
Textual Similarity

Johan van Beusekom
Peter Gammelgaard Poulsen

Kongens Lyngby 2012
IMM-B.Sc-2012-19

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk IMM-B.Sc-2012-19

Summary (English)

The goal of the thesis is to try out different algorithms intended for measuring
semantic similarity between documents. In order to do this, a tool Similarity
Tool has been developed in Java. The tool has four implemented algorithms
that all can be run on a set of documents to compute the similarity scores
between pairs of documents. To test out how accurately an algorithm solves
the problem, similarity scores have been assigned to the pairs of documents in
a set by both humans and algorithms and the correlation coefficients between
the results have been calculated. The structure of the tool is discussed and the
algorithms are then analyzed in terms of time and space complexity as well as
accuracy. It is concluded that each algorithm has its own advantages and that
it is possible to achieve satisfying results with all algorithms by using certain
preprocessing methods.

ii

Summary (Danish)

Målet for denne afhandling er at afprøve forskellige algorithmer beregnet til at
måle den semantiske lighed mellem dokumenter. For at kunne gøre dette, er der
blevet udviklet et værktøj, Similarity Tool, i Java. I værktøjet er der implemen-
teret fire algoritmer, der alle kan blive kørt på et sæt af dokumenter og udregne
de indbyrdes lighedsværdier mellem disse. For at undersøge hvor nøjagtigt en
algoritme løser problemet, er lighedsværdierne blevet fastsat af både mennesker
såvel som algoritmer, og correlationskoefficienten mellem disse værdier er ble-
vet udregnet. Opbygningen af værktøjet bliver diskuteret og algoritmerne bliver
analyseret med hensyn til tidskompleksitet og pladsforbrug såvel som nøjagtig-
hed. Det bliver konkluderet at hver algoritme har sine egne fordele, og at det
er muligt at opnå tilfredsstillende resultater med alle algoritmer, ved at bruge
visse metoder.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfillment of the require-
ments for acquiring an B.Sc. in Engineering.

The thesis deals with the different aspects for finding similarities among textual
content. Among a lot of other topics it deals with linguistics, data structures,
parallel programming and statistics.

The thesis consists of an introduction to the subject of textual similarities. The
next chapter contains an analysis of the problems for finding textual similarities
follow by a chapter about the theoretical knowledge used in the solutions. Next
the chosen designs are discussed and argued before a presentation of the imple-
mented tool. The next chapter covers the results that has been obtained using
the tool. Finally a conclusion to summarize the important findings through the
thesis.

Johan van Beusekom
Peter Gammelgaard Poulsen

vi

Acknowledgements

We would like to thank our supervisor Robin Sharp for our weekly conversations
and for all the advices he has provided during the project.

We would also like to thank all the people who answered our questionnaire.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Goal . 2

1.1.1 Purpose . 2
1.1.2 Focus . 2
1.1.3 Constraints . 2

1.2 Thesis outline . 3
1.2.1 Common terms . 3

2 Analysis 5
2.1 Chapter outline . 5
2.2 Overview . 5
2.3 Requirements analysis . 7

2.3.1 Measure . 8
2.3.2 Functional requirements 8
2.3.3 Nonfunctional requirements 9
2.3.4 Use cases . 9

3 Theory 11
3.1 Chapter outline . 11
3.2 On linguistics . 11
3.3 Part-of-speech tagging . 12

x CONTENTS

3.4 Word-sense disambiguation . 13
3.5 Ontology . 14
3.6 Textual Similarity Algorithms . 15

3.6.1 Levenshtein distance . 15
3.6.2 Longest Common Subsequence 16
3.6.3 Jaro-Winkler . 17
3.6.4 Vector Space Model . 18
3.6.5 Term Frequency-Inverse Document Frequency 19
3.6.6 Textual Fuzzy Similarity 19
3.6.7 Ontology Based Query . 22

3.7 Expression versus content . 27

4 Design 29
4.1 Chapter outline . 29
4.2 Overall design . 29

4.2.1 Platform . 30
4.3 Selected similarity algorithms . 30
4.4 Processing of documents . 32

4.4.1 Flexibility . 32
4.4.2 WordNet . 34
4.4.3 POS-tagger . 34
4.4.4 Sense relation . 36
4.4.5 Stemming . 37

4.5 Performance . 37

5 Implementation 41
5.1 Chapter outline . 41
5.2 Similarity Tool . 41

5.2.1 Adjustments . 43
5.3 Structure . 43
5.4 Tests . 45
5.5 Interfaces . 46

5.5.1 JPAbstractAlgorithm . 46
5.5.2 JPAbstractStemmer . 47
5.5.3 JPAbstractPOSTagger . 47
5.5.4 JPAbstractSenseRelate . 49
5.5.5 JPAbstractTrimmer . 51
5.5.6 JPAbstractInclude . 51

5.6 Requirements . 52

CONTENTS xi

6 Results 55
6.1 Chapter outline . 55
6.2 Human judgements . 55

6.2.1 Experiment . 56
6.3 Correlations . 57

6.3.1 Levenshtein distance . 57
6.3.2 TF*IDF . 59
6.3.3 Textual Fuzzy Similarity 60
6.3.4 Ontology Based Query . 62

6.4 Asymptotic running times . 64

7 Conclusion 67
7.1 Chapter Outline . 67
7.2 Discussion of algorithms . 67

7.2.1 Levenshtein Distance . 68
7.2.2 TF*IDF . 68
7.2.3 Textual Fuzzy Similarity 68
7.2.4 Ontology Based Query . 69
7.2.5 Roundup . 69

7.3 Achieved goals . 70
7.4 Further development . 71

A Common Terms 73

B Use case diagrams 75

C Penn Treebank tagset 77

D Stanford POS-Tagger Readme 79

E Installation guide 81

F Structure diagrams 87
F.1 Class diagrams . 88
F.2 Sequence diagrams . 92

G Source code 95

H Documentation 97

I SenseRelate 99

J Questionnaire 103

Bibliography 111

xii CONTENTS

Bibliography 111

Chapter 1

Introduction

The measurement of textual similarity between documents is both an interesting
and very much needed task. Textual similarity measures are heavily used in text
retrieval systems such as search engines or tools used for detecting plagiarism
or copyright infringement of texts where a document or list of words is given as
the query and one or more documents similar to the query are returned. The
problem of how to measure the textual similarity has been around for a long
time and with the ever-growing Internet it is of great interest to improve the
search engine queries in both speed and accuracy, therefore many different ap-
proaches on how to solve it have been proposed throughout the years.
Some tools for measuring textual similarity are solely based on the shared
amount of terms in the two texts and while this may be a fast way to go about
the problem, the expressions of the texts are lost, as the input documents are
merely viewed as lists of words. To state whether two documents are seman-
tically similar is a problem that is easily solved by a human but it is a very
complex task for a computer. To a human it may be obvious that two docu-
ments might concern the same topic while they do not have very many terms
in common, but for a computer to overcome such vocabulary mismatches, tech-
niques such as stemming or query expansions can be included, which we will go
into further detail with during the report.

2 Introduction

1.1 Goal

The goal for this project is to create a tool that can be used for measuring
textual similarities between an input document and a list of other documents.
The tool should have several algorithms implemented and allow for the user to
use certain flags such as stop word removal, stemming or part of speech tagging
if he/she desires to test how these features affects a similarity measure.

1.1.1 Purpose

The purpose of this project is to look at different strategies used to compare the
similarities in text documents. This will be done by analyzing known algorithms
for comparing documents and extending them with strategies that are suited for
human-written documents. All this will be implemented in an application that
provides a GUI to easily test performance and accuracy of several strategies for
doing textual similarities on documents. Each strategy will be based on one or
more algorithms for solving such a problem.

1.1.2 Focus

The focus of this project will be on creating a tool that can act as an environ-
ment for testing several different approaches to the problem concerning textual
similarities. It is important that new algorithms and strategies easily can be
added to the application and already implemented approached can be tweaked
to provide useful results.

1.1.3 Constraints

The meaning of the application is to provide a tool for testing several different
strategies for textual similarities in documents. It means that the tool would
not be suited for actually finding documents that are very similar but rather
showing which strategy is most suited for solving the problem.

1.2 Thesis outline 3

1.2 Thesis outline

Chapter 2 of the thesis will be an analysis. The analysis brings forth thoughts
made on how to make the textual similarity query, i.e. which aspects of a text
are interesting to look at, while not presenting concrete solutions to the prob-
lem.
Chapter 3 covers the theory and known solutions to this problem. In this chap-
ter a discussion on the pros and cons of the different algorithms will be made,
which will include analysis of running time, space complexity etc.
In chapter 4 the design will be discussed. We will look at the problem at hand
and the thoughts made before starting the actual implementation with regards
to use-cases, functionality requirement, structure of the code, the decisions that
has been made during the project and other aspects that the final product should
fulfill.
Chapter 5 covers the actual implementation where the structure of the program
is laid out including tests. The problems encountered are explained and dis-
cussed.
In chapter 6 the results of different algorithms are presented and discussed.
Finally in chapter 7 is the conclusion where we try to give an answer to how
the textual similarity problem is solved in the best way and if it is possible at
all for a computer to answer a textual similarity query satisfactorily.

1.2.1 Common terms

Throughout the thesis several technical terms are used. A short explanation of
words written in italic can be found in appendix A.

4 Introduction

Chapter 2

Analysis

2.1 Chapter outline

This chapter will go over the thoughts that we as well as others have made
towards the task of solving a textual similarity problem. We will also try to
propose solutions to any possible problems.

2.2 Overview

To determine whether two documents concern the same topic is quite a different
task than that of seeing how many terms they share. The latter task works by
taking a list of terms as a query and returning a list of documents that match
the query i.e. contain the same terms. Assuming a large enough corpus and a
very specific query, the chances of getting a satisfactory answer to the query is
quite high, however the method is very naive as it does not take the expressions
of the documents into account.
Natural language processing (NLP) is a discipline in computer science that deals
with extracting useful information from a natural language input. NLP con-
cerns a long list of tasks that might be relevant for the preprocessing of a query.

6 Analysis

One of the most obvious preprocessing operations is the stop word removal, in
which all stop words are removed from the document, theoretically leaving it
with words of more significance to the topic. In rare cases a query might be
based around a multi-word term where one or more of the terms are stop words,
an example of this could be "Take That"1. Both words in "Take That" are
(often) considered stop words and would therefore be removed prior to handling
the query, in which case stop word removal could decrease the correctness of the
output. However a stop word list is human made and can therefore be shaped
to suit the user, so it is easy to bypass the former mentioned problem.

Another problem with the words in a query is that they often appear in various
conjugations which are all part of the same lexeme and therefore have the same
lemma and possible also the same stem. This will of course be problematic if
the similarity measure only looks for an exact match between terms in the query
and corpus. Therefore it might be of interest as part of the preprocessing of a
query to reduce all words to their stem or lemma. Stemming and lemmatization
each have their own advantages
Consider the following examples:

• The word "went" has "go" as its lemma. A stemmer will not give this
answer, as it requires a dictionary look-up.

• The word "dance" is the base form of "danced" which both stemming and
lemmatization will conclude.

• The word "meeting" can either have the base form of a noun or a verb,
which the stemmer will not know, while lemmatization can give the right
answer based on the context of the word.

Stemming of words, which is a task of NLP, can be done very quickly as knowl-
edge about the word’s context is not needed, this however also means that the
result might not be as usable as with lemmatization, for example with the word
"ran" a stemmer would simply return "ran" as the stem while lemmatization
would return "run".

The stemming or lemmatization of words in a document might help the ac-
curacy of the algorithms to some extent, but there is still an obvious problem
with only looking at terms explicitly written in the documents. For example if
two documents concern two different types of dogs, it is obvious to humans that
they share a common topic "dogs", "pets" or "animals". A query expansion
can be used in order to take terms that are not explicitly in the query, but
somehow related to it, into account. The theory chapter will cover more about

1The name of an english band.

2.3 Requirements analysis 7

the concept of query expansion and discuss which linguistic relations that could
be interesting to include and how this should be done.

Another interesting aspect is the word classes. Human based judgements may
be based heavily on one or more specific word classes, for example nouns or
verbs. If this is the case, it might be interesting to look at only these words
when processing a query.

The representation of the content may also play a part in how people com-
pare documents[UDK04b]. While some documents may not concern the same
topic at all, a person might still see them as similar if they are written in a
similar style. This question of content similarity versus expression similarity
might be an interesting viewpoint to bring into the picture, as expression simi-
larity is often neglected in tasks that seek to solve the textual similarity problem
[UDK04b].
Consider the following sentences:

• Early this morning John and his wife were robbed on their way to the
baker. The robber was caught later during the day.

• Today the police caught Mike, who is believed to have committed a rob-
bery on an elderly couple just this morning.

• Early this morning a young man ran across a red light on his way to work.
The man did it again later during the day.

Sentence 1 and 2 are similar in content, but not very similar in expression while
sentence 1 and 3 are similar in expression, but not in content. A person might
rate the two first sentences as being very similar because they are talking about
the same incident, but may also rate the first and last sentence as somewhat
similar because they are structured in the same way.
In [UDK04b] a questionnaire is made in order to test how people evaluate con-
tent and expression similarity, and they come to the conclusion that both the
expression and content of a document are of importance to how a person makes
a similarity judgement. In the theory chapter it will be discussed how the ex-
pression of a document can be captured.

2.3 Requirements analysis

A tool for measuring textual similarities has been developed as part of this thesis.
The requirement analysis that was made to this tool before the implementation

8 Analysis

started, is listed below.

2.3.1 Measure

A way to compare the results of different approaches that have been imple-
mented should be defined. This can be done by selecting a set of text documents
and ask a group of people to read and compare each pair of documents and give
them ratings based on their similarity and computing the correlation between
the human scores and algorithm scores.

2.3.2 Functional requirements

The tool should fulfill the following functional requirements.

• Basic operations such as loading documents, stemming, removing stop
words.

• Integration with lexical database.

• Integration with a POS tagger.

• Contain at least 3 algorithms that can be used to compare documents.

• Provide results for each algorithm that can be used to compare their per-
formance and accuracy.

• For each strategy it should be possible to tweak several parameters such
as whether including synonyms, stemming words or removal of stop word
removal should be turned on.

The first algorithm to be implemented should be based on Levenshtein distance.
The implementation of the algorithm is quite simple and it will provide a way
of setting up the environment and get things up and running.

Later more algorithms will be chosen among following candidates:

• Longest Common Subsequence

• Vector Space Model

• Term Frequency-Inverse Document Frequency (TF*IDF)

2.3 Requirements analysis 9

• Jaro-Winkler

• Ontology Based Query

• Textual Fuzzy Logic

2.3.3 Nonfunctional requirements

The tool should fulfill the following nonfunctional requirements.

• An easy to use GUI (usability).

• Run on several platforms (Linux, Windows, Mac OS X).

• Provide acceptable performance (algorithms and data structures).

• Contain low bug rate (reliability).

• Parallel processing of documents (concurrent programming).

2.3.4 Use cases

A typical use case for the application is listed below. The corresponding use
case diagram can be found on appendix F.

2.3.4.1 Compute similarity score.

Main Success Scenario:

1. The user starts tool.

2. The user loads the main document.

3. The system loads main document into data structures.

4. The user loads additional documents for comparison.

5. The user chooses an algorithm.

6. The user selects custom option such as stemming, pos-tagging etc.

10 Analysis

7. The user presses compute button.

8. The system loads documents into data structures.

9. The system performs necessary preprocessing operations based on user
chosen options.

10. The system computes similarity scores.

11. The system presents scores visually to the user.

12. The user can perform any of step [2,7] again.

Extensions:

8a: Either no main document or additional documents chosen. Computation
halted.

8b: Invalid combination of custom options. Computation halted.

8c: The user has chosen an option that requires external library, which is not
installed. Computation halted.

9a: System caches document information if certain computationally hard op-
tions have been chosen.

Chapter 3

Theory

3.1 Chapter outline

This chapter starts by explaining some processes of NLP that are relevant to the
textual similarity problem. A classification of the different known algorithms
and approaches to solve the textual similarity problem will also be done, as well
as the theoretical background for the algorithms.

