
Resource planning

Joachim Kirkegaard Friis

Kongens Lyngby 2012

IMM-BSc-2012-18

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk IMM-BSc-2012-18

Summary (English)

The goal of the thesis is to implement a proof of concept for teachers on DTU
to get information about course allocations and the ability to get their course
allocated. The allocations should work on a resource planning model. This
model should try to achieve to satisfy given soft constraints and should still not
contain any conflicts with the hard constraints. The soft constraints is that the
distance between a given allocated lecture and exercise rooms should be as short
as possible.

The implementation was done in the .NET framework using the ModelViewCon-
trol pattern, which enables the easy use of F# for the model implementation.
The view and control was implemented in XAML and C# within a usual WPF
application environment.

The sheer size of data caused difficult debugging and testing which had to be
resolved by applying smaller basic test samples, which still showed the functional
integrity.

The end product was a simple GUI containing only the most important func-
tions, and serves as a prove of concept that an implementation would benefit
the teachers, lecturers or any administrative people involved in the business of
allocating over 200 courses per semester.

ii

Summary (Danish)

Målet med specialet er at gennemføre en proof of concept hvor lærere på DTU
kan få oplysninger om kursustildelinger og evnen til at få deres kursus tildelt.
Tildelingen bør virke på baggrund af en ressource planlægning model. Denne
model bør forsøge at opnå at stilfredsstille givet bløde constraints og bør stadig
ikke indeholde eventuelle konflikter med de hårde contraints. De bløde contraints
er, at afstanden mellem en given tildelt forelæsningslokale og øvelsesrum skal
være så kort som muligt.

Implementeringen blev udført i. NET Framework ved hjælp af ModelViewCon-
trol design pattern, som gør det muligt at nemt bruge F# for model implemen-
tering. Viewet og control blev gennemført i XAML og C# inden for en sædvanlig
WPF applikation.

Alene størrelsen af datamængden forårsaget vanskelig debugging og test, der
skulle løses ved at anvende mindre grundlæggende test smaples, der stadig viste
den funktionelle integritet.

Slutproduktet var et simpel GUI, der kun indeholder de vigtigste funktioner, og
fungerer som et proof of concept, at en egentlig implementering ville gavne de
lærere, forelæsere eller enhver administrativ person inblandet i at afsætte over
200 kurser pr semester.

iv

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in fulfilment of the require-
ments for acquiring an M.Sc. in Informatics.

The thesis deals with resource planning in context to the current solution of
the one DTU’s uses to allocate lecture rooms and exercise rooms. The current
solution doesn’t enable teachers to view current allocation. This motivates us
to create a visualization solution and long term storage in terms of an SQL
database.

The thesis consists of description of the problem, a description of the database,
a description and analysis of the some resource planning models, a description
of the implementation and tests.

Lyngby, 25-June-2012

Joachim Kirkegaard Friis

vi

Acknowledgements

I would like to thank my supervisor, Michael Reichhardt Hansen, for his con-
structive advice, patience and answers for my many questions.
Also for supporting me with lots of general information and guidance in terms
of ideas for implementation and different resource planning models.
And also for motivating me to explore more technologically advanced areas of
general software technology, such using F# as a strong tool for managing the
resource planner, SQL server and other general functions for the end product.
This has opened new doors for me in context to a very Java dominated world
of software technology studies on DTU.

I would also like to thank my family and friends for understanding my priorities
during the work of this project.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Short introduction to Resource Planning 1
1.1.1 The environment of the problem 2
1.1.2 Goal . 2

1.2 Requirements Specification . 3

2 Database design 5

2.1 Introduction . 5
2.2 Description of the tables . 6

2.2.1 Courses . 6
2.2.2 Rooms . 6
2.2.3 Locations . 7
2.2.4 Allocations . 7

2.3 Entity-relationship diagrams . 8
2.4 Analysis . 9

2.4.1 Normal forms . 9
2.4.2 Verifying the design . 10

2.5 Summary . 11

x CONTENTS

3 Resource Planning Models 13

3.1 Introduction . 13
3.2 Analysis . 13

3.2.1 The problem it self . 13
3.2.2 Different solutions to the Resource Planning Problem . . 14
3.2.3 Brute forcing and the n queen problem 14
3.2.4 Simulated annealing . 15
3.2.5 Direct heuristics and the SCHOLA system 16

3.3 The solution . 17
3.3.1 n Queens . 17
3.3.2 Simulated annealing . 18
3.3.3 SCHOLA . 19

3.4 Summary . 21

4 Implementation 23

4.1 Short introduction . 23
4.2 Choice of technologies . 24

4.2.1 Design pattern . 24
4.2.2 Xaml, C# and F# . 24
4.2.3 Linq to SQL . 25
4.2.4 The TypeProvider . 26

4.3 Overall design . 27
4.4 Database . 27

4.4.1 Setup and creating the database 27
4.4.2 Queries . 28

4.5 Input data and text processing 31
4.6 Functions for allocations . 32

4.6.1 Bruteforce . 32
4.6.2 SCHOLA . 36

4.7 GUI . 39
4.7.1 View . 39
4.7.2 Control . 40
4.7.3 Calling functions asynchronously 40

4.8 Summary . 41
4.8.1 Encountered problems . 41
4.8.2 Possible optimizations . 41

5 Tests 43

5.1 Short introduction . 43
5.2 Black Box Testing . 43

5.2.1 Goal . 44
5.2.2 Test cases . 44
5.2.3 Results . 45
5.2.4 Summary . 45

CONTENTS xi

5.3 White Box Testing . 46
5.3.1 Goal . 46
5.3.2 Test description . 46
5.3.3 Tests and Results . 47

5.4 Statistics . 49
5.5 Conclusion of the tests . 50

6 Summary 51

6.1 Future improvements . 51
6.2 Did we reach our goal? . 52

A Source code 55

A.1 ResourceCreate.fs . 55
A.2 ResourceQuery.fs . 56
A.3 ResourceAllocator.fs . 68
A.4 ResourceStatistics.fs . 73
A.5 DataIO.fs . 74
A.6 MainWindow.xaml . 76
A.7 MainWindow.xaml.cs . 80

B Test results 87

B.1 User manual . 87

C References 89

xii CONTENTS

Chapter 1

Introduction

1.1 Short introduction to Resource Planning

The problem when talking about resource planning, is to allocate your resources
effectivly and in a reasonable manner. A bad resource allocation can result in
great losses in money and time. A good resource planning tries to achieve and
utilialize some sort of optimization. This motivates us to investigate on how we
can implement a solution and monitor and analyze its performance.

The Contraint Resource Planning problem is seen in many applications such as:
tele communication, memory allocation and time scheduling in general. As a
result, substantial research has been done on this matter because of it’s broad
relevans in many technological applications.1. For this reason it serves as a
motivation to strive towards an implementation and experimentation on one of
the known solutions to a problem, which now leads us to discribe the problem.

The problem in this case is to optimize on the current method of allocating
lecture and exercise rooms used by the administration of DTU2. Some courses
e.g. has lectures in one end of campus and exercises in another, which leads to

1source 1 - 1 Introduction, 1.1 related works
2Danmarks Tekniske Universitet, Technical University of Denmark

2 Introduction

up to a 15 minutes walk between lecture and exercises - which is time lost and
wasting money in terms of the payof an assistant teacher.

1.1.1 The environment of the problem

The enviroment in which the problem resides is basicly the campus of DTU. A
course has a lecture in a given time table, and then exercises generaly in the
same. A day consists of two timetables. i.e. monday morning from 8 am to 12
am is "1A" and 1 pm to 5 pm is "2A". The lecture room and exercise room(s)
are to different locations, which causes the long distance probability.

The possibility of an optimazation stands clear, since the current scheme used,
can also cause conflicts on different departments of the university. Meaning that
there is a chance that one course might have to share an exercise room or lab if
it’s under two different deparments. This has a simple solution, but there exsist
another problem in which the solution will not be as simple. The problem at
hand is about optimizing on the distance between a lecture room and an exercise
room or lab. Because as mentioned - many students and lecturors waste time
on transport from a given lecture room to the assigned exercise room or lab.

1.1.2 Goal

So when assigning a room for a course, you have to take several variables in
consideration. As mentioned the most straight forward and clear constraint is
to avoid conflicts in the allocation of rooms - meaning that two courses cannot
have the same room assigned at the same time table. This is a hard constraint,
which means it’s a constraint we have to follow strickly and that a solution
cannot conflict with it. The optimization on the distance between lecture room
and labs is a soft constraint, meaning that a solution should strive towards it.

The implementation should also contain a GUI3, which should serve as a sim-
ple overview with basic functions. The implementation we should end up with
shouldn’t serve as representation of an end product, but more as a proof of a
concept. Meaning that the GUI should be simple and more or less serve as a
visualization ofa tool and the end solution of an implemented model. It should
work on ModelViewControl as the design pattern - in which the View is imple-
mented in XAML4, Controller in C# and the model in F#.

3Grahpical User Interface
4eXtensible Application Markup Language

1.2 Requirements Specification 3

Furthermore we want to store the information about courses, rooms and al-
locationg in an SQL database. This should serve as a simple way to handle
and create sources and a proof of concept since we want to implement it in F#.
These should show to possibility of implementing a tool in an unusal enviorn-
ment like F# .

With this said - our goal is to achieve a solution that implements an optimized
model and provide teachers a tool for viewing information about allocations for
their course or other. This should happen through research and evaluation of
different solutions and a steppwise optimization on the chosen solutions.

1.2 Requirements Specification

This sections is going to describe the requirements for the end product. The
requirements will be listed and then be discussed in a detailed manner.

The overall idea is to implement a solution, which can allocate courses one
lecture room and the needed amount of exercise rooms. This implementation
should work on data from an SQL database, to show the concept of an F#
implementation coexisting with SQL.

The phrase ”end product” doesn’t emphasize that it’s going to be an actual end
product but rather a proof of concept. The requirements are as listed below:

• An optimization on how to allocate resources, by implementing a solution
which can allocate resources computationally.

• A simple GUI implementation capable of showing the user the relevant
information.

• The GUI should contain search ultilities for rooms and courses.

• Options for different solution allocation models.

• Create ultility for a course.

• An SQL database implemented implemented with F# .

• The database should be of such quality that is satisfies the first four normal
forms.

The allocation model should work on the following hard constraints:

4 Introduction

• A course must have one lecture room and the necessary amount of exercise
rooms allocated.

• Two courses cannot have the same room allocated at the same timestamp.

• The number of students allocated for a course must not exceed the given
room capacity.

The soft constraint:

• An allocation should offer an optimized suggestion in terms of distance
between lecture room and exercise room/labs.

• A course with larger efficientcy5 should be prefered over a course that is
less efficient.

The GUI should be simple and straightforward to use. Basic functions such
as: Adding a course, searching for a course or a room. Searching for current
allocations and testing the models and their performance.

The SQL database should work in the background with the model and should
be optimized in terms of normal forms.

The design pattern of the GUI implementation should follow the ModelView-
Control pattern, in which the View is implemented in XAML, the controller in
C# and the model in F#.

5This denotes how much room a given course utilizes

Chapter 2

Database design

2.1 Introduction

In this chapter we will discuss and illustrate the solution, in which the database
is constructed. After this we must analyze the problem at hand. The illustration
should not stand alone as a description of the solution. The discussion of normal
forms must be applied to the solution, which will be done as well.

If we take a look back at the requirements specification, the database must fulfill
the following points:

• An SQL database implemented implemented with F# .

• The database should be of such quality that is satisfies the first four normal
forms.

The overall implementation, hence the first point states that is must be imple-
mented with F#, this will be discussed in the later chapter 4.

A summary will conclude the chapter by describing given discoveries and achieve-
ments in relation to the requirements.

6 Database design

2.2 Description of the tables

Since the problem description holds the overall picture of the problem, we could
do a setup. The database should hold all the information regarding courses,
lecture rooms and exercise room. This information should be defined in a rea-
sonable way, such that updates shouldn’t cause any problems and no conflicts
should arise. Applying this ability will be discussed in the section about normal
forms.

2.2.1 Courses

The first entity at hand is a course. A course should have a unique identifier,
which could be a course number or a course name. Seeing that courses at DTU
all have a unique course number, it is clear that the most simple solution is to
inherit this property. Another property of a course is the amount of students it
has assigned. This should be a simple integer value. The last property would
be to give the course a name, so it’s easily identifiable. And with this we can
denote the following for a course:

• Course - Id number, number of students and a name.

At first glance it looks as if this structure doesn’t hold any information regarding
it’s allocated rooms or resources. This is a deliberate choice, which will be
discussed later in the section about the analysis.

2.2.2 Rooms

The second entity will be the rooms. Rooms should contain two main properties.
That is weather if it’s a lecture or exercise room. This should be presented by
a string, applying either "Auditorium" or "Holdlokale"1 . A room at DTU has
a room number of 1 to 999. This though cannot be used as a unique identifier,
since there might exist rooms by the same number but in different buildings.
This means we should introduce a building number as a property. And an id
number should then serve as the unique identifier. The size of the rooms, which
should work in terms of comparing it with the number of students of a given

1other description of an exercise room is used due to the scheme of the data provided.
Please refer to Appendix A

2.2 Description of the tables 7

course, is going to be presented by an integer value. With this we can denote
following of a room:

• Rooms - Room Id, Room number, building number and size.

This leaves out a very important property - the position of the room. The
importance lies with optimization model in which we use the positions. This
brings us to the next entity - Locations.

2.2.3 Locations

The position of a room can be presented in different ways. The most reasonable
here is to use coordinates. These coordinates should be evaluated as though we
put a grid over the map of DTU. Since the campus of DTU has a square-like
shape, implementing this should be straight forward. And as we have these
coordinates, calculating the distance between two rooms is simple, by applying
triangular distance calculations.

Now, evaluating where a room is precisely in practice is another matter. The
official map of campus of DTU doesn’t state where particular rooms of a building
are at. So we have to settle with the position of the building in which the room
resides. So the location entity should be as following:

• Location - Building number, coordinate x, coordinate y.

2.2.4 Allocations

The last entity is allocations of a room. When we talk about an allocation,
we simply want to know which room that is allocated. For this we need the
associated unique room number, as described earlier. The course of which the
room is allocated to will also be identified with its number.
This leaves us with a new property, which is a the schema table. A schema
table, as described in the problem description, on DTU denotes the time of the
day - monday through friday. A day in divided into two parts, morning and
afternoon. So in total there is ten different schema tables for one room. So the
following should describe an allocation:

• Allocation - Allocation Id, room Id, course number and schema location.

8 Database design

2.3 Entity-relationship diagrams

To further illustrate the solution, E-R diagrams will be illustrated to show the
overall relations between the data entities.

This first diagram 2.1 will center it’s focus around an allocation.

Course

Id number

Number of
students

Name

Allocation Schema
location

Room

Room
number

Building
number

Size

Building
number

Figure 2.1: E-R diagram 1

This last diagram 2.2 shows the relation between a location and its associated
entity:

Room

Room
number

Building
number

Size

Location Building
number

Coordinate
s

Figure 2.2: E-R diagram 2

2.4 Analysis 9

2.4 Analysis

This section will discuss the given solution in relation to normal forms and an
estimate on how it will perform.

2.4.1 Normal forms

Normal forms, when talking about database design, serve as a useful tool to de-
termine the overall quality of a given design. One typically wants to achieve the
highest type of normal form as possible, which ranks from 1 to 42 The normal
forms generally focus on dividing entities into more detailed ones. These divi-
sions will optimize on the general operations done on a database, such as: delete,
insert, modify and update. The optimization lies with the amount of updates
you will have to do upon calling these operations and the level of consistency.

Below are the normal forms described in short:

• The first normal form accepts a table or database for this matter, which
presents the data in a faithful manner with no repetitions. 3

• The second normal form accepts a database, which is foremost in first
normal form. Furthermore properties or attributes, which are not con-
tributing as unique identifier, should appear as dependent on a unique
identifier as a whole. This is typically avoided by dividing a table into two
new table, which now has that non-prime attribute as a unique identifier.
4

• The third normal form accepts a database, which is in second normal
for. Much like the second normal form, we’re talking about the non-prime
attributes. These must be dependent on the unique identifier, but nothing
more. 5

• The fourth normal form concerns on multivalued dependencies, where as
the first three are concerned on functional dependencies. Multivalued
dependencies can be described as different data sets, which on their own
don’t describe an attribute, but together describe it. The fourth normal

2higher normal forms can be achieved, but in this case we will only discuss these four.
3defined by E.F. Codd, 1970
4defined by E.F. Codd, 1971
5defined by E.F. Codd, 1971

10 Database design

form accepts a database containing multivalued dependencies, which are
contains a key. 6

2.4.2 Verifying the design

Now that the normal forms are in place, it’s time to look back at the database
design. The database will be now be compared and analyses to each of the
described normal form, starting with the the first normal form.

