10 

-0.95 81.50 1.94 59.68 1.01 8.90 1.10 

-0.25 0 36.13 9.84 63.15 32.56 1.25 1.07 

-0.25 31.48 15.42 61.38 33.28 1.11 1.07 

-0.5 41.68 24.97 65.63 13.44 1.28 1.07 

-0.75 65.07 30.96 65.27 2.42 2.83 1.08 

-0.95 81.48 2.02 61.00 1.02 8.20 1.09 

-0.5 0 57.16 3.43 62.23 8.10 1.91 1.02 

-0.25 42.21 4.21 62.14 13.53 1.28 1.02 

-0.5 31.04 6.10 63.87 14.42 1.10 1.03 

-0.75 47.25 13.58 70.93 3.42 1.50 1.02 

-0.95 86.96 2.20 72.36 1.02 6.47 1.02 

-0.75 0 77.07 1.81 58.60 2.16 4.80 1.00 

-0.25 74.31 1.84 66.67 2.54 2.64 1.00 

-0.5 63.17 1.97 72.16 3.36 1.42 1.00 

-0.75 37.05 2.38 80.32 4.13 1.10 1.00 

-0.95 93.73 3.06 97.85 1.10 3.83 1.00 

-0.95 0 122.35 1.00 58.30 1.01 16.85 1.00 

-0.25 129.07 1.00 64.15 1.02 16.76 1.00 

-0.5 145.35 1.00 72.67 1.03 11.91 1.00 

-0.75 176.32 1.00 101.27 1.11 6.22 1.00 

-0.95 91.14 1.15 175.13 1.50 1.11 1.00 

             Table A.2 Contuined 

Table A.2 Comparison of the ARLs obtained by using Hotelling T-square control charts based on raw 

data and residuals from VAR(1) process in Phase II for different negative autocorrelation levels and 

various magnitudes of shifts with    (   
    

)      

 



Appendix A  

 

70 

 

 

 

       
    

       
       

       
    

        
     

      
     

       
      

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 1.63 1.63 3.48 3.48 8.42 8.42 

-0.25 2.18 1.78 4.53 5.08 8.42 4.27 

-0.5 4.12 2.14 7.44 8.23 8.09 2.01 

-0.75 8.05 4.60 9.71 3.67 7.09 1.43 

-0.95 9.71 2.36 9.50 1.31 5.15 1.00 

-0.25 0 1.91 1.35 4.04 1.85 8.54 4.23 

-0.25 1.52 1.37 3.17 2.17 8.54 4.28 

-0.5 2.09 1.45 4.58 2.95 8.14 2.29 

-0.75 5.32 1.87 8.11 4.07 7.89 1.46 

-0.95 10.31 2.89 10.23 1.33 5.77 1.00 

-0.5 0 3.44 1.16 6.67 1.48 8.17 1.95 

-0.25 1.96 1.16 4.29 1.48 8.59 2.32 

-0.5 1.48 1.20 3.07 1.60 8.40 2.33 

-0.75 2.72 1.31 5.69 2.18 8.85 1.57 

-0.95 9.13 2.35 10.19 1.40 6.90 1.00 

-0.75 0 8.14 1.00 10.36 1.05 6.48 1.41 

-0.25 5.81 1.00 10.24 1.05 7.34 1.51 

-0.5 2.75 1.00 6.28 1.09 8.69 1.52 

-0.75 1.40 1.01 3.23 1.22 10.45 1.60 

-0.95 7.49 1.25 10.75 1.49 10.08 1.00 

-0.95 0 19.60 1.00 14.88 1.00 5.15 1.00 

-0.25 22.16 1.00 18.09 1.00 5.94 1.00 

-0.5 22.34 1.00 20.87 1.00 6.51 1.00 

-0.75 16.63 1.00 25.94 1.00 10.50 1.00 

-0.95 1.40 [1.00 4.75 1.00 22.36 1.00 

             Table A.2 Contunied 

 

 

       
    

       
     

       
    

        
       

      
     

       
      

        RAW RESIDUAL RAW RESIDUAL RAW RESIDUAL 

0 0 1.00 1 1.00 1.00 1.05 1.05 

-0.25 1.02 1 1.03 1.00 1.13 1.07 

-0.5 1.07 1 1.22 1.00 1.56 1.11 

-0.75 1.44 1 1.90 1.02 2.39 1.57 

-0.95 2.34 1 2.74 1.70 2.59 1.50 

-0.25 0 1.00 1 1.02 1.00 1.11 1.02 

-0.25 1.00 1 1.00 1.00 1.04 1.03 

-0.5 1.00 1 1.03 1.00 1.18 1.06 

-0.75 1.17 1 1.39 1.01 1.68 1.19 

-0.95 2.08 1 2.37 1.27 2.40 1.50 

-0.5 0 1.05 1 1.17 1.00 1.39 1.00 

-0.25 1.00 1 1.03 1.00 1.15 1.00 

-0.5 1.00 1 1.00 1.00 1.03 1.00 

-0.75 1.02 1 1.11 1.00 1.27 1.05 

-0.95 1.61 1 2.01 1.04 2.31 1.45 

-0.75 0 1.34 1 1.56 1.00 1.82 1.000 

-0.25 1.16 1 1.31 1.00 1.45 1.00 

-0.5 1.02 1 1.10 1.00 1.27 1.000 

-0.75 1.00 1 1.00 1.00 1.04 1.00 

-0.95 1.26 1 1.47 1.00 1.76 1.04 

-0.95 0 1.97 1 2.23 1.00 2.38 1.00 

-0.25 1.77 1 2.25 1.00 2.45 1.00 

-0.5 1.48 1 1.92 1.00 2.21 1.00 

-0.75 1.23 1 1.39 1.00 1.65 1.00 

-0.95 1.00 1 1.00 1.00 1.04 1.00 

             Table A.2 Contunied 
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        RAW RESIDUAL RAW RESIDUAL 

