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Abstract

In this Master Thesis type I and II superconductors will be studied numeri-
cally. The numerical simulations are made using both the stationary and time–
dependent Ginzburg–Landau equations. It turns out that it is hard to make
simulations having more than one vortex using the stationary equations. This
is due to the difficulty of providing an initial guess which is close enough to
the solution. For this reason the time–dependent equations are used to create
multi-vortex systems.

During the simulations made with the stationary equations, it becomes
clear that the assumptions made to derive the London Penetration depth and
Ginzburg–Landau coherence length are valid. It will be shown that the numer-
ical simulations act as predicted.

In the time–dependent simulations, vortex dynamics are investigated. It will
be seen how the vortices enter the superconductor, and how they approach the
steady state solution. It also becomes clear that hysteresis exists in a supercon-
ductor. The equations are also solved for defect geometries, and in turns out that
these defect has a large impact, on how the vortices enters the superconductor.
Finally it will be suggested that based on the numerical solutions, the time–
dependent equations converge towards solutions of the stationary Ginzburg–
Landau equations.
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Resumé

I dette eksamensprojekt, bliver type I og II superledere studeret ved hjælp af
numeriske simuleringer. B̊ade de stationære og tids–afhængige ligninger vil blive
løst. Det viser sig, at de stationere ligninger er svære at løse for mere end et
vortex. Dette er p̊a grund af, at det er vanskeligt at give at godt startsgæt,
for systemmer som indeholder mere end et vortex. Af denne årsag benyttes de
tids–afhængige ligninger til at beregne løsninger, som indeholder mere end et
vortex.

I løbet af simuleringerne af de stationære ligninger, bliver det klart, at de
forudsætninger der blev stillet under udledningen af London indtrængnings dyb-
den og Ginzburg–Landau kohærent længden er gyldige. De numeriske simu-
leringer udviser den opførsel, som blev forudset ved hjælp af disse udledninger.

I de tidsafhængige simuleringer bliver dynamikken mellem flere vortex un-
dersøgt. Det vil blive vist hvorledes de trænger ind i superlederen, og hvorledes
de g̊ar imod en stationær løsning. Det bliver ogs̊a vist, at der findes hysterese i
systemet. Ligningerne vil ogs̊a blive løst for geometrier som indeholder defekter,
og det viser sig at disse defekter har en stor indflydelse p̊a, hvor og hvorledes
et vortex trænger ind i superlederen. Sidst bliver det antydet, baseret p̊a de
numeriske beregninger, at de tidsafhængige ligninger g̊ar imod løsninger, som
ogs̊a er løsninger til de stationære ligninger.
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Introduction

In 1908, the Dutch physicist Heike Kamerlingh Onnes of Leiden laboratory was
able to liquefy Helium. Helium was the last remaining noble gas to be liquefied
and has a boiling point at 4.55K. This achievement enabled Onnes to investigate
physical properties near absolute zero. At that time, the understanding of elec-
trical conductivity was very incomplete, however it was known that electrical
resistance of many metals falls linearly with temperature near room tempera-
ture. With liquid helium Onnes began to investigate the electrical properties
of metals near absolute zero. In 1911 he discovered superconductivity using
Mercury and in his own words [1]

“the experiment left no doubt that, as far as accuracy of measure-
ment went, the resistance disappeared. At the same time, however,
something unexpected occurred. The disappearance did not take
place gradually, but abruptly. From 1/500 the resistance at 4.2◦K
drops to a millionth part. At the lowest temperature, 1.5◦K, it could
be established that the resistance had become less than a thousand-
millionth part of that at normal temperature.

Thus the mercury at 4.2◦K has entered a new state, which, owing
to its particular electric properties, can be called the state of super-
conductivity.”

With these word Onnes declared the existence of the superconducting state. A
superconductor also has a normal state in which the superconductor behaves
like a normal conductor with resistance. The temperature where the sample
switches from normal state into superconducting state is called the transition
temperature denoted Tc.

Onnes was not able to conclude that the resistance vanished, but only that it
was lowered significantly by measuring an upper limit. Experiments conducted
later on suggests that the superconducting state is ideal, that is the electrical
resistance completely vanish. Collins completed an experiment in 1957, where
the current flowed within a superconducting ring and even after two and a
half years there was no measurable change in the current [2]. Onnes won the
Nobel prize in physics in 1913 for his remarkable work and the discovery of
superconductors [3].

In 1933 W. Meissner and R. Ochsenfeld discovered an interesting physi-
cal property of superconductors by investigating superconductors in magnetic
fields [4]. They found that in normal state there was a finite magnetic field in-
side the sample, but the moment the temperature reached Tc the magnetic field
was expelled from the sample (this is in essence ideal diamagnetism). This phe-
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Introduction 2

nomena was called the Meissner effect, and when the magnetic field is expelled
from the superconducting sample it is said to be in the Meissner phase.

Besides a critical temperature, a superconductor also has a critical magnetic
field value denoted Bc. If the external field is strong enough it will destroy
the superconducting phase and force the superconducting sample into normal
phase. Whether a material is in the superconducting phase depends on the
external magnetic field as well as the temperature.

It turns out that there are two types of superconductors. Type I supercon-
ductors can either be in normal phase or Meissner phase, but type II supercon-
ductors have a third phase called the mixed phase or vortex phase. In this third
phase the superconducting sample is in the superconducting state. The vortex
phase appears as follows; suppose we have a type II superconducting sample
with an applied magnetic field strong enough to force the sample to be in the
normal phase. The temperature in this setup is below the critical temperature,
so if the magnetic field was any weaker the sample would be in a superconduct-
ing state. Now the magnetic field is made weaker and what happens is that
the sample will first enter the vortex phase, and lowering the magnetic field
further will make the sample enter the Meissner phase. In this way a type II
superconductor has two critical magnetic field values. In the vortex phase the
superconducting sample is partly in Meissner phase and normal phase, such that
the external magnetic field penetrates the sample in some areas where vortices
appears.

The discovery made by Onnes caused theoretical physicist difficulties for
nearly half a decade. A lot a theories trying to describe the phenomena was
developed of which three are still in use and will be discussed here briefly. The
first theory appeared in 1935 was a phenomenological theory proposed by the
London brothers and is now known as London theory [5]. Among other things
the theory describes the magnetic properties of Type I superconductors and how
the applied magnetic field has a penetration depth into the superconducting
sample.

15 years later in 1950, V. L. Ginzburg and L. D. Landau extended the Lon-
don theory and proposed a phenomenological theory, which is able to describe
a superconductor in a strong magnetic field. The Ginzburg–Landau theory en-
ables study of type II superconductors1.

In 1957 the theoretical breakthrough finally appeared, when J. Bardeen,
L. N. Cooper and J. R. Schrieffer laid forth a microscopic theory ”Theory of
Superconductivity”which later became known as BCS theory [6]. In BCS theory
Cooper pairs are introduced which are the superconducting electrons. A Cooper
pair consist of two electrons which are bound together. The BCS theory explains
the superconducting phenomena below a temperature of 30-40K. Above this
temperature BCS theory is no longer a valid theory for superconductors. The
theory earned a Nobel prize in 1972.

With the theoretical foundation in place, physicist were able to explain the
superconducting phenomina and the cause of the Meissner phase. It turns out,
that the superconductor creates a current on the surface, which generates a
shielding magnetic field opposite of the external magnetic field. This effect also

1Ginzburg jointly won the Nobel prize in 2003 with A. A. Abrikosov and A. J. Leggett for
their work on superconductors and superfluids. Landau also won the Nobel prize, but it was
in 1962 “for his pioneering theories for condensed matter, especially liquid helium”.



Introduction 3

enables a theoretical suggestion that resistance of superconductors are truly
zero.

For 29 years the theory of superconductors was thought to be complete,
but J. G. Bednorz and K. A. Müller presented a discovery that made another
challenge for theoretical physicist. In the IBM Laboratory in Switzerland they
discovered a ceramic sample (La-Ba-Cu-O) with a critical temperature at 40K,
and thus high temperature superconductors were discovered [7]. High tempera-
ture superconductors is beyond the scope of BCS Theory, which fails when the
temperature becomes higher than 30-40K. At the moment, high temperature
superconductors have several competing theories and it is still being discussed
how they work. Bendnorz and Müller received the Nobel prize in 1987 for their
discovery.

A curios fact about the discovery made by Bednorz and Müller is that ce-
ramic samples which are insulators at room temperature can become supercon-
ductors, and on the contrary good conductors such as copper has no supercon-
ducting phase at all.

According to the website superconductors.org, the current record-holder for
the highest Tc superconductor is the cuprate (Hg0.8Tl0.2)Ba2Ca2Cu3O8.33 whose
Tc is 138K.

For more information about the historical development of superconductors
refer to the books [2, 1, 8].



Chapter 1

Ginzburg–Landau Theory

The Ginzburg–Landau theory originated in 1950 is a theory based on Landau’s
theory on second order phase transitions [9]. In such a transition the molecules
of the material in question are continously being more and more ordered as the
temperature is lowered (opposed to first order phase transitions as the transition
from water to ice where the ordering all happens at one specific temperature).
By ordered we mean that in a material in solid state, the molecules are more
ordered compared to the fluid state. The Ginzburg–Landau theory treats the
transition from normal state to superconducting state as a second order phase
transition. On this account an order parameter is defined, that rises in the
new phase (here the superconductor phase) which is zero at the temperature
T = Tc and one at T = 0K. The order parameter is denoted as Ψ(r) where
|Ψ(r)|2 can be interpreted as the density of superconducting charge carriers.
The order parameter is normalised such that |Ψ(r)|2 ≤ 1. At this point in time
the BCS theory was yet to be developed and therefore it was not yet known
what the“superconducting charge carriers”actually was. The Ginzburg–Landau
theory was not really appreciated until 1959, when Gor’kov proved that Ginz-
burg–Landau theory can be derived from the microscopic BCS theory near the
critical temperature Tc [10]. With the established correspondence between BCS
and Ginzburg–Landau theory it became clear that the order parameter squared
represents the density of Cooper pairs.

1.1 Thermodynamics in superconductors

The starting point of the time-independent Ginzburg–Landau theory is thermo-
dynamical arguments involving Gibbs free energy. This text will discuss these
arguments very briefly where a deeper treatment can be found in the book by
W. Buckel and R. Kleiner [8].

To explain why the sample in question changes from a normal state to a
superconducting state a Gibbs function with a special behaviour is constructed.
A Gibbs function has dimension [energy] so it can be seen as a potential. The
sought Gibbs function must fulfil two requirements:

• When the temperature is above Tc it must be energy-wise favourable to
be in the normal conducting state. In this case the Gibbs function must
have a minima at Ψ = 0 since there exists no Cooper pairs in the sample.

4



1.1. Thermodynamics in superconductors 5

• When the temperature is below Tc it must be energy-wise favourable to be
in the superconducting state. This means that the Gibbs function must
have at least one minima where Ψ �= 0 and the Gibbs function may not
have minima at Ψ = 0.

This behaviour is exhibited by the Gibbs function shown in figure 1.1. This
Gibbs function is constructed as follows; assuming that the Cooper pair density
approaches zero sufficiently smoothly as the temperature approaches Tc, the
Gibbs function can be expanded in a Taylor series of |Ψ|2 around Tc

1:

gs = gn + α|Ψ|2 + β

2
|Ψ|4 +O(|Ψ|6) (1.1)

where gn is the Gibbs function of the normal conducting state and gs is the Gibbs
function of the superconducting state. Note that gs equals gn when the material
is in the normal conducting state (that is when |Ψ|2 = 0). Sufficiently close to
Tc a fourth order expansion is a satisfactory approximation so the terms after
|Ψ|4 are neglected. Since gs is of dimension [energy/volume] and the dimension
of |Ψ|2 is [1/volume], the dimension of α needs to be [energy] and the dimension
of β needs to be [energy · volume].

The signs of α and β can be determined by some physical observations; the
equilibrium state of the system will be where gs is minimal. Furthermore, below
the transition temperature it is required that gs is smaller than gn otherwise
the material will stay in the normal conducting state. With these observations
in mind the following can be concluded

• β must be positive, otherwise the minima of gs is found when |Ψ| → ∞.

• Since β is positive α must be negative to ensure that gs < gn for T < Tc.

• For T > Tc the minima of gs should be at |Ψ| = 0 (the normal conducting
state). To meet this requirement α must be positive when T > Tc.

The values of α can be reversed by changing the sign of α in the Gibbs function,
thus a new Gibbs function can be defined as

gs = gn − α|Ψ|2 + β

2
|Ψ|4 (1.2)

where both α and β are positive when T < Tc and α is negative when T > Tc.
To meet the requirements for α we define α(T ) as

α(T ) = α(0)

(
1− T

Tc

)
(1.3)

Having α(0) as positive we see that α(T ) behaves as required. The variable β
is positive, so we can roughly set β(T ) ≈ β(0). The Gibbs function (1.2) is the
function illustrated in figure 1.1.

1Note that the given Gibbs function is expressed as the energy density. The energy density
is the energy per unit volume.



1.2. The Gibbs function 6

Ψ

gs

T > Tc

T < Tc

Figure 1.1: The Gibbs function gs for the normal (gray) and superconducting
(black) state.

1.2 The Gibbs function

To get a complete description of the superconducting state some additional
terms must be added to the Gibbs function. In the Ginzburg–Landau theory
one uses the ansatz

gs = gn +
1

2m

∣∣∣∣
(
�

ı
∇− qA

)
Ψ

∣∣∣∣
2

− α|Ψ|2 + β

2
|Ψ|4 + 1

2μ0
|Ba −Bi|2 (1.4)

Note that SI units are used. Conversion of the Ginzburg–Landau equations from
cgs to SI units is described in appendix A.

Two additional terms appear in the Gibbs function and their physical sig-
nificance will be discussed briefly. To begin with the last term is discussed. It
was mentioned in the introduction that the applied magnetic field was expelled
from a superconductor in the superconducting phase. To achieve this effect a
superconducting current appears in the superconductor. This current induces a
magnetic fields which expels the applied magnetic field. If Bi is defined as the
magnetic field inside the superconductor and Ba as the applied magnetic field,
then the absolute value of the induced magnetic field must be |Ba − Bi|. The
energy density of the induced magnetic field denoted uB then is [11]

uB =
1

2μ0
|Ba −Bi|2 (1.5)

where μ0 is the permeability of free space. Furthermore the following relation
is found from electromagnetism

Bi = ∇×A (1.6)

where A is a vector potential. Thus the last term of the introduced Gibbs
function represents the energy required to expel the applied magnetic field Ba.



1.2. The Gibbs function 7

To analyse the first term quantum mechanics needs to be revisited. The
classical Hamiltonian2 for a charged particle in a magnetic field is [12]

Hclassic =
1

2m
(p− qA)

2
+ qφ (1.7)

where m = 2me and |q| = 2e is the mass and charge of the Cooper pairs.
Furthermore p is the momentum and φ is the electric scalar potential. In the
expression for Hclassic the first term refers to the kinetic energy and the last
term refers to the potential energy. The quantum mechanical Hamiltonian is
now obtained by inserting the momentum operator defined as

p̂ =
�

ı
∇ (1.8)

and the resulting quantum mechanical Hamiltonian becomes

Ĥ =
1

2m

(
�

ı
∇− qA

)2

+ qφ (1.9)

To calculate the energy of a particle with the wavefunction ψ we can use that

E =

∫ ∞

−∞
ψ∗Ĥψd3r (1.10)

If only the kinetic energy is calculated we get

E =
1

2m

∫ ∞

−∞
ψ∗
(
�

ı
∇− qA

)(
�

ı
∇− qA

)
ψd3r (1.11)

By using integration by parts3 we obtain

E =
1

2m

∫ ∞

−∞

(
−�

ı
∇− qA

)
ψ∗
(
�

ı
∇− qA

)
ψd3r (1.12)

where it is used that the surface integral vanishes. We see that the integrand
equals the second term of L in equation (1.4). By this fact we can assume that
the second term is related to the kinetic energy of the Cooper pairs.

In order to get the Gibbs energy of the entire superconducting sample the
Gibbs function needs to be intergrated over the entire sample since the Gibbs
function is written as an energy density. Before doing so the difference between
the normal state and superconducting state is defined as L = gs − gn. The
motivation behind this is that gn merely adds as a constant to gs and therefore
it is really the difference that is interesting. Writing L in full gives

L =
1

2m

∣∣∣∣
(
�

ı
∇− qA

)
Ψ

∣∣∣∣
2

− α|Ψ|2 + β

2
|Ψ|4 + 1

2μ0
|Ba −Bi|2 (1.13)

2The Hamiltonian in general is the sum of kinetic and potential energy. The kinetic energy
is usually denoted T and the potential energy V .

3Integration by parts is calculated as
∫
Ω f∇gdΩ = − ∫

Ω(∇f)gdΩ +
∫
∂Ω nfgdS, which is

derived using Gauss’ theorem.
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And the total energy for the superconducting sample is

H(Ψ(r),Ψ∗(r),A(r)) =

∫
Ω

d3r

(
gn +

1

2m

∣∣∣∣
(
�

ı
∇− qA

)
Ψ

∣∣∣∣
2

− α|Ψ|2 + β

2
|Ψ|4 + 1

2μ0
|Ba −Bi|2

)
(1.14)

where Ω is the volume of the superconducting sample.

1.3 Derivation of Ginzburg–Landau equations

Since the equilibrium states are determined by the extrema of the Gibbs func-
tion, the Gibbs function has to be minimized. To find the minima, variation
with respect to the order parameter and vector potential is performed. The
resulting equations are the Ginzburg–Landau equations.

Following the rules of calculus of variations the following functions are de-
fined when variation of the Gibbs function is performed

Ψ∗(r, ε) = Ψ∗
0(r) + εζ1(r) = Ψ∗

0 + δΨ∗ ⇒ ∂Ψ∗

∂ε
ε = δΨ∗

Ψ(r, ε) = Ψ0(r) + εζ2(r) = Ψ0 + δΨ ⇒ ∂Ψ

∂ε
ε = δΨ

A(r, ε) = A0(r) + εζ3(r) = A0 + δA ⇒ ∂A

∂ε
ε = δA

H(r, ε) = H0(r) + εζ4(r) = H0 + δH ⇒ ∂H
∂ε

ε = δH

(1.15)

These new functions are inserted into (1.14) such that H now depends on ε too.
The first variation that is calculated is variation of H with respect to Ψ∗.

This means that ζ2 and ζ3 are set to zero. Now the only functions in (1.14)
that depends on ε are H, Ψ∗ and ∇Ψ∗. To begin with the integrand of (1.14)
is written out

L =
1

2m

(
−�

2

ı2
∇Ψ∇Ψ∗ + q2A ·A|Ψ|2 + �

ı
qA · (Ψ∇Ψ∗ −Ψ∗∇Ψ)

)

− α|Ψ|2 + β

2
|Ψ|4 + 1

2μ
|Ba −∇×A|2 (1.16)

Note that |Ψ|2 can also be written as ΨΨ∗. The relevant variables in L with
respect to the variation of Ψ∗ is

L = L (Ψ∗,Ψ∗
,x,Ψ

∗
,y,Ψ

∗
,z, x, y, z, . . .