The unique identifier for each table in the database, should serve as a tool to
satisfy the first normal form. Though the data it self will serve as a variable to
the first normal form, which is concerned about repetitious entities.

Taking the second normal form at hand, we see that the tables reside indepen-
dently. No attributes are contained in one table and then in another. If we
took the following entity solution as on example: Allocation: courseId, cours-
eStudents, roomNr, building,... basically with all the attributes we could think
of. We then see that updating the database would cause that we would also
have to update other tables than just the allocations table. This would cause
inconsistencies on updates, creating new and deleting existing entities. This
is the reason for dividing the tables into reasonable separate tables for each
information of interest: courses, rooms, allocations and locations.

The database design contains non prime attributes which are only dependent
on unique identifier. Lets take a course as an example. Here we have the entity
was a unique identifier, course name and number of students. We see that
this entity has a unique identifier, which contains two non prime attributes:
name and number of students. These are only present in the course entity and
therefore satisfy the third normal form.

The last normal form, the fourth, as mentioned concerns about multivalued
dependencies. If we had decided to describe an allocation by the coursename as
an identifier, we would have had to take multivalued decencies into concern. But
since an allocation has a unique id number, the allocation is then not dependent
on the course number, and then has no multivalued depencies.

6defined by Ronald Fagin, 1977

2.5 Summary 11

2.5 Summary

In this chapter we described the database design system, by discussing the
problem environment and illustrating the solution. The design was then put
though a quality check by comparing it with the four normal forms described.

12 Database design

Chapter 3

Resource Planning Models

3.1 Introduction

Now that the database is described, it is time to discuss the the problem it self.
Different solutions will then be analyzed and compared to the problem, in which
a solution is going to reveal it self. The end solutions will then be described.

3.2 Analysis

3.2.1 The problem it self

The problem is to allocate courses a lecture room and then exercise rooms,
either one or more if necessary. Referring to the requirements specification, we
see that the allocation should satisfy both the soft and hard constraints. Here
we of course want to prioritize the hard constraints over the soft.

So when allocating a course a room, we then first and foremost want to find
a room, which satisfies the course in terms of the amount of students and is

14 Resource Planning Models

available, i.e. no other course has the room already allocated. When this is
sorted out, the course still need exercise rooms to be allocate, which is where
the soft constraints should come to work.

The exercise rooms should be as close as possible to the given lecture room.
So determining which course is most suitable for a room is in the interest of
the problem. This reveals a complex puzzle with allot of pieces. And since
there are about 250 courses per semester and just as many rooms to accom-
modate, it would be a rather waste to allocated this by hand, i.e. without any
computational effort.

So how do we solve this problem? This will now be discussed in the next section
about general solutions for the resource planning problem.

3.2.2 Different solutions to the Resource Planning Prob-
lem

As mentioned in the introductory section, the resource planning problem is a
well discussed subject and has many solutions. The reason for the many possible
solutions is that is a NP-complete problem.

3.2.3 Brute forcing and the n queen problem

The n-Queen is a problem which cannot be solve in polynomial time, and also
NP-complete, and therefore has solutions which are quite naive in a sense. The
problem it self consist of a n⇥ n board with n queens which have to be placed
on the board such that no queen is able to attack another queen. The illustra-
tion 3.1 below should clarify. The solution to this problem relies on backtracking.

Figure 3.1: Illustration of n queen problem, n = 4

3.2 Analysis 15

It starts by placing a queen at a start point in the first row, and then recursively
places the next queen in the next row. It then backtracks if there’s no available
places in the given row. And continues until is yields a result.

The worst case running time for this algorithm is pretty practical in small prob-
lems. The worst case relies on the number of different solution the algorithm
can potentially yield. So for a 8 ⇥ 8 board, there would be 88 = 16, 777, 216
possibilities. And for larger problems the time complexity grows exponentially.

This problem relates to the resource planning problem, since it concerns about
allocating resources such there are no conflicts to a given constraint. The rel-
evance to the allocation problem will be discussed in a later section in this
chapter.

3.2.4 Simulated annealing

Simulated annealing is a model which works on finding or at least trying to
find a global optimum in wide range of different problems. It’s name originates
from annealing in metallurgy i.e. a specific heating method of a piece of metal in
which the atoms gain randomly states of higher or lower amounts of energy. The
simulated annealing then replaces the current solution of atoms with random
energy with the heuristic of trying to get a more evenly distributed energy
sample. It does so by selecting a random state and checks it’s neighboring states
and determines if there’s another global minimum/maximum. The pseudo code
looks as following ??:

16 Resource Planning Models

Algorithm 1 General application of simulated annealing
1: s = s0, e = E(s)
2: sbest = s, ebest = e, k = 0
3: while k < kmax ^ e > emax do

4: T = temperature(k/kmax)
5: snew = neighbour(s)
6: enew = E(snew)
7: if P (e, enew, T) > random() then

8: s = snew, e = enew
9: end if

10: if e < ebest then

11: sbest = snew, ebest = enew
12: end if

13: k = k + 1
14: end while

15: return sbest

This version terminates when either there’s no more time left or it has done the
max calculations. All these parameters are set before the calculations. And the
longer it runs the closer it should get to a global maximum/minimum, depending
on the heuristics.

3.2.5 Direct heuristics and the SCHOLA system

Another method to the resource planning, or in another sense time tabling
problem, would be to use the SCHOLA system. Which is a slight abriviation
to the bruteforce method. The difference though is that is works on a strategy,
which removes the naivety of the n queens solution.

The SCHOLA system uses simple rules and direct heuristics to allocate resources
by comparing most urgent lecture, determined by how it fits according to the
constraints. Allocating a lecture is done by the three following steps:

A Assign the most urgent lecture to the most favorable period for that lecture.

B When a period can be used only for one lecture, assign the period to that
lecture.

C Move an already-scheduled lecture to a free period so as to leave the period

3.3 The solution 17

for the lecture that we are currently trying to schedule.1

This method will at most work on the first two steps. But once it cannot satisfy
them, it will then start to swap allocations around to reach a solution. Step C
would serve as a sort of backtracking tool, to where step A might have done
some bad decisions.

This method needs some modifications though, if we want it to fit our con-
straints, which will be discussed in the next section.

3.3 The solution

Now that the chosen model solutions have been described, it’s time to put them
in relation to the allocation problem. It will be done in the same order as in the
previous section.

3.3.1 n Queens

Comparing the n Queens problem to our problem, we see some similarities.
The problem is in essence to allocate resources by avoiding conflicts in previous
allocations. This relates to our hard constraints, such as not placing two courses
in the same time table in the same room, but also not to put a course in a room
that’s too small. If we design a solution which places courses working on these
constraints, we should end with a rather naive and bruteforcy but valid design.
So how should we so this?

If we look back at the boards in the n queens problem with columns and rows,
we can then redesign it. If we say that each row represents a room and each
column a time stamp, we then get the following 4.1:

1Schaerf - 1999 - A Survey of Automated Timetabling, page 95 to 96

18 Resource Planning Models

r1 r2 . rn
t1
t2
.
tn

Figure 3.2: Illustration of n queen in relation the allocation of courses

We can then place a course on each coordinate once, if it’s for lecture rooms.
And if we want to allocate exercise rooms for a course, we then place that course
on a coordinate until it’s amount of students is used up, e.g. a course might have
to get more than one exercise room allocated, since exercise room are generally
smaller than lecture rooms.

The worst case running time for this particular solution is rather different from
the standard n queen problem, because of the constraints. Let say we place
a course on (r1, t1). This will still enable us to place the next course on the
next table of the same room i.e. (r1, t2). This gives us the worst case running
time of O((r · t)!). But by applying simple heuristics to this solution, we can
achieve more desirable computation times. One could be to sort the courses by
the number of students and the rooms by their capacity, this would yield as few
conflicts as possible and therefore have a complexity of o((r · t)!). Another could
be to allocate course a room with it’s capacity just enough to satisfy the course.

This bruteforce algorithm will then terminate once every course is placed on the
board, while the hard constraints are met.

The limitation to this solution, is that it doesn’t optimize it’s allocations follow-
ing the soft constraints. But we are sure, that it will yield a solution, in which
all of the courses are allocated.

3.3.2 Simulated annealing

To follow up on our soft constraints, i.e. the distance constraint. We will then
use simulated annealing, modified to fit the allocation problem. To optimized on
the distance between a lecture and exercise rooms of a course, we must compare
eventually free rooms and already allocated rooms with rooms of a given course.

3.3 The solution 19

The reason for this, is that the bruteforce method only cares about allocating
course into available and capable (in term of capacity) rooms. This is where
the naivety of the solution comes into play and motivates us to optimize on the
distance between lecture and exercise rooms.

This is done as following 2

Algorithm 2 Simulated annealing applied to the allocation problem
1: k = 0, t = 0)
2: while k < kmax ^ t > tmax do

3: c1 = randomcourse, c2 = randomcourse
4: canAllocateCloser(c1), canAllocateCloser(c2)
5: if notTheSame(c1, c2) ^ isMoreEfficient(c1, c2) then

6: swapAllocations(c1, c2)
7: end if

8: k = k + 1
9: t = takeT ime

10: end while

Here we choose two random courses. We then check if there free room for either
course closer to their lecture room2 . If not, the two courses are then compared
to their efficiency. The efficiency of a course should be distance/person. This
means we want to achieve the shortest distances for the biggest courses.

The simulated annealing will terminate when either time has run up, or if x
amount of comparisons have been done.

By running simulated or any other solution which works on the soft constraints,
we want to achieve an overall increased effectivity compared to the normal
bruteforce algorithm and maybe even compared to the allocations of DTU at
a given semester. The results will reveal themselves in the later chapter about
tests.

3.3.3 SCHOLA

After the description of the two previous solutions. It stands clear to research
and evaluate a solution, which which follows both the hard and soft constraints
and the same computation, i.e. it’s all done simultaneously. This is where the

2The function canAllocateCloser checks if there’s closer available rooms and reallocates
them if there are.

20 Resource Planning Models

SCHOLA system comes into play. In this solution we hope to achieve a solution,
which satisfies all of the constraints by applying simple heuristics.

So modifying the SCHOLA system to fit our problem will take some work. First
we have to setup some heuristics, which will satisfy our constraints. Not only the
hard constraints but also the soft constraint. Let’s start by listing the following
solution. The steps are described in a more detailed manner compared to the
earlier described system in the section about the generic solution.

A Allocate a course X to the largest lecture room available.

B If there are no available rooms in the chosen time table, compare X with the
currently allocated courses. Use step A on the least suitable course.

C Find the closest building to the one where the lecture resides (can be the
same building)

D If there are no available exercise rooms in the given building, compare the
current allocations. Delete the current allocation of which if the X is more
suitable and reallocate the deleted allocation Y.

E If there are no available exercise room at the given table, reallocate the lecture
room in another available time table.

In step A, we have a current course C1 which needs a lecture room and the
necessary amount of exercise rooms. If there is no lecture rooms available (step
B) in the building B, it will then start to compare C1 with the currently allocated
courses.
If C1 is more suitable than a course C2 already allocate, the allocation of C2 is
deleted and C1 is then allocated. If not, we then jump to another building than
B and perform step A for course C1

After step B, a course C3 is now allocated exercise rooms. Step C finds the
closest building and then checks if there are available rooms. If not, it then step
D will compare the currently allocated courses much like in step B.

This algorithm will give us a solution, but it doesn’t insure us that all courses
are allocated. This is because of the somewhat naive heuristics. If we take the
following illustration at hand.

3.4 Summary 21

1 2 3 4
x

Figure 3.3: Illustration of allocation problem with SCHOLA

We see that if a building has X amount of space in a given timetable and Y
courses allocated. There is then going to be some place left unused, if there is no
other course which can occupy the space left due to capacity constraints. This
sums up to be a problem about finding a sum of numbers and get closest to a
given sum. Lets say we have a set S of numbers 2, 3, 4, 1, 2, 5, how do we find the
use of these number (we can only use each number once), which combination
gets closest to a given number? This is a fairly complex problem, which only
contains bruteforce solution, where you would take the numbers by random and
compare them with other combinations.

This will not be taken into account in the end solution since, we are just inter-
ested in getting results in terms of the soft constraints in this solution.

3.4 Summary

Before evaluating the solution, we determined the constraints and the overall
complexity of the problem. We then started by describing the general solutions
relevant to this problem. Then we analyzed them to then modify them to the
problem it self. Both the bruteforce and SCHOLA methods had it’s pros and
cons. While the bruteforce found a solution, it is very inefficient and with a
exponential worst case running time. The SCHOLA method on the other hand
follows all of the constraints but doesn’t insure all courses get allocated.

Simulated annealing would be a good choice if we want a solution, which meets
all the hard constraints and tries to satisfy the soft.

22 Resource Planning Models

Chapter 4

Implementation

4.1 Short introduction

We now have the solutions at hand, which we are now going to implement using
the database previously described in the database design chapter 2. It is first
and foremost important to evaluate the choice of technologies for the database,
the model and the GUI. The implementation it self will then be described and
discussed in terms of limitations and restrictions which were taken. In rela-
tion the requirements specification the implementation should would meet the
following:

• A simple GUI implementation capable of showing the user the relevant
information.

• Search utilities for rooms and courses.

• Allocation options for different solution models.

• Create utility for a course.

The given requirements should serve as guide for the this chapter. The first
point describes a GUI, which should be capable of different operations. The

24 Implementation

third point says we have to implement the different solution, which is going to
be the bruteforce solution and SCHOLA described in the previous chapter 3.

4.2 Choice of technologies

4.2.1 Design pattern

To start of, it’s most reasonable to discuss the design pattern. The most conve-
nient design pattern for this solution is the ModelViewControl design pattern.
The reason for this, that we can solely separate each language for each part of
the design. It will work well in collation with the model implementation, since
it will be coded in F#. This gives us the ability to create nice and concrete
expressions of the functions, so they can be evaluated out of context to the rest
of the program.

4.2.2 Xaml, C# and F#

The solution will be implemented on the currently newest version of the .NET
4.0 platform. This gives us a variety of tools to implement the different parts
of the program. As mentioned the model will be implemented using F#.

The reason for this is to explore the advantages of F# for designing the model
for any given software implementation. An F# implementation will give us nice
and clear function declaration in a first class order, compared to other different
languages, such as OO1 languages. For further improvements on the end solution
to the project, the F# implementation would motivates us to design a multi
threaded system, since we have avoided mutable values as much as possible.
Another advantage of F# is its multi paradigm language property, meaning
that it can exist as a declarative functional language and still express the same
object oriented structures as we would in e.g. C#.

The control of the visual part will be coded in C# for purposes of keeping the
model implementation separated from the the controller.

The visual part will be coded in XAML for simplicity and general flexibility of
the GUI declaration.

1Object Oriented

4.2 Choice of technologies 25

4.2.3 Linq to SQL

So why do we want a database and not just work with simple unique objects, as
we do in modern programming? Objects, when talking about programming in
general, are unique and exists independently to other objects, and would just for
that sole reason by an attractive choice of data representation. But in contrast
to objects a database would provide us with longterm and reliable data storage
- which relates to the problem at hand. Although working with a database as a
program designer does raise some problems. A sort of missing link would exist
between code and a representation of ones queries. This brings us to the goal
of this section.

Communicating with the SQL database will require tools for the program to
execute queries and should still be a reasonable way to code and design the
solution. The Linq to SQL library will provide us with tools to construct such
queries. In relations to other means of doing this, e.g. different API’s in which
you would declare queries using a string formats, Linq will allow us to easily
describe the queries and provide us with syntax checking in the Visual Studio
coding environment.

The properties of Linq seemed very attractive and was therefore the chosen tool
for this purpose. And by this together with F# we want to achieve nice and
concise declaration of the relevant queries.