0 0 1.79 1.79 2.36 2.36 

-0.25 2.10 2.18 2.26 1.73 

-0.5 2.47 1.93 2.07 1.43 

-0.75 2.52 1.58 1.73 1.03 

-0.95 1.99 1.00 1.39 1.00 

-0.25 0 1.85 1.38 2.25 1.72 

-0.25 1.69 1.45 2.19 1.72 

-0.5 1.93 1.67 2.13 1.42 

-0.75 2.45 1.57 1.85 1.03 

-0.95 2.06 1.00 1.42 1.00 

-0.5 0 2.04 1.16 1.97 1.39 

-0.25 1.77 1.17 2.03 1.41 

-0.5 1.68 1.25 2.14 1.41 

-0.75 1.99 1.40 1.92 1.07 

-0.95 2.10 1.00 1.47 1.00 

-0.75 0 2.23 1.00 1.74 1.02 

-0.25 2.20 1.00 1.86 1.03 

-0.5 1.90 1.00 1.89 1.07 

-0.75 1.57 1.03 2.00 1.08 

-0.95 2.22 1.00 1.67 1.00 

-0.95 0 1.78 1.00 1.39 1.00 

-0.25 1.89 1.00 1.43 1.00 

-0.5 2.10 1.00 1.45 1.00 

-0.75 2.48 1.00 1.60 1.00 

-0.95 1.53 1.00 2.20 1.00 

                                   Table A.2 Contunied 
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        LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED 

0 0 230.48 124.98 56.72 42.43 20.89 6.30 5.58 

-0.25 214.81 105.35 59.44 38.07 15.15 6.28 5.15 

-0.5 219.14 83.66 57.85 32.56 8.83 6.08 4.72 

-0.75 220.67 38.43 59.04 18.77 3.51 6.20 4.02 

-0.95 232.49 3.15 62.10 2.48 1.00 6.14 1.47 

-0.25 0 179.49 113.57 36.73 27.80 14.39 3.31 3.09 

-0.25 179.87 89.49 37.84 25.45 11.38 3.18 2.92 

-0.5 177.31 69.92 35.91 21.75 7.50 3.26 2.85 

-0.75 172.00 34.84 36.03 14.02 3.17 3.26 2.48 

-0.95 183.22 3.03 39.55 2.16 1.00 3.26 1.27 

-0.5 0 125.17 73.42 17.92 15.26 9.29 1.69 1.55 

-0.25 118.56 66.90 18.14 13.55 7.37 1.64 1.57 

-0.5 122.50 53.57 18.07 12.46 5.16 1.66 1.55 

-0.75 121.80 28.77 18.28 8.75 2.56 1.67 1.44 

-0.95 133.35 2.80 18.17 2.01 1.00 1.71 1.08 

-0.75 0 52.20 36.26 4.81 4.62 3.51 1.04 1.02 

-0.25 48.35 32.60 5.00 4.34 3.03 1.02 1.03 

-0.5 52.09 28.29 5.20 3.64 2.48 1.02 1.02 

-0.75 54.41 17.28 5.01 3.25 1.65 1.01 1.01 

-0.95 52.38 2.60 5.14 1.42 1.00 1.04 1.00 

-0.95 0 3.27 3.05 1.01 1.00 1.00 1.00 1.00 

-0.25 3.38 3.10 1.00 1.00 1.00 1.00 1.00 

-0.5 3.34 2.86 1.00 1.00 1.00 1.00 1.00 

-0.75 3.21 2.40 1.01 1.00 1.00 1.00 1.00 

-0.95 3.38 1.29 1.01 1.00 1.00 1.00 1.00 

 

        
   

      
    

     
    

    
     

      
     

       
      

      
   

    
       

      
    

       
     

      
    

        
     

      
   

    
     

        LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED 

0 0 4.03 1.75 1.46 1.40 1.30 1.10 1.00 

-0.25 3.46 1.47 1.56 1.47 1.31 1.05 1.00 

-0.5 2.77 1.13 1.52 1.44 1.22 1.02 1.00 

-0.75 1.74 1.00 1.54 1.37 1.09 1.00 1.00 

-0.95 1.00 1.00 1.51 1.06 1.00 1.00 1.00 

-0.25 0 2.53 1.45 1.16 1.13 1.11 1.03 1.00 

-0.25 2.27 1.23 1.12 1.11 1.07 1.01 1.00 

-0.5 1.97 1.09 1.14 1.13 1.06 1.00 1.00 

-0.75 1.41 1.00 1.13 1.09 1.04 1.00 1.00 

-0.95 1.00 1.00 1.12 1.02 1.00 1.00 1.00 

-0.5 0 1.44 1.15 1.00 1.01 1.00 1.00 1.00 

-0.25 1.39 1.09 1.01 1.01 1.00 1.00 1.00 

-0.5 1.32 1.03 1.01 1.01 1.00 1.00 1.00 

-0.75 1.14 1.00 1.01 1.00 1.00 1.00 1.00 

-0.95 1.00 1.00 1.01 1.00 1.00 1.00 1.00 

-0.75 0 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

-0.25 1.02 1.00 1.00 1.00 1.00 1.00 1.00 

-0.5 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

-0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.95 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

-0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table B.1 Contunied  

 

Table B.1 Comparison of the ARLs obtained by using Hotelling T-square control charts based on data matrix 
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        LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED 