)
= L(Ψ∗,∇Ψ∗, r, . . . ) (1.17)

The last rewriting can be done because of the structure of L. Using the modified
functions introduced in (1.15), differentiation of equation (1.14) with respect to
ε and multiplication with ε yields4

∂H
∂ε

ε =

∫
Ω

d3r
dL
dε
ε =

∫
Ω

d3r

(
∂L
∂Ψ∗

∂Ψ∗

∂ε
ε+

∂L
∂(∇Ψ∗)

· ∂(∇Ψ∗)
∂ε

ε

)
(1.18)

4The notation ∂
∂V

where V is a vector means ∂
∂V

=
(

∂
∂Vx

, ∂
∂Vy

, ∂
∂Vz

)
.
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where the chainrule is used to resolve the differentiation. The equation is rewrit-
ten using (1.15)5

δH =

∫
Ω

d3r

(
∂L
∂Ψ∗ δΨ

∗ +
∂L

∂(∇Ψ∗)
· ∇δΨ∗

)
(1.19)

In order to proceed, the term ∇δΨ∗ needs to be removed. This is achieved by
integration by parts6, and the last term in rewritten as∫

Ω

d3r
∂f

∂(∇Ψ∗)
∇δΨ∗ =

∫
∂Ω

d2r
∂f

∂(∇Ψ∗)
· nδΨ∗ −

∫
Ω

d3r∇
(

∂f

∂(∇Ψ∗)

)
δΨ∗

(1.20)

such that the variation of H is

δH =

∫
Ω

d3r

(
∂L
∂Ψ∗ −∇

(
∂L

∂(∇Ψ∗)

))
δΨ∗ +

∫
∂Ω

d2r
∂L

∂(∇Ψ∗)
· nδΨ∗ (1.21)

In order to solve the variation problem the two derivatives in the above equation
are calculated as

∂L
∂Ψ∗ =

1

2m

(
[qA]2 Ψ− �

ı
qA · ∇Ψ

)
− αΨ+ β|Ψ|2Ψ (1.22a)

∂L
∂(∇Ψ∗)

=
1

2m

(
−�

2

ı2
∇Ψ+

�

ı
qAΨ

)
(1.22b)

Inserting the derivatives into (1.21) and rearranging yields7

δH =

∫
Ω

dr3

(
1

2m

[
�

ı
∇− qA0

]2
Ψ0 − αΨ0 + β|Ψ|20Ψ0

)
δΨ∗

−
∫
∂Ω

dr2
1

2m

�

ı

(
�

ı
∇Ψ0 − qA0Ψ0

)
· nδΨ∗ (1.23)

This concludes the variation of the order parameter and now the same procedure
is used with the vector potential. Of the terms where the vector potential
features in equation (1.16), it is seen that L depends only on A and ∇ × A.
Using the defined functions in (1.15), differentiating equation (1.14) with respect
to ε and multiplying with ε yields8

δH =

∫
Ω

d3r

(
∂L
∂A

δA+
∂L

∂(∇×A)
· ∇ × δA

)
(1.24)

In order to continue the following rule is used

Q · (∇×W) = W · (∇×Q)−∇ · (Q×W) (1.25)

5It is used that ∂(∇Ψ∗)
∂ε

= ∇ ∂Ψ∗
∂ε

.
6Integration by parts are calculated using

∫
Ω(∇f) ·VdΩ =

∫
∂Ω n ·VfdS − ∫

Ω f∇ ·VdΩ,
which is derived using Gauss’ theorem.

7In order to obtain δH we use the fact that δA = 0 and δΨ = 0, as they are not being
varied. Thus A = A0 and Ψ = Ψ0.

8It is used that ∂(∇×A)
∂ε

= ∇× ∂A
∂ε

.
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which turn the last term of equation (1.24) into

∂L
∂(∇×A)

· (∇× δA) = δA ·
(
∇× ∂L

∂(∇×A)

)
−∇ ·

(
∂L

∂(∇×A)
× δA

)
(1.26)

By making the substitution in (1.24) and using Gauss’ rule9 a formula for the
variation is obtained as

δH =

∫
Ω

d3r

(
∂L
∂A

+∇× ∂L
∂(∇×A)

)
δA

−
∫
∂Ω

d2r n ·
(

∂L
∂(∇×A)

× δA

)
(1.27)

The derivatives are calculated as

∂L
∂A

=
1

2m

(
2q2|Ψ|2A+

�

ı
q(Ψ∇Ψ∗ −Ψ∗∇Ψ)

)
(1.28a)

∂L
∂(∇×A)

= − 1

μ0
(Ba −∇×A) (1.28b)

To calculate the last derivative it is used that neither magnetic fields are com-
plex, thus |Ba − ∇ × A|2 = (Ba − ∇ × A)2. Using the calculated derivatives
the variation with respect to A becomes

δH =

∫
Ω

d3r

(
1

2m

[
2q2|Ψ|20A+

�

ı
q(Ψ0∇Ψ∗

0 −Ψ∗
0∇Ψ0)

]

− 1

μ0
∇× (Ba −∇×A)

)
δA

+

∫
∂Ω

d2r
1

μ0
n · (Ba −∇×A)× δA (1.29)

Now the Ginzburg–Landau equations can be read from (1.23) and (1.29). In
order to achieve minima of H it is required that δH = 0. Since the variations are
arbitrary the integrands must vanish. The surface integrals are used to establish
boundary conditions.

1

2m

(
�

ı
∇− qA0

)2

Ψ0 − αΨ0 + β|Ψ|20Ψ0 = 0 in Ω (1.30a)(
�

ı
∇Ψ0 − qA0Ψ0

)
· n = 0 on ∂Ω (1.30b)

1

2m

(
2q2|Ψ|20A+

�

ı
q[Ψ0∇Ψ∗

0 −Ψ∗
0∇Ψ0]

)

− 1

μ0
∇× (Ba −∇×A) = 0 in Ω (1.30c)

Ba −∇×A = 0 on ∂Ω (1.30d)

9Gauss’ rule can be written as
∫
Ω ∇ ·VdΩ =

∫
∂Ω n ·VdS.
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Note that the third equation (1.30c) contains the term ∇×∇×A. From (1.6)
we have that this term equals ∇×Bi and this term also exists in Ampere’s law
(from Maxwell’s equations):

1

μ0
∇×B = j+ ε0

∂E

∂t
(1.31)

where E is the electric field and j is the current. Since the Ginzburg–Landau
equations are steady state, the steady state Ampere’s law will be used which
means the time derivative vanish. By using the time–independent Ampere’s law,
the relation Bi = ∇ × A and dropping the variation subscripts the equations
can be put on a more familiar form

1

2m

(
�

ı
∇− qA

)2

Ψ− αΨ + β|Ψ|2Ψ = 0 in Ω (1.32a)(
�

ı
∇Ψ− qAΨ

)
· n = 0 on ∂Ω (1.32b)

q�

2mı
(Ψ∗∇Ψ −Ψ∇Ψ∗)− q2

m
|Ψ|2A+

1

μ0
∇×Ba = js in Ω (1.32c)

Ba = Bi on ∂Ω (1.32d)

The boundary conditions can be given some physical meaning. The first bound-
ary condition (1.32b) states that no current can flow out of the superconducting
sample if the applied magnetic field is uniform, which mathematically means
that the curl of the applied magnetic field is zero. The second boundary condi-
tion (1.32d) states that the magnetic field must be continuous.

To show that the boundary condition (1.32b) enforces what is claimed, the
boundary condition is multiplied by Ψ∗. This yields

Ψ∗
(
�

ı
∇Ψ− qΨA

)
· n = 0 ⇔ Ψ

(
−�

ı
∇Ψ∗ − qΨ∗A

)
· n = 0 (1.33)

If these two terms are added together and multiplied by q
2m one gets

q

2m

(
Ψ∗
[
�

ı
∇Ψ− qΨA

]
· n+ Ψ

[
−�

ı
∇Ψ∗ − qΨ∗A

]
· n
)

= 0 (1.34)

The left hand side of the above equation is equivalent to the left hand side of
(1.32c) if the curl of Ba is zero, hence it is proved that from the first boundary
it follows that js · n = 0.

A looser boundary condition can actually be used to enforce that no current
can flow out of the superconducting sample. If a real valued function γ is defined
such that (

�

ı
∇Ψ− qΨA

)
· n = ıγ on ∂Ω (1.35)

a new boundary condition is formed. Provided that the applied magnetic field is
uniform it can be readily verified that the above equation indeed satisfy js ·n = 0
by inserting it into (1.32d). The boundary condition (1.35) can be derived from
BCS theory, from where it follows that γ = 0 for a superconductor-insulator
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(or vacuum) interface and γ �= 0 for a superconductor-normal conductor inter-
face [13]. Note that (1.35) equals (1.32b) when γ is 0 and therefore the boundary
condition derived from the variational process is only valid for a superconductor-
insulator interface.

It is noted by Qiang, Gunzburger and Peterson that by adding
∫
∂Ω −ıγdS

to (1.14) the boundary condition (1.35) directly follows from the variational
process [13]. However they also state that to their knowledge there is no physical
justification for this addition to the free energy.

1.4 Characteristic lengths

Within the theory of superconductivity two important length scales appear.
First the length scale the London penetration depth is treated and secondly the
Ginzburg–Landau coherence length is given attention.

1.4.1 London penetration depth

The London penetration depth was introduced in the London theory formulated
by the London brothers in 1935 [5]. London theory describes superconductors in
the Meissner phase, which means that the applied magnetic field does not pen-
etrate the superconducting sample. An expression for the London penetration
depth can be found from the Ginzburg–Landau equations. The starting point
is to find an expression for the density of Cooper pairs, when the superconduc-
tor is in the Meissner phase. Since we are dealing with stationary equations
it is required that the superconductor is in equilibrium state. This leads to
dgs/d|Ψ|2 = 0 as the energy density is not allowed to change anywhere when
the superconductor is in the equilibrium state. The energy density was found
in equation (1.4) and from dgs/d|Ψ|2 we get

−α+ β|Ψ|2 + q2A ·A = 0 (1.36)

Since the superconductor is in the Meissner phase the vectorpotential A can be
chosen to vanish. If this is done an expression for the density of Cooper pairs
for superconductors in Meissner phase denoted Ψ∞ is found as

|Ψ∞|2 =
α

β
(1.37)

This expression is inserted into equation (1.32c). The first term of (1.32c)
vanishes since the gradient of Ψ∞ equals zero as both α and β are constants.
Furthermore in London theory the applied magnetic field is required uniform
so the curl of Ba also vanishes. Thus by inserting the expression for Ψ∞ into
equation (1.32c) it reduces to

js = −q
2α

mβ
A (1.38)

Taking the curl of both sides and using the fact that ∇×A = Bi yields

Bi = −mβ

q2α
∇× js (1.39)



1.4. Characteristic lengths 13

The above equations is the second London equations [8]. The London penetra-
tion depth is introduced as

λL =

√
mβ

μ0q2α
(1.40)

λL has dimension [length] as it should have10. By using the London penetration
depth the second London equation can be written in the well-known form

Bi = −μ0λL∇× js (1.41)

The meaning of λL can be illustrated by solving the second London equation.
To solve the equation it is rewritten using Amperes law (1.31) without the time
derivatives. Amperes law is changed into

∇×Bi = μ0js (1.42)

by using that Bi = μB with μ ≈ 1 for non–magnetic superconductors and
j = js [8]. Now the curl of both sides of equation (1.42) is taken

∇×∇×Bi = μ0∇× js (1.43)

This equation is rewritten by using the following standard formula found from
mathematical analysis

∇×∇×Bi = ∇(∇ ·Bi)−∇2Bi (1.44)

From Maxwells equations we have ∇ · Bi = 0 [11]. Using this fact equation
(1.43) is finally written as

∇2Bi = −μ0∇× js (1.45)

This result is combined with the second London equation (1.39) and a new
equation is formed

∇2Bi =
1

λ2L
Bi (1.46)

This equation is simplified to make it easier to solve. We consider a very large
two–dimensional superconductor where the applied magnetic field only has a z
component. The superconductor is positioned so x = 0 is the boundary of the
superconductor and the right halfspace is inside the superconducting sample.
This reduces (1.46) to the differential equation

d2Biz(x)

dx2
=

1

λ2L
Biz(x) (1.47)

This equation is solved by using standard methods for second order differen-
tial equations11. The equation has two solutions however only one of them has

10The dimensions of the entities in λL are m = [kg], β = [J ·m3], μ0 = [kg ·m · C−2],
q = [C] and α = [J]. Inserting these dimensions in the expression for λL leads to λL = [m].

11The associated characteristic equation R2 − λ−2
L = 0 is formed and solved. The solution

is R = ± 1
λL

, and the solution to the differential equation is Biz(x) = c1e
x

λL + c2e
− x

λL .
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Biz

x
λL

1

Baz

e

Baz

Figure 1.2: Decrease of the magnetic field inside a superconductor which is in
the Meissner phase.

physical meaning. In the discarded solution the magnetic field inside the su-
perconductor approaches infinity as x approaches infinity. With the boundary
condition Biz(0) = Baz the acceptable solution is found to be

Biz(x) = Baze
− x

λL (1.48)

Note that in this solution the magnetic field approaches zero as x approaches
infinity. The solution is shown on figure 1.2. From this solution it is concluded
that λL is the length it takes for the applied magnetic field to decrease with
a factor e from the interface. Another interpretation of λL can be made by
calculating the derivative of Biz(x)

B′
iz(x) = −Baz

λL
e
− x

λL (1.49)

Then at x = 0 the derivative is B′
iz(0) = −Bazλ

−1
L . This means that when

drawing a line Biz(x) = −Bazλ
−1
L x+Baz it will cross the x-axis at x = λL.

1.4.2 Ginzburg–Landau coherence length

The other characteristic length is found directly from the Ginzburg–Landau
equations and is called the Ginzburg–Landau coherence length. This length is
found by normalising equation (1.32a) to Ψ∞ by making the following transfor-
mation

ψ =
Ψ

Ψ∞
(1.50)

where Ψ∞ was found in equation (1.37). Making the transformation yields

1

2m

(
�

ı
∇− qA

)2

ψΨ∞ − αψΨ∞ + β|ψ|2|Ψ∞|2ψΨ∞ = 0 (1.51)
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Since Ψ∞ is spatially constant, we are free to remove it from the equation in
spite of the ∇-operator. Dividing the equation with αΨ∞ and using equation
(1.37) to replace β|Ψ∞|2 with α in the last term yields

�
2

2mα

(
1

ı
∇− q

�
A

)2

ψ − ψ + |ψ|2ψ = 0 (1.52)

The �
2 that appears in front of the brackets is just a reorganisation of the first

term. The quantity in front of the first term has units of [length]2, so this may
yield a characteristic length12. If the vector potential and the higher order term
is disregarded, the resulting equation has the solution e

ı x
ξGL where ξGL is

ξGL =

√
�2

2mα
(1.53)

This solution is a wave with a period of order ξGL, so ξGL is indeed a charac-
teristic length. This length is the Ginzburg–Landau coherence length and to
illustrate what this length represents, the first Ginzburg–Landau equation is
solved for the Meissner phase. Disregarding A in (1.52) and using the newly
found coherence length, equation (1.52) becomes

−ξ2GL∇2ψ − ψ + |ψ|2ψ = 0 (1.54)

To make matters more simple we consider the case where the superconductor
extends the x direction from zero to infinity, and in the y and z direction the
superconductor is extended to infinity. Thus the superconductor only has an
interface at x = 0. If we only consider the real case the Ginzburg–Landau
equation reduces to

ξ2GL

d2ψ(x)

dx2
+ ψ(x) − ψ3(x) = 0 (1.55)

For x > 0 this equation has the real solution [8]

ψ(x) = tanh

(
x√
2ξGL

)
(1.56)

This solution is shown on figure 1.3. We see that ξGL gives an indication of how
fast the order parameter changes. At the boundary there are no Cooper pairs
but after ξGL the Cooper pair density is 37% of the Meissner phase13. It turns
out that ξGL also gives an indication of how big the vortices in a vortex phase
superconductor are. This will be seen in chapter 3.

1.5 Critical magnetic fields

Three critical magnetic fields appears in the Ginzburg–Landau theory

• Bc is the thermodynamical critical field where it becomes energy-wise more
favourable for the superconductor to exist in the normal phase compared
to the Meissner phase. This field only applies to type I superconductors.

12The dimensions of the units are � = [J · s],m = [kg] and α = [J]. With [J] = [kg ·m2 · s−2]

the dimension of �
2

2mα
is calculated to be [m2] which is [length2].

13The Cooper pair density is 37% since it is ψ2 which is 0.612.
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ψ

x
ξGL

1 2

1

0.61

0.89

Figure 1.3: Increase in the density of Cooper pairs at the interface of the su-
perconductor. The ψ axis is normalized to the Meissner phase according to
equation (1.50), so the figure shows that the Cooper pair density asymptoti-
cally approaches the Meissner phase.

• Bc1 is the magnetic field where a type II superconductor switches from
Meissner phase to vortex phase.

• Bc2 is the magnetic field where superconductivity can no longer exist in a
type II superconductor.

With the knowledge of the Meissner effect it seems intuitionally correct that
strong magnetic fields will destroy superconductivity. If we have type I super-
conductor in the Meissner phase, it seems physical valid that at some point
the superconductor can no longer resist the applied magnetic fields. The su-
perconductor gives in to the applied magnetic field and superconductivity is
destroyed. A type II superconductor is smarter however. Instead of letting the
magnetic field destroy superconductivity entirely, the superconductor lets the
applied magnetic field pass though in small regions and thus eases the “pres-
sure” from the applied magnetic field. However, if the superconductor lets the
magnetic field pass through in some areas, then at some point the magnetic field
penetrates everywhere, and superconductivity is finally destroyed.

The above discussion does not hold any physical proof as it merely sees the
phenomena from an intuitive point of view. Bc and Bc2 will therefore be derived
whereas Bc1 will only be cited due to the complexity of the derivation process.

1.5.1 The thermodynamic critical field

The thermodynamical critical field is the field where it is not longer favourable
energy-wise for the superconductor to be in the Meissner phase. The value of this
field is determined from the energy density found in equation (1.13). The energy
density of the normal phase is calculated by letting |Ψ|2 = 0, as there are no
Cooper pairs present. Furthermore since the applied magnetic field penetrates
the superconductor everywhere Ba equals Bi everywhere. The energy density



1.5. Critical magnetic fields 17

in this situation becomes

Ln = 0 (1.57)

The energy density of the Meissner phase is calculated by letting A and Bi

vanish, as there is no magnetic field inside the superconductor. Furthermore
the Cooper pair density for the Meissner phase was found in equation (1.37) so
we let |Ψ|2 = |Ψ∞|2. The energy density for the Meissner phase then becomes

Lm = −α
2

2β
+

B2
a

2μ0
(1.58)

We have used the fact that the gradient of Ψ∞ vanishes since Ψ∞ is spatially
constant.