The typeprovider used, which will be further described later on, will allows us
to connect to an SQL database. And all we will need to do, is to open the
relevant library and declare a type, in this case schema. This will be our SQL
connection containing a connectionstring, e.g.:
"Data Source=MY-PC \DatabaseName;Initial Catalog=Database;Integrated Se-
curity=True".
The security tag declares to use the integrated Windows authentications utility.

open System . Data . Linq . Sq lC l i en t ; ;

type schema = SqlDataConnection<"CONNECTIONSTRING" >;;

Once we have achieved the connection to the server, the use of DataContext
will allow us to access tables within the database:

l e t db = schema . GetDataContext ()

In this case db will contain all the relevant information, in which we can get all
of our tables in F#.

26 Implementation

The ability to access tables will now allow us to delete and add entities within a
given table. For this we need to get the type of an entity such as a room. This
is done as following:

type room = schema . ServiceTypes . Rooms

The most important and visible advantage of Linq to SQL is revealed as we want
to construct our queries. A query in F# is declared as a function containing a
sequence-like structure. The function will then return a lazy IQuerable sequence,
meaning that the query is not materialized until needed. An example of a query
would look as following:

l e t getRoom id = query { f o r room in db .Rooms do
where (room . Id = id)
s e l e c t (room)
exactlyOne
}

2

The Linq.QueryBuilder contains a comprehensive documentation in which the
usual key components of an SQL query are described.

Taking the examples illustrated above shows us that Linq to SQL does provide
us with queries that are easily constructed and easy to understand.

4.2.4 The TypeProvider

A typeprovider is an essential part of programming in F#. Type providers
will eliminate the barrier in terms of type inconsistency between the program
implementation and exterior sources like a database. The types of an SQL
database and F# aren’t necessarily the same. Take an F# boolean value, this
is denoted as a bit in the SQL database. The integrated F# data TypeProvider
will make sure that we maintain type consistency.

The TypeProvide of F# also works well together with Linq, which is obviously
very desirable. The typeprovide in this case is the sole reason we can do this
and connect to the database as described before.

2Further explanation of the query it self will be in the later section about queries

4.3 Overall design 27

4.3 Overall design

The overall design of the model will consist of different libraries for different
purposes. The first library will be the database library ResourceDatabase.dll
that will contain the functions, in which we create our database and queries. The
second will be ResourceAllocator.dll. This will contain the implementations
of the resource planning models. The third will be DataIO.dll containing the
text processing function in which we go from text to adding entities to the
database. The last library will be the ResourceStatistics.dll containing
function to obviously calculate the statistics for test.

The idea is to get these libraries to work together and also contain function for
which the GUI shall use. The functions are mainly going to be information in
the database in a string format.

4.4 Database

Now that we have the technologies and the overall design described sorted out.
It is time to implement the database using the tools described earlier.

4.4.1 Setup and creating the database

Although the tools provided are very versatile and useful, they have their limits.
You are e.g. not allowed to setup the SQL server it self within the code designing
phase. This has to be done in the SQL setup environment. Though when this is
done, we can access the database much like described in the section about Linq
to Sql section:

l e t connStr ing = @"CONNECTIONSTRING"

l e t conn = new SqlConnect ion (connStr ing)

conn . Open ()

Once the connection is established the next step is construct a query, which
handles the connection and a query string, which should contain a formal SQL
query. If we then take a look back at chapter 2, we can take a room as an
example. Here we want: unique identifier integer, building number string, room

28 Implementation

number string, property string and a size capacity integer. The following query
would look as following:

execNonQuery conn "CREATE�TABLE�Rooms� (
Id� i n t �NOT�NULL,
BuildNr� varchar (50) �NOT�NULL,
RoomNr� varchar (50) �NOT�NULL,
Prop� varchar (50) �NOT�NULL,
S i z e � i n t �NOT�NULL,
PRIMARY�KEY� (Id)) "

Node that types are declared as SQL type and not necessarily F# types. This
has to be taking into consideration, especially for the strings - since they have
a limited length. But for this example i will not raise any problem, though for
a course name we might want to consider a longer string, since we’re not sure
how long a name of a course is. This means we would declare the name as a
string in the form of : "varchar(MAX)".

The execNonQuery is a function which receives an SQL connection and the
query string and returns the type unit. The function is declared as following:

l e t execNonQuery conn s =
l e t comm = new SqlCommand(s , conn , CommandTimeout = 10)
comm. ExecuteNonQuery () |> ignore

This issues an SQL command using the ExecuteNonQuery operation supported
by SQL. This query is often used when you want alter a given database but you
don’t necessarily want to receive any information in return.

4.4.2 Queries

To talk about queries more in a formally fashion than we did earlier in the
section about Linq to SQL, we can start by describing the overall structure of
a query using Linq to SQL. The following illustration should clarify:

query = { queryexpression}3.

With this said, we will now take a few implementations of queries as examples,
and explain their structure and functionality.

3FPBook, 11.8.1 Query Expressions

4.4 Database 29

The first one isn’t exactly a query, but a very essential part of the database.
Adding entities to the database is implemented the following way:
l e t addCourse cour se Id courseName students =

l e t c = new course (CourseId = courseId ,
CourseName = courseName , Students = students)
db . Courses . InsertOnSubmit (c)
db . DataContext . SubmitChanges ()

This function is of the following type : int -> string -> int -> unit. It
creates a course provided by the type course. It then adds it to the database
and tells the datacontext that changes have been made. The consistently of the
unique identifier here relies on the input data. Though if we wanted to add a
room, we would have to implement our own rather naive solution. This would
be a function which counts the number of rows in the Rooms table and applies
that as a key. This function would look as following:
l e t nextRoomId () = query { f o r room in db .Rooms do

count }

This does though raise inconsistencies in terms of update and deleting entities
in a table. Say we would want to delete one allocation and substitute it with
another. This will cause us to rely on another method than the one for the
rooms. So having a mutable integer value, which is incremented every time we
add an allocation will serve as a solution to the problem, although it has it’s
limits in terms of the boundary to the integer type, in this case the Int32. This
will cover at most 2,147,483,647 allocations, which will suffice.

So now that we can add data, lets explore the query for getting an entity by it’s
unique identifier:
l e t getRoom id = query { f o r room in db .Rooms do

where (room . Id = id)
s e l e c t (room . Id , room . BuildNr , room .RoomNr , room . Prop ,
room . S i z e)
exactlyOne
}

4

This function is of type: int -> IQuerable<int*string*string*string*int>.
It iterates through the Rooms table and selects the row where the desirable id’s

4The example doesn’t represent the end implementation. In the real implementation the
indentation is important. The QueryBuilder objects must be in the same indentation within
the expression itself

30 Implementation

equal. The query object exactlyOne insures that we don’t have multiple iden-
tical entities, which would violate the first normal form as described in chapter
2.
So now that we can add and get entities, we would now be able to delete. This
should be done by using the previous techniques used in the add function and get
function. Once you have and entity’s id, you can delete it and submit changes.

The next relevant query would be one, which takes advantage of the join query
object. The newest syntax for the time5 of writing this report for a join is:

join variable in table on (permission)

This will enable us to compare a course with it’s allocations. In following query
we find the building in which a course has it’s allocated lecture room:

l e t getBui ld ingOfCourse c =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n (f o r room in db .Rooms �>
a l l o c a t i o n . RoomId = room . Id)

where (room . Prop . Equals "Auditorium"
&& a l l o c a t i o n . CourseId = c)

s e l e c t (room . BuildNr)
exactlyOne }

The function is of type: int -> IQuerable<string>. It iterates over Allocation
and joins it with the room of which satisfy the permission - in this case the once
with matching room ID’s. It then checks the property.

The last query which we will be describing is one of the more advanced ones. If
we want all exercise rooms combined with all possible time tables we would have
to do a combination where we query for all exercise rooms and then construct
a int*string list.

l e t getExerciseRooms =
l e t qa = query { f o r room in db .Rooms do

where (room . Prop . Contains "Holdomraade" | |
room . Prop . Contains " Ho ld loka l e " | |
room . Prop . Contains " Li l l eGruppe ")
sortBy (room . S i z e)
s e l e c t (room . Id) }

l e t mutable l s = []
f o r room in qa do
5this is mentioned, since the syntax actually changed during the implementation stage

4.5 Input data and text processing 31

f o r t ab l e in schematables do
l s <� (room , tab l e) : : l s

l s

One could just declare the query within the for loop, but this method results in
a much for desirable form and more easy to understand and read.

The end implementation will contain several queries for different purposes. They
are all contained in same library - ResourceDatabase.dll - ResourceQuery.
All of these follow the same techniques and designs described above - so it would
be a bit redundant to discuss them all, but every query has a friendly and well
declared name.

4.5 Input data and text processing

Before we can implement the different resource planning models, we need some
data. The data we need is rooms, courses, DTU’s own allocation for a given
semester and the location for buildings.
All the data is taken from DTU’s own official database from the website6. The
spring semester of 2011 is to be taken as example for this project. The data
unfortunately come is different formats such as pdf’s containing tables. This
means we must resort to a text processing scheme.

By using the provided System.Text.RegularExpressions library we can easily
construct regular expressions and line by line iterate of txt files containing the
relevant input. Lets take courses as an example. Here we have the a line as the
following:

"02101 Indledende programmering – 154"

The corresponding regular expression will then look as following:

l e t regCourse =
Regex @"\ s ⇤ ([\ d]+) (? : \ s +([^\ s]+))⇤\ s ⇤ [\ 0 5 5] [\ 0 5 5] \ s +([\d]+)

By using this, we can iterate over a file containing the information about courses.
The same goes for the rest of the data we want.7

6www.portalen.dtu.dk
7For further detail please refer to Appendix A and C for a coordinate system over a map

a DTU

32 Implementation

4.6 Functions for allocations

The constructed queries now enable us to implement a resource planner. The
overall idea is to have an empty Allocations table, in which it is going to get
allocations progressively added through a solution.

4.6.1 Bruteforce

As mentioned in chapter 3, the bruteforce solution is going to allocated all
courses one lecture room and the necessary amount of exercise rooms. This
is done by trial and error - meaning that it naively places on course on the
board and then recursively tries the same for the next course. This now leads
us to describe the overall solution containing a discussion of data structure and
algorithmic implementation.

As mentioned, the bruteforce method is a naive algorithm which in worst case
tries all combinations, of which you would be able to allocated all courses. So
the most reasonable thing would be to help it on its way. Imagine if we sorted
all lecture rooms courses in descending size. By doing this we would avoid allot
of cases, where it would have to backtrack. This leads us to the talk about data
structures.

4.6.1.1 Data structures

Due to backtracking we can’t rely on the database to carry the allocation in-
formation during the procedure. The only information we can rely on from the
database is the static information and attributes such as the number of students
of a course or the room capacity of a room. This means we must construct our
own static data structures.

To start with we need a list of course numbers - int list. This way we can
query the number of students of the given course. We also need a list of rooms.
Each room should have a time table - so we’ll end with a (room Id, table)
list i.e. int*string list. With this we also need a list of allocation con-
taining the combination of a room, course and time table giving the following
structure int*int*string list. When the algorithm terminates this list will
then contain a solution containing successful allocations that satisfy the hard
contraints. Which then could be added to the database if needed.

4.6 Functions for allocations 33

In context to the bruteforcing of lecture rooms, the bruteforcing of exercise
room will take in a list of lecture room allocation and through that iterate over
courses, since there’s only one course pr. element in the list and we get the time
table of which the exercise rooms must be available in. And it will also take in
a list of just room numbers, since we already have the current time table.

4.6.1.2 Implementation and backtracking

So what we want to do is: we have a course, we then find the next room that
is available and big enough. If this has occurred we then add the allocation
to the allocations list. Then we jump to the next course in the list of courses
recursively. And when we/if we reach the end of the list of courses and we didn’t
use all the rooms, we have succeeded.

The bruteforcing will be split into two parts. First we allocate all courses lecture
rooms and then exercise rooms. This is done for the purpose of easier debugging.
The end implementation looks as following:

34 Implementation

l e t r e c b ru t e f o r c eLe c tu r e s cs a f l =
match cs with
| [] �> Some a
| c : : cs ’ �>

match f l with
| [] �> None
| (r , t) : : f l ’ �>

i f f i t s c r && i sAva i l a b l e r t a then
l e t a ’ = (r , c , t) : : a
match bruteForceLectures cs ’ a ’ roomList with
| Some r e s u l t �> Some r e s u l t
| None �> bruteForceLectures cs a f l ’

e l s e bruteForceLectures cs a f l ’

The function is of type: int list -> int*int*string list -> int*string
list -> int*int*string list. There are two functions which need explain-
ing: fits : int -> int -> bool and isAvailable : int -> string ->
int*int*string list -> bool. The first function containing a query and a
boolean calculation determining if the given course can fit in the given room.
The second checks if the given combination of room and time table exists in the
current allocations list8.

The backtraking is done by taking advantage of the utilities of the Option type.
This type enables us to save the current state of which a course was added an
allocation which did not cause any problems. The backtracking will always take
one step back and try to allocate the course another room. If it then exhaust
the room list, it jumps another step back to the course before that and allocates
it another room. The function terminates when the end of the course list has
been reached.

Bruteforcing allocation for exercise rooms does motivates us to apply the same
method of solution. Although this is possible we have to make some modifica-
tions. The main difference between allocating a lecture and exercise rooms, is
obviously that we have to allocate at least one or more rooms. This isn’t the
only difference, we also have to make sure that all the rooms allocated are in
the same building.

The solution to this would be to incorporate some values that maintain infor-
mation in the recursive calls. The values will be the number of students we have
allocate already and which building we’re in. The end implementation looks as
following:

8Please refer to the Appendix A for further detail.

4.6 Functions for allocations 35

l e t r e c bruteForceExerc i s e s cs a f l i (b : s t r i n g) =
match cs with
| [] �> Some a
| (_, c , t) : : cs ’ �>

match f l with
| [] �> None
| r : : f l ’ �>

l e t s tudent sLe f t = (getS izeOfCourse c) � i
l e t b2 = getBu i ld ing r
i f s tuden t sLe f t > 0 then

i f i sAva i l a b l e r t a && (b2 . Equals b | | b . Equals "") then
l e t a ’ = (r , c , t) : : a
l e t alloRoom = getSizeOfRoom r
match bruteForceExerc i s e s cs a ’ roomList (i + alloRoom)
b2 with
| Some r e s u l t �> Some r e s u l t
| None �> bruteForceExerc i s e s cs a f l ’ 0 ""

e l s e b ruteForceExerc i s e s cs a f l ’ i b
e l s e b ruteForceExerc i s e s cs ’ a b a s i cEx e r c i s eL i s t 0 ""

The function is of type: int*int*string list -> int*int*string list ->
int list -> int -> string -> int*int*string list. Here we see that the
overall design of the implementation looks allot like the implementation of the
allocation of the lecture rooms. The functions getSizeOfCourse, getBuilding
and getSizeOfRoom are all queries9.
For a course we get a time table and a course number. We then calculate how
many students there are left to be allocated a room, if it’s below 0 - we’re done
with the current course and jump to the next. If not, we check if the current
room is in the same building10. If so, we check for availability and instead of
checking if it fits we simply allocate as many students as possible in the given
room. The idea of backtracking is identical to the one in the lecture room
allocation.

4.6.1.3 Short summary

The overall look and feel of the implementation described above motivates to
discuss the choice of components for achieving backtracking.
Taking the bruteforceLectures as an example, we see that by choosing the
Option type as means of backtracking, we get nice, concise and easily under-

9Please refer to Appendix A for further detail about the queries.
10That’s if we have already allocated a room for the course

36 Implementation

standable code. This also provided powerful debugging compared to the use of
F#’s sequence expressions. This brings us to the alternatives to implementing
backtracking in F# - sequence expressions in context to the SQL queries denote
what we want instead of declaring a computation. This would also provide us
with a simple looking and concise implementation, but the Option type seemed
as a more attractive tool because of it’s sequential computations and therefore
much easier to debugging.

4.6.2 SCHOLA

An implementation which satisfies the hard contraints is now in place and it’s
now time to implement the SCHOLA algorithm as described in chapter 3. This
implementation should serve as a tool to get as close as possible to satisfy the
soft constraints and still conceive a solution which allocates as many courses as
possible. The problems with the algorithm were discussed in chapter 3. The
implementation would also raise some limitations. The described step in which
we want to swap to allocation, if one is more suitable than the other, also restrict
us to a limited form of solution exploring.