0 0 40.85 222.54 3.53 23.49 54.07 1.00 1.12 

-0.25 44.16 167.90 4.37 35.87 31.28 1.00 1.26 

-0.5 59.63 78.82 5.49 52.23 9.79 1.03 1.88 

-0.75 64.73 14.04 7.15 30.99 1.39 1.08 4.13 

-0.95 76.62 1.01 7.30 1.06 1.00 1.11 1.58 

-0.25 0 26.63 176.49 2.33 10.53 31.27 1.00 1.01 

-0.25 23.91 177.70 2.10 12.71 31.61 1.00 1.01 

-0.5 26.18 108.67 2.43 23.19 14.73 1.00 1.05 

-0.75 34.14 20.59 2.99 32.43 1.86 1.00 1.52 

-0.95 38.59 1.01 3.31 1.19 1.00 1.00 2.14 

-0.5 0 13.17 77.40 1.40 3.19 8.80 1.00 1.00 

-0.25 12.75 107.23 1.34 3.99 14.86 1.00 1.00 

-0.5 11.77 115.25 1.28 6.13 16.11 1.00 1.00 

-0.75 12.68 35.60 1.36 14.86 3.05 1.00 1.01 

-0.95 15.65 1.05 1.44 1.62 1.00 1.00 1.63 

-0.75 0 3.49 13.55 1.00 1.07 1.41 1.00 1.00 

-0.25 3.19 20.32 1.00 1.13 1.87 1.00 1.00 

-0.5 3.35 35.80 1.00 1.28 3.00 1.00 1.00 

-0.75 3.12 44.67 1.00 1.83 4.65 1.00 1.00 

-0.95 3.39 1.24 1.00 2.86 1.00 1.00 1.00 

-0.95 0 1.00 1.01 1.00 1.00 1.00 1.00 1.00 

-0.25 1.00 1.02 1.00 1.00 1.00 1.00 1.00 

-0.5 1.00 1.05 1.00 1.00 1.00 1.00 1.00 

-0.75 1.00 1.21 1.00 1.00 1.00 1.00 1.00 

-0.95 1.00 2.99 1.00 1.00 1.00 1.00 1.00 

 

        
   

      
    

     
    

    
     

      
     

       
      

      
   

    
       

      
    

       
     

      
    

        
     

      
   

    
     

        LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED LAGGED 

0 0 1.98 5.29 1 1.00 1.00 1.20 1.30 

-0.25 3.06 2.81 1 1.00 1.00 1.40 1.07 

-0.5 5.56 1.15 1 1.00 1.08 1.31 1.00 

-0.75 2.73 1.00 1 1.03 1.42 1.00 1.00 

-0.95 1.00 1.00 1 1.35 1.00 1.00 1.00 

-0.25 0 1.19 2.77 1 1.00 1.00 1.00 1.08 

-0.25 1.33 2.90 1 1.00 1.00 1.03 1.07 

-0.5 1.96 1.42 1 1.00 1.00 1.11 1.00 

-0.75 2.89 1.00 1 1.00 1.03 1.00 1.00 

-0.95 1.00 1.00 1 1.08 1.00 1.00 1.00 

-0.5 0 1.00 1.17 1 1.00 1.00 1.00 1.00 

-0.25 1.008 1.478 1 1.000 1.000 1.000 1.002 

-0.5 1.042 1.507 1 1.000 1.000 1.001 1.006 

-0.75 1.430 1.004 1 1.000 1.000 1.006 1.000 

-0.95 1.000 1.000 1 1.000 1.001 1.000 1.000 

-0.75 0 1.000 1.000 1 1.000 1.000 1.000 1.000 

-0.25 1.000 1.000 1 1.000 1.000 1.000 1.000 

-0.5 1.000 1.003 1 1.000 1.000 1.000 1.000 

-0.75 1.000 1.013 1 1.000 1.000 1.000 1.000 

-0.95 1.004 1.000 1 1.000 1.000 1.000 1.000 

-0.95 0 1.000 1.000 1 1.000 1.000 1.000 1.000 

-0.25 1.000 1.000 1 1.000 1.000 1.000 1.000 

-0.5 1.000 1.000 1 1.000 1.000 1.000 1.000 

-0.75 1.000 1.000 1 1.000 1.000 1.000 1.000 

-0.95 1.000 1.000 1 1.000 1.000 1.000 1.000 

Table B.2 Contunied 

Table B.2 Comparison of the ARLs obtained by using Hotelling T-square control charts based on data matrix 

with lagged variables in Phase II for different negative autocorrelation levels and various magnitudes of shifts 

with    (   
    

)      
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Appendix C 
 

ARLs obtained by using Hotelling T-square control chart with theoretical control limits based on 

proposed methods for the   matrix corresponds to high, moderate and low autocorrelation 

levels can be see in this appendix. 

 

  (
      
      

) 

 

      
       

 RAW VAR AR LAG 

0 0 702.04 375.74 256.44 525.53 

0.5 296.08 314.61 219.93 302.61 

1 84.73 120.37 107.46 100.30 

2 9.17 1.02 1.47 12.56 

3 1.67 1.00 1.00 2.05 

0.5 0 268.39 302.74 223.37 289.28 

0.5 459.09 298.33 167.90 377.62 

1 200.58 148.76 82.68 205.85 

2 19.74 1.30 1.24 27.32 

3 3.18 1.00 1.00 3.89 

1 0 66.48 163.30 128.60 84.66 

0.5 155.01 195.20 109.93 175.18 

1 237.08 99.99 45.51 233.33 

2 42.33 1.12 1.07 53.58 

3 5.15 1.00 1.00 7.75 

2 0 7.71 6.09 8.93 9.64 

0.5 15.88 8.25 7.17 20.82 

1 27.44 3.14 2.17 37.90 

2 51.64 1.00 1.00 58.43 

3 13.38 1.00 1.00 16.96 

3 0 1.57 1.00 1.00 1.84 

0.5 2.35 1.00 1.00 2.91 

1 3.76 1.00 1.00 5.22 

2 8.51 1.00 1.00 12.30 

3 9.24 1.00 1.00 12.34 

                                      

 

 

 

 

 

 

 

 

 

 

 

Table C.1 Comparison of the ARLs obtained by using Hotelling T-square 

control charts with theoretical upper control limits based on proposed 

methods with   matrix in (6.1) 
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  (
      
      

) 

      
       

 RAW VAR AR LAG 

0 0 402.10 383.89 284.52 471.56 

0.5 241.54 289.63 251.82 312.91 

1 79.02 183.33 173.69 110.69 

2 13.84 39.26 52.78 18.31 

3 3.62 4.20 6.57 4.20 

0.5 0 222.00 239.34 193.20 248.88 

0.5 184.90 298.50 175.51 256.83 

1 93.85 243.52 134.85 145.14 

2 17.51 62.86 45.33 26.92 

3 4.38 5.17 4.90 5.40 

1 0 68.05 106.64 87.79 82.81 

0.5 79.14 146.10 86.12 104.14 

1 54.49 143.75 66.44 84.52 

2 17.67 62.92 24.86 26.12 

3 4.37 5.14 3.35 6.02 

2 0 9.80 17.88 16.87 9.67 

0.5 12.05 23.89 16.53 12.58 

1 12.88 26.46 14.60 14.49 

2 8.22 18.13 6.30 10.35 

3 3.41 2.60 1.64 4.26 

3 0 2.64 3.83 3.96 2.12 

0.5 2.98 3.85 3.55 2.56 

1 3.24 4.01 3.08 2.80 

2 2.97 2.90 1.97 3.00 

3 1.94 1.19 1.07 1.97 

                                      