If Ln is greater than Lm the superconductor will be in the Meissner phase,
and if it is smaller, it will be in the normal phase. The transition from Meissner
phase to normal phase therefore happens when Ln equals Lm. Thus we solve
equation (1.58) for Ba when Ln equals Lm. This defines the thermodynamical
critical field value which is

Bc =

√
μ0
α2

β
(1.59)

The value of Bc depends on the temperature since α is temperature-dependent.
This temperature-dependency was introduced in equation (1.3) and a similar
temperature-dependent expression can be formed for Bc as

B′
c(T ) = 2Bc(0)

(
1− T

Tc

)
(1.60)

However this expression is only valid near Tc. An expression for Bc(T ) has been
determined empirically as [8]

Bc(T ) ∝ Bc(0)

(
1−

[
T

Tc

]2)
(1.61)

These two expressions has been plotted in figure 1.4. From the figure it is seen
that (1.60) is a good approximation near Tc. The plot on figure 1.4 is valid
for type I superconductors, but not necessarily for type II superconductors.
The calculations made in this chapter, only considers when it becomes more
attractive energy-wise to be in the normal phase compared to the Meissner
phase. However, in order to calculate the magnetic field value, which destroys
superconductivity for type II superconductors, the vortex phase needs to be
taken into account. It could be, that the vortex phase is more attractive than
both the Meissner phase and normal conducting phase at B = Bc. If this is
the case, a type II superconductor will instead switch to the vortex phase. And
for this reason, the plot made on figure 1.4 is not necessarily valid for type II
superconductors.

1.5.2 The upper critical field

The calculations made in the previous section does only take two phases into
account and is therefore only valid for type I superconductors. In type II super-
conductors there can exist three phases, so another approach has to be taken in
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B

T
Tc

2Bc(0)

Bc(0)

Meissner phase

Normal phase

Figure 1.4: The dependency on temperature of the thermodynamic fields. The
solid line is the empirically determined value (1.61) and the dashed line is the
value which is valid near Tc (1.60).

order to calculate the upper critical field value for these superconductors. Since
the Ginzburg–Landau equations are able to describe both type I and II super-
conductors, it seems natural to get the critical field value from these equations.
It turns out that by solving the first Ginzburg–Landau equation under certain
assumptions an upper critical field value can be determined. The derivation of
the upper critical field value will now be shown.

Suppose we have a superconducting sample which is forced to be in the
normal phase due to a strong magnetic field, and if the field is then lowered just
enough for the superconductor to enter the vortex phase, it seems fair to assume
that |Ψ|2 is very small [14]. Since |Ψ|2 is very small the term containing |Ψ|2 in
equation (1.32a) can be neglected and the following equation is obtained

1

2m

(
�

ı
∇− qA

)2

Ψ = αΨ (1.62)

Writing out the brackets yields

− �
2

2m
∇2Ψ− �q

2mı
(A · ∇Ψ+∇ · [AΨ]) +

q2A ·A
2m

Ψ = αΨ (1.63)

And finally using that ∇ · (AΨ) = A · ∇Ψ+Ψ∇ ·A the equation becomes

− �
2

2m
∇2Ψ− �q

2mı
(2A · ∇Ψ +Ψ∇ ·A) +

q2A ·A
2m

Ψ = αΨ (1.64)

Now since the system is only just in the vortex phase, very near to the nor-
mal phase, is must be fair to assume that the magnetic field penetrates the
entire superconducting sample. From this observation follows that Bi equals
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Ba throughout the superconducting sample. If the problem is reduced to a two-
dimensional case where the applied magnetic field only has a z component then
an expression for A can be determined as

A = (−yBaz, 0, 0) (1.65)

With this choice of vector potential then by using the relation (1.6) the resulting
magnetic field becomes14

Bi = (0, 0, Baz) (1.66)

According to (1.6) this choice of vector potential is not unique as we can always
add a curlless vectorfield to the vector potential without altering the resulting
magnetic field. Using the determined value of A equation (1.64) becomes15(

− �
2

2m
∇2 +

�qBaz

mı
y
∂

∂x
+
q2B2

az

2m
y2
)
Ψ = αΨ (1.67)

To solve the above equation quantum mechanics is revisited. The time–inde-
pendent Schrödinger equation can be written as the eigenvalue equation

Ĥψ = Eψ (1.68)

where ψ is the wave-function which describes the particle in question, Ĥ is the
quantum mechanical Hamiltonian operator and E is the energy of the given
particle. The Hamiltonian for a charged particle in a magnetic field was given
in (1.9) and if this Hamiltonian is used with a vanishing scalar potential the
resulting equation is formally equivalent to equation (1.67). With this analogy
α corresponds to the energy eigenstates, so to solve equation (1.67) one needs
to find the energy eigenstates of the Schrödinger equation for a charged particle
in a magnetic field. This solution can be looked up in many textbooks however
equation (1.67) will be solved here for completeness. To solve the equation an
intelligent guess of Ψ is chosen to be [15]

Ψ(x, y, z) = eı(kxx+kzz)φ(y) (1.69)

First the Laplace operator on Ψ and the derivative with respect to x is calculated

∇2Ψ = −k2xΨ+
Ψ

φ

d2φ

dy2
− k2zΨ

∂

∂x
Ψ = ıkxΨ

(1.70)

If the derivatives (1.70) are inserted into (1.67), Ψ are present in all the terms.
Inserting the derivatives and multiplying by φΨ−1 transforms (1.67) into an
ordinary differential equation:

− �
2

2m

d2φ

dy2
+
q2B2

az

2m
y2φ+

�qBazkx
m

yφ+
�
2

2m

(
k2x + k2z

)
φ = αφ (1.71)

14Bi = ∇×A = (∂Az
∂y

− ∂Ay

∂z
)x+ (∂Ax

∂z
− ∂Az

∂x
)y + (

∂Ay

∂x
− ∂Ax

∂y
)z.

15The operator ∇2 also denoted as Δ is called the Laplace operator, and with three spatial

coordinates it is ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
.
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This equation is reorganised into

− �
2

2m

d2φ

dy2
+
m

2

q2b2az
m2

(
y2 +

�
2k2x

q2B2
az

− 2�kx
qBaz

y

)
φ+

(
�
2k2z
2m

− α

)
φ = 0 (1.72)

and if the following variables are introduced

y0 =
�kx
qBaz

, ωc =
qBaz

m
, E′ = α− �

2k2z
2m

(1.73)

the equation can be written as

− �
2

2m

d2φ

dy2
+
mω2

c

2
(y − y0)

2
φ = E′φ (1.74)

This equation has the form of a harmonic oscillator with angular frequency ωc.
The Schrödinger equation for linear harmonic oscillator reads [12]

− �
2

2m

d2Ψ(x)

dx2
+

1

2
kx2Ψ(x) = EΨ(x) (1.75)

The solution of this equation is basic quantum mechanics and is [12]

En =

(
n+

1

2

)
�ω, ω =

√
k

m
n = 0, 1, 2, . . . (1.76)

Where n is the quantum number. Using this result E′
n is determined as

E′
n =

(
n+

1

2

)
�ωc n = 0, 1, 2, . . . (1.77)

If equation (1.77) and (1.73) are combined an expression for Baz is found

Baz =
2αm− �

2k2z
(2n+ 1)�q

(1.78)

The interest here is to find the highest Baz which is when n = 0 and kz = 0.
This value is defined as Bc2 and is the strongest magnetic field where a vortex
phase can exist. Bc2 becomes

Bc2 =
2αm

�q
(1.79)

Bc2 can also be expressed in terms of Bc, where Bc was defined is equation
(1.59). Doing this yields

Bc2 =
2αm

�q

√
β

μ0α2
Bc (1.80)

This expression is simplified by introducing a new constant denoted κ which is
called the Ginzburg–Landau parameter as

κ =

√
2m2β

μ0�
2q2

(1.81)
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Bc2 expressed using the Ginsburg–Landau parameter then becomes

Bc2 =
√
2κBc (1.82)

The Ginzburg–Landau parameter is a crucial parameter which can be used to
divide superconductors into type I and II. If Bc2 is greater than Bc, a vortex
phase can appear as superconductivity survives beyond Bc. It can happen,
because if we have an applied magnetic field value between Bc2 and Bc, we
know that the Ginzburg–Landau equations have a solution where Ψ is different
from zero. This means that the superconductor is not in the normal conducting
phase. It is not in the Meissner phase either, since we know that the normal
conducting phase is prefered over the Meissner phase, when Ba is greater than
Bc. Therefore the superconductor must be in the Meissner phase. Bc2 is greater
than Bc if κ is greater than 1/

√
2. If we consider the scenario where Bc2 is

smaller than Bc, the superconductor stays in the Meissner phase at least until
Bc2 is reached. At this point is becomes more attractive to be in the normal
conducting phase compared to the vortex phase. However, when the applied
magnetic field is weaker than Bc, the Meissner phase is prefered over the normal
conductor phase. When the applied magnetic field reached Bc, however we know
that the normal conducting phase is prefered over both the vortex phase and
the Meissner phase. Therefore a superconductor which has Bc2 lower than Bc

will never enter a vortex phase. On this account superconductors are divided
into two groups as [14]

Type I superconductor if κ <
1√
2

Type II superconductor if κ ≥ 1√
2

As a final note the Ginzburg–Landau parameter can also be written as

κ =
λL
ξGL

(1.83)

So by measuring the London penetration depth and Ginzburg–Landau coherence
length, the Ginzburg–Landau parameter can be determined. The typical value
of κ for high Tc superconductors is κ ≈ 100.

1.5.3 The lower critical field

For type II superconductors a critical field where the superconductor switches
from normal phase to vortex phase exists. One could expect that this field is
Bc, however this is not the case. A. A. Abrikosov calculated the critical field
denoted Bc1 in 1957 as [8, 16]

Bc1 =
1

2κ
(ln κ+ 0.08)Bc (1.84)

A phase diagram with Bc1 and Bc2 can be seen on figure 1.5. An interesting
property of Bc1 and Bc2 is that with increasing κ Bc1 lowers while Bc2 increases.
This leads to the conclussion that high Tc superconductors exist mostly in vortex
phases. For κ = 100 we obtain the fields Bc1 = 0.023Bc and Bc2 = 141Bc.



1.5. Critical magnetic fields 22

B

T
Tc

Bc(0)

Bc1(0)

Bc2(0)

Meissner phase

Normal phase

Vortex phase

Figure 1.5: The critical fields dependency on temperature. The plot is made
with κ = 2.



Chapter 2

Numerical formulation

Before the Ginzburg–Landau equations are solved, a few steps are made in
order to reformulate them. First of all the equations have a freedom of gauge
choice, so in order to solve them numerically we need to fix the gauge. Secondly
the equations will be normalised in order to get rid of all the constants. This
normalisation is not necessary in order to solve them, but it will make a nicer
numeric formulation. Finally the equations are solved with the Finite Element
method using a numerical software package called FEMLAB. In order to use
FEMLAB the equations must be written in a very specific form.

2.1 Normalisation

The two most obvious choices are to normalise the length scale to either λL or
ξGL. In this chapter both normalisations will be made as they have different
advantages. These advantages will be discussed after the normalisations are
made. From this point the Ginzburg–Landau coherence length and the London
penetration depth are also written as ξ and λ.

2.1.1 Normalisation with r → ξGLr
′

The objective with the normalisation is to get rid of all the unnecessary variables.
The energy density found in equation (1.13) is written for completness

L =
1

2m

∣∣∣∣
(
�

ı
∇− qA

)
Ψ

∣∣∣∣
2

− α|Ψ|2 + β

2
|Ψ|4 + 1

2μ0
|Ba −Bi|2 (2.1)

The following transformations are introduced

(x, y, z) → ξ(x, y, z)′, A → �

qξ
A′, Ψ →

√
α

β
Ψ′ (2.2)

Since the spatial variables are transformed it is also required to rewrite the
∇-operator. Using the chainrule the following identities follow1:

∇ =
1

ξ
∇′, d3r = d3r′ξ3 (2.3)

1 ∂
∂x

= ∂x′
∂x

∂
∂x′ = 1

ξ
∂

∂x′ .
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By using the above transformations the first term of the energy density (2.1)
becomes

1

2m

∣∣∣∣
(
�

ı
∇− qA

)
Ψ

∣∣∣∣
2

=
�
2

2mξ2
α

β
|(ı∇′ +A′)Ψ′|2 (2.4)

The multiplier is rewritten using (1.53):

�
2

2mξ2
α

β
=
α2

β
(2.5)

The second and third term of (2.1) is transformed into

α|Ψ|2 =
α2

β
|Ψ′|2

β

2
|Ψ|4 =

α2

2β
|Ψ′|4

(2.6)

Now the fourth term is normalised. From the transformations a new expression
for Bi is created

Bi = ∇×A =
�

qξ2
B′

i (2.7)

By using the above transformations the last term in (2.1) becomes

1

2μ0
|Ba −Bi|2 =

1

2μ0

�
2

q2ξ4
|B′

a −B′
i|2 (2.8)

The multiplier is rewritten further by using the definitions of ξ (1.53) and κ
(1.81)

1

2μ0

�
2

q2ξ4
= κ2

α2

β
(2.9)

Putting everything together transforms equation (2.1) into

L =
α2

β

(
|(ı∇′ +A′)Ψ′|2 − |Ψ′|2 + 1

2
|Ψ′|4 + κ2 |B′

a −B′
i|2
)

(2.10)

Now the normalised Ginzburg–Landau equations can be found either by calculus
of variation on (2.10) or by using the transformations on (1.32a)-(1.32d). To
normalise equation (1.32a) and (1.32b) the transformations are used. The first
Ginzburg–Landau equation in normalised form is

(ı∇′ +A′)2 Ψ′ −Ψ′ + |Ψ′|2Ψ′ = 0 (2.11)

And the corresponding boundary condition becomes

(ı∇′Ψ′ +A′Ψ′) · n = 0 (2.12)

The second Ginzburg–Landau equation is easiest to calculate using calculus of
variations. First the function fn is defined as (2.10) without the terms which
are independent of A′ and ∇×A′.

fn = ıA′ · (Ψ′∗∇Ψ′ −Ψ′∇Ψ′∗) +A′ ·A′|Ψ′|2 + κ2|B′
a −∇×A′|2 (2.13)
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Note that the second Ginzburg–Landau equation is actually calculated in equa-
tion (1.27). Requiring that the integrands must vanish we have the equations
as

∂f

∂A′ +∇× ∂f

∂(∇×A′)
= 0 in Ω

∂f

∂(∇×A′)
= 0 on ∂Ω

(2.14)

And the derivatives are

∂f

∂A′ = ı (Ψ′∗∇Ψ′ −Ψ′∇Ψ′∗) + 2A′|Ψ′|2

∂f

∂(∇×A′)
= −2κ2(B′

a −B′
i)

(2.15)

First note that the boundary condition becomes B′
a = B′

i so it has not changed
by the normalisation. Now the inner equation is created by inserting the deriva-
tives into (2.14):

1

2κ2
(
ı [Ψ′∇Ψ′∗ −Ψ′∗∇Ψ′]− 2A′|Ψ′|2)+∇×B′

a = ∇×B′
i (2.16)

Since the right hand side is ∇ × B′
i a transformation for the current is also

needed. It is desirable that we get the relation ∇′ × B′
i = j′. From Ampere’s

law (1.31):

ξ∇′ × qξ2

�
Bi =

μ0qξ
3

�
j (2.17)

An expression for j′ is read to be

j =
�

μ0qξ2
j′ (2.18)

All the equations has now been transformed. Dropping all the primes the nor-
malised Ginzburg–Landau equations are

(ı∇+A)
2
Ψ− Ψ+ |Ψ|2Ψ = 0 in Ω (2.19a)

(ı∇Ψ+AΨ) · n = 0 on ∂Ω (2.19b)

1

2κ2
(
ı [Ψ∇Ψ∗ −Ψ∗∇Ψ]− 2A|Ψ|2)+∇×Ba = js in Ω (2.19c)

Ba = Bi on ∂Ω (2.19d)

2.1.2 Normalisation with r → λLr
′

To normalise the length scale to the London penetration depth the following
transformations are made

(x, y, z) → λ(x, y, z)′, A → �

ξq
A′, Ψ =

√
α

β
Ψ′ (2.20)
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from which it follows that

∇ =
1

λ
∇′, B =

�

λξq
B′, j =

�

μ0λ2ξq
j′ (2.21)

Without going into details of the calculations, the normalised Ginzburg–Landau
equations using these transformations become( ı

κ
∇+A

)2
Ψ− Ψ+ |Ψ|2Ψ = 0 in Ω (2.22a)( ı
κ
∇Ψ +AΨ

)
· n = 0 on ∂Ω (2.22b)

ı

2κ
(Ψ∇Ψ∗ −Ψ∗∇Ψ)−A|Ψ|2 +∇×Ba = js in Ω (2.22c)

Ba = Bi on ∂Ω (2.22d)

Note that when κ = 1, the equations normalised with λ and ξ are identical as
should be the case since κ equals λL/ξGL.

2.1.3 Choosing normalisation

Whether to normalise the length scale to λL or ξGL depends on which numerical
simulations are made. If λL and ξGL are kept constant, it does not matter which
normalisation is being used. However, if either λL or ξGL is varied then one
normalisation scheme is better than the other. Which normalisation scheme to
choose is made clear by a few thoughts.

Suppose that the normalisation x′ → λLx is used. Having this normalisation
leads to L′ = λLL where L is the actual physical length of the system and L′ is
the length of the normalised system. Now the value of λL is chosen to be altered.
This is achieved by changing κ appropriately since κ is the only constant that
appears in the normalised Ginzburg–Landau equations. If these thoughts are
expressed in equations where κ0 is the value of κ before the value is changed we
get

κ0 =
λ0
ξ0
, x′ → λLx ⇒ L =

L′

λL
(2.23)

Now λL is changed but at the same time it is also a priority to hold the actual
physical dimensions of the system constant. This can be written as L1 = L0,
where L0 denotes the length before κ is changed and L1 is the length after λL
is changed. If λL is chosen to be doubled it is achieved by doubling the value
of κ. This can be written in two ways

κ1 =
λ1
ξ1
, κ1 = 2κ0 =

λ0
1
2ξ0

=
2λ0
ξ0

(2.24)

Thus by doubling κ either λ can be doubled or ξ can be halved. Which scenario is
chosen depends purely on the choice of the normalised length denoted L′

1. Since
L1 = L0 then by letting L′

1 be equal to L
′
0, we see from equation (2.23) that λ1 is

forced to be equal to λ0. Therefore having the length L′ unchanged means that
ξGL is halved. On the other hand by letting L′

1 = 2L′
0 we choose λ1 = 2λ0 which

means that ξGL is unchanged. From this observation we conclude that to achieve
simulations for the same physical system with different ξGL, normalisation with
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x′ → λLx is the best choice since the normalised length remains unchanged.
Similar calculations show the same scenario for x′ → ξGLx, where the length
remains unchanged with changing λL.

2.2 Gauge transformation

The Ginzburg–Landau equations have the property of gauge invariance. Given
a function χ(x, y, z) the linear transformation Gχ is defined as

Gχ(Ψ,A) = (Ψ′,A′) (2.25)

where

Ψ′ = Ψeıκχ, A′ = A+∇χ (2.26)

Gauge invariance means that by making the transformations (2.26) the resulting
equations will be formally equivalent to the former equations. The proof that
the Ginzburg–Landau equations are invariant under the transformations can be
found in appendix B.1.