Unlike the bruteforce implementation, we want to allocate courses step-wise,
i.e. first lecture room for a given course and then exercise rooms for the same
course.11

4.6.2.1 Allocating a lecture room

Much like the brutefroce method it seems most reasonable thing to do is sort the
lecture rooms and courses in descending size. This is done by the Querybuilders
sortByDescending method. This now leads us to the start of step A. We want
to get the available table for the largest room.

l e t getAva i lab l eTab le r (k : s t r i n g l i s t) =
i f Seq . l ength (q1 r) < 10 then

i f L i s t . l ength k < 10 then
l e t t = Set . d i f f e r e n c e (Set . o f L i s t schematables)

(Set . o fSeq (q1 r))
i f L i s t . isEmpty k then

Some (L i s t . nth (Set . t oL i s t t) 0)
e l s e

11For further detail about the algorithm please refer to chapter 3. For further detail about
the implementation please refer to Appendix A.

4.6 Functions for allocations 37

l e t mutable t2 = Set . t oL i s t t
f o r k1 in k do

t2 <� L i s t . f i l t e r (fun t ’ �> not (k1 . Equals t ’)) t2
i f L i s t . l ength t2 > 0 then

Some (L i s t . nth t2 0)
e l s e None

e l s e None
e l s e None

This is done by the function getAvaiableTable : int -> string list ->
string option. It takes a room number and list of strings, which is used for
backtracking12 purposes, which will be described later on. It then returns the
next available table, if there are any, as an Option type string. This is done for
easier matching purposes and nicer code. This type is used many places in the
code for the same reason. Getting the available table is done by comparing the
already used tables with all the possible tables using the high order function
Set.difference. Using this function should serve as a save and clear way of
implementation.

If there is an available table it adds an allocation to the database. If not, it then
compares the current allocations for the given room in all tables. Does is done
by the function isMoreSuitable : int -> int -> int -> string -> int.

l e t r e c isMoreSuitableThan c r n k =
i f (n + (L i s t . l ength backTrackTables)) < 10 then

l e t t = L i s t . nth schematables n
i f not (L i s t . e x i s t s (fun t2 �> t . Equals t2) k) then

l e t c2 = getCourseInRoom r t
i f getS izeOfCourse c2 < getS izeOfCourse c then c2
e l s e isMoreSuitableThan c r (n+1) k

e l s e isMoreSuitableThan c r (n+1) k
e l s e c

This function compares the sizes of two courses and returns the course of which
the initial course is bigger13 then. It is then checked, if the given course returned
is a new one or the same. If it is the same, it then recursively jumps back and
tries to allocate the course for the second largest room and so forth. If it
happens that the course is more suitable than one of those already allocated, it
then deletes the relevant allocation and adds a new.

12Note that backtracking in the context is to try other possible tables for a given course
13"bigger" denotes the number of students

38 Implementation

4.6.2.2 Allocating exercise rooms

Once a course has it’s lecture room allocated, it’s time to allocate the course
the necessary amount of exercise rooms. Much like the bruteforce method, the
overall scheme between allocating a lecture and exercise room is about the same,
but with some modifications to the function of allocating exercise rooms.

The first thing to take into account, is the soft constraint about the distance be-
tween lectures and exercises. This means we must find the closest building with
available rooms or rooms of which the current course would put into better use
i.e. more suitable. So finding the closest building is done by using the function
findSuitableBuilding : int -> string -> int -> string option. The
function looks as following:

l e t r e c f i ndSu i t ab l eBu i l d i n g s i z e b n =
l e t bu i l d ing = f i ndC l o s e s tBu i l d i n g b n
match bu i l d ing with
| Some bu i l d ing �>

l e t bui ldNr = f s t 3 bu i l d ing
i f p o t en t i a l S i z eO fBu i l d i ng bui ldNr > s i z e then

Some buildNr
e l s e f i ndSu i t ab l eBu i l d i n g s i z e b (n+1)

| None �> None

The function findClosestBuilding : string -> int -> string option goes
through the database and applies a distance function using triangular distance
calculations and returns the closest one. The potential size of a building denotes
the summed size of exercise rooms in buildings. This is done by querying the
database for exercise rooms for the given building and materializing the results
to a list and applying the high order function List.fold - this is a general
pattern of analyzing and treating data from the queries. So this description also
serves as a general description of the code design.

After finding a suitable building, we compare the current course with courses
that already have allocated rooms. And swap the allocations if it’s more suitable.
If this though doesn’t yield a solution, i.e. there no available rooms or possible
swaps of allocations, we should backtrack. The backtracking consists of avoiding
time table already tried. This enables us to explain the extra variables in the
functions getAvailableTable and isMoreSuitableThan14 , these also check if
the already used tables are used. The backtracking is done by using a mutable
usedTables : string list.

14For lecture allocations

4.7 GUI 39

This served as a description of the model part of the overall implementation.
So what’s left is the view and control.

4.7 GUI

Taking a look back at the requirements specification we see that the GUI should
contain the following functionalities:

• Search utilities

• Creation of a course

• Allocation option for different allocation models

Not only should it contain the listed functionalities, but it should also serve
as a simple and user friendly visualization of a tool, that teachers can use to
get information about their course and rooms allocated. This brings us to the
description of the view.

4.7.1 View

As mentioned in the section about the choice of technologies, the view should be
implemented using XAML. This will allow us construct the GUI in a declarative
manner, which serves as an easy way to then implement the control, since XAML
and C# are key components in a WPF Application.

The functionalities should be presented by buttons and input fields. Whilst
the results should be printed out in a textblock. And a statusbar should serve
as a tool for giving the user constructive feedback about the process of the
asynchronous worker on queries.

The end idea of the view looks as following:

40 Implementation

Results

Status

Search

Create

Allocate

Figure 4.1: Illustration of the gui and segmentation of functions

4.7.2 Control

Once we have the View constructed, we are to link the buttons their action
listeners. This is done through the Visual Studio environment, which decreases
the workload design-time. This allows us to quickly divide work onto the buttons
and link them to the results panel and statusbar.

4.7.3 Calling functions asynchronously

Asynchronous calls will serve as a part of the user friendly GUI. Calling the
queries and large data sources will normally take some time to return a result.
Because of this, these calls will cause the GUI to freeze, since calling functions
in a normal fashion uses the main GUI-thread. This motivates us to take advan-
tages of the ability to easily call functions in another thread within the .NET
platform.

One way of doing this is construct a background worker using the BackgroundWoker
component within the System.ComponentModel library. And once we initialize
the WPF application we add different delegate even handlers to the background
worker, such as when it has to do work and when it’s completed. The dele-
gates are then declared. This event handler should then give the user a visual
feedback, such as disabling the a search button when a search queries are issued.

4.8 Summary 41

4.8 Summary

So with the implementation done, both problems and successful implementa-
tions were part of the experience.

4.8.1 Encountered problems

One might wonder why the implementation for simulated annealing isn’t de-
scribed. This is simply because it wasn’t implemented, due to time constraints.
It would though we very interesting and a reasonable step to take in terms of
model implementation.

Technological problems also occurred. The most profound problem was the ini-
tial setup of an SQL server. This caused problems such as determining the
correct connectionstring or troubleshooting general connectivity related prob-
lems.

Since there is about 200 courses and over 100 rooms on the campus of DTU, the
sheer size of the data and time complexity of the solutions caused debugging to
be rather difficult and tedious. This motived smaller and constructed cases of
data for debugging, which will be further discussed in the chapter 5 about tests.

4.8.2 Possible optimizations

As mentioned simulated annealing was not implement, which would be the first
model to implement, to further optimize on the overall performance of the prod-
uct. The performance would be better, since simulated annealing takes a so-
lution which doesn’t conflict with the hard constraints and works on the soft.
This is though done by the SCHOLA, but as discussed in the analysis chapter
3, it does involve a success rate.

There is also room for improvement in the current model implementation, such
as further improving the heuristics of the SCHOLA method. This could be to
implement binary search function when finding a suitable building, which should
cause less conflicts. One could also try to solve the problem about finding the
right combination of courses, which will put the given building to best use.

Another improvement would be to implements the models to work on multi
threaded environments. Giving the time complexity and amount of data, this

42 Implementation

improvement would stand clear as one that should be highly prioritized.

Chapter 5

Tests

5.1 Short introduction

With the implementation sorted out it’s time to test the product. The testing
will consist of three different parts. A black box test, a white box test and a
statistics test. As these tests are done a short summary for each is to conclude
in context to the goal of the project.

5.2 Black Box Testing

Black box testing takes the product and tests its essential functionalities at
hand. This test should serve as a clarification of the end product’s quality in
terms of the requirements specifications. The tester should be unaware of the
overall struture of the program, but should be able to go the through given
cases, which should show that the program works as it should.

44 Tests

5.2.1 Goal

So the goal for this test is to construct cases for the test. The cases are then to
be evaluated and then compared with the expected outcome.

5.2.2 Test cases

Test case 1
Description Seacrhing for a room
Actors User/teacher
Preconditions A connection to the SQL server is established
Events - Program is started

- A room number is typed into the relevant textbox
- The "Search" button for a room is clicked

- The button gets disabled
- The results are displayed in the output textblock

- The button gets enabled again
Alternative events A room number is not typed in the relevant textbox

- All rooms are displayed in the output textblock

1

Test case 2
Description Creating a course
Actors User/teacher
Preconditions A connection to the SQL server is established
Events - Program is started

- A course number, name and number of students
is typed into the relevant textbox

- The "Add" button is clicked
- The button gets disabled

- The results are displayed in the output textblock
Alternative events One of the input boxes contain invalid input

- An error message in the statusbar is displayed

Test case 3

1The same schema would be the same for searching for a course and would be redundant
to evaulate

5.2 Black Box Testing 45

Description Calling the bruteforce allocation.
Actors User/teacher
Preconditions A connection to the SQL server is established
Events - Program is started

- The button for bruteforce allocation is clicked
- The button gets disabled

- The results are displayed in the output textblock

5.2.3 Results

Case Result for event
1 The room was displayed as predicted
2 The course was added successfuly
3 The button was clicked and the results were displayed

Case Result for alternative event
1 All rooms for displayed
2 -
3 -

A screenshot of the GUI and a short user manual is provided in Appendix B.

5.2.4 Summary

The black box text didn’t reveal any problems and then confirms the vailidity
of the GUI it self. This dosn’t contain much substance since the GUI didn’t
evolve much doing the process and it wasn’t the goal either. The test does reveal
that there’s room for improvement in terms of exception handling. If one would
want to search for a room with an invalid key, the program will stop end raise
an execption.

Much more comprehensive testing is to be done in the following white box
testing.

46 Tests

5.3 White Box Testing

Compared with the black box testing, the white box testing takes the program
at hand and tests its underlying functions and structures. The tester is aware
of the enviornment and the overall solution, which provides the test cases to be
relevant and effective.

White box testing contains different techniques such as control flow testing, data
flow testing and bracnhing testing2. In this case we will focus on the bracning
testing.

The overall idea is to choose a function or goal of which we want to achieve. The
tester then starts to test the branching functions. E.g. if we wanted to test the
search for a room, we tester would then start to test the most low level function.
This would be a query, that takes in required input set by the tester. The query
would then give some output which should be interpreted and evaluated. The
next step would then be to test the GUI call function by the same procedure.

5.3.1 Goal

The goal for this testing is to test the implementation by selecting some func-
tionalities. Not all the functionalities will be tested, but more as a proof of
concept - a selected sample will be tested.

5.3.2 Test description

The chosen functions we want to test are:

• Searching for a course

• An iteration of scholar

• Bruteforce on small case

The test will be done by describing the function it self and predict the output.
After that, we list the results of all the relevant functions that are called and
used.

2
http : //en.wikipedia.org/wiki/White� boxtesting

5.3 White Box Testing 47

5.3.3 Tests and Results

Searching for course 2405. This test only uncludes one function, which is
getCourse : int -> int * string * int. The following results are:

> ResourceQuery.Queries.getCourse 2405;;
val it : int * string * int = (2405, " Sandsynlighedsregning ", 120)

Here we see that the function returns the expected 3-tuple containing the course
number, name and number of students.

Next is to test an iteration of the scholar implementation. The first itera-
tion is done in the runScholar : unit function, which contains a loop which
calls the function scholar : int -> unit for each course in the database.
It’s start out by calling the allocateLectureRoom : int -> int -> string
option. In this the first branched out function is sortedLectureRooms :
System.Linq.IQueryablie<int>. This yields our first test:

> Seq.nth 0 ResourceQuery.Queries.sortedLectureRooms;;
val it : int = 4.

This is gives us room 4 for the lecture that is going to be checked for avail-
ability. This brings us to check for an available table using the room and the
usedTables : string list, which is used for our backtracking described in
the imlementation chapter 4.

> let u = ResourceAllocator.Allocator.usedTables;;
val u : string list = []
> let t = ResourceQuery.Queries.getAvailableTable 4 u;;
val t : string option = Some "3A"

This gives us table 3A, which will yield an allocation by calling the addBasicAllocation
: int*int*string -> unit. This brings us back the the scholar function,
which checks if the previous function yielded an allocation. Since it did it, ir calls
the function that allocates exercise rooms. In the AllocateExerciseRoom :
int -> string -> string -> int -> bool, the first function of interest is
findSuitableBuilding : int -> string -> int -> string option. The
test looks as following:

> let size = ResourceQuery.Queries.getSizeOfCourse 2405;;
val size : int = 120
> let b = ResourceAllocator.Allocator.findSuitableBuilding size "116"
0;;

48 Tests

val b : string option = Some "116".

The next step in the function is to check if we got a building or not. Since
we did, the function will then call the function potentialSizeOfBuilding :
string -> int.

> ResourceQuery.Queries.potentialSizeOfBuilding "116";; val it : int
= 540

The space left in the building is then calculated, but since there are no courses
yet allocated the space left in building would be equal to the potential size of
the building. And since this is larger than the size og the course, it then starts
to allocate exercise rooms in the building by substracting each roomsize to the
size of the course for each allocation added.

The last test is to try the bruteforce model in a basic case. The basic case will
consist of the following data:

Courses : [26471;12104;10033;11375;2815;2101;11563;10020]

Lecture rooms : [(47,"1A");(48,"1A");(48,"2A");(7,"1A");(73,"1A")
;(71,"1A");(71,"2A");(76,"1A")]

Exercise rooms : [24;25;26;27;28;30;31;32;33;34;35;59;60
;61;62;77;78;79;88;89;67;68]

This case is structured to provoke backtracking, to show that the backtracking
works. The bruteforcing of lecture rooms yields the following results:

> ResourceAllocator.Allocator.basicLectureAllocations;;
val it : (int * int * string) list = [(47, 10020, "1A");
(48, 11563, "2A"); (48, 2101, "1A"); (73, 2815, "1A");
(7, 11375, "1A"); (71, 10033, "2A"); (71, 12104, "1A"); (76, 26471,
"1A")]

The last part of the bruteforce model is to allocate exercise rooms. This yiels
the following results:

> ResourceAllocator.Allocator.basicExerciseAllocations;;
val it : (int * int * string) list = [(68, 26471, "1A");
(67, 26471, "1A"); (89, 12104, "1A"); (88, 12104, "1A");
(32, 10033, "2A"); (31, 10033, "2A"); (30, 10033, "2A");
(79, 11375, "1A"); (78, 11375, "1A"); (77, 11375, "1A");
(62, 2815, "1A"); (61, 2815, "1A"); (60, 2815, "1A");

5.4 Statistics 49

(59, 2815, "1A"); (35, 2101, "1A"); (34, 2101, "1A");
(33, 2101, "1A"); (32, 2101, "1A"); (31, 2101, "1A");
(30, 2101, "1A"); (27, 11563, "2A"); (26, 11563, "2A");
(25, 11563, "2A"); (24, 11563, "2A"); (28, 10020, "1A");
(27, 10020, "1A"); (26, 10020, "1A"); (25, 10020, "1A");
(24, 10020, "1A")]

Now we have been shown that a simple query as finding a course is consistant, a
simple iteration of the scholar and the bruteforce model on a basic case works.
But the reason for doing this project is also to evalaute the performance in
relation to DTU’s own allocations. This brings us to the next section.

5.4 Statistics

An interesting test would also be to evaluate an allocation solution itself, by
analysing the data. This is done so we can put some numbers to an allocation
solution, and say if it’s a good or bad one.

