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Abstract

Since wire delay makes it difficult to distribute a synchronous clock signal evenly in large
digital systems, alternatives to the synchronous design paradigm are called for. This thesis
proposes and implements a mesochronous router for a TDM-based network-on-chip. First,
a synchronous router is designed, and a bi-synchronous FIFO is then introduced and its
use as a synchroniser investigated. These FIFOs are used as synchronisers between the
clock domains to make the router mesochronous. Finally, the design is verified to be
working in practise as a proof-of-concept on an FPGA.

The solutions mentioned are analysed with regard to area, power consumption and
speed, and clock-gated versions of the designs are proposed to reduce power. It is shown
that while the mesochronous router works, it is in terms of area almost twice as large as
a similar asynchronous router. Thus, the overhead incurred in a mesochronous system
seems to favour an asynchronous approach.
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Resumé (Danish)

Da forsinkelse i ledninger gør det svært at distribuere et synkront kloksignal jævnt i større
digitale systemer, er det nødvendigt at finde alternativer til det synkrone designparadigme.
Denne opgave implementerer en mesokron router for et TDM-baseret intrachip netværk.
Først bliver en synkron router designet, og anvendelsen af en bi-synkron FIFO som syn-
kroniseringsenhed undersøges. Disse FIFO’er bruges derefter som synkroniseringsenheder
mellem klokdomænerne for at gøre routeren mesokron. Endelig bliver det efterprøvet, at
designet virker i praksis ved at lave en implementation på en FPGA.

De nævnte løsninger analyseres med hensyn til areal, effektforbrug og hastighed, og
klok-gatede versioner foreslås for at spare effekt. Det vises, at mens den mesokrone router
fungerer, så er den arealmæssigt næsten dobbelt så stor som en lignende asynkron router.
De omkostninger, som et mesokront system medfører, lader altså til at gøre en asynkron
tilgang mere hensigtsmæssig.
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Preface

Designing embedded systems, and in particular systems-on-chip, is an exciting area of
research, because it requires that which is the essence of engineering: Creating a working,
usable product that satisfies — maybe even astonishes — the end user, while complying
with the numerous demands inflicted by the platform, which may dictate limitations on
available space and power while insisting that the product run at top speed. These trade-
offs are an integral part of engineering, and they are nowhere more pronounced than in
embedded systems design.

In recent years, the tendency to connect together, on a single chip, several, heteroge-
neous processor cores has sparked increasing interest in research into the area which has
now become known as networks-on-chip. The work presented here provides results for a
particular network-on-chip component, and it is hoped that it will be used to compare
the feasibility of this design with alternative solutions.

I would like to thank my friends, colleagues and family, who have endured and even
supported me during the work of writing this thesis. In particular, I would like to express
my gratitude to my supervisor, Professor Jens Sparsø of DTU Informatics, without whose
guidance, patience and excellent advise this thesis would have been sorely lacking.

Anders la Cour Bentzon
Kongens Lyngby

June 2012
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Chapter 1

Introduction

Networks-on-chip (NoC) address an issue increasingly faced in hardware design, and par-
ticularly in consumer electronics: How to connect several heterogeneous intellectual prop-
erty (IP) cores together on the same chip, in a so-called system-on-chip (SoC), while
maintaining a reasonable bandwidth between them, in a way that scales with the number
of cores [BM06, HG11]. This is solved by letting the NoC provide a layer of abstraction,
where each core communicates directly with a network adaptor, which then routes the
communication packages through the network to the correct destination. In the NoC
considered in this thesis, nodes are connected in a two-dimensional grid, with each node
consisting of an IP core, a network adaptor and a router. Thus, the total bandwidth
increases when the grid size increases. Packages are routed using a technique known
as virtual circuits, by which a pre-defined route is established through the router nodes
when two cores need to communicate; and this is scheduled using time-division multiplex-
ing (TDM), where time slots are assigned beforehand in order to avoid blocking, and avoid
arbitration in the circuits (see e.g. [DT04, DYN03]). Thus, a certain performance can
be ensured beforehand, known as guaranteed service, which allows real-time processing, a
feature that is important in many consumer electronics devices, such as set-top boxes that
decode high-resolution video. Because offering real-time guarantees is relatively expensive
— a time slot that is reserved, but currently not needed by its owner, remains unused,
even if other packages are queued to be routed — some networks in addition provide a
best effort layer, in which non-time-critical packages can be routed whenever there is free
bandwidth.

There are numerous examples of different NoCs, and the research is on-going. Aethe-
real [GH10] and MANGO [BS05], respectively, are examples of a synchronous and an
asynchronous NoC with guaranteed service and best effort using TDM. Aelite [HG11] is a
mesochronous, simpler version of Aethereal; and [SS11] proposes an asynchronous router
for an Aethereal-like network. The goal of this thesis is to provide a mesochronous version
of the NoC router proposed by [SS11] in order to be able to make a reasonable compari-
son between the asynchronous and the mesochronous design paradigms as they relate to
NoC development. Thus, performance indicators such as area costs, power consumption
and speed are of particular interest as they are significant guideposts when it comes to
deciding which implementation is most feasible.

NoCs are, like SoCs, normally implemented on application-specific integrated circuits
(ASICs), as this is the best way to ensure the performance required of consumer elec-
tronics. Unfortunately, the ASIC design flow is nontrivial and time consuming, as well
as expensive, so it lies outside the scope of a bachelor thesis. In order to still be able
to have a target platform and to create a proof of concept, it has therefore been decided
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to instead use an FPGA. In particular, the Digilent Nexys2 board will be used, which
features the Xilinx Spartan3E-1200 FPGA along with several interfaces useful for testing,
among these a seven-segment LED display. The Spartan3E-1200 has 1200K system gates,
the equivalent of 19,512 logic cells, along with eight digital clock managers and 136K
distributed RAM bits [Xil11]. This platform will be used when synthesising the imple-
mentations throughput the thesis, and the number of look-up tables (LUTs) required by a
given design will be used as an estimate of die area. Finally, in Chapter 6, a single router
will be synthesised, placed, routed and configured on this FPGA. To simulate the systems
designed, ModelSim by Mentor Graphics will be used.

The theory presented in this thesis is not in itself overly complicated, and it has
been attempted to introduce new concepts such that most readers familiar with electrical
engineering at an undergraduate level should be able to follow along without resorting
to other sources. However, there is a fine line between introducing and summarising a
new concept and competing with textbooks to give the most thorough and theoretically
satisfying explanation; the latter has deliberately not been attempted, so the reader may
in some cases wish to refer to the relevant literature for a more in-depth treatment. As
a starting point, [DP98] is an excellent textbook concerning digital systems, and most of
the theory required in this thesis can be found in this book.

This thesis is divided into seven chapters. The chapter after this one provides a brief
summary of the theory and background needed in the rest of the thesis. This is followed
by a chapter describing the design and implementation of a simple Aethereal-like NoC
router, which is a synchronous version of the one presented in [SS11]. Then a FIFO buffer
is designed and its use as a synchroniser investigated, after which this is used to make
a mesochronous NoC router. A simple test bench using this router is then implemented
on an FPGA as a proof-of-concept, and finally the results obtained during the thesis are
discussed, and areas of interest that need further work are proposed.



Chapter 2

Theory

This chapter provides a brief introduction to the theory and background required for the
following chapters. The matters covered here are not intended to be exhaustive; rather,
they should serve as useful summary, and the reader is advised to refer to the relevant
literature for a more in-depth coverage.

First, an introduction to synchronisation issues and ways to synchronise between dif-
ferent clock domains is given, after which follows a brief overview of clock-gating method-
ology. Finally, a description of networks-on-chip and related concepts will be provided,
along with an introduction to the network on which the rest of the thesis is based.

2.1 Synchronisation

Traditionally, the elements of a digital circuit are synchronous to the same clock signal,
and the minimum clock period can be calculated as the worst-case time it takes a signal
to propagate through the circuit and keep the minimum required flip-flop setup times.
For the logic to work correctly, it is important that the clock signal is evenly distributed
so that the clock ‘ticks’ at the same time in all the circuit elements. However, for large
circuits, the efforts required to guarantee an even clock distribution increase prohibitively.
A way to mitigate this is to divide the circuit into distinct clock domains, where each
clock domain is locally synchronous, but where no effort is made to ensure that the
clock domains are synchronous with each other. Since the clock signals originate from
the same clock, the periods and frequencies are shared, but they thus have a (constant)
phase difference; such circuits are termed mesochronous. However, in many practical
situations, the wire propagation delay depends on a number of factors, significant among
these temperature, so when the temperature changes unevenly across a mesochronous
circuit (because of an uneven workload), the phase differences slowly drift. A system
exhibiting this behaviour, with a slowly changing clock phase difference between its clock
domains, is called plesiochronous. In the extreme end of the spectrum, the clock signal is
completely removed, and circuit elements synchronise by other means, e.g. handshaking;
such circuits are asynchronous [DP98, Chap. 10].

An important issue faced when working with non-synchronous circuits is how to syn-
chronise between clock domains without incurring metastability [Gin11]. Metastability
occurs when the input to a flip-flop changes after the setup time, which is to say when
the input changes just before the clock ticks; when this happens, the flip-flop enters an
indeterminate state and may eventually attain either the old or the new value, but after an
arbitrarily long time, during which it is unusable. This is avoided in synchronous circuits,
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because the clock period is determined with this in mind; but in non-synchronous systems,
it is very important to synchronise signals traversing clock domains. A common way to
do this is to use a bi-synchronous FIFO (First In, First Out) buffer, which is a memory
element interfaced by two different clocks. Data is written to the FIFO synchronously
to the write clock, and read from the FIFO synchronously to the read clock. A FIFO
typically works by maintaining a data buffer that is synchronous to the write clock, and
a write and read pointer synchronous to their respective clocks. The write pointer points
to the element after the one just written, and the read pointer to the next one to be read;
these pointers are incremented whenever data is written or read. In addition, the FIFO
provides output signals to indicate whether the FIFO is full or empty, in which case data
cannot be written or read, respectively. Figures characterising a FIFO are its width —
the size of a data word — and its depth, which is number of words it can contain.

2.2 Clock-gating methodology
When considering the power consumption of an electrical circuit, a significant amount
of this is caused by switching activity; when a signal goes from low to high, energy is
required to charge the capacitive load of that signal. Thus, power consumption can be
reduced by limiting unnecessary switching, but in clocked circuits, the regular activity of
the clock causes energy to be dissipated in the clock inputs of registers (flip-flops), even
when the actual contents of those do not change. A way to avoid this is to gate the
clocks, that is, to disable clock signals for parts of the system when those parts are not in
use — effectively turning those parts off. [Aro12, Section 2.5] describes different ways to
do this, and in particular introduces the standard clock-gating cell of Figure 2.1. When
the enable input is high, the clock signal (clk) is propagated to the gated clock output
(gatedClk); but when enable is low, gatedClk remains low, no matter the value of clk.
Since it is important to maintain a stable clock frequency, care has to be taken not to cut
off the clock signal prematurely, which is the purpose of the latch; this makes it possible
to change enable at any time while guaranteeing that gatedClk will always be high for
precisely one half clock period at a time. Thus, if enable is disabled while clk is high,
gatedClk remains high until clk goes low.

clk

enable

gatedClk

latch clkEn

Figure 2.1: Standard clock-gating cell without test signal [Aro12, Fig. 2.26]

2.3 On-chip interconnect
Since this thesis deals only with the design of a mesochronous NoC router based on the
asynchronous router presented in [SS11], it does not consider issues which lie beyond the
router hardware, such as network adaptors, scheduling, configuration and so forth. Thus,
only concepts pertinent to the immediate router design will be covered here.

Data arrives at a router in packages, where a package consists of a number of flits
(flow-exchange digits). Each flit is a 35-bit word according to Table 2.1, consisting of
32 bits of data followed by bits signalling end of package (EOP), start of package (SOP)
and valid data. The first flit in each package is a header flit, with a high SOP bit, where
the data field contains routing information describing how this package is to be routed
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to its destination. Subsequent flits in the package contain 32 bits of actual data, and the
package is terminated by a flit whose EOP bit is high. Flits which are part of a package
have a high valid bit; this is to easily distinguish them from signals between packages.

Table 2.1: Flit format

Bit 34 33 32 . . . 1 0
Description valid SOP EOP data data data

Packages are routed according to the address information of the header flit. A router
decides which output port to route a package to based on the first two bits of the header
flit, according to Table 2.2 (see Figure 3.1 for the physical layout of the router). Before the
header flit is sent to the output port, its address field is shifted two bits right so that the
new leading bits contain routing information for the next hop in the route. If the package
is destined for the local IP core, the address bits are those of the port from which the
package originates (thus, a package arriving from the North port, whose first two address
bits are 00, are routed to the local port, and not back to the North port). A package in
the router of [SS11] consists of three flits, which is adopted in the router presented here.
However, during many of the simulations, when testing the functionality, only two flits
will be routed per package in order to keep the wave window uncluttered.

Table 2.2: Address format

North 00
East 01
South 10
West 11
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Chapter 3

The Synchronous Network

This chapter describes a reference implementation of a simple network-on-chip router. It
is intended to be a synchronous version of the asynchronous router described in [SS11],
which is based on the Aetherial network [GH10]. Thus, the design in this chapter will
serve to gain a useful, initial understanding of the concept, and it will provide data which
can be used as a reference when compared to the more advanced solutions presented later.

First, a simple implementation of the router will be described and analysed, and
afterwards this router will be clock gated to minimise its power consumption when it is
not in use.

3.1 Simple router

As described in the previous chapter, the basic building block of the network is the router.
This section describes the design of such a router and its subcomponents; then the router
is synthesised and simulated to verify its functionality, and its power consumption is
analysed.

The network is conceptually organised in a two-dimensional grid, so that each router
has four neighbours. Furthermore, each router is connected to a local IP core, which
contributes to a fifth port. In this design, these ports are referenced as shown in Table
3.1; please also refer to Figure 3.1.

Table 3.1: Convention for physical port numbers

0 South
1 West
2 North
3 East
4 Local

3.1.1 Router

The conceptual design of a router is shown in Figure 3.2.1 The router consists of five input
and five output lines which are connected with a crossbar. A header parsing unit (HPU)
parses the information in each line and generates control signals for the crossbar that

1Please refer to the file router.vhd in Appendix A.1 for the VHDL implementation of the router.
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Router

0

1

2

3

4

Figure 3.1: Convention for physical port numbers

ensure that each flit is delivered to the correct output line. To increase throughput, it is
pipelined in two stages as shown in the figure. This pipeline depth was chosen because the
synchronisers, which will be added in Chapter 5, have a latency of one clock cycle; thus, it
is effectively a three-stage pipeline, which corresponds well with the chosen package size
of three flits (and conversely, [SS11] uses three-flit packages because a pipeline depth of
three is appropriate).

HPU

HPU

... ...

Xbar

35

sel0...4
4

4

35

...

...

Figure 3.2: Generic block diagram of the synchronous router

3.1.2 Crossbar

As in [SS11], the crossbar is controlled with a one-hot encoded signal as depicted in Table
3.2.2 For example, to route the signal on input port 4 to output port 1, the MSB should
be set. The crossbar is designed to route the incoming signal to the output port as
determined by the select signal, and to output logical 0’s on any port not connected to
an input port.

The one-hot encoding makes it possible to demultiplex input signals using simple and
gates. The output ports are then multiplexed using or gates, which ensures that the
entire crossbar consists of only two layers of gates (see Figure 3.3). This is very simple to
design and should ensure a reasonably low propagation delay. It also means that, since
the control signal is ordered by the source port, the full control signal can be generated

2Please refer to the file xbar.vhd in Appendix A.1 for the VHDL implementation of the crossbar.



3.1 Simple router 9

simply by concatenating the contributions of each HPU. Note that the output is undefined
if two input signals are routed simultaneously to the same output port.

Table 3.2: The 20-bit one-hot control signal for the crossbar

Source port 4 3 2 1 0
Destination port 1032 1042 1034 4032 1432

MSB LSB

1

2

3

4

0

0

1

2

3

4

..
.

Figure 3.3: Diagram of the crossbar

3.1.3 Header parsing unit
The header parsing unit is depicted in Figure 3.4.3 Its purpose is to decode the address
information of the first flit in each package and generate an according control signal to
the crossbar, so that all three flits of the package are routed to the correct destination;
this is done using a simple binary decoder. Thus, the two-bit address field is decoded
into a four-bit one-hot signal as shown in Table 3.2. Also, as described in Section 2.3, the
address information in the first flit is shifted two bits. When SOP is high, the decoded
crossbar select signal is saved in the register, and it remains there until EOP is high, at
which point the register is reset with 0’s.

3.1.4 Synthesis
Synthesising this router for a Xilinx Spartan3E FPGA reveals that it requires a total of
390 flip-flop bits; please see Table 3.3.4 Furthermore, the synthesis report shows that the
router requires 414 slices (4%) and 761 four-input LUTs (4%).

It is a bit unexpected that the router requires significantly more LUTs than flip-flops,
so to investigate this further, the HPU and crossbar are synthesised separately.5 Each of
the five HPUs requires 48 LUTs and four flip-flops, while the crossbar alone requires 525
LUTs. This adds up to 765 LUTs, which is actually four more than the router as a whole.
The router itself contains no real logic, and it is feasible that the synthesiser has been able
to optimise a bit when connecting the components together. The conclusion seems to be
that the main consumer of LUTs is the crossbar, which is completely combinational.

3Please refer to the file hpu.vhd in Appendix A.1 for the VHDL implementation of the HPU.
4Please refer to the file router.syr in Appendix B.1 for the Xilinx XST synthesis report.
5Please refer to the files HPU.syr and Xbar.syr in Appendix B.1 for the synthesis reports.
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>> 2
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34
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Figure 3.4: Diagram of the header parsing unit

Table 3.3: Register count for the synchronous router

Description Count Bits
35-bit pipeline register (data) 10 350
20-bit pipeline register (select signal) 1 20
4-bit address register (HPU) 5 20

16 390

The timing report (which is only an estimate, since the design was not placed and
routed) shows that the critical path is through the crossbar, with a minimum period of
3.9 ns corresponding to a maximum frequency of 257 MHz. That the critical path lies here
confirms the value of using a simple crossbar without too much complexity; and this is
indeed a reasonable speed. It could probably be only marginally increased by introducing
a pipeline register through the middle of the crossbar between the layers of and and or
gates.

3.1.5 Simulation

A test environment is generated by supplying each router input port with a new flit
according to a predefined test vector stipulating which packages are to be sent at which
state in the test.6 A ‘package’ consists of a header flit containing the destination address,
and a stop flit containing a sequence number. The test vector is defined so that all output
ports are tested, and the test is run so that the same test vector package is sent through
all the input ports in turn.

Similarly, in another process, the output of the router is read, and the data is compared
to the test vector. A warning is generated if an unexpected flit arrives, if no flit arrives
when one is expected, or if the sequence number doesn’t match.

In the simulation in Figure 3.5, a package (consisting of a header flit and a data/stop
flit) is sent to port 0 (bottom of the picture) from all input ports (middle of the picture).
As can be seen, all the packages arrive at output port 0, except for the one sent from input
port 0, which arrives at the local output port (4), as expected. Also, there is a latency
of two clock periods, due to the router’s pipeline depth of two. Note that the address
information of the first flit of each package is removed; actually, the entire address field is
right-shifted by two bits in accordance with the design of the HPU (see Figure 3.4). Also
note that the sequence numbers of the received data flits match those of the submitted
flits.

6Please refer to the file testRouter.vhd in Appendix A.1 for the VHDL implementation of the test
bench.
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Figure 3.5: Simulation of the synchronous router

3.1.6 Power consumption
Measuring power consumption for the router presented above is not trivial. For one
thing, it depends significantly on the usage scenario; and for another, it requires advanced
simulation tools and techniques. [AJI07] describes a way to measure power consumption
for systems on an FPGA, but even though the target platform in this thesis is indeed an
FPGA, the system is intended to run on an ASIC, so this is not really interesting. To
estimate power usage for an ASIC, a tool such as Synopsis would have to be used, which
is unfortunately outside the scope of this bachelor thesis.

Nonetheless, a very rough estimate is still useful in order to compare the different
router designs presented in this thesis. As such, it is the relative power consumption of
the different designs that is of interest. Thus, focus will rest on the switching power that
is consumed when driving the signals from low to high. ModelSim can record a toggle
count, which is a representation of switching power, for most signals; however, ModelSim
does not record toggles of the clock signals that drive the flip-flops, even when the flip-flop
contents do not change. Unfortunately, it also turned out that ModelSim only records
whether or not a given signal has toggled, and not how many times this has happened,
making this number useless as an estimate of switching power.

Since later parts of this thesis focus on minimising the power consumption of inactive
flip-flops, the main measurement of interest is the power reduction due to this adjustment,
and an estimate of this can be obtained by manually counting the number of active flip-
flops. Since this is only a rough estimate, no further analysis of the different capacitive
loads or the fan-outs will be taken into account, and this figure will simply be interpreted as
a relative benchmark of the total power consumption. As the main goal of this benchmark
is to compare different designs, its accurateness is of minor importance as long as the same
procedure is used to generate it for each design and it does not significantly bias one of
the designs.

At the same time, this analysis needs to be carried out on a realistic and typical usage
scenario. This is close to impossible without knowing more of the exact application of
the network-on-chip, so it is chosen somewhat arbitrarily to presume that a given router
will be in use about 20% of the time. The package size will be three flits to correspond
with [SS11]. Table 3.4 shows a usage scenario in which three packages (totalling nine flits)
are routed through the router during ten time slots. This consumes nine routes out of a
total of 50, so this router can be said to be in use 18% of the time, which corresponds
well enough with the 20% mentioned above. Notice that some of the time, the router is
only used to process a single flit; and during some time slots, it is not used at all. Thus,
this usage scenario favours a router that is able to reduce its power consumption when
it is almost inactive, and when it is completely inactive; this seems realistic enough. It
should be mentioned that the pipeline depth of the router means that it takes more than
one time slot for a package to finish processing; Table 3.4 refers to the input ports of the
router7

Referring to Table 3.3, the router consists of 390 flip-flops whose clock signals toggle
from low to high once for each time slot (clock cycle), so its power consumption totals

7Please refer to the file testPower.vhd in Appendix A.1 for the VHDL implementation of the power
consumption test bench.
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Table 3.4: Power estimation of the simple router

Time slot 1 2 3 4 5 6 7 8 9 10

1st package 0–3 0–3 0–3
(start) (data) (end)

2nd package 1–4 1–4 1–4
(start) (data) (end)

3rd package 1–0 1–0 1–0
(start) (data) (end)

Flip-flops 390 390 390 390 390 390 390 390 390 390

3900 clock toggles as shown in Table 3.4.