3.2 On linguistics

Linguistics is the study of human language and contains the three categories
language form, language meaning and language in context. More specifically
language form is the study of a languages structure or grammar and focuses on
the rules that are used when constructing phrases in a natural language.
Language meaning is concerned with the logical structuring of natural languages
to assign meaning to something and resolve ambiguity. Among the subfields of
this area are both semantics and pragmatics.
Language in context is a study about the evolution of natural languages as
well as languages in relation to each other. Many languages originate from the

12 Theory

same language family, such as danish, swedish and norwegian that all come from
the family of Germanic languages, who again is a subfamily of Indo-European
languages.

Often more abstract levels of analysis can benefit from reliable low-level infor-
mation [Mit03], which is why the NLP is an important part of preprocessing a
query in the textual similarity problem. Natural language processing uses the
knowledge of linguistics to perform several tasks that allow for the extraction
of useful information from natural language input. The next sections will cover
some of the relevant tasks of NLP in relation to the textual similarity query.

3.3 Part-of-speech tagging

In most natural languages some words can appear in different word classes. For
example in english the word "fly" can either be noun, referring to the insect, or
a verb, referring to flying. To resolve which word class the word belongs to in
the given context part-of-speech tagging (POS-tagging) can be used, which is
the process of word-class disambiguation that assigns contextually appropriate
grammatical descriptors to words in a text [Mit03]. There exists two types of
algorithms for POS-tagging; rule-based and stochastic.
The rule-based POS-taggers are, as the name implies, based on rules in the nat-
ural language such as the grammar and syntax. A simple rule could for example
be: "article then noun can occur, but article verb cannot".
The stochastic POS-taggers are based on statistics made on a corpus. They
are trained on the corpus, and use statistical methods to determine the optimal
sequence of part-of-speech tags. The stochastic POS-taggers are the most com-
mon, as they are easily made and have high accuracy, however a disadvantage
of the stochastic POS taggers is the huge amount of stored information that
is required. In figure 3.1 is an example of how a POS-tagger can work its way
through a sentence, by first recursively identifying noun and verb phrases, before
determining word classes of the atomic elements, i.e. the words. In appendix C
is a list of the different word classes used in this thesis.

3.4 Word-sense disambiguation 13

S

NP VP

Det N

The teacher

V NP

praised Det N

the student

Figure 3.1: POS-tag tree for the sentence "The teacher praised the student".

3.4 Word-sense disambiguation

While part-of-speech tagging might help a computer understand the semantics of
a document a lot better it cannot solve the word sense disambiguation problem.
Some words have multiple meanings1 and the detection of which sense of a word
is used in a text is called word-sense disambiguation. Identifying the sense of
a word wrongly might drastically change ones perception of a what a text is
about, but this is very rarely an issue for humans. For a computer however,
solving the problem is far from trivial.
An example of an ambiguous word is the word "club":

• A blunt weapon.

• A group of persons organized for a social or other purpose.

Now consider the sentences:

• The caveman hit his wife with the club.

• The young girl joined a study club.

1polysemy

14 Theory

To a human it is obvious that in the first sentence the sense of "club" is a
weapon, and in the second sentence it is referred to as a group of people. There
exists many algorithms that try to solve the word sense ambiguity problem. The
algorithms are, like those concerning POS-tagging, based around different ap-
proaches where some are trained on a corpus of manually sense disambiguated
examples. Another approach use dictionary definitions of words close to each
other in a text to see which sense definitions have the greatest overlap, meaning
that these senses are the most likely for the words in the context.
Some approaches are completely unsupervised meaning they work without the
use of external information and work by clustering occurrences of words, and
determining the sense. Of the mentioned methods, the most common and ac-
curate approach has shown to be the one trained on a corpus.
This problem is far more complex than the POS-tagging problem, which could
affect its usability in real time applications.

3.5 Ontology

The term ontology originates from philosophy where it is the study of the nature
of being. In computer science an ontology is a set of concepts within a domain
and the relationship between these concepts. In a textual similarity project
context one might choose ontologies to be knowledge structures that specify
terms and their properties as well as relations among these terms as it thought
in [OP03]. Ontologies consist of many different components that all contain
information about the nature of the ontology. In this thesis, the most interesting
concept of an ontology is linguistic relations(shown below) to other terms.

• Hypernymy - Describes the relation between a term and a generalization
of said term, a hypernym. For example the word "vehicle" is a hypernym
of the term "car".

• Hyponomy - Is the opposite of hypernymy and describes the relation be-
tween a term and a specification of said term. The specification is called
a hyponym, and an example of this could be the word "shirt" which is a
hyponym of the term "clothes". The relation is also called an is-a relation.

• Synonymy - The relationship between words that are synonymous i.e. have
the same meaning, such as the words "sick" and "ill".

• Antonomy - Like synonyms, but instead of having the same meaning,
antonyms are words that have opposite meanings. Example; "hot" and
"cold".

3.6 Textual Similarity Algorithms 15

• Meronymy - A meronym describes a has-a relation. For example a "leg"
is a meronym of a "body", because a leg is a part of a body, i.e. body
has-a leg.

• Holonymy - The opposite of meronymy. It describes what a term is part
of. For example "car" is a holonym of "wheel", i.e. wheel is a part of a
car.

Extracting knowledge about these relations when processing a query, could help
expand the query to not just including the terms in the query, but also some or
all of the semantically related terms listed above, and use this information to
perform the similarity measure more accurately. Later in this chapter it will be
discussed how inclusion of the previously mentioned terms could be included in
an actual similarity algorithm.

3.6 Textual Similarity Algorithms

As it has been mentioned earlier, a lot of algorithms exist that try to solve the
textual similarity problem. This section covers some of the known algorithms.

3.6.1 Levenshtein distance

The Levenshtein distance, also known as the edit distance, is a number defining
the minimum numbers of edits2 that must be performed on one string in order
for it to be identical to another string. The calculation of the Levenshtein dis-
tance can be visualized represented as a matrix where the first string makes up
the columns and the second string makes up the rows. For each entry in the
matrix the characters at the row and column are evaluated, and if they are not
equal, a deletion, insertion og substitution must be performed with the cost of
1 edit.
An example of the Levenshtein distance between the two strings "dance" and
"dive" is shown here.:

2deletions, insertions and substitutions

16 Theory

d a n c e
0 1 2 3 4 5

d 1 0 1 2 3 4
i 2 1 1 2 3 4
v 3 2 2 2 3 4
e 3 3 3 3 3 3

The edit distance is shown as the green number in the last index of the matrix.
The edit distance between "dance" and "dive" is 3.
For two strings of length n and m the running time of the algorithm is O(n ·m).
The space complexity of the algorithm can be reduced to O(n), because the
entire matrix doesn’t have to be kept in memory at once, but only 2 rows of
length n.

If this algorithm were to be used on documents rather than short strings it
is obvious that looking at the amount of symbols that needs to be changed does
not give much information about the similarity of the two documents, so instead
of this, the algorithm calculates how many words in one of the documents for it
to be identical to the other. The edit distance should be evaluated with respect
to the length of the documents, as longer documents cause higher edit distances.
The lower the score, the higher similarity between the documents.

The advantages of this algorithm is it’s simplicity and ability to give docu-
ments credit for beign similar in structure. A downside of the algorithm is the
fact that it neglects large parts of the documents and it is very susceptible to
noise.

3.6.2 Longest Common Subsequence

An algorithm concerned with finding the longest common subsequence between
two sequences. In this context, the atomic elements in the sequences are the
words of the two documents.
Given the two sentences:

• "The man jumped over the fence."

• "A man bought the fence."

A common subsequence of the two sentences is "fence" and the longest common
subsequence is "man the fence".

3.6 Textual Similarity Algorithms 17

The running time of the algorithm, when two sequences of length n and m
respectively, is O(n ·m) when using a dynamic programming approach.

This algorithm has the same advantages and disadvantages as the Levenshtein
distance.

3.6.3 Jaro-Winkler

With this algorithm a number, the Jaro-Winkler distance, is computed as a
measure of the similarity between two strings. The numbers is in the interval
from 0.0 to 1.0, and the higher the score the is the higher the similarity is. It is
based on the Jaro distance dj , which for two strings s1 and s2 is defined as:

dj =
1

3
(
m

|s1|
+

m

|s2|
+
m− t
m

) (3.1)

Where m is the number of matching characters and t is the number of transpo-
sitions. The number of transpositions is the number of mismatched characters3

divided by two. Only characters within distance bmax(|s1|,|s2|)
2 c − 1 are consid-

ered when determining the number of maximum matching characters.
The Jaro-Winkler distance uses this number in the formula:

dw = dj + (l · p(1− dj)) (3.2)

Where p is a scale (usually 0.1) that ensures that more favorable ratings are
given to strings that match from the beginning of a prefix of length l, i.e. l is
the length of the longest common prefix between the two strings s1 and s2.
An example of the Jaro-Winkler distance on the two strings "home" and "hope"
is shown here:

m = 3
|s1| = 4
|s2| = 4

t = 0 as there are no mismatched characters.

dj =
1

3
(
3

4
+

3

4
+

4− 0

4
) = 0.83 (3.3)

p is set to 0.1 and we find that l = 2. This gives us the Jaro-Winkler distance:

dw = 0.83 + (2 · 0.1(1− 0.83)) = 0.86 (3.4)
3matching but in the wrong sequence

18 Theory

Unlike the Levenshtein distance and the LCS algorithms, this algorithm does not
completely neglect shared elements that are not in the same sequence, however
sequence mismatch penalizes the result, which might be a good thing, because
while the strings have a match, it is not represented in the same way. Another
interesting point is that it only looks for matches within a certain distance of
the item that is to be matched, which is both positive and negative. Positive
because it reduces the running time and negative because on long strings, the
algorithm will not find shared words that far from each other. When using this
algorithm on documents rather than short strings, the atomic actions are words
instead of characters.
The space complexity of this algorithm is O(n + m) and the running time is
O(n · bmax(|s1|,|s2|)

2 c).

3.6.4 Vector Space Model

The Vector Space Model (VSM) is a way of representing documents as points
in space (vectors in a vectorspace). The idea is that points that are close to
each other are semantically similar, while points far from each other are seman-
tically distant [TP10]. The VSM is particularly good for indexing and relevancy
ranking of documents in regard to a query. In the VSM, the vectors have a di-
mension equal to number of distinct words in the corpus, where each dimension
corresponds to a separate word. In each dimension of each vector, the number
of occurrences for the corresponding word is stored. The similarity between two
documents is then calculated as the angle between the two vectors. For the
query q and a document d, the similarity is calculated as follows:

Θ = cos−1(
d · q

||d|| · ||q||) (3.5)

The smaller the angle is between the two vectors, the more semantically similar
the documents they represent are.
The fact that the VSM does not take the sequence of the words within the
documents into account can both an advantage because it makes it unable to
capture expressions used in the documents, but on the other hand, it credits
documents for containing the same words, even if they are ordered differently,
unlike the Levenshtein distance. The comparison of vectors can be done in linear
time of the number of dimensions of the vector. The construction of the vectors
requires that all distinct terms in the corpus are determined. If the size of the
corpus is N , then this can be done in O(N). Insertion into the dimensions of the
vector i can be done in O(n) time, where n is the amount of words in document
i. The space complexity of the vectors is O(U) where U is the number of unique
words in the corpus.

3.6 Textual Similarity Algorithms 19

3.6.5 Term Frequency-Inverse Document Frequency

Or TF*IDF for short, is a variation of the VSM. What sets it apart from the
VSM, is that it takes into account how important a word is for a document. The
idea is, that words that occur in many documents in a corpus are less important
for the meaning of the documents and vice versa. The inverse document fre-
quency of a term t, which is the measure of a words commonality in the corpus,
is calculated as:

idf(t, d) = log(
|D|

1 + |d ∈ D : t ∈ d|) (3.6)

Where D is the number of documents in the corpus and 1 = |d ∈ D : t ∈ d| is
the number of documents in the corpus that contain t. The TF*IDF is then
calculated as:

tf(t, d) · idf(t,D) (3.7)

Where tf(t, d) is the term frequency t in document d.
Normally a query in the TF*IDF is a set of words, and in this case, the input
query would be a list containing the words of the document we want to compare
to the other documents.
The interesting thing about TF*IDF is the fact that it has the ability to find
words that are less interesting to the meaning of a text and down prioritize these
when computing the textual similarity, hence why the algorithm is also usable
for finding stop words on its own. This algorithm needs to keep information
about the unique words in the corpus in memory, giving it a space complexity
O(U). The time and space complexity are the same as in the VSM, but an
additional vector has to be kept in memory, holding information about how
many documents the unique words of the corpus appear in. Creation of this
vector takes O(N) time, and it uses O(U) space.

3.6.6 Textual Fuzzy Similarity

Moving away from the data vector models, lets have a look at Textual Fuzzy
Similarity (TFS). Fuzzy similarity tries to solve an issue that all of the previ-
ous covered methods have had, namely that there is need for an exact match
between words in query and document, in order for the words to actually be
considered matching. In fuzzy logic, as it is presented in [SG03], the idea is that
word pairs can be similar, while not being identical. Computing the similarity
between words with this method can be done without the use of any knowledge
base or dictionary. The fuzzy aspect of the algorithm is that a word pair simi-
larities can be any number in the interval [0,1].

20 Theory

A fuzzy set is a set of pairs, defined as

A = < x, µA(x) : x ∈ X > (3.8)

Where µA(x) : X → [0, 1] is the similarity function for x in the set.[SG03]
A fuzzy relation is defined as

R = < (x, y), µR(x, y) >: x ∈ X, y ∈ Y (3.9)

with µR : X × Y → [0, 1] as the similarity function between x and y. The simi-
larity function should have the following properties:

Reflexivity: µR(x, x) = 1

Symmetry: µR(x, y) = µR(y, x)

For two documents, a fuzzy relation would have to be set up like this:

RW = (< w1, w2 >,µRW (w1, w2)) : w1, w2 ∈W (3.10)

where W is the set containing all words from the two documents. Now lets take
a look at a possible membership function µRW (w1, w2) : W ×W → [0, 1] for
two words as stated in[SG03]:

µRW (w1, w2) =
2

N2 +N

N(w1)∑
i=1

N(w1−i+1)∑
j=1

h(i, j) (3.11)

Where:

• N(w1) is the number of letters in w1

• N(w2) is the number of letters in w2

• N is max(N(w1), N(w2))

• h(i, j) = 1 if a subsequence of i letters from index j in w1 is located at
least once in w2. If it doesn’t, h(i, j) = 0.

Here is an example that should help understanding how the algorithm works:

3.6 Textual Similarity Algorithms 21

The two words w1 and w2 are "choose" and "chose" respectively.
We have that N = 6. The fuzzy relation between the words is:

µRW (w1, w2) =
2

36 + 6

6∑
i=1

5∑
j=1

h(i, j) =
2 · (5 + 4 + 2)

42
=

11

21
= 0.52 (3.12)

We get this because in w2 the following substrings of length shown below match:

1. (c,h,o,s,e)

2. (ch,ho,os,se)

3. (cho,ose)

As mentioned earlier, the higher the score is, the more semantically similar the
two words are.

This function for word similarity can be used in document comparisons, when
it is not possible to find an exact match of words between the two documents.
For document similarity, the documents are represented as sets of words rather
than sequences, and a possible similarity function is as follows [SG03]:

µRD(d1, d2) =
1

N

N(d1)∑
i=1

max
j∈{1,..,N(d2)}

µRW (wi, wj) (3.13)

Where:

• N(d1) is the number of words in d1

• N(d2) is the number of words in d2

• N is max(N(d1), N(d2))

If a word from d1 is not found in d2 the word with the highest similarity score
is chosen instead. The similarity scores for all unique word pairs in the involved
documents can be pre-computed in O(u ·v) time, where u and v are the numbers
of distinct words in the respective documents. Finding the unique word pairs
takes O(n+m) time where n and m are the number of words in the respective

22 Theory

documents. Only similarity scores above an arbitrary threshold are kept. As-
suming the similarity scores for all unique word pairs are stored, such that the
highest similarity score of a word can be accessed in constant time, we get that
the running time of the algorithm isO(u) withO(n+m+u·v) preprocessing time.