So what is a good allocation? Looking at the soft contraints we might evaluate a
solution on it’s mean distance between a lecture and exercice rooms of a course.
But the standard deviation, should also serve as a tool to do some interesting
evaluation. Since a solution might not be good if there exists a group course of
which the distance is quite far.
A last statistic we want to look at is the mean distance/person. This should
take the case of the larger courses having a short distance and maybe smaller
once having larger. 3

Solution Mean distance Standard deviation distance/person
SCHOLA 47.69 28.07 0.52
DTU 8.73 25.83 0.12

Because of the time compexity of the bruteforce solution, the tests for that
solution were not run, since one test would take over a day.

It should be mentioned that the scholar method only achieved a successrate of
31.5% - allocationg 77 courses out of 245. This is causes by the limitations of
the model discussed in both chapter 3 and 4. So a naive comparison of the these
statistics would be ambisious, but it would still stand as a point of discussion.

3Please refer to Appendix C for a map of DTU. The scale of the results is 1:10

50 Tests

We see that because of the sorted course and lecture rooms, we ran into a
low successrate and therefore also have a high meandistance, since all exercise
building are used for so few courses. Although the standard deviations are
close, shows us that this solution might be viable with some modifications and
optimizations to the heuristics.

The main reason that DTU’s own allocations show these relative good results,
is that it is done by hand and is therefore pretty close to an optimal solution.
One of the main reasons that some courses get long distances, is if it’s a new
course and doesn’t at first get an optimal allocation. This is generaly then first
taken care of the semester after by the administration.

5.5 Conclusion of the tests

The blackbox testing mainly tested the functionality of the GUI, which returned
the expected output. But revealed possible optimizations in terms exception
handling.

The white box testing shows the functionalitites behind the GUI and the main
solution. The white box testing could contain more different test case and
thorough branching in function. But the described test in this project are mainly
to show the concept of a whitebox test.

The statistic revealed to us, that the schola solution does yield a solution that
tries to statisfy the soft constraints, although with a low successrate. Compared
with the allocations of DTU, the schola solution does have a chance to compete.
Looking closer at the DTU allocations4, we see that there are some overbooking,
meaning that large courses get rooms with a too low capacity allocated. This
tells us that there might another means of optimization to the schola solution.
This optimzation could be done by implementing a buffer, which would alow
courses to exceed the limits by a given amount.

4Please refer to Appendix C

Chapter 6

Summary

6.1 Future improvements

Lots of improvements stand clear as discussed in chapter 4 about the implemen-
tation. To sum up, the first most important improvement would be to improve
the heuristics of the schola solution. One would be to optimized on the prob-
lem described in chapter 3 about achieving the optimal combinations, but this
would require a brute force solution, which would further increase the overall
time complexity.

Another obvious improvement would to take advantage of the limited amount
of mutable values in the solution and explore possible multi threaded solutions.

Since the simulated annealing wasn’t implemented, it would be interesting to
see the resulting statistics of such a solution, which would work on an allocation
given by one of the current to models. The most obvious one would be to run it
on the yielded solution of the bruteforce solution, since we know optimizations
would take place in context to the soft constraints. And that the bruteforce has
a 100% success rate.

Current exception handling in the GUI is non existing. If we e.g. search for
a room with an invalid search key, the implemented F# database library will

52 Summary

raise a InvalidOperation exception.

6.2 Did we reach our goal?

Looking back the requirements specification, taking the first point:

• An optimization on how to allocate resources, by implementing a solution
which can allocate resources computationally.

The optimization ended with a product, which contained a GUI with basic
functions. The functions will surface as a simple example on how teachers
would manage their course in terms of room allocations. The product contained
to different solution - a brute force and a schola solution. The brute force
solution yielded a solution on basic cases, but the time complexity did hinder a
real world test. The schola solution tried to satisfy the soft constraints, by using
direct heuristics. The chosen heuristic, preparation of data, and limitation of
the solution it self introduced a success rate, i.e. not all courses were allocated.

The next requirements were:

• A simple GUI implementation capable of showing the user the relevant
information.

• The GUI should contain search utilities for rooms and courses.

• Options for different solution allocation models.

• Create utility for a course.

The blackbox testing confirmed that these operations were implemented. The
GUI contained textboxes and buttons to initiate a command. The output was
then displayed in a textblock, showing the data in a string manner.

And the last requirements:

• An SQL database implemented implemented with F# .

• The database should be of such quality that is satisfies the first four normal
forms.

6.2 Did we reach our goal? 53

Implementing a good database solution initially contains lots of possible solu-
tions. At start the first database design used was inconsistent and did not even
satisfy the second normal form. This was because mainly because the solution
restricted it self to only two different tables. Butt he end solution did follow all
four normal forms and later on in the model implementation stage, turned out
to be nice and consistent to work with.

So in all - alot of improvement should be done before an end product would be
taken in to consideration. But as a proof of concept we showed that computa-
tional allocation coexisting with a nice and user friendly interface is achievable.

54 Summary

Appendix A

Source code

A.1 ResourceCreate.fs

namespace ResourceCreate

open System . Conf igurat ion
open System . Data
open System . Data . Sq lC l i en t

module Create =

l e t connStr ing = @"Data�Source=
����JOACHIM�PC\RESOURCEDATABASE;
���� I n i t i a l �Catalog=Resources ;
���� In t eg ra t ed � Secur i ty=True"

l e t conn = new SqlConnect ion (connStr ing)

conn . Open ()

l e t execNonQuery conn s =
l e t comm = new SqlCommand(s , conn ,
CommandTimeout = 10)

56 Source code

comm. ExecuteNonQuery () |> ignore

execNonQuery conn "CREATE�TABLE�Courses � (
�����������CourseId� i n t �NOT�NULL,
�����������CourseName� varchar (50) �NOT�NULL,
�����������Students � i n t �NOT�NULL,
�����������PRIMARY�KEY� (CourseId)) "

execNonQuery conn "CREATE�TABLE�Rooms� (
����������� Id� i n t �NOT�NULL,
�����������BuildNr� varchar (50) �NOT�NULL,
�����������RoomNr� varchar (50) �NOT�NULL,
�����������Prop� varchar (50) �NOT�NULL,
����������� S i z e � i n t �NOT�NULL,
�����������PRIMARY�KEY� (Id)) "

execNonQuery conn "CREATE�TABLE� Al l o c a t i on s � (
�����������AllocNr � i n t �NOT�NULL,
�����������RoomId� i n t �NOT�NULL,
�����������CourseId� i n t �NOT�NULL,
����������� TableSect ion � varchar (50) �NOT�NULL,
�����������PRIMARY�KEY� (AllocNr)) "

execNonQuery conn "CREATE�TABLE� Locat ions � (
�����������BuildNr� varchar (50) �NOT�NULL,
�����������CoordinateX� f l o a t �NOT�NULL,
�����������CoordinateY� f l o a t �NOT�NULL,
�����������PRIMARY�KEY� (BuildNr)) "

A.2 ResourceQuery.fs

namespace ResourceQuery

open System ; ;
open System . Data ; ;
open Microso f t . FSharp . Data . TypeProviders ; ;
open System . Linq ; ;
open System . Data . Linq . Sq lC l i en t ; ;

[<Generate >]
type schema = SqlDataConnection<"Data�Source=

������JOACHIM�PC\RESOURCEDATABASE;
������ I n i t i a l �Catalog=Resources ;

A.2 ResourceQuery.fs 57

������ In t eg ra t ed � Secur i ty=True" >;;

module Quer ies =

l e t p r i va t e db = schema . GetDataContext ()
l e t rooms = db . Rooms

// type d e c l a r a t i o n s

type room = schema . ServiceTypes . Rooms
type course = schema . ServiceTypes . Courses
type a l l o c a t i o n = schema . ServiceTypes . A l l o c a t i on s
type l o c a t i o n = schema . ServiceTypes . Locat ions

// ba s i c qu e r i e s

l e t p r i va t e nextRoomId () =
query { f o r room in db .Rooms do

count }

l e t p r i va t e amountOfCourses () =
query { f o r course in db . Courses do

count }

l e t mutable aId = 0

l e t p r i va t e inc rementAl l oca t i on Id () = aId <� aId + 1

l e t addRoom (bu i ld ing , e , room , prop , s i z e)
= l e t id = nextRoomId ()

l e t r = new room(Id = id , BuildNr = bui ld ing ,
RoomNr = room , Prop = prop , S i z e = s i z e)

db .Rooms . InsertOnSubmit (r)
db . DataContext . SubmitChanges ()

l e t addCourse (courseId , courseName , s tudents)
= l e t c = new course (CourseId = courseId ,

CourseName = courseName , Students = students)
db . Courses . InsertOnSubmit (c)
db . DataContext . SubmitChanges ()

l e t addBas i cAl locat ion (room , course , t ab l e)
= l e t id = aId

inc r ementAl l oca t i on Id ()

58 Source code

l e t a = new a l l o c a t i o n (AllocNr = id ,
RoomId = room , CourseId = course ,
TableSect ion = tab l e)

db . A l l o c a t i on s . InsertOnSubmit (a)
db . DataContext . SubmitChanges ()

l e t addLocation (bu i ld ing , x , y)
= l e t l = new l o c a t i o n (BuildNr = bui ld ing ,

CoordinateX = x , CoordinateY = y)
db . Locat ions . InsertOnSubmit (l)
db . DataContext . SubmitChanges ()

l e t getRoom id = query { f o r room in db .Rooms do
where (room . Id = id)
s e l e c t (room . Id , room . BuildNr ,

room .RoomNr , room . Prop , room . S i z e)
exactlyOne
}

l e t getRoomId r b = query { f o r room in db . Rooms do
where (room .RoomNr . Contains r

&& room . BuildNr . Contains b)
s e l e c t (room . Id)
headOrDefault
}

l e t getCourse id = query { f o r course in db . Courses do
where (course . CourseId = id)
s e l e c t (course . CourseId ,

course . CourseName , course . Students)
exactlyOne
}

l e t g e tA l l o c a t i on id =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

where (a l l o c a t i o n . AllocNr = id)
s e l e c t (a l l o c a t i o n . AllocNr , a l l o c a t i o n . RoomId ,

a l l o c a t i o n . CourseId , a l l o c a t i o n . TableSect ion)
exactlyOne }

l e t g e tLec tu r eA l l o ca t i on Id r c t =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on
(a l l o c a t i o n . RoomId = room . Id)

A.2 ResourceQuery.fs 59

where (a l l o c a t i o n . RoomId = r &&
a l l o c a t i o n . CourseId = c &&
a l l o c a t i o n . TableSect ion . Contains t &&
room . Prop . Contains "Auditorium")

s e l e c t (a l l o c a t i o n . AllocNr)
exactlyOne }

l e t g e tExe r c i s eA l l o c a t i on Id s c b t =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on
(a l l o c a t i o n . RoomId = room . Id)

where (room . BuildNr . Contains b &&
a l l o c a t i o n . CourseId = c &&
a l l o c a t i o n . TableSect ion . Contains t &&
(room . Prop . Contains "Holdomraade" | |
room . Prop . Contains " Ho ld loka l e " | |
room . Prop . Contains " Li l l eGruppe "))

s e l e c t (a l l o c a t i o n . AllocNr) }

l e t getLocat ion id =
query { f o r l o c a t i o n in db . Locat ions do

where (l o c a t i o n . BuildNr . Contains id)
s e l e c t (l o c a t i o n . CoordinateX , l o c a t i o n . CoordinateY)
exactlyOne }

l e t ge tBu i ld ing id =
query { f o r room in db .Rooms do

where (room . Id = id)
s e l e c t (room . BuildNr)
exactlyOne }

l e t getAllRooms =
query { f o r room in db .Rooms do

s e l e c t (room . Id , room . BuildNr , room .RoomNr ,
room . Prop , room . S i z e) }

l e t getAl lCourse s =
query { f o r course in db . Courses do

s e l e c t (course . CourseId , course . CourseName ,
course . Students) }

l e t ge tAl lCourse Ids =
query { f o r course in db . Courses do

sortByDescending (course . Students)

60 Source code

s e l e c t (course . CourseId)}

l e t ge tAl locatedCourse s =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n course in db . Courses on
(a l l o c a t i o n . CourseId = course . CourseId)

s e l e c t (course . CourseId , course . CourseName , course . Students)
d i s t i n c t }

l e t g e tA l lA l l o c a t i o n s =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

s e l e c t (a l l o c a t i o n . AllocNr , a l l o c a t i o n . RoomId ,
a l l o c a t i o n . CourseId , a l l o c a t i o n . TableSect ion) }

l e t ge tAl locat ionsForCourse c =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

where (a l l o c a t i o n . CourseId = c)
s e l e c t (a l l o c a t i o n . AllocNr , a l l o c a t i o n . RoomId ,

a l l o c a t i o n . CourseId , a l l o c a t i o n . TableSect ion) }

l e t getAllocationsForRoom r =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

where (a l l o c a t i o n . RoomId = r)
s e l e c t (a l l o c a t i o n . AllocNr , a l l o c a t i o n . RoomId ,

a l l o c a t i o n . CourseId , a l l o c a t i o n . TableSect ion) }

l e t g e tA l lLoca t i on s =
query { f o r l o c a t i o n in db . Locat ions do

s e l e c t (l o c a t i o n . BuildNr , l o c a t i o n . CoordinateX ,
l o c a t i o n . CoordinateX) }

l e t g e tBu i l d ing s = query { f o r room in db .Rooms do
s e l e c t (room . BuildNr)
d i s t i n c t }

// conver t ing sequences to l i s t s f o r s imp l i c i t y

l e t allRooms = Seq . t oL i s t getAllRooms

l e t a l lCou r s e s = Seq . t oL i s t ge tAl lCourse s

l e t a l l A l l o c a t i o n s = Seq . t oL i s t g e tA l lA l l o c a t i o n s

l e t a l l L o c a t i o n s = Seq . t oL i s t g e tA l lLoca t i on s

A.2 ResourceQuery.fs 61

l e t a l l Bu i l d i n g s = Seq . t oL i s t g e tBu i l d ing s

l e t a l lA l l o c a t edCour s e s = Seq . t oL i s t ge tAl locatedCourse s

// a l l o c a t i o n qu e r i e s

l e t sortedLectureRooms =
query { f o r room in db .Rooms do

sortByDescending (room . S i z e)
where (room . Prop . Contains "Auditorium")
s e l e c t (room . Id) }

// ge t s the r e l e van t a l l o c a t e d t a b l e s e c t i o n s f o r a room
l e t q1 r = query { f o r room in db .Rooms do

j o i n a l l o c a t i o n in db . A l l o c a t i on s on
(room . Id = a l l o c a t i o n . RoomId)

where (room . Id = r)
s e l e c t (a l l o c a t i o n . TableSect ion) }

l e t getTableForLecture c =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on (a l l o c a t i o n . RoomId = room . Id)
where (a l l o c a t i o n . CourseId = c &&

room . Prop . Contains "Auditorium")
s e l e c t (a l l o c a t i o n . TableSect ion)
exactlyOne }

l e t getCourse s InBui ld ing b t =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on (a l l o c a t i o n . RoomId = room . Id)
where (room . BuildNr . Contains b &&

a l l o c a t i o n . TableSect ion . Contains t)
s e l e c t (a l l o c a t i o n . CourseId) }

l e t getCourseInRoom r t =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

where (a l l o c a t i o n . RoomId = r &&
a l l o c a t i o n . TableSect ion . Contains t)

s e l e c t (a l l o c a t i o n . CourseId)
exactlyOne }

l e t getBui ld ingOfCourse c =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

62 Source code

j o i n room in db .Rooms on (a l l o c a t i o n . RoomId = room . Id)
where (room . Prop . Contains "Auditorium" &&

a l l o c a t i o n . CourseId = c)
s e l e c t (room . BuildNr)
exactlyOne }

l e t getS izeOfCourse c =
query { f o r course in db . Courses do

where (course . CourseId = c)
s e l e c t (course . Students)
exactlyOne }

l e t getSizeOfRoom r =
query { f o r room in db .Rooms do

where (room . Id = r)
s e l e c t (room . S i z e)
exactlyOne }

l e t schematables = ["1A" ; "2A" ; "3A" ; "4A" ; "5A" ; "1B" ; "
����������2B" ; "3B" ; "4B" ; "5B"]