 

 

  (
      
      

) 

      
       

 RAW VAR AR LAG 

0 0 386.96 364.10 258.89 443.36 

0.5 211.79 270.71 192.01 260.78 

1 72.85 122.87 98.07 90.61 

2 11.02 22.82 19.77 11.90 

3 2.94 3.69 3.99 2.53 

0.5 0 201.50 249.84 192.48 245.46 

0.5 163.61 263.10 145.54 228.37 

1 72.45 162.57 80.99 104.33 

2 12.39 30.63 18.01 14.25 

3 3.19 4.68 3.65 2.87 

1 0 72.18 117.96 111.28 86.00 

0.5 72.42 153.85 91.92 105.40 

1 48.80 137.63 60.69 73.23 

2 11.90 37.58 15.57 16.29 

3 3.13 5.14 3.23 3.27 

2 0 10.84 21.20 26.48 11.06 

0.5 12.96 29.40 24.85 14.79 

1 11.28 32.50 17.42 14.31 

2 6.04 17.20 6.65 7.99 

3 2.64 3.69 2.03 2.91 

3 0 2.96 4.19 5.58 2.45 

0.5 3.15 4.77 5.18 2.90 

1 3.23 5.27 4.26 3.20 

2 2.63 3.94 2.44 2.77 

3 1.61 1.62 1.28 1.65 

                                      

 

Table C.2 Comparison of ARLs obtained by using Hotelling T-square 

control charts with theoretical upper control limits based on proposed 

methods with   matrix in (6.2) 

Table C.3 Comparison of ARLs obtained by using Hotelling T-square 

control charts with theoretical upper control limits based on proposed 

methods with   matrix in (6.3) 
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D.1   Simulations for Chapter 3 

R codes for the calculation of ARLs based on X-chart in the combination of different autocorrelation 

levels and different number of observations in Phase I for AR (1) process. 

rm(list=ls()) 

sq<-seq(100,1000,100) 

sq2<-seq(2000,6000,1000) 

n1=c(50,sq,sq2) 

dd<-5000 

phi1<-c(0,0.3,0.5,0.7,0.9) 

mu1<-0 

Arl1x  <- matrix(rep(0),dd,1)   

Arl11x <- matrix(rep(0),dd,1)  

Arl1x2 <- matrix(rep(0),dd,1)   

Arl11x2<- matrix(rep(0),dd,1) 

cc  <-matrix(rep(0),length(phi1),4)  

ccs <-matrix(rep(0),length(phi1)*length(n1),4)  

ucllcl<-matrix(rep(0),dd,2) 

 

for (s in 1:length(n1)) 

 { 

dat<- matrix(rep(0),n1[s],dd) 

for (q in 1:length(phi1)) 

 { 

for (i in 1:dd) 

 { 

c1<-(1-phi1[q])*mu1 

a1<-arima.sim(n=n1[s],list(ar=c(phi1[q])),mean=c1) 

 

##### Control Limits with estimated parameters  ##### 

ybarx<-mean(a1) 

ysdx<-sd(a1) 

UCLx<- ybarx+3*ysdx 

LCLx<-ybarx-3*ysdx 

ucllcl[i,]<-c(UCLx,LCLx) 

dat[,i]<-a1 

} 

m<-colMeans(ucllcl) 

 

#### Control Limits with known parameters by taking autocorrelation into account ##### 

ybar<-mu1     

ysd<-(1/sqrt(1-phi1[q]^2))  

UCL<-ybar+3*ysd           

LCL<-ybar-3*ysd 

 

#### Calculation of Run lengths ##### 

for (j in 1:dd) 
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{ 

Arl1x[j,]<-min(which(dat[,j]>UCL))    

Arl11x[j,]<-min(which(dat[,j]<LCL))   

Arl1x[is.infinite(Arl1x)]<-NA 

Arl11x[is.infinite(Arl11x)]<-NA 

 

Arl1x2[j,]<-min(which(dat[,j]>m[1]))    

Arl11x2[j,]<-min(which(dat[,j]<m[2]))   

Arl1x2[is.infinite(Arl1x2)]<-NA 

Arl11x2[is.infinite(Arl11x2)]<-NA 

} 

 

Va1<-cbind(Arl1x,Arl11x)  

av1a<-matrix(0,dd,1) 

av1a[(which(Va1[,1]&Va1[,2]))]<- apply(Va1[(which(Va1[,1]&Va1[,2])),],1,min)        

av1a[which(is.na(Va1[,1])&is.na(Va1[,2]))]=NA    

av1a[which(Va1[,1]&is.na(Va1[,2]))]<-Va1[which(Va1[,1]&is.na(Va1[,2])),1]    

av1a[which(is.na(Va1[,1])&Va1[,2])]<-Va1[which(is.na(Va1[,1])&Va1[,2]),2]    

 

Va2<-cbind(Arl1x2,Arl11x2)  

av1b<-matrix(0,dd,1) 

av1b[(which(Va2[,1]&Va2[,2]))]<- apply(Va2[(which(Va2[,1]&Va2[,2])),],1,min)         

av1b[which(is.na(Va2[,1])&is.na(Va2[,2]))]=NA     

av1b[which(Va2[,1]&is.na(Va2[,2]))]<-Va2[which(Va2[,1]&is.na(Va2[,2])),1]    

av1b[which(is.na(Va2[,1])&Va2[,2])]<-Va2[which(is.na(Va2[,1])&Va2[,2]),2]  

 

 

exp1<-dim(matrix(which(av1a<=(n1[s]))))[1]/dd 

exp2<-dim(matrix(which(av1b<=(n1[s]))))[1]/dd 

arl1m<-mean(av1a,na.rm=TRUE) 

arl2m<-mean(av1b,na.rm=TRUE) 

 

rate<-seq(0,1,0.0001) 

d1<-matrix(rep(0),length(rate),1) 

d2<-matrix(rep(0),length(rate),1) 