This method is interesting because it assumes that the presence of identical
sequences of letters could mean semantic similarity. However this is not always
the case, and there is a possibility that this assumption might reduce the quality
of the final result.
From assuming similarity between words that are not identical, lets move on to
a knowledge based algorithm, that can look beyond what is explicitly stated in
the documents.

3.6.7 Ontology Based Query

What sets this approach apart from previously covered approaches, is that it
acquires new knowledge about the documents using a knowledge base. Now the
visual appearance of words in the documents is not enough. It is vital for this
algorithm to work that it knows exactly which sense of a word is in question.
For this, POS-tagging and word sense disambiguation can be used. The reason
why it is important to have this knowledge about the words in a query, is that
it allows for query expansion. Figure 3.2 shows two documents A and B repre-
sented as sets of words. Document A has been expanded to include more words,
which is shown as the set A+. The intersection A ∩B contains the words that
are both in A and B. The intersection A+∩B contains words that are in B and
are not in A, but related to the words in A.
In section 3.5, some possible concepts that could be included in a query expan-
sion were listed.
The inclusion of these concepts could be modeled as a directed weighted graph
where the the distance between concepts mark their relationship. The further
the distance, the smaller similarity. The query expansion could range several
layers out, meaning that not only concepts directly related to the query are
included. Of course, with the inclusion of more layers, the size of the graph
expands rapidly while the concepts furthest from the core concept are probably
not of much use, as their similarity is very small.

Here only the specifications, i.e. the hyponyms, are included, but the addi-
tion of generalization i.e. the hypernyms, allows for calculating a similarity
score between concepts on the same level of abstraction, such a "sandal" and
"sneaker" in figure 3.3.

3.6 Textual Similarity Algorithms 23

A+

A BA+∩BA∩B

Figure 3.2: Expansion of the query A.

Clothes

Headgear Shoe

Crown Sandal Sneaker

Figure 3.3: Graph representing an is-a relationship. For example sandal is a
(type of) shoe.

A similarity function sim as stated in [BKA02], should have the following prop-
erties:

• sim : U × U → [0, 1] - The similarity score between all concepts in U
should be in the interval [0,1].

• sim(X,Y) = 1 if and only if X = Y .

• sim(X,Y) < sim(X,Z) if and only if dist(X,Y) < dist(X,Z).

24 Theory

For each type of edges, a value in the interval [0,1] should be assigned, telling
something about the similarity between two concepts connected via such an
edge. The higher the value, the greater similarity. The following example only
uses the concepts of generalization and specification, but it would be possible to
build the graph with inclusion of more concepts. The values for generalization
and specification edges are respectively represented as γ and δ. A notion to make
about the values of γ and δ is that a generalization is normally less relevant to
a concept than a specification, as a specification has the same attributes as the
original concept, while a generalization does not necessarily.
When modeled as a graph, G = (V,E), the similarity of concepts is defined as
the edge-product of the maximum cost path between the two concepts to be
compared [BKA02].

sim(X,Y) =

p(en)∏
p(ei=0)

v(ei) (3.14)

Where

• p is the maximum cost path4 between concept X and Y in G.

• p(ei) is edge number i on path p.

• v(ei) is the edge value of edge number i on p.

In figure 3.4 the graph from figure 3.3 has been expanded to include edges for
concept specification, and appropriate edge values [BKA02] have been added to
the edges.

Using equation 3.14, the semantic distance between concepts can be calculated.
For example, the similarity between "sandal" and "crown" is:

sim(”sandal”, ”crown”) = 0.4 · 0.4 · 0.9 · 0.9 = 0.13

While the similarity between "sandal" and "sneaker" is:

sim(”sandal”, ”sneaker”) = 0.4 · 0.9 = 0.36

From this, it can be concluded that sandal and sneaker are more semantically
related than sandal and crown. This algorithm uses a principal of fuzzy simi-
larity, and the similarity between concepts is not either false or true meaning
identical or not identical.

4multiplicative

3.6 Textual Similarity Algorithms 25

Clothes

Headgear Shoe

Crown Sandal Sneaker
0.4

0.9

0.9

0.4 0.9

0.4

0.4

0.9

0.9

0.4

Figure 3.4: Concept relation graph, with edge values defining the similarity
between concepts.

In contrast to the textual fuzzy similarity, this algorithm does not make any
assumption about word’s relatedness. It uses a knowledge base containing all of
these relations, while TFS bases its similarity of concepts on the visual similar-
ity between them. This gives the ontology based query an advantage over the
TFS.
To use this concept on documents, as a part of the preprocessing, the query ex-
pansion shoul be done. One solution could be have a graph for each unique word
that is explicitly in the query, where related concepts up to an arbitrary distance
class are stored along with their similarity to the core concept, an example of
this is shown below, for the concept "vegetable", with maximum distance class
of 2.

A maximum distance class of two can result in a massive expansion in the
amount of concepts related to vegetable, meaning that a certain threshold could
be required in order for concepts to be considered "related", to decrease the
space usage but also eliminate irrelevant relations.
When processing a query, first a match on the core concept is sought in the
document for comparison. If there is no match the graph is traversed, seek-
ing matches for the nodes in descending order, such that the best matches are
sought first. Using figure 3.5 as an example, if there is no match on "vegetable",
"potato" and "carrot" are tried and so on. Alternatively instead of a tree, the
concepts could be stored in a sorted list, which would make it easy to go through
them.

The final output of the algorithm using this concept should have the follow-

26 Theory

[Vegetable: 1]

[Potato: 0.9]

[Agata: 0.81] [Bintje: 0.81]

[Carrot: 0.9]

[Plant: 0.4]

[Flower: 0.36]

[Organism: 0.16]

[Eastern: 0.81][Western: 0.81]

Figure 3.5: Concept relation graph for the concept "vegetable". The graph
shows only a small subset of the concepts within edge-distance 2
of "vegetable".

ing properties:

• sim : U × U → [0, 1] - The similarity measure between document and
query should be in the interval [0,1]

• The higher the similarity score, the more similarity between documents.

• sim(d, q) = 1 iff w(d) = w(q) - Maximal similarity means that the two
documents contain the same words.

Traversal of the concept-tree or list, can be done in linear time of the amount
of concepts, assuming they are sorted as part of the preprocessing. This means
that for a query, the traversal of all words and their related concepts can be
done in O(n+) time where n+ is the total size of all unique concept trees in the
query. Assuming that the preprocessing also computes the occurrences of each
unique word in the text, only one lookup for each unique term is needed and can
then be multiplied by the amount of occurrences. Using a hash map with no
collisions 5 to store words of the document for comparison, lookup operations

5collisions resolved in preprocessing

3.7 Expression versus content 27

can be done in constant time, giving a total running time of:

O(u+)

Where u+ is the size of all unique concept trees in the query.
While the space complexity is the total size of the unique trees plus the total
amount of unique words in the document for comparison, v:

O(u+ + v)

3.7 Expression versus content

From the previous section it follows that a lot of different approaches exist on
how to measure textual similarity between documents. Some algorithms are
concerned with how similar documents are in structure while others are con-
cerned with how different they are, i.e. how much needs to be changed for them
to be identical. Other algorithms are not concerned with structure at all, and
instead look at the shared vocabulary between documents.
Then there are the algorithms that try to be a bit more intelligent and look
beyond what is explicitly stated in the documents and instead introduce a fuzzy
similarity between concepts that are not necessarily identical, either using for-
mulas that derive semantic relationships based on word structures or using a
knowledge base that holds information of the semantic relatedness between con-
cepts.
All of these methods have been tested out in the past, and most of them have
proved useful to some degree when determining textual similarity, yet they do
it in quite different ways. It could be interesting to look at how different algo-
rithmic approaches could be put together to create an algorithm that takes the
best of both worlds. In [UDK04b] a study has been made to see how people
rate expression and content in terms of their importance to the meaning of a
text. The paper claims that expression of text is often neglected, which means
that for example a characteristic writing style of a writer is not included in the
similarity evaluation. The conclusion made in [UDK04b] is that knowledge of
stylistic components in a document help understand how a human perceives the
text. Methods like the similarity vectors, fuzzy similarity or query expansion
all use the bag of words model, meaning that the expression of the text is lost.
Therefore it could be interesting to combine these methods with aspects of edit
distance to include document expression.

28 Theory

Chapter 4

Design

4.1 Chapter outline

The chapter starts with a discussion of the overall design and the algorithms we
chose to implement. Then a discussion on how to go from a file to a processed
document. All of the important design choices are discussed with a focus on
flexibility and performance.

4.2 Overall design

Before designing the overall structure several goals were established. The main
goal was to develop a tool that could calculate the similarity among documents
using different algorithms and strategies. The process of going from some textual
content from a data source e.g. text files on the hard drive to calculated results
requires several steps. The content must be loaded into the program, processed
using methods mentioned in chapter 2 and then finally a score must be computed
using an algorithm. This is illustrated in figure 4.1.

The user should be able to specify which documents the program should use

30 Design

Textual content Parsing Processing Computing Show result

Figure 4.1: The process of going from some textual content to results.

as well as the algorithm that should provide the result. Furthermore the user
should be able to adjust how the content should be processed. To make this
easy for the user, the tool should have a visual layer that the user can interact
with. In order to keep the program structured and different parts of it separated,
design patterns must be used when structuring the overall design. Model-View-
Controller has been selected as the overall way of separating the different parts
of the program.

4.2.1 Platform

As mentioned in the requirements analysis in section 2.3 the tool should be
able to run on all of the popular platforms. In order to fulfill this goal Java
was chosen as the programming language. It provides the flexibility needed and
with a huge amount of open source frameworks it was an obvious choice. The
primary toolkit for designing GUI applications in Java is Swing, so this was
chosen for the GUI layer.

4.3 Selected similarity algorithms

As mentioned in chapter 3, different algorithms can be used when comparing
the similarities among textual content. In order to investigate how different
methods perform, the tool should work with several different strategies. The
selected algorithms are listed below. A theoretical description for each of the
algorithms can be found in chapter 3

• Levenshtein distance

• Textual Fuzzy Similarity

• Term frequency–inverse document frequency

4.3 Selected similarity algorithms 31

• Ontology based query

Levenshtein distance has been selected because of the simplicity in implemen-
tation and understanding. The algorithm has a good performance because the
documents don’t have to be Part-of-speech tagged or use a lexical database to
look up related words. The disadvantages is that the algorithm works best with
documents of similar lengths. The order of the words is also important and it
does not take Word-sense disambiguation into account.

Textual fuzzy similarity allows a lot of adjustments. In the standard case the
running time is very good, but by integrating the tool with WordNet, a POS-
tagger and a sense relater, the algorithm can require a lot of computing time
because of the required processing of words in each document. The algorithm
is good for testing what impact the different user settings has on the result and
running time. The algorithm will be able to give an indicator of whether it is
worth spending time processing a document compared to the result obtained.
The order of the words in a document does not matter with this algorithm.

Term frequency–inverse document frequency is based on similarity vectors. In-
stead of comparing the similarity between two documents par wise it uses a
corpus of document to create vectors representing each document. When com-
paring the angle between these vectors it is able to determine the similarity. If a
document is compared to itself from a set of other documents it will, contrary to
the other algorithms, not necessary result in a perfect similarity because the re-
sult for each document depends on all the documents in the set. The algorithm
is fast, even when working with a lot of documents, but has the disadvantage
that is needs a corpus in order to work.

Ontology based query is based on the fact most words have synonyms, hy-
pernyms and hyponyms. An advantage with this algorithm is that is does not
require the exact same words in different document. Documents about the same
topic can be written using different words that are related to each other. This
algorithm takes this into account and will try to find a matching even though
the exact same words are not included in both documents. By letting the user
decide the weights when using neighbor words it makes the algorithm highly
adjustable. A disadvantage is the running time when including a lot of neighbor
words. Finding the synonyms, hypernyms and hyponyms can be a time consum-
ing job because the words in the documents needs to be POS-tagged and sense
related in order to provide most accuracy. Furthermore a lot of comparisons are
needed when calculating the score.

32 Design

4.4 Processing of documents

Before an algorithm is able to compute a score for some textual content it
must be loaded into a data structure and processed. Below is a discussion of
the choices for solving the problem of processing a document and afterwards a
discussion of the third-party tools selected to be a part of the final program.

4.4.1 Flexibility

A high flexibility is very important when testing possible solutions to a problem
that does not seem to have a fixed solution. It is important that the task of
processing a document is flexible in the sense that it is easy to extend it or
change it and in that way makes it better. This is accomplished by splitting
the transformation of going from some textual content to a processed document
into several steps. For each step the user can decide which method to use, and
it is possible for a developer to implement another solution for a specific step
and still take advantage of the other steps. By analyzing the process of going
from some textual content to a document object that an algorithm can use, the
steps listed below were suggested. The steps should be executed in the same
order as they are listed.

1. Loader - Loads data from a data source1 and turns it into a string.

2. Parser - Takes a string and turns it into a document object by parsing it
into sentences with words.

3. POS-tagger - Takes a document object and determins Part-Of-Speech for
each word.

4. Sense relater - Takes a document object and find senses for each of the
words.

5. Stemmer - Takes a document object and stems all the words.

6. Trimmer - Takes a document object and removes words from it.

7. Includer - Takes a document object and adds words to it.

The process of document going though all the steps is illustrated on figure 4.2.
1The data source is usually a file on the hard drive but could actually be a URL, data from

another application or whatever source the user prefers.

4.4 Processing of documents 33

Loader

article.txt

Parser

POS-tagger

Sense relater

Stemmer

Trimmer

Includer

Hard-drive

"This is a short article"

text: "This is a short article"
Document

text: "This is(Verb) a
short(Adjective)
article(Noun)"

Document

text: "This is(Verb)(1) a
short(Adjective)(2)
article(Noun)(1)"

Document

text: "Thi is(Verb)(1) a
short(Adjective)(2)
articl(Noun)(1)"

Document

text: "short(Adjective)(2)
articl(Noun)(1)"

Document

text: "short,abbreviated,
brief(Adjective)(2)
articl,nonfiction, nonfictional
prose(Noun)(1)"

Document

Figure 4.2: Illustrates the process of going through all the steps when loading
a document.

For each of the steps several different methods could be implemented. For
instance stemming can be done using different strategies. By implementing
several of these strategies, the user is able to try each of them out and see which
effect it has on the end result. Some steps might require a time-consuming
algorithm to run, for instance sense relating words. By implementing different
methods for sense relating a document, the user can test how fast methods
perform in comparison to slow. It should be possible select which steps from
the processing of a document that should be performed. For instance it should

34 Design

be possible to skip POS-tagging while still doing sense relating. One should
note that by doing so the process of sense relating becomes harder as the POS
for the words is unknown. Different algorithms sometimes require different data
structures. Using the step model new data structures can be added if a certain
algorithm needs it.

In order to make it easy to provide new methods for each step, an interface
for each step is provided, which makes it easy for developers to integrate with
the system, by creating their own implementations. This is discussed further in
chapter 5.

4.4.2 WordNet

The most central tool when doing processing of textual content is a lexical
database. WordNet is a highly comprehensive lexical database for the english
language. It groups the words into set of synonyms called synsets and holds
information about semantic relations between synsets. The current version of
WordNet consists of 155.000 words and 117.000 synsets[Wor] from the english
language. WordNet categorizes the words into four lexical categories. Noun,
verb, adjective and adverb. The part of speech for a word is its lexical category.

WordNet provides an API that allows developers to take advantage of the
database. Several libraries exist in Java that interfaces with WordNet. MIT
2 provides a stable interface called JWI 3 which supports all newer versions of
WordNet. This is important because the newest version of WordNet on the
Windows platform is 2.1 while Unix uses 3.0. The framework provides access to
all the functionality in an easy to use high-level way[Fin11] and because of that
it has been chosen as framework used to connect the program to the WordNet
database.

4.4.3 POS-tagger

In order to look up a word in WordNet a POS tag must be specified. Because
the same word sometimes belongs to several lexical categories a POS-tagger is
needed. It is a software component that determines the POS tag for each word
in a document. Several implementations exists that offer a Java library for doing
so. Two libraries that are flexible and suitable are listed below.