From the gauge invariance it follows that having a solution (Ψ0,A0) then
Gχ(Ψ0,A0) is also a solution to the Ginzburg–Landau equations, and so is any
choice (Ψ′,A′) that can be obtained through a gauge transformation. In this
way it is possible to define an equivalence class of solutions, that is solutions that
can be obtained from each other by making the gauge transformation. By fixing
the gauge one chooses a particular set of solutions which is needed to obtain
mathematically well-posed equations [13]. The gauge is fixed by choosing χ. It
turns out to be an advantage to choose ∇2χ = ∇·A′ from which it follows that

∇ ·A = 0 (2.27)

This gauge choice is called the Coulomb gauge and is a common choice in the
solution of the stationary equations [11]. The gauge choice can be used to reduce
the first Ginzburg–Landau equation (2.19a) to

−∇2Ψ+ 2ıA · ∇Ψ+A ·AΨ−Ψ+ |Ψ|2Ψ = 0 (2.28)

The Ginzburg–Landau equations can be reduced further by making some phys-
ical assumptions about the environment. First, only two dimensional devices
will be simulated, thus Ψ is independent of z. Secondly the external magnetic
field Ba is assumed to have a z-component only. Furthermore we assume that
the applied magnetic field is a static uniform field which means that the curl
of Ba vanish. Using these assumptions equation (2.19d) and (2.22d) can be
written as2

Ay,x −Ax,y = Baz on ∂Ω (2.29)

Notice that the left hand side corresponds the the curl of A. Putting everything
together and reorganising the Ginzburg–Landau equations normalised with ξGL

2Bi = ∇×A = (∂Az
∂y

− ∂Ay

∂z
)x+ (∂Ax

∂z
− ∂Az

∂x
)y + (

∂Ay

∂x
− ∂Ax

∂y
)z.
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(2.19) becomes

−∇2Ψ+ 2ıA · ∇Ψ +A ·AΨ−Ψ+ |Ψ|2Ψ = 0 in Ω (2.30a)

(ı∇Ψ+AΨ) · n = 0 on ∂Ω (2.30b)

1

2κ2
(
ı [Ψ∇Ψ∗ −Ψ∗∇Ψ]− 2A|Ψ|2) = js in Ω (2.30c)

Ay,x −Ax,y = Baz on ∂Ω (2.30d)

The Ginzburg–Landau equations normalised with λL (2.22) becomes

− 1

κ2
∇2Ψ+ ı

2

κ
A · ∇Ψ+A ·AΨ −Ψ+ |Ψ|2Ψ = 0 in Ω (2.31a)( ı

κ
∇Ψ+AΨ

)
· n = 0 on ∂Ω (2.31b)

ı

2κ
(Ψ∇Ψ∗ −Ψ∗∇Ψ)−A|Ψ|2 = js in Ω (2.31c)

Ay,x −Ax,y = Baz on ∂Ω (2.31d)

2.3 FEMLAB

The normalized Ginzburg–Landau equations will be solved using FEMLAB
v3.1a. FEMLAB is a numerical analysis product by COMSOL where FEM
stand for “Finite Element Method”. The finite element method is a numerical
method for solving partial differential equation with boundary value problems.
How the method works will only be discussed briefly, for a deeper treatment
refer to [17, 18].

2.3.1 The Finite Element Method

In a numerical method there are always two steps to complete; writing the
equations in a way suitable for a computer, and when this is done use a method
to solve the equations. When writing equations suitable for computers the
equations are discretised. When the equations are discretised the solution is
obviously also discretised. To discretise the equations, a computational grid
called a mesh is constructed. This mesh is made by dividing the definition
space into smaller subspaces. How this can be done is best illustrated by an
example in a one dimensional case.

Suppose we have an equation with the solution u(x) and we want to compute
the solution for 0 ≤ x ≤ 2. This interval is then discretised by dividing it into
smaller intervals. To keep it simple, a mesh consisting of two mesh intervals is
constructed. This is done by creating points at x1 = 0, x2 = 1 and x3 = 2.
These the points are called node points. At these node points, the value of the
solution is then calculated and the solution values are denoted as U1 = u(x1),
U2 = u(x2) and U=u(x3). Suppose that the solution to our equation is u(x) =
−0.25x2 + 1.25x, then we get the solution values U1 = 0, U2 = 1 and U3 = 1.5.
In order to construct a function based on our calculated solution points, we
need to make interpolation between the function values. This could for example
be linear interpolation, which is shown on figure 2.1. If the two interpolation
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u

x
x1 x2 x3

Figure 2.1: Linear interpolation example. The function u is defined as u(x) =
−0.25x2 + 1.25x.

u′

u′(x)

x
x1 x2

u′1(x)

u′2(x)

x3

Figure 2.2: Approximation of the first derivative of u(x) using linear interpola-
tion.

functions are denoted u1(x) and u2(x), and both functions vanish outside the
interpolation area, the solution can be approximated as

u(x) ≈ u1(x) + u2(x) (2.32)

It is crucial that as the amount of node points approaches infinity, the approx-
imated solution approaches the exact solution. It is clear that this is the case
with this approximation scheme. However using linear functions as interpola-
tion function has a very unfortunate effect. The first derivative of u(x) is not
approximated with great precision, which is quite clear on figure 2.2. Therefore
depending on the niceness of solution, one might want to use higher order in-
terpolation functions, in order to achieve greater precision. However, in order
to use for example second order polynomials as interpolation functions, three
solution points must be known. Thus using higher order interpolation function
also requires more computational power, as more solution points are needed.

The finite element method uses a similar approach as above. In the finite
element method the solution is written as

u(x) = U1ϕ1(x) + U2ϕ2(x) + U3ϕ3(x) (2.33)
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u

x

u(x)

x1 x2

U2ϕ2(x)

U3ϕ3(x)

x3

Figure 2.3: The finite element approximation using linear Lagrange elements.
The triangle is U2ϕ2(x) and the straight line is U3ϕ3(x).

where ϕi(x) are certain piecewise functions which are called the basis functions.
These functions are defined such that φ(x)i is one at node i and zero at all other
node points. These functions could for example be chosen as linear functions.
If linear functions are used, the functions are defined as

φ1(x) =

{
−x+ 1 if 0 ≤ x ≤ 1

0 otherwise

φ2(x) =

⎧⎪⎨
⎪⎩
x if 0 ≤ x ≤ 1

−x+ 2 if 1 ≤ x ≤ 2

0 otherwise

φ3(x) =

{
x− 1 if 1 ≤ x ≤ 2

0 otherwise

(2.34)

With linear functions each function ϕi(x), except those at the boundary (here
ϕ1(x) and ϕ3(x)), constructs a triangle in the mesh interval i and i + 1. Thus
the solution u(x) is actually approximated by a series of triangles multiplied
by the coefficients Ui. This approximation method is illustrated in figure 2.3.
Notice that

U1ϕ1(x) + U2ϕ2(x) + U3ϕ3(x) = u1(x) + u2(x) (2.35)

so the finite element method does actually use linear interpolation between the
solution points. The linear functions φi(x) used in this context are called the
Lagrange element of order one. One can also use higher order functions, for
example the Langrage element of order two which consists of a second order
polynomial. This Lagrange element is also called quadradic Lagrange. When
quadradic Lagrange elements are used additional node points are needed. Those
are laid at the median of the interval, in this case at x4 = 0.5 and x5 = 1.5.
The mesh resolution and choice of basis functions are entirely up to the user of
the Finite Element method.

In the two-dimensional case the mesh consists of triangles, but the basis
principles are exactly the same. An example mesh can be seen on figure 2.4. On
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Figure 2.4: A mesh generated by FEMLAB.

the figure a square is plotted and it is evident that the mesh does not preserve
the symmetry of the square. However while this can be seen as insufficient, then
from a numerical point of view a mesh that contained symmetry would not be
very desireable. In case of degenerated solutions it would be very hard to get the
numerical solution to converge as only roundoff errors would break the symmetry
of the mesh. From a numerical point of view it is therefore convenient to have
a mesh that breaks the symmetry of a symmetric geometry. If one wants to
preserve the symmetry of the chosen geometry, FEMLAB is capable of making
symmetry lines which ensures this [19].

So far only step one of the numerical method has been discussed, namely
how the solution is approximated by using a mesh. We have not described how
the equations are reformulated, in order to be implemented on a computer. This
has been omitted, since it does not provide any useful information about the
general concepts of the finite element method.

The approximation of the solution requires the values of u(x) at all the node
points. These values are calculated using an iteration process, which in order to
begin needs an initial guess. The user of the numerical method has to provide
the initial values of u(x). How close to the exact solution these values needs to
be, is entirely dependent on the equation system. When the initial values are
given the iteration process can begin, and FEMLAB uses a variant of the damped
Newton method. How it work will not be discussed due to the complexity of the
method, however the general concepts of an iteration method will be briefly
discussed. When FEMLAB has discretised the equations, the task is to solve a
nonlinear algebraic system. Such a system can be written on the form

U = hg(U) + b (2.36)

where U is the solution vector, and the function g and vector b are determined,
based on the equation system that is going to be solved. h is an unknown factor,
usually called the stepsize. If h = 1, the above equation system should reduce
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to the original equation system. Now, in general an iteration algorithm can be
written as

U[i+1] = A(U[i]), i = 0, 1, · · · (2.37)

where i denotes the iteration number. The superscript denotes the solution
vector at iteration i. The most simple approach is to choose A as the right
hand side of (2.36), and with h = 1 we get the equation

U[i+1] = g(U[i]) + b, i = 0, 1, · · · (2.38)

When the left hand side is sufficiently close to the right hand side, the solution
has converged. This simple algorithm works by inserting the initial solution into
the right hand side of the equation system, and then calculates a new solution
based on this. This new solution vector is then used in the next iteration, in
order to calculate the next solution. This process can be made more sophisti-
cated, for example by using stepsize control. The damped Newton method is
an example of a more sophisticated algorithm, but the basic concepts are the
same. Refer to the book by Iserles for a full treatment of this method [18].

2.3.2 Modelling

In order to use FEMLAB the equations must be put on a specific form. FEM-
LAB supports two different forms where it is recommend to use the so–called
general form for nonlinear problems. With Neumann boundary conditions3

(which is what we have) the general form is [17]

da
∂u

∂t
+∇ · Γ = F in Ω

−n · Γ = G on ∂Ω
(2.39)

da is a mass matrix which in this case is zero as we are dealing with stationary
equations. The u’s are the solution variables. F andG are vectors and they have
as many components as there are solution variables. If four solution variables
are used, F and G end up having four component, where each component is a
scalar. Finally Γ is also a vector with the amount of components as solution
variables. However each component of Γ is also a vector of the spatial variables.
The three vectors Γ, F and G can be functions of the solution u and the spatial
derivative of u.

2.3.3 Formulation with r → ξGLr
′

The Ginzburg–Landau equations normalised with ξGL (2.30) are formulated as
a FEMLAB problem. To solve the Ginzburg–Landau equations in FEMLAB
|Ψ|2 is divided into a real and imaginary part by defining Ψ ≡ u1 + ıu2. This is
required since |Ψ|2 is not an analytic function.

First the boundary conditions are written on the form prescribed by (2.39).
By inserting Ψ ≡ u1 + ıu2 equation (2.30b) is written as

−(∇u2 −Au1) · n− ı(−∇u1 −Au2) · n = 0 on ∂Ω (2.40)

3When the boundary condition specifies the derivative n · ∇f it is called a Neumann
boundary condition. The expression n · ∇f can also be written as ∂f

∂n
.
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By writing

−Γ1 · n− ıΓ2 · n = G1 + ıG2 (2.41)

we see that the boundary condition is written in the general form. The vectors
are found to be Γ1 = (∇u2 −Au1) and Γ2 = (−∇u1−Au2) and the scalars G1

and G2 are found to be zero.
The second boundary condition (2.30d) does not contain Ψ so it does not

need to be rewritten in terms of u1,2. The boundary condition can be imple-
mented directly as Γ3x however this does not suffice. If we choose this approach
the corresponding FEMLAB implementation becomes

−nx · Γ3 = 0 ⇒ −nx(Ay,x −Axy − Baz) = 0 (2.42)

The above equation is solved for either nx = 0 or Ay,x − Axy − Baz = 0. The
last expression is our boundary condition, so we must ensure this is always the
solution chosen. However, if we have a geometry where nx = 0 exists, the
boundary condition will vanish. This implies that we do not have a boundary
condition for the magnetic field where nx vanishes. For this reason we also need
to have Γ4y to represent the boundary condition. It would not be correct to have
both Γ3x and Γ3y equal to the boundary condition, since −n · Γ3 = 0 would
construct the equation

−nx(Ay,x − Axy −Baz)− ny(Ay,x −Axy −Baz) = 0 (2.43)

which clearly only enforces Ay,x − Axy − Baz = 0 when either nx or ny van-
ishes. Therefore we are forced to use two vectors in order to implement (2.30d).
However it turns out to be an advantage to incorporate the curl of A into Γ3,4.
This is done by constructing the two linearly independent4 vectors

Γ3 =

( ∇ ·A
−Ay,x + Ax,y +Ba,z

)
, Γ4 =

(
Ay,x −Ax,y −Ba,z

∇ ·A
)

(2.44)

If G3 and G4 are chosen to be zero it is quite clear that Γ3,4 implements equation
(2.30d) since the curl of A vanishes everywhere in space. To summerise the
boundary conditions are implemented in FEMLAB by choosing G = 0 and the
complete form of Γ is

Γ1 = ∇u2 −Au1 Γ2 = −∇u1 −Au2

Γ3 =

(
Ax,x +Ay,y

−Ay,x +Ax,y +Ba,z

)
Γ4 =

(
Ay,x −Ax,y −Ba,z

Ax,x +Ay,y

) (2.45)

To determine F the starting point is to calculate the left hand side of (2.39)5:

∇ · Γ =

⎛
⎜⎜⎝

∇2u2 −∇(Au1)
−∇2u1 −∇(Au2)

Ax,xx +Ay,yx −Ay,xy +Ax,yy +Baz,y

Ay,xx −Ax,yx +Ax,xy +Ax,yy −Baz,x

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∇2u2 −A · ∇u1
−∇2u1 −A · ∇u2
Ax,xx +Ax,yy

Ay,xx +Ay,yy

⎞
⎟⎟⎠

(2.46)

4A set of vectors are linearly independent if aiVi + aiVi + · · · �= 0 where ai are constants
and not all are zero. Furthermore, by having a vector V1 = (a, b) a linearly independent
vector V2 = (−b, a) can be constructed.

5It is used that ∂2

∂x∂y
= ∂2

∂y∂x
.



2.3. FEMLAB 34

In the last equality it is used that the curl of A vanishes and Baz is a constant.
In order to determine F the new solution form Ψ = u1 + ıu2 is inserted into
equation (2.30a) and (2.30c). The first Ginzburg–Landau equation becomes

(−∇2u1 − 2A · ∇u2 +A ·Au1 − u1 + |u1 + ıu2|2u1)
+ı(−∇2u2 + 2A · ∇u1 +A ·Au2 − u2 + |u1 + ıu2|2u2) = 0

(2.47)

If the above equation is split into a real and imaginary part then two new
equations are obtained as

∇2u2 −A · ∇u1 = A · ∇u1 +A ·Au2 − u2 + |u1 + ıu2|2u2 (�)
−∇2u1 −A · ∇u2 = A · ∇u2 −A ·Au1 + u1 − |u1 + ıu2|2u1 (�) (2.48)

We see that the left hand sides are equal to the divergence of Γ1,2 which means
that F1,2 is found as the right hand sides. To determine F3,4 the new solution
form Ψ = u1 + ıu2 is inserted into equation (2.30c)

j =
1

κ2
(u1∇u2 − u2∇u1 − |u1 + u2|2A) (2.49)

As the calculations show equation (2.19c) is transformed into a purely real
two–component vector equation and therefore needs to be implemented as two
equations. The left hand side, j = ∇×∇×A can be rewritten in terms of A.
Notice that the left hand side of equation (2.29) is the curl of A, so taking the
curl of the left hand side of equation (2.29) gives

j = ∇× (Ay,x −Ax,y)z = (Ay,xy −Ax,yy)x+ (−Ay,xx +Ax,yx)y (2.50)

To rewrite (2.49) into FEMLAB form some identities are derived from (2.27)

Ax,x = −Ay,y ⇒ Ax,xx = −Ay,yx

Ax,x = −Ay,y ⇒ Ax,xy = −Ay,yy

(2.51)

Using the above identities and equation (2.50), then by making one equation for
the x-component and one for the y-component, the second Ginzburg–Landau
equation (2.49) is split into two equations

Ax,xx +Ax,yy =
1

κ2
(u2u1,x − u1u2,x + |u1 + u2|2Ax) x̂ (2.52)

Ay,xx +Ay,yy =
1

κ2
(u2u1,y − u1u2,y + |u1 + u2|2Ay) ŷ (2.53)

We see that the left hand side equals the divergence of Γ3,4 so F3,4 becomes the
right hand sides of the above equation. Writing F in full it becomes

F =

⎛
⎜⎜⎝
A · ∇u1 +A ·Au2 − u2 + |u1 + ıu2|2u2
A · ∇u2 −A ·Au1 + u1 − |u1 + ıu2|2u1

1
κ2 (u2u1,x − u1u2,x + |u1 + ıu2|2Ax)
1
κ2 (u2u1,y − u1u2,y + |u1 + ıu2|2Ay)

⎞
⎟⎟⎠ (2.54)

The above equation system is implemented using MATLAB. MATLAB has an
interface for FEMLAB, so that all the functions and methods in FEMLAB can
be accessed by MATLAB scripts. The script which implements the equations
found in this section can be found in appendix C.1.
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2.3.4 Formulation with r → λLr
′

The Ginzburg–Landau equations normalised with λL is also implemented in
FEMLAB. However since the implementation procedure is exactly the same as
in the previous section, only the results will be written. The vector G is still
found to be zero. Γ is found to be

Γ1 = 1
κ∇u2 −Au1 Γ2 = − 1

κ∇u1 −Au2

Γ3 =

(
Ax,x +Ay,y

−Ay,x +Ax,y +Ba,z

)
Γ4 =

(
Ay,x −Ax,y −Ba,z

Ax,x +Ay,y

) (2.55)

and F is found as

F =

⎛
⎜⎜⎝
A · ∇u1 + κ

(
A ·Au2 − u2 + |u1 + ıu2|2u2

)
A · ∇u2 − κ

(
A ·Au1 − u1 + |u1 + ıu2|2u1

)
1
κ (u2u1,x − u1u2,x) + |u1 + ıu2|2Ax
1
κ(u2u1,y − u1u2,y) + |u1 + ıu2|2Ay

⎞
⎟⎟⎠ (2.56)

This implementation is also found in appendix C.1.