 

for (r in 1:length(rate)) 

{ 

d1[r]<-qexp(exp1,rate[r]) 

d2[r]<-qexp(exp2,rate[r]) 

} 

k1<-min(which(round(d1)<=n1[s])) 

k2<-min(which(round(d2)<=n1[s])) 

arl1<-1/rate[k1] 

arl2<-1/rate[k2] 

 

cc[q,]<-c(arl1,arl1m,arl2,arl2m) 

} 

 

ccs[(length(phi1)*(s-1)+1):(length(phi1)*s),]<-cc 

} 
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ccs 

 

 

For the figures of exponentiol distribution when the number of observation is 5000 and the number of 

dataset is 5000 with autocorrelation levels 0 and 0.7 

 

####### Exponential Distribution of run lengths ###### 

par(mfrow=c(2,2)) 

Generated_RL<-av1b    

Expected_RL<-rexp(dd,1/cc[4] ) 

qqplot(Expected_RL,Generated_RL,main=expression( "Q-Q plot of RL with unknown parameters")) 

abline(0,1) 

hist(Generated_RL,breaks=50,col="lightblue",main =expression( "Histogram of RL with unknown 

parameters")) 

 

Generated_RL<-av1a    

Expected_RL<-rexp(dd,1/cc[2] ) 

qqplot(Expected_RL,Generated_RL,main=expression( "Q-Q plot of RL with known parameters")) 

abline(0,1) 

hist(Generated_RL,breaks=50,col="lightblue",main =expression( "Histogram of RL with known parameters")) 

 

 

R codes for the calculation of ARLs by using X-chart based on raw data and residuals from AR(1) 

process in the combination of different autocorrelation levels and various magnitudes of shifts in the 

process mean. 

rm(list=ls()) 

n1=100 

n2<-5000 

sn2<-0 

shf<-c(0,0.5,1,2,3) 

dd<-1000 

phi1<-c(0.25,0.5,0.75,0.95,-0.25,-0.5,-0.75,-0.95) 

mu1<-0 

 

Arl1xr   <- matrix(rep(0),dd,1)   

Arl11xr  <- matrix(rep(0),dd,1)  

Arl1x    <- matrix(rep(0),dd,1)   

Arl11x   <- matrix(rep(0),dd,1)  

cc<-matrix(rep(0),length(phi1),2)  

ccs <-matrix(rep(0),length(phi1)*length(shf),2)  

datb1<- matrix(rep(0),n2-sn2,dd) 

  

for (sh in 1:length(shf)) 

 { 

for (q in 1:length(phi1)) 

 { 

c1<-(1-phi1[q])*mu1 
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ybar<-mu1     

ysd<-(1/sqrt(1-phi1[q]^2))  

 

#### Control limits for raw data #### 

UCL<-ybar+3*ysd           

LCL<-ybar-3*ysd 

 

#### Control limits of residuals #### 

UCLr<- 0+3*1 

LCLr<- 0-3*1 

 

mu2<- mu1+shf[sh]*(1/sqrt(1-phi1[q]^2)) 

c2<-(1-phi1[q])*mu2 

 

 

for (j in 1:dd) 

{ 

 

a1<-arima.sim(n=n1,list(ar=c(phi1[q])),mean=c1) 

mushf<-a1[n1]+shf[sh]*(1/sqrt(1-phi1[q]^2)) 

 

z = matrix(0,n2,1) 

e = rnorm(n2,0,1) 

z[1] =mushf   

    for (jf in 2:n2)  

                   { 

                   z[jf] = c2+phi1[q]*z[jf-1]+e[jf] 

                   } 

b1sn<-z[(sn2+1):n2] 

datb1[,j]<-b1sn 

 

ra1m<-matrix(0,n2-sn2,1) 

ra1m[1]<-b1sn[1]-phi1[q]*a1[n1-1]-c1 

 

for (k in 2:(n2-sn2)) 

 { 

ra1m[k]<-b1sn[k]-phi1[q]*b1sn[k-1]-c1 

 } 

 

Arl1xr[j,]<-min(which(ra1m>UCLr))    

Arl11xr[j,]<-min(which(ra1m<LCLr))  

Arl1xr[is.infinite(Arl1xr)]<-NA 

Arl11xr[is.infinite(Arl11xr)]<-NA 

 

Arl1x[j,]<-min(which(datb1[,j]>UCL))    

Arl11x[j,]<-min(which(datb1[,j]<LCL))   

Arl1x[is.infinite(Arl1x)]<-NA 

Arl11x[is.infinite(Arl11x)]<-NA 

} 

 

Va1r<-cbind(Arl1xr,Arl11xr)  



Appendix D  

 

80 

 

av1ar<-matrix(0,dd,1) 

av1ar[(which(Va1r[,1]&Va1r[,2]))]<- apply(Va1r[(which(Va1r[,1]&Va1r[,2])),],1,min)         

av1ar[which(is.na(Va1r[,1])&is.na(Va1r[,2]))]=NA     

av1ar[which(Va1r[,1]&is.na(Va1r[,2]))]<-Va1r[which(Va1r[,1]&is.na(Va1r[,2])),1]    

av1ar[which(is.na(Va1r[,1])&Va1r[,2])]<-Va1r[which(is.na(Va1r[,1])&Va1r[,2]),2]    

arl1mr<-mean(av1ar,na.rm=TRUE) 

 

Va1<-cbind(Arl1x,Arl11x)  

av1a<-matrix(0,dd,1) 

av1a[(which(Va1[,1]&Va1[,2]))]<-apply(Va1[(which(Va1[,1]&Va1[,2])),],1,min)         

av1a[which(is.na(Va1[,1])&is.na(Va1[,2]))]=NA     

av1a[which(Va1[,1]&is.na(Va1[,2]))]<-Va1[which(Va1[,1]&is.na(Va1[,2])),1]    

av1a[which(is.na(Va1[,1])&Va1[,2])]<-Va1[which(is.na(Va1[,1])&Va1[,2]),2]    

 

arl1m<-c(mean(av1a,na.rm=TRUE)) 

arl1mr<-mean(av1ar,na.rm=TRUE) 

 

cc[q,]<-c(arl1m,arl1mr) 