2Massachusetts Institute of Technology
3The MIT Java WordNet interface

4.4 Processing of documents 35

• Stanford Log-linear Part-Of-Speech Tagger

• Illinois Part of Speech Tagger

Both of the solutions use the Penn Treebank Tagset. This tagset is actually more
detailed than required because it uses 36 different tags and WordNet only uses 4
categories for the words. After a POS-tagging the tag should be converted into
one of the 4 categories WordNet uses and a 5th category for all other words.

Both of the taggers are statistical and they use models that are trained using The
Wall Street Journal (WSJ). For the Stanford tagger all of the models provide an
accuracy about 97% for the articles it has been trained on and 90% for unknown
words4. The Illinois tagger provides an accuracy about 97% as well[RZ] for the
trained articles.

Because the features of the two POS-taggers were very equal, it was at first
decided to pick one of them as a part of the design. The Stanford tagger
included several different models to choose from that allowed us to adjust it
for our needs to it was decided to go with that one. By testing the required
resources for the different models it was discovered that the ones proving the
most accuracy would use a large amount of memory. Because of the gain of
only 0.35% for the most accurate models, it was decided to go with the ’wsj-0-
18-left3words.tagger’ model as it used the least amount of resources.

After working with the Stanford POS tagger it was decided to compare the
running time of two frameworks in order to check if the Illinois POS Tagger
could provide faster results. The two taggers were tested with a 4.5mb txt file5.
The running time for the two taggers is listed in table 4.1.

Tagger Running time
Stanford POS Tagger 70.35s
Illinois POS Tagger 12.67s

Table 4.1: Shows the running time for POS tagging a large file

As shown the running time for the Illinois tagger was significantly faster than
the Stanford tagger. The memory usage of the tagger was also measured to
be marginally lower for the Illinois tagger. Because of this it was decided to

4The stats are provided by the README file from the Stanford POS-tagger framework
which can be found on appendix D

5The Bible was used as the large testing file, it was downloaded from Project Gutenberg
at http://www.gutenberg.org/cache/epub/10/pg10.txt and consists of 950.457 words

http://www.gutenberg.org/cache/epub/10/pg10.txt

36 Design

include both of the taggers in the final design thereby allowing the user to
switch between them in order to compare the result.

4.4.4 Sense relation

By POS-tagging a document the tool is able to narrow down the number of
possible senses of each word dramatically. But each word can still have different
senses as discussed in section 3.4. Different strategies can be used in order to
narrow it down to one sense. Below is listed two different approaches.

• Assign a random sense to each word.

• Assign the most frequent sense for each word.

In order to test the accuracy of the word sense disambiguation, the result can be
compared to a text tagged by humans. An example of a collection of such texts
is the SemCor Corpus. It consists of about 360.000 word of which about 221.000
are sense tagged. The strategy of randomly assigning a sense from WordNet to
each words gives a F-measure of 41%[PK] for SemCor. By assigning the most
common sense results in a F-measure of 76%[PK] for SemCor. The reason why
this strategy works so well is that the way WordNet determines which senses
are most common is based on the frequency in SemCor[Mic05].

Of these two strategies it was decided to include the assignment of the most
frequent sense in the final design.

It was later decided to include another strategy for solving word sense disam-
biguation in order to allow the user to try out different settings. The Lesk
algorith is another algorithm that solves word sense disambiguation [Ban02]. It
is based on the assumption that words that are close to one another in a sen-
tence tend to share a common topic. It works by looking at a word in a sentence
and finds the description of the possible senses for it using a lexical database.
It then finds the descriptions of the senses for the neighbor words. The score
for each combination of sense is then calculated by looking at how many words
the descriptions have in common. The sense representing the highest score will
be the sense assigned.

In order to include this strategy of sense disambiguation in the design it was
decided to include a framework instead of implementing the algorithm. The
framework WordNet-SenseRelate-AllWords6 was selected. It is a Perl module

6The framework can be downloaded at http://senserelate.sourceforge.net/

http://senserelate.sourceforge.net/

4.5 Performance 37

that uses the algorithm described above together with WordNet. It takes a
sentence as a string and tries to find the sense index in WordNet. It requires a
lot computing time in order to determine the senses for a sentence because a lot
of scores has to be calculated. On SemCor it gives an F-measure of 59%[PK].

4.4.5 Stemming

Several algorithms depend on finding the same words in different documents. In
order to make the probability of a match higher Word stemming can be used.
Several stemming methods exists in order to stem a word. Two are listed here:

• Lovins stemmer

• Porter stemmer

The Lovins stemmer was the first published stemming algorithm. The stemmer
will look at the suffixes of the words and remove the longest one that is in the list
of known suffixes while still keeping the stemmed word at a length of minimum
3 letters. The ending may then be transformed using one of the transformations
rules. The algorithm uses a list consisting of 294 suffixes and 35 transformation
rules[Lov68].

The Porter stemmer uses the fact that the suffixes of a word are often made up
of smaller and simpler suffixes. Each word will go through 5 steps. Each step
has several rules that it will try to match with the suffix of the word. If a rule
is met it will go on to the next step[M.F80].

The Lovins stemmer is faster than the Porter stemmer but uses more memory
because it needs to have a list of all the suffixes. It has been decided to include
both stemmers in the final design.

Furthermore WordNet will be used as a stemming option by using lemmatiza-
tion. This works simply by looking the word up in WordNet and assigning the
lemma WordNet uses for the word.

4.5 Performance

Loading several documents can be quite time-consuming, especially if all the
words has to be processed. In order to make the tool as usable as possible a goal

38 Design

was to make the loading process fast, but still keeping it flexible. Loading several
documents at the same time on different threads allowed the tool to take full
advantage of a multi-processor computer and gain performance. Furthermore
some algorithms can run in parallel as well, as long as the needed data is ready.
In order to suit most types of algorithms a barrier has been set after the loading
of the documents. This means that all documents must have been loaded and
processed before the computing for any document will begin. This is done in
order to support algorithms which needs knowledge about the corpus in order
to compute the score for a document. A disadvantage with this solution is
that the required need of space in memory is higher. This is also known as
the Space-time tradeoff, where the memory use can be lowered by the cost of
computing time and vice versa. This could be improved by using a different
loading strategy for each algorithm and using the one that suits the selected
algorithm, but this would take away some of the flexibility and make things
more complicated. In figure 4.3 it is illustrated how the loading and computing
process works. The number of threads should be a fixed number and should
not be too large compared to the number of processor available. When a thread
is done with a document it should be reused for the next document instead of
releasing and creating a new thread in order to avoid wasted time doing so.

In order to improve performance it is important to use suitable data structures
that allow interacting with the data in a fast way. To achieve this documents
keeps their words in two data structures. A hash table for quick look up of
words and arrays for keeping track of the order of the words. The hash table
allows to search a document for a specific word in constant time, and arrays
makes it fast to go through all the words in a document, while maintaining the
order of the words, which is a important feature for some algorithms. Keeping
two data structures for the words in each document will of course increase the
memory usage of the program. In order to minimize this it should be structured
so the value for each key in the hash table contains the index of the word in the
array instead of keeping a copy of the same object.

4.5 Performance 39

Files

Thread1

Loading

Thread2

Loading

Thread3

Loading

Thread4

Loading

Documents

Thread1

Computing

Thread2

Computing

Thread3

Computing

Thread4

Computing

Results

Figure 4.3: Illustrates the process of loading and afterwards computing the
results for several documents on different threads.

40 Design

Chapter 5

Implementation

5.1 Chapter outline

Through this chapter the implemented tool will be explained and discussed.
The structure of the implementation will be represented by diagrams and it will
be discussed how the tool is implemented in order to make it easy to use and
easy to extend for a developer. The implemented tests will be discussed and
finally the requirements to run the tool will be stated. Through this chapter
typewriter font will be used for objects, classes, methods, enums and instance
variables.

5.2 Similarity Tool

The implemented tool, which is called Similarity Tool, provides a GUI interface
for testing different strategies when trying to find textual similarities among a
set of documents. The tool works on all major platforms1 and lets the user
adjust several settings before doing a computation. A screenshot of the tool can
be seen on figure 5.1

1The tool has been tested on Linux (Ubuntu), Mac OS X Lion and Windows 7

42 Implementation

Figure 5.1: Screenshot of Similarity Tool running on Mac OS X.

The tool lets the user select a document that is the main document of the
comparison. Next the user selects the other documents that should be a part of
the comparison. The desired algorithm should be selected. For every algorithm
it is possible to use stemming and removal of stop words. As an additional
feature the user can choose to normalize the result for each document. This will
make sure that the result is from 0.0 to 1.0. When the desired setup has been
selected the user can click the compute button and the calculations will begin.
The user can follow the overall progress using the progress bar in the lower right
corner and for each document see the current status. The calculations can be
stopped by pressing the stop button. A log will display extra information about
what is going on behind the scene.

Instructions on how to install the tool in provided for the supported platforms
on appendix E.

5.3 Structure 43

5.2.1 Adjustments

Ontology Based Query and Fuzzy Similarity can be adjusted by opening a popup
window with various settings. For Fuzzy Similarity the following can be ad-
justed.

• POS tagger - The POS tagger that should be used to tag all the words
in each document.

• Sense relate - The method that should be used for sense relating.

• Threshold - The minimum value that a word pair similarity must exceed
in order to be a part of the final result.

• Hyper/hyponyms - Whether to include hypernyms and hyponyms as
neighbor words as well as the number of layers to include.

• Synonyms - Whether to include synonyms as neighbor words.

• Include words - Whether to use words that have a POS-tagging only,
sense relation only or all words when finding neighbor words.

Ontology Based Query adds some additional settings.

• Hyponym/hypernym sim - The weight of the hypernym and hyponym
edges of the ontology graph.

• Synonyms sim - The weight associated with synonyms found by query
expansion.

• Match - When finding matches for words among articles; whether to
match any sense between two words or use the exact sense only.

A screenshot of the settings panel for the algorithm Ontology Based Query can
be seen on figure 5.2 .

5.3 Structure

The tool has been structured into several packages each grouping the classes that
concern the same area.2 The source code can easily be imported into Eclipse3

2See the documentation on appendix H for more details.
3See appendix G for information of how to download the source code.

44 Implementation

Figure 5.2: Screenshot of the settings panel for Ontology Based Query.

or another IDE.

When the main method is called it will check the system to see if the required
software is installed. For more details see section 5.6. If that is the case the tool
will be loaded by a MainController object which will instantiate the GUI by
allocating a MainFrame object and the model layer with a JPWordTool object.
This is shown on figure F.1. The tool is structured so it has to go through
all of the steps from figure 4.3. In order to support skipping a step dummy
implementations have been implemented for the steps that can be skipped. A
dummy implementation will not change anything and just returns the input.

A document is represented by a JPDocument object. This contains an array of
JPSentences which contain arrays of JPWords. This is illustrated in figure F.2.

As a user decides to run an algorithm on a set of documents a JPConfiguration
object will be created. This object provides all the information about the current
setup, such as the chosen algorithm, files and settings. The associations are
shown in the class diagram on figure F.2. Before the algorithm begins running,
the selected files must be loaded and analyzed. This is done by the run method

5.4 Tests 45

of JPWordTool and it is illustrated in the sequence diagram in figure F.9. It
is worth noting that several documents will be loaded in parallel for better
performance. Afterwards the JPWordTool will call the compute method of the
selected algorithm. This will regularly notify the UI about status changes.
A sequence diagram for FuzzySimilarityAlgorithm is shown on figure F.10.
Other algorithms uses the same pattern.

To keep the interface smooth and responsive the main thread must not be
blocked at any time. By always running heavy work on a background thread the
tool seems more user-friendly as it will always responsive to interaction. One
should keep in mind that updates to the UI always should take place on the
main thread because Swing is not thread-safe.

5.4 Tests

Functional tests have been implemented in order lower the amount of bugs and
to test the different parts of the program. This has been accomplished using
a testing framework called TestNG. It is a Java framework that provides the
possibility of writing test cases for methods in a structured way. Each test uses
a data provider to populate it with data and a test will either pass or fail. Tests
for each of the major parts of the program have been implemented and will be
explained in section 5.5. TestNG is able to generate reports for the tests, but
only in a very poor format. Instead ReportNG4 is used to generate the report.
They can be found for all the tests on the website http://www.student.dtu.
dk/~s093263/similaritytool/.

To really test the application a huge database of articles about different topics
were needed. Such a database was downloaded from http://mydatamaster.
com/free-downloads/. It contains a .sql file with 50.000 articles about all
sorts of topics. This file was imported on a local mysql server and a small Java
application was developed to convert each entry in the database into a .txt file
that could be used in the tool.

4A Java framework that works together with TestNG that can generate a html overview
of the test results.

http://www.student.dtu.dk/~s093263/similaritytool/
http://www.student.dtu.dk/~s093263/similaritytool/
http://mydatamaster.com/free-downloads/
http://mydatamaster.com/free-downloads/

46 Implementation

5.5 Interfaces

Interfaces and abstract classes are provided in order to make it easy to extend the
tool with new algorithms, stemmers etc. When a developer wants to extend the
application with a class he has developed that implements the provided interface
all he has to do is add a enum representing his additions to JPConfiguration and
add a JRadioButton to the view. Below descriptions for the different abstract
classes are explained and the already implemented classes for each step are
discussed.

5.5.1 JPAbstractAlgorithm

The abstract class JPAbstractAlgorithm provides methods for easily imple-
menting an algorithm that takes full advantage of several threads and makes it
possible to notify the user about status updates. The developer should simply
subclass the abstract class in order to get all the provided functionality. It pro-
vides methods for updating a delegate about progress during the calculations
using JPAlgorithmProgressDelegate and JPProgress. This would typically
be used to inform the user of what is going on and how far the calculations are
for each document the algorithm uses.

In order to take full advantage of the CPUs in a computer, the algorithm must
run in parallel. It is the job of the developer to decide which part of the algorithm
that is suited to run in parallel. If the algorithm can calculate the score for a pair
of documents without being dependent on other scores it is an obvious choice
to let this part run on different threads for a performance gain. The abstract
class allows a subclass to submit pieces of code that should run in parallel. The
order in which the pieces of code will be executed is managed by a FIFO5 queue.
During the calculations threads will automatically be reused as they finish their
current work.

A subclass should implement the computemethod that provides all the necessary
objects to do a computation. This includes the JPDocumens’s that has been
selected by the user and a Runnable that should run after all the calculations
are done. Before running the Runnable all documents should have updated
their score. This can either be a normalized score or the actual score from the
algorithm. This depends on the value of the boolean normalizeScore.

The user should be able to stop a running algorithm. This requires a small
implementation detail for the developer. If the algorithm does heavy work for a

5First in, first out.

5.5 Interfaces 47

long time the thread will not be interrupted. Instead it should once in a while
check if this has happened by calling the method threadUpdate. This will make
sure to interrupt the thread if needed.

The tool implements 4 different algorithms. Each of those are a subclass of
JPAbstractAlgorithm as shown on the class diagram in figure F.3.

The results of each algorithm are revealed in chapter 6.

5.5.2 JPAbstractStemmer

By subclassing JPAbstractStemmer a new stemmer can be implemented. The
method stem(JPDocument document) must be implemented and a JPDocument
where all the words have been stemmed should be returned. The stem method
will automatically be called on a background thread by JPWordTool for all the
selected JPDocuments. Several documents can be stemmed at the same time on
different threads so it is important that the stemmer is thread-safe and only
calls thread-safe methods.

The tools implement 3 different stemmers6 and a dummy stemmer as shown in
figure F.4. The two actual stemmers have been tested for different edge cases and
the result of a stemming has been compared to the expected result for different
words. The implementation of tests can be found in JPStemmerLovinsTest and
JPStemmerPorterTest.

5.5.3 JPAbstractPOSTagger

POS-taggers should subclass JPAbstractPOSTagger and implement the method
tag(JPDocument document). After a JPSentence has been tagged the boolean
called isPOSTagged should be set to true. Furthermore each JPWord should
have its tag string set to the POS-tag according to the Penn Treebank tagset.
Because WordNet only uses 4 categories for the words a JPWord should also be
mapped to a category that can be used with WordNet. This is done by the
JPWordPOS, which is an enum that represents the 4 categories plus a category
extra for words that do not fit in any of the first categories. Below is listed the
values of the enum.