3.2 Clock-gated router

Because of the pipeline registers, the router presented above uses power even when it is
not in use. Switching power loss occurs whenever a signal is driven high, so by forcing
the signals to be constantly zero when not used, some of this is avoided (another strategy
could be to let them keep their last value). However, the clock signals drive the capacitive
load of the pipeline register flip-flops even when they contain no useful data. A way to
mitigate this is to turn off the clock signal when nothing is routed; a system using this
approach will be presented in the following section.

Clock gating is a technique used on ASICs to minimise power consumption, but since
FPGAs use special-purpose wiring for the clock signals to minimise skew, it is not recom-
mended to use standard clock-gating approaches on FPGAs. Instead, one may use special
vendor primitives, such as the Xilinx Digital Clock Managers or the like, which are tech-
nology dependent. Even though the Spartan3E FPGA is used as the target platform in
this thesis, clock gating will be investigated in order to analyse the hardware from a more
generic perspective, and synthesis results (mainly LUT count) will be presented as an es-
timate of area utilisation. The clock-gated circuits should not, however, be implemented
on FPGAs.

3.2.1 Clock-gating strategy

While the NoC router presented in the previous section does not make any presumptions
as to the nature of the data that is routed, and the way this happens, a typical usage
scenario will probably dictate that a particular link is only used about 20% of the time. It
is therefore highly desirable to design the system in such a way that it limits the amount
of power consumed when it is not used.

With this in mind, the simplest approach is to monitor all the signals at the input
ports of a given router and turn off its clock signal if none of them is valid. In order to
determine whether the input signal at a given port is valid, a 35th bit is introduced in the
flit format; this bit is high whenever the flit contains a valid data signal (see Table 2.1).
A similar flag could be generated using a simple state machine by exploiting the start of
package and end of package bits.

Figure 3.6 depicts a clock-gated synchronous router. On the basis of the incoming
data signal, a clock-gating circuit determines whether or not the clock should be kept on.
The clock signal generated by this circuit is distributed to the components of the router.

In the above approach, it can be determined when the data produced at the input
ports is no longer valid; but this does not indicate whether the consumer has read all the
data. Since the latency through the router is two clock periods, the clock-gating circuit
can simply wait two clock cycles after detecting an invalid input signal before gating the
clock. Using the standard clock-gating cell in Figure 2.1 ensures that the clock is not
turned off prematurely, guaranteeing that a full clock signal is generated. Figure 3.7
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Figure 3.6: Clock distribution for the clock-gated router

clk

valid
Gate cell gatedClk

gateEnable

Figure 3.7: Clock-gating logic, two-period latency

illustrates the circuit used to gate the clock (this may fail if only a single valid data flit
arrives; however, we presume that they arrive in packages of three).

While it may be tempting to further fine-tune the clock gating by turning off individual
lines in the router when these are not used, this is not as easy. For one thing, it would
interfere with the pipeline, and care would have to be taken to ensure consistency of the
data; and for another, the data is interwoven after the crossbar, so the enable signal would
have to depend on the crossbar select signal generated by the HPUs. When considering
that the clock-gating logic, while cheap, is not completely free, and that the flip-flops
used here consume power all the time, it is deemed that a more fine-tuned approach is
probably not worth the effort; but of course, this depends the exact use scenario of the
router. Also, it should be noted that the logic used to generate the clock enable signal
cannot take more than half a clock cycle to do this, otherwise the clock won’t be turned
on in time [Aro12, p. 31]; this puts an additional contraint on how complicated it can
be.8

3.2.2 Synthesis

The synthesiser reports that the clock-gated router uses 416 slices (4%) and 764 four-input
LUTs (4%), which is only slightly more than the simple router (414 slices and 764 LUTs).9
In addition to the registers used by the router itself, the clock-gating logic needs two flip-
flops for implementing the delay as depicted in Figure 3.7 and one latch as per Figure 2.1,
for a total of 392 flip-flops and 1 latch (see Table 3.5. The maximum frequency is 256
MHz (3.9 ns), which is virtually the same as before; the critical path is still through the
crossbar. Furthermore, it is reported that the clock-gating circuit itself has a minimum
period of 2.1 ns corresponding to a maximum frequency of 476 MHz. This means that
the actual maximum frequency at which this circuit should be clocked is 238 MHz.

8Please refer to the file gatedRouter.vhd in Appendix A.1 for the VHDL implementation of the clock-
gated router.

9Please refer to the file gatedRouter.syr in Appendix B.1 for the Xilinx XST synthesis report.
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Table 3.5: Register count for the clock-gated synchronous router

Description Count Bits
35-bit pipeline register (data) 10 350
20-bit pipeline register (select signal) 1 20
4-bit address register (HPU) 5 20
Clock-gating register (2-period delay) 1 2
Latch (clock-gating cell) 1 1

18 393

3.2.3 Simulation

The clock-gated router is tested using the same test bench in Section 3.1.5; the test vector
is simply changed to provide an inactive period in the middle of the test where no data
is routed. Figure 3.8 shows the router inputs and outputs, as well as the gated clock
signal, when the input signal becomes invalid (that is, no package data is supplied). As
can be seen, the clock-gating circuit allows enough time for the last flit to be processed
through the pipeline from input port 4 to output port 1 before turning off the clock; the
clock-gating logic of Figure 3.7 disables the gateEnable signal after two clock periods,
and the standard clock-gating cell (Figure 2.1) turns off the clkEn latch on the falling
clock flank, ensuring that the clock signal is not cut off.

Figure 3.8 also shows that the latency of two clock cycles in the clock-gating circuit
means that the clock remains active for one period after the last valid signal has been
processed, which effectively makes sure that the inactive signal is routed through to the
output of the router. A more aggressive strategy would be to not allow this signal through,
which would make it possible to turn the clock off one cycle earlier; but in this case, the
latest valid signal would be kept at the output of the router, so the consumer would need
to be able to detect that.

Figure 3.8: Simulation of clock-gated router when clock is turned off

Similarly, Figure 3.9 shows how the clock-gating circuit detects a new incoming signal
and turns on the clock again. This happens in time for the router to process the first
signal; as shown, the first flit is routed successfully from input port 0 to output port 2.

3.2.4 Power consumption

When analysing power consumption, the clock-gated router uses roughly the same amount
of power as the simple router, except when it is completely inactive. It has a total of 393
flip-flops (and latches), of which 390 are clock gated. Figure 3.10 shows a simulation of
the router when subjected to the usage scenario of Table 3.4, and in particular the gated
clock signal (top of the figure). Referring to Figure 3.2, it can be seen that the first (HPU)
pipeline register is not turned on until the end of the first pipeline stage, at which point
the output of the HPU stage is clocked into this register. The router then remains active
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Table 3.6: Power estimation of the clock-gated synchronous router

Time slot 1 2 3 4 5 6 7 8 9 10

1st package 0–3 0–3 0–3
(start) (data) (end)

2nd package 1–4 1–4 1–4
(start) (data) (end)

3rd package 1–0 1–0 1–0
(start) (data) (end)

Flip-flops 3 393 393 393 393 393 393 3 3 3

until the eighth time slot. As shown in Table 3.6, it can be seen that the synchronous
router thus has a total of 2370 flip-flop toggles.

3.3 Results
In this chapter, a simple synchronous router consisting of five header parsing units con-
nected to a crossbar was designed and implemented. It was synthesised to estimate its
area cost and timing parameters, and it was simulated in ModelSim to verify its func-
tionality. Furthermore, a strategy was proposed to clock gate this router, and this was
carried out and simulated as well. Power consumption was estimated for both designs on
the basis of a usage scenario where the router is used 18% of the time and is measured by
the amount of low-to-high clock ticks that drive flip-flops during a standard time interval
of 10 time slots (clock cycles). Table 3.7 shows the results obtained in this chapter.
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Figure 3.9: Simulation of clock-gated router when clock is turned on

Figure 3.10: Analysis of power consumption for the synchronous router

Table 3.7: The results obtained for the synchronous router

Free running Clock gated
LUTs Flip-flops Power Frequency LUTs Flip-flops Power Frequency
761 390 3900 257 MHz 764 392 2370 238 MHz



Chapter 4
A FIFO Synchroniser for
Mesochronous Networks

In this chapter, a FIFO buffer is introduced in order to facilitate synchronisation between
neighbouring nodes in a large mesochronous network. Originally, it was intended to use
an ‘off-the-shelf’ solution and incorporate it into the proposed network without spending a
great deal of effort trying to understand the intricate inner workings of the FIFO; but while
working with this component, it turned out that using it is not as trivial as it first seemed,
and its behaviour warranted a more thorough investigation. This chapter is dedicated to
understanding the FIFO and the problems incurred in using it in a mesochronous system.

First, a third-party FIFO buffer design is described and analysed; then, an improve-
ment to the full detector of this FIFO is proposed and implemented, and its results verified;
and finally, the FIFO buffer is clock gated in order to minimise the power it consumes
when it is inactive.

4.1 Bi-synchronous FIFO synchroniser
To synchronise between neighbouring routers, the bi-synchronous FIFO design described
in [MPG07] will be used. This offers the benefits of having been already tested and
incorporated in the DSPIN network-on-chip [MPGS06, MPCVG08], which means that it

• is designed to be interfaced by two synchronous systems with independent clock
frequencies and phases;

• promises to be relatively inexpensive in terms of area; and

• is technology independent, so that it can be used on different FPGA architectures
as well as on ASICs using standard cells.

Thus, it seems a reasonable choice for a synchroniser for the network presented in this
thesis. The reason for using a FIFO as a synchroniser, and not just a couple of normal
registers as described in [Gin11] is that the FIFO offers a better tolerance for clock skew;
this will be investigated in Section 5.2.

4.1.1 Design
The main contribution of [MPG07] is to propose using a token ring to ‘bubble-encode’ the
read and write pointers of the FIFO. This is done in order to ensure usability if metasta-
bility occurs when synchronising the token ring to another clock domain, as depicted in
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Figure 4.1 (this figure is copied from [MPG07]). Thus, for a FIFO of depth N , the pointer
is an N -bit word, and the position of the pointer is indicated by a two-bit token. For
example, for N = 5, the token ring may be 00011. To increment this pointer, it is shifted
(rotated) right by one position, so it becomes 10001; this ensures that one of the token
bits remains constant during each operation, so it is guaranteed to be free of metastability
when synchronised. Thus, the result of the synchronisation is never completely useless (if
metastability were to occur, it could result in either 00001 or 10011, but never in 00000).
By convention, the position of the write pointer is defined to be that of the second token
bit, while the position of the read pointer is the one after the second token bit — see
Table 4.1.1

Figure 4.1: Synchronisation of a token ring [MPG07, Fig. 2]

Table 4.1: FIFO status and read/write pointers

Write pointer 00011 10001 11000 01100 00110 00011
Read pointer 01100 01100 01100 01100 01100 01100
Number of elements Empty N − 4 N − 3 N − 2 N − 1 N

As can be seen in Table 4.1, the write pointer is incremented by one by shifting it right
one bit each time an element is written to the FIFO, and likewise for the read pointer
when an element is read. The pointers are initialised to the left-most situation, which
thus indicates an empty FIFO. However, this is indistinguishable from its containing N
elements as depicted in the right-most column. To solve this problem without having
to maintain an extra status register — which adds complexity to the full and empty
detectors — [MPG07] defines the FIFO to be full when it contains N −1 elements so that
the N -element situation will never occur.

The empty detector in this FIFO is designed to raise a flag when the token rings are
aligned as in the left-most column of Table 4.1. Since the empty detector resides in the
domain of the read clock, it must synchronise the write pointer using a synchroniser as
in Figure 4.1. It then operates by detecting a transition between a 0 and a 1 in the
synchronised pointer (which is guaranteed to be present because of the bubble encoding),
and asserts empty if this transition occurs in the position relative to the read pointer as
shown in Table 4.1.

The full detector could work in a similar way, but in order to reduce area costs,
[MPG07] proposes a simpler version. By and’ing the two pointers without synchronisation
and collecting this in an or gate, it detects the N −3 and N −2 (defined as ‘quasi-full’) as
well as the N − 1 situations. This signal is then synchronised to the write pointer clock
domain. Because of the synchronisation latency, this full detector needs to predict the full
condition by also detecting the quasi-full situations. Since this sometimes prevents the
FIFO from being completely filled, an improvement is proposed which allows writing to
the FIFO for one extra cycle if the sender was not writing when the full signal was first
asserted.

The FIFO is originally designed to interface two asynchronous clock domains, but
[MPG07] proposes a mesochronous adaption, by which the FIFO is simplified by removing

1Please refer to [MPG07] for elaboration.
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Figure 4.2: Diagram of the FIFO [MPG07, Fig. 7]

one of the synchronisation register rows of Figure 4.1; this reduces the latency as well as
the area costs. Since the rising edge of the read clock is predictable in a mesochronous
system, the bottom row of registers in Figure 4.1 is not needed if the top row is clocked
so that no metastability occurs when synchronising the data; this can be achieved either
by using a delayed version of the read clock, or by making the phase difference between
the read and write clocks between 90◦ and 270◦ degrees. In the DSPIN network, this is
accomplished by clocking neighbouring nodes with a 180◦ phase difference.

[MPG07] notes that a non-optimal full detector does not penalise throughput as much
as a non-optimal empty detector, which is why the above simplification is reasonable; but
a consequence is that, for FIFOs with a depth of less than six in an asynchronous system
and five in a mesochronous system, throughput is only 50%. This will be confirmed in
the simulation.

Figure 4.2, which is borrowed from [MPG07], shows the layout of the FIFO. The top
is the write pointer, which as shown is synchronous to the write clock domain, and the
bottom is the read pointer, which is synchronous to the read clock domain. In the middle,
the data buffer, synchronous to the write clock domain, is shown. Using and gates, the
two pointers are converted to a one-hot encoded signal, which is used to enable the correct
register for writing, and to select from amongst a set of tri-state buffers the right register
output for reading. When the write enable signal is applied, data is written to the next
data buffer register, and the writer pointer is rotated, as long as the full signal is not high;
and likewise, the read pointer is only rotated if the empty signal is not high.

4.1.2 Implementation

The FIFO was implemented in VHDL based on [MPG07].2 Because it is intended to
be part of a mesochronous, and not asynchronous, network, one of the synchronisation
register rows in Figure 4.1 was removed as described in the article. The non-optimised
full detector was improved with the adaption described above, so that the full detector
delays raising its full flag for one clock cycle if the producer was not writing continuously
at the time the full condition occurred.

2Please refer to the files fifo.vhd, tokenring.vhd, fullDetector.vhd and emptyDetector.vhd in Ap-
pendix A.2.
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The data buffer was inferred as normal registers (flip-flops), and a multiplexer was
used to select the output signal from amongst the data buffer registers instead of the tri-
state buffers suggested in [MPG07], since the Spartan3E FPGA does not feature tri-state
buffers.

To ensure 100% throughput, a FIFO depth of five was chosen, with a width of 35 bits
to accomodate the flit size of the network.

4.1.3 Synthesis
The Xilinx synthesiser reports that a single FIFO requires 193 flip-flop bits, as shown in
Table 4.2.3 It uses 167 slices (1%) and 213 four-input LUTs (1%). The synthesiser finds
the critical path to be through the full detector and calculates the minimum clock period
as 5.30 ns, corresponding to a frequency of 189 MHz.

Table 4.2: Register count for the bi-synchronous FIFO

Description Count Bits
5-bit register (token rings) 2 10
5-bit synchronisation register (empty detector) 1 5
1-bit synchronisation register (full detector) 3 3
35-bit data buffers (FIFO) 5 175

11 193

Synthesising the components individually reveals that each token ring requires only
one LUT; the full detector requires six LUTs; and the empty detector eight LUTs.4 Thus,
the vast majority of the LUTs are spent implementing the multiplexer which is used to
select the output data signal.

4.1.4 Simulation
To verify the functionality of the FIFO implementation, a test bench was created that
would continuously write values to the FIFO and simultaneously read them again.5 The
read and write operations were simulated to originate from two different, phase-opposite
clock domains.

Figure 4.3 shows the result of simulating a FIFO of depth four. Data is continuously
written to the FIFO as long as it’s not full, and continuously read as long as it’s not
empty. As can be seen, the correct data is retrieved in the correct order. However, it is
immediately obvious that, as predicted, the throughput is only 50%. A closer look reveals
that it is caused by the latency in the full detector: After the third element has been
written, writing stops because the FIFO is reported as full. However, at this point, the
first value has already been retrieved, and the second is on the way. All the same, the full
detector asserts the full signal for three clock periods, at which point the FIFO has been
completely emptied. Thus, the entire process is stalled. This happens repeatedly every
three writes. It should be noted that the empty detector always gives the correct signal.

When simulating a FIFO of depth five, as shown in Figure 4.4, this does not occur.
The extra element ensures that the full flag is not raised after the third write, as in
Figure 4.3. But why not after the fourth? What happens ‘behind the scenes’ is that, in
Figure 4.3, the FIFO is actually detected as full after the first write (when it contains
N − 3 = 1 element), but because the full detector has a latency of two clock periods, this
is not asserted until after the third write. Similarly, in Figure 4.4, the FIFO is internally
detected as full just after the second write (when it contains N − 3 = 2 elements), but
this only lasts for half a clock cycle; then the change in the read pointer is detected, and
the full detector deasserts the internal full flag. In the first instance, there’s simply not
enough time for this change in the read pointer to be picked up.

3Please refer to the file fifo.syr in Appendix B.2 for the Xilinx XST synthesis report.
4Please refer to the files tokenring.syr, fullDetector.syr and emptyDetector.syr in Appendix B.2.
5For the VHDL implementation of the test bench, see the file testFifo.vhd in Appendix A.2.
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The simulation also illustrates that while writing happens synchronously on the rising
clock edge, the read functionality is combinational and transparent; as soon as the read
enable signal is asserted, the data appears on the output (after a propagation delay, of
course). Only when the read enable signal is asserted on the rising clock edge of the read
clock is the read pointer incremented, however.

These tests thus confirm that, due to the imperfect full detector, a FIFO depth of five
is required in order to achieve 100% throughput. At the same time, the FIFO can be seen
to be working as expected.

4.2 An improved full detector

All the same, it would be interesting to see how much more expensive a ‘perfect’ full de-
tector would be compared to the one implemented above. The design of such is completely
analogous to that of the perfect empty detector; referring to Table 4.1, it must detect the
N − 1 situation. To accomplish this, the read pointer is first synchronised into the write
pointer clock domain, and the write pointer token ring is converted to a one-hot encoded
signal. It can then be seen that the i’th position indicates a full situation if the i’th bit of
the one-hot write pointer is set, and the synchronised read pointer has a transition from
1 to 0 there; see Figure 4.5.6

The result of using this full detector can be seen in Figure 4.6, which simulates a FIFO
of depth four. Reading is deliberately delayed a few clock cycles to see if the full signal
is asserted, which it is after the third write. However, as soon as reading begins, the full
signal is deasserted (the read pointer needs to be synchronised, so there’s a latency of one
clock cycle; the same is true for the empty detector). After this, the throughput is 100%.
Thus, the improved full detector offers a much better performance for shallow FIFOs.

Synthesising the FIFO with the improved full detector reveals that it requires 195
flip-flop bits, as seen in Table 4.3, which is actually only two more than with the simple
full detector. It uses 175 slices (2%) and 220 four-input LUTs (1%), which is virtually the
same as before. This is for a FIFO depth of five, so if the only reason for choosing five
in the first place was to achieve 100% throughput, four may be chosen in this case, which
would save 38 flip-flop bits and probably some LUTs as well.

The frequency constraint is, however, 164 MHz (6.09 ns), compared to 189 MHz, and
the critical path is through the improved full detector. Thus, this FIFO must be clocked a
bit slower. Still, when synthesising on a Spartan3E FPGA, the area savings promised by
the imperfect full detector do not seem to offer a reasonable trade-off. It should be noted
that this is when using the mesochronous adaption, where one of the synchronisation
register rows has been removed; in the asynchronous case, this full detector would require
an additional five-bit synchronisation register, and for deeper FIFOs, the improved full
detector would be relatively more expensive.

6Please refer to the file fullDetectorImproved.vhd in Appendix A.2.

Figure 4.3: FIFO simulation, N = 4, 50% throughput
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Figure 4.4: FIFO simulation, N = 5, 100% throughput
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Figure 4.5: Function of the improved full detector

4.3 Clock-gated FIFO synchroniser

Using similar considerations as in Section 3.2, it should be apparent that it would be
worthwhile to clock gate the FIFO buffer presented in this chapter. The FIFO is designed
so that data is not rotating through the data buffer — rather, the pointers are rotated —
which minimises power usage. Still, though, the data registers consume power even when
both the write and read enable flags are low.

To mitigate this, it is assumed that an external enable signal is present that indicates
whether the FIFO should be active or not (for reasons that will be explained in Chapter
5, the read and write enable signals won’t be used for this, and are hard-wired to always
high). This signal is synchronous to the write clock domain, which is nice, since the
FIFO data buffer also resides in this clock domain. Thus, if the write clock is gated as
determined by this enable signal, the data registers, which are the main power drains, will
be turned off when the FIFO is not in use. However, power loss will still occur due to the
read pointer token ring and the read pointer synchronisation registers.7

4.3.1 Synthesis

When synthesising the clock-gated FIFO to the Spartan3E FPGA, the synthesiser reports
that it uses 115 slices and 148 four-input LUTs.8 Since the clock-gated FIFO consists of
a wrapper circuit around the non-clock-gated version, which used 213 LUTs, this result
cannot be right. Taking into account that clock gating generally does not work directly
on FPGAs, this may indicate that the implementation fails already at the synthesis level.
To verify this, a post-translate simulation was carried out on the test bench presented in
Section 4.3.2; and as expected, the simulation fails with a number of errors about unbound
component instances, which indicates that the synthesiser has erroneously ‘optimised’
away a large part of the circuit. For this reason, the simulation in the following section
will be carried out on the behavioural implementation.