} 

ccs[(length(phi1)*(sh-1)+1):(length(phi1)*sh),]<-cc 

} 

ccs 

 

D.2   Simulations for Chapter 4 

R codes for the determination of simulation and theoretical based upper control limits for the 

multivariate normally distributed data by using Hotelling T-square statistics 

 

rm(list=ls()) 

library(qcc) 

library(mvtnorm) 

library(MASS) 

p=2 

dd=1000 

ds<-100 

sigma<-diag(p) 

mu = rep(0,p) 

sq<-seq(100,1700,100) 

k<-c(sq,2000,2500,3000,4000) 

nler<-matrix(rep(0),length(k),2) 

 

for (h in 1:length(k)) 

{ 

dat<- matrix(rep(0),k[h],dd) 

mmax1<- matrix(rep(0),dd,1) 

UCL<-limits.T2.single(k[h], 1, p, 0.9973)$control[2] 

UCL2<-matrix(rep(0),ds,1) 

for (s in 1:ds) 

   { 

for (d in 1:dd) 
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     { 

e = mvrnorm(k[h],mu,sigma) 

T<-stats.T2.single(e, center=NULL, cov=NULL )$statistics 

dat[,d]<-T 

k1=max(dat[,d]) 

mmax1[d,]<-k1 

      } 

mx<- mmax1[rev(order(mmax1))] 

alph1<-1-((0.9973)^(k[h])) 

UCL2[s,]<-mx[alph1*dd] 

  } 

nler[h,]<-c(UCL,mean(UCL2)) 

} 

nler 

 

R codes for the calculation of average run lengths by using Hotelling T-square control chart based on 

multivariate normally distributed data in terms of simulation and theoretical UCL. We need to define 

the number of observation and upper control limit based on the specified number of observation 

determined by the previous simulation when we are running the code  

 

rm(list=ls()) 

library(qcc) 

library(mvtnorm) 

library(MASS) 

 

#### Define the number of observation n #### 

n = 100 

 

p=2 

dd=1000 

cvler<-100 

 

sigma<-diag(p) 

mu = rep(0,p) 

 

Arl<- matrix(rep(0),dd,1) 

Arl2<- matrix(rep(0),dd,1) 

 

cv<- matrix(rep(0),cvler,4) 

 

dat<- matrix(rep(0),n,dd) 

mmax1<- matrix(rep(0),dd,1) 

UCL<-limits.T2.single(n, 1, p, 0.9973)$control[2] 

 

for (jk in 1:cvler){ 

for (d in 1:dd) 

   { 

e = mvrnorm(n,mu,sigma) 

T<-stats.T2.single(e, center=NULL, cov=NULL )$statistics 
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dat[,d]<-T 

k1=max(dat[,d]) 

mmax1[d,]<-k1 

Arl[d,]<-min(which(T>UCL)) 

Arl1<-Arl 

Arl1[is.infinite(Arl1)]<-NA 

      } 

 

### Theoretical UCL ### 

exp1<-dim(matrix(which(Arl1<=n)))[1]/dd 

rate<-seq(0,1,0.0001) 

d1<-matrix(rep(0),length(rate),1) 

for (r in 1:length(rate)) 

{ 

d1[r]<-qexp(exp1,rate[r]) 

} 

k1<-min(which(round(d1)<=n)) 

arl1<-1/rate[k1] 

 

 

### Define UCL2 in terms of the UCL determined previous simulation ##### 

UCL2<-12.91 

 

### Simulation based UCL #### 

for (s in 1:dd) 

   { 

Arl2[s,]<-min(which(dat[,s]>UCL2)) 

Arl22<-Arl2 

Arl22[is.infinite(Arl22)]<-NA 

    } 

exp2<-dim(matrix(which(Arl22<=n)))[1]/dd 

rate<-seq(0,1,0.0001) 

d2<-matrix(rep(0),length(rate),1) 

for (r in 1:length(rate)) 

{ 

d2[r]<-qexp(exp2,rate[r]) 

} 

k2<-min(which(round(d2)<=n)) 

 

arl2<-1/rate[k2] 

 

ccc<-mean(Arl1,na.rm=TRUE)  

cc2<-mean(Arl22,na.rm=TRUE) 

 

cv[jk,]<-c(arl1,arl2,ccc,cc2) 

 

} 

 

colMeans(cv) 
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R codes for the calculation of ARLs by using Hotelling T-square control charts based on raw data and 

residuals from VAR(1) process witth different positive autocorrelation levels and various amount of 

magnitudes of shifts. We need to define the magnitudes of shift, sigma error term and the 

autocorrelation level when we are running the code.  

 

rm(list=ls()) 

library(mvtnorm) 

library(MASS) 

library(qcc) 

library(vars) 

n = 100 

n2= 5000 

ne<- 0 

p = 2 

dd= 1000 

 

#### define the magnitudes of shift ##### 

shf<-c(0,0) 

 

sigma<-matrix(c(1,0,0,1),2,2) 

phi = matrix(rep(0),p,p) 

 

####  

a<-c(0,0.25,0.5,0.75,0.95) 

mu = rep(0,p) 

 

Arl1z<- matrix(rep(0),dd,1) 

Arl2z<- matrix(rep(0),dd,1) 

datz1<- matrix(rep(0),n2-ne,dd) 

datz2<- matrix(rep(0),n2-ne,dd) 

 

ccxz<-matrix(rep(0),length(a),2) 

ccxxz<-matrix(rep(0),length(a)^2,2) 

 

for (i in 1:length(a)) 

{ 

phi[1]=a[i] 

  for (tt in 1:length(a))  

{ 

 

phi[p,p]=a[tt] 

 

c = as.vector((diag(p)-phi)%*%mu) 

 

y = matrix(0,p,n) 

y[,1] = mu 

z = matrix(0,p,n2) 

 

for (d in 1:dd) 
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  { 

e = mvrnorm(n+n2,mu,sigma) 

e = t(e) 

e1<-e[,1:n] 

    for (j in 2:n)  

                   { 

                   y[,j] = c+phi%*%y[,j-1]+e1[,j] 

                   } 

e2<-e[,(n+1):(n+n2)] 

u <- t(y) 

yy1 <- u[(ne+1):n,]  