Chapter 3

Numerical results

Having implemented the Ginzburg–Landau equations we can now try to solve
them numerically for “any” geometry. Three geometries are chosen; a square,
a circle and a triangle. Before solving the equations a few numerical decisions
needs to be made. All numerical simulations will be made with a relative toler-
ance of 10−6. As mentioned in the previous chapter, the solution is found with
a iteration method. An iteration method calculates the solution in steps, and
when having an error tolerance of 10−6, it roughly means that the difference of
the solution at step n and n − 1 must be below 10−6. The estimated error is
calculated by the Euclidean norm

Relative error =

(
1

N

∑
i

|Ei|2
) 1

2

(3.1)

whereN is the amount of node points and Ei is the estimated error at node point
i. The error Ei is calculated based on the solution Ui at step n and n−1. When
the relative error becomes lower than the relative error tolerance the solution
will be accepted as converged. The mesh quality needs to be determined and it
turned out using about 5000-12000 mesh points was enough to calculate a fairly
precise solution. Finally the type of element needs to be chosen. It turned out
that it was very hard to get FEMLAB to converge when using the quadradic
Langrage elements. For this reason the linear Lagrange elements are used in all
simulations in this chapter. All plots are made with Gnuplot 4.0 and the gnuplot
scripts can be seen in appendix D. To solve the equations an initial guess must
be provided. To begin with we try to make a solution where the superconductor
is in the Meissner phase. The Ginzburg–Landau equations normalised with λL
(2.22) are written for completness

( ı
κ
∇+A

)2
Ψ−Ψ+ |Ψ|2Ψ = 0 in Ω (3.2a)( ı
κ
∇Ψ +AΨ

)
· n = 0 on ∂Ω (3.2b)

ı

2κ
(Ψ∇Ψ∗ −Ψ∗∇Ψ)−A|Ψ|2 +∇×Ba = js in Ω (3.2c)

Ba = Bi on ∂Ω (3.2d)
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Figure 3.1: Plot made with κ = 1 and Baz = 0.4. The first plot is the order
parameter squared, the second is the inner magnetic field Biz and the third plot
is the supercurrent js. The length of the arrows denote the amplitude of the
current.
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Figure 3.2: Plot made with κ = 1 and Baz = 0.4. The line plot is made of the
square plotted in figure 3.1 with a cut at y = 0. The left plot is the Cooper pair
density and the right plot is the magnetic field inside the superconductor.

The initial guess used to calculate solutions in the Meissner phase is

u1(x, y) = u2(x, y) =
√
0.5

Ax(x, y) = Ay(x, y) = 0
(3.3)

This choice implies that Biz = 0 and |Ψ|2 = 1. Using this solution as an initial
guess and having κ = 1 and the applied magnetic field at Ba = 0.4, FEMLAB
successfully solves the equations. The solutions normalised with λL can be seen
on figure 3.1. It does not make any difference however which equations are
used as the value of κ is one. When κ = 1 the equations normalised to λL and
ξGL are identical so the solutions on the plots are actually normalised to both
λL and ξGL. The first plot is the order parameter squared, and as expected it
is near one sufficiently far from the boundary. However having determined an
expression for Ψ in equation (1.56) it would be expected that the Cooper pair
density near the boundary was lower than 93%. It is also quite surprising that
the Cooper pair density is higher at the corners compared to the edges. The
second plot is the magnetic field value Bi which is seen to be vanishing in the
centre of the superconductor and as expected the magnetic field penetrates into
the superconductor. The supercurrent that induces the screening magnetic field
may be seen on the third plot. The current is strong near the boundary and
low at the centre which is also expected.

Having calculated a solution numerically, we can investigate if the assump-
tions made in section 1.4 was profound. To do this, two new lineplots at the
center of the device, at y = 0, are made. These can be seen on figure 3.2. The
left plot is the Cooper pair density plotted together with an altered analytic
function described below. First of all we see that at the interface the Cooper
pair density is 0.93% and not zero as the function found in equation (1.56) is.
However, we can still test if the function accurately estimates the rate of change
of the order parameter by altering the function to

Ψ0(x) = 0.07 tanh

(
x+ 5√
2ξGL

)
+ 0.93 (3.4)
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Figure 3.3: The plots are made with κ = 1 and Baz = 0.4. The first plot is
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Figure 3.4: Lineplot made with κ = 1 and Baz = 0.4. The left plot is the Cooper
pair density and the right plot is the magnetic field inside the superconductor.
The lineplots are made at y = 0.

This altered function fits the numerical solution. The expression is altered with
three terms. First x→ x+5 which just shift the origin to x = −5. Secondly the
solution is multiplied by 0.07. This is done to make the function have a range
on 0.07. Finally we add 0.93 since the numerical solution has a minimum value
that is 0.93.

The second plot is the inner magnetic field value plotted with the analytic
expression found for the magnetic field in equation (1.48). On this plot the
unfortunate consequence of using linear functions is very visible, however in
spite of an imprecise numerical solution, it is clear that the analytic expression
fits the numerical solution well.

Having made a solution in the Meissner phase we can try to calculate a
solution for the vortex phase. This is done with the initial guess

u1 =
x√

x2 + y2

u2 =
y√

x2 + y2

Ax = Ay = 0

(3.5)

Using an applied magnetic field value of Baz = 0.4 a vortex solution is found.
This solution can be seen for a square with κ = 1 on figure 3.3, and this is
indeed numerical evidence that the solutions to the equations are not unique.
This means that having an applied magnetic field of Baz = 0.4, it is actually
possible for the superconductor to be both in the Meissner phase and vortex
phase. It depends on the initial condition. This could also suggests that hys-
teresis is possible. This will be investigated in chapter 5. The first plot displays
the Cooper pair density and the second plot the magnetic field inside the super-
conductor. At the vortex we see that the Cooper pair density is close to zero,
which confirms that a superconductor in the vortex phase is in superconducting
state in some areas and in normal state the remaining areas. The third plot re-
veals that current circulates the vortex, which creates a screening magnetic field
inside the superconductor. It seems that the current around the vortex actually
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Figure 3.5: The Cooper pair density made with κ = 1 and Baz = 0.4.

induces a magnetic field, since the magnetic field in the vortex is stronger than
the applied magnetic field. Notice that to current inside the superconductor
runs in the opposite direction of the surface current.

Two lineplots of the numerical solution together with the expressions found
in (1.56) and (1.48) can be seen on figure 3.4. We see that there is a much
better correspondence between the numerical solution and the expression found
in (1.56) compared to figure 3.2. The effect of the vortex is roughly 4ξGL wide
and fits the analytic expression well. The analytic expression found for Biz is
also fairly accurate close to the boundary. This shows, that the rate the applied
magnetic field penetrates into the superconductor within λL, is the same for
the Meissner phase and the vortex phase containing one vortex. That is, the
analytic expression found for the inner magnetic field, is still accurate within
one λL from the boundary.

Having found a solution for a vortex phase we could try to find solutions
having more vortices. However FEMLAB was not able to find those solutions
as the initial guesses were not accurate enough. To solve this problem the time–
dependent model can be used to generate an initial guess. This model will be
treated in chapter 4.

Having obtained solutions for a square, we can try to solve the equations for
other geometries. This seems to be fairly easy as long the geometry is “nice”
and we keep to solutions in the Meissner phase or vortex phase with one vortex
only. The Cooper pair density for a circle and triangle can be seen in figure 3.5.
Only the Cooper pair density has been plotted as it has been shown with the
square plots how the corresponding supercurrent and magnetic field behaves.
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Figure 3.6: The Cooper pair density plotted for a square when y = 0. The
plot is made with an applied magnetic field value of Baz = 0.3 for κ = 8 and
Baz = 0.4 for the remaining curves. The length scale is normalised to λL.
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Figure 3.7: The Cooper pair density plotted for a square when y = 0. The
solutions are made with an applied magnetic field value of Baz = 0.3. The
length scale is normalised to ξGL.

In order to illustrate the effect of λL and ξgL we can try to change the value
of κ to see the effect. This is done on figure 3.6 with the equations normalised
to λL. This has the consequence that ξGL decreases as κ increases. The left plot
clearly shows that the vortex size is determined with ξGL. In each step in the
vortex size is roughly halved, that is the vortex with κ = 2 is about half the size
of the vortex with κ = 1 etc. Unlike the solutions calculated with Baz = 0.4,
the solution calculated with κ = 8 has an applied magnetic field on Baz = 0.3.
This is due to lack of convergence with Baz = 0.4 so the applied magnetic field
was reduced. We also see that the vortex for κ = 8 is not positioned exactly at
the centre, which implies that the vortex is about to “leave”the superconductor.
On the right plot the inner magnetic field value Biz is plotted. We see that the
magnetic field value in the vortex is also dependent of the value of κ. It is also
clear on the right plot that the London penetration depth remains fixed.

In order to study what effects it has to change λL we can solve the equations
normalised to ξGL. This has been done for the Meissner phase and the results
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can be seen on figure 3.7. On the left figure we clearly see that the value of λL
has a impact on the Cooper pair density. However notice that all five curves has
the same basefunction, namely the one found in equation (1.56) (the solution
with κ = 0.5 is hard to see as it has a Cooper pair density near one throughout
the superconductor). On the right plot we see as expected that the slope of the
curves roughly doubles as κ doubles. This is expected, since when κ is doubled,
it implies that the London penetration depth is also doubled.

It turned out that calculating solutions with different κ while having the
applied magnetic field fixed was a challenge. On one occasion it failed (on
figure 3.6) where we had to change the applied magnetic field. During the simu-
lations made on figure 3.7 FEMLAB failed to converge several times, however it
turned out that on few occasions we could make the solution converge by simply
restarting the solver with the exact same parameters.

It is very hard to investigate solutions containing more that one vortex, due
to the fact that we must provide the numerical solver with a good initial guess.
It is not easy to make such an analytic expression containing more than one
vortex. We have tried to use the superposition principle on our initial guess
for one vortex however all attempts failed to converge. To solve this problem
we turn our attention to the time–dependent Ginzburg–Landau model, which
should not have these kind of problems. This also enables the study of vortex
dynamics.



Chapter 4

Time–Dependent
Ginzburg–Landau Theory

The time-dependent Ginzburg Landau equations can be written as [20]1

�
2

2mD

(
∂

∂t
+ ı

q

�
Φ

)
Ψ = − δL

δΨ∗

σ

(
∂A

∂t
+∇Φ

)
= − δL

δA

(4.1)

where L was found in chapter 1 as equation (1.13):

L =
1

2m

∣∣∣∣
(
�

ı
∇− qA

)
Ψ

∣∣∣∣
2

− α|Ψ|2 + β

2
|Ψ|4 + 1

2μ0
|Ba −Bi|2 (4.2)

Compared to the stationary equations a couple of new variables are introduced;
D is a phenomenological diffusion coefficient, Φ is the electric potential and σ
is the conductivity constant which is assumed constant. Furthermore the order
parameter becomes Ψ = Ψ(x, y, z, t) and the vector potential A = A(x, y, z, t).

An important property of the time–dependent model is that the current
density is [20]

J = σE+ Js (4.3)

where Js is the supercurrent which is found in equation (1.32c) and E is the
electric field. The electric field is found in electromagnetics from Faraday’s law
as [11]

E = −∂A
∂t

−∇Φ (4.4)

If J is viewed as the normal current which obeys Ohm law, σ may be interpreted
as the coefficient of normal conductivity.

1These equations are given in cgs units in the cited paper. Refer to appendix A for the
conversion from cgs to SI units.

44



4.1. Normalisation 45

To obtain the full form of the time–dependent equations the variational
derivatives needs to be written out. From equation (1.21) and (1.27) the deriva-
tives are found to be

δL
δΨ∗ =

∂L
∂Ψ∗ −∇

(
∂L

∂(∇Ψ∗)

)
δL
δA

=
∂L
∂A

+∇×
(

∂L
∂(∇×A)

) (4.5)

The derivatives has been calculated in equation (1.22) and (1.28). When using
the above equations together with the derivatives then the full form of (4.1) is
found as

�
2

2mD

(
∂

∂t
+ ı

q

�
Φ

)
Ψ = − 1

2m

(
�

ı
∇− qA

)2

Ψ+ αΨ − β|Ψ|2Ψ (4.6a)

σ

(
∂A

∂t
+∇Φ

)
=

q�

2mı
(Ψ∗∇Ψ−Ψ∇Ψ∗)− q2

m
|Ψ|2A− 1

μ0
∇×∇×A

(4.6b)

Note that the differentiation in (4.6a) also applies to Ψ. To obtain (4.6b) it is
assumed that the applied magnetic field is an uniform static field, which formally
means that the curl of Ba vanishes. If this is not the case the term 1

μ0
∇×Ba

needs to be added to the right hand side of equation (4.6b).
At the interface of the superconducting sample the following boundary con-

ditions are imposed [21]:(
�

ı
∇Ψ− qAΨ

)
· n = 0 on ∂Ω (4.7a)

Ba = Bi on ∂Ω (4.7b)(
∂A

∂t
+∇Φ

)
· n = 0 on ∂Ω (4.7c)

Equation (4.7a) and (4.7b) are also the boundary conditions in the stationary
situation. For a discussion about the physical consequences of these boundary
conditions refer to section 1.3. Equation (4.7c) can also be written as E · n = 0
with E given in equation (4.4). A justification of this boundary condition is
that the current is always parallel to the electric field [11], so this boundary
condition is a physical consequence of js · n = 0.

As a final remark before proceeding to the numerical formulation, the theo-
retical validity of the time–dependent model is arguable. Beside the limitation
that Ginzburg–Landau theory is only valid near Tc (as discussed in chapter 1),
the model also requires the superconductor to be gapless [2]. What this means
is beyond the scope of this text, but we refer to the book by Tinkham for de-
tails [2]. In spite of these limitations the experimental results over a wide range
of temperatures are in excellent agreement with the model [20].

4.1 Normalisation

As in the stationary case the Ginzburg–Landau equations are normalised before
they are solved numerically. As discussed during the normalisation process of the
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stationary equations, two different normalisation schemes are natural choices.
Only the normalisation with λL will be made since the numerical calculations
will be conducted with a fixed Ginzburg–Landau parameter. The normalisation
are made using the following transformations

(x, y, z) → λ(x, y, z)′, t→ ξ2

D
t, A → �

qξ
A′

Ψ →
√
α

β
Ψ′, Φ → αDκ2

√
2μ0

b
Φ′, σ → 1

μ0Dκ2
σ′

(4.8)

from which the following transformation follows by use of the chain rule

∇ =
1

λ
∇′,

∂

∂t
=
D

ξ2
∂

∂t′
(4.9)

Furthermore by using that B = ∇×A a transformation for the magnetic field
is obtained as

B =
�

qξλ
B′ (4.10)

First the left hand side of (4.6a) is normalised using the defined transformations

�
2

2mD

(
∂

∂t
+ ı

q

�
Φ

)
Ψ = α

√
α

β

(
∂

∂t′
+ ıκΦ′

)
Ψ′ (4.11)

Now the right hand side is normalised. The first term is transformed into

1

2m

(
�

ı
∇− qA

)2

Ψ = α

√
α

β

( ı
κ
∇′ +A′

)2
Ψ′ (4.12)

The second and the third term on the right hand side are found to be

αΨ = α

√
α

β
Ψ′

β|Ψ|2Ψ = α

√
α

β
|Ψ′|2Ψ′

(4.13)

After the transformations both sides of (4.6a) has the same multiplier, α
√
α/β,

which can be eliminated from the equation. When this is done the only constant
that features in the equation is κ. Now the second Ginzburg–Landau equation
is normalised. The left hand side of the second equation (4.6b) is transformed
into

σ

(
∂A

∂t
+∇Φ

)
=
qα

β

√
2α

m
σ′
(
∂A′

∂t′
+∇′Φ′

)
(4.14)

The supercurrent Js is transformed as

Js =
q�

2mı

α

βλ
(Ψ′∗∇′Ψ′ −Ψ′∇′Ψ′∗)− q2

m

α�

βqξ
|Ψ′|2A′ (4.15)
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The multipliers are rewritten into

q�

2mı

α

βλ
=
qα

β

√
α

2m

1

ıκ

q2

m

α�

βqξ
=
qα

β

√
2α

m

(4.16)

and the final form of Js becomes

Js =
qα

β

√
2α

m

(
1

2ıκ
[Ψ′∗∇′Ψ′ −Ψ′∇′Ψ′∗]− |Ψ′|2A′

)
(4.17)

The second term on the right hand side of (4.6b) is rewritten as

− 1

μ0
∇×∇×A = − �

μ0qξλ2
∇′ ×∇′ ×A′ (4.18)

where the multiplier is reduced to

�

μ0qξλ2
=
qα

β

√
2α

m
(4.19)

Both sides of (4.6b) end up having the same multiplier so this is removed from
the equation.

To summerise the normalised equations when omitting the primes are(
∂

∂t
+ ıκΦ

)
Ψ = −

( ı
κ
∇+A

)2
Ψ+Ψ− |Ψ|2Ψ (4.20a)

σ

(
∂A

∂t
+∇Φ

)
=

1

2ıκ
(Ψ∗∇Ψ−Ψ∇Ψ∗)− |Ψ|2A−∇×∇×A (4.20b)

and the boundary conditions becomes( ı
κ
∇Ψ +AΨ

)
· n = 0 on ∂Ω (4.21a)

Ba = Bi on ∂Ω (4.21b)(
∂A

∂t
+∇Φ

)
· n = 0 on ∂Ω (4.21c)

4.2 Gauge invariance

The time–dependent Ginzburg–Landau equations like the stationary equations
have the property of gauge invariance. Given a function χ(x, y, z, t), the linear
transformation Gχ is defined as

Gχ(Ψ,A,Φ) = (Ψ′,A′,Φ′) (4.22)

where

Ψ′ = Ψeıκχ, A′ = A+∇χ, Φ′ = Φ− ∂χ

∂t
(4.23)

The proof of gauge invariance can be found in appendix B.2.
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As in the stationary case we need to fix the gauge in order to obtain well-
posed equations [21]. The most convenient choice when solving the time–
dependent equations turns out the be the zero electric potential gauge where
Φ is chosen to be zero. From the transformations given in (4.23) we then have

∂χ

∂t
= −Φ′ (4.24)

Knowing that the equations are gauge invariant we can simply let Φ vanish in
all the equations. The boundary condition (4.21c) however is rewritten further.
Letting Φ vanish we get (

∂A

∂t

)
· n = 0 (4.25)

This equation can be integrated and the integration constant chosen to be zero,
which turns the equation into A · n = 0 [21]. This relation is used to reduce
equation (4.21a). The equations to solve with the primes omitted becomes

∂Ψ

∂t
= −

( ı
κ
∇+A

)2
Ψ+Ψ− |Ψ|2Ψ (4.26a)

σ
∂A

∂t
=

1

2ıκ
(Ψ∗∇Ψ−Ψ∇Ψ∗)− |Ψ|2A−∇×∇×A (4.26b)

with the boundary conditions

∇Ψ · n = 0 on ∂Ω (4.27a)

Ba = Bi on ∂Ω (4.27b)

A · n = 0 on ∂Ω (4.27c)

4.3 Correspondence with stationary equations

One important goal with the time–dependent equations is to find stabilised
stationary solutions. In order to be sure it is a valid stationary solution, the
stabilised solution will be used as an initial guess to the stationary equations.
This will only work if the time–dependent equations (4.26) reduces to the sta-
tionary equations (2.31) when such a solution is found. Since the stationary
equations written in (2.31) are found using the Coulumb gauge, we need to
prove that the zero potential gauge implies the Coulumb gauge when having
a stationary state. This is done by taking the divergence of equation (4.26b)
which yields

σ
∂

∂t
∇ ·A =

1

2ıκ

(
Ψ∗∇2Ψ−Ψ∇2Ψ∗)−∇(|Ψ|2A) (4.28)

To obtain the result it is used that the divergence of ∇ × V vanishes for any
vectorfield V. To rewrite the above equation further the first Ginzburg–Landau
equation is used. Reorganising (4.26a) yields

∇2Ψ = κ2
∂Ψ

∂t
+ κ2ΨA ·A+ ıκ(2A · ∇Ψ+Ψ∇ ·A)− κ2Ψ+ κ2|Ψ|2Ψ (4.29)
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This result is used to rewrite (4.28) into

σ
∂

∂t
∇ ·A =

1

2ıκ

(
Ψ∗ ∂Ψ

∂t
−Ψ

∂Ψ

∂t

)
(4.30)

We now see that having a divergence free vector potential requires either that
the order parameter is either zero or its phase is independent of time. In the
stationary state the phase is obviously independent of time and there we have a
divergence free vector potential. This means that the time–dependent equations
indeed reduces to the stationary equations when a stationary solution is found.