The flip-flop utilisation was similar to the non-clock-gated FIFO (Tables 4.2 and 4.3)
except that a latch is used in the standard clock-gating cell (Figure 2.1). The flip-flops

7Please refer to the file gatedFifo.vhd in Appendix A.2 for the VHDL implementation of the clock-
gated FIFO.

8Please refer to the file gatedFifo.syr in Appendix B.2 for the Xilinx XST synthesis report.
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Figure 4.6: FIFO simulation, N = 4, ‘perfect’ full detector

Table 4.3: Register count for FIFO with improved full detector

Description Count Bits
5-bit register (token rings) 2 10
5-bit synchronisation register (empty detector) 1 5
5-bit synchronisation register (full detector) 1 5
35-bit data buffers (FIFO) 5 175

9 195

of the write clock domain are clock gated; that is, the write pointer token ring (5 FFs),
the full detector (3 FFs) and the data buffers (175 FFs), for a total of 183 clock-gated
flip-flops.

4.3.2 Simulation

The test bench of Section 4.1.4 is modified so that it continuously applies signals to
be written to the clock-gated FIFO.9 These signals consist of sequences of numbers (to
account for data), interspersed with zeros (to imitate inactivity); e.g. 0-0-0-0-1-2-3-0-
0-0-4-5-6-0-0-0. . . . The enable signal is set to low whenever the input is 0, and high
otherwise.

One caveat of only gating the write clock is that, since the write pointer is only rotated
when actual data is written (due to the clock gating), while the read pointer is rotated
continuously, they may initially become unaligned. Notice the write and read pointers
in the bottom of Figure 4.7 during the beginning of the simulation: The write pointer
remains constant in its initial position, while the read pointer is rotated five times until
it is back at its original position. Put another way, the read pointer does not point to the
same address as the write pointer until after four clock periods (counting from when the
reset signal is no longer applied), after which the empty signal goes high, which internally
prevents further reading. The yellow cursor in Figure 4.7 marks this position. So a correct
result cannot be read before this time.

Figure 4.7: Clock-gated FIFO, initial write delay of five clock cycles

Figure 4.8 illustrates this point by commencing writing before the read pointer has
9Please refer to the file testFifo_gating.vhd in Appendix A.2.
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been fully rotated. Since the read pointer does not reach the position written until after
four clock cycles, reading cannot start until then. The yellow cursor marks the same
position as in Figure 4.7. Also, because the non-optimal full detector detects the ‘quasi-
full’ condition, writing is stalled after two elements have been written, which in turn causes
the read sequence to be interrupted after the second element. However, after this initial
confusion, which can be prevented by waiting at least four cycles before starting to write
data to the FIFO, the clock-gated FIFO behaves as the simple one. Figure 4.9 shows a
simulation similar as in Figure 4.8, but using the improved full detector of Section 4.2;
this allows all three initial elements to be written without an interruption. This figure
also shows the behaviour once the FIFO is operating steadily, where the latency is one
period plus the clock phase difference as in the non-clock-gated FIFO buffer.

For the above reasons, to give the read pointer time to attain the correct position,
it is recommended to wait at least four clock cycles after initialisation before starting to
produce data.

Figure 4.8: Clock-gated FIFO, write delay of two clock cycles, non-optimal full detector

Figure 4.9: Clock-gated FIFO, write delay of two clock cycles, optimal full detector

4.4 Results
In this chapter, a FIFO buffer was implemented on the basis of [MPG07] that can be used
for synchronisation between two mesochronous clock domains. Furthermore, an improved
was full detector proposed in order to improve throughput, making a 100% throughput
possible for FIFOs of depth four instead of five, which was originally required.

This FIFO was clock gated, and the effect of this was tested by simulation. It should
be noted that the clock-gated FIFO requires a global initialisation of four clock cycles
before it can process data. The results obtained in this chapter are summarised in Table
4.4.

Table 4.4: The results obtained for the FIFO buffer

Free running Clock gated
LUTs Flip-flops Frequency LUTs Flip-flops Frequency
213 193 189 MHz n/a 193 n/a



Chapter 5

The Mesochronous Network

This chapter details the analysis and design of a mesochronous network-on-chip router
based on the components designed in the previous chapters. First, FIFO buffers will be
connected to the inputs of a synchronous router, resulting in a mesochronous router that
allows a constant phase difference between the read and write clocks; then, it will be
analysed how this approach can be modified to allow the phase difference to slowly drift
in a so-called plesiochronous system; and finally, the mesochronous router will be clock
gated in order to minimise power consumption when it is not in use.

5.1 Mesochronous router

Using the building blocks introduced in the previous chapters, a mesochronous router
can be designed by connecting FIFO buffers to the inputs of the synchronous router,
as depicted in Figure 5.1.1 This ensures the presence of a FIFO between all the router
links, enabling synchronisation of data despite a constant clock phase difference between
neighbouring routers having the same clock frequency — that is, a mesochronous network.
If the FIFO depth is chosen accordingly, the phase difference may even be allowed to slowly
drift.

In Figure 5.1, a FIFO buffer is also placed between the router and the local IP core. For
simplicity, it is assumed that this is similar to the four other FIFOs; but as mentioned in
Chapter 4, the FIFOs used have been simplified to synchronise only in the mesochronous
case. Generally, it would probably be desired to clock the IP core independently of the
NoC, in which case an asynchronous FIFO should be used. This would require an extra
row of synchronisation registers, as in Figure 4.1; otherwise, this FIFO would be similar
to the others.

The FIFOs, when connected to the router inputs, are intended to facilitate a continuous
flow of data; and when no flit is actually being routed, the crossbar select signal generated
by the HPU will ensure that the crossbar simply outputs a flit consisting of logical 0’s.
For this reason, the read and write enable signals of the FIFO should be constantly high,
making the FIFO behave somewhat like a pipeline register. Hence, the full and empty
signals are of minor importance and should, during normal operation, never go high; if one
of them does go high, this would indicate an abnormal error condition (in a plesiochronous
system, this could happen if clock skew caused data to be produced gradually faster, and
consumed gradually slower, filling the FIFO up; or vice versa).

1Please refer to the file routerFifo.vhd in Appendix A.3 for the VHDL implementation of the
mesochronous router.
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Router

Figure 5.1: A router with its FIFO synchronisers

[MPG07] mentions that, to avoid metastability in the synchronisers of Figure 4.1 when
using the FIFO buffer in a mesochronous configuration, the phase difference between the
clock signals should be between 90◦ and 270◦. Since we do not expect the empty and
full signals to change (as discussed above, they are expected to always be negative), this
constraint does not need to be rigorously enforced. All the same, it provides a useful
guideline, and we shall in the following assume that neighbouring routers have a clock
phase difference of 180◦. This would mean that the network is clocked in a check-like
pattern. For this reason, and for simplicity, the test bench implicitly assumes that all
neighbouring nodes have the same phase difference, so they are represented by the same
clock signal. In a real implementation, they could be a few degrees out of phase, and each
FIFO buffer would need to use a separate write clock. This would clutter the VHDL code
and simulation results somewhat, but would not be a major design change.

Except for the FIFOs connected to the input ports, the router presented in this section
is similar to that of Chapter 3.

5.1.1 Synthesis

Because of the large FIFO buffers, the area requirements of the mesochronous router are
expected to be considerable. Indeed, the synthesis report shows that, apart from using
1355 flip-flop bits as shown in Table 5.1, it uses 1994 four-input LUTs (11%) and 1450
slices, which is 16% of the total available and four times as many as the synchronous
router.2

The maximum frequency is 132 MHz with the critical path running from the FIFO
buffer to the HPU, where the select signal for the crossbar is generated. This indicates it
would probably be worthwhile to put a pipeline register between the FIFO and the HPU,
if one could spare an additional 175 flip-flops. It should be noted that this pipeline stage
is needed not because of the data, which is effectively pipelined in the FIFO’s data buffer,
but because of the empty signal, which is needed to determine whether the read pointer
can be incremented.

5.1.2 Simulation

The router is tested using an approach similar to that of the synchronous test bench in
Section 3.1.5. As with the FIFO buffers in Section 4.1.4, two clock signals are generated
with a 180◦ phase difference, corresponding to the local and neighbouring clocks.3

2Please refer to the file routerFifo.syr in Appendix B.3 for the Xilinx XST synthesis report.
3The VHDL implementation of this test bench is available in the file testRouter_fifo.vhd in Appendix

A.3.
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Table 5.1: Register count for the mesochronous router

Description Count Bits
35-bit pipeline register (data) 10 350
20-bit pipeline register (select signal) 1 20
4-bit address register (HPU) 5 20
5× 35 bi-synchronous FIFO buffer (193 bits) 5 965

21 1355

In a process triggered on each rising flank of the write clock (simulating a neighbouring
router), each FIFO input port is in turn supplied with a new flit according to a predefined
test vector stipulating which packages to be sent at which state in the test. Similarly, in
a process triggered on the rising flank of the read clock (simulating the local router), the
output of the router is read, and the data is compared to the test vector. A warning is
generated if an unexpected flit arrives, if no flit arrives when one is expected, or if the
sequence number doesn’t match.

Figure 5.2: Simulation of the mesochronous router

The situation of Figure 5.2 is similar to the synchronous situation of Figure 3.5, where
a package is sent to port 0 (bottom of the picture) from all input ports (middle of the
picture). The latency can be seen to be three and a half clock periods; two from the
router, and one and a half (actually, one plus the phase difference) from the FIFO buffers.

5.1.3 Power consumption
The mesochronous router consists of 1355 flip-flops. Thus, when subjecting it to the same
usage scenario as the synchronous router, the flip-flops account for a toggle count of 13550
(see Table 5.2).

Table 5.2: Power estimation of the mesochronous router

Time slot 1 2 3 4 5 6 7 8 9 10

1st pkg 0–3 0–3 0–3
(start) (data) (end)

2nd pkg 1–4 1–4 1–4
(start) (data) (end)

3rd pkg 1–0 1–0 1–0
(start) (data) (end)

Flip-flops 1355 1355 1355 1355 1355 1355 1355 1355 1355 1355

5.2 Plesiochronous considerations
So far, the FIFO buffers used in the mesochronous router have had a depth of five for the
somewhat arbitrary reason that this is the minimum depth at which 100% throughput
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can be achieved when using the non-optimised full detector. The FIFO depth is, however,
interesting because it determines how much clock skew can be tolerated in a plesiochronous
system. If, for example, the read clock slowly drifts, gradually increasing the time between
writes and reads, at one point the FIFO will become full, and either the throughput
will decline, or data will be lost. If the clocks drift toward each other, data will be
read too fast, and the FIFO will at some point become empty, which also decreases the
throughput. Clock drift is not unrealistic and can happen for various reasons; significantly,
wire propagation delay increases with temperature, so if different parts of a system have
an uneven load, their temperatures are likely to vary, and the propagation delays will not
be constant.

The question then is, how large should the FIFOs be in order to be able to tolerate
clock drift? We consider a system containing a FIFO, whose drifting read clock is initially
delayed by half a period compared to the write clock, and where the FIFO starts out as
empty. At this point, up to two elements need to be stored at the same time, since the
FIFO latency is at least one clock period (an element is read 1.5 periods after it has been
written). When the read clock has drifted half a period, the two clocks are completely
aligned, and the latency through the FIFO is effectively two clock periods; two elements
are stored in the FIFO at a time. After another period, the latency is effectively three
clock periods, and so the FIFO needs to accommodate three elements, and so forth. This
is illustrated in Figure 5.3.

Figure 5.3: FIFO latency as a function of read clock skew

The above can be easily verified in a simulation test environment. A test bench is
made where the clock period is 100 ns, but the read clock is delayed by 1 ns every ten
clock cycles.4 Every time the write clock ticks, a flit is sent through input port 0: either
a header flit destined for port 2, or a data (and stop) flit containing a unique sequence
number. Similarly, every time the read clock ticks, data is read at port 2, and if it is not
the proper header flit, or a data flit with the right sequence number, an error is reported.
In the ModelSim wave window, signals representing the two clocks, the clock skew and
the number of elements currently in the FIFO data buffer (which is the difference between
the write and read pointers) are monitored. At the start of the simulation, it can be seen
that the number of elements currently stored in the FIFO varies between one and two,
and each number accounts for 50% of the time. As the drift increases, the time intervals
where two elements are stored increase relative to those where only one element is stored,
and when the drift reaches 50 ns (corresponding to a 360◦ phase difference), two elements
are stored in the FIFO all the time.

4Please refer to the file testPleso.vhd in Appendix A.3.
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Figure 5.4 shows the simulation of a FIFO with four elements after a 50 ns clock drift
(making the total phase difference 360◦). This FIFO uses the improved full detector of
Section 4.2. The skew is showed along with the number of elements in the FIFO and the
read and write pointers. After the drift reaches 50 ns, the full signal is asserted, which
means that the FIFO internally disables the write enable signal. Thus, an element is not
written, which causes the test to fail. Evidently, this happens already after a 50 ns clock
drift, even though Figure 5.3 predicts that this requires between two and three elements,
which a four-element FIFO should be amply suited for. The wave window also shows that
the number of elements doesn’t even exceed two. So why is the full signal asserted? The
problem is that the read pointer needs to be synchronised to the write clock domain, which
incurs a delay of one clock period; so when the full detector compares the current write
pointer with the previous read pointer, it sees the N −1 situation of Table 4.1 and rightly
indicates a full situation (remember that the FIFO is designed so that a four-element
FIFO can only contain three elements). When the FIFO is full, no more elements can be
written, and since the data producer doesn’t act on this, data is lost. When using the
original, non-improved full detector and a FIFO of depth five, the same happens after a
50 ns skew; so the extra element does not in this way allow for a larger amount of clock
skew.

Figure 5.4: Simulation of a plesiochronous system

Note that the FIFO is actually not full at this time, so if it allowed a producer to write
to it even though the full signal were asserted, that should not present a problem. If not,
an extra FIFO element needs to be available compared to what is shown in Figure 5.3; so
for example, to allow for a skew of 250%, a six-element FIFO is needed.

In the above, a system has been considered in which reading is slowed, causing the
FIFO to fill up. Of course, the same concepts apply if the opposite happens, only the
FIFO would need to have a tolerance against buffer underflow. For this reason, it might
be advisable to initialise the system in such a way that all FIFOs are about half full,
which would provide a sort of elasticity in both directions. Of course, a buffer underflow
may not be as serious as an overflow if the receiver is designed to ignore empty/invalid
flits even when they arrive in the middle of a package; but it degrades throughput, which
may break a real-time guarantee in a guaranteed service layer.

5.3 Clock-gated mesochronous router

Since the mesochronous router is simply a synchronous router connected with FIFO buffers
at the input ports, a clock-gated version can be obtained by clock gating the individual
components as described in the previous chapters; a clock-gated mesochronous router then
simply consists of the clock-gated synchronous router of Section 3.2 with the clock-gated
FIFOs of Section 4.3 at its input ports. This will ensure that, when all input ports to a
mesochronous router are inactive, the whole router along with the write clock domain of
the FIFO buffers will be turned off. If a single port becomes active, only that particular
FIFO will be turned on, but the whole router will have to be activated. This is not perfect,
but as explained earlier, it is not trivial to fine-tune clock gating of the router due to the
interlinked pipeline signals and the crossbar. It should also be noted that the five FIFO
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buffers account for 965 flip-flop bits (see Table 3.7), while the router itself only uses 390;
that is, 71% of the flip-flop utilisation lies in the FIFOs. For this reason, it makes sense
to concentrate on fine-tuning the clock gating of the FIFO buffers. 5

5.3.1 Synthesis
The register count for the clock-gated mesochronous router is presented in Table 5.3. In
addition to this, six latches are used in the standard clock-gating cells.

Since the clock-gated FIFO buffers cannot by synthesised, no LUT count or speed
estimation can be given; but since the clock-gating logic itself is pretty simple, the clock-
gated mesochronous router should not use substantially more LUTs than the 1994 used by
the non-clock-gated version, and it is not expected to be much slower; for a comparison,
refer to Table 3.7, where the overhead caused by the clock gating was very slight.

Table 5.3: Register count for the clock-gated mesochronous router

Description Count Bits
Clock-gated router 1 392
5× 35 clock-gated FIFO buffer (193 bits) 5 965

1357

5.3.2 Simulation
In Figure 5.5, the clock-gated mesochronous router is simulated using the same test bench
as in Section 5.1.2. The test bench determines that the packages are routed to the correct
output ports, so the functionality of the router is thus verified. As for the clock gating,
please refer to the bottom of the figure showing the gated clocks. In the beginning of the
simulation, all the input lines are inactive, so all the gated clocks are turned off. Then a
flit is sent to input port 0, causing the write clock of the FIFO at that port to be turned
on. After two clock cycles, this is picked up by the router, whose clock is then also turned
on. The figure shows how the router clock remains active, while the FIFO write clocks
are turned on and off individually.

Figure 5.5: Simulation of the clock-gated mesochronous router

5.3.3 Power consumption
Referring to Section 4.3.1, the clock-gated FIFO buffer contains 193 flip-flops and one
latch, of which 183 flip-flops are clock gated and disabled whenever that particular input
port is inactive. The mesochronous router itself consists of 392 flip-flops and one latch, of
which 390 are clock gated. Figure 5.6 shows the gated clock signals for the given usage

5Please refer to the file gatedRouterFifo.vhd in Appendix A.3 for the VHDL implementation of the
clock-gated mesochronous router.
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scenario, where the read and write clocks are 180◦ out of phase. It is worth noticing that
the clock signal for the router itself is not turned on until the incoming signal has been
processed through the FIFO buffers. The calculation in Table 5.4 shows that the flip-flops
account for a toggle count of 4567.

Figure 5.6: Analysis of power consumption for the mesochronous router

Table 5.4: Power estimation of the clock-gated mesochronous router

Time slot 1 2 3 4 5 6 7 8 9 10

1st pkg 0–3 0–3 0–3
(start) (data) (end)

2nd pkg 1–4 1–4 1–4
(start) (data) (end)

3rd pkg 1–0 1–0 1–0
(start) (data) (end)

Flip-flops
FIFOs (enabled) 0 388 582 582 194 0 0 0 0 0
FIFOs (disabled) 55 33 22 22 44 55 55 55 55 55
Router 3 3 3 393 393 393 393 393 393 3
Total 58 424 607 997 631 448 448 448 448 58

The above number refers to the standard usage scenario, as it was defined in Chapter 3.
While this is useful to compare the two router designs and the effect of the clock gating, it
would also be interesting to extrapolate the power consumption to other usage percentages.
By making a calculation like the one done in Table 5.4 for various usage scenarios, defining
the usage percentage as the number of used links divided by the total number of links
available (which is 50 for ten time slots), the graph in Figure 5.7 appears. Note that the
power consumption is not uniquely defined for a given percentage, as this depends on the
exact layout of the flits, so this is somewhat arbitrary. Still, the graph shows an almost
linear dependence for most of the spectrum, except for very low percentages. A likely
explanation for this is the granularity of the router clock gating, which requires the whole
router to be turned on for multiple clock cycles to route just one flit; of course the penalty
for doing this is smaller, the more flits are routed. This can be seen by the fact that
the graph gradually approaches the linear function between the minimum and maximum
power consumptions (which are 58 · 10 = 580 and (194 · 5 + 393) · 10, respectively). The
message is, not unexpectedly, that for small usage percentages, a penalty is paid in power
consumption for the router clock-gating approach; for higher percentages, this doesn’t
matter. When measuring compared to this straight line, it can also be concluded that for
a usage of 18%, there’s a power ‘over-head’ of 56% compared to a perfectly clock-gated
router.
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Figure 5.7: Power consumption as a function of usage percentage

Table 5.5: The results obtained for the mesochronous router

Free running Clock gated
LUTs Flip-flops Power Frequency LUTs Flip-flops Power Frequency
1994 1355 13550 132 MHz n/a 1357 4567 n/a

5.4 Results
In this chapter, the FIFO buffers presented in Chapter 4 were combined with the syn-
chronous router of Chapter 3 to create a mesochronous router, of which a clock-gated
version was then proposed. These were analysed with regard to area cost and tested by
simulating them in ModelSim. An estimate of their power consumptions was then con-
ducted, and the mesochronous router was compared to an ideally clock-gated router. The
results obtained are summarised in Table 5.5.

Also, a plesiochronous system was considered, in which the ramifications of a slowly
varying clock phase difference between neighbouring routers were examined. Figure 5.3
can be used as a guideline when choosing how deep the FIFOs should be in order to
tolerate a certain drift, but the behaviour of the full detector means that the FIFO should
be an element deeper than indicated in the figure.



Chapter 6
FPGA Implementation and

Test

This chapter describes a synthesisable test bench for the mesochronous router implemented
in the previous chapter. This is used to verify that the router works not only when
simulated, but also when run on an FPGA. The point is to provide an indication that
the design works in practise — a sort of ‘proof of concept’ — and not to design an
actual network-on-chip. Thus, the FPGA implementation presented here does not in
itself constitute a useful system, other than as a confirmation of the functionality of the
router.

The first part of this chapter will discuss the design of the test bench itself, after
which the test bench will be simulated and synthesised, and the test results will be briefly
discussed.