• JPWordPOSUnknown
6The WordNet stemmer actually finds the lemma of a word rather than the stem.

48 Implementation

Tagger Success percent Computing time
StanfordPOSTaggerManagerTest 92.67% 41.3s
IllinoisPOSTaggerManagerTest 90.01% 7.2s

Table 5.1: Shows the performance of the two POS-taggers.

• JPWordPOSNoun

• JPWordPOSVerb

• JPWordPOSAdjective

• JPWordPOSAdverb

Besides the dummy POS-tagger, that does not change anything, the tool in-
cludes two taggers. The classes JPPOSTaggerStanford and JPPOSTaggerIllinois
hold the respective POS taggers. The Stanford tagger uses a singleton7 object
called StanfordPOSTaggerManager. It works as a wrapper class for the Stanford
POS-Tagger Java framework and provides only the necessary features. The Illi-
nois tagger uses the same idea with the class IllinoisPOSTaggerManager that
works as a wrapper class for the Illinois POS-Tagger Java framework.

In order to test the implemented POS-taggers, the classes StanfordPOSTaggerManagerTest
and IllinoisPOSTaggerManagerTest have been implemented. The focus of
the tests has mostly been to measure their performance by running them on
a collection of articles that has been POS-tagged correctly by humans. That
way information about both the execution time and accuracy is obtained. To
do so the SemCor corpus has been used. The Java framework JSemCor [Fin]
makes it easy to load the articles into Java objects that can be used to generate
JPDocuments. Table 5.1 shows the result obtained by comparing the tagging for
each word to the tagging in SemCor. It is worth noting that we only care if
tagger is able to place each word in the correct category among the 4 categories
WordNet uses. The test does not compare the found tag with the extensive
Penn Treebank Tagset but rather ensures that it falls into one of the 5 cate-
gories defined above.

The accuracy of the Stanford POS-tagger is slightly better but quite a lot slower.

7A design pattern that restricts the number of instantiation of a class to one and makes it
possible to access this object in a static way, so it is easily accessible from all classes.

5.5 Interfaces 49

5.5.4 JPAbstractSenseRelate

Classes that do sense relation on documents should subclass JPAbstractSenseRelate.
A JPDocument has a boolean indicating if it has been sense related. If this
boolean is true, every JPWord should have its senseIndex set. This index corre-
sponds to the sense index in WordNet. Subclasses of JPAbstractSenseRelate
should implement the method senseRelate(JPDocument document) and re-
turn a JPDocument where the senseIndex has been set for each word.

The object JPSenseRelateBaseline assigns the most frequent sense to all the
words. This is done by using a sense of the value 0 for all the words that are
in WordNet, because the senses of words in WordNet are sorted in descending
order according to their frequency.

The tool comes with an option for doing more advanced sense relation. This is
implemented in the class JPSenseRelateWordNet. The actual calculations are
done using a Perl module that must be installed on the computer. A wrapper
for the module has been implemented in Perl for easy access. The source code
for this can be found on appendix I. It works by taking a sentence as a string
and returns a string with a senseIndex for each word. By using the optional
parameter "-j" JSON8 will be returned instead. An example of a call could be:

> perl SenseRelate.pl -j "A short article"

The result of this call is shown in figure 5.3. The result is then parsed to a object
called JPSenseRelation by JPSenseRelateWordNet and the index is assigned
to each JPWord for later use when looking up the word in WordNet.

The Perl module also supports sentences that have been POS-tagged before-
hand. The Penn Treebank Tagset9 will be used as the tags. The following is an
example of a call using a POS-tagged sentence.

> perl SenseRelate.pl -j -t "A/DT short/JJ article/NN"

Because the calculations for the implemented JPSenseRelateWordNet are very
heavy it will use several threads in order to gain performance. It does this by
finding senses for several sentences from a document at the same time. Also a
cache is used to cache the results for each sentence. For this the object JPCache
is used. It provides methods for key-value pair caching of objects, that can be
stored both in memory and on disk. It is possible to clear the cache using the
menubar in top of the program.

8JavaScript Object Notation. Used for easy human-readable data exchange.
9The tags can be found on appendix C

50 Implementation

{
"success": 1,
"relations": [

{
"word": "A",
"newWord": "A",
"tag": "n",
"senseIndex": 1

},
{

"word": "short",
"newWord": "short",
"tag": "a",
"senseIndex": 1

},
{

"word": "article",
"newWord": "article",
"tag": "n",
"senseIndex": 1

}
]

}

Figure 5.3: The JSON result of a call to SenseRelate.pl.

5.5 Interfaces 51

Sense relater Success percent Computing time
JPSenseRelateWordNetTest 51.92% 27064.07s
JPSenseRelateBaselineTest 66.72% 0.21s

Table 5.2: Shows the performance of the two word sense disambiguation meth-
ods.

A class diagram of the implemented sense relaters can be found on figure F.6.

To test the implementations the SemCor corpus is again used to measure the ac-
curacy and performance. The tests are implemented in JPSenseRelateWordNetTest
and JPSenseRelateBaselineTest. This is done by comparing the result of each
of the sense relaters with the result of the SemCor corpus. The result is shown
in table 5.2.

It shows that the simple approach by picking the most frequent sense gives the
best result. A thing to keep in mind is that WordNet is structured so it list the
senses according how frequent they are in the SemCor corpus, which of course
will improve the result for the baseline approach.

5.5.5 JPAbstractTrimmer

The JPAbstractTrimmer provides the option of trimming a document. This can
have several applications. The implemented trimmer called JPTrimmerStopWords
removes words from a document if they are in the list of stop words10.

Trimmers should implement the trim(JPDocument document) method and re-
turn a JPDocument. A class diagram for JPAbstractTrimmer is available at
figure F.7.

5.5.6 JPAbstractInclude

A subclass of JPAbstractInclude has many applications as well. Other than
the dummy implementation, the tool includes one class for expanding a docu-
ment to include related words, namely JPIncludeNeighbourWords which makes
it possible to find synonyms, hypernyms and hyponyms for every word in a arti-
cle. This is done using the object NeighbourWordsFactory that uses WordNet

10The list consists of 173 common words from the english language. The list can be found
at http://www.ranks.nl/resources/stopwords.html.

http://www.ranks.nl/resources/stopwords.html

52 Implementation

to find the neighbor words for a word in an efficient way using a JPCache. For
looking up neighbor words the WordNetManager singleton object is used which
wraps around the JWI Java framework that interfaces with WordNet. It provides
the necessary functionality of WordNet needed for the tool. The neighbor words
are assigned to each JPWord in a array. For each neighbor word a score will be
calculated based on the sim settings for the algorithm. The array is sorted in
ascending order according to these scores.

The NeighbourWordsFactory was tested using the class NeighbourWordsFactoryTest
that can be used for testing if the expected synonyms, hypernyms and hyponyms
were found.

5.6 Requirements

The tool has certain requirements for the system that must be met. They are
listed below.

• Java 1.5 or newer.

• WordNet 2.1 for Windows and WordNet 3.0 for Linux and Mac OS X.

• Perl11.

• Make12.

On all platforms the WNHOME environment variable must be set and the bin folder
must be added to the PATH in order for the tool to use WordNet. Furthermore
the bin folder for Perl must be added to the PATH as well. This is explained
in the installation guide on appendix E.

In order to use the Lesk algorithm for sense disambiguation the following Perl
modules must be installed.

• Digest-SHA1.

• Text-Similarity.

• WordNet-QueryData.

11Programming language that runs on all major platforms
12Utility that can be used to build libraries and install software.

5.6 Requirements 53

• WordNet-Similarity.

• WordNet-SenseRelate-AllWords.

All of the requirements will be installed when following the installation guide
on appendix E. There is a guide for each of the 3 supported platforms.

54 Implementation

Chapter 6

Results

6.1 Chapter outline

In this chapter the findings that have been made with the tool developed as a
part of the thesis will be presented. The results of the different algorithms as
well as how they have been held up against human judgement will be covered
here.

6.2 Human judgements

The main goal when doing textual similarities based on the semantic between
documents is to get a result close to what humans perceive as textual similarity.
There is no definite answer of what textual similarity really is, hence why hu-
man judgement must be considered truth1. Upon evaluation, algorithms that
resemble human judgement the best are those that solve the textual similarity
problem most correctly.

1The evaluation of similarity has to be made by a test sample of large enough size, to ensure
that the human evaluation is actually a representation of the general consensus between people
and not just the opinion of a few.

56 Results

6.2.1 Experiment

In order to compare the algorithms to human judgements a small experiment
was made. We selected 9 articles. All of them were about 200 words, which
we considered a reasonable length to ask test subjects to read and also because
longer articles causes a lot a of noise while very short articles may hold too few
words of importance. The articles covered several topics, some of them more
related than others. We asked a group of people to read all the articles and for
each pair of articles give a score from 0-100 depending how much they agreed
on the following questions:

• Do the articles concern the same topic?

• Do the articles come to the same conclusion on a topic? (If they indeed
do concern the same topic)

Where 0 means, that they have nothing in common and 100 means that they are
identical. Question 1 was the interesting one and the second question was asked
to make sure that participant understood the difference between the questions.

The questionnaire can be found on appendix J.

The results were normalized to lie a a scale from 0.0-1.0, and then compared to
the results of the algorithms. To calculate how well an algorithm performed, the
correlation coefficient was calculated for the set of points (xi, yi) where xi is the
human similarity score for document i and yi is the algorithm’s similarity score
for document i. The correlation coefficient, r, is a number in the interval [-1,1].
A correlation on ±1 means that the data set points lie on a straight line meaning
strong linear relation. Normally a correlation over |0.8| is considered strong
and a correlation under |0.5| is considered weak. To calculate the correlation
coefficient equation 6.1 from [JFM00] is used.

rxy =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
(6.1)

The average similarity score assigned by the 27 people in the questionnaire,
is listed in table 6.1.

6.3 Correlations 57

Article no. 1 2 3 4 5 6 7 8 9
1 100 - - - - - - - -
2 1 100 - - - - - - -
3 1 40 100 - - - - - -
4 4 4 3 100 - - - - -
5 0 8 63 5 100 - - - -
6 2 39 39 3 6 100 - - -
7 0 0 0 1 1 1 100 - -
8 2 3 3 83 5 5 0 100 -
9 64 1 0 0 0 1 0 0 100

Figure 6.1: The result of human evaluations.

6.3 Correlations

Based on the questionnaire and the results we have found using the various
algorithms with different settings, we are going to calculate the correlation be-
tween human judgements and algorithm result. As the amount of combinations
in settings for some of the algorithms is very high, we have only included the
most interesting ones.
To each algorithm, the best settings, based on the correlation, will be used to
make queries on a larger database with 1200 articles on various topics.

6.3.1 Levenshtein distance

Figure 6.2 shows the correlations between human judgements and the leven-
shtein distance measure with different settings. The result of the levenshtein
distance has been normalized such that identical articles have a score of 1 while
articles with nothing in common have score 0. The first thing to note is that
all scores are in the interval [0.0,0.1], meaning that the articles generally have
very little in common, i.e. the edit distance is large. The levenshtein distance
generally has a very bad correlation with the human judgements, but to our
big surprise, when stop words are removed, the correlation is increased signif-
icantly. When using the WordNet stemmer along with stop word removal, we
got r = 0.78. Of course stop word removal means that there are quite a lot less
words that need to be matched, meaning that matches have a higher influence

58 Results

Figure 6.2: The correlation between human scores and the Levenshtein dis-
tance algorithm.

on the final score of the algorithm.
Levenshtein distance is an algorithm that rewards text for being similar in struc-
ture so one could say that the removal of stop words defeats the purpose of the
algorithm, as it changes the structure of the texts.
We got the best result using the following settings:

• Stop word removal

• WordNet stemming

6.3.1.1 Database query

Using the WordNet stemmer and stop word removal:

Query A hacker inside your computer! it.2

2http://www.articlesfactory.com/articles/site-security/
a-hacker-inside-your-computer.html

http://www.articlesfactory.com/articles/site-security/a-hacker-inside-your-computer.html
http://www.articlesfactory.com/articles/site-security/a-hacker-inside-your-computer.html

6.3 Correlations 59

Best match A basic introduction to Spyware computer.3

Second best match A beginner’s guide to affiliate marketing 4

Worst match - A trickle of electricity 5

Running time 66615 ms.

6.3.2 TF*IDF

Figure 6.3 shows the correlations between human judgements and the term
frequency–inverse document frequency distance measure with different settings.
Values of the TF*IDF lie in the interval [0,1]. The similarity score between
two documents rely on the rest of the corpus, which is why, identical articles
don’t necessarily have a similarity score of 1. As seen on figure 6.3, the TF*IDF

Figure 6.3: The correlation between human scores and the TFIDF algorithm.

generally produces an answer of very high quality. The best correlation was
found using the algorithm with no modifications at all, which possibly has to

3http://www.articles3k.com/article/366/3775/A_Basic_Introduction_To_Spyware/
4http://www.dollarman.com/earnmoney/a-beginner-s-guide-to-affiliate-marketing.

html
5http://www.simplysearch4it.com/article/1810.html

http://www.articles3k.com/article/366/3775/A_Basic_Introduction_To_Spyware/
http://www.dollarman.com/earnmoney/a-beginner-s-guide-to-affiliate-marketing.html
http://www.dollarman.com/earnmoney/a-beginner-s-guide-to-affiliate-marketing.html
http://www.simplysearch4it.com/article/1810.html

60 Results

do with the fact, that the algorithm reflects how important each word is to
documents, meaning that stop words are already given very little influence.
Stemming is also a factor that makes words "less unique", in the sense, that
when stemming the words in the documents, the probability of finding identical
words in documents gets higher, decreasing the importance of these words.

6.3.2.1 Database query

Using no modifications on the algorithm:

Query A hacker inside your computer

Best match Access your PC from the road 6

Second best match A beginner’s guide to avoiding viruses 7

Worst match - A chicken recipe for every occasion 8

Running time 12419 ms.

6.3.3 Textual Fuzzy Similarity

Figure 6.4 shows the correlations between human judgements and the term
textual fuzzy similarity algorithm with different settings. Values of the fuzzy
similarity lie in the interval [0,1]. The amount of combinations in settings is
very high for this algorithm, so we have tried to include results that cover all
the different settings.

6http://www.albaspectrum.com/Articles2/Misc1/02820.html
7http://www.profsr.com/articles/avoidvirus.html
8http://www.articles3k.com/article/411/26356/A_Chicken_Recipe_for_Every_

Occasion/

http://www.albaspectrum.com/Articles2/Misc1/02820.html
http://www.profsr.com/articles/avoidvirus.html
http://www.articles3k.com/article/411/26356/A_Chicken_Recipe_for_Every_Occasion/
http://www.articles3k.com/article/411/26356/A_Chicken_Recipe_for_Every_Occasion/

6.3 Correlations 61

Figure 6.4: The correlation between human scores and the Fuzzy Similarity
algorithm.

From figure 6.4 it follows that stop word removal improves the correlation. In
this algorithm, each word in a document is seen as equally important, which
means that stop words infer more noise in the query, which could explain why
stop word removal improves the overall result. Stemming increases the correla-
tion slightly.
We found out that without query expansion, a threshold between 0.6-0.8 gave
the best result, which means that pairs of words generally need a rather high
similarity score to actually be considered semantically similar. Of course a low
threshold would infer a lot of noise. We were only able to improve the cor-
relation slightly by expanding the query to include synonyms, hyponyms and
hypernyms, to words in the query. When expanding the query, the threshold
had to be increased, because the increase in pairs of words, means we should
be more demanding with the similarity measure between words. A reason why
the query expansion does not help increase the correlation significantly, might
be the fact, that words found by expansion are rated the same as words in the

62 Results

actual documents. We got the best result using the following settings:

• Stop word removal

• WordNet stemming

• The Stanford POS tagger

• Baseline sense relation

• 1 layer of hyper/hyponyms

• Synonym inclusion

• A threshold of 0.8

6.3.3.1 Database query

Using stop word removal, WordNet stemming, illinois pos tagger, baseline sensere-
late, 1 layer hyper/hyponyms, synonyms and threshold of 0.8:

Query A hacker inside your computer!