// ge t s a l l l e c t u r e rooms and t h e i r t ab l e s
l e t getLectureRooms =

l e t qa = query { f o r room in db .Rooms do
where (room . Prop . Contains "Auditorium")
sortBy (room . S i z e)
s e l e c t (room . Id) }

l e t mutable l s = []
f o r room in qa do

f o r t ab l e in schematables do
l s <� L i s t . append l s [(room , tab l e)]

l s

l e t getExerciseRooms =
l e t qa = query { f o r room in db .Rooms do

where (room . Prop . Contains "Holdomraade" | |
room . Prop . Contains " Ho ld loka l e " | |
room . Prop . Contains " Li l l eGruppe ")

sortBy (room . S i z e)
s e l e c t (room . Id) }

l e t mutable l s = []
f o r room in qa do

f o r t ab l e in schematables do
l s <� (room , tab l e) : : l s

A.2 ResourceQuery.fs 63

l s

l e t getExerc i seRoomsInBui ld ing b =
query { f o r room in db .Rooms do
where (room . BuildNr . Contains b &&

(room . Prop . Contains "Holdomraade" | |
room . Prop . Contains " Ho ld loka l e " | |
room . Prop . Contains " Li l l eGruppe "))

s e l e c t (room . Id , room . BuildNr , room .RoomNr ,
room . Prop , room . S i z e) }

l e t getLectureRoomForCourse c t =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do
j o i n room in db .Rooms on

(a l l o c a t i o n . RoomId = room . Id)
where (room . Prop . Contains "Auditorium" &&

a l l o c a t i o n . TableSect ion . Contains t &&
a l l o c a t i o n . CourseId = c)

s e l e c t (room . Id)
exactlyOne }

// ge t s the s i z e s o f e x e r c i s e rooms
l e t getExerciseRoomsForCourse c b t =

query { f o r a l l o c a t i o n in db . A l l o c a t i on s do
j o i n room in db .Rooms on

(a l l o c a t i o n . RoomId = room . Id)
where (room . BuildNr . Contains b &&

(room . Prop . Contains "Holdomraade" | |
room . Prop . Contains " Ho ld loka l e " | |
room . Prop . Contains " Li l l eGruppe ") &&
a l l o c a t i o n . TableSect ion . Contains t &&
a l l o c a t i o n . CourseId = c)

s e l e c t (room . S i z e) }

l e t getAl locatedExerc i seRooms b1 t =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on (a l l o c a t i o n . RoomId = room . Id)
where (room . BuildNr . Contains b1 &&

(room . Prop . Contains "Holdomraade" | |
room . Prop . Contains " Ho ld loka l e " | |
room . Prop . Contains " Li l l eGruppe ") &&
a l l o c a t i o n . TableSect ion . Contains t)

s e l e c t (room . Id , room . BuildNr , room .RoomNr ,
room . Prop , room . S i z e) }

64 Source code

l e t g e tA l lL e c tu r eA l l o c a t i on s =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on (a l l o c a t i o n . RoomId = room . Id)
where (room . Prop . Contains "Auditorium")
s e l e c t (a l l o c a t i o n . AllocNr)}

l e t hasAl locatedLecture c =
l e t qa = query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on (a l l o c a t i o n . RoomId = room . Id)
where (a l l o c a t i o n . CourseId = c &&

room . Prop . Contains "Auditorium")
s e l e c t (a l l o c a t i o n . AllocNr) }

not (qa = nu l l)

l e t f i t s c r =
l e t qa = query { f o r room in db .Rooms do

where (room . Id = r)
s e l e c t (room . S i z e)
exactlyOne }

getS izeOfCourse c < qa+1

l e t d e l e t eLe c tu r eA l l o c a t i on c =
l e t qa = query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on
(a l l o c a t i o n . RoomId = room . Id)

where (room . Prop . Contains "Auditorium" &&
a l l o c a t i o n . CourseId = c)

s e l e c t (a l l o c a t i o n) }
f o r a l l o c a t i o n in qa do
db . A l l o c a t i on s . DeleteOnSubmit (a l l o c a t i o n)
db . DataContext . SubmitChanges ()

l e t d e l e t eEx e r c i s eA l l o c a t i o n s b c t =
l e t qa = query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on
(a l l o c a t i o n . RoomId = room . Id)

where (room . BuildNr . Contains b &&
a l l o c a t i o n . CourseId = c &&
a l l o c a t i o n . TableSect ion . Contains t
&&
(room . Prop . Contains "Holdomraade" | |
room . Prop . Contains " Ho ld loka l e " | |
room . Prop . Contains " Li l l eGruppe "))

A.2 ResourceQuery.fs 65

s e l e c t (a l l o c a t i o n) }
(f o r a l l o c a t i o n in qa do

db . A l l o c a t i on s . DeleteOnSubmit (a l l o c a t i o n)
db . DataContext . SubmitChanges ())

l e t getAva i lab l eTab le r (k : s t r i n g l i s t) =
i f Seq . l ength (q1 r) < 10 then

i f L i s t . l ength k < 10 then
l e t t = Set . d i f f e r e n c e

(Set . o f L i s t schematables) (Set . o fSeq (q1 r))
i f L i s t . isEmpty k then

Some (L i s t . nth (Set . t oL i s t t) 0)
e l s e

l e t mutable t2 = Set . t oL i s t t
f o r k1 in k do

t2 <� L i s t . f i l t e r
(fun t ’ �> not (k1 . Equals t ’)) t2

i f L i s t . l ength t2 > 0 then
Some (L i s t . nth t2 0)

e l s e None
e l s e None

e l s e None

l e t getAvai lab leExerc i seRooms b t =
Set . t oL i s t (Set . d i f f e r e n c e (

Set . o fSeq (getExerc i seRoomsInBui ld ing b))
(Set . o fSeq (getAl locatedExerc i seRooms b t)))

l e t d i s t anc e (l 1 : (f l o a t ⇤ f l o a t) , l 2 : (f l o a t ⇤ f l o a t))
= System . Math . Sqrt (System . Math .Pow(System . Math . Abs

((f s t l 2)�(f s t l 1)) , 2 . 0)+ System . Math .Pow(
System . Math . Abs ((snd l 2)�(snd l 1)) , 2 . 0))

l e t f i ndDi s tance = func t i on
| (nu l l ,_) �> 0.0
| (_, nu l l) �> 0.0
| (b1 , b2) �> di s t anc e (getLocat ion b1 , getLocat ion b2)

l e t f i ndC l o s e s tBu i l d i ng b1 n =
l e t s o r t edBu i l d i ng s = L i s t . sortBy

(fun (b2 , x , y) �> f indDi s tance (b1 , b2)) a l l L o c a t i o n s
i f n < L i s t . l ength so r t edBu i l d i ng s then

Some (L i s t . nth so r t edBu i l d ing s n)
e l s e None

66 Source code

l e t po t en t i a l S i z eO fBu i l d i ng b1 =
L i s t . f o l d (fun count (_,_,_,_, s) �> count + s) 0

(Seq . t oL i s t (getExerc iseRoomsInBui ld ing b1))

l e t allocatedRoomCount b1 t =
L i s t . f o l d (fun count (_,_,_,_, s) �> count + s) 0

(Seq . t oL i s t (getAl locatedExerc i seRooms b1 t))

l e t a l locatedSpaceForCourse b t c =
L i s t . f o l d (fun count s �> count + s) 0

(Seq . t oL i s t (getExerciseRoomsForCourse c b t))

l e t so r t edCourse s InBu i ld ing b t n =
L i s t . nth (L i s t . sortBy (fun c �> getSizeOfCourse c)

(Seq . t oL i s t (ge tCourse s InBui ld ing b t))) n

// f unc t i on s f o r s t a t i s t i c s

l e t findLectureRoom c =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on
(a l l o c a t i o n . RoomId = room . Id)

where (a l l o c a t i o n . CourseId = c
&& room . Prop . Contains "Auditorium")

s e l e c t (room . BuildNr)
headOrDefault }

l e t f indExerciseRoom c =
query { f o r a l l o c a t i o n in db . A l l o c a t i on s do

j o i n room in db .Rooms on
(a l l o c a t i o n . RoomId = room . Id)

where (a l l o c a t i o n . CourseId = c &&
(room . Prop . Contains "Holdomraade" | |
room . Prop . Contains " Ho ld loka l e " | |
room . Prop . Contains " Li l l eGruppe "))

s e l e c t (room . BuildNr)
headOrDefault }

// aux i l i a r y f unc t i on s f o r GUI c a l l s

l e t courseToStr ing (cour se Id : int , courseName , s tudents : i n t) =
(s t r i n g cour se Id) + "���" + courseName + "���"

+ (s t r i n g s tudents)

A.2 ResourceQuery.fs 67

l e t roomToString (roomId : int , buildNr , roomNr , prop , s i z e : i n t) =
(s t r i n g roomId) + "���" + buildNr + "���" + roomNr + "���"

+ prop + "���" + (s t r i n g s i z e)

l e t a l l o c a t i onToS t r i ng (a l I d : int , roomId : int , cour se Id : int , t ab l e) =
(s t r i n g a l I d) + "���" + (s t r i n g roomId) + "���"

+ (s t r i n g cour se Id) + "���" + tab l e

l e t al lRoomsToString =
L i s t . f o l d (fun s (id , bnr , rnr , p , s t) �>

s + roomToString (id , bnr , rnr , p , s t) + "\n")
"" allRooms

l e t a l lCour se sToStr ing =
L i s t . f o l d (fun s (id , name , s t) �>

s + courseToStr ing (id , name , s t) + "\n")
"" a l lCou r s e s

l e t a l lA l l o c a t i on sToS t r i n g =
L i s t . f o l d (fun s (a l Id , room , course , t ab l e) �>

s + a l l o c a t i onToS t r i ng (a l Id , room , course , t ab l e) + "\n")
"" a l l A l l o c a t i o n s

// setup

open TextIO . TextProcessor

l e t p r i va t e addRoomFromData s = addRoom (extractRoomData s)

l e t p r i va t e addCourseFromData s = addCourse
(extractCourseData s)

l e t p r i va t e addAllocationFromData s = addBas i cAl locat ion
(ext rac tA l l o ca t i onData s getRoomId)

l e t p r i va t e addLocationFromData s = addLocation
(extractLocat ionData s)

l e t setupRooms = f i l e I t e r (addRoomFromData) p

l e t setupCourses = f i l e I t e r (addCourseFromData) p2

68 Source code

l e t s e tupA l l o c a t i on s = f i l e I t e r (addAllocationFromData) p3

l e t se tupLocat ions = f i l e I t e r (addLocationFromData) p4

A.3 ResourceAllocator.fs

namespace ResourceAl locator

open ResourceQuery

module A l l o ca to r =

open ResourceQuery . Quer ies

l e t schematables = ["1A" ; "2A" ; "3A" ; "4A" ; "5A" ; "1B" ; "2B" ;
"3B" ; "4B" ; "5B"]

// aux i l i a r y f o r g e t t i n g e lements o f 3� tup l e s

l e t f s t 3 (a ,_,_) = a
l e t snd3 (_, b ,_) = b
l e t thd3 (_,_, c) = c

// aux i l i a r y f o r g e t t i n g e lements o f 4� tup l e s

l e t f s t 4 (a ,_,_,_) = a
l e t snd4 (_, b ,_,_) = b
l e t thd4 (_,_, c ,_) = c
l e t f th4 (_,_,_, d) = d

// aux i l i a r y f o r g e t t i n g e lements o f 5� tup l e s

l e t f s t 5 (a ,_,_,_,_) = a
l e t snd5 (_, b ,_,_,_) = b
l e t thd5 (_,_, c ,_,_) = c
l e t f th5 (_,_,_, d ,_) = d
l e t f i f 5 (_,_,_,_, e) = e

// Brute fo r ce

l e t l ectureRoomsList = getLectureRooms

l e t sortedLectureRoomsList =

A.3 ResourceAllocator.fs 69

L i s t . sortBy (fun (r , t) �> getSizeOfRoom r)
lectureRoomsList

l e t exerc i seRoomsLis t = getExerciseRooms

l e t ba s i cLe c tu r eL i s t = [(4 7 , "1A") ; (4 8 , "1A") ; (4 8 , "2A") ;
(7 , "1A") ; (7 3 , "1A") ; (7 1 , "1A") ; (7 1 , "2A") ; (7 6 , "1A")]

l e t b a s i cEx e r c i s eL i s t =
[2 4 ; 2 5 ; 2 6 ; 2 7 ; 2 8 ; 3 0 ; 3 1 ; 3 2 ; 3 3 ; 3 4 ; 3 5 ;

5 9 ; 6 0 ; 6 1 ; 6 2 ; 7 7 ; 7 8 ; 7 9 ; 8 8 ; 8 9 ; 6 7 ; 6 8]

l e t ba s i cCour s eL i s t = [26471 ; 12104 ; 10033 ;
11375 ; 2815 ; 2101 ; 11563 ; 10020]

l e t i sAva i l a b l e r (t : s t r i n g) a l =
not (Seq . e x i s t s (fun (r2 ,_, t2) �> r = r2 && t . Contains t2) a l)

l e t r e c bruteForceLectures cs a f l =
match cs with
| [] �> Some a
| c : : cs ’ �> match f l with

| [] �> None
| (r , t) : : f l ’ �> i f f i t s c r &&

i sAva i l a b l e r t a then
l e t a ’ = (r , c , t) : : a
match bruteForceLectures cs ’

a ’ b a s i cL e c tu r eL i s t with
| Some r e s u l t �> Some r e s u l t
| None �>

bruteForceLectures cs a f l ’
e l s e bruteForceLectures cs a f l ’

l e t l e c t u r eA l l o c a t i o n s =
Option . get (bruteForceLectures

(Seq . t oL i s t ge tAl lCourse Ids) [] sortedLectureRoomsList)

l e t ba s i cLe c tu r eA l l o c a t i on s =
Option . get (bruteForceLectures ba s i cCour s eL i s t []

b a s i cL e c tu r eL i s t)

l e t r e c bruteForceExerc i s e s cs a f l i (b : s t r i n g) =
match cs with
| [] �> Some a

70 Source code

| (_, c , t) : : cs ’ �>
match f l with
| [] �> None
| r : : f l ’ �> l e t s tudent sLe f t =

(getS izeOfCourse c) � i
l e t b2 = getBu i ld ing r
i f s tuden t sLe f t > 0 then

i f i sAva i l a b l e r t a &&
(b2 . Equals b | | b . Equals "") then
l e t a ’ = (r , c , t) : : a
l e t alloRoom = getSizeOfRoom r
match bruteForceExerc i s e s cs a ’

b a s i cEx e r c i s eL i s t (i + alloRoom) b2 with
| Some r e s u l t �> Some r e s u l t
| None �> bruteForceExerc i s e s cs a f l ’ 0 ""

e l s e b ruteForceExerc i s e s cs a f l ’ i b
e l s e b ruteForceExerc i s e s cs ’ a

b a s i cEx e r c i s eL i s t 0 ""

l e t b a s i cEx e r c i s eA l l o c a t i o n s =
Option . get (b ruteForceExerc i s e s

ba s i cL e c tu r eA l l o c a t i on s [] b a s i cEx e r c i s eL i s t 0 "")

//SCOLA

l e t mutable (usedTables : s t r i n g l i s t) = []

l e t r e c isMoreSuitableThan c r n k =
i f (n + (L i s t . l ength usedTables)) < 10 then

l e t t = L i s t . nth schematables n
i f not (L i s t . e x i s t s (fun t2 �> t . Contains t2) k) then

l e t c2 = getCourseInRoom r t
i f getS izeOfCourse c2 < getS izeOfCourse c then c2
e l s e isMoreSuitableThan c r (n+1) k

e l s e isMoreSuitableThan c r (n+1) k
e l s e c

l e t r e c isMoreSuitableThan2 c b t n =
i f n < (L i s t . l ength (Seq . t oL i s t

(getExerc i seRoomsInBui ld ing b))) then
l e t c2 = L i s t . nth (Seq . t oL i s t (ge tCourse s InBui ld ing b t)) n
i f getS izeOfCourse c2 < getS izeOfCourse c then c2

e l s e isMoreSuitableThan2 c b t (n+1)
e l s e c

A.3 ResourceAllocator.fs 71

l e t r e c al locateLectureRoom c n =
i f n < (Seq . l ength sortedLectureRooms) then

i f (L i s t . l ength usedTables) < 10 then
l e t r = Seq . nth n sortedLectureRooms
l e t t = getAva i lab l eTab le r usedTables
match t with
| Some t2 �> addBas i cAl locat ion (r , c , t2)