 

 

ecov<-solve(diag(4)-kronecker(phi, phi)) 

stsigma<-cbind(stack(as.data.frame(sigma))[,1]) 

dfg<-ecov%*%stsigma 

ncov<-matrix(c(dfg),2,2) 

 

mu2<-as.vector(mu+shf*sqrt(diag(ncov))) 

c2 = as.vector((diag(p)-phi)%*%mu2) 

 

mushf<-y[,n]+shf*sqrt(diag(ncov)) 

 

 

z[,1] =mushf    

    for (jf in 2:n2) 

                   { 

                   z[,jf] = c2+phi%*%z[,jf-1]+e2[,jf] 

                   } 

 

uz <- t(z) 

zz1<- uz[(ne+1):n2,]   

 

re1<-matrix(rep(0),p,n2-(ne)) 

re1[,1]<-z[,1]-(c+phi%*%y[,n-1]) 

 

for (gh in 2:(n2-ne)) 

{ 

re1[,gh]<-z[,gh]-(c+phi%*%z[,gh-1])                 

} 

re1t<-t(re1) 

 

Tzz1<-stats.T2.single(zz1, center=mu, cov=ncov )$statistics 

Tzz2<-stats.T2.single(re1t, center=c(0,0), cov=sigma )$statistics 

 

datz1[,d]<-Tzz1 

datz2[,d]<-Tzz2 

 

     } 

 

UCL1z<-limits.T2.single(n2-ne, 1, p, 0.9973)$control[2] 
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for (s in 1:dd) 

        { 

  Arl1z[s,]<-min(which(abs(datz1[,s])>UCL1z)) 

  Arl2z[s,]<-min(which(abs(datz2[,s])>UCL1z)) 

  Arl11z<-Arl1z 

  Arl22z<-Arl2z 

  Arl11z[is.infinite(Arl11z)]<-NA 

  Arl22z[is.infinite(Arl22z)]<-NA 

        } 

 

ccxz[tt,]<-c(mean(Arl11z,na.rm=TRUE),mean(Arl22z,na.rm=TRUE)) 

    } 

ccxxz[(length(a)*(i-1)+1):(length(a)*i),]<-ccxz 

} 

 

 

D.3   Simulations for Chapter 5 

R codes for the calculation of ARLs by using Hotelling T-square control chart based on data matrix 

with lagged variables with different positive autocorrelation levels and various amount of magnitudes 

of shifts.We need to define the amount of shift, sigma error term and autocorrelation level when we 

are running the code. 

 

rm(list=ls()) 

library(mvtnorm) 

library(MASS) 

library(qcc) 

library(vars) 

n = 5000 

n2= 5000 

ne<- 0 

p = 2 

dd= 1000 

 

#### Define the amount of shift #### 

shf<-c(0,0) 

 

#### Define the sigma error term #### 

sigma<-matrix(c(1,0,0,1),2,2) 

phi = matrix(rep(0),p,p) 

 

#### Define the autocorrelation level  #### 

 

a<-c(0,0.25,0.5,0.75,0.95) 

mu = rep(0,p) 

Arl1zz3<- matrix(rep(0),dd,1) 

datzz3<- matrix(rep(0),n2-ne-1,dd) 

ccxz<-matrix(rep(0),length(a),1) 
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ccxxz<-matrix(rep(0),length(a)^2,1) 

 

for (i in 1:length(a)) 

{ 

phi[1]=a[i] 

  for (tt in 1:length(a))  

{ 

 

phi[p,p]=a[tt] 

c = as.vector((diag(p)-phi)%*%mu) 

y = matrix(0,p,n) 

y[,1] = mu 

z = matrix(0,p,n2) 

 

for (d in 1:dd) 

  { 

e = mvrnorm(n+n2,mu,sigma) 

e = t(e) 

e1<-e[,1:n] 

    for (j in 2:n)  

                   { 

                   y[,j] = c+phi%*%y[,j-1]+e1[,j] 

                   } 

e2<-e[,(n+1):(n+n2)] 

u <- t(y) 

yy1 <- u[(ne+1):n,]  

 

ecov<-solve(diag(4)-kronecker(phi, phi)) 

stsigma<-cbind(stack(as.data.frame(sigma))[,1]) 

dfg<-ecov%*%stsigma 

ncov<-matrix(c(dfg),2,2) 

 

mu2<-as.vector(mu+shf*sqrt(diag(ncov))) 

c2 = as.vector((diag(p)-phi)%*%mu2) 

mushf<-y[,n]+shf*sqrt(diag(ncov)) 

 

z[,1] =mushf    

    for (jf in 2:n2) 

                   { 

                   z[,jf] = c2+phi%*%z[,jf-1]+e2[,jf] 

                   } 

uz <- t(z) 

zz1<- uz[(ne+1):n2,]  

 

yy3<- cbind(yy1[2:(n-ne),1],yy1[1:(n-ne-1),1],yy1[2:(n-ne),2],yy1[1:(n-ne-1),2]) 

zz3<- cbind(zz1[2:(n2-ne),1],zz1[1:(n2-ne-1),1],zz1[2:(n2-ne),2],zz1[1:(n2-ne-1),2]) 

 

Tzz3<-stats.T2.single(zz3, center=colMeans(yy3), cov=cov(yy3) )$statistics 

datzz3[,d]<-Tzz3 

     } 

UCL2zz3<-limits.T2.single(n2-ne-1, 1, 4 , 0.9973)$control[2] 
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for (s in 1:dd) 

        { 

  Arl1zz3[s,]<-min(which(abs(datzz3[,s])>UCL2zz3)) 

  Arl11zz3<-Arl1zz3 

  Arl11zz3[is.infinite(Arl11zz3)]<-NA 

        } 

ccxz[tt,]<-c(mean(Arl11zz3,na.rm=TRUE)) 

    } 

ccxxz[(length(a)*(i-1)+1):(length(a)*i),]<-ccxz 

} 

 

 

D.4   Simulations for Chapter 6 

 

R codes for the calculation of ARLs by using Hotelling T-2 control charts with adjusted control limits 

based on proposed methods with the autocorrelation matrix corresponds to high, moderate and low 

autocorrelation. We need to define sigma error term, autocorrelation level and upper control limits  

when we are running the code. 