6.1 Test bench design

To test the functionality of the mesochronous router on an FPGA, a test bench inspired
by the one used in Section 5.1.2 will be used: During the test, packages should be sent
through all possible routes. The challenge is to design the test bench so as to be able
to verify that this happens correctly; to do this, the test bench keeps track of how many
packages are sent, and how many are received, at each output port. Furthermore, each
data flit is given a unique code so as to be able to verify that it arrives at the correct
destination. This test is not exhaustive — for example, while it does check that flits arrive
in the correct order, it makes no assumptions about the latency through the router —
but used along with the ModelSim simulation results, it gives a pretty good indication
that the router is working as intended. However, it should be noted that if the MTBF
for metastability is high enough — even in the presence of potential design errors in the
synchronisers — these errors would probably not be caught by this manual testing method;
instead, a much more rigorous mechanism should be used (e.g. running the test millions
of times). Again, it is emphasised that the test bench is intended as a proof-of-concept,
to demonstrate a working design, and not as an industry-standard stress test.1

In order to be able to check the contents and order of arriving flits, a FIFO buffer
is maintained for each output port. When the sender sends a flit through the router,
the same flit is written to the appropriate FIFO; and likewise, the receiver compares the
output of the router with the next output of its FIFO. An alternative approach would be
to hard-code the test vectors into the receiver, which would work equally well, but not

1For the VHDL implementation of this test bench, refer to the file fpgaTest.vhd in Appendix A.4.
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sendStart

routerIn(sendOrg) <= sendHeader
fifoIn(actualDest) <= sendHeader >> 2

fifoWen(actualDest) <= ‘1’
numSent ß numSent + 1

routerIn(sendOrg) <= sendData
fifoIn(actualDest) <= sendData

fifoWen(actualDest) <= ‘1’
numSent ß numSent + 1

sendOrg=4? sendDest=3?
sendDest ß sendDest + 1

sendOrg ß 0
Yes No

sendOrg ß sendOrg + 1

No Yes

sendStop

sendDone

Figure 6.1: ASM chart of send state machine

offer the same degree of flexibility; and as an added bonus, the FIFOs are tested even
more thoroughly this way.

Figure 6.1 shows the ASM chart of the send state machine, which is in the write clock
domain. Two counters keep track of what to do: sendOrg maintains the origin, or router
input port, from which the next flit should be sent; and sendDest stores the next flit
destination. For each value 0 . . . 4 of sendOrg, sendDest cycles through the values 0 . . . 3,
so that all combinations of origin and destination are reached (output port 4 is reached
when sendDest equals sendOrg). A decoder (not shown in the figure) sets sendHeader
to the appropriate header flit to contain the address information given by sendDest. The
signal actualDest is set to the actual destination, which is sendDest unless sendOrg =
sendDest, in which case the actual destination is the local port (4); this signal is only
used in order to write to the correct FIFO buffer. One caveat is that, as per the design
of the HPU, the address field of the first flit is rotated in the router, so that the first two
bits always contain the next address; for this reason, the same operation is applied to all
start of package flits before these are written to the FIFO.

In the send state machine, the first two states — sendStart and sendStop — send
out the start of package and end of package flits, respectively. sendDone calculates the
next values of sendOrg and sendDest, as shown in Figure 6.1. For simplicity, only two
flits are sent per package instead of three.

Figure 6.2 depicts the receive state machine in the read clock domain. This state
machine is repeated in the test bench, so that each output port of the router is monitored
by its own independent state machine. For this reason, all the signals mentioned in the
following have a width of five, and each state machine operates on its own element in
these arrays.

In the idle state, the router output ports are checked to see if they contain actual data;
if this is the case, the state machine has a transition to the recvStart state, otherwise it
remains in idle. Thus, the data (if any) received in idle is the first flit of the package,
so the receive state machine is always one flit behind; the recvBuf register is used to
remember the last received flit. In the recvStart state, the last received flit (recvBuf)
is compared to the output of the FIFO buffer. If these match, a counter is incremented;
each output port has its own counter to keep track of how many flits have been correctly
received at that output port. If they don’t match, an error counter is incremented, which
contains the total number of errors. The same thing is done in the recvStop state.
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routerOut=0?

recvBuf=fifoOut? numRecvd ß numRecvd + 1

numErr ß numErr + 1

fifoRen <= ‘1’
recvBuf ß routerOut

Yes

No

recvStart

recvBuf=fifoOut? numRecvd ß numRecvd + 1

numErr ß numErr + 1

fifoRen <= ‘1’
recvBuf ß routerOut

Yes

No

recvStop

Noidle

recvBuf ß routerOut

Yes

Figure 6.2: ASM chart of receive state machine

To verify that the test has completed successfully, the seven-segment display2 on the
Nexys2 board is used along with the switches. Two of the four digits always show the
register containing the number of sent flits; and using the switches, the remaining two
digits can be selected to display one of the six other counters (number of received flits at
each output port, and number of errors).

The circuit is clocked using the on-board clock generator with a frequency of 50 MHz,
which is wired to the write clock. The read clock is set to the inverse, making a 180◦ clock
phase difference between the two clock domains.

6.2 Simulation

The test environment is simulated using ModelSim to ensure that it works correctly before
it is run on the FPGA.3 In particular, the contents of the registers for the number of sent
and received flits are inspected.

In the sender circuit, two flits are sent to each output port from each of the four other
input ports. Thus, a total of eight flits should arrive at each of the five ports, and 40 flits
should be sent in total. Figure 6.3 shows a simulation of the test bench when the last flit
is being received by the receiver at output port 3. It can be seen that 40 (28 hex) flits
have indeed been sent, and eight have been received at each port. numRecvd[5] contains
the number of errors, which is initialised to the value 16 (10 hex) in order to be able

2To manipulate this display, the module written by JWC, downloaded from http://blog.jwcxz.com/
?p=647, is used.

3To simulate the test bench, the wrapper in fpgaTestSim.vhd of Appendix A.4 is used.

http://blog.jwcxz.com/?p=647
http://blog.jwcxz.com/?p=647
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Figure 6.3: Simulation of the synthesisable test bench

to differentiate it from nothing when viewing it in the on-board display; thus, the figure
shows that no errors have occurred.

It can also be seen in the figure that the receive registers are written on the falling
edge of the clock. Notice that there are five clock cycles between each write operation;
this is because the internal clock is slowed by a factor five using a DCM (see Section 6.3).

6.3 Synthesis
No attempt has been made to optimise the test bench code using such techniques as
operator or functionality sharing. As expected, the synthesiser gives a number of warnings,
advising that some comparators and arithmetic circuits could be shared in order to reduce
area. It also warns that a number of signals are constantly zero, so they have been
trimmed; this is no cause for concern and is caused by the fact that the test bench doesn’t
use all of the bits of the flits. All in all, the test bench uses 4095 LUTs (23%), 3493
flip-flops (20%) and 2937 slices (33%).4

The critical path is through the logic in the receive state machines, which features
a comparator and several adder circuits, and has a minimum propagation delay of 11.2
ns. However, the receive logic reads from the test FIFO and compares this to what was
actually received on the router output, and since data is read from this FIFO on the rising
clock edge, while the receive logic is 180◦ out of phase with this, so that it must write to
its own registers on the falling edge, it effectively only has half a clock period to perform
this operation. Thus, the minimum clock period is 22.4 ns, corresponding to a maximum
frequency of 44.6 MHz. Since the on-board crystal is 50 MHz, a Digital Clock Manager
(DCM) is instantiated in order to generate a slower clock signal (10 MHz).

6.4 Results
When synthesising the circuit without a DCM to slow the clock, the functionality is
sporadic, which is to be expected: Setup times are frequently violated, causing the logic
to fail. However, when using a clock of 10 MHz, the test has never been observed to fail.

Using the switches to display the values of the status registers, it can be verified that
the router performs correctly: The number of sent flits is 40, and the number of flits
received at each port is eight; and the number of errors is none. Thus, the synthesisable
test bench confirms that the mesochronous router implementation works in practise on
an FPGA.

4Please refer to the file TestEnv.syr in Appendix B.4 for the Xilinx XST synthesis report.



Chapter 7

Discussion

This chapter presents a discussion of the designs and implementations introduced in the
previous chapters. The synchronous and mesochronous routers will be compared with each
other as well as with the asynchronous router of [SS11], and their area costs and power
consumptions will be discussed. In the second part of this chapter, possible improvements
to the current work will proposed and briefly discussed.

7.1 Results
Table 7.1 summarises the results obtained for both the synchronous and mesochronous
routers. It is immediately clear that the synchronous router is much smaller, and much
faster, than the mesochronous equivalent; however, the figures in the table do not re-
flect the cost of scaling a synchronous network, where it becomes prohibitively expensive
to distribute a non-skewed clock signal for large networks, as discussed in e.g. [HG11,
MPCVG08, GH10, HG11]. For this reason, the disadvantages of the synchronous network
outweigh the benefits as they appear in Table 7.1.

Table 7.1: The results obtained for the synchronous and mesochronous routers

Free running Clock gated
LUTs Flip-flops Power Freq. LUTs Flip-flops Power Freq.

Sync. 761 390 3900 257 MHz 764 392 2370 238 MHz
Meso. 1994 1355 13550 132 MHz n/a 1357 4567 n/a

Instead, it makes sense to compare the mesochronous network to an asynchronous
implementation. [SS11] implements two asynchronous versions of the router presented
here, using 1090 and 1475 logic gates (excluding latches, flip-flops and 160 multiplexers, see
[SS11, Table I]). If we allow four gates for each of the multiplexers,1 the two asynchronous
routers require 1730 and 2115 gates, respectively. While the LUT count presented in Table
7.1 cannot directly be converted to a gate count, a single four-input LUT can probably,
on average, implement the functionality equivalent of 2–4 gates. In the best-case scenario,
where a LUT corresponds to two gates, the synchronous router then requires 1522 gates,
while the mesochronous router requires 3988 gates. Thus, the synchronous circuit is
slightly smaller than the asynchronous circuit, which seems not unreasonable, while the
mesochronous circuit is almost twice as large as the asynchronous circuit; and this does

1See [BV09, Fig. 2.28]; a one-bit 2-to-1 multiplexer can be implemented with two and-gates, one
or-gate and a not-gate.
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not even consider the excessive amount of flip-flops used by the mesochronous circuits.
The results thus seem to favour an asynchronous implementation.

To put the LUT counts into perspective, the author of this thesis implemented a
MiniMIPS processor during a project at DTU, which is a fully functional MIPS, but with
only a limited set of instructions; this required 4241 LUTs. Also, the Xilinx MicroBlaze
CPU uses 1324 LUTs and the PicoBlaze CPU 204.2 Thus, the size of the router alone —
and this does not include other parts of the interconnect, such as the network adaptor —
approaches, or even exceeds, that of a fairly advanced IP that could be connected to the
network. This emphasises the challenges faced when designing SoCs.

Reverting to the results of Table 7.1, the figures for the power consumption unfortu-
nately do not allow us to compare this with other designs. However, it can be remarked
that while the power usage of the clock-gated mesochronous router is about twice as large
as that of the synchronous router for the 20% usage scenario, this does not seem excessive
when considering the many synchronisers required for mesochronous operation. As Figure
5.7 shows, the clock gating of the individual FIFO buffers causes the power consumption
to depend almost linearly on the load for all but the smallest percentages, for which the
power consumed by the router itself becomes significant. Whether effort should be put
into clock gating the router further depends a great deal on the exact usage scenario; if
the router processes only a few flits most of the time, it would probably be worth it, but
if the packages arrive in bursts, interspersed by complete inactivity, it shouldn’t matter
much.

7.2 Further work

While a working, practical implementation of both the synchronous and mesochronous
routers has been presented in the preceding chapters, there are several areas in which the
designs could be further optimised. In this section, ways to improve clock gating, area
costs and measurements are proposed.

7.2.1 Clock gating

As mentioned, whether or not effort should be invested in a more fine-tuned clock gating
depends on the usage scenario; but if it is deemed necessary, it is possible (albeit non-
trivial) to further save power in two ways. First, the clock gating of the router itself could
offer a better granularity, so that each pipeline register is turned on individually, both
before and after the crossbar (see Figure 3.2). The problem is that the registers traversed
after the crossbar depend on the address information of the header flit; so the most obvious
way to implement this would be for the HPU on the incoming port to generate an enable
signal for the relevant register on the outgoing port. Each of the five HPUs would thus
have to be able to enable each of the five outgoing pipeline registers, in addition to the
registers in front of the crossbar. This is unlikely to be cheap in terms of area.

Second, in the current implementation, only the write clock domain of the FIFO buffers
is clock gated. To clock gate the read domain (consisting of the read pointer and some
synchronisation registers), the enable signal would have to be synchronised across this
transition, which would delay it at least one clock cycle. To implement a working FIFO
while doing this is likely to be tricky.

7.2.2 Area costs

To minimise the area costs of the routers is another aspect on which further work could
focus. As mentioned in Section 3.1.4, the crossbar alone requires 525 four-input LUTs.
The crossbar is implemented after the design of Figure 3.3, which consists of 20 two-
input and gates and five four-input or gates, for 35 bits; so to get a total of 525 LUTs
means that one LUT can implement the functionality of two two-input and gates and one

2Obtained from http://www.1-core.com/library/digital/soft-cpu-cores/.

http://www.1-core.com/library/digital/soft-cpu-cores/
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four-input or gate, since (20/2 + 5/1) · 35 = 525. It has to be assumed that this is the
best the synthesiser can do, and it does have the advantage of being a reasonably fast
implementation; it could probably be done in more layers with fewer LUTs, but this would
be slower.

Another expensive part is the multiplexer on the output port of the FIFO that selects
between the data registers, which requires close to 200 LUTs as mentioned in Section
4.1.3. If tri-state buffers are available on the target architecture (this is not the case for
the Spartan3E FPGA), this could be implemented a lot cheaper as originally proposed in
[MPG07]. Even if this reduces the area of each FIFO by the equivalent of only 100 LUTs,
this optimisation alone would mean a 25% area reduction for the mesochronous router.

However, the most obvious way to minimise area costs is to dimension the FIFOs
appropriately. The original, non-improved full detector requires a FIFO depth of five
while providing the same amount of clock skew tolerance as a four-element FIFO with
the improved full detector. If an element is 35 bits long, and if each router requires five
FIFOs, this means a reduction of 175 flip-flop bits per router in the data buffer alone (the
token rings and synchronisation registers have to be considered as well). Furthermore,
Section 5.2 shows that both full detectors (and thus, probably the empty detector as well)
positively inhibit clock skew tolerance, preventing the FIFOs to be used to their fullest
extent. Thus, it should be considered whether the full and empty detectors could be
completely removed from the FIFO when it is used in a mesochronous router like the one
presented here; during normal operation, the FIFO should never be full or empty anyway.

7.2.3 Measuring power and area
The somewhat cumbersome arguments presented above touch upon a relevant limitation
of the results presented in this thesis: Since area costs are measured using LUTs (and
flip-flops) used on a particular FPGA, and power consumption is measured using low-to-
high flip-flop clock ticks for an arbitrary usage scenario, it is very difficult to compare
the design to other implementations. In other words, it would be nice to have the circuit
laid out, which would make it possible to derive the exact number of standard cells or
transistors along with the exact wattage required to process different number of packages.
This is not a trivial process, and it requires relevant experience of using CAD tools such
as Synopsis, which the author of this thesis regrettably lacks, and the attainment of which
is outside the scope of this thesis. Furthermore, to get a meaningful result, the complexity
and power consumption of the other network components, such as the network adaptors,
would also have to be considered. These are tasks that have to be completed if the routers
presented here are to be used in actual designs.
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Chapter 8

Conclusion

In this thesis, a mesochronous network-on-chip router has been presented. Its area costs
and power consumption have been analysed, and its functionality has been verified using
simulation and with a proof-of-concept implementation on an FPGA. The results show
that while a working implementation has been achieved, it comes at the price of rela-
tively high area costs compared to a similar, asynchronous router. Specifically, while the
mesochronous router is almost three times as large as a simple synchronous router when
comparing LUTs, it is also almost twice as large as an asynchronous router.

During the work with the mesochronous router, a bi-synchronous FIFO buffer used
for synchronisation, based on a design by [MPG07], has also been studied and analysed.
It turned out to be nontrivial to incorporate it into the design, particularly because of the
full detector, of which a new one has been designed and implemented in the course of this
thesis. However, when analysing the tolerance for clock skew of the mesochronous router
in a plesiochronous system, it turned out that the full (and empty) detector reduces the
tolerance, so it may be considered to remove it altogether from the FIFOs.

All in all, a working mesochronous NoC router has been designed, although the dis-
advantages in terms of die area and speed induced by the mesochronous design paradigm
severely puts into question the practicality of the solution.
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Appendix A

Code listings

A.1 The Synchronous Network

vhdl/router.vhd
−− router . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Synchronous NoC router . Consis ts o f HPUs, crossbar and p i p e l i n e r e g i s t e r s .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;

entity route r i s
port ( c lk : in s td_log ic ;

r e s e t : in s td_log ic ;
inPort : in XbarPort ;
outPort : out XbarPort

) ;

end route r ;

architecture s t r u c t of route r i s
s ignal se l0 , s e l1 , s e l2 , s e l3 , s e l 4 : std_logic_vector (3 downto 0) ;

−− p i p e l i n e r e g i s t e r s
signal XbarSel , XbarSelNext : std_logic_vector (19 downto 0) ;
signal XbarOut , XbarOutNext : XbarPort ;
signal HPUout , HPUoutNext : XbarPort ;

begin
port0 : entity work .HPU

port map( c lk=>clk , r e s e t=>rese t , inLine=>inPort (0) , outLine=>HPUoutNext (0) ,
s e l=>s e l 0 ) ;

port1 : entity work .HPU
port map( c lk=>clk , r e s e t=>rese t , inLine=>inPort (1) , outLine=>HPUoutNext (1) ,

s e l=>s e l 1 ) ;
port2 : entity work .HPU

port map( c lk=>clk , r e s e t=>rese t , inLine=>inPort (2) , outLine=>HPUoutNext (2) ,
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s e l=>s e l 2 ) ;
port3 : entity work .HPU

port map( c lk=>clk , r e s e t=>rese t , inLine=>inPort (3) , outLine=>HPUoutNext (3) ,
s e l=>s e l 3 ) ;

port4 : entity work .HPU
port map( c lk=>clk , r e s e t=>rese t , inLine=>inPort (4) , outLine=>HPUoutNext (4) ,

s e l=>s e l 4 ) ;

XbarSelNext <= s e l 4 & s e l 3 & s e l 2 & s e l 1 & s e l 0 ;

xbar : entity work . Xbar
port map( func=>XbarSel , inPort=>HPUout , outPort=>XbarOutNext ) ;

outPort <= XbarOut ;

process ( clk , r e s e t )
begin

i f r e s e t = ’0 ’ then
XbarSel <= ( others => ’0 ’ ) ;
XbarOut <= ( others => ( others => ’0 ’ ) ) ;
HPUout <= ( others => ( others => ’0 ’ ) ) ;

e l s i f clk ’ event and c lk = ’1 ’ then
XbarSel <= XbarSelNext ;
XbarOut <= XbarOutNext ;
HPUout <= HPUoutNext ;

end i f ;
end process ;

end s t r u c t ;

vhdl/xbar.vhd
−− xbar . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Crossbar for the NoC router .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;

entity Xbar i s
port (

func : in std_logic_vector (19 downto 0) ;
inPort : in XbarPort ;
outPort : out XbarPort

) ;
end Xbar ;

−− Func format :
−− source port : 4 3 2 1 0
−− des t port : 1032 1042 1034 4032 1432

architecture s t ru c tu r e of Xbar i s
s ignal se l0 , s e l1 , s e l2 , s e l3 , s e l 4 : std_logic_vector (3 downto 0) ;

begin
s e l 0 <= func (3 downto 0) ;

s e l 1 <= func (7 downto 4) ;
s e l 2 <= func (11 downto 8) ;
s e l 3 <= func (15 downto 12) ;
s e l 4 <= func (19 downto 16) ;

outPort (0) <= ( inPort (1) and ( dataLine ’ range=>se l 1 (2) ) ) or
( inPort (2) and ( dataLine ’ range=>se l 2 (2) ) ) or
( inPort (3) and ( dataLine ’ range=>se l 3 (2) ) ) or
( inPort (4) and ( dataLine ’ range=>se l 4 (2) ) ) ;

outPort (1) <= ( inPort (0) and ( dataLine ’ range=>se l 0 (3) ) ) or
( inPort (2) and ( dataLine ’ range=>se l 2 (3) ) ) or
( inPort (3) and ( dataLine ’ range=>se l 3 (3) ) ) or
( inPort (4) and ( dataLine ’ range=>se l 4 (3) ) ) ;

outPort (2) <= ( inPort (0) and ( dataLine ’ range=>se l 0 (0) ) ) or
( inPort (1) and ( dataLine ’ range=>se l 1 (0) ) ) or
( inPort (3) and ( dataLine ’ range=>se l 3 (0) ) ) or
( inPort (4) and ( dataLine ’ range=>se l 4 (0) ) ) ;

outPort (3) <= ( inPort (0) and ( dataLine ’ range=>se l 0 (1) ) ) or
( inPort (1) and ( dataLine ’ range=>se l 1 (1) ) ) or
( inPort (2) and ( dataLine ’ range=>se l 2 (1) ) ) or
( inPort (4) and ( dataLine ’ range=>se l 4 (1) ) ) ;

outPort (4) <= ( inPort (0) and ( dataLine ’ range=>se l 0 (2) ) ) or
( inPort (1) and ( dataLine ’ range=>se l 1 (3) ) ) or
( inPort (2) and ( dataLine ’ range=>se l 2 (0) ) ) or
( inPort (3) and ( dataLine ’ range=>se l 3 (1) ) ) ;

end s t ru c tu r e ;

vhdl/hpu.vhd
−− hpu . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Header pars ing uni t fo r the NoC router . See [ t he s i s , Fig . 3 . 4 ] .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;

entity HPU i s
port (

c lk : in s td_log ic ;

r e s e t : in s td_log ic ;
inLine : in dataLine ;
outLine : out dataLine ;
s e l : out std_logic_vector (3 downto 0)

) ;
end HPU;

architecture s t r u c t of HPU i s
s ignal SOP: std_log ic ;
signal EOP: std_log ic ;
signal dest : std_logic_vector (1 downto 0) ;

signal s e l I n t , s e l In tNext : std_logic_vector (3 downto 0) ;
signal decodedSel : s td_logic_vector (3 downto 0) ;
signal outInt : dataLine ;
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begin
SOP <= inLine (33) ;
EOP <= inLine (32) ;
dest <= inLine (1 downto 0) ;
outLine <= outInt ;