4.4 FEMLAB formulation

To solve the time–dependent model the equations must be given on the form

da
∂u

∂t
+∇ · Γ = F in Ω

−n · Γ = G on ∂Ω
(4.31)

For a discussion about the parameters in the above equations refer to sec-
tion 2.3.2.

The vector Γ is the first one to be determined which is done by handling
the boundary conditions. As in chapter 2 the order parameter is written as
Ψ = u1 + ıu2 which changes (4.27a) into

∇u1 · n+ ı∇u2 · n = 0 (4.32)

With the above equation Γ1,2 can immediately be determined, however it turns
out to be an advantage to multiply (4.27a) with κ−2. Doing this Γ1,2 are found
as Γ1 = − 1

κ2∇u1 and Γ2 = − 1
κ2∇u2. The scalars G1,2 are found to be zero.

By the same considerations made in section 2.2, the second boundary condition
(4.27b) is reduced to

Ay,x −Ax,y −Baz = 0 (4.33)

As discussed in 2.3.2 two vectors are needed to represent this boundary condi-
tion. The last boundary condition (4.27c) is left untouched, and since the right
hand side of all the boundary conditions is zero, it is only natural to choose
G = 0. When this is done Γ is written as

Γ1 = − 1

κ2
∇u1

Γ2 = − 1

κ2
∇u2

Γ3 =

(
0

Ay,x −Ax,y −Baz

)

Γ4 =

(−Ay,x +Ax,y + Baz

0

)

Γ5 =

(
Ax

Ay

)

(4.34)
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We see that opposed to the stationary equations a vector of five components is
needed to implement the boundary conditions in FEMLAB.

To determine the vector F and the matrix da the divergence of Γ needs to
be determined, which is

∇ · Γ =

⎛
⎜⎜⎜⎜⎝

− 1
κ2∇2u1

− 1
κ2∇2u2

Ay,xy − Ax,yy

Ax,yx − Ay,xx

Ax,x +Ax,y

⎞
⎟⎟⎟⎟⎠ (4.35)

The scalars F1,2 are determined by inserting Ψ = u1+ ıu2 into equation (4.26a)
and then splitting the resulting equation into a real and imaginary part. When
this is done we get

∂u1
∂t

− 1

κ2
∇2u1 = −A ·Au1 + 1

κ
(2A · ∇u2 + u2∇ ·A) + u1 − |u1 + ıu2|2u1

∂u2
∂t

− 1

κ2
∇2u2 = −A ·Au2 − 1

κ
(2A · ∇u1 + u1∇ ·A) + u2 − |u1 + ıu2|2u2

(4.36)

where the first equation is the real part and the second is the imaginary part.
The scalars F1,2 are found as the right hand sides of the above equations. To
obtain F3,4 the solution Ψ = u1 + ıu2 is inserted into equation (4.26b), which
yields

σ
∂A

∂t
=

1

2κ
(u1∇u2 − u2∇u1)− |u1 + ıu2|2A−∇×∇×A (4.37)

As in the stationary case this equation is divided into two new equations by
making one for the x-component and one for the y-component. From equation
(2.50) we have

∇×∇×A = (Ay,xy −Ax,yy)x+ (−Ay,xx +Ax,yx)y (4.38)

and the two new equations becomes

σ
∂Ax

∂t
+Ay,xy −Ax,yy =

1

2κ
(u1u2,x − u2u1,x)− |u1 + ıu2|2Ax

σ
∂Ay

∂t
+Ax,yx −Ay,xx =

1

2κ
(u1u2,y − u2u1,y)− |u1 + ıu2|2Ay

(4.39)

The scalars F3,4 are determined as the right hand sides. One scalar still needs to
be found which is F5 however only four equations are needed to implement the
Ginzburg–Landau equations, but five are needed for the boundary conditions.
This problems is solved by letting F5 be equal to the divergence of Γ5 with only
the solution variable u5 added. If the fifth row of da only contain zeros the fifth
FEMLAB equation then becomes 0 = u5. The complete form of F becomes

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

−A ·Au1 + 1
κ (2A · ∇u2 + u2∇ ·A) + u1 − |u1 + ıu2|2u1

−A ·Au2 − 1
κ (2A · ∇u1 + u1∇ ·A) + u2 − |u1 + ıu2|2u2

1
2κ (u1u2,x − u2u1,x)− |u1 + ıu2|2Ax

1
2κ (u1u2,y − u2u1,y)− |u1 + ıu2|2Ay

Ax,x +Ay,y + u5

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.40)
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and the mass matrix becomes

da = diag(1, 1, σ, σ, 0) (4.41)

where diag is the diagonal of a square matrix. The remaining elements of da is
zero. The MATLAB implementation can be seen in appendix C.3.



Chapter 5

Time–dependent results

With the time–dependent model implemented in FEMLAB, we can try to find
solutions containing more than one vortex. These solutions were calculated
with an error tolerance of 10−6. During the simulations, it turned out that
using linear Lagrage functions was a bad idea. The solutions found with linear
elements were simply incorrect, as the Cooper pair density was in the region of
1.5 several places. However when quadradic Lagrange elements were used, the
time–dependent solver worked satisfactory.

To begin with, we would like to illustrate the impact of using quadradic
Lagrange elements. The square which was solved in chapter 3, figure 3.3 and
3.4, is also solved using the time–dependent equations. The equations are solved
to t = 250, where the solution seems to be stabilised. This solution is used as
initial guess to the stationary equations, and the stationary equations converge.
The results can be seen on figure 5.1. On this figure, we see that the magnetic
field inside the superconductor has a much better approximation. However, it
is also the case, that even though the solution seems to have stabilised, the
magnetic field calculated using the stationary equations is stronger than the
field calculated using the time–dependent equations. Whether the solution at
t = 250 is truly a stationary state is not known, since the stationary equations
fail to converge when using quadratic elements. Thus, we can conclude one of
two scenarios; either the solution has not truly stabilised at t = 250, or if it has
stabilised, then linear Lagrange elements might not be sufficient to calculate
an accurate solution for the magnetic field inside the superconductor. We will
not delve more into this issue, but just conclude, that there might be some
numerical issues that requires further investigation. Our original point has been
shown, namely that the inner magnetic field is approximated better when using
quadradic Lagrange elements.

Using the time–dependent model, we do not suffer from the lack of making
adequate initial guesses. Therefore we can try to solve more challenging sce-
narios. We could for example investigate the behaviour just around κ = 1/

√
2,

which is the value that separates type I and II superconductors. If κ is less that
κ = 1/

√
2, a vortex solution should not be possible. To investigate this, we

try to make a solution where κ = 0.71, which is just enough to make a vortex

52
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Figure 5.1: Comparison between the solutions found by the time–dependent
equations and stationary equations. The top left figure, is the Cooper pair
density at the centre of the device. The top right is the inner magnetic field,
likewise at the centre of the device. The surface plots are plots of the inner
magnetic field.

solution legal. If we use the following initial condition

u1 =
x√

x2 + y2

u2 =
y√

x2 + y2

Ax = Ay = 0

(5.1)

at t = 0, a solution containing one vortex is recovered. Now κ is reduced to
0.4, which is below the limit κ = 1/

√
2, a vortex solution is still found. This

is obviously wrong! Whether the numerical calculation is inadequate, or the
Ginzburg–Landau equations indeed allow such solution, is not investigated due
to lack of time. However, since κ is a fixed value for a superconductor, this
numerical simulation is not a realistic scenario, as we are using a vortex solution
as an initial guess, for a superconductor which would never enter a vortex phase
in the first place. The results can be seen on figure 5.2.

Now we turn our attention to vortex dynamics. To begin with, we can try
to solve a square for κ = 4 and Baz = 0.75, which can be seen on figure 5.3.
At t = 0 the superconductor is in the Meissner phase. This is achieved by the
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Figure 5.2: The Cooper pair density of a square. On the left plot we have
κ = 0.71 and on the right κ = 0.4.

initial condition

u1(x, y) = u2(x, y) =
√
0.5

Ax(x, y) = Ay(x, y) = 0
(5.2)

The physical setup this solution illustrates, is that we have a superconductor
with a magnetic field weak enough to let the superconductor be in the Meissner
phase. What happens, is that the vortices make entry at the centre of the
sides. This does not come as a surprise, since we saw in chapter 3, that this
was the area with lowest Cooper pair density. After the vortices have entered
the superconductor, they begin to form a square of their own (t = 450), from
where two of the vortices are pushed into the centre of the superconductor. This
happens in order for the vortices to be as far away from each other as possible,
while also taking the magnetic field at boundary into account. A movie sequence
of this scenario can be found on the attached CD, refer to appendix D. The
solution at t = 2000 has reached a stationary state, which is used as an initial
guess for the stationary equations. The solution computed by the stationary
equations can be seen on the figure in the bottom-right corner.

In the previous simulation, it is very helpful to have a non-symmetric mesh,
as the vortices could have converged to a vertical alignment instead. We see, that
the solution in this scenario have a degeneracy of two, and the only reason one
of the solutions is chosen above the other, is because of an non-symmetric mesh.
In this way, we can say that the mesh used is biased towards the solution seen
on the figure. If we try to solve the model with a lower applied magnetic field,
no vortices enter the superconductor. We have tried to begin with an applied
magnetic field at Baz = 0.4, and then increase the value with an interval of 0.05,
and the superconductor stays in the Meissner phase until Baz = 0.75 is reached.
We can try make further calculations on this solution, by changing the applied
magnetic field at t = 2000.

If the magnetic field is lowered to a value of 0.45, with an interval of 0.10,
the vortices stay in the superconductor. This fact is numerical evidence that
hysteresis exists, that is, the superconductor does not return to the Meissner
phase, even though the magnetic field is lowered to a value, where the super-
conductor has previously been in the Meissner phase. If the magnetic field is
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Figure 5.3: The Cooper pair density made with κ = 1 and Baz = 0.4.

lowered further, to a value of 0.05, the vortices are finally pushed out of the
superconductor. The solutions for an applied magnetic field value of 0.65, 0.55
and 0.45 did also converge in the stationary equations. The solutions between
0.05 and 0.45 did not converge in the stationary solver, but due to lack of time,
this issue was not investigated further.

Armed with the time–dependent equations, we can also try to solve more
difficult geometries. This could for example be a rectangle, which are divided
into two sections by making cuts at the centre. This can be seen in figure 5.4.
With an applied magnetic field of Baz = 0.75, we see that 4 vortices enter the
superconductor. This solution becomes stabile at t = 100. If the magnetic field
is increased with a interval of 0.05, nothing new happens until baz reaches 0.9.
At this point, 4 additional vortices enter the superconductors. This scenario
can be seen on figure 5.5. After the four vortices has entered, the solution
appears to have stabilised at t = 100, however at t = 700 the vortices begin
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to move. They order eachother differently, and the solution does not become
stabile before t = 1500.

We can calculate another solution with Baz = 0.9, by choosing the Meissner
phase as initial condition. When this is done, only 6 vortices enter the supercon-
ductor. This simulation can be seen on 5.6. This scenario is another example
of hysteresis. However, the time–dependent equations might not be completely
accurate in this case. While the solution with 6 vortices converged in the sta-
tionary equations, the solution with 8 vortices did not. However, if this lack of
convergence is due to using different finite elements remains to be investigated.

Using this geometry, we can try to create a solution, containing as many
vortices as possible. This is done by beginning with an magnetic field value of
Baz = 1, and then increasing it with an interval of 0.1. This was done, and some
of the simulations are shown on figure 5.7. All simulations are made with the
Meissner phase as initial condition. The solutions are calculated to t = 250, but
since they might not be stabile at this point, they will not be tested with the
stationary equations. Notice the plot were the applied magnetic field is Baz = 4.
On this plot, very little superconductivity remains. This is in agreement with the
assumptions made in section 1.5.2, where a upper critical magnetic field value
was calculated. Here we assumed, that just before superconductivity siezed to
exist, the Cooper pair density was very low.

Another defect geometry geometry is investigated, which is a circle with a
small triangular defect. If an applied magnetic field value of Baz = 0.8 is used,
all vortices enter the superconductor through this defect. This is illustrated on
figure 5.8. In this scenario, it takes a long time for the solution to stabilise,
which happens at about t = 15000.

A different scenario is seen, if the applied magnetic field is Baz = 0.9. This
simulation is shown on figure 5.9. While some of the vortices enter the super-
conductor through the defect, most of the vortices enter through the remaining
boundary. The applied magnetic field is simply too strong for the superconduc-
tor to resist. This solution is also quite slow in reaching stability, however it
is nothing in the range of the previous scenario. Movies of the two scenarios
involving the circle, can be found on the attached CD.

The solutions found with the time–dependent algorithm has not truly con-
verged for the stationary equations, as has been stated in this chapter. However,
FEMLAB exhibits a very odd behaviour just before the solver terminates. The
estimated error gets as low as 10−8, however instead of declaring the solution
for converged, it makes a huge stepsize and gets a new estimated error in the
area 1020. After this happens the solver declares that it is unable to solve the
equations and terminates. However we suspect that the solution did actually
converge, but for some reason FEMLAB fails to acknowledge this. With this
odd behaviour of FEMLAB, we cannot know for sure if any of the stationary
solutions found in this chapter also solves the stationary equations. This prob-
lem may be solved in future version of FEMLAB, but to know the true reason
why the numerical method exhibits this behaviour, we would probably need to
write our own software.
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Figure 5.4: The Cooper pair density made with κ = 4 and Baz = 0.75.
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Figure 5.5: The Cooper pair density made with κ = 4 and Baz = 0.90.
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Figure 5.6: The Cooper pair density made with κ = 4 and Baz = 0.90.
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Figure 5.7: The Cooper pair density made with κ = 4 and different Baz.
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Figure 5.8: The Cooper pair density made with κ = 4 and Baz = 0.80.
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Figure 5.9: The Cooper pair density made with κ = 4 and Baz = 0.90.



Conclusion

We have solved the stationary Ginzburg–Landau equations for a square, both
in the Meissner phase and vortex phase. Based on these solutions, we have con-
cluded that the assumptions made in deriving the London penetration depth and
Ginzburg–Landau coherence length are valid. Unfortunately, it turned out, that
the possibilities to calculate multi-vortex systems using the stationary model is
very limited. We were not able to give FEMLAB an initial guess, which was
accurate enough in order for FEMLAB to converge. One can also question the
usability of such a model. It is not very interesting to have a model, which can
only be solved when we know exactly what to expect (that is, when we are able
to provide an initial guess sufficiently close to the solution).

In order eliminate these difficulties, the time–dependent model was used.
This model pretty much solves everything. However, it became evident that not
all solutions produced should be taken for valid solution. This was illustrated
with a vortex solution, calculated for κ = 0.4.

When using a time–dependent model in search of an equilibrium state, one
problem comes to mind; when has the solution computed truly stabilised? In or-
der to answer this question, every solution calculated using the time–dependent
model, was used as an initial guess to the stationary equations. On this account,
the stationary equations are very usable, as they become the numerical proof of
stable solutions.

In the process of seeking numerical proof that the calculated solution has in-
deed stabilised, a new problem arose. FEMLAB did not truly converge once. By
this, we mean the very odd behaviour exhibited described in chapter 5. Due to
this behaviour, just before the numerical algorithm terminated, is it very likely
that the solution has converged. In order to be sure of this, addition numerical
study must be made. Perhaps other basefunctions than Lagrange element are
much better suited to solve the Ginzburg–Landau equations. Perhaps the so-
lution to this problem, is to write a numerical solver, in order to get complete
contron of the algorithm, and thereby be able to customize it to this particular
problem.

In spite of the difficulties with convergence, the time–dependent model has
still provided insight on vortex dynamics and the existence of hysteresis. We
have seen how defects in geometries can be used to control, or at least have an
influence on where and how vortices enter a superconductor.
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Appendix A

Ginzburg–Landau in cgs

The Ginzburg–Landau equations often appear written in cgs (Gaussian) units.
In this appendix both the stationary and the time-dependent equations is con-
verted to SI units.

A.1 Stationary equations

In the textbook by Singer [14] the free energy density is written as

Lcgs =
�
2

2m

∣∣∣∣
(
ı∇+

2π

Φ0
A

)
Ψ

∣∣∣∣
2

− α|Ψ|2 + β

2
|Ψ|4 + |H−B|2

8π
(A.1)

This equation can be converted to SI units by using the conversion table in
the book by Barone and Paterno [22]. The needed expressions are written in
table A.1 and A.2. To begin with the first term is rewritten and Φ0 is replaced
as indicated in table A.1:
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(A.2)

Now q, c and A is replaced as stated in table A.2:
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(A.3)

The last term in (A.1) is rewritten by inserting the SI expression for B and H:

|H−B|2
8π

=

∣∣∣(√4πμ0H
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√

4π
μ0
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i)
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(A.4)
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Quantity Symbol SI cgs

Flux quantum Φ0
h

q

hc

q

Plank’s constant divided by 2π �
h

2π

h

2π

Table A.1: Abbreviated symbol table from Barone and Paterno[22]. Before
converting a formula the above symbols must be replaced by the expression in
the cgs column. The expressions in the SI column are for formulas given in SI
units.

where Bi is the magnetic field inside the superconducting sample and Ba is
the applied magnetic field. In the last line the relation from electromagnetism
B = μ0H is used. By inserting the two converted expressions in (A.1), equation
(1.13) from chapter 1 is obtained.

A.2 Time-dependent equations

In chapter 4 the time–dependent equations are taken from the article by Kaper
et al [20]. In the paper they are written as
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δA
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4π
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(A.5)

and Ltcgs is defined as

Ltcgs = α|Ψ|2 + 1

2
β|Ψ|4 + 1
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(A.6)

First notice that the above definition of Ltcgs is similar to (A.1). In chapter 1
the coefficients were investigated, and the sign of α depends on whether α is
chosen to be positive or negative in the superconducting state. In the discussion
in Singers textbook, α is chosen to be positive when T < Tc and in the papir
by Kaper [20] α is chosen to be negative when T < Tc, so the sign of α in (A.6)
must be changed. A new L is now defined as

Ltcgs1 = −α|Ψ|2 + 1

2
β|Ψ|4 + 1
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(A.7)

Besides the sign of α the energy contribution from the magnetic field is absent
in (A.6) compared to equation (A.1). In equation (A.5) the contribution from
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Quantity SI cgs

Charge, current density
1√
4πε0

(q,J) (q,J)

Conductivity
σ

4πε0
σ

Electric potential
√
4πε0Φ Φ

Magnetic induction

√
4π

μ0
B B

Magnetic field
√
4πμ0H H

Vector Potential

√
4π

μ0
A A

Velocity of light
1√
μ0ε0

c

Table A.2: Abbreviated conversion table from Barone and Paterno[22]. Each
entry expresses the relation between a quantity in formulas written in cgs and SI
units. To convert an equation from cgs to SI, every quantity in the cgs column
is replaced by the equivalent expression in the SI column.