Best match A word on Comic Book Pricing 9

Second best match Accelerating Your Downlines 10

Worst match - "About Modern Snowshoes" 11

Running time 803522 ms.

6.3.4 Ontology Based Query

Figure 6.5 shows the correlations between human judgements and the ontology
based query algorithm with different settings. The result of the algorithm is
normalized to lie in the interval [0,1]. The amount of combinations in settings
is very high for this algorithm, so we have tried to include results that cover all
the different settings.

9http://ezinearticles.com/?A-Word-on-Comic-Book-Pricing&id=29033
10http://www.articles3k.com/article/342/139659/Accelerating_Your_Downlines/
11http://www.directorylistings.info/article/About+Modern+Snowshoes.html

http://ezinearticles.com/?A-Word-on-Comic-Book-Pricing&id=29033
http://www.articles3k.com/article/342/139659/Accelerating_Your_Downlines/
http://www.directorylistings.info/article/About+Modern+Snowshoes.html

6.3 Correlations 63

Figure 6.5: The correlation between human scores and the Ontology Based
Query algorithm.

Like textual fuzzy similarity, stop word removal significantly improves the cor-
relation in this algorithm, because stop words are common to almost any text
and therefore generate noise. Stemming did not improve the correlation which
we find peculiar, and the only explanation we can think of, is that the stemming
makes the words "less unique", as mentioned earlier.
By expanding the query, the result was slightly increased using different values
for the similarity edges for synonyms, hypernyms and hyponyms. A threshold
also helped discard irrelevant relations between words. We found out that ex-
panding the query by two layers instead of one only slightly improved the overall
results.
The best result was achieved using:

• Stop word removal

• The Illinois POS tagger

• Perl WordNet sense relation

• 2 layers of hyper/hyponyms with a hyponym edge score of 0.9 and hyper-
nym edge score of 0.6

64 Results

• Inclusion of synonyms with edge score 1 (meaning synonyms are considered
as important as words in the query).

• A threshold of 0.5

• Word matching on exact words only.

What this tells us, is that we can slightly improve the result by having knowledge
about the words in a document. Knowing the sense of a word, and collecting
related words means that we can do a match on words that are not identical,
but are related enough for a person to see them as semantically similar.

6.3.4.1 Database query

We were not able to use the Perl WordNet sense relater on the database query,
because sense disambiguation on 1200 articles would take a lot of time. We used
the settings mentioned in the previous section, but with baseline senserelation
instead of Wordnet sense relation, because it gives almost the same result and
runs much faster:

Query "A hacker inside your computer!"

Best match "A beginners guide to avoiding viruses."

Second best match "Access your PC from the road."

Worst match - "ABC’s of Becoming an effective teen" recipes.12

Running time 50636 ms.

6.4 Asymptotic running times

To see how the algorithms scale, we tried running the algorithms with their
optimal settings, on documents of varying length. The documents that were
used were Article 1 and Article 2 from the questionnaire, concatenated with

12http://www.magnet4web.com/content/motivational/abc-s-of-becoming-an-effective-teen.
php

http://www.magnet4web.com/content/motivational/abc-s-of-becoming-an-effective-teen.php
http://www.magnet4web.com/content/motivational/abc-s-of-becoming-an-effective-teen.php

6.4 Asymptotic running times 65

themselves, 32, 64 and 128 times, so we could measure the increase in running
time when doubling the length of the two documents for comparison.

Levenshtein Distance

Article 1 Article 2 Approximate running time (ms)
x32 x32 800
x64 x64 2200
x128 x128 8200

Showing that the running time is proportional to the square of the length of the
documents.

Term Frequency-Inverse Document Frequency

Article 1 Article 2 Approximate running time (ms)
x32 x32 450
x64 x64 850
x128 x128 1600

Showing that the running time is linearly proportional to the size of the docu-
ments.

Textual Fuzzy Similarity

Article 1 Article 2 Approximate running time (ms)
x32 x32 238500
x64 x64 961700
x128 x128 3622600

Showing that the running time is proportional to the square of the length of the
documents.

Ontology Based Query

Article 1 Article 2 Approximate running time (ms)
x32 x32 1000
x64 x64 2000
x128 x128 4000

66 Results

Showing that the running time is linearly proportional to the size of the docu-
ments.

Chapter 7

Conclusion

7.1 Chapter Outline

Here we will be making a discussion of the different algorithms, their advantages
and disadvantages and use this to give a conclusion based on the obtained
results. We will talk about the goals we set ourselves from the beginning and
which of these we have been able to achieve. Lastly we will give suggestions to
future extensions of the tool developed as part of the thesis.

7.2 Discussion of algorithms

Evaluating the four algorithms has shown that each algorithm has its own ad-
vantages and disadvantages, and that it is hard to say which algorithm worked
best.
The time and space complexity analysis are done on the scenario where two
documents are being compared. In the following runtime analysis we will use
different variables: N the number of words in the corpus, U the number of
unique words in the corpus, n the number of words in the query, u the num-
ber of unique words in the query, m the number of words in the document for
comparison, v the number of unique words in the document for comparison.

68 Conclusion

7.2.1 Levenshtein Distance

The Levenshtein Distance was the simplest algorithm that was implemented,
which was also reflected in the result. Without modifications, the result was
not satisfiable, but this was to be expected, as this algorithm does not the use
the bag of words principal, and therefore relies on the same words appearing
in two documents in the same order, which is unlikely to happen. It was the
only of the algorithms that credited documents for being similar in expression, a
feature that is interesting, but did not seem to affect the result of the algorithm
very much. When removing stop words as a part of the preprocessing, the
resulting correlation between algorithm score and human judgement improved
significantly, which follows intuition because stop words are regarded as noise.
The time complexity of the algorithm is O(n ·m). The space complexity could
be reduced to O(n) by only keeping the needed rows of the calculation matrix
in memory.

7.2.2 TF*IDF

To our big surprise the unmodified version of this algorithm gave the best result
of all our tests. The automatic accounting for stop words helped to improve the
result more than removing the stop words. The fact that this algorithm does
not rely on an external knowledge base is a big plus, but on the other hand, it
relies on having a corpus of several documents to determine the importance of
each word in proportion to the corpus, and is therefore not good for comparing
two documents only. Keeping knowledge about word occurrences across the
whole corpus is a very memory consuming task, which is also an issue. The bag
of words principal is used, meaning that the expression of the text is lost.
The query time is linear in the size of unique words in the corpus, i.e. O(U)
and preprocessing time is O(N). The space complexity is O(U).

7.2.3 Textual Fuzzy Similarity

The fuzzy similarity is interesting, because it does not categorize pairs of words
as either "similar" or "not similar". With this algorithm, the similarity score
was based on the visual similarity between the words, and the idea was that
words that look alike, with some probability are semantically related. This
means that a similarity score between words can be calculated without the use
of a knowledge base, which means that the algorithm is usable on any natural
language. Removing stop words improved the result a lot, again because they

7.2 Discussion of algorithms 69

infer noise on the result, rather than improve it. The algorithm works with
query expansion, however this only improves the result marginally, and while it
was possible to achieve a very good result without query expansion, the resulting
slowing in runtime means that it is a matter of preferences whether this should
be used or not. Like in TF*IDF, the bag of words model means that word order
and grammar are lost.
The time complexity is proportional to the square of the words in the documents
for comparison, O(n+m+u·v) because all unique pairs words need to computed
in the worst case scenario. We found that this algorithm scales badly and gives
running times that are not fit for real time applications.
The space complexity is linearly proportional to the number of unique words
across the documents, O(u + v). Alternatively, with a preprocessing time of
O(n+m+ u · v), the query time can be reduced to O(u).

7.2.4 Ontology Based Query

The last algorithm we implemented was the ontology based algorithm, which
stood out from the previous algorithms because it relies on an external knowl-
edge base. This dependency means that the algorithm only works on natural
languages where such a knowledge base is available. On the other hand, the ad-
vantage of this algorithm is that it can expand the query to look beyond what
is explicitly stated in a document, making it more "intelligent" than the other
algorithms. We were able to achieve an overall good result with this algorithm,
but were limited to only allow for 2 layer concept inclusion, because of the mas-
sive increase in terms for each level. Like the fuzzy similarity algorithm, the
inclusion of more concepts slightly increased the correlation, but of course in-
creased running time and space usage. Again stop word removal helped reduce
the amount of noise in the texts.
The time complexity of the algorithm can be reduced to O(u+) where u+ is the
size of the set of unique words in the query and their related words found by
concept inclusion. This requires a preprocessing time of O(n + m). The space
complexity is O(u+ v).

7.2.5 Roundup

After comparing the four implemented algorithms it is still really hard to say
which algorithm is best for determining textual similarities. With different
modifications we got all algorithms to deliver a satisfiable result. We found out
that the complex methods give marginally better results, keeping in mind that
TF*IDF relies on a corpus and is not ideal for comparison of two documents.

70 Conclusion

It turned out that the more simple preprocessing operations on documents were
those that improved the result the most, such as stop word removal, while
the more time-demanding and complex operations only slightly improved the
result. For that reason, the complex operations might be scrapped in real time
applications. On the contrary, in scenarios where the accuracy is more important
than running time, the inclusion of complex operations can help achieve higher
accuracy.

7.3 Achieved goals

In the requirements analysis in section 2.3 several goals were stated. Below is a
discussing of the functional goals.

• Loading documents, stemming, removing stop words. The tools
supports loading plain text document and stemming each word using 3
different stemmers. Stop words can also be removed by looking in a list
of 173 words.

• Integration with lexical database. Integration with WordNet has
been made. It provides an extensive database of words from the english
language.

• Integration with a POS tagger. Two POS taggers has been added to
the tools and the user can select which tagger to use.

• Contain 3 or more algorithms. The tools allows the user to select
between 4 algorithms.

• Provide results for each strategy. For every strategy used when com-
paring documents, a score is provided for every document. In chapter 6 it
was shown how these scores can be used to compare the algorithms.

• It should be possible to tweak several parameters. For each algo-
rithm it is possible to adjust several settings allowing the user to find the
best settings for a specific algorithm. This was also discussed in 6

All of the functional requirements have been fulfilled. Below is a discussion of
the nonfunctional requirements.

• GUI. A Swing GUI is provided for easily selecting the desired settings.

7.4 Further development 71

• Platforms. The tool has been implemented in Java which allows it to
run on all major platforms.

• Performance. Parallel and concurrent programming has been used when
loading and calculating in order to make the tool feel fast.

• Reliability. The different parts of the tool has been tested in order to
get rid of bugs and make the tool reliable.

We were able to fulfill all of the nonfunctional requirements as well.

7.4 Further development

In order to improve the tool new features can be implemented. Below is listed
some suggestions for extensions of the current version.

• More algorithms. To make the tool more comprehensive more algo-
rithms should be added, which could take advantage of the different fea-
tures of the tool.

• Support for more languages. At the moment only english is supported
because the tool uses WordNet which only works with the english language.
WordNet exists for other languages and it would be possible to integrate
with those without too much work. It could also be interesting if the tool
were able to find similar content across different languages. In such a case
some kind of translation mechanism had to be build in to the tool.

• Support for more file formats. The tool only supports plain text
documents at the moment. Support for more text file formats should
be easy as the ability to support several formats are build right into the
architecture of tool.

• Interface with other applications. By allowing another application to
be the data source instead of the hard drive, it would allow integration
with existing system and make it easy to compare documents directly from
another program.

• Visual results. To easier understand the results of the different algo-
rithms a way to show it in a visual way could be implemented. It would
allow the user to get a better overview of how each algorithm performs.

72 Conclusion

• Comparison of algorithms. A way of comparing the different algo-
rithms could be implemented making it easier to see which algorithms
works best on which kind of input data.

• Lazy loading of documents. The tool loads all the documents needed
into memory. In order to keep memory usage lower, a system, that would
only load the documents that are currently being used in the calculations,
could be implemented.

Appendix A

Common Terms

A definition of the terms that are used throughout the thesis:

Corpus - A large set of texts that is usually used for statistical analysis or
hypothesis testing.

Natural Language Processing (NLP) - A field in computer science con-
cerned with the interactions between computers and natural languages.
Concerns how computers can extract meaningful information from natu-
ral language input. (Wiki)

Stop words - Stop words are a humanly defined list of words that should be
removed prior to or after the processing of natural language data. They
are words which are very common to any kind of text and therefore create
noise in queries rather than being helpful as they occur a lot. Examples:
the, at, in, that and is.

Lemma and lexeme - A lemma is the dictionary form or citation form of a set
of words. A lexeme is a collection of all words that have the same meaning
as the lemma of the lexeme. An example of this could be the words walk,
walked, walks and walking that are all forms of the same lexeme with walk
as the lemma.

74 Common Terms

Word stem - A stem is a part of a word that is common to all of it’s inflected
variants. An example are the words tall, taller, tallest that all have the
stem tall. A list of all the inflected variants of a stem is called the inflected
paradigm. Some paradigms such as good, better,best do not have the same
stem. This is called a suppletive paradigm.

Multi-word term - A term that consists of several words, such as "bus driver".
In danish multi-word terms do not exist, as the terms are just concate-
nated, for example "skoletaske" (school bag).

Word classes - The different classes of words in a natural language. Nous,
verbs, adverbs etc.

Part-of-speech tagging (POS-tagging) - The process of assigning an ap-
propriate word class to a word in a context.

Penn Treebank Tagset - Tagset that provides a tag for each word. A table
of the tagset can be found on appendix C.

Word-sense disambiguation - The process of determining the sense of a
word in a given context.

Query expansion - Expansion of a query to include more concepts than those
explicitly stated in the base query

Bag of words - A concept where a text is stored as a set of words. The order
of the words in a document is not stored.

Barrier - In computer science a barrier is a synchronization method. If a set of
threads share a barrier they all must stop and wait until all threads have
reached the barrier.

Model-View-Controller - A design pattern that separates model, view and
controller into 3 separated parts. The view is the visual representation
for the user. The model is the engine of the program and the controller is
able to coordinate communication between model and view according to
the actions the user performs.

API - Application programming interface. A way for software components to
communicate with each other.

SemCor corpus - Collection of documents that has been POS-tagged and
senses for WordNet has been found by humans.1

F-measure - A way to determine a tests accuracy by looking at the precision
and recall.

1Can be downloaded at http://www.cse.unt.edu/~rada/downloads.html

http://www.cse.unt.edu/~rada/downloads.html

Appendix B

Use case diagrams

Figure B.1 shows the use case diagram of the tool developed in this thesis.
The different actors, the use cases and the relation between use cases is shown
in the figure.

76 Use case diagrams

User

WordNetPOS-tagger

System

SenseRelater

Load
document

Choose
document(s)

Choose
algorithm

Set flags

Initiate
computation

Tag words

Disambiguate
words

Retrieve
related words

Compute
Similarity

<include>

<include>

<include>

Show
results

Figure B.1: Use case diagram showing actors and their use cases.

Appendix C

Penn Treebank tagset

Contains the total Penn Treebank tagset1, which provides a tag for all words.

1The list was downloaded from http://www.computing.dcu.ie/~acahill/tagset.html

http://www.computing.dcu.ie/~acahill/tagset.html

78 Penn Treebank tagset

Tag Tag description
CC Coordinating conjunction
CD Cardinal Number
DT Determiner
EX Existential there
FW Foreign Word
IN Preposision or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List Item Marker
MD Modal
NN Noun, singular or mass
NNP Proper Noun, singular
NNPS Proper Noun, plural
NNS Noun, plural
PDT Predeterminer
POS Possessive Ending
PRP Personal Pronoun
PRP$ Possessive Pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or persent participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Appendix D

Stanford POS-Tagger
Readme

Stanford POS Tagger, v. 3.1.1 - 2012-03-09
Copyright (c) 2002-2012 The Board of Trustees of The Leland Stanford Junior
University. All Rights Reserved.

This document contains (some) information about the models included in this
release and that may be downloaded for the POS tagger website at
http://nlp.stanford.edu/software/tagger.shtml . If you have downloaded the
full tagger, all of the models mentioned in this document are in the
downloaded package in the same directory as this readme. Otherwise, included
in the download are two
English taggers, and the other taggers may be downloaded from the website.
All taggers are accompanied by the props files used to create them; please
examine these files for more detailed information about the creation of the
taggers.