rm(list=ls()) 

library(mvtnorm) 

library(MASS) 

library(qcc) 

library(vars) 

n = 5000 

n2= 5000 

ne<- 0 

p = 2 

dd= 1000 

shf<-c(0,0) 

 

#### define sigma #### 

sigma<-matrix(c(1,0,0,1),2,2) 

phi = matrix(rep(0),p,p) 

 

#### define autocorrelation matrix ##### 

phi[1,1]<-0.4 

phi[2,2]<-0.4 

phi[1,2]<-0.1 

phi[2,1]<-0.3 

 

#### define UCL for each method #### 

UCL1<-11.67    ##UCL for raw data 

UCL2<-limits.T2.single(n2-ne, 1, p, 0.9973)$control[2]   ## UCL for residual of VAR model 

UCL3<-12.55    ## UCL for residual of individual AR model 

UCL4<-15.7     ## UCL for data matrix with lagged variables 
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mu = rep(0,p) 

Arl1<- matrix(rep(0),dd,1) 

Arl2<- matrix(rep(0),dd,1) 

Arl3<- matrix(rep(0),dd,1) 

Arl4<- matrix(rep(0),dd,1) 

 

datz1<- matrix(rep(0),n2-ne,dd) 

datz2<- matrix(rep(0),n2-ne,dd) 

datz3<- matrix(rep(0),n2-ne,dd) 

datz4<- matrix(rep(0),n2-ne-1,dd) 

 

sh<-c(0,0.5,1,2,3) 

ccxz<-matrix(rep(0),length(sh),4) 

ccxxz<-matrix(rep(0),length(sh)^2,4) 

c = as.vector((diag(p)-phi)%*%mu) 

 

y = matrix(0,p,n) 

y[,1] = mu 

z = matrix(0,p,n2) 

 

for (sh1 in 1:length(sh)){ 

shf[1]<-sh[sh1] 

 for (sh2 in 1:length(sh)){ 

shf[2]<-sh[sh2] 

 

for (d in 1:dd) 

  { 

e = mvrnorm(n+n2,mu,sigma) 

e = t(e) 

e1<-e[,1:n] 

    for (j in 2:n)  

                   { 

                   y[,j] = c+phi%*%y[,j-1]+e1[,j] 

                   } 

e2<-e[,(n+1):(n+n2)] 

u <- t(y) 

yy1 <- u[(ne+1):n,]  

yy2<- cbind(yy1[2:(n-ne),1],yy1[1:(n-ne-1),1],yy1[2:(n-ne),2],yy1[1:(n-ne-1),2]) 

 

ecov<-solve(diag(4)-kronecker(phi, phi)) 

stsigma<-cbind(stack(as.data.frame(sigma))[,1]) 

dfg<-ecov%*%stsigma 

ncov<-matrix(c(dfg),2,2) 

 

mu2<-as.vector(mu+shf*sqrt(diag(ncov))) 

c2 = as.vector((diag(p)-phi)%*%mu2) 

mushf<-y[,n]+shf*sqrt(diag(ncov)) 

 

z[,1] =mushf    

    for (jf in 2:n2) 

                   { 
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                   z[,jf] = c2+phi%*%z[,jf-1]+e2[,jf] 

                   } 

  

uz <- t(z) 

zz1<- uz[(ne+1):n2,]   

 

zz2<- cbind(zz1[2:(n2-ne),1],zz1[1:(n2-ne-1),1],zz1[2:(n2-ne),2],zz1[1:(n2-ne-1),2]) 

 

##VAR residual 

re1<-matrix(rep(0),p,n2-(ne)) 

re1[,1]<-z[,1]-(c+phi%*%y[,n-1]) 

for (gh in 2:(n2-ne)) 

{ 

re1[,gh]<-z[,gh]-(c+phi%*%z[,gh-1])                 

} 

re1t<-t(re1) 

 

##AR residual 

phihatar<-matrix(rep(0),2,2) 

phihatar[1,1]<-phi[1,1] 

phihatar[2,2]<-phi[2,2] 

re2<-matrix(rep(0),p,n2-(ne)) 

re2[,1]<-z[,1]-(c+phihatar%*%y[,n-1]) 

for (gh in 2:(n2)) 

{ 

re2[,gh]<-z[,gh]-(c+phihatar%*%z[,gh-1])   

} 

re2t<-t(re2) 

 

Tzz1<-stats.T2.single(zz1, center=mu, cov=ncov )$statistics                 #RAW 

Tzz2<-stats.T2.single(re1t, center=c(0,0), cov=sigma )$statistics           #VAR residual 

Tzz3<-stats.T2.single(re2t, center=c(0,0), cov=sigma )$statistics           #AR residual 

Tzz4<-stats.T2.single(zz2, center=colMeans(yy2), cov=cov(yy2) )$statistics  #LAG 

 

datz1[,d]<-Tzz1 

datz2[,d]<-Tzz2 

datz3[,d]<-Tzz3 

datz4[,d]<-Tzz4 

     } 

 

for (s in 1:dd) 

        { 

  Arl1[s,]<-min(which(abs(datz1[,s])>UCL1)) 

  Arl2[s,]<-min(which(abs(datz2[,s])>UCL2)) 

  Arl3[s,]<-min(which(abs(datz3[,s])>UCL3)) 

  Arl4[s,]<-min(which(abs(datz4[,s])>UCL4)) 

  Arl11<-Arl1 

  Arl22<-Arl2 

  Arl33<-Arl3 

  Arl44<-Arl4 

  Arl11[is.infinite(Arl11)]<-NA 
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  Arl22[is.infinite(Arl22)]<-NA 

  Arl33[is.infinite(Arl33)]<-NA 

  Arl44[is.infinite(Arl44)]<-NA 

        } 

 

ccxz[sh2,]<-

c(mean(Arl11,na.rm=TRUE),mean(Arl22,na.rm=TRUE),mean(Arl33,na.rm=TRUE),mean(Arl44,na.rm=TRUE)) 

    } 

ccxxz[(length(sh)*(sh1-1)+1):(length(sh)*sh1),]<-ccxz 

} 

ccxxz 

 

 

 

 

 

 

 

 

 