Ltcgs is written as variational derivatives. Calculating the difference yields

−δ(Lcgs − Ltcgs1)

δΨ∗ = 0

−δ(Lcgs − Ltcgs1)

δA
=

1

4π
∇× (H−∇×A)

(A.8)

The equations are obtained by using the same techniques as used in section 1.3,
where the Ginzburg Landau equations was derived. If we assume that the
external magnetic field is constant, then the difference of using Lcgs compared
to Ltcgs1 is − 1

4π∇×∇×A. Based on this information a new model equivalent
to (A.5) which uses Lcgs can be defined as
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(A.9)

To convert (A.9) to SI units table A.2 is used. The first equation of (A.9)
is converted by inserting the expressions for q and Φ, however the multipliers
cancel out so the equation is the same in SI units. To convert the second equation
we need to look at δA, which is defined in (1.15) as

δA =
∂A

∂ε
ε (A.10)
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We see that δA must be converted as it was just a vector potential A. Making
the proper replacements yields
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(A.11)

To summerise the time–dependent Ginzburg–Landau model in SI units is
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where L is equation (1.13) defined in chapter 1 as
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Appendix B

Gauge invariance

B.1 Proof for stationary equations

It was written in section 2.2 that the stationary Ginzburg–Landau equations
are gauge invariant under the linear transformation Gχ defined as

Gχ(Ψ,A) = (Ψ′,A′) (B.1)

where

Ψ′ = Ψeıκχ, A′ = A+∇χ (B.2)

and χ = χ(x, y, z). To prove the gauge invariance the equations normalised with
λL are used

− 1

κ2
∇2Ψ+ ı

2

κ
A · ∇Ψ+A ·AΨ −Ψ+ |Ψ|2Ψ = 0 in Ω (B.3a)( ı

κ
∇Ψ+AΨ

)
· n = 0 on ∂Ω (B.3b)

ı

2κ
(Ψ∇Ψ∗ −Ψ∗∇Ψ)−A|Ψ|2 = js in Ω (B.3c)

Ay,x −Ax,y = Baz on ∂Ω (B.3d)

The gauge invariance is proved by making the transformations (B.2) in (B.3),
and if the transformed equations formally equals the original equations, then
the gauge invariance is proved. In order to calculate the transformed equations
the following relations will be needed. The gradiant of Ψ′

∇ (Ψ′e−ıκχ
)
= e−ıκχ (∇Ψ′ − ıκΨ′∇χ) (B.4)

The Laplace operator on Ψ′ is also needed which is

∇2
(
Ψ′e−ıκχ

)
= ∇ · ∇ (Ψ′e−ıκχ

)
(B.5)

By using the calculated expression for ∇Ψ we obtain

∇2
(
Ψ′e−ıκχ

)
= e−ıκχ

(∇2Ψ′ − ıκΨ′∇2χ− κ2Ψ′∇χ∇χ− 2ıκ∇Ψ′∇χ) (B.6)
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The inner product A ·A also needs to calculated

A ·A = A′ ·A′ +∇χ∇χ− 2A′ · ∇χ (B.7)

And finally the rotation of A becomes

∇×A = ∇× (A′ −∇χ) = ∇×A′ (B.8)

It is used that the curl of ∇f vanishes for any function f .
First equation (B.3a) is transformed. Before this is done the equation is

reorganised by writing out the brackets

− 1

κ2
∇2Ψ+A ·AΨ+

ı

κ
(2A · ∇Ψ+Ψ∇ ·A)−Ψ+ |Ψ|2Ψ = 0 (B.9)
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κ
Ψ′∇[A′ −∇χ]

−Ψ′ + |Ψ′|2Ψ′
)

= 0

(B.10)

The first line corresponds to the first term transformed, the second line to the
second term and so on. We see that all the terms which contain χ cancel each
other out, so by removing all terms with χ we get

e−ıκχ

(
− 1

κ2
∇2Ψ′ +A′ ·A′Ψ′ +

ı

κ
(2A′ · ∇Ψ′ +Ψ′∇ ·A′)−Ψ′ + |Ψ′|2Ψ′

)
= 0

(B.11)

If the equation is multiplied by eıκχ we obtain an equation which is formally
equal to (B.3a) and therefore the first Ginzburg–Landau equation is gauge in-
variant. If the transformations are inserted into the second Ginzburg–Landau
equation (B.3c) we obtain

ı

2κ

(
Ψ′e−ıκχeıκχ[∇Ψ′∗ + ıκΨ′∗∇χ]−Ψ′∗eıκχe−ıκχ

[∇Ψ′ − ıκΨ′∇χ])
−A′|Ψ′|2 +∇χ|Ψ′|2 +∇×Ba = ∇×∇× (A′ −∇χ) (B.12)

Again all the terms which contain χ cancels out and the resulting equation is

ı

2κ
(Ψ′∇Ψ′∗ −Ψ′∗∇Ψ′)−A′|Ψ′|2 +∇×Ba = ∇×∇×A′ (B.13)

which is formally equivalent to the original equation. If the gauge transformation
is made on the boundary conditions we get

e−ıκχ
( ı
κ
[∇Ψ′ − ıκΨ′∇χ] +A′Ψ′ −Ψ′∇χ

)
· n = 0 (B.14)

The terms with χ cancels out and multiplying with eıκχ the resulting equation
is formally equivalent to the original boundary condition. The second boundary
condition is also gauge invariant as the curl of A is equal to the curl of A′.
Hence the equations (B.3) are gauge invariant under the transformation written
in (B.2).
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B.2 Proof for time–dependent equations

The time–dependent equations are gauge invariant under the transformation

Gχ(Ψ,A,Φ) = (Ψ′,A′,Φ′) (B.15)

where

Ψ′ = Ψeıκχ, A′ = A+∇χ, Φ′ = Φ− ∂χ

∂t
(B.16)

To prove the gauge invariance the transformations (B.16) are made in(
∂

∂t
+ ıκΦ

)
Ψ = −

( ı
κ
∇+A

)2
Ψ+Ψ− |Ψ|2Ψ (B.17a)
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=
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2ıκ
(Ψ∗∇Ψ−Ψ∇Ψ∗)− |Ψ|2A−∇×∇×A (B.17b)

with the boundary conditions( ı
κ
∇Ψ+AΨ

)
· n = 0 on ∂Ω (B.18a)

Ba = Bi on ∂Ω (B.18b)(
∂A

∂t
+∇Φ

)
· n = 0 on ∂Ω (B.18c)

From the proof in B.1 we know that the boundary conditions (B.18a) and
(B.18b) are gauge invariant. We also know that by using the gauge trans-
formation the right hand side of (B.17a) has the multiplier e−ıκχ. The right
hand side of (B.17b) is unchanged. To prove gauge invariance only the left hand
sides of (B.17) needs to be calculated. The left hand side of (B.17a) is(

∂

∂t
+ ıκΦ

)
Ψ =

(
∂

∂t
+ ıκ

[
Φ′ +

∂χ

∂t

])
Ψ′e−ıκχ (B.19)

The time–derivative are calculated as

∂

∂t
Ψ′e−ıκχ = e−ıκχ

(
∂Ψ′

∂t
− ıκΨ′ ∂χ

∂t

)
(B.20)

and we see that the terms having χ cancels out. The resulting equation is(
∂

∂t
+ ıκΦ

)
Ψ = e−ıκχ

(
∂

∂t
+ ıκΦ′

)
Ψ′ (B.21)

Since the transformed left hand side and right hand side of (B.17a) have the
same multiplier it is removed from the equation. When this is done we obtain
(B.17a). The left hand side of (B.17b) becomes

σ

(
∂A

∂t
+∇Φ

)
= σ

(
∂(A′ −∇χ)

∂t
+∇

[
Φ′ +

∂χ

∂t

])
(B.22)

(B.23)

Since the order of differentiation does not matter, then left hand side of (B.17b)
remains unchanged by the gauge transformation, hence it is proved that (B.17) is
gauge invariant. Having shown that the left hand side of (B.17b) is unchanged,
it is clear that the third boundary condition (B.18c) is also gauge invariant.



Appendix C

MATLAB Code

In this appendix the MATLAB code which solves both the stationary and time–
dependent equations is found. Five MATLAB functions are made which are

• GLE.m The implementation of the stationary Ginzburg–Landau equations.

• glestart.m The script that calls GLE.m with the proper geometry and
afterwards plots the solution by using the constructed plotter.m. This
script is used to construct all the figures made in chapter 3.

• TDGL.m This script is the implementaion of the time–dependent Ginzburg–
Landau equations.

• tdglstart.mThis function is very similar to glestart.m. The script calls
the time–dependent solver TDGL.m and optionally tries to use the output
as initial guess in the stationary solver. This script was used to make all
the simulations in chapter 5.

• plotter.m This script extracts the calculated solution from the FEMLAB
structure and stores the result on disk. The results are datafiles suitable
for Gnuplot.

In order for any of these scripts to work MATLAB must be able to use FEMLAB
functions. In order to achieve this on a unix system, simply type femlab matlab

in a console. Then the interactive FEMLAB launches and the console becomes
a MATLAB prompt. The interactive FEMLAB should be closed and MATLAB
can now access all the FEMLAB functions.

Only glestart.m and glstart.m are called by the user. The function
tdglstart is defined as

function [varargout] = tdglstart(usergeom, Ba, fem,

solform, kappa, vortex, time, glerun)

Example use is

[tdglba7m gleba7] = tdglstart(3, 0.7, 0, 0, 4, 0, [0:1:100], 0);

The above command calls the time–dependent equations for geometry number
3 with an applied magnetic field value of 0.7. The solver integrates from t = 0
to 100 and stores the solutions with an interval of 1. This solution is stored in

69
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tdglba7m. Having calculated the solution to t = 100 we can try to make this
solution converge in the stationary equations. This is done with the command

[tdglba7t100 gleba7] =

tdglstart(3, 0.7, tdglba7m, 1, 4, 0, [100:1000:10100], 1);

With this command the previously calculated solution at t = 100 is used and
solved to t = 10100. This is done to make sure the found solutions is stabil,
therefore we only store the solution with an interval of 1000. When the solution
at t = 10100 is found, the solver uses this as an initial guess to the stationary
equations.

In the MATLAB scripts Ax equals u3 and Ay equals u4. When writing u3y

it means Ax,y.

C.1 GLE.m

1 % GLE - Steady state Ginzburg-Landau equations

2 % geom = geometry to solve.

3 % bndind = boundary vector for equ.bnd.ind

4 % initsol = Initial solution

5 % solform = 0 or 1. If 0 the solution is an formal initial solution. If 1

6 % the solution is given as a fem structure.

7 % mode = ’lambda’ or ’xi’. If lambda, the equations normalized as x’ =

8 % x/lambda id used. If xi, the other equations are used.

9 % kappa = kappa, the ginzburg landau parameter

10 % Ba = applied magnetic field

11 % geomid = Mesh generation parameter. Some of the defect geometries needs

12 % speciel refinement.

13 % Hauto = FEMLAB mesh variable. See manual for details.

14 function [vargout] = GLE(geom, bndind, initsol, solform,

15 mode, kappa, Ba, geomid,Hauto)

16

17 %Set geometry

18 fem.draw=struct(’s’,geom);

19 fem.geom=geomcsg(fem);

20

21 % Set appliaction to PDE General form.

22 clear appl

23 appl.mode.class = ’FlPDEG’;

24

25 % Set variables.

26 appl.dim = {’u1’,’u2’,’u3’,’u4’,’u5’,’u1_t’,’u2_t’,’u3_t’,’u4_t’,’u5_t’};

27

28 % Set variables as linear lagrange

29 appl.shape = {’shlag(1,’’u1’’)’,’shlag(1,’’u2’’)’,’shlag(1,’’u3’’)

30 ’,’shlag(1,’’u4’’)’,’shlag(1,’’u5’’)’};

31 appl.gporder = 2;

32 appl.cporder = 1;

33

34 % Set boundary conditions

35 appl.assignsuffix = ’_g’;

36 clear bnd

37 bnd.type = ’neu’; % Neumann conditions

38 bnd.ind = bndind;

39 appl.bnd = bnd;

40 clear equ

41

42 if solform==0

43 % Set initial solution
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44 equ.init = initsol;

45 end

46

47 if strcmp(mode,’xi’) == 1

48 equ.f = {{...

49 ’u3.*u1x+u4.*u1y+(u3.^2+u4.^2).*u2-u2+(u1.^2+u2^2).*u2’;...%F1

50 ’u3.*u2x+u4.*u2y-(u3.^2+u4.^2).*u1+u1-(u1.^2+u2.^2).*u1’;...%F2

51 ’1./(kappa.^2).*(u2.*u1x-u1.*u2x+(u1.^2+u2.^2).*u3)’;...%F3

52 ’1./(kappa.^2).*(u2.*u1y-u1.*u2y+(u1.^2+u2.^2).*u4)’;...%F4

53 ’u5’}}; %F5

54 equ.ga = {{...

55 {’u2x-u3.*u1’;’u2y-u4.*u1’};...%Gamma1

56 {’-u1x-u3.*u2’;’-u1y-u4.*u2’};...%Gamma2

57 {’u3x+u4y’;’-u4x+u3y+Ba’};...%Gamma3

58 {’u4x-u3y-Ba’;’u3x+u4y’};...%Gamma4

59 {’0’;’0’}}};%Gamma5

60 elseif strcmp(mode,’lambda’) == 1

61 equ.f = {{...

62 ’kappa.*(u3.^2+u4.^2).*u2+u3.*u1x+u4.*u1y-kappa.*u2

63 +kappa.*(u1.^2+u2^2).*u2’;...%F1

64 ’-kappa.*(u3.^2+u4.^2).*u1+u3.*u2x+u4.*u2y+kappa.*u1

65 -kappa.*(u1.^2+u2.^2).*u1’;...%F2

66 ’(1./kappa).*(u2.*u1x-u1.*u2x)+(u1.^2+u2.^2).*u3’;...%F3

67 ’(1./kappa).*(u2.*u1y-u1.*u2y)+(u1.^2+u2.^2).*u4’;...%F4

68 ’u5’}}; %F5

69 equ.ga = {{...

70 {’u2x./kappa-u3.*u1’;’u2y./kappa-u4.*u1’};...%Gamma1

71 {’-u1x./kappa-u3.*u2’;’-u1y./kappa-u4.*u2’};...%Gamma2

72 {’u3x+u4y’;’-u4x+u3y+Ba’};...%Gamma3

73 {’u4x-u3y-Ba’;’u3x+u4y’};...%Gamma4

74 {’0’;’0’}}};%Gamma5

75 else

76 %Abort

77 error(’Unknown mode!’)

78 end

79

80 % Construct fem structure

81 equ.ind = [1];

82 appl.equ = equ;

83 fem.appl{1} = appl;

84 fem.border = 1;

85

86 % insert constants

87 fem.const={’Ba’,sprintf(’%d’,Ba),’kappa’,sprintf(’%d’,kappa)};

88

89 % Multiphysics

90 fem=multiphysics(fem);

91

92 % Initialize mesh

93 fem.mesh=meshinit(fem,’Hauto’,Hauto);

94

95 fem.xmesh=meshextend(fem);

96

97 if solform == 0

98 % Evaluate initial value

99 init = asseminit(fem);

100 elseif solform == 1

101 % Mapping current solution to extended mesh

102 init = asseminit(fem,’init’,initsol.sol,’xmesh’,initsol.xmesh);

103 end

104

105 % Update model
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106 fem.sol = init;

107

108 %Solve problem

109 fem.sol=femnlin(fem, ...

110 ’init’,init, ...

111 ’HnLin’,’on’,...

112 ’solcomp’,{’u1’,’u2’,’u3’,’u4’,’u5’}, ...

113 ’outcomp’,{’u1’,’u2’,’u3’,’u4’,’u5’}, ...

114 ’Ntol’,1e-6,...

115 ’maxiter’,1000);

116

117 vargout = fem;

C.2 glestart.m

1 % function [varargout] = tdglstart(usergeom, Ba, fem, solform, kappa,

2 vortex, time, glerun)

3 function [varargout] = tdglstart(usergeom, Ba, fem, solform, kappa,

4 vortex, time, glerun)

5

6 % Geometry

7 % ----------------------------------------

8 % 1 = Square

9 % 2 = Square with link

10 % 3 = Circle

11 % 4 = Circle with defect

12 % 5 = Triangle

13

14 % Set mode

15 % mode = ’xi’;

16 mode = ’lambda’;

17

18 % Set variables.

19 if time == 0

20 time = [0:20:5000];

21 end

22 if kappa == 0

23 kappa = 4;

24 end

25

26 sigma = 1;

27 if Ba == 0

28 Ba = 0.1;

29 end

30 tdglH = 2;

31 gleH = 2;

32

33 % if solform = 1 then a femlab structure is passed as init

34 if solform == 1

35 init = fem;

36 else

37 if vortex == 1

38 %one Vortex at center

39 init = {{’x./sqrt(x.^2+y.^2)’;’y./sqrt(x.^2+y.^2)’;0;0;0;0;0;0;0;0}};

40 else

41 % No Vortex, Meissner phase

42 init = {{’sqrt(0.5)’;’sqrt(0.5)’;0;0;0;0;0;0;0;0}};

43 end

44 end

45
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46 clear geom

47 switch usergeom

48 case 1

49 % A square

50 g1=rect2(10,10,’base’,’corner’,’pos’,[-5,-5]);

51 geom.objs={g1};

52 bndind = [1,1,1,1];

53 diradd = ’square’;

54 plotgeom = [-5,5,-5,5];

55 case 2

56 % Rect with defects as link.

57 % Geometry

58 g1=rect2(6,10,’base’,’corner’,’pos’,[-3,-5]);

59 g2=ellip2(2,2,’base’,’center’,’pos’,[-3,0]);

60 g3=ellip2(2,2,’base’,’center’,’pos’,[3,0]);

61 g4=geomcomp({g1,g2,g3},’ns’,{’g1’,’g2’,’g3’},’sf’,’g1-g2-g3’,

62 ’edge’,’none’);

63 bndind = [1,1,1,1,1,1,1,1,1,1];

64 geom.objs={g4};

65 diradd = ’squarelink’;

66 plotgeom = [-2.5,2.5,-5,5];

67 case 3

68 % Circle with r=5 and x and y direction, with center at 0,0

69 g1=ellip2(5,5,’base’,’center’,’pos’,[0,0]);

70 geom.objs={g1};

71 bndind = [1,1,1,1];

72 diradd = ’circle’;

73 plotgeom = [-5,5,-5,5];

74 case 4

75 % A circle with a defect

76 % Circle with r=5 and x and y direction, with center at 0,0

77 g1=ellip2(5,5,’base’,’center’,’pos’,[0,0]);

78 carr={curve2([-5,-4],[1,0],[1,1]), ... %Line from (-5,1)->(-4,0)

79 curve2([-4,-5],[0,-1],[1,1]), ...%Line from (-4,0)->(-5,-1)

80 curve2([-5,-5],[-1,1],[1,1])};%Line from (-5,1)->(-5,1)

81 g2=geomcoerce(’solid’,carr);%Make the geom solid

82 g3=geomcomp({g1,g2},’ns’,{’g1’,’g2’},’sf’,’g1-g2’,’edge’,’none’);

83 geom.objs={g3};

84 bndind = [1,1,1,1,1,1];

85 diradd = ’circledef’;

86 plotgeom = [-5,5,-5,5];

87 case 5

88 % Triangle

89 carr={curve2([-5,0],[-4,6],[1,1]), ...