For English, the bidirectional taggers are slightly more accurate, but tag much
more slowly; choose the appropriate tagger based on your speed/performance
needs.

English taggers
—————————

80 Stanford POS-Tagger Readme

wsj-0-18-bidirectional-distsim.tagger
Trained on WSJ sections 0-18 using a bidirectional architecture and including
word shape and distributional similarity features. Penn Treebank tagset.
Performance:
97.28% correct on WSJ 19-21
(90.46% correct on unknown words)

wsj-0-18-left3words.tagger
Trained on WSJ sections 0-18 using the left3words architecture and includes
word shape features. Penn tagset.
Performance:
96.97% correct on WSJ 19-21
(88.85% correct on unknown words)

wsj-0-18-left3words-distsim.tagger
Trained on WSJ sections 0-18 using the left3words architecture and includes
word shape and distributional similarity features. Penn tagset.
Performance:
97.01% correct on WSJ 19-21
(89.81% correct on unknown words)

english-left3words-distsim.tagger
Trained on WSJ sections 0-18 and extra parser training data using the
left3words architecture and includes word shape and distributional similarity
features. Penn tagset.

english-bidirectional-distsim.tagger
Trained on WSJ sections 0-18 using a bidirectional architecture and including
word shape and distributional similarity features. Penn Treebank tagset.

wsj-0-18-caseless-left3words-distsim.tagger
Trained on WSJ sections 0-18 left3words architecture and includes word shape
and distributional similarity features. Penn tagset. Ignores case.

english-caseless-left3words-distsim.tagger
Trained on WSJ sections 0-18 and extra parser training data using the
left3words architecture and includes word shape and distributional similarity
features. Penn tagset. Ignores case.

Appendix E

Installation guide

The tool has some requirements in order to run. See section 5.6. This guide
will show how to install the requirements including the tool. The guide is split
into 3 sections depending on which platform the tool should be installed on.
For Windows WordNet and Perl including modules should be installed
manually, The guide covers how to do so. On Mac and Linux almost
everything will be installed automatically using a Shell script. The needed
resources for installing the tool on each platform is located in the "Binaries"
folder and on the website. The guide below can also be downloaded as a
separate PDF on http://www.student.dtu.dk/~s093263/similaritytool/.

http://www.student.dtu.dk/~s093263/similaritytool/

Similarity Tool install guide

Download the software from http://www.student.dtu.dk/~s093263/similaritytool/

Windows

This has been tested working with Windows 7 but should work on older versions as well.

• Start by downloading the latest version of Similarity Tool for Windows on the website.

• Unzip it.

• Install WordNet using the included installer WordNet-2-1.1.exe.

• Add WordNet to the PATH as a environment variable by going to ”Control Panel”→ ”System
and Security”→ ”System”. Click on ”Advanced system settings”. In the popup window click
on ”Environment Variables...” as shown in the screenshot below.

Find the variable called ”Path” under ”System variables”. Select it and press the ”Edit..”
button. If the variable does not exists, create it by clicking the ”New..” button. Add the
location of the WordNet ”Bin” folder. Usually ”C:\Program Files\WordNet\2.1\bin”. See
the screenshot below.

1

Click OK.

• Furthermore add the WNHOME as a variable by clicking the ”New...” button under ”System
variables” and typing in ”WNHOME” as the Variable name and the location of WordNet for
the Variable value. Typically this is ”C:\Program Files\WordNet\2.1”. See the screenshot
below.

Click OK all the way out.

2

• Install Perl using the included installer ActivePerl-5.14.2.1402-MSWin32-x86-295342.msi

• Because of a bug in one of the Perl modules a few files have to be modified for the modules
to work1.
Open the dict folder for WordNet. Typically in ”C:\Program Files\WordNet\2.1\dict”.
Take a copy of ”data.noun” and parse it in the same location. Rename it to ”noun.dat”
Take a copy of ”data.verb” and parse it in the same location. Rename it to ”verb.dat”

• Open up Command Prompt and type in the following. Press enter for each line:
cpan App::cpanminus

cpanm WordNet::SenseRelate::AllWords --force

• Finally install the actual tool by running the included installer Similarity Tool.

• If the location of Perl has been modified the settings.xml file must be edited.

• To start the tool open ”C:\Program Files\Similarity Tool\Similarity Tool.exe”.

Mac OS X

This has been tested working with Mac OS X Lion (10.7.3). Xcode must be installed on the
computer. It can be downloaded for free at the Mac App Store or at developer.apple.com.

• Start by downloading the latest version of Similarity Tool for Mac OSX on the website.

• Open the .dmg file

• Launch the .mpkg file and follow the instructions. Note that the installation can take several
minutes.

• If the location of Perl has been modified the settings.xml file must be edited. It is located in
”/Applications/SimilarityTool.app/Contents/Resources/Java”

• To start the tool open Similarity Tool.app located in the Applications folder.

Linux

This has been tested working with Ubuntu 12.04. It requires apt-get to be installed on the system.

• Start by downloading the latest version of Similarity Tool for Linux on the website.

• Unzip it.

• Open up a terminal and cd into the unzipped folder.

1This is explained further here http://www.mail-archive.com/wn-similarity@yahoogroups.com/msg00595.

html

3

• Make sure that Java is installed by running
java -version.

If it is not installed, do so by running
sudo apt-get -y install default-jre

• Make sure that Perl is installed by running
perl -v

If it is not installed, do so by running
sudo apt-get -y install perl

• Next run the following:
sudo sh INSTALL

This will install WordNet, set the PATH and install the required Perl modules. Please note
that this can take several minutes.

• If the location of Perl has been modified the settings.xml file must be edited.

• Start the jar file by running
java -jar SimilarityTool.jar

In order to uninstall run
sudo sh UINSTALL

4

86 Installation guide

Appendix F

Structure diagrams

Diagrams showing how selected parts of the program is structured. Note that
the diagrams are simplified a bit compared to the actual implementation.
Check out appendix H for documentaion about the implementation and
appendix G for the source code.

88 Structure diagrams

F.1 Class diagrams

main(String[])
isRequiredSoftwareInstalled(): boolean

JPSimilarityTool

computePressed(JPConfiguration)
stopPressed()
makeNativeLookAndFeel()

MainController

MainFrame JPProgressJPWordTool

1

1

1

1

1

1

1 1

Figure F.1: Overall class diagram with associations.

F.1 Class diagrams 89

getSentenceString(): String
getPOSTaggedSentenceString(): String

isPOSTagged: boolean
Attribute

JPSentence

value: String
senseValue: String
synonyms: JPWord[]
hypernyms: JPWord[]
hyponyms: JPWord[]
wordType: JPWordType
tag: String
senseIndex: int

JPWord

JPAbstractAlgorithm

JPAbstractStemmer

JPAbstractInclude

JPAbstractSenseRelateJPAbstractTrimmer

JPAbstractLoader

JPConfiguration*1
*

1

* *

*

1

*

1
*

1

1

*

1

*

getAllWords: JPWord[]

documentTitle: String
numberOfWords: int
isSenseTagged: boolean
score: double
progressType: JPDocumentProgressType

JPDocument

*

*

Figure F.2: Class diagram for configuration with associations.

90 Structure diagrams

compute(JPDocument mainDocument,
JPDocument[] documents)
normalizeResult()

float percent
boolean shutdown

JPAbstractAlgorithm

FuzzySimilarityAlgorithm

LevenshteinDistanceAlgorithm

TFIDFAlgorithm

OnthologyBasedQueryAlgorithm

Figure F.3: Class diagram for algorithms.

stem(JPDocument): JPDocument
JPAbstractStemmer

JPStemmerDummy

JPStemmerLovins

JPStemmerPorter

JPStemmerWordNet

Figure F.4: Class diagram for stemmers.

F.1 Class diagrams 91

tag(JPDocument): JPDocument
JPAbstractPOSTagger

JPPOSTaggerDummy

JPPOSTaggerStanford

JPPOSTaggerIllinois

Figure F.5: Class diagram for POS-taggers.

senseRelate(JPDocument): JPDocument
JPAbstractSenseRelate

JPSenseRelateBaseline JPSenseRelateWordNet

Figure F.6: Class diagram for sense relaters.

trim(JPDocument): JPDocument
JPAbstractTrimmer

JPTrimmerDummy JPTrimmerStopWords

Figure F.7: Class diagram for trimmers.

92 Structure diagrams

include(JPDocument): JPDocument
JPAbstractInclude

JPIncludeDummy JPIncludeNeighbourWords

Figure F.8: Class diagram for includers.

F.2 Sequence diagrams

On figure F.9 and F.10 are sequence diagrams from the implementation.

:JPConfiguration:JPWordTool

run

:JPDocumentLoader

getDocuments

new

load(JPDocument)

:JPPOSTagger
tag(JPDocument)

:JPSenseRelate
senseRelate(JPDocument)

:JPStemmer
stem(JPDocument)

:JPTrimmer
trim(JPDocument)

new

new

new

new

par

:JPCache

getCachedValue(Object)

setCachedValue(Object,Object)

Figure F.9: Sequence diagram for loading documents.

F.2 Sequence diagrams 93

:FuzzySimilarityAlgorithm

compute

:JPDocument

getAllWords

:JPAlgorithmProgressDelegate

willStartAlgorithmForDocument(JPDocument)

:JPProgressDelegate

didUpdateProgress

getAllWords

didFinishAlgorithmForDocument(JPDocument)

didUpdateProgress

par

membershipFunction(String,String)

loop

Figure F.10: Sequence diagram for fuzzy similarity.

94 Structure diagrams

Appendix G

Source code

The source code is located in the "Source" folder and on
http://www.student.dtu.dk/~s093263/similaritytool/.

http://www.student.dtu.dk/~s093263/similaritytool/

96 Source code

Appendix H

Documentation

The tool is documented with JavaDoc. It is included in the "Documentation"
folder and on http://www.student.dtu.dk/~s093263/similaritytool/

Figure H.1: Screenshot of the JavaDoc.

http://www.student.dtu.dk/~s093263/similaritytool/

98 Documentation

Appendix I

SenseRelate

Perl program used to performs sense relation. It uses several Perl modules.
The program is also included in the source code

1 #!/usr/bin/perl −w
2

3 my @context = $ARGV[0];
4 my $jsonResponse = 0;
5 my $posTag = 0;
6

7 # Check parameters
8 if (@ARGV > 3 || @ARGV < 1 || $ARGV[0] eq "−h") {
9 print "usage: disambiguate.pl string\neg: disambiguate.pl \"this is a string\"\n

";
10 print "use −j for JSON responses\"\n";
11 print "use −t to force POS tagging\"\n";
12 exit;
13 }
14 if (@ARGV == 1) {
15

16 } elsif (@ARGV == 2 && $ARGV[0] eq "−j") {
17 $jsonResponse = 1;
18 @context = $ARGV[1];
19 } elsif (@ARGV == 2 && $ARGV[0] eq "−t") {
20 $posTag = 1;

100 SenseRelate

21 @context = $ARGV[1];
22 } elsif (@ARGV == 3 && $ARGV[0] eq "−j" && $ARGV[1] eq "−t") {
23 $posTag = 1;
24 $jsonResponse = 1;
25 @context = $ARGV[2];
26 } else {
27 print "Something went wrong";
28 exit;
29 }
30

31 # Needed modules
32 use WordNet::SenseRelate::AllWords;
33 use WordNet::QueryData;
34 use WordNet::Tools;
35

36 # Create data query
37 my $qd = WordNet::QueryData−>new;
38 my $queryDataError;
39 if ($jsonResponse) {
40 $queryDataError = "{\"success\":0, \"message\":\"Construction of WordNet::

QueryData failed\"}";
41 } else {
42 $queryDataError = "Construction of WordNet::QueryData failed";
43 }
44

45 defined $qd or die $queryDataError;
46

47 # Create wordnet tool
48 my $wntools = WordNet::Tools−>new($qd);
49 my $wnToolsError;
50 if ($jsonResponse) {
51 $wnToolsError = "{\"success\":0, \"message\":\"Couldn’t construct WordNet

::Tools object\"}";
52 } else {
53 $wnToolsError = "Couldn’t construct WordNet::Tools object";
54 }
55

56 defined $wntools or die "\nCouldn’t construct WordNet::Tools object";
57

58 # Create sense relate
59 my $wsd = WordNet::SenseRelate::AllWords−>new (wordnet => $qd,wntools =>

$wntools,measure => ’WordNet::Similarity::lesk’);
60

61 # Disambiguate text
62 my @results = $wsd−>disambiguate (window => 3, tagged => $posTag,context => [

@context], scheme => "sense1");
63

101

64 # If JSON response is expected
65 if($jsonResponse) {
66 my $words = "";
67 my $index = 0;
68 @oldText = split(/ /, $context[0]);
69 foreach (@results) {
70 @values = split(/#/, $_);
71 $count = scalar grep { defined $_ } @values;
72 my $senseIndex;
73 if ($count == 3) {
74 $senseIndex = $values[2];
75 } else {
76 $senseIndex = 0;
77 }
78

79 $object = $oldText[$index] . "\", \"newWord\":\"" . $values[0] . "\",
\"tag\":\"" . $values[1] . "\", \"senseIndex\":" . $senseIndex;

80

81 $words = $words . "\{\"word\":\"" . $object . "\},";
82 $index = $index + 1;
83 }
84 chop($words);
85 my @response = "{\"success\": 1, \"relations\": [" . $words . "] }";
86 print @response;
87 } else {
88 print "@results";
89 }

102 SenseRelate

Appendix J

Questionnaire

The questionnaire used for creating a human judgement of similarity for 9
different documents. .txt files for each of these articles can be found in the
"Articles" folder and on
http://www.student.dtu.dk/~s093263/similaritytool/.

http://www.student.dtu.dk/~s093263/similaritytool/

Johan van Beusekom & Peter Gammelgaard Poulsen

Article comparisons

This document contains a range of short articles. We would like to you to read these articles, and
as you do so, think about these two questions:

• Do the articles concern the same topic?

• Do the articles come to the same conclusion on a topic? (If they indeed do concern the same
topic)

This comparison has to be made for all articles, and we will provide a scoreboard, where you can

easily insert your scores. We will ask you to rate the article similarities on a scale from 0-100,

where 100 would mean identical articles and 0 means the articles have nothing in common. While

some of the articles might not concern the same topic, they might be of the same genre, which is

something to keep in mind when rating their similarities.

This is not a test, but rather a measurement for statistical purposes and it is not possible to answer

the questions wrongly.

The scoreboard for question 1.

Article no. 1 2 3 4 5 6 7 8 9

1 100 - - - - - - - -

2 100 - - - - - - -

3 100 - - - - - -

4 100 - - - - -

5 100 - - - -

6 100 - - -

7 100 - -

8 100 -

9 100

The scoreboard for question 2.

Article no. 1 2 3 4 5 6 7 8 9

1 100 - - - - - - - -

2 100 - - - - - - -

3 100 - - - - - -

4 100 - - - - -

5 100 - - - -

6 100 - - -

7 100 - -

8 100 -

9 100

Article 1

So yes, I already saw The Avengers last night. Despite the fact that the movie is already getting a
lot of praise both from critics, fans and regular moviegoers, I still can’t help but be worried about
what will the movie’s final product will turn out.

I have those experiences that when people says good things about a movie, I get too excited
and end up being disappointed in the end. But I’m completely relieved because everything that I
read and heard from people is true. The Avengers is totally awesome! I know it may sound like a
big understatement but The Avengers is definitely the best movie of the season (So far). The fact
that the movie works smoothly in all aspects of film making (story, character dynamics, visuals
etc.) is enough proof that Marvel did what no other company can do - create a massive cinematic
universe that has consistency and cohesion.

At this point, it already doesn’t matter who’s comic company is better. In the end no one can
ever deny the universal fact that Marvel took the risk to make a movie that only exist on all geeks’
dreams. Now, that dream is already a reality.