−− binary decoder , des t f i e l d in to a one−hot s i gna l
decodedSel (0) <= ’1 ’ when dest = "00" else ’ 0 ’ ;
decodedSel (1) <= ’1 ’ when dest = "01" else ’ 0 ’ ;
decodedSel (2) <= ’1 ’ when dest = "10" else ’ 0 ’ ;
decodedSel (3) <= ’1 ’ when dest = "11" else ’ 0 ’ ;

s e l In tNext <= decodedSel when SOP = ’1 ’ else ( s e l I n t and ( s e l I n t ’ range=>not (EOP
) ) ) ;

s e l <= s e l I n t when EOP = ’1 ’ else s e l In tNext ;
outInt <= "11000" & inLine (31 downto 2) when SOP = ’1 ’ else inLine ;

process ( r e se t , c l k )
begin

i f r e s e t = ’0 ’ then
s e l I n t <= ( others => ’0 ’ ) ;

e l s i f clk ’ event and c lk = ’1 ’ then
s e l I n t <= se l In tNext ;

end i f ;
end process ;

end s t r u c t ;

vhdl/testRouter.vhd
−− t es tRouter . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Test bench for a synchronous NoC router .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;
use work . tx t_ut i l . a l l ;

entity tes tRouter i s
end tes tRouter ;

architecture behaviour of tes tRouter i s
s ignal c lk : s td_log ic := ’ 0 ’ ;
signal r e s e t : s td_log ic ;
signal router In , routerOut : XbarPort ; −− 0 i s SOUTH, 1 i s WEST, 2 i s NORTH, 3

i s EAST, 4 i s LOCAL

−− t e s t vec tor s
constant OUT_NORTH: dataLine := "11000000000000000000000000000000000" ;
constant OUT_EAST: dataLine := "11000000000000000000000000000000001" ;
constant OUT_SOUTH: dataLine := "11000000000000000000000000000000010" ;
constant OUT_WEST: dataLine := "11000000000000000000000000000000011" ;
constant FLIT_STOP: dataLine := "10100000000000000000000000000000000" ;

constant TEST_LENGTH: i n t e g e r := 7 ;
type testVectorType i s array (0 to TEST_LENGTH−1) of dataLine ;
type outNumType i s array (0 to TEST_LENGTH−1) of i n t e g e r ;
constant TEST_VECTOR: testVectorType := (OUT_SOUTH, OUT_WEST, LINE_ZERO,

LINE_ZERO, LINE_ZERO, OUT_NORTH, OUT_EAST) ;
constant OUT_NUM: outNumType := (0 , 1 , 0 , 0 , 0 , 2 , 3) ; −− por t s at which the

above f l i t s are expected to ar r i v e

begin
r e s e t <= ’0 ’ , ’1 ’ after 37 ns ;
c l k <= not c lk after 50 ns ;

route r : entity work . gatedRouter
port map( c lk=>clk , r e s e t=>rese t , inPort=>router In , outPort=>routerOut ) ;

wBehaviour : process i s
variable outPort : i n t e g e r ;

begin
route r In <= ( others=>(others=>’0’) ) ;
wait unti l r e s e t = ’1 ’ and clk ’ event and c lk = ’ 1 ’ ;

for idx in 0 to TEST_LENGTH−1 loop
report "Writing ␣with␣ idx ␣:=␣" & s t r ( idx ) severity note ;
for i in 0 to 4 loop

−− apply t e s t input
route r In <= ( others=>LINE_ZERO) ;
route r In ( i ) <= TEST_VECTOR( idx ) ;
wait unti l clk ’ event and c lk = ’ 1 ’ ;
i f TEST_VECTOR( idx ) /= LINE_ZERO then

route r In ( i ) <= FLIT_STOP or std_logic_vector ( to_unsigned ( i , 35) ) ;
else

route r In ( i ) <= LINE_ZERO;
end i f ;
wait unti l clk ’ event and c lk = ’ 1 ’ ;

end loop ;
end loop ;
r ou te r In <= ( others=>LINE_ZERO) ;
wait unti l r e s e t = ’ 1 ’ ;

end process wBehaviour ;

rBehaviour : process i s
variable outPort : i n t e g e r ;

begin
wait unti l r e s e t = ’1 ’ and clk ’ event and c lk = ’ 1 ’ ;
−− two period la t ency due to p i p e l i n e in router
wait unti l clk ’ event and c lk = ’ 1 ’ ;
wait unti l clk ’ event and c lk = ’ 1 ’ ;

for idx in 0 to TEST_LENGTH−1 loop
report "Reading␣with␣outNum␣:=␣" & s t r (OUT_NUM( idx ) ) severity note ;
for i in 0 to 4 loop

−− check for correc t output
wait for 10 ns ;
i f OUT_NUM( idx ) = i then

outPort := 4 ; −− l o c a l output
else

outPort := OUT_NUM( idx ) ;
end i f ;
i f routerOut ( outPort ) /= (TEST_VECTOR( idx ) (34 downto 2) & "00" ) then

report "Output␣mismatch␣header ␣ f l i t . ␣ idx ␣:=␣" & s t r ( idx ) & " , ␣ i ␣:=␣" &
s t r ( i ) & " , ␣ outPort ␣:=␣" & s t r ( outPort ) severity e r r o r ;

end i f ;
wait unti l clk ’ event and c lk = ’ 1 ’ ;
wait for 10 ns ;
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i f routerOut ( outPort ) /= (FLIT_STOP or std_logic_vector ( to_unsigned ( i ,
35) ) ) and TEST_VECTOR( idx ) /= LINE_ZERO then

report "Output␣mismatch␣ stop ␣ f l i t . ␣ idx ␣:=␣" & s t r ( idx ) & " , ␣ i ␣:=␣" &
s t r ( i ) & " , ␣ outPort ␣:=␣" & s t r ( outPort ) severity e r r o r ;

end i f ;
wait unti l clk ’ event and c lk = ’ 1 ’ ;

end loop ;
end loop ;

report "CONGRATULATIONS! ␣ I f ␣no␣ f a i l u r e s , ␣ then␣ a l l ␣ t e s t s ␣ completed␣
s u c c e s s f u l l y ! " severity note ;

wait unti l r e s e t = ’ 1 ’ ;
end process rBehaviour ;

end behaviour ;

vhdl/testPower.vhd
−− testPower . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Test bench to generate a ’ t yp i ca l ’ load scenario for power es t imat ion .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;
use work . tx t_ut i l . a l l ;

entity testPower i s
end testPower ;

architecture behaviour of testPower i s
s ignal clkW : std_log ic := ’ 0 ’ ;
signal clkR : s td_log ic := ’ 1 ’ ;
signal r e s e t : s td_log ic ;
signal router In , routerOut : XbarPort ; −− 0 i s SOUTH, 1 i s WEST, 2 i s NORTH,

3 i s EAST, 4 i s LOCAL

−− t e s t vec tor s
constant OUT_NORTH: dataLine := "11000000000000000000000000000000000" ;
constant OUT_EAST: dataLine := "11000000000000000000000000000000001" ;
constant OUT_SOUTH: dataLine := "11000000000000000000000000000000010" ;
constant OUT_WEST: dataLine := "11000000000000000000000000000000011" ;
constant FLIT_STOP: dataLine := "10100000000000000000000000000000000" ;
constant RAND1: dataLine := "10011001101101001101111110011010111" ; −− from /

dev/random
constant RAND2: dataLine := "10001111101000101101110010001000100" ;
constant RAND3: dataLine := "10011100000100010111011011001100001" ;
constant RAND4: dataLine := "10010011100010001000111100101100111" ;
constant RAND5: dataLine := "10011001111010010100001101100001110" ;
constant RAND6: dataLine := "10100000010010011001101011110001010" ;

begin
r e s e t <= ’0 ’ , ’1 ’ after 37 ns ;
clkW <= not clkW after 50 ns ;
clkR <= not clkR after 50 ns ;

route r :
entity work . ga t ed route rF i f o

−−port map( c l k=>clkW , r e s e t=>rese t , inPort=>routerIn , outPort=>routerOut ) ;
port map( c lkLoca l=>clkR , clkNeighbour=>clkW , r e s e t=>rese t , inPort=>router In ,

outPort=>routerOut ) ;

wBehaviour : process i s
begin

route r In <= ( others=>(others=>’0’) ) ;
wait unti l r e s e t = ’1 ’ and clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;

wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;

report " Simulat ion ␣ s t a r t " severity note ;

−− time s l o t 1
route r In (0) <= OUT_EAST;
route r In (2) <= OUT_SOUTH;
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 2
route r In (0) <= RAND1;
route r In (1) <= OUT_WEST;
route r In (2) <= RAND5;
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 3
route r In (0) <= RAND2 or FLIT_STOP;
route r In (1) <= RAND3;
route r In (2) <= RAND6 or FLIT_STOP;
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 4
route r In (0) <= LINE_ZERO;
route r In (1) <= RAND4 or FLIT_STOP;
route r In (2) <= LINE_ZERO;
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 5
route r In (1) <= LINE_ZERO;
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 6
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 7
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 8
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 9
wait unti l clkW ’ event and clkW = ’1 ’ ;

−− time s l o t 10
wait unti l clkW ’ event and clkW = ’1 ’ ;

report " Simulat ion ␣done ! " severity note ;
wait unti l r e se t ’ event ;

end process wBehaviour ;

end behaviour ;
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vhdl/gatedRouter.vhd
−− gatedRouter . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− NoC router with c lock ga t ing .
−− See c lock−ga t ing c e l l in [ Arora , Fig . 2 . 2 6 ] .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;

entity gatedRouter i s
port ( c lk : in s td_log ic ;

r e s e t : in s td_log ic ;
inPort : in XbarPort ;
outPort : out XbarPort

) ;
end gatedRouter ;

architecture s t ru c tu r e of gatedRouter i s
s ignal va l i dS i g In : s td_log ic ;
signal val idSigOut1 , val idSigOut1Next : s td_log ic ;
signal val idSigOut2 , val idSigOut2Next : s td_log ic ;
signal gateEnable , clkEn , gatedClk : s td_log ic ;

begin
process ( clk , r e s e t )
begin

i f r e s e t = ’0 ’ then
val idSigOut1 <= ’1 ’ ;
val idSigOut2 <= ’1 ’ ;

e l s i f clk ’ event and c lk = ’1 ’ then
val idSigOut1 <= validSigOut1Next ;
val idSigOut2 <= validSigOut2Next ;

end i f ;
end process ;

−− c lock ga t ing s t r a t e g y : turn every th ing o f f when no va l i d input s i g na l s
va l i dS i g In <= inPort (0) (34) or inPort (1) (34) or inPort (2) (34) or inPort (3) (34)

or inPort (4) (34) ;
val idSigOut1Next <= va l i dS i g In ; −− DFF, a l low for la t ency of 2 per iods
val idSigOut2Next <= val idSigOut1 ; −− through router be fore output i s

a v a i l a b l e
gateEnable <= va l i dS i g In or val idSigOut2 ;
clkEn <= gateEnable when c lk = ’0 ’ else clkEn ; −− l a tch , see [ Fig . 2 .26 ]
gatedClk <= clkEn and c lk ;

route r : entity work . route r
port map( c lk=>gatedClk , r e s e t=>rese t , inPort=>inPort , outPort=>outPort ) ;

end s t ru c tu r e ;

vhdl/types.vhd
−− types . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Def in i t i on of data types .

LIBRARY IEEE ;
USE IEEE . std_logic_1164 .ALL;

package types i s

subtype dataLine i s std_logic_vector (34 downto 0) ;
type XbarPort i s array (4 downto 0) of dataLine ;

constant LINE_ZERO: dataLine := ( others => ’0 ’ ) ;
end types ;

package body types i s

end types ;
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A.2 A FIFO Synchroniser for Mesochronous Networks

vhdl/fifo.vhd
−− f i f o . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− FIFO synchroniser for mesochronous router .
−− See [ Miro Panades & Greiner , 2007] .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

−−use work . t x t_u t i l . a l l ; −− prov ides log2 for numElem, see below

entity f i f o i s
generic (

N: i n t e g e r := 5 ;
W: i n t e g e r := 35
) ;

port ( clkW : in s td_log ic ;
clkR : in s td_log ic ;
r e s e t : in s td_log ic ;
writeEn : in s td_log ic ;
readEn : in s td_log ic ;
dataW : in std_logic_vector (W−1 downto 0) ;
dataR : out std_logic_vector (W−1 downto 0) ;
f u l l : out s td_log ic ;
empty : out s td_log ic

) ;
end f i f o ;

architecture s t ru c tu r e of f i f o i s
s ignal writeEnInt , readEnInt : s td_log ic ;
signal pointerW , pointerR : std_logic_vector (N−1 downto 0) ; −− wri te and read

po in te r s
signal andPointR : std_logic_vector (N−1 downto 0) ; −− ANDed read po in ter
signal writeIndex , readIndex : std_logic_vector (N−1 downto 0) ; −− one−hot

encoded index in to dataBuf
signal f u l l I n t , emptyInt : s td_log ic ;

type BufferType i s array (N−1 downto 0) of std_logic_vector (W−1 downto 0) ;
signal dataBuf , dataBufNext : BufferType ;

begin
−−−−−−−−−−−−−−−−−−−−−−−−
−− wri te po in ter module
writeEnInt <= writeEn and not f u l l I n t ;
writeP : entity work . tokenRing

generic map (N=>N, de f au l t=>3) −− LSBs are " . . . 0011"
port map ( c lk=>clkW , en=>writeEnInt , r e s e t=>rese t , data=>pointerW ) ;

wr i te Index <= pointerW and ( pointerW (0) & pointerW (N−1 downto 1) ) ; −− AND
with neighbouring b i t s [ Fig . 7 ]

−− wri te to the dataBuf r e g i s t e r s p e c i f i e d by the one−hot encoded wri teIndex
−− simply wr i te to r e g i s t e r i i f the i ’ th b i t i s s e t and wr i te i s enabled
dataBufWriteGen :
for i in 0 to N−1 generate

dataBufNext ( i ) <= dataW when ( wr i te Index ( i ) and writeEnInt ) = ’1 ’ else

dataBuf ( i ) ;
end generate ;

−−−−−−−−−−−−−−−−−−−−−−−−
−− read poin ter module
readEnInt <= readEn and not emptyInt ;
readP : entity work . tokenRing

generic map (N=>N, de f au l t=>12) −− LSBs are " . . . 1100"
port map ( c lk=>clkR , en=>readEnInt , r e s e t=>rese t , data=>pointerR ) ;

andPointR <= pointerR and ( pointerR (0) & pointerR (N−1 downto 1) ) ; −− AND
with neighbouring b i t s

readIndex <= andPointR (1 downto 0) & andPointR (N−1 downto 2) ; −− ro ta t e two
b i t s to a l i gn with dataBuf [ Fig . 7 ]

−− read s i gna l mu l t i p l e x e r − decode the one−hot encoded readIndex in to the
appropr ia te dataBuf s i gna l

−− read from r e g i s t e r i i f the i ’ th b i t i s set , see [ Fig . 7 ] , and read i s
enabled

process ( readIndex , dataBuf , readEnInt )
begin

dataR <= ( others=>’0’) ;
for i in 0 to N−1 loop

i f ( readIndex ( i ) and readEnInt ) = ’1 ’ then
dataR <= dataBuf ( i ) ;

end i f ;
end loop ;

end process ;

−−−−−−−−−−−−−−−−−−−−−−−−
−− f u l l and empty de t e c t o r s
f u l lDe t : entity work . fu l lDetector Improved

generic map (N=>N)
−−port map ( c l k=>clkW , r e s e t=>rese t , writeEn=>writeEn , writeP=>pointerW ,

readP=>pointerR , f u l l=>f u l l I n t ) ;
port map ( c lk=>clkW , r e s e t=>rese t , writeP=>pointerW , readP=>pointerR , f u l l

=>f u l l I n t ) ;

emptyDet : entity work . emptyDetector
generic map (N=>N)
port map ( c lk=>clkR , r e s e t=>rese t , writeP=>pointerW , readP=>pointerR , empty

=>emptyInt ) ;

f u l l <= f u l l I n t ;
empty <= emptyInt ;

−−−−−−−−−−−−−−−−−−−−−−−−
−− r e g i s t e r process
regProc : process (clkW , r e s e t )
begin

i f r e s e t = ’0 ’ then
dataBuf <= ( others => ( others => ’0 ’ ) ) ;

e l s i f clkW ’ event and clkW = ’1 ’ then
dataBuf <= dataBufNext ;

end i f ;
end process regProc ;

−− TEST: the f o l l ow ing prov ides a l o c a l var iab l e , numElem,
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−− containing the number of elements cur ren t l y in the FIFO.
−− Shouldn ’ t be synthes i sed , but u s e f u l f o r s imulat ion .
−− elemCount : process

−− va r i a b l e shiftAmount , readP : in t e g e r ;
−− va r i a b l e numElem: in t e ge r ;

−− begin

−− shiftAmount := log2 ( to_integer ( unsigned ( wri teIndex ) ) ) ;
−− readP := to_integer ( ro ta te_r igh t ( unsigned ( readIndex ) , shiftAmount ) ) ;
−− numElem := log2 ( readP) ;
−− wait on writeIndex , readIndex ;

−− end process ;
end s t ru c tu r e ;

vhdl/tokenring.vhd
−− tokenr ing . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Token ring for the read/wr i te po in te r s in the FIFO bu f f e r s .
−− See [ Miro Panades & Greiner , 2007]

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

entity tokenRing i s
generic (

N: natura l := 5 ; −− s i z e o f token r ing
de f au l t : natura l := 1 −− d e f au l t va lue of token r ing
) ;

port (
c lk : in s td_log ic ;
en : in s td_log ic ;
r e s e t : in s td_log ic ;

data : out std_logic_vector (N−1 downto 0)
) ;

end tokenRing ;

architecture behaviour of tokenRing i s
s ignal r ing , r ingNext : std_logic_vector (N−1 downto 0) ;

begin
data <= r ing ;
−− i f enabled , ro ta t e the token one p lace r i g h t
r ingNext <= r ing (0) & r ing (N−1 downto 1) when en = ’1 ’ else r ing ;

process ( clk , r e s e t )
begin

i f r e s e t = ’0 ’ then
r ing <= std_logic_vector ( to_unsigned ( de fau l t , N) ) ;

e l s i f clk ’ event and c lk = ’1 ’ then
r ing <= ringNext ;

end i f ;
end process ;

end behaviour ;

vhdl/fullDetector.vhd
−− f u l l d e t e c t o r . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Ful l de t ec to r for the FIFO synchroniser . See [ Miro Panades & Greiner , 2007] .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

entity f u l lD e t e c t o r i s
generic (

N: i n t e g e r := 5 −− depth of FIFO
) ;

port ( c lk : in s td_log ic ;
r e s e t : in s td_log ic ;
writeEn : in s td_log ic ;
writeP : in std_logic_vector (N−1 downto 0) ;
readP : in std_logic_vector (N−1 downto 0) ;
f u l l : out s td_log ic

) ;
end f u l lD e t e c t o r ;

architecture behaviour of f u l lD e t e c t o r i s
−− synchronisat ion f l i p f l o p s
signal sync0 , sync0Next : s td_log ic ;
signal sync1 , sync1Next : s td_log ic ;
signal sync2 , sync2Next : s td_log ic ;

signal andSig : std_logic_vector (N−1 downto 0) ;
signal orS ig : s td_log ic ;
signal f u l l S : s td_log ic ;

constant ZEROS: std_logic_vector (N−1 downto 0) := ( others => ’0 ’ ) ;
begin

andSig <= writeP and readP ;
orS ig <= ’0 ’ when andSig = ZEROS else ’ 1 ’ ;
sync0Next <= orS ig ;
sync1Next <= sync0 ;
f u l l S <= sync1 ;

−− opt imisat ion , see [ Miro Panades e t al , f i g . 9 ]
sync2Next <= f u l l S or writeEn ;
f u l l <= sync2 and f u l l S ;

regProc : process ( clk , r e s e t )
begin

i f r e s e t = ’0 ’ then
sync0 <= ’0 ’ ;
sync1 <= ’0 ’ ;
sync2 <= ’0 ’ ;

e l s i f clk ’ event and c lk = ’1 ’ then
sync0 <= sync0Next ;
sync1 <= sync1Next ;
sync2 <= sync2Next ;

end i f ;
end process regProc ;

end behaviour ;
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vhdl/emptyDetector.vhd
−− emptydetector . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Implements an empty de t ec to r for the FIFO.
−− See [ Miro Panades & Greiner , 2007] .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

entity emptyDetector i s
generic (

N: natura l := 5
) ;

port ( c lk : in s td_log ic ;
r e s e t : in s td_log ic ;
writeP : in std_logic_vector (N−1 downto 0) ;
readP : in std_logic_vector (N−1 downto 0) ;
empty : out s td_log ic