90 curve2([0,5],[6,-4],[1,1]), ...

91 curve2([6,-6],[-4,-4],[1,1])};

92 g1=geomcoerce(’solid’,carr);

93 bndind = [1,1,1];

94 geom.objs={g1};

95 diradd = ’triangle’;

96 plotgeom = [-5,5,-4,6];

97 otherwise

98 error(’Unknown geometry!’)

99 end

100

101 geom.name={’R1’};

102 geom.tags={’g1’};

103

104 sprintf(’TDGL for BA = %d’,Ba)

105

106 [tdglfem] = TDGL(geom, bndind, init, solform, time, mode, kappa, Ba,

107 sigma, usergeom, tdglH);
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108

109 % Plot solution

110 dir = strcat(’../data/’,mode,’/’,diradd,’/tdgl_’);

111 plotter(tdglfem,time,mode,Ba,kappa,201,201,51,21,plotgeom,dir);

112 if glerun == 1

113 sprintf(’GLE for BA = %d’,Ba)

114 [glefem] = GLE(geom, bndind, tdglfem, 1, mode, kappa, Ba,

115 usergeom, gleH);

116 dir = strcat(’../data/’,mode,’/’,diradd,’/gle_’);

117 plotter(glefem,0,mode,Ba,kappa,201,201,51,31,plotgeom,dir);

118 else

119 glefem = 0;

120 end

121

122 varargout{1} = tdglfem;

123 varargout{2} = glefem;

C.3 TDGL.m

1 % GLE - Steady state Ginzburg-Landau equations

2 % geom = geometry to solve.

3 % bndind = boundary vector for equ.bnd.ind

4 % initsol = Initial solution

5 % solform = 0 or 1. If 0 the solution is an formal initial solution. If 1

6 % the solution is given as a fem structure.

7 % mode = ’lambda’ or ’xi’. If lambda, the equations normalized as x’ =

8 % x/lambda id used. If xi, the other equations are used.

9 % kappa = kappa, the ginzburg landau parameter

10 % Ba = applied magnetic field

11 % geomid = Mesh generation parameter. Some of the defect geometries needs

12 % speciel refinement.

13 % Hauto = FEMLAB mesh variable. See manual for details.

14 function [vargout] = GLE(geom, bndind, initsol, solform, mode,

15 kappa, Ba, geomid,Hauto)

16

17 %Set geometry

18 fem.draw=struct(’s’,geom);

19 fem.geom=geomcsg(fem);

20

21 % Set appliaction to PDE General form.

22 clear appl

23 appl.mode.class = ’FlPDEG’;

24

25 % Set variables.

26 appl.dim = {’u1’,’u2’,’u3’,’u4’,’u5’,’u1_t’,’u2_t’,’u3_t’,’u4_t’,’u5_t’};

27

28 % Set variables as linear lagrange

29 appl.shape = {’shlag(1,’’u1’’)’,’shlag(1,’’u2’’)’,’shlag(1,’’u3’’)’

30 ,’shlag(1,’’u4’’)’,’shlag(1,’’u5’’)’};

31 appl.gporder = 2;

32 appl.cporder = 1;

33

34 % Set boundary conditions

35 appl.assignsuffix = ’_g’;

36 clear bnd

37 bnd.type = ’neu’; % Neumann conditions

38 bnd.ind = bndind;

39 appl.bnd = bnd;

40 clear equ

41
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42 if solform==0

43 % Set initial solution

44 equ.init = initsol;

45 end

46

47 if strcmp(mode,’xi’) == 1

48 equ.f = {{...

49 ’u3.*u1x+u4.*u1y+(u3.^2+u4.^2).*u2-u2+(u1.^2+u2^2).*u2’;...%F1

50 ’u3.*u2x+u4.*u2y-(u3.^2+u4.^2).*u1+u1-(u1.^2+u2.^2).*u1’;...%F2

51 ’1./(kappa.^2).*(u2.*u1x-u1.*u2x+(u1.^2+u2.^2).*u3)’;...%F3

52 ’1./(kappa.^2).*(u2.*u1y-u1.*u2y+(u1.^2+u2.^2).*u4)’;...%F4

53 ’u5’}}; %F5

54 equ.ga = {{...

55 {’u2x-u3.*u1’;’u2y-u4.*u1’};...%Gamma1

56 {’-u1x-u3.*u2’;’-u1y-u4.*u2’};...%Gamma2

57 {’u3x+u4y’;’-u4x+u3y+Ba’};...%Gamma3

58 {’u4x-u3y-Ba’;’u3x+u4y’};...%Gamma4

59 {’0’;’0’}}};%Gamma5

60 elseif strcmp(mode,’lambda’) == 1

61 equ.f = {{...

62 ’kappa.*(u3.^2+u4.^2).*u2+u3.*u1x+u4.*u1y-kappa.*u2

63 +kappa.*(u1.^2+u2^2).*u2’;...%F1

64 ’-kappa.*(u3.^2+u4.^2).*u1+u3.*u2x+u4.*u2y+kappa.*u1

65 -kappa.*(u1.^2+u2.^2).*u1’;...%F2

66 ’(1./kappa).*(u2.*u1x-u1.*u2x)+(u1.^2+u2.^2).*u3’;...%F3

67 ’(1./kappa).*(u2.*u1y-u1.*u2y)+(u1.^2+u2.^2).*u4’;...%F4

68 ’u5’}}; %F5

69 equ.ga = {{...

70 {’u2x./kappa-u3.*u1’;’u2y./kappa-u4.*u1’};...%Gamma1

71 {’-u1x./kappa-u3.*u2’;’-u1y./kappa-u4.*u2’};...%Gamma2

72 {’u3x+u4y’;’-u4x+u3y+Ba’};...%Gamma3

73 {’u4x-u3y-Ba’;’u3x+u4y’};...%Gamma4

74 {’0’;’0’}}};%Gamma5

75 else

76 %Abort

77 error(’Unknown mode!’)

78 end

79

80 % Construct fem structure

81 equ.ind = [1];

82 appl.equ = equ;

83 fem.appl{1} = appl;

84 fem.border = 1;

85

86 % insert constants

87 fem.const={’Ba’,sprintf(’%d’,Ba),’kappa’,sprintf(’%d’,kappa)};

88

89 % Multiphysics

90 fem=multiphysics(fem);

91

92 % Initialize mesh

93 fem.mesh=meshinit(fem,’Hauto’,Hauto);

94

95 fem.xmesh=meshextend(fem);

96

97 if solform == 0

98 % Evaluate initial value

99 init = asseminit(fem);

100 elseif solform == 1

101 % Mapping current solution to extended mesh

102 init = asseminit(fem,’init’,initsol.sol,’xmesh’,initsol.xmesh);

103 end
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104

105 % Update model

106 fem.sol = init;

107

108 %Solve problem

109 fem.sol=femnlin(fem, ...

110 ’init’,init, ...

111 ’HnLin’,’on’,...

112 ’solcomp’,{’u1’,’u2’,’u3’,’u4’,’u5’}, ...

113 ’outcomp’,{’u1’,’u2’,’u3’,’u4’,’u5’}, ...

114 ’Ntol’,1e-6,...

115 ’maxiter’,1000);

116

117 vargout = fem;

C.4 tdglstart.m

1 % function [varargout] = tdglstart(usergeom, Ba, fem,

2 solform, kappa, vortex, time, glerun)

3 function [varargout] = tdglstart(usergeom, Ba, fem,

4 solform, kappa, vortex, time, glerun)

5

6 % Geometry

7 % ----------------------------------------

8 % 1 = Square

9 % 2 = Square with link

10 % 3 = Circle

11 % 4 = Circle with defect

12 % 5 = Triangle

13

14 % Set mode

15 % mode = ’xi’;

16 mode = ’lambda’;

17

18 % Set variables.

19 if time == 0

20 time = [0:20:5000];

21 end

22 if kappa == 0

23 kappa = 4;

24 end

25

26 sigma = 1;

27 if Ba == 0

28 Ba = 0.1;

29 end

30 tdglH = 2;

31 gleH = 2;

32

33 % if solform = 1 then a femlab structure is passed as init

34 if solform == 1

35 init = fem;

36 else

37 if vortex == 1

38 %one Vortex at center

39 init = {{’x./sqrt(x.^2+y.^2)’;’y./sqrt(x.^2+y.^2)’;0;0;0;0;0;0;0;0}};

40 else

41 % No Vortex, Meissner phase

42 init = {{’sqrt(0.5)’;’sqrt(0.5)’;0;0;0;0;0;0;0;0}};

43 end
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44 end

45

46 clear geom

47 switch usergeom

48 case 1

49 % A square

50 g1=rect2(10,10,’base’,’corner’,’pos’,[-5,-5]);

51 geom.objs={g1};

52 bndind = [1,1,1,1];

53 diradd = ’square’;

54 plotgeom = [-5,5,-5,5];

55 case 2

56 % Rect with defects as link.

57 % Geometry

58 g1=rect2(6,10,’base’,’corner’,’pos’,[-3,-5]);

59 g2=ellip2(2,2,’base’,’center’,’pos’,[-3,0]);

60 g3=ellip2(2,2,’base’,’center’,’pos’,[3,0]);

61 g4=geomcomp({g1,g2,g3},’ns’,{’g1’,’g2’,’g3’},’sf’,’g1-g2-g3’,

62 ’edge’,’none’);

63 bndind = [1,1,1,1,1,1,1,1,1,1];

64 geom.objs={g4};

65 diradd = ’squarelink’;

66 plotgeom = [-2.5,2.5,-5,5];

67 case 3

68 % Circle with r=5 and x and y direction, with center at 0,0

69 g1=ellip2(5,5,’base’,’center’,’pos’,[0,0]);

70 geom.objs={g1};

71 bndind = [1,1,1,1];

72 diradd = ’circle’;

73 plotgeom = [-5,5,-5,5];

74 case 4

75 % A circle with a defect

76 % Circle with r=5 and x and y direction, with center at 0,0

77 g1=ellip2(5,5,’base’,’center’,’pos’,[0,0]);

78 carr={curve2([-5,-4],[1,0],[1,1]), ... %Line from (-5,1)->(-4,0)

79 curve2([-4,-5],[0,-1],[1,1]), ...%Line from (-4,0)->(-5,-1)

80 curve2([-5,-5],[-1,1],[1,1])};%Line from (-5,1)->(-5,1)

81 g2=geomcoerce(’solid’,carr);%Make the geom solid

82 g3=geomcomp({g1,g2},’ns’,{’g1’,’g2’},’sf’,’g1-g2’,’edge’,’none’);

83 geom.objs={g3};

84 bndind = [1,1,1,1,1,1];

85 diradd = ’circledef’;

86 plotgeom = [-5,5,-5,5];

87 case 5

88 % Triangle

89 carr={curve2([-5,0],[-4,6],[1,1]), ...

90 curve2([0,5],[6,-4],[1,1]), ...

91 curve2([6,-6],[-4,-4],[1,1])};

92 g1=geomcoerce(’solid’,carr);

93 bndind = [1,1,1];

94 geom.objs={g1};

95 diradd = ’triangle’;

96 plotgeom = [-5,5,-4,6];

97 otherwise

98 error(’Unknown geometry!’)

99 end

100

101 geom.name={’R1’};

102 geom.tags={’g1’};

103

104 sprintf(’TDGL for BA = %d’,Ba)

105
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106 [tdglfem] = TDGL(geom, bndind, init, solform, time, mode, kappa,

107 Ba, sigma, usergeom, tdglH);

108

109 % Plot solution

110 dir = strcat(’../data/’,mode,’/’,diradd,’/tdgl_’);

111 plotter(tdglfem,time,mode,Ba,kappa,201,201,51,21,plotgeom,dir);

112 if glerun == 1

113 sprintf(’GLE for BA = %d’,Ba)

114 [glefem] = GLE(geom, bndind, tdglfem, 1, mode, kappa, Ba, usergeom, gleH);

115 dir = strcat(’../data/’,mode,’/’,diradd,’/gle_’);

116 plotter(glefem,0,mode,Ba,kappa,201,201,51,31,plotgeom,dir);

117 else

118 glefem = 0;

119 end

120

121 varargout{1} = tdglfem;

122 varargout{2} = glefem;

C.5 plotter.m

1 % function [vargout] = plotter(fem,t,mode,Ba,kappa,pPsi,pB,pJ,

2 pLine,plotgeom,dir)

3 function [vargout] = plotter(fem,t,mode,Ba,kappa,pPsi,pB,pJ

4 ,pLine,plotgeom,dir)

5

6 if t == 0

7 time = 1;

8 else

9 time = t;%[t1 t2 t3];

10 end

11 % Create points matrix

12

13 points = zeros(2,pPsi^2);

14 x = linspace(plotgeom(1),plotgeom(2),pPsi);

15 y = linspace(plotgeom(3),plotgeom(4),pPsi);

16 for i = 1:pPsi

17 points(1,(i-1)*pPsi+1:i*pPsi) = x;

18 points(2,(i-1)*pPsi+1:i*pPsi) = y(i);

19 end

20

21 % Extract sol psi^2

22 if t == 0

23 [u1 u2] = postinterp(fem,’u1’,’u2’,points);

24 else

25 [u1 u2] = postinterp(fem,’u1’,’u2’,points,’T’,time);

26 end

27

28 Psi = u1.^2+u2.^2;

29

30 clear solpoints;

31 % Construct plot matrix

32 for j = 1:size(time,2)

33 for i = 1:pPsi

34 solpoints(i,:) = Psi(j,(i-1)*pPsi+1:i*pPsi);

35 end

36 % Write matrix

37 dlmwrite(sprintf(’%sPsi_Ba_%1.4f_Kappa_%d_p%d_t%05d.txt’,

38 dir,Ba,kappa,pPsi,time(j)),transpose(solpoints),’\t’);

39 end
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41 % Create points matrix

42 points = zeros(2,pB^2);

43 x = linspace(plotgeom(1),plotgeom(2),pB);

44 y = linspace(plotgeom(3),plotgeom(4),pB);

45 for i = 1:pB

46 points(1,(i-1)*pB+1:i*pB) = x;

47 points(2,(i-1)*pB+1:i*pB) = y(i);

48 end

49

50 % Extract sol Bz

51 if t == 0

52 [ayx axy] = postinterp(fem,’u4x’,’u3y’,points);

53 else

54 [ayx axy] = postinterp(fem,’u4x’,’u3y’,points,’T’,time);

55 end

56 B = ayx - axy;

57

58 clear solpoints;

59 % Construct plot matrix

60 for j = 1:size(time,2)

61 for i = 1:pB

62 solpoints(i,:) = B(j,(i-1)*pB+1:i*pB);

63 end

64 % Write matrix

65 dlmwrite(sprintf(’%sB_Ba_%1.4f_Kappa_%d_p%d_t%05d.txt’,

66 dir,Ba,kappa,pB,time(j)),transpose(solpoints),’\t’);

67 end

68

69 % dump current

70 points = zeros(2,pJ^2);

71 x = linspace(plotgeom(1),plotgeom(2),pJ);

72 y = linspace(plotgeom(3),plotgeom(4),pJ);

73 for i = 1:pJ

74 points(1,(i-1)*pJ+1:i*pJ) = x;

75 points(2,(i-1)*pJ+1:i*pJ) = y(i);

76 end

77

78 % Extract sol Bz

79 if t == 0

80 [u1 u2 ax ay u1x u1y u2x u2y] = ...

81 postinterp(fem,’u1’,’u2’,’u3’,’u4’,’u1x’,’u1y’,’u2x’,’u2y’,points);

82 else

83 [u1 u2 ax ay u1x u1y u2x u2y] = ...

84 postinterp(fem,’u1’,’u2’,’u3’,’u4’,’u1x’,’u1y’,’u2x’,’u2y’,

85 points,’T’,time);

86 end

87 % Current with r -> Xi * r

88 if strcmp(mode,’xi’) == 1

89 Jx = 1./(kappa.^2).*(u1.*u2x-u2.*u1x-(u1.^2+u2.^2).*ax);

90 Jy = 1./(kappa.^2).*(u1.*u2y-u2.*u1y-(u1.^2+u2.^2).*ay);

91 elseif strcmp(mode,’lambda’) == 1

92 % Current with r -> Lambda * r

93 Jx = (1./kappa).*(u1.*u2x-u2.*u1x)-(u1.^2+u2.^2).*ax;

94 Jy = (1./kappa).*(u1.*u2y-u2.*u1y)-(u1.^2+u2.^2).*ay;

95 else

96 error(’Unknown mode!’)

97 end

98 % Construct plot matrix

99 for j = 1:size(time,2)

100 % Write matrix

101 points(3,:) = Jx(j,:);

102 points(4,:) = Jy(j,:);
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103 dlmwrite(sprintf(’%sJ_Ba_%1.4f_Kappa_%d_p%d_t%05d.txt’,

104 dir,Ba,kappa,pJ,time(j)),transpose(points),’\t’);

105 end

106

107 clear points

108 % dump for lines

109 if pLine >= 0

110

111 points = zeros(2,pLine*2-1);

112 points(1,:) = linspace(-5,5,pLine*2-1);

113 points(2,:) = 0;

114 [u1 u2 axy ayx] = postinterp(fem,’u1’,’u2’,’u3y’,’u4x’,points);

115 Psi = u1.^2+u2.^2;

116 B = ayx-axy;

117 points(2,:) = Psi;

118 dlmwrite(sprintf(’%sPsi_Ba_%1.2f_Kappa_%d_line.txt’,

119 dir,Ba,kappa),transpose(points),’\t’);

120 points(2,:) = B;

121 dlmwrite(sprintf(’%sB_Ba_%1.2f_Kappa_%d_line.txt’,

122 dir,Ba,kappa),transpose(points),’\t’);

123 end



Appendix D

CD content

The attached CD contains three directories

• matlab contains the five matlab scripts written in appendix C.

• gnuplots contains a few Gnuplot scripts used to create the figures. It
also contains a few bash scripts, which have made the working process a
lot easier.

• movies has various movies of vortex dynamics.

All the movies recorded should be playable in Windows Media Player without
any additional components required. Mplayer, which is available for a vast
amount of *nix system, should also be able to play the movies. However, a free
version of a movie player, which is found on the website divx.com, can be found
in the root of the CD.

There are movies of three geometries which follow the principle

<geometry>_Ba<applied magnetic field value>_k<kappa>.avi

Note that all movies changes speed at certain points, so if the vortices sud-
denly moves a lot faster, then keep an eye on the time above the image.
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