Article 2

Steven Jobs was born February 24, 1955, in San Francisco, California, and was adopted by Paul
and Clara Jobs. He grew up with one sister, Patty. Paul Jobs was a machinist and fixed cars as a
hobby. Jobs remembers his father as being very skilled at working with his hands.

In 1961 the family moved to Mountain View, California. This area, just south of Palo Alto,
California, was becoming a center for electronics. Electronics form the basic elements of devices
such as radios, televisions, stereos, and computers. At that time people started to refer to the
area as ”Silicon Valley.” This is because a substance called silicon is used in the manufacturing of
electronic parts.

As a child, Jobs preferred doing things by himself. He swam competitively, but was not in-
terested in team sports or other group activities. He showed an early interest in electronics and
gadgetry. He spent a lot of time working in the garage workshop of a neighbor who worked at
Hewlett-Packard, an electronics manufacturer.

Jobs also enrolled in the Hewlett-Packard Explorer Club. There he saw engineers demonstrate
new products, and he saw his first computer at the age of twelve. He was very impressed, and knew
right away that he wanted to work with computers.

Article 3

Barack H. Obama is the 44th President of the United States.
His story is the American story values from the heartland, a middle-class upbringing in a strong

family, hard work and education as the means of getting ahead, and the conviction that a life so
blessed should be lived in service to others.

With a father from Kenya and a mother from Kansas, President Obama was born in Hawaii
on August 4, 1961. He was raised with help from his grandfather, who served in Patton’s army,

and his grandmother, who worked her way up from the secretarial pool to middle management at
a bank.

After working his way through college with the help of scholarships and student loans, President
Obama moved to Chicago, where he worked with a group of churches to help rebuild communities
devastated by the closure of local steel plants.

He went on to attend law school, where he became the first African-American president of the
Harvard Law Review. Upon graduation, he returned to Chicago to help lead a voter registration
drive, teach constitutional law at the University of Chicago, and remain active in his community.

President Obama’s years of public service are based around his unwavering belief in the ability
to unite people around a politics of purpose. In the Illinois State Senate, he passed the first major
ethics reform in 25 years, cut taxes for working families, and expanded health care for children and
their parents. As a United States Senator, he reached across the aisle to pass groundbreaking lob-
bying reform, lock up the world’s most dangerous weapons, and bring transparency to government
by putting federal spending online.

He was elected the 44th President of the United States on November 4, 2008, and sworn in on
January 20, 2009. He and his wife, Michelle, are the proud parents of two daughters, Malia, 13,
and Sasha, 10.

Article 4

The scale of Arsenals achievement is perhaps best appreciated by acknowledging its rarity. No
modern-day team, not Liverpool in the 1970s and 1980s or Manchester United in the 1990s and
2000s, have matched the virtual perfection of Arsenals unbeaten league season in 2003-4.

Indeed, in the entire history of English football, to find even one other club that has emulated
Arsne Wengers team you have to go way back to the original Invincibles, Preston North End in
1888-89. Yet Prestons unbeaten season comprised only 22 matches whereas Arsenals stretched to
almost double that in a rather more competitive era. Of their 38 games in 2003-4, they won 26
and drew 12 to also achieve one of the highest ever points tallies of 90.

Of course, the full unbeaten run actually lasted some 49 games and went from the end of the
2002-3 season until well into the 2004-5 campaign.

Wenger, who recently became Arsenals longest-serving manager, still rates it as the greatest
accomplishment in his entire coaching career. The teams defensive strength rested on the centre-
back partnership between Sol Campbell and Kolo Toure. In front of them, Patrick Vieira and
Gilberto Silva formed a base from which the wonderful attacking talents of Robert Pires, Thierry
Henry and Dennis Bergkamp could really flourish.

Article 5

The President of the United States of America is the head of state and head of government of
the United States. The president leads the executive branch of the federal government and is the
commander-in-chief of the United States Armed Forces.

Article II of the U.S. Constitution vests the executive power of the United States in the presi-
dent and charges him with the execution of federal law, alongside the responsibility of appointing
federal executive, diplomatic, regulatory, and judicial officers, and concluding treaties with foreign
powers, with the advice and consent of the Senate. The president is further empowered to grant

federal pardons and reprieves, and to convene and adjourn either or both houses of Congress under
extraordinary circumstances. Since the founding of the United States, the power of the president
and the federal government have grown substantially and each modern president, despite possess-
ing no formal legislative powers beyond signing or vetoing congressionally passed bills, is largely
responsible for dictating the legislative agenda of his party and the foreign and domestic policy of
the United States. The president is frequently described as the most powerful person in the world.

The president is indirectly elected by the people through the Electoral College to a four-year
term, and is one of only two nationally elected federal officers, the other being the Vice President of
the United States. The Twenty-second Amendment, adopted in 1951, prohibits anyone from ever
being elected to the presidency for a third full term. It also prohibits a person from being elected to
the presidency more than once if that person previously had served as president, or acting president,
for more than two years of another person’s term as president. In all, 43 individuals have served
55 four-year terms. On January 20, 2009, Barack Obama became the 44th and current president.

Article 6

Albert Einstein was born in Ulm, Germany on March 14, 1879. As a child, Einstein revealed an
extraordinary curiosity for understanding the mysteries of science (started only at age 10/11). A
typical child (only to his socio-economic class educated middle class), Einstein took music lessons,
playing both the violin and piano a passion that followed him into adulthood. Moving first to
Italy and then to Switzerland, the young prodigy graduated from high-school in 1896. In 1905,
while working as a patent clerk in Bern, Switzerland, Einstein had what came to be known as his
”Annus Mirabilis” or ”miracle year”. It was during this time that the young physicist obtained his
Doctorate degree and published four of his most influential research papers, including the Special
Theory of Relativity. In that, the now world famous equation ”e = mc2” unlocked mysteries of the
Universe theretofore unknown.

Ten years later, in 1915, Einstein completed his General Theory of Relativity and in 1921 he
was awarded the Nobel Prize in Physics (iconic status cemented in 1919 when Arthur Eddington’s
expedition confirmed Albert Einstein’s prediction). It also launched him to international superstar-
dom and his name became a household word synonymous with genius all over the world. Einstein
emigrated to the United States in the autumn of 1933 and took up residence in Princeton, New
Jersey and a professorship at the prestigious Institute for Advanced Study. Today, the practical
applications of Einstein’s theories include the development of the television, remote control devices,
automatic door openers, lasers, and DVD-players. Recognized as TIME magazine’s ”Person of the
Century” in 1999, Einstein’s intellect, coupled his strong passion for social justice and dedication
to pacifism, left the world with infinite knowledge and pioneering moral leadership.

Article 7

Cooking is the process of preparing food, often with the use of heat. Cooking techniques and
ingredients vary widely across the world, reflecting unique environmental, economic, and cultural
traditions. Cooks themselves also vary widely in skill and training. Cooking can also occur through
chemical reactions without the presence of heat, most notably as in Ceviche, a traditional Spanish
dish where fish is cooked with the acids in lemon or lime juice. Sushi also utilizes a similar chemical
reaction between fish and the acidic content of rice glazed with vinegar.

Chicken, pork and bacon-wrapped corn cooked in a barbecue smoker Preparing food with
heat or fire is an activity unique to humans, and some scientists believe the advent of cooking
played an important role in human evolution. Most anthropologists believe that cooking fires first
developed around 250,000 years ago. The development of agriculture, commerce and transportation
between civilizations in different regions offered cooks many new ingredients. New inventions and
technologies, such as pottery for holding and boiling water, expanded cooking techniques. Some
modern cooks apply advanced scientific techniques to food preparation.

Article 8

In English football, ”The Invincibles” has been used to refer to either the Preston North End
team of the 1880s, or the Arsenal team of the 2003-04 season. In both cases, the teams won the
top division of English football unbeaten, the only two times this has occurred in English football
history.

Arsenal emulated Preston’s unbeaten run in the 2003-04 season going unbeaten for all 38 games,
almost twice as many league games as Preston had played. Their final record for the 2003-2004
league campaign stood at 26 wins, 12 draws and 0 losses, out of 38 games total, an unbeaten run
not matched in any single season by any team in an English league division.

Arsenal went 49 Premier League games unbeaten which was a new record for the most League
games without defeat, the sequence coming to an end with a controversial 20 defeat to Manchester
United. The Premier League commissioned a special gold version of the Premier League trophy to
commemorate Arsenal’s unbeaten season. A very important part of this season was Thierry Henry
who scored 30 goals that season, with Robert Pirs chipping in with 14 goals.

Article 9

I was excited to see this film based on all the hype from my friends. I haven’t read the books, but
thought the story was interesting based on the one-line explanations I got from others.

I went into this film expecting to see something similar to the Twilight films (teen obsession
over book turned film), but better.

What I got was much, much worse.
First off, I want to say that I thought the acting was great. The actors did a great job of

portraying their characters.
What WASN’T so great was the lack of character development. The death scenes, even those

meant to be emotional, didn’t affect me at all. I am one who isn’t afraid to cry like a baby at a
movie, and I often do. But while the others around me were sobbing, I was just ready for the scene
to be over with.

Another reason I strongly disliked this film, has to do with my title. It seems like 95% of the
shots in this movie were closeup on the characters faces. These are fine, to an extent, but you begin
to wonder after a while if the actors aren’t all just bodiless floating heads. The fight scenes were
quickly cut together, which could work, if you weren’t zoomed in so much that you have no idea
what was going on.

For a film with a supposed 100,000,000 dollar budget, this came across as a low-budget inde-
pendent adaption of the book. They could have done so much more to improve the visual aspect
of the film as well as make the characters more likable.

Overall, I would give this film 4 stars, mainly due to the great acting and costume design.
Everything else, was horrible.

Bibliography

[ADFH01] Adrian Akmajian, Richard A. Demers, Ann K. Farmer, and
Robert M. Harnish. Linguistics - An Introduction to Language and
Communication. The MIT Press, 2001.

[Ban02] Satanjeev Banerjee. Adapting the lesk algorithm for word sense
disambiguation to wordnet. Department of Computer Science
University of Minnesota, 2002.

[BKA02] Henrik Bulskov, Rasmus Knappe, and Troels Andreasen. On
measuring similarity for conceptual querying. Department of
Computer Science, Roskilde University, 2002.

[BS06] Cédric Beust and Hani Suleiman. Next Generation Java Testing -
TestNG and Advanded Concepts. Addison-Wesley, 2006.

[Fin] Mark A. Finlayson. JSemcor 1.0.x User’s Guide.

[Fin11] Mark A. Finlayson. MIT Java Wordnet Interface (JWI) User’s
Guide, 2011.

[Fow04] Martin Fowler. UML Distilled - A Brief Guidde to the Standard
Object Modeling Language. Pearson Education, third edition, 2004.

[JFM00] Richard Johnson, John Freund, and Irwin Miller. Probability and
Statistics for Engineers. Pearson, eighth edition, 2000.

[Lee] Michael D. Lee. A comparison of machine measures of text
document similarity with human judgments.

112 BIBLIOGRAPHY

[Lov68] Julie Beth Lovins. Development of a stemming algorithm.
Massachusetts Institute of Technology, 1968.

[M.F80] M.F.Porter. An algorithm for suffix stripping. 1980.

[Mic05] Jason Michelizzi. Semantic relatedness applied to all words sense
disambiguation. Master’s thesis, 2005.

[Mit03] Ruslan Mitkov. The Oxford Handbook Of Computational
Linguistics. University Press, 2003.

[OP03] Vladimir Oleshchuk and Asle Pedersen. Ontology based semantic
similarity comparison of documents. Agder University College,
2003.

[Pin04] Brandon Pincombe. Comparison of human and latent semantic
analysis (lsa) judgements of pairwise document similarities for a
news corpus. Intelligence, Surveillance and Reconnaissance
Division, 2004.

[PK] Ted Pedersen and Varada Kolhatkar.
Wordnet::senserelate::allwords - a broad coverage word sense tagger
that maximizes semantic relatedness. Department of Computer
Science University of Minnesota.

[POS] Pos tagging (state of the art). http://aclweb.org/aclwiki/
index.php?title=POS_Tagging_%28State_of_the_art%29.

[RZ] Dan Roth and Dmitry Zelenko. Part of speech tagging using a
network of linear separators. University of Illinois - Department of
Computer Science.

[Sch] Helmut Schmid. Probabilistic part-of-speech tagging using decision
trees. Universistät Stuttgart - Insitut für maschinelle
Sprachverarbeitung.

[SG03] Piotr S. Szczepaniak and Marcin Gil. Practical evaluation of
textual fuzzy similarity as a tool for information retrieval. Institute
of Computer Science, Technical University of Lodz, 2003.

[TP10] Peter D. Turney and Patrick Pantel. From frequency to meaning:
Vector space models of semantics. Journal of Articial Intelligence
Research 37, 2010.

[UDK04a] Ozlem Uzuner, Randall Davis, and Boris Katz. Recognizing text
similarity. MIT Computer Science and Artificial Intelligence
Laboratory, 2004.

http://aclweb.org/aclwiki/index.php?title=POS_Tagging_%28State_of_the_art%29
http://aclweb.org/aclwiki/index.php?title=POS_Tagging_%28State_of_the_art%29

BIBLIOGRAPHY 113

[UDK04b] Ozlem Uzuner, Randall Davis, and Boris Katz. Using empicical
methods for evaluationg expression and content similarity.
Massachusetts Institute of Technology, 2004.

[Wor] Wordnet statistics. http:
//wordnet.princeton.edu/wordnet/man/wnstats.7WN.html.

http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Goal
	1.1.1 Purpose
	1.1.2 Focus
	1.1.3 Constraints
	1.2 Thesis outline
	1.2.1 Common terms
	2 Analysis
	2.1 Chapter outline
	2.2 Overview
	2.3 Requirements analysis
	2.3.1 Measure
	2.3.2 Functional requirements
	2.3.3 Nonfunctional requirements
	2.3.4 Use cases
	3 Theory
	3.1 Chapter outline
	3.2 On linguistics
	3.3 Part-of-speech tagging
	3.4 Word-sense disambiguation
	3.5 Ontology
	3.6 Textual Similarity Algorithms
	3.6.1 Levenshtein distance
	3.6.2 Longest Common Subsequence
	3.6.3 Jaro-Winkler
	3.6.4 Vector Space Model
	3.6.5 Term Frequency-Inverse Document Frequency
	3.6.6 Textual Fuzzy Similarity
	3.6.7 Ontology Based Query

	3.7 Expression versus content
	4 Design
	4.1 Chapter outline
	4.2 Overall design
	4.2.1 Platform
	4.3 Selected similarity algorithms
	4.4 Processing of documents
	4.4.1 Flexibility
	4.4.2 WordNet
	4.4.3 POS-tagger
	4.4.4 Sense relation
	4.4.5 Stemming

	4.5 Performance
	5 Implementation
	5.1 Chapter outline
	5.2 Similarity Tool
	5.2.1 Adjustments

	5.3 Structure
	5.4 Tests
	5.5 Interfaces
	5.5.1 JPAbstractAlgorithm
	5.5.2 JPAbstractStemmer
	5.5.3 JPAbstractPOSTagger
	5.5.4 JPAbstractSenseRelate
	5.5.5 JPAbstractTrimmer
	5.5.6 JPAbstractInclude
	5.6 Requirements
	6 Results
	6.1 Chapter outline
	6.2 Human judgements
	6.2.1 Experiment

	6.3 Correlations
	6.3.1 Levenshtein distance
	6.3.2 TF*IDF
	6.3.3 Textual Fuzzy Similarity
	6.3.4 Ontology Based Query

	6.4 Asymptotic running times
	7 Conclusion
	7.1 Chapter Outline
	7.2 Discussion of algorithms
	7.2.1 Levenshtein Distance
	7.2.2 TF*IDF
	7.2.3 Textual Fuzzy Similarity
	7.2.4 Ontology Based Query
	7.2.5 Roundup

	7.3 Achieved goals
	7.4 Further development
	A Common Terms
	B Use case diagrams

	C Penn Treebank tagset
	D Stanford POS-Tagger Readme
	E Installation guide
	F Structure diagrams
	F.1 Class diagrams
	F.2 Sequence diagrams

	G Source code

	H Documentation

	I SenseRelate

	J Questionnaire
	Bibliography

	Bibliography