) ;
end emptyDetector ;

architecture s t ru c tu r e of emptyDetector i s
−− synchronisat ion f l i p −f l o p s
signal syncWriteP , syncWritePNext : std_logic_vector (N−1 downto 0) ; −−

synchronised wr i te po in ter
signal rotReadP : std_logic_vector (N−1 downto 0) ; −− ro ta ted read

po in ter

signal rotSyncWriteP : std_logic_vector (N−1 downto 0) ; −− ro ta ted
synchronised wr i te po in ter

signal andReadP : std_logic_vector (N−1 downto 0) ; −− ANDed read po in ter
signal andSig : std_logic_vector (N−1 downto 0) ; −− ANDed read and

wri te po in te r s

constant ZEROS: std_logic_vector (N−1 downto 0) := ( others => ’0 ’ ) ;
begin

syncWritePNext <= writeP ;

rotReadP <= readP (0) & readP (N−1 downto 1) ; −− ro ta t e one b i t r i g h t
andReadP <= readP and rotReadP ; −− AND with neighbouring b i t s

rotSyncWriteP <= syncWriteP (N−2 downto 0) & syncWriteP (N−1) ; −− ro ta t e one b i t
l e f t

andSig <= not syncWriteP and rotSyncWriteP and andReadP ; −− AND with
neighbouring b i t s and read po in ter

empty <= ’0 ’ when andSig = ZEROS else ’ 1 ’ ; −− OR the r e s u l t

regProc : process ( clk , r e s e t )
begin

i f r e s e t = ’0 ’ then
syncWriteP <= ( others => ’0 ’ ) ;

e l s i f clk ’ event and c lk = ’1 ’ then
syncWriteP <= syncWritePNext ;

end i f ;
end process regProc ;

end s t ru c tu r e ;

vhdl/testFifo.vhd
−− t e s t f i f o . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Test bench for the FIFO bu f f e r .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

entity t e s tF i f o i s
end t e s tF i f o ;

architecture behaviour of t e s tF i f o i s
s ignal clkW : std_log ic := ’ 0 ’ ;
signal clkR : s td_log ic := ’ 1 ’ ;
signal r e s e t : s td_log ic ;

signal writeEn , readEn , f u l l , empty : s td_log ic ;
signal dataW , dataR : std_logic_vector (3 downto 0) ;

begin
r e s e t <= ’0 ’ , ’1 ’ after 37 ns ;
clkW <= not clkW after 50 ns ;
clkR <= not clkR after 50 ns ;

dataW <= ( others => ’Z ’ ) ;

f i f o : entity work . f i f o

generic map(N=>5, W=>dataW ’ length )
port map( clkW=>clkW , clkR=>clkR , r e s e t=>rese t , writeEn=>writeEn , readEn=>

readEn , dataW=>dataW , dataR=>dataR , f u l l=>f u l l , empty=>empty ) ;

wBehaviour : process i s
variable count : i n t e g e r := 1 ;

begin
writeEn <= ’0 ’ ;
dataW <= ( others => ’Z ’ ) ;
wait unti l r e s e t = ’1 ’ and clkW ’ event and clkW = ’1 ’ ;

while count <= 15 loop
wait for 70 ns ;
i f f u l l = ’1 ’ then

report "wait ing ␣ to ␣wr i te ␣ to ␣own␣FIFO . . . " severity note ;
wait unti l f u l l = ’ 0 ’ ;

else
dataW <= std_logic_vector ( to_unsigned ( count , dataW ’ length ) ) ;
writeEn <= ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait for 10 ns ;
writeEn <= ’0 ’ ;
dataW <= ( others => ’Z ’ ) ;
count := count + 1 ;

end i f ;
end loop ;
wait unti l empty = ’ 1 ’ ;

end process wBehaviour ;

rBehaviour : process i s
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variable count : i n t e g e r := 1 ;
begin

readEn <= ’0 ’ ;
wait unti l r e s e t = ’1 ’ and clkR ’ event and clkR = ’1 ’ ;
−−repor t "wai t ing a l i t t l e be fore reading from FIFO . . . " s e v e r i t y note ;
−−wait u n t i l clkR ’ event and clkR = ’1 ’ ;
−−wait u n t i l clkR ’ event and clkR = ’1 ’ ;
while count <= 15 loop

wait for 10 ns ;
i f empty = ’1 ’ then

report "wait ing ␣ to ␣ read␣ from␣FIFO . . . " severity note ;
wait unti l empty = ’ 0 ’ ;

end i f ;
readEn <= ’1 ’ ;
wait unti l clkR ’ event and clkR = ’1 ’ ;
readEn <= ’0 ’ ;
i f not dataR = std_logic_vector ( to_unsigned ( count , dataR ’ length ) ) then

report "whoa , ␣ read␣ something␣unexpected␣ from␣own␣FIFO" severity warning ;
end i f ;
count := count + 1 ;

end loop ;
end process rBehaviour ;

end behaviour ;

vhdl/fullDetectorImproved.vhd
−− emptydetector . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Improved f u l l d e t ec to r for the FIFO synchroniser ( inverse of o r i g i n a l empty
de t ec to r ) .

−− See [ Miro Panades & Greiner , 2007] .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

entity fu l lDetector Improved i s
generic (

N: natura l
) ;

port ( c lk : in s td_log ic ; −− wri te c lock
r e s e t : in s td_log ic ;
writeP : in std_logic_vector (N−1 downto 0) ;
readP : in std_logic_vector (N−1 downto 0) ;
f u l l : out s td_log ic

) ;
end fu l lDetector Improved ;

architecture s t ru c tu r e of fu l lDetector Improved i s
−− synchronisat ion f l i p f l o p s
signal syncReadP , syncReadPNext : std_logic_vector (N−1 downto 0) ; −−

synchronised read po in ter
signal rotSyncReadP : std_logic_vector (N−1 downto 0) ; −− ro ta ted

synchronised read po in ter

signal andWriteP : std_logic_vector (N−1 downto 0) ; −− ANDed wri te
po in ter

signal rotWriteP : std_logic_vector (N−1 downto 0) ;
signal andSig : std_logic_vector (N−1 downto 0) ; −− ANDed read and

wri te po in te r s

constant ZEROS: std_logic_vector (N−1 downto 0) := ( others => ’0 ’ ) ;
begin

syncReadPNext <= readP ;

andWriteP <= writeP and ( writeP (0) & writeP (N−1 downto 1) ) ; −− one−hot encode
the wr i te po in ter

rotWriteP <= andWriteP (N−2 downto 0) & andWriteP (N−1) ; −− ro ta t e one b i t
l e f t

rotSyncReadP <= syncReadP (N−2 downto 0) & syncReadP (N−1) ; −− ro ta t e one b i t
l e f t

andSig <= syncReadP and not rotSyncReadP and rotWriteP ; −− AND with
neighbouring b i t s and wr i te po in ter

f u l l <= ’0 ’ when andSig = ZEROS else ’ 1 ’ ; −− OR the r e s u l t

regProc : process ( clk , r e s e t )
begin

i f r e s e t = ’0 ’ then
syncReadP <= ( others => ’0 ’ ) ;

e l s i f clk ’ event and c lk = ’1 ’ then
syncReadP <= syncReadPNext ;

end i f ;
end process regProc ;

end s t ru c tu r e ;

vhdl/gatedFifo.vhd
−− gatedFi fo . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− FIFO bu f f e r with c lock ga t ing .
−− Write and read enab le are imp l i c i t l y turned on whenever the ’ enable ’ s i gna l i s

high .
−− That is , when ’ enable ’ i s high , the producer i s expected to cont inuous ly

present data
−− on the input , and the consumer i s expected to read data on the output .
−− For ga t ing theory , [ Arora , Fig . 2 . 2 6 ] .

l ibrary i e e e ;

use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

entity gatedFi fo i s
generic (

N: i n t e g e r := 5 ;
W: i n t e g e r := 35
) ;

port ( clkW : in s td_log ic ;
clkR : in s td_log ic ;
r e s e t : in s td_log ic ;
enable : in s td_log ic ; −− enab le s i gna l for c lock ga t ing
dataW : in std_logic_vector (W−1 downto 0) ;
dataR : out std_logic_vector (W−1 downto 0) ;
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f u l l : out s td_log ic ;
empty : out s td_log ic

) ;
end gatedFi fo ;

architecture s t ru c tu r e of gatedFi fo i s
s ignal clkWEn , gatedClkW : std_log ic ;

begin
clkWEn <= enable when clkW = ’0 ’ else clkWEn ; −− l a t c h

gatedClkW <= clkW and clkWEn ;

f i f o :
entity work . f i f o

generic map(N=>N, W=>W)
port map( clkW=>gatedclkW , clkR=>clkR , r e s e t=>rese t , writeEn=>’1 ’ ,

readEn=>’1 ’ , dataW=>dataW , dataR=>dataR , f u l l=>f u l l , empty=>empty ) ;

end s t ru c tu r e ;

vhdl/testFifo_gating.vhd
−− t e s t f i f o_ga t i n g . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Test bench for the c lock−gated FIFO bu f f e r .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . tx t_ut i l . a l l ;

entity t e s tF i f oGat ing i s
end t e s tF i f oGat ing ;

architecture behaviour of t e s tF i f oGat ing i s
s ignal clkW : std_log ic := ’ 0 ’ ;
signal clkR : s td_log ic := ’ 1 ’ ;
signal r e s e t : s td_log ic ;

signal f u l l , empty : s td_log ic ;
signal dataW , dataR : std_logic_vector (34 downto 0) ;
signal va l i d : s td_log ic ;

begin
r e s e t <= ’0 ’ , ’1 ’ after 137 ns ;
clkW <= not clkW after 50 ns ;
clkR <= not clkR after 50 ns ;

va l i d <= ’0 ’ when dataW = (dataW ’ range=>’0’) else ’ 1 ’ ; −− data va l i d s i gna l

f i f o : entity work . gatedFi fo
−−gener ic map(N=>5, W=>dataW ’ l eng th )
port map( clkW=>clkW , clkR=>clkR , r e s e t=>rese t , enable=>val id , dataW=>dataW ,

dataR=>dataR , f u l l=>f u l l , empty=>empty ) ;

wBehaviour : process i s
variable i : i n t e g e r := 1 ;
variable j : i n t e g e r := 0 ;

begin
dataW <= ( others => ’0 ’ ) ;
wait unti l r e s e t = ’1 ’ and clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
−−wait u n t i l clkW ’ event and clkW = ’1 ’ ;
−−wait u n t i l clkW ’ event and clkW = ’1 ’ ;
−−wait u n t i l clkW ’ event and clkW = ’1 ’ ;

while i <= 100 loop
j := 0 ;
while j < 3 loop

wait for 10 ns ;

i f f u l l = ’1 ’ then
report "wait ing ␣ to ␣wr i te ␣ to ␣FIFO . . . " severity note ;
wait unti l f u l l = ’ 0 ’ ;

end i f ;
dataW <= std_logic_vector ( to_unsigned ( i , dataW ’ length ) ) ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
i := i + 1 ;
j := j + 1 ;

end loop ;
dataW <= ( others => ’0 ’ ) ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
−−wait u n t i l clkW ’ event and clkW = ’1 ’ ;

end loop ;
wait unti l empty = ’ 1 ’ ;

end process wBehaviour ;

rBehaviour : process i s
variable count : i n t e g e r := 1 ;

begin
wait unti l r e s e t = ’1 ’ and clkR ’ event and clkR = ’1 ’ ;
−−wait u n t i l clkR ’ event and clkR = ’1 ’ ;

while count <= 100 loop
wait for 10 ns ;
i f empty = ’1 ’ or ( dataR = (dataR ’ range => ’0 ’ ) ) then

report "wait ing ␣ to ␣ read␣ from␣FIFO . . . " severity note ;
wait unti l clkR ’ event and clkR = ’1 ’ ;
next ;

end i f ;
−−wait u n t i l clkR ’ event and clkR = ’1 ’ ;
−−wait fo r 10 ns ;
i f dataR /= std_logic_vector ( to_unsigned ( count , dataR ’ length ) ) then

i f dataR = std_logic_vector ( to_unsigned ( count−1, dataR ’ length ) ) then
report " read␣ old ␣ s i g n a l ; ␣ c l ock ␣ gat ing ␣ enabled ?" severity note ;
wait unti l clkR ’ event and clkR = ’1 ’ ;
next ;

else
report "whoa , ␣ read␣ something␣unexpected␣ from␣FIFO , ␣ expected ␣count␣:=␣"

& s t r ( count ) severity e r r o r ;
end i f ;

else
report "Read␣count␣:=␣" & s t r ( count ) & "␣as ␣ expected " severity note ;

end i f ;
count := count + 1 ;
wait unti l clkR ’ event and clkR = ’1 ’ ;

end loop ;
end process rBehaviour ;

end behaviour ;
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A.3 The Mesochronous Network

vhdl/routerFifo.vhd
−− rou terFi fo . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Mesochronous NoC router . Uses FIFOs to synchronise input s i g na l s to a standard
router .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;

entity r ou t e rF i f o i s
port ( c lkLoca l : in s td_log ic ;

c lkNeighbour : in s td_log ic ;
r e s e t : in s td_log ic ;
inPort : in XbarPort ;
outPort : out XbarPort

) ;
end r ou t e rF i f o ;

architecture s t ru c tu r e of r ou t e rF i f o i s
s ignal f i f oOut : XbarPort ;
signal f i f o Fu l l , f i foEmpty : std_logic_vector (4 downto 0) ;

begin
f i f oGen :
for i in 0 to 4 generate

f i f o :
entity work . f i f o

generic map(N=>5, W=>35)
port map( clkW=>clkNeighbour , clkR=>clkLocal , r e s e t=>rese t , writeEn=>rese t ,

readEn=>rese t ,
dataW=>inPort ( i ) , dataR=>f i f oOut ( i ) , f u l l=>f i f o F u l l ( i ) , empty=>fifoEmpty ( i )

) ;
end generate ;

r oute r :
entity work . route r

port map( c lk=>ClkLocal , r e s e t=>rese t , inPort=>fi foOut , outPort=>outPort ) ;
end s t ru c tu r e ;

vhdl/testRouter_fifo.vhd
−− t e s t r ou t e r_ f i f o . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Test bench for a mesochronous NoC router .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;
use work . tx t_ut i l . a l l ;

entity t e s tRoute rF i f o i s
end t e s tRoute rF i f o ;

architecture behaviour of t e s tRoute rF i f o i s
s ignal clkW : std_log ic := ’ 0 ’ ;
signal clkR : s td_log ic := ’ 1 ’ ;
signal r e s e t : s td_log ic ;
signal f i f o I n , routerOut : XbarPort ; −− 0 i s SOUTH, 1 i s WEST, 2 i s NORTH, 3

i s EAST, 4 i s LOCAL

−− t e s t vec tor s
constant OUT_NORTH: dataLine := "11000000000000000000000000000000000" ;
constant OUT_EAST: dataLine := "11000000000000000000000000000000001" ;
constant OUT_SOUTH: dataLine := "11000000000000000000000000000000010" ;
constant OUT_WEST: dataLine := "11000000000000000000000000000000011" ;
constant FLIT_STOP: dataLine := "10100000000000000000000000000000000" ;

constant TEST_LENGTH: i n t e g e r := 7 ;
type testVectorType i s array (0 to TEST_LENGTH−1) of dataLine ;
type outNumType i s array (0 to TEST_LENGTH−1) of i n t e g e r ;

constant TEST_VECTOR: testVectorType := (OUT_SOUTH, OUT_WEST, LINE_ZERO,
LINE_ZERO, LINE_ZERO, OUT_NORTH, OUT_EAST) ;

CONSTANT OUT_NUM: outNumType := (0 , 1 , 0 , 0 , 0 , 2 , 3) ; −− por t s at which the
above f l i t s are expected to ar r i v e

begin
r e s e t <= ’0 ’ , ’1 ’ after 37 ns ;
clkW <= not clkW after 50 ns ;
clkR <= not clkR after 50 ns ;

route r :
entity work . gatedRouterFi fo −−gatedRouterFifo

port map( c lkLoca l=>clkR , clkNeighbour=>clkW , r e s e t=>rese t , inPort=>f i f o I n ,
outPort=>routerOut ) ;

wBehaviour : process i s
variable outPort : i n t e g e r ;

begin
f i f o I n <= ( others=>(others=>’0’) ) ;
wait unti l r e s e t = ’1 ’ and clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
wait unti l clkW ’ event and clkW = ’1 ’ ;

for idx in 0 to TEST_LENGTH−1 loop
report "Writing ␣with␣ idx ␣:=␣" & s t r ( idx ) severity note ;
for i in 0 to 4 loop

−− apply t e s t input
f i f o I n <= ( others=>LINE_ZERO) ;
f i f o I n ( i ) <= TEST_VECTOR( idx ) ;
wait unti l clkW ’ event and clkW = ’1 ’ ;
i f TEST_VECTOR( idx ) /= LINE_ZERO then

f i f o I n ( i ) <= FLIT_STOP or std_logic_vector ( to_unsigned ( i , 35) ) ;
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else
f i f o I n ( i ) <= LINE_ZERO;

end i f ;
wait unti l clkW ’ event and clkW = ’1 ’ ;

end loop ;
end loop ;
f i f o I n <= ( others=>LINE_ZERO) ;
wait unti l r e s e t = ’ 1 ’ ;

end process wBehaviour ;

rBehaviour : process i s
variable outPort : i n t e g e r ;

begin
wait unti l r e s e t = ’1 ’ and clkR ’ event and clkR = ’1 ’ ;
wait unti l clkR ’ event and clkR = ’1 ’ ;
wait unti l clkR ’ event and clkR = ’1 ’ ;
wait unti l clkR ’ event and clkR = ’1 ’ ;
wait unti l clkR ’ event and clkR = ’1 ’ ;

−− one (and a ha l f ) per iod la t ency inherent in f i f o
wait unti l clkR ’ event and clkR = ’1 ’ ;
−− two period la t ency due to p i p e l i n e in HPU
wait unti l clkR ’ event and clkR = ’1 ’ ;
wait unti l clkR ’ event and clkR = ’1 ’ ;

for idx in 0 to TEST_LENGTH−1 loop
report "Reading␣with␣outNum␣:=␣" & s t r (OUT_NUM( idx ) ) severity note ;
for i in 0 to 4 loop

−− check for correc t output
wait for 10 ns ;
i f OUT_NUM( idx ) = i then

outPort := 4 ; −− l o c a l output
else

outPort := OUT_NUM( idx ) ;
end i f ;
i f routerOut ( outPort ) /= (TEST_VECTOR( idx ) (34 downto 2) & "00" ) then

report "Output␣mismatch␣header ␣ f l i t . ␣ idx ␣:=␣" & s t r ( idx ) & " , ␣ i ␣:=␣" &
s t r ( i ) & " , ␣ outPort ␣:=␣" & s t r ( outPort ) severity e r r o r ;

end i f ;
wait unti l clkR ’ event and clkR = ’1 ’ ;
wait for 10 ns ;
i f routerOut ( outPort ) /= (FLIT_STOP or std_logic_vector ( to_unsigned ( i ,

35) ) ) and TEST_VECTOR( idx ) /= LINE_ZERO then
report "Output␣mismatch␣ stop ␣ f l i t . ␣ idx ␣:=␣" & s t r ( idx ) & " , ␣ i ␣:=␣" &

s t r ( i ) & " , ␣ outPort ␣:=␣" & s t r ( outPort ) severity e r r o r ;
end i f ;
wait unti l clkR ’ event and clkR = ’1 ’ ;

end loop ;
end loop ;

report "CONGRATULATIONS! ␣ I f ␣no␣ f a i l u r e s , ␣ then␣ a l l ␣ t e s t s ␣ completed␣
s u c c e s s f u l l y ! " severity note ;

wait unti l r e s e t = ’ 1 ’ ;
end process rBehaviour ;

end behaviour ;

vhdl/testPleso.vhd
−− t e s tP l e s o . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Test bench for a p les iochronous system .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;
use work . tx t_ut i l . a l l ;

entity t e s tP l e s o i s
end t e s tP l e s o ;

architecture behaviour of t e s tP l e s o i s
s ignal clkW : std_log ic := ’ 0 ’ ;
signal clkR : s td_log ic := ’ 0 ’ ;
signal r e s e t : s td_log ic ;
signal router In , routerOut : XbarPort ; −− 0 i s SOUTH, 1 i s WEST, 2 i s NORTH,

3 i s EAST, 4 i s LOCAL

−− t e s t vec tor s
constant OUT_NORTH: dataLine := "11000000000000000000000000000000000" ;
constant OUT_EAST: dataLine := "11000000000000000000000000000000001" ;
constant OUT_SOUTH: dataLine := "11000000000000000000000000000000010" ;
constant OUT_WEST: dataLine := "11000000000000000000000000000000011" ;
constant FLIT_STOP: dataLine := "10100000000000000000000000000000000" ;

begin
r e s e t <= ’0 ’ , ’1 ’ after 37 ns ;

clkW <= not clkW after 50 ns ;

Clk : process i s
variable count : i n t e g e r := 0 ;
variable skew : i n t e g e r := 0 ;

begin
clkR <= not clkR ;
wait for 50 ns ;
i f count = 9 then

wait for 1 ns ;
count := 0 ;
skew := skew + 1 ;

else
count := count + 1 ;

end i f ;
end process Clk ;

route r :
entity work . r ou t e rF i f o

port map( c lkLoca l=>clkR , clkNeighbour=>clkW , r e s e t=>rese t , inPort=>router In ,
outPort=>routerOut ) ;

wBehaviour : process i s
variable sequence : i n t e g e r := 0 ;

begin
route r In <= ( others=>(others=>’0’) ) ;
wait unti l r e s e t = ’1 ’ and clkW ’ event and clkW = ’1 ’ ;

loop
route r In (0) <= OUT_NORTH;
wait unti l clkW ’ event and clkW = ’1 ’ ;
r oute r In (0) <= FLIT_STOP or std_logic_vector ( to_unsigned ( sequence , 35) ) ;



A
.3

T
he

M
esochronous

N
etw

ork
57

sequence := sequence + 1 ;
wait unti l clkW ’ event and clkW = ’1 ’ ;

end loop ;
end process wBehaviour ;

rBehaviour : process i s
variable sequence : i n t e g e r := 0 ;

begin
wait unti l r e s e t = ’1 ’ and clkR ’ event and clkR = ’1 ’ ;

−− one (and a ha l f ) per iod la t ency inherent in f i f o
wait unti l clkR ’ event and clkR = ’1 ’ ;
−− two period la t ency due to p i p e l i n e in HPU
wait unti l clkR ’ event and clkR = ’1 ’ ;
wait unti l clkR ’ event and clkR = ’1 ’ ;

loop
wait for 3 ns ;

i f routerOut (2) /= (OUT_NORTH(34 downto 2) & "00" ) then
report "Received ␣ i nva l i d ␣header ␣ f l i t ! ␣Sequence␣ i s ␣" & s t r ( sequence ) & " . "

severity f a i l u r e ;
end i f ;
wait unti l clkR ’ event and clkR = ’1 ’ ;
wait for 3 ns ;
i f routerOut (2) /= (FLIT_STOP or std_logic_vector ( to_unsigned ( sequence , 35)

) ) then
report "Received ␣ i nva l i d ␣data␣ f l i t ! ␣Sequence␣ i s ␣" & s t r ( sequence ) & " . "

severity f a i l u r e ;
end i f ;
sequence := sequence + 1 ;
wait unti l clkR ’ event and clkR = ’1 ’ ;

end loop ;
end process rBehaviour ;

end behaviour ;

vhdl/gatedRouterFifo.vhd
−− gatedRouterFifo . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Mesochronous router with c lock ga t ing .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;

entity gatedRouterFi fo i s
port ( c lkLoca l : in s td_log ic ;

c lkNeighbour : in s td_log ic ;
r e s e t : in s td_log ic ;
inPort : in XbarPort ;
outPort : out XbarPort

) ;
end gatedRouterFi fo ;

architecture s t ru c tu r e of gatedRouterFi fo i s
s ignal f i f oOut : XbarPort ;
signal f i f o Fu l l , f i foEmpty : std_logic_vector (4 downto 0) ;

begin
f i f oGen :
for i in 0 to 4 generate

gatedFi fo :
entity work . gatedFi fo

generic map(N=>5, W=>35)
port map( clkW=>ClkNeighbour , clkR=>ClkLocal , r e s e t=>rese t , enable=>inPort ( i

) (34) ,
dataW=>inPort ( i ) , dataR=>f i f oOut ( i ) , f u l l=>f i f o F u l l ( i ) , empty=>fifoEmpty ( i )

) ;
end generate ;

gatedRouter :
entity work . gatedRouter

port map( c lk=>clkLocal , r e s e t=>rese t , inPort=>fi foOut , outPort=>outPort ) ;
end s t ru c tu r e ;
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A.4 FPGA Implementation and Test

vhdl/fpgaTest.vhd
−− fpgaTest . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− FPGA t e s t su i t e , proof−of−concept NoC router on FPGA.