Some (getBui ld ingOfCourse c)
| None �> l e t c2 = isMoreSuitableThan c r 0 usedTables

i f not (c2 = c) then
l e t t = getTableForLecture c2
l e t mutable id = 0
de l e t eLe c tu r eA l l o c a t i on c2
addBas i cAl locat ion (r , c , t)
a l locateLectureRoom c2 n

e l s e
al locateLectureRoom c (n+1)

e l s e None
e l s e None

l e t r e c f i ndSu i t ab l eBu i l d i n g s i z e b n =
l e t bu i l d ing = f i ndC l o s e s tBu i l d i n g b n
match bu i l d ing with
| Some bu i l d ing �> l e t bui ldNr = f s t 3 bu i l d ing

i f p o t en t i a l S i z eO fBu i l d i ng bui ldNr
> s i z e then Some buildNr

e l s e f i ndSu i t ab l eBu i l d i n g s i z e b (n+1)
| None �> None

l e t r e c a l locateExerc i seRoom c b t n =
l e t s i z e = getSizeOfCourse c
l e t b2 = f i ndSu i t ab l eBu i l d i n g s i z e b n
match b2 with
| None �> f a l s e
| Some b2 �>

l e t spaceLe f t = po t en t i a l S i z eO fBu i l d i ng b2 �
allocatedRoomCount b2 t

i f (spaceLe f t > (getS izeOfCourse c)) then
// i f the a v a i l a b l e space i s g r e a t e r than s i z e o f course

l e t arooms = getAvai lab leExerc i seRooms b2 t
l e t count = getSizeOfCourse c
f o r room in arooms do

i f count > 0 then

72 Source code

l e t count = count �
(getSizeOfRoom (f s t 5 room))

addBas i cAl locat ion ((f s t 5 room) , c , t)
t rue

e l s e
l e t c2 = isMoreSuitableThan2 c b2 t 0
i f (not (c2 = c) &&

(spaceLe f t � getS izeOfCourse c2) >
getS izeOfCourse c) then
// i f the course i s more s u i t a b l e then
//one a l ready a l l o c a t e d in the bu i l d ing
l e t i d s = Seq . t oL i s t (g e tExe r c i s eA l l o c a t i on Id s c2 b2 t)
d e l e t eEx e r c i s eA l l o c a t i o n s b2 c2 t
l e t arooms = getAvai lab leExerc i seRooms b2 t
l e t mutable count = getSizeOfCourse c2
f o r room in arooms do

i f count > 0 then
l e t count = count �

(getSizeOfRoom (f s t 5 room))
addBas i cAl locat ion ((f s t 5 room) , c2 , t)
t rue

e l s e
a l locateExerc i seRoom c b2 t (n+1)
//go to next bu i l d ing

l e t r e c s cho l a r c =
l e t b = al locateLectureRoom c 0
match b with
| Some b �> l e t t = getTableForLecture c

l e t a = al locateExerc i seRoom c b t 0
i f not a then

l e t room = getLectureRoomForCourse c t
usedTables <� t : : usedTables
d e l e t eLe c tu r eA l l o c a t i on c
s cho l a r c

e l s e
usedTables <� []

| None �> usedTables <� []

l e t runScholar =
f o r course in getAl lCourse Ids do

s cho l a r course

l e t runBas icScho lar =

A.4 ResourceStatistics.fs 73

f o r course in bas i cCour s eL i s t do
s cho l a r course

// GUI�c a l l s

l e t bas i cBLectures = L i s t . f o l d
(fun s (room , course , t ab l e) �> s + (s t r i n g room) +

"��" + (s t r i n g course) + "��" + tab l e + "\n") ""
ba s i cL e c tu r eA l l o c a t i on s

l e t ba s i cBExerc i s e s = L i s t . f o l d
(fun s (room , course , t ab l e) �> s + (s t r i n g room) +

"��" + (s t r i n g course) + "��" + tab l e + "\n")
"" ba s i cEx e r c i s eA l l o c a t i o n s

l e t bas icBruteForce = bas icBLectures + bas i cBExerc i s e s

l e t ba s i cScho la =
runBas icScho lar
a l lA l l o c a t i on sToS t r i n g

A.4 ResourceStatistics.fs

namespace Re s ou r c e S t a t i s t i c s

module S t a t i s t i c s =

open System

open ResourceQuery . Quer ies

l e t d i s t anc e id = f indDi s tance
((f indExerciseRoom id) , (findLectureRoom id))

l e t d i s tancePerPerson id =
d i s t ance id /Convert . ToDouble (getS izeOfCourse id)

l e t sumDistance = L i s t . f o l d
(fun d (id ,_,_) �> d + d i s t ance id)
0 .0 a l lA l l o ca t edCour s e s

l e t sumDistancePerPerson = L i s t . f o l d
(fun d (id ,_,_) �> d + distancePerPerson id)

74 Source code

0 .0 a l lA l l o ca t edCour s e s

l e t meanDistance =
sumDistance /

Convert . ToDouble a l lA l l o c a t edCour s e s . Length

l e t meanDistancePerPerson =
sumDistancePerPerson /

Convert . ToDouble a l lA l l o c a t edCour s e s . Length

l l e t var i ance =
(L i s t . f o l d (fun s (id ,_,_) �>

s + Math .Pow(((d i s t ance id) � meanDistance) , 2 . 0))
0 . 0 a l lA l l o ca t edCour s e s)
/ Convert . ToDouble a l lA l l o ca t edCour s e s . Length

l e t s tdDev iat ion = sq r t var iance

A.5 DataIO.fs

namespace TextIO

open System . Text . RegularExpress ions
open System
open System . IO

module TextProcessor =

l e t p r i va t e schematables = ["1A" ; "2A" ; "3A" ; "4A" ; "
��������������5A" ; "5B" ; "2B" ; "1B" ; "4B" ; "3B"]

l e t p = "C:\ Users \Joachim\Desktop\ Skole \Bachelor \
�������������� l o k a l e r . txt "

l e t p2 = "C:\ Users \Joachim\Desktop\ Skole \Bachelor \
�������������� optkurse r . txt "

l e t p3 = "C:\ Users \Joachim\Desktop\ Skole \Bachelor \
�������������� ku r s u s a l l o k e r i n g e r . txt "

l e t p4 = "C:\ Users \Joachim\Desktop\ Skole \Bachelor \
�������������� l o k a t i o n e r . txt "

A.5 DataIO.fs 75

l e t regRoom = Regex @"\ s ⇤ ([^\ s]+)\ s +([^\ s]+)\ s+
�������������� ([^\ s]+)\ s +([^\ s]+)\ s +([\d]+)\ s ⇤"

l e t regCourse = Regex @"\ s ⇤ ([\ d]+) (? : \ s +([^\ s]+))
���������������⇤\ s ⇤ [\ 0 5 5] [\ 0 5 5] \ s +([\d]+)\ s ⇤"

l e t r e gA l l o c a t i on = Regex @"\ s ⇤ ([\ d]+)\ s +([^\ s]+)\ s+
�������������� ([^\ s]+)\ s +([\d]+)\ s +([^\ s]+)\ s +([\d]+)\ s ⇤"

l e t regLocat ion = Regex @"\ s ⇤ ([^\ s]+)\ s +([\d]+)
��������������\ s +([\d]+)\ s ⇤"

l e t p r i va t e toTable = func t i on
| "mandag�0800" �> Li s t . nth schematables 0
| "mandag�1000" �> Li s t . nth schematables 0
| "mandag�1300" �> Li s t . nth schematables 1
| "mandag�1500" �> Li s t . nth schematables 1
| " t i r s d a g �0800" �> Li s t . nth schematables 2
| " t i r s d a g �1000" �> Li s t . nth schematables 2
| " t i r s d a g �1300" �> Li s t . nth schematables 3
| " t i r s d a g �1500" �> Li s t . nth schematables 3
| "onsdag�0800" �> Li s t . nth schematables 4
| "onsdag�1000" �> Li s t . nth schematables 4
| "onsdag�1300" �> Li s t . nth schematables 5
| "onsdag�1500" �> Li s t . nth schematables 5
| " torsdag �0800" �> Li s t . nth schematables 6
| " torsdag �1000" �> Li s t . nth schematables 6
| " torsdag �1300" �> Li s t . nth schematables 7
| " torsdag �1500" �> Li s t . nth schematables 7
| " f r edag �0800" �> Li s t . nth schematables 8
| " f r edag �1000" �> Li s t . nth schematables 8
| " f r edag �1300" �> Li s t . nth schematables 9
| " f r edag �1500" �> Li s t . nth schematables 9
| _ �> ""

l e t p r i va t e cap tu r eS ing l e (ma: Match) (n : i n t) =
ma. Groups . [n] . Captures . [0] . Value

l e t p r i va t e cap tu r eL i s t (ma: Match) (n : i n t) =
l e t capt = ma. Groups . [n] . Captures
l e t m = capt . Count � 1
[f o r i in 0 . .m �> capt . [i] . Value]

l e t extractRoomData s =

76 Source code

l e t m = regRoom . Match s
(cap tu r eS ing l e m 1 , cap tu r eS ing l e m 2 ,

cap tu r eS ing l e m 3 , cap tu r eS ing l e m 4 ,
Int32 . Parse (cap tu r eS ing l e m 5))

l e t extractCourseData s =
l e t m = regCourse . Match s
(Int32 . Parse (cap tu r eS ing l e m 1) ,

L i s t . f o l d (fun t1 t2 �> t1 + "�" + t2 + "�") ""
(cap tu r eL i s t m 2) , Int32 . Parse (cap tu r eS ing l e m 3))

l e t ex t rac tA l l o ca t i onData s g =
l e t m = regA l l o c a t i on . Match s
(g (cap tu r eS ing l e m 6) (cap tu r eS ing l e m 5) ,

Int32 . Parse (cap tu r eS ing l e m 1) ,
toTable (cap tu r eS ing l e m 2 + "�" + captu r eS ing l e m 3))

l e t extractLocat ionData s =
l e t m = regLocat ion . Match s
(cap tu r eS ing l e m 1 ,
Convert . ToDouble (Int32 . Parse (cap tu r eS ing l e m 2)) ,
Convert . ToDouble (Int32 . Parse (cap tu r eS ing l e m 3)))

l e t p r i va t e f i l e X i t e r g path =
use s = F i l e . OpenText path
whi l e not (s . EndOfStream)

do g s
s . Close ()

l e t f i l e I t e r g s =
f i l e X i t e r (fun s �> g (s . ReadLine ())) s

A.6 MainWindow.xaml

<Window x : Class="ResourceGUI . MainWindow"
xmlns="http :// schemas . m i c ro so f t . com/winfx /2006/xaml/ p r e s en ta t i on "
xmlns : x="http :// schemas . m i c ro so f t . com/winfx /2006/xaml"
T i t l e="ResourcePlanner " Height="411" Width="763"

ResizeMode="NoResize ">
<Grid>

<Grid . ColumnDefinit ions>
<ColumnDefinit ion Width="400"/>
<ColumnDefinit ion Width="400"/>

A.6 MainWindow.xaml 77

</Grid . ColumnDefinit ions>
<Grid . RowDefinit ions>

<RowDefinit ion Height="0"/>
<RowDefinit ion Height="0"/>
<RowDefinit ion/>
<RowDefinit ion Height="20"/>

</Grid . RowDefinit ions>
<Scro l lV i ewer Grid .Row="2" Margin=" 5 ,5 ,49 ,5 "

CanContentScrol l="True" V e r t i c a l S c r o l l B a rV i s i b i l i t y="Auto"
Grid . Column="1">

<TextBlock Name="DataOutput" HorizontalAl ignment=" Le f t "
Grid .Row="2" TextWrapping="Wrap" Vert ica lAl ignment="Top"
Height="Auto" Width="Auto"/>

</Scro l lV iewer>
<Rectangle Name="TopBackGround" Grid .Row="0" Grid . RowSpan="2"

Grid . Column="1" F i l l="LightGray" Margin=" 0 ,0 ,41 ,0 "/>
<Rectangle Name="SideBackGround" Grid . Column="0"

Grid .Row="0" F i l l="LightGray" Grid . RowSpan="4"/>

<GroupBox Header="Search " HorizontalAl ignment=" Le f t "
Vert ica lAl ignment="Top" Height="84" Width="380"
Margin=" 10 ,14 ,0 ,0 " Grid .Row="2"/>

<GroupBox Header="Create " HorizontalAl ignment=" Le f t "
Width="382" Margin=" 8 ,144 ,0 ,143 " Grid .Row="2"/>

<GroupBox Header=" Al l o ca t e " HorizontalAl ignment="Right"
Grid .Row="2" Vert ica lAl ignment="Top" Height="148"
Grid . RowSpan="2" Width="382" Margin=" 0 ,220 ,8 ,0 "/>

<TextBox Name="courseBox" HorizontalAl ignment=" Le f t "
Margin=" 76 ,35 ,0 ,0 " TextWrapping="Wrap" Text=""
Vert ica lAl ignment="Top" Width="143" Height="22"
Grid .Row="2"/>

<TextBox Name="roomBox" HorizontalAl ignment=" Le f t "
Margin=" 76 ,62 ,0 ,0 " TextWrapping="Wrap" Text=""
Vert ica lAl ignment="Top" Width="143" Grid .Row="2"
Height="22"/>

<TextBox Name="courseNumberBox" HorizontalAl ignment=" Le f t "
Margin=" 66 ,174 ,0 ,0 " Text="Number" TextWrapping="Wrap"
Vert ica lAl ignment="Top" Width="68" Height="22"
Grid .Row="2"/>

<TextBox Name="courseNameBox" HorizontalAl ignment=" Le f t "
Margin=" 139 ,174 ,0 ,0 " TextWrapping="Wrap" Text="Name"
Vert ica lAl ignment="Top" Width="97" Grid .Row="2"/>

<TextBox Name=" courseStudentsBox " HorizontalAl ignment=" Le f t "

78 Source code

Margin=" 241 ,174 ,0 ,0 " TextWrapping="Wrap" Text="Students "
Vert ica lAl ignment="Top" Grid .Row="2"/>

<TextBox Name="al loCourseBox " HorizontalAl ignment=" Le f t "
Margin=" 67 ,241 ,0 ,0 " Text="Number" TextWrapping="Wrap"
Vert ica lAl ignment="Top" Width="152" Height="22"
Grid .Row="2"/>

<TextBox Name="alloRoomsBox" HorizontalAl ignment=" Le f t "
Margin=" 67 ,268 ,0 ,0 " Text="Number" TextWrapping="Wrap"
Vert ica lAl ignment="Top" Width="152" Height="22"
Grid .Row="2"/>

<Button Content="Search " Name="SearchCourseButton"
HorizontalAl ignment=" Le f t " Margin=" 227 ,35 ,0 ,0 "
Vert ica lAl ignment="Top" Width="75" Grid .Row="2"
Cl i ck=" searchForCourse " Height="22"
RenderTransformOrigin=" �0.12 ,0.636 "/>

<Button Content="Search " Name="SearchRoomButton"
HorizontalAl ignment=" Le f t " Margin=" 227 ,62 ,0 ,0 "
Vert ica lAl ignment="Top" Width="75" Grid .Row="2"
Cl i ck="searchForRoom" Height="22"/>

<Button Content="Cancel " Name="SearchCourseButtonCancel "
HorizontalAl ignment=" Le f t " Margin=" 307 ,35 ,0 ,0 "
Vert ica lAl ignment="Top" Width="75" Grid .Row="2"
Cl i ck="Cancel " Height="22"/>

<Button Content="Cancel " Name="SearchRoomButtonCancel"
HorizontalAl ignment=" Le f t " Margin=" 307 ,62 ,0 ,0 "
Vert ica lAl ignment="Top" Width="75" Grid .Row="2"
Cl i ck="Cancel " Height="22"
RenderTransformOrigin=" �0.12 ,0.636 "/>

<Button Content="Add" Name="AddCourseButton"
HorizontalAl ignment=" Le f t " Margin=" 303 ,174 ,0 ,0 "
Vert ica lAl ignment="Top" Width="78" Grid .Row="2"
Cl i ck="addCourse"/>