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;
use work . types . a l l ;

entity TestEnv i s
port (

c lk : in s td_log ic ;
r e s e t : in s td_log ic ;
btnOk : in s td_log ic ;
sw : in std_logic_vector (7 downto 0) ; −− swi tches
Led : out std_logic_vector (7 downto 0) ; −− LEDs
an : out std_logic_vector (3 downto 0) ; −− Anodes
seg : out std_logic_vector (7 downto 0) −− Cathodes

) ;
end TestEnv ;

architecture behaviour of TestEnv i s
constant NUM_PORTS: i n t e g e r := 5 ; −− number of i /o por t s

constant OUT_NORTH: dataLine := "11000000000000000000000000000000000" ;
constant OUT_EAST: dataLine := "11000000000000000000000000000000001" ;
constant OUT_SOUTH: dataLine := "11000000000000000000000000000000010" ;
constant OUT_WEST: dataLine := "11000000000000000000000000000000011" ;
constant FLIT_STOP: dataLine := "10100000000000000000000000000000000" ;

−− Test bench d iagnos t i c s
−− Number of sent / rece ived f l i t s
signal numSent , numSentNext : i n t e g e r range 0 to 200 ;
type recvType i s array (0 to NUM_PORTS) of i n t e g e r range 0 to 200 ;
signal numRecvd , numRecvdNext : recvType ; −− rece ived at each port + errors
−− Control s i g na l s for FIFOs ( data sent / recvd memory)
type f i foInOutType i s array (0 to NUM_PORTS−1) of dataLine ;
signal f i f o I n , f i f oOut : f i foInOutType ;
signal f i f o Fu l l , fifoEmpty , fifoWen , f i f oRen : std_logic_vector (0 to NUM_PORTS

−1) ;
−− Output to seven segment d i s p l ay on Nexys2 board
signal displayData : std_logic_vector (15 downto 0) ;

−− Test bench s t a t e machines
type sendStateType i s ( id l e , sendStart , sendStop , sendDone ) ;
type recvStateType i s ( id l e , recvStart , recvStop ) ;
type recvStateTypeArray i s array (0 to NUM_PORTS−1) of recvStateType ;

signal sendState , sendStateNext : sendStateType ;
signal sendDest , sendDestNext : i n t e g e r range 0 to NUM_PORTS−1;
signal sendOrg , sendOrgNext : i n t e g e r range 0 to NUM_PORTS−1;
signal s e r i a l , s e r i a lNex t : natura l ;
signal sendHeader : dataLine ;
signal recvState , recvStateNext : recvStateTypeArray ;
signal recvBuf , recvBufNext : XbarPort ;

signal router In , routerOut : XbarPort ; −− 0 i s SOUTH, 1 i s WEST, 2 i s
NORTH, 3 i s EAST, 4 i s LOCAL

signal clkW , clkR , clkDiv , clkBufG , clk0Out , clkLockedOut : s td_log ic ;
signal r e s e t Inv : s td_log ic ;

begin
clkW <= clkDiv ;
clkR <= not clkDiv ;

r e s e t Inv <= not r e s e t ;
−−Led <= sw ;
Led <= ( others => ’0 ’ ) ;

−− decoder , numerical de s t ina t i on in to header f l i t
sendDestProc :
process ( sendDest )
begin

case sendDest i s
when 0 => sendHeader <= OUT_SOUTH;
when 1 => sendHeader <= OUT_WEST;
when 2 => sendHeader <= OUT_NORTH;
when 3 => sendHeader <= OUT_EAST;
when others => sendHeader <= ( others => ’0 ’ ) ;

end case ;
end process sendDestProc ;

sendProc :
process ( sendState , numSent , sendOrg , sendDest , sendHeader , s e r i a l )

variable f i f oDe s t : i n t e g e r range 0 to NUM_PORTS−1;
begin

route r In <= ( others => ( others => ’0 ’ ) ) ;
f i f o I n <= ( others => ( others => ’0 ’ ) ) ;
f i foWen <= ( others => ’0 ’ ) ;
numSentNext <= numSent ;
sendOrgNext <= sendOrg ;
sendDestNext <= sendDest ;
s e r i a lNex t <= s e r i a l ;

−− ac tua l de s t ina t i on port
i f sendOrg = sendDest then

f i f oDe s t := 4 ;
else

f i f oDe s t := sendDest ;
end i f ;

case sendState i s
when i d l e =>

sendStateNext <= sendStart ;
when sendStart =>

route r In ( sendOrg ) <= sendHeader ;
f i f o I n ( f i f oDe s t ) <= sendHeader (34 downto 2) & "00" ;
fi foWen ( f i f oDe s t ) <= ’1 ’ ;
numSentNext <= numSent + 1 ;
sendStateNext <= sendStop ;

when sendStop =>
route r In ( sendOrg ) <= (FLIT_STOP or std_logic_vector ( to_unsigned ( s e r i a l ,

35) ) ) ;
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f i f o I n ( f i f oDe s t ) <= (FLIT_STOP or std_logic_vector ( to_unsigned ( s e r i a l ,
35) ) ) ;

s e r i a lNex t <= s e r i a l + 1 ;
fifoWen ( f i f oDe s t ) <= ’1 ’ ;
numSentNext <= numSent + 1 ;
sendStateNext <= sendDone ;

when sendDone =>
i f sendOrg = 4 then

i f sendDest = 3 then
sendStateNext <= sendDone ; −− done , remain in t h i s s t a t e

else
sendDestNext <= sendDest + 1 ;
sendOrgNext <= 0 ;
sendStateNext <= sendStart ;

end i f ;
else

sendOrgNext <= sendOrg + 1 ;
sendStateNext <= sendStart ;

end i f ;
end case ;

end process sendProc ;

recvProc :
process ( recvState , routerOut , numRecvd , f i foOut , recvBuf )
begin

f i f oRen <= ( others => ’0 ’ ) ;
numRecvdNext <= numRecvd ;
recvBufNext <= routerOut ;

−− generate s t a t e machines for every output port
for i in recvState ’ range loop

case r ecvState ( i ) i s
when i d l e =>

i f routerOut ( i ) (34) = ’0 ’ then
recvStateNext ( i ) <= i d l e ;

else
recvStateNext ( i ) <= recvSta r t ;

end i f ;
when r e cvSta r t =>

f i f oRen ( i ) <= ’1 ’ ;
recvStateNext ( i ) <= recvStop ;
i f recvBuf ( i ) = f i f oOut ( i ) then

−− match
numRecvdNext ( i ) <= numRecvd( i ) + 1 ;

else
numRecvdNext (5) <= numRecvd (5) + 1 ;

end i f ;
when recvStop =>

f i f oRen ( i ) <= ’1 ’ ;
recvStateNext ( i ) <= i d l e ;
i f recvBuf ( i ) = f i f oOut ( i ) then

−− match
numRecvdNext ( i ) <= numRecvd( i ) + 1 ;

else
numRecvdNext (5) <= numRecvd (5) + 1 ; −− count number of errors

end i f ;
end case ;

end loop ;
end process recvProc ;

process ( clkW , r e s e t )
begin

i f r e s e t = ’1 ’ then
numSent <= 0 ;

sendState <= i d l e ;
sendOrg <= 0 ;
sendDest <= 0 ;
s e r i a l <= 1024;

e l s i f clkW ’ event and clkW = ’1 ’ then
numSent <= numSentNext ;
sendState <= sendStateNext ;
sendOrg <= sendOrgNext ;
sendDest <= sendDestNext ;
s e r i a l <= se r i a lNex t ;

end i f ;
end process ;

process ( clkR , r e s e t )
begin

i f r e s e t = ’1 ’ then
numRecvd <= ( others => 0) ;
numRecvd (5) <= 16; −− j u s t to see something in d i sp l ay
for i in recvState ’ range loop

r ecvState ( i ) <= i d l e ;
end loop ;
−−recvSta te <= ( others => i d l e ) ; generates spurious width mismatch warnings
recvBuf <= ( others => ( others => ’0 ’ ) ) ;

e l s i f clkR ’ event and clkR = ’1 ’ then
numRecvd <= numRecvdNext ;
r ecvState <= recvStateNext ;
recvBuf <= recvBufNext ;

end i f ;
end process ;

process ( sw , numSent , numRecvd)
begin

displayData <= std_logic_vector ( to_unsigned (numSent , 8) ) & "00000000" ;
−− inverse p r i o r i t y decoder
−− depending on switches , show # of rece ived f l i t s at each port
−− numRecvd(5) i s # of errors
for i in numRecvd ’ range loop

i f sw( i ) = ’1 ’ then
displayData (7 downto 0) <= std_logic_vector ( to_unsigned (numRecvd( i ) , 8) ) ;

end i f ;
end loop ;

end process ;

−− 7−segment d i s p l ay
d i sp l ay :
entity work . sevseg

port map( c lk=>clkW , r s t=>rese t , va l=>displayData , seg0=>"0000" , seg1=>"0000" ,
seg2=>"0000" , seg3=>"0000" ,

dp=>"0000" , wen=>’1 ’ , wendp=>"0000" , wenseg=>"0000" , useseg =>’0 ’ , anout=>an ,
ctout=>seg ) ;

−− DUT ( router )
route r :
entity work . r ou t e rF i f o

port map( c lkLoca l=>clkR , clkNeighbour=>clkW , r e s e t=>reset Inv , inPort=>
router In , outPort=>routerOut ) ;

−− FIFOs to keep track of what has been sent
f i f oGen :
for i in 0 to NUM_PORTS−1 generate

f i f o : entity work .FIFO
generic map(N=>10, w=>35)
port map( clkW=>clkW , clkR=>clkR , r e s e t=>reset Inv , writeEn=>fifoWen ( i ) ,

readEn=>f i f oRen ( i ) ,
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dataW=>f i f o I n ( i ) , dataR=>f i f oOut ( i ) , f u l l=>f i f o F u l l ( i ) , empty=>fifoEmpty ( i )
) ;

end generate ;

−− DCM ( c lock d i v i d e r ) . Xi l inx IP

DCM:
entity work . ClockDivider

port map ( clkIn_In=>clk , rst_in=>rese t , clkdv_Out=>clkDiv , clkin_Ibufg_out=>
clkBufG , clk0_out=>clk0out , locked_out=>clkLockedOut ) ;

end behaviour ;

vhdl/fpgaTestSim.vhd
−− fpgaTestSim . vhd
−− A. Bentzon , 2012. BSc the s i s , ’Mesochronous TDM−based Network−on−Chip ’ .

−− Wrapper used to s imulate the FPGA t e s t environment .

l ibrary i e e e ;
use i e e e . std_logic_1164 . a l l ;
use i e e e . numeric_std . a l l ;

entity TestEnvSim i s
end TestEnvSim ;

architecture s t ru c tu r e of TestEnvSim i s
s ignal c lk : s td_log ic := ’ 0 ’ ;

signal r e s e t : s td_log ic ;

−− dummy s i gna l s
signal Led , seg : std_logic_vector (7 downto 0) ;
signal an : std_logic_vector (3 downto 0) ;

begin
r e s e t <= ’1 ’ , ’0 ’ after 537 ns ;
c l k <= not c lk after 20 ns ;

testEnv :
entity work . TestEnv

port map( c lk=>clk , r e s e t=>rese t , btnOk=>’0 ’ , sw=>(others=>’0’) , Led=>Led , seg
=>seg ) ;

end s t ru c tu r e ;



Appendix B

Redacted synthesis reports

To save space, the reports generated by XST have been redacted to show only the relevant information. The full reports are available upon request.

B.1 The Synchronous Network

synth/router.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing Entity <router> in l ibrary <work> (Architecture <struct >) .
Entity <router> analyzed . Unit <router> generated .

Analyzing Entity <HPU> in l ibrary <work> (Architecture <struct >) .
Entity <HPU> analyzed . Unit <HPU> generated .

Analyzing Entity <Xbar> in l ibrary <work> (Architecture <structure >) .
Entity <Xbar> analyzed . Unit <Xbar> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .
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Synthes i z ing Unit <HPU>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

hpu . vhd" .
Found 4−b i t register for signal <se l I n t >.
Summary :

i n f e r r e d 4 D−type f l i p−f l o p ( s ) .
Unit <HPU> synthes i z ed .

Synthes i z ing Unit <Xbar>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

xbar . vhd" .
Unit <Xbar> synthes i z ed .

Synthes i z ing Unit <router >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

route r . vhd" .
Found 175−b i t register for signal <HPUout>.
Found 175−b i t register for signal <XbarOut>.
Found 20−b i t register for signal <XbarSel >.
Summary :

i n f e r r e d 370 D−type f l i p−f l o p ( s ) .
Unit <router> synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 16
20−b i t register : 1
35−b i t register : 10
4−b i t register : 5

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================

Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 390
Flip−Flops : 390

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : route r . ngr
Top Level Output File Name : route r
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 352

Ce l l Usage :
# BELS : 761
# INV : 1
# LUT2 : 220
# LUT3 : 150
# LUT4 : 215
# LUT4_L : 175
# Fl ipFlops /Latches : 410
# FDC : 410
# Clock Buf f e r s : 1
# BUFGP : 1
# IO Buf f e r s : 351
# IBUF : 176
# OBUF : 175
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 414 out of 8672 4%
Number of S l i c e F l ip Flops : 410 out of 17344 2%
Number of 4 input LUTs : 761 out of 17344 4%
Number of IOs : 352
Number of bonded IOBs : 352 out of 250 140% (∗)
Number of GCLKs: 1 out of 24 4%

[ . . . ]

Timing Summary :
−−−−−−−−−−−−−−−
Speed Grade : −4

Minimum per iod : 3 .909 ns (Maximum Frequency : 255.820MHz)
Minimum input a r r i v a l time be fo r e c lock : 5 .136 ns
Maximum output requ i r ed time after c lock : 4 .283 ns
Maximum combinat ional path delay : No path found

Timing Deta i l :
−−−−−−−−−−−−−−
All va lues d i sp layed in nanoseconds ( ns )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ clk ’

Clock per iod : 3 .909 ns ( f requency : 255.820MHz)
Total number of paths / de s t i na t i on port s : 1460 / 235

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 3 .909 ns ( Leve l s of Logic = 2)

Source : XbarSel_10_1 (FF)
Dest inat ion : XbarOut_0_2 (FF)
Source Clock : c lk r i s i n g
Dest inat ion Clock : c lk r i s i n g

Data Path : XbarSel_10_1 to XbarOut_0_2
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDC:C−>Q 18 0.591 1.103 XbarSel_10_1 (XbarSel_10_1 )
LUT4: I2−>O 1 0.704 0.499 xbar/outPort_0_or0000<9>9 ( xbar/
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outPort_0_or0000<9>9)
LUT2: I1−>O 1 0.704 0.000 xbar/outPort_0_or0000<9>10 (

XbarOutNext<0><9>)
FDC:D 0.308 XbarOut_0_9

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Total 3 .909 ns (2 .307 ns l og i c , 1 .602 ns route )
(59.0% log i c , 41.0% route )

[ . . . ]

synth/HPU.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing Entity <HPU> in l ibrary <work> (Architecture <struct >) .
Entity <HPU> analyzed . Unit <HPU> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <HPU>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

hpu . vhd" .
Found 4−b i t register for signal <se l I n t >.
Summary :

i n f e r r e d 4 D−type f l i p−f l o p ( s ) .
Unit <HPU> synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 1
4−b i t register : 1

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================

Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s

# Reg i s t e r s : 4
Flip−Flops : 4

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : HPU. ngr
Top Level Output File Name : HPU
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 76

Ce l l Usage :
# BELS : 48
# INV : 1
# LUT2 : 9
# LUT3 : 30
# LUT4 : 8
# Fl ipFlops /Latches : 4
# FDC : 4
# Clock Buf f e r s : 1
# BUFGP : 1
# IO Buf f e r s : 75
# IBUF : 36
# OBUF : 39
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 27 out of 8672 0%
Number of S l i c e F l ip Flops : 4 out of 17344 0%
Number of 4 input LUTs : 48 out of 17344 0%
Number of IOs : 76
Number of bonded IOBs : 76 out of 250 30%
Number of GCLKs: 1 out of 24 4%

[ . . . ]
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synth/Xbar.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing Entity <Xbar> in l ibrary <work> (Architecture <structure >) .
Entity <Xbar> analyzed . Unit <Xbar> generated .

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : Xbar . ngr
Top Level Output File Name : Xbar
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 370

Ce l l Usage :
# BELS : 525
# LUT2 : 175
# LUT4 : 350
# IO Buf f e r s : 370
# IBUF : 195
# OBUF : 175
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 302 out of 8672 3%
Number of 4 input LUTs : 525 out of 17344 3%
Number of IOs : 370
Number of bonded IOBs : 370 out of 250 148% (∗)

[ . . . ]

synth/gatedRouter.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing Entity <gatedRouter> in l ibrary <work> (Architecture <structure >) .
Entity <gatedRouter> analyzed . Unit <gatedRouter> generated .

Analyzing Entity <router> in l ibrary <work> (Architecture <struct >) .
Entity <router> analyzed . Unit <router> generated .

Analyzing Entity <HPU> in l ibrary <work> (Architecture <struct >) .
Entity <HPU> analyzed . Unit <HPU> generated .

Analyzing Entity <Xbar> in l ibrary <work> (Architecture <structure >) .
Entity <Xbar> analyzed . Unit <Xbar> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <HPU>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

hpu . vhd" .
Found 4−b i t register for signal <se l I n t >.
Summary :

i n f e r r e d 4 D−type f l i p−f l o p ( s ) .
Unit <HPU> synthes i z ed .

Synthes i z ing Unit <Xbar>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

xbar . vhd" .
Unit <Xbar> synthes i z ed .

Synthes i z ing Unit <router >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

route r . vhd" .
Found 175−b i t register for signal <HPUout>.
Found 175−b i t register for signal <XbarOut>.
Found 20−b i t register for signal <XbarSel >.
Summary :

i n f e r r e d 370 D−type f l i p−f l o p ( s ) .
Unit <router> synthes i z ed .

Synthes i z ing Unit <gatedRouter >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

gatedRouter . vhd" .
WARNING: Xst :737 − Found 1−b i t l a t ch for signal <clkEn>. Latches may be generated

from incomplete case or i f statements . We do not recommend the use of
l a t ch e s in FPGA/CPLD des igns , as they may lead to t iming problems .

Found 1−b i t register for signal <validSigOut1 >.
Found 1−b i t register for signal <validSigOut2 >.
Summary :

i n f e r r e d 2 D−type f l i p−f l o p ( s ) .
Unit <gatedRouter> synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
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# Reg i s t e r s : 18
1−b i t register : 2
20−b i t register : 1
35−b i t register : 10
4−b i t register : 5

# Latches : 1
1−b i t l a t ch : 1

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================

Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 392
Flip−Flops : 392

# Latches : 1
1−b i t l a t ch : 1

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : gatedRouter . ngr
Top Level Output File Name : gatedRouter
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 352

Ce l l Usage :
# BELS : 766
# INV : 1
# LUT2 : 222
# LUT3 : 150
# LUT4 : 216
# LUT4_L : 175
# MUXF5 : 1
# VCC : 1
# Fl ipFlops /Latches : 413
# FDC : 410
# FDP : 2
# LD_1 : 1
# Clock Buf f e r s : 2
# BUFG : 2
# IO Buf f e r s : 352
# IBUF : 177
# OBUF : 175
=========================================================================

Device u t i l i z a t i o n summary :

−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 416 out of 8672 4%
Number of S l i c e F l ip Flops : 413 out of 17344 2%
Number of 4 input LUTs : 764 out of 17344 4%
Number of IOs : 352
Number of bonded IOBs : 352 out of 250 140% (∗)
Number of GCLKs: 2 out of 24 8%

[ . . . ]

Timing Summary :
−−−−−−−−−−−−−−−
Speed Grade : −4

Minimum per iod : 3 .909 ns (Maximum Frequency : 255.820MHz)
Minimum input a r r i v a l time be fo r e c lock : 5 .136 ns
Maximum output requ i r ed time after c lock : 4 .283 ns
Maximum combinat ional path delay : No path found

Timing Deta i l :
−−−−−−−−−−−−−−
All va lues d i sp layed in nanoseconds ( ns )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ clk ’

Clock per iod : 2 .102 ns ( f requency : 475.737MHz)
Total number of paths / de s t i na t i on port s : 2 / 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 2 .102 ns ( Leve l s of Logic = 1)

Source : val idSigOut2 (FF)
Dest inat ion : clkEn (LATCH)
Source Clock : c lk r i s i n g
Dest inat ion Clock : c lk r i s i n g

Data Path : val idSigOut2 to clkEn
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDP:C−>Q 1 0.591 0.499 val idSigOut2 ( val idSigOut2 )
LUT2: I1−>O 1 0.704 0.000 gateEnable1 ( gateEnable )
LD_1:D 0.308 clkEn

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 2 .102 ns (1 .603 ns l og i c , 0 .499 ns route )

(76.3% log i c , 23.7% route )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ gatedClk1 ’

Clock per iod : 3 .909 ns ( f requency : 255.820MHz)
Total number of paths / de s t i na t i on port s : 1460 / 235

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 3 .909 ns ( Leve l s of Logic = 2)

Source : route r /XbarSel_7_1 (FF)
Dest inat ion : route r /XbarOut_4_34 (FF)
Source Clock : gatedClk1 r i s i n g
Dest inat ion Clock : gatedClk1 r i s i n g

Data Path : route r /XbarSel_7_1 to route r /XbarOut_4_34
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
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FDC:C−>Q 18 0.591 1.103 route r /XbarSel_7_1 ( route r /
XbarSel_7_1 )

LUT4: I2−>O 1 0.704 0.499 route r /xbar/outPort_4_or0000<9>9 (
route r /xbar/outPort_4_or0000<9>9)

LUT2: I1−>O 1 0.704 0.000 route r /xbar/outPort_4_or0000<9>10 (
route r /XbarOutNext<4><9>)

FDC:D 0.308 route r /XbarOut_4_9
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 3 .909 ns (2 .307 ns l og i c , 1 .602 ns route )

(59.0% log i c , 41.0% route )

[ . . . ]



B
.2

A
FIFO

Synchroniser
for

M
esochronous

N
etw

orks
67

B.2 A FIFO Synchroniser for Mesochronous Networks

synth/fifo.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing generic Entity <f i f o > in l ibrary <work> (Architecture <structure >) .

N = 5
W = 35

Entity <f i f o > analyzed . Unit <f i f o > generated .

Analyzing generic Entity <tokenRing .1> in l ibrary <work> (Architecture <behaviour
>) .

N = 5
de f au l t = 3

Entity <tokenRing .1> analyzed . Unit <tokenRing .1> generated .

Analyzing generic Entity <tokenRing .2> in l ibrary <work> (Architecture <behaviour
>) .

N = 5
de f au l t = 12

Entity <tokenRing .2> analyzed . Unit <tokenRing .2> generated .

Analyzing generic Entity <fu l lDe t e c t o r > in l ibrary <work> (Architecture <
behaviour >) .

N = 5
Entity <fu l lDe t e c t o r > analyzed . Unit <fu l lDe t e c t o r > generated .

Analyzing generic Entity <emptyDetector> in l ibrary <work> (Architecture <
structure >) .

N = 5
Entity <emptyDetector> analyzed . Unit <emptyDetector> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <tokenRing_1>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing_1> synthes i z ed .

Synthes i z ing Unit <tokenRing_2>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing_2> synthes i z ed .

Synthes i z ing Unit <fu l lDe t e c t o r >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f u l l d e t e c t o r . vhd" .
Found 1−b i t register for signal <sync0 >.
Found 1−b i t register for signal <sync1 >.
Found 1−b i t register for signal <sync2 >.
Summary :

i n f e r r e d 3 D−type f l i p−f l o p ( s ) .
Unit <fu l lDe t e c t o r > synthes i z ed .

Synthes i z ing Unit <emptyDetector >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

emptydetector . vhd" .
Found 5−b i t register for signal <syncWriteP >.
Summary :

i n f e r r e d 5 D−type f l i p−f l o p ( s ) .
Unit <emptyDetector> synthes i z ed .

Synthes i z ing Unit <f i f o >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f i f o . vhd" .
Found 175−b i t register for signal <dataBuf >.
Summary :

i n f e r r e d 175 D−type f l i p−f l o p ( s ) .
Unit <f i f o > synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 11
1−b i t register : 3
35−b i t register : 5
5−b i t register : 3

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================

Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 193
Flip−Flops : 193

=========================================================================

[ . . . ]
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=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : f i f o . ngr
Top Level Output File Name : f i f o
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 77

Ce l l Usage :
# BELS : 265
# GND : 1
# INV : 1
# LUT2 : 17
# LUT2_L : 1
# LUT3 : 57
# LUT4 : 135
# LUT4_D : 1
# LUT4_L : 1
# MUXF5 : 51
# Fl ipFlops /Latches : 196
# FDC : 8
# FDCE : 183
# FDPE : 5
# Clock Buf f e r s : 2
# BUFGP : 2
# IO Buf f e r s : 75
# IBUF : 38
# OBUF : 37
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 167 out of 8672 1%
Number of S l i c e F l ip Flops : 196 out of 17344 1%
Number of 4 input LUTs : 213 out of 17344 1%
Number of IOs : 77
Number of bonded IOBs : 77 out of 250 30%
Number of GCLKs: 2 out of 24 8%

[ . . . ]

Timing Summary :
−−−−−−−−−−−−−−−
Speed Grade : −4

Minimum per iod : 5 .300 ns (Maximum Frequency : 188.674MHz)
Minimum input a r r i v a l time be fo r e c lock : 5 .983 ns
Maximum output requ i r ed time after c lock : 10.166 ns

Maximum combinat ional path delay : 8 .378 ns

Timing Deta i l :
−−−−−−−−−−−−−−
All va lues d i sp layed in nanoseconds ( ns )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ clkW ’

Clock per iod : 5 .300 ns ( f requency : 188.674MHz)
Total number of paths / de s t i na t i on port s : 722 / 188

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 5 .300 ns ( Leve l s of Logic = 2)

Source : f u l lDe t / sync1 (FF)
Dest inat ion : dataBuf_0_0 (FF)
Source Clock : clkW r i s i n g
Dest inat ion Clock : clkW r i s i n g

Data Path : f u l lDe t / sync1 to dataBuf_0_0
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDC:C−>Q 3 0.591 0.566 f u l lDe t / sync1 ( f u l lDe t / sync1 )
LUT3: I2−>O 10 0.704 0.917 writeEnInt1 ( writeEnInt )
LUT3: I2−>O 35 0.704 1.263 dataBuf_4_and00001 (

dataBuf_4_and0000 )
FDCE:CE 0.555 dataBuf_4_0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 5 .300 ns (2 .554 ns l og i c , 2 .746 ns route )

(48.2% log i c , 51.8% route )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ clkR ’

Clock per iod : 5 .223 ns ( f requency : 191.461MHz)
Total number of paths / de s t i na t i on port s : 144 / 16

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 5 .223 ns ( Leve l s of Logic = 3)

Source : readP/ring_1_1 (FF)
Dest inat ion : readP/ring_2 (FF)
Source Clock : clkR r i s i n g
Dest inat ion Clock : clkR r i s i n g

Data Path : readP/ring_1_1 to readP/ring_2
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDCE:C−>Q 2 0.591 0.622 readP/ring_1_1 ( readP/ring_1_1 )
LUT2_L: I0−>LO 1 0.704 0.104 emptyDet/empty71_SW0_SW0 (N48)
LUT4: I3−>O 2 0.704 0.482 emptyDet/empty71_SW0 (N46)
LUT4: I2−>O 8 0.704 0.757 dataR<0>310_1 (dataR<0>310)
FDPE:CE 0.555 readP/ring_2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 5 .223 ns (3 .258 ns l og i c , 1 .965 ns route )

(62.4% log i c , 37.6% route )

[ . . . ]
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synth/tokenring.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing generic Entity <tokenRing> in l ibrary <work> (Architecture <behaviour >)

.
N = 5
de f au l t = 1

Entity <tokenRing> analyzed . Unit <tokenRing> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <tokenRing >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing> synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 1
5−b i t register : 1

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================

Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 5
Flip−Flops : 5

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : tokenRing . ngr
Top Level Output File Name : tokenRing
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 8

Ce l l Usage :
# BELS : 1
# INV : 1
# Fl ipFlops /Latches : 5
# FDCE : 4
# FDPE : 1
# Clock Buf f e r s : 1
# BUFGP : 1
# IO Buf f e r s : 7
# IBUF : 2
# OBUF : 5
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 3 out of 8672 0%
Number of S l i c e F l ip Flops : 5 out of 17344 0%
Number of 4 input LUTs : 1 out of 17344 0%
Number of IOs : 8
Number of bonded IOBs : 8 out of 250 3%
Number of GCLKs: 1 out of 24 4%

[ . . . ]

synth/fullDetector.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing generic Entity <fu l lDe t e c t o r > in l ibrary <work> (Architecture <

behaviour >) .

N = 5
Entity <fu l lDe t e c t o r > analyzed . Unit <fu l lDe t e c t o r > generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <fu l lDe t e c t o r >.
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Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/
f u l l d e t e c t o r . vhd" .

Found 1−b i t register for signal <sync0 >.
Found 1−b i t register for signal <sync1 >.
Found 1−b i t register for signal <sync2 >.
Summary :

i n f e r r e d 3 D−type f l i p−f l o p ( s ) .
Unit <fu l lDe t e c t o r > synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 3
1−b i t register : 3

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================

Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 3
Flip−Flops : 3

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗

=========================================================================
Final Resu l t s
RTL Top Level Output File Name : f u l lD e t e c t o r . ngr
Top Level Output File Name : f u l lD e t e c t o r
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 14

Ce l l Usage :
# BELS : 6
# INV : 1
# LUT2 : 2
# LUT4 : 3
# Fl ipFlops /Latches : 3
# FDC : 3
# Clock Buf f e r s : 1
# BUFGP : 1
# IO Buf f e r s : 13
# IBUF : 12
# OBUF : 1
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 3 out of 8672 0%
Number of S l i c e F l ip Flops : 3 out of 17344 0%
Number of 4 input LUTs : 6 out of 17344 0%
Number of IOs : 14
Number of bonded IOBs : 14 out of 250 5%
Number of GCLKs: 1 out of 24 4%

[ . . . ]

synth/emptyDetector.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing generic Entity <emptyDetector> in l ibrary <work> (Architecture <

structure >) .
N = 5

Entity <emptyDetector> analyzed . Unit <emptyDetector> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <emptyDetector >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

emptydetector . vhd" .
Found 5−b i t register for signal <syncWriteP >.
Summary :

i n f e r r e d 5 D−type f l i p−f l o p ( s ) .
Unit <emptyDetector> synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 1
5−b i t register : 1

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================
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Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 5
Flip−Flops : 5

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : emptyDetector . ngr
Top Level Output File Name : emptyDetector
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 13

Ce l l Usage :

# BELS : 10
# INV : 1
# LUT2 : 2
# LUT3 : 3
# LUT4 : 2
# MUXF5 : 2
# Fl ipFlops /Latches : 5
# FDC : 5
# Clock Buf f e r s : 1
# BUFGP : 1
# IO Buf f e r s : 12
# IBUF : 11
# OBUF : 1
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 4 out of 8672 0%
Number of S l i c e F l ip Flops : 5 out of 17344 0%
Number of 4 input LUTs : 8 out of 17344 0%
Number of IOs : 13
Number of bonded IOBs : 13 out of 250 5%

IOB Fl ip Flops : 5
Number of GCLKs: 1 out of 24 4%

[ . . . ]

synth/gatedFifo.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing generic Entity <gatedFi fo> in l ibrary <work> (Architecture <structure >)

.
N = 5
W = 35

Entity <gatedFi fo> analyzed . Unit <gatedFi fo> generated .

Analyzing generic Entity <f i f o > in l ibrary <work> (Architecture <structure >) .
N = 5
W = 35

Entity <f i f o > analyzed . Unit <f i f o > generated .

Analyzing generic Entity <tokenRing .1> in l ibrary <work> (Architecture <behaviour
>) .

N = 5
de f au l t = 3

Entity <tokenRing .1> analyzed . Unit <tokenRing .1> generated .

Analyzing generic Entity <tokenRing .2> in l ibrary <work> (Architecture <behaviour
>) .

N = 5
de f au l t = 12

Entity <tokenRing .2> analyzed . Unit <tokenRing .2> generated .

Analyzing generic Entity <fu l lDe t e c t o r > in l ibrary <work> (Architecture <
behaviour >) .

N = 5
Entity <fu l lDe t e c t o r > analyzed . Unit <fu l lDe t e c t o r > generated .

Analyzing generic Entity <emptyDetector> in l ibrary <work> (Architecture <
structure >) .

N = 5
Entity <emptyDetector> analyzed . Unit <emptyDetector> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <tokenRing_1>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing_1> synthes i z ed .

Synthes i z ing Unit <tokenRing_2>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing_2> synthes i z ed .
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Synthes i z ing Unit <fu l lDe t e c t o r >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f u l l d e t e c t o r . vhd" .
Found 1−b i t register for signal <sync0 >.
Found 1−b i t register for signal <sync1 >.
Found 1−b i t register for signal <sync2 >.
Summary :

i n f e r r e d 3 D−type f l i p−f l o p ( s ) .
Unit <fu l lDe t e c t o r > synthes i z ed .

Synthes i z ing Unit <emptyDetector >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

emptydetector . vhd" .
Found 5−b i t register for signal <syncWriteP >.
Summary :

i n f e r r e d 5 D−type f l i p−f l o p ( s ) .
Unit <emptyDetector> synthes i z ed .

Synthes i z ing Unit <f i f o >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f i f o . vhd" .
Found 175−b i t register for signal <dataBuf >.
Summary :

i n f e r r e d 175 D−type f l i p−f l o p ( s ) .
Unit <f i f o > synthes i z ed .

Synthes i z ing Unit <gatedFi fo >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

gatedFi fo . vhd" .
WARNING: Xst :737 − Found 1−b i t l a t ch for signal <clkWEn>. Latches may be generated

from incomplete case or i f statements . We do not recommend the use of
l a t ch e s in FPGA/CPLD des igns , as they may lead to t iming problems .

Unit <gatedFi fo> synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 11
1−b i t register : 3
35−b i t register : 5
5−b i t register : 3

# Latches : 1
1−b i t l a t ch : 1

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================

Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s

# Reg i s t e r s : 193
Flip−Flops : 193

# Latches : 1
1−b i t l a t ch : 1

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : gatedFi fo . ngr
Top Level Output File Name : gatedFi fo
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 76

Ce l l Usage :
# BELS : 151
# GND : 1
# INV : 1
# LUT2 : 3
# LUT3 : 23
# LUT4 : 119
# LUT4_D : 1
# LUT4_L : 1
# MUXF5 : 1
# VCC : 1
# Fl ipFlops /Latches : 195
# FDC : 8
# FDCE : 182
# FDPE : 4
# LD_1 : 1
# Clock Buf f e r s : 3
# BUFG : 2
# BUFGP : 1
# IO Buf f e r s : 75
# IBUF : 38
# OBUF : 37
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 115 out of 8672 1%
Number of S l i c e F l ip Flops : 194 out of 17344 1%
Number of 4 input LUTs : 148 out of 17344 0%
Number of IOs : 76
Number of bonded IOBs : 76 out of 250 30%

IOB Fl ip Flops : 1
Number of GCLKs: 3 out of 24 12%

[ . . . ]

Timing Summary :
−−−−−−−−−−−−−−−
Speed Grade : −4
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Minimum per iod : 5 .190 ns (Maximum Frequency : 192.678MHz)
Minimum input a r r i v a l time be fo r e c lock : 2 .159 ns
Maximum output requ i r ed time after c lock : 14.904 ns
Maximum combinat ional path delay : No path found

Timing Deta i l :
−−−−−−−−−−−−−−
All va lues d i sp layed in nanoseconds ( ns )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ clkR ’

Clock per iod : 5 .190 ns ( f requency : 192.678MHz)
Total number of paths / de s t i na t i on port s : 114 / 12

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 5 .190 ns ( Leve l s of Logic = 3)

Source : f i f o /readP/ring_3 (FF)
Dest inat ion : f i f o /readP/ring_4 (FF)
Source Clock : clkR r i s i n g
Dest inat ion Clock : clkR r i s i n g

Data Path : f i f o /readP/ring_3 to f i f o /readP/ring_4
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDPE:C−>Q 6 0.591 0.704 f i f o /readP/ring_3 ( f i f o /readP/

ring_3 )
LUT3: I2−>O 1 0.704 0.455 f i f o /emptyDet/empty9 ( f i f o /emptyDet

/empty9 )
LUT4_D: I2−>LO 1 0.704 0.104 f i f o /emptyDet/empty35 (N115 )
LUT4: I3−>O 6 0.704 0.669 f i f o / readEnInt1 ( f i f o / readEnInt )

FDPE:CE 0.555 f i f o /readP/ring_2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 5 .190 ns (3 .258 ns l og i c , 1 .932 ns route )

(62.8% log i c , 37.2% route )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ gatedClkW1 ’

Clock per iod : 3 .921 ns ( f requency : 255.027MHz)
Total number of paths / de s t i na t i on port s : 721 / 187

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 3 .921 ns ( Leve l s of Logic = 1)

Source : f i f o /writeP/ring_0 (FF)
Dest inat ion : f i f o /dataBuf_4_34 (FF)
Source Clock : gatedClkW1 r i s i n g
Dest inat ion Clock : gatedClkW1 r i s i n g

Data Path : f i f o /writeP/ring_0 to f i f o /dataBuf_4_34
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDPE:C−>Q 5 0.591 0.808 f i f o /writeP/ring_0 ( f i f o /writeP/

ring_0 )
LUT4: I0−>O 35 0.704 1.263 f i f o /dataBuf_4_and00001 ( f i f o /

dataBuf_4_and0000 )
FDCE:CE 0.555 f i f o /dataBuf_4_0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 3 .921 ns (1 .850 ns l og i c , 2 .071 ns route )

(47.2% log i c , 52.8% route )

[ . . . ]
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B.3 The Mesochronous Network

synth/routerFifo.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing Entity <route rF i fo > in l ibrary <work> (Architecture <structure >) .
Entity <route rF i fo > analyzed . Unit <route rF i fo > generated .

Analyzing generic Entity <f i f o > in l ibrary <work> (Architecture <structure >) .
N = 5
W = 35

Entity <f i f o > analyzed . Unit <f i f o > generated .

Analyzing generic Entity <tokenRing .1> in l ibrary <work> (Architecture <behaviour
>) .

N = 5
de f au l t = 3

Entity <tokenRing .1> analyzed . Unit <tokenRing .1> generated .

Analyzing generic Entity <tokenRing .2> in l ibrary <work> (Architecture <behaviour
>) .

N = 5
de f au l t = 12

Entity <tokenRing .2> analyzed . Unit <tokenRing .2> generated .

Analyzing generic Entity <fu l lDe t e c t o r > in l ibrary <work> (Architecture <
behaviour >) .

N = 5
Entity <fu l lDe t e c t o r > analyzed . Unit <fu l lDe t e c t o r > generated .

Analyzing generic Entity <emptyDetector> in l ibrary <work> (Architecture <
structure >) .

N = 5
Entity <emptyDetector> analyzed . Unit <emptyDetector> generated .

Analyzing Entity <router> in l ibrary <work> (Architecture <struct >) .
Entity <router> analyzed . Unit <router> generated .

Analyzing Entity <HPU> in l ibrary <work> (Architecture <struct >) .
Entity <HPU> analyzed . Unit <HPU> generated .

Analyzing Entity <Xbar> in l ibrary <work> (Architecture <structure >) .
Entity <Xbar> analyzed . Unit <Xbar> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <tokenRing_1>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing_1> synthes i z ed .

Synthes i z ing Unit <tokenRing_2>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing_2> synthes i z ed .

Synthes i z ing Unit <fu l lDe t e c t o r >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f u l l d e t e c t o r . vhd" .
Found 1−b i t register for signal <sync0 >.
Found 1−b i t register for signal <sync1 >.
Found 1−b i t register for signal <sync2 >.
Summary :

i n f e r r e d 3 D−type f l i p−f l o p ( s ) .
Unit <fu l lDe t e c t o r > synthes i z ed .

Synthes i z ing Unit <emptyDetector >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

emptydetector . vhd" .
Found 5−b i t register for signal <syncWriteP >.
Summary :

i n f e r r e d 5 D−type f l i p−f l o p ( s ) .
Unit <emptyDetector> synthes i z ed .

Synthes i z ing Unit <HPU>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

hpu . vhd" .
Found 4−b i t register for signal <se l I n t >.
Summary :

i n f e r r e d 4 D−type f l i p−f l o p ( s ) .
Unit <HPU> synthes i z ed .

Synthes i z ing Unit <Xbar>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

xbar . vhd" .
Unit <Xbar> synthes i z ed .

Synthes i z ing Unit <f i f o >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f i f o . vhd" .
Found 175−b i t register for signal <dataBuf >.
Summary :

i n f e r r e d 175 D−type f l i p−f l o p ( s ) .
Unit <f i f o > synthes i z ed .

Synthes i z ing Unit <router >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/
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route r . vhd" .
Found 175−b i t register for signal <HPUout>.
Found 175−b i t register for signal <XbarOut>.
Found 20−b i t register for signal <XbarSel >.
Summary :

i n f e r r e d 370 D−type f l i p−f l o p ( s ) .
Unit <router> synthes i z ed .

Synthes i z ing Unit <route rF i fo >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

r ou t e rF i f o . vhd" .
WARNING: Xst :646 − Signal <f i f oFu l l > i s ass igned but never used . This unconnected

signal w i l l be trimmed during the opt imizat ion process .
WARNING: Xst :646 − Signal <fifoEmpty> i s ass igned but never used . This unconnected

signal w i l l be trimmed during the opt imizat ion process .
Unit <route rF i fo > synthes i z ed .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 71
1−b i t register : 15
20−b i t register : 1
35−b i t register : 35
4−b i t register : 5
5−b i t register : 15

=========================================================================

=========================================================================
∗ Advanced HDL Synthes i s ∗
=========================================================================

Loading dev ice for app l i c a t i on Rf_Device from f i l e ’3 s1200e . nph ’ in environment C
:\ Program F i l e s ( x86 ) \ Xi l inx \ISE .

=========================================================================
Advanced HDL Synthes i s Report

Macro S t a t i s t i c s
# Reg i s t e r s : 1355
Flip−Flops : 1355

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : r ou t e rF i f o . ngr
Top Level Output File Name : r ou t e rF i f o
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 353

Ce l l Usage :

# BELS : 2262
# INV : 3
# LUT2 : 184
# LUT2_D : 11
# LUT