<Button Content="Search " Name="SearchAlloCourseButton "
HorizontalAl ignment=" Le f t " Margin=" 224 ,241 ,0 ,0 "
Vert ica lAl ignment="Top" Width="75" Grid .Row="2"
Cl i ck=" searchForAl loCourse " Height="22"
RenderTransformOrigin=" �0.12 ,0.636 "/>

<Button Content="Cancel " Name="SearchAlloCourseButtonCancel "
HorizontalAl ignment=" Le f t " Margin=" 304 ,241 ,0 ,0 "
Vert ica lAl ignment="Top" Width="78" Grid .Row="2"
Cl i ck="Cancel " Height="22"/>

<Button Content="BruteForce " Name="BruteForceButton"
HorizontalAl ignment=" Le f t " Margin=" 23 ,341 ,0 ,0 "

A.6 MainWindow.xaml 79

Vert ica lAl ignment="Top" Width="100" Grid .Row="2"
Cl i ck="bruteForce " Height="22"
RenderTransformOrigin=" �0.12 ,0.636 "/>

<Button Content="Cancel " Name="RoomAlloButtonCancel"
HorizontalAl ignment=" Le f t " Margin=" 304 ,268 ,0 ,0 "
Vert ica lAl ignment="Top" Width="78" Grid .Row="2"
Cl i ck="Cancel " Height="22"/>

<Button Content="SCHOLA" Name="ScholaButton"
HorizontalAl ignment=" Le f t " Margin=" 154 ,341 ,0 ,0 "
Vert ica lAl ignment="Top" Width="100" Grid .Row="2"
Cl i ck=" scho la " Height="22"
RenderTransformOrigin=" �0.12 ,0.636 "/>

<Button Content="SA" Name="saButton" IsEnabled=" Fal se "
HorizontalAl ignment=" Le f t " Margin=" 282 ,341 ,0 ,0 "
Vert ica lAl ignment="Top" Width="100" Grid .Row="2"
Height="22" RenderTransformOrigin=" �0.12 ,0.636 "/>

<Button Content="Search " Name="SearchAlloRoomButton"
HorizontalAl ignment=" Le f t " Margin=" 224 ,268 ,0 ,0 "
Vert ica lAl ignment="Top" Width="75" Grid .Row="2"
Cl i ck="searchForAlloRoom" Height="22"
RenderTransformOrigin=" �0.12 ,0.636 "/>

<TextBlock Name =" Statusbar " HorizontalAl ignment=" Le f t "
Grid .Row="3" Grid . Column="1" Vert ica lAl ignment="Top"
Background="LightGray" Width="439" Height="20"
Margin="0 ,0 ,�80 ,0 "/>

<TextBlock HorizontalAl ignment=" Le f t " Margin=" 27 ,35 ,0 ,0 "
TextWrapping="Wrap" Text="Course : �"
Vert ica lAl ignment="Top" Height="22" Width="44"
TextAlignment="Center "
RenderTransformOrigin=" 0 .636 , 0 . 545 " Grid .Row="2" />

<TextBlock HorizontalAl ignment=" Le f t " Margin=" 27 ,62 ,0 ,0 "
TextWrapping="Wrap" Text="Room: �" Vert ica lAl ignment="Top"
Height="22" Width="44" Grid .Row="2" />

<TextBlock HorizontalAl ignment=" Le f t " Margin=" 22 ,174 ,0 ,0 "
TextWrapping="Wrap" Text="Course : "
Vert ica lAl ignment="Top" Height="22" Grid .Row="2"/>

<TextBlock HorizontalAl ignment=" Le f t " Margin=" 23 ,244 ,0 ,0 "
TextWrapping="Wrap" Text="Course : " Vert ica lAl ignment="Top"
Height="22" Grid .Row="2"/>

<TextBlock HorizontalAl ignment=" Le f t " Margin=" 22 ,268 ,0 ,0 "
TextWrapping="Wrap" Text="Room: �" Vert ica lAl ignment="Top"
Height="22" Width="40" Grid .Row="2" />

</Grid>

80 Source code

</Window>

A.7 MainWindow.xaml.cs

us ing System ;
us ing System . Windows ;
us ing ResourceQuery ;
us ing ResourceAl locator ;
us ing System . ComponentModel ;

namespace ResourceGUI
{

/// <summary>
/// In t e r a c t i on l o g i c f o r MainWindow . xaml
/// </summary>
pub l i c p a r t i a l c l a s s MainWindow : Window
{

pr i va t e System . ComponentModel . BackgroundWorker
backgroundWorker =
new System . ComponentModel . BackgroundWorker () ;

pub l i c MainWindow()
{

In i t i a l i z eComponent () ;

t h i s . backgroundWorker .DoWork += new
System . ComponentModel . DoWorkEventHandler
(t h i s . backgroundWorker_DoWork) ;

t h i s . backgroundWorker . RunWorkerCompleted += new
System . ComponentModel . RunWorkerCompletedEventHandler (
t h i s . backgroundWorker_RunWorkerCompleted) ;

t h i s . backgroundWorker . WorkerSupportsCancel lat ion = true ;
t h i s . backgroundWorker . WorkerReportsProgress = true ;

}

p r i va t e void d i sab l eButtons ()
{

SearchCourseButton . IsEnabled = f a l s e ;
SearchRoomButton . IsEnabled = f a l s e ;
SearchAlloRoomButton . IsEnabled = f a l s e ;
SearchAlloCourseButton . IsEnabled = f a l s e ;
BruteForceButton . IsEnabled = f a l s e ;

A.7 MainWindow.xaml.cs 81

saButton . IsEnabled = f a l s e ;
ScholaButton . IsEnabled = f a l s e ;

}

p r i va t e void enableButtons ()
{

SearchCourseButton . IsEnabled = true ;
SearchRoomButton . IsEnabled = true ;
SearchAlloRoomButton . IsEnabled = true ;
SearchAlloCourseButton . IsEnabled = true ;
BruteForceButton . IsEnabled = true ;
saButton . IsEnabled = true ;
ScholaButton . IsEnabled = true ;

}

p r i va t e void d i sab leCance lButtons ()
{

SearchCourseButtonCancel . IsEnabled = f a l s e ;
SearchRoomButtonCancel . IsEnabled = f a l s e ;
SearchAlloCourseButtonCancel . IsEnabled = f a l s e ;
RoomAlloButtonCancel . IsEnabled = f a l s e ;

}

p r i va t e void enableCancelButtons ()
{

SearchCourseButtonCancel . IsEnabled = true ;
SearchRoomButtonCancel . IsEnabled = true ;
SearchAlloCourseButtonCancel . IsEnabled = true ;
RoomAlloButtonCancel . IsEnabled = true ;

}

bool _a l l c ou r s e s = f a l s e ;
bool _allrooms = f a l s e ;
bool _a l l a l l o c o u r s e s = f a l s e ;
bool _a l l a l l o rooms = f a l s e ;
bool _schola = f a l s e ;
bool _brute force = f a l s e ;

p r i va t e void backgroundWorker_DoWork (ob j e c t sender ,
DoWorkEventArgs e)

{
i f (_a l l c ou r s e s == true) e . Result = a l lCou r s e s () ;
i f (_allrooms == true) e . Result = allRooms () ;
i f (_a l l a l l o c o u r s e s == true) e . Result = a l l A l l o c a t i o n s () ;

82 Source code

i f (_a l l a l l o rooms == true) e . Result = a l l A l l o c a t i o n s () ;
i f (_schola == true) e . Result = scho laResu l t () ;
i f (_brute force == true) e . Result = bru t e f o r c eRe su l t () ;

_a l l c ou r s e s = f a l s e ;
_allrooms = f a l s e ;
_a l l a l l o c o u r s e s = f a l s e ;
_a l l a l l o rooms = f a l s e ;
_schola = f a l s e ;
_brute force = f a l s e ;

i f (t h i s . backgroundWorker . Cance l lat ionPending)
{

e . Cancel = true ;
r e turn ;

}
}

p r i va t e void backgroundWorker_RunWorkerCompleted
(ob j e c t sender , RunWorkerCompletedEventArgs e)

{
i f (e . Cance l l ed)
{

Statusbar . Text = " Process � Cance l l ed . " ;
}
e l s e
{

Statusbar . Text = " Proce s s ing � completed . �" ;
DataOutput . Text = (s t r i n g) e . Result ;

}
enableButtons () ;

}

p r i va t e void Cancel (ob j e c t sender , RoutedEventArgs r)
{

t h i s . backgroundWorker . CancelAsync () ;
enableButtons () ;
d i sab leCance lButtons () ;

}

p r i va t e void searchForCourse (ob j e c t sender , RoutedEventArgs e)
{

DataOutput . Text = "" ;
dynamic coursedata ;

A.7 MainWindow.xaml.cs 83

i f (courseBox . Text != "")
{

coursedata = Quer ies . getCourse (
Int32 . Parse (courseBox . Text)) ;

DataOutput . Text = Quer ies . courseToStr ing (
coursedata . Item1 , coursedata . Item2 ,
coursedata . Item3) ;

}
e l s e
{

d i sab l eButtons () ;
_a l l c ou r s e s = true ;
t h i s . backgroundWorker . RunWorkerAsync () ;

}
}

p r i va t e void searchForRoom (ob j e c t sender , RoutedEventArgs e)
{

DataOutput . Text = "" ;
dynamic roomdata ;
i f (roomBox . Text != "")
{

roomdata = Quer ies . getRoom(
Int32 . Parse (roomBox . Text)) ;

DataOutput . Text = Quer ies . roomToString (
roomdata . Item1 , roomdata . Item2 , roomdata . Item3 ,
roomdata . Item4 , roomdata . Item5) ;

}
e l s e
{

d i sab l eButtons () ;
_allrooms = true ;
t h i s . backgroundWorker . RunWorkerAsync () ;

}
}

p r i va t e void searchForAl loCourse (ob j e c t sender ,
RoutedEventArgs e)

{
DataOutput . Text = "" ;
dynamic coursedata ;
i f (a l loCourseBox . Text != "")
{

84 Source code

coursedata = Quer ies . ge tAl locat ionsForCourse (
Int32 . Parse (al loCourseBox . Text)) ;

DataOutput . Text = Quer ies . a l l o c a t i onToS t r i ng (
coursedata . Item1 , coursedata . Item2 , coursedata . Item3 ,
coursedata . Item4) ;

}
e l s e
{

d i sab l eButtons () ;
_a l l a l l o c o u r s e s = true ;
t h i s . backgroundWorker . RunWorkerAsync () ;

}
}

p r i va t e void searchForAlloRoom (ob j e c t sender , R
outedEventArgs e)

{
DataOutput . Text = "" ;
dynamic roomdata ;
i f (alloRoomsBox . Text != "")
{

roomdata = Quer ies . getAllocationsForRoom (
Int32 . Parse (alloRoomsBox . Text)) ;

DataOutput . Text = Quer ies . a l l o c a t i onToS t r i ng (
roomdata . Item1 , roomdata . Item2 , roomdata . Item3 ,
roomdata . Item4) ;

}
e l s e
{

d i sab l eButtons () ;
_a l l a l l o rooms = true ;
t h i s . backgroundWorker . RunWorkerAsync () ;

}
}

p r i va t e void addCourse (ob j e c t sender , RoutedEventArgs e)
{

i n t cId = Int32 . Parse (courseNumberBox . Text) ;
s t r i n g cName = courseNameBox . Text ;
i n t s tudents = Int32 . Parse (courseStudentsBox . Text) ;
Quer ies . addCourse (cId , cName , s tudents) ;
courseNumberBox . Text = "" ;
courseNameBox . Text = "" ;
courseStudentsBox . Text = "" ;

A.7 MainWindow.xaml.cs 85

}

p r i va t e void bruteForce (ob j e c t sender , RoutedEventArgs e)
{

_brute force = true ;
t h i s . backgroundWorker . RunWorkerAsync () ;

}

p r i va t e void s cho la (ob j e c t sender , RoutedEventArgs e)
{

_schola = true ;
t h i s . backgroundWorker . RunWorkerAsync () ;

}

p r i va t e s t r i n g a l lCou r s e s ()
{

re turn Quer ies . a l lCour se sToStr ing ;
}

p r i va t e s t r i n g allRooms ()
{

re turn Quer ies . al lRoomsToString ;
}

p r i va t e s t r i n g a l l A l l o c a t i o n s ()
{

re turn Quer ies . a l lA l l o c a t i on sToS t r i n g ;
}

p r i va t e s t r i n g b ru t e f o r c eRe su l t ()
{

re turn A l l o ca to r . bas icBruteForce ;
}

p r i va t e s t r i n g s cho laResu l t ()
{

re turn A l l o ca to r . ba s i cScho la ;
}

}
}

86 Source code

Appendix B

Test results

B.1 User manual

The window contains functionalities represented by textfields and buttons.

Searching for a course or room - Enter the given course number or room number
which you want to view (the number must be valid) and press the "Search"
button next to it. If you want to view all courses or room, simply press the
button leaving either textfields empty.

Creating a course - Enter a number, name and number of students in the correct
fields and press the "Add" button.

Searching for allocations of a course or room - Enter the course number or room
number in the correct fields and press the "Search" button.

Running the brute force solution or schola on basic cases - Press either the
"BruteForce" or "SCHOLA" button.

88 Test results

Figure B.1: Assigned coordinates over DTU campus

Appendix C

References

• Schaerf - 1999 - A Survey of Automated Timetabling

• Gu et al. - Unknown - Building University Timetables Using Constraint
Logic Programming.

• Burke et al. - Unknown - Examination Timetabling in British Universities
A Survey 2 The Timetabling Problem

• The system programming series - An Introduction to Database Systems,
snd Edition C. J. DATE.

• Introduction to programming using SML

• Functional Programming using F#, Michael R. Hansen and Hans Rischel,
Version 0.8.9 (March 8, 2012).

90 References

Figure C.1: Assigned coordinates over DTU campus

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	1.1 Short introduction to Resource Planning
	1.1.1 The environment of the problem
	1.1.2 Goal

	1.2 Requirements Specification

	2 Database design
	2.1 Introduction
	2.2 Description of the tables
	2.2.1 Courses
	2.2.2 Rooms
	2.2.3 Locations
	2.2.4 Allocations

	2.3 Entity-relationship diagrams
	2.4 Analysis
	2.4.1 Normal forms
	2.4.2 Verifying the design

	2.5 Summary

	3 Resource Planning Models
	3.1 Introduction
	3.2 Analysis
	3.2.1 The problem it self
	3.2.2 Different solutions to the Resource Planning Problem
	3.2.3 Brute forcing and the n queen problem
	3.2.4 Simulated annealing
	3.2.5 Direct heuristics and the SCHOLA system

	3.3 The solution
	3.3.1 n Queens
	3.3.2 Simulated annealing
	3.3.3 SCHOLA

	3.4 Summary

	4 Implementation
	4.1 Short introduction
	4.2 Choice of technologies
	4.2.1 Design pattern
	4.2.2 Xaml, C# and F#
	4.2.3 Linq to SQL
	4.2.4 The TypeProvider

	4.3 Overall design
	4.4 Database
	4.4.1 Setup and creating the database
	4.4.2 Queries

	4.5 Input data and text processing
	4.6 Functions for allocations
	4.6.1 Bruteforce
	4.6.2 SCHOLA

	4.7 GUI
	4.7.1 View
	4.7.2 Control
	4.7.3 Calling functions asynchronously

	4.8 Summary
	4.8.1 Encountered problems
	4.8.2 Possible optimizations

	5 Tests
	5.1 Short introduction
	5.2 Black Box Testing
	5.2.1 Goal
	5.2.2 Test cases
	5.2.3 Results
	5.2.4 Summary

	5.3 White Box Testing
	5.3.1 Goal
	5.3.2 Test description
	5.3.3 Tests and Results

	5.4 Statistics
	5.5 Conclusion of the tests

	6 Summary
	6.1 Future improvements
	6.2 Did we reach our goal?

	A Source code
	A.1 ResourceCreate.fs
	A.2 ResourceQuery.fs
	A.3 ResourceAllocator.fs
	A.4 ResourceStatistics.fs
	A.5 DataIO.fs
	A.6 MainWindow.xaml
	A.7 MainWindow.xaml.cs

	B Test results
	B.1 User manual

	C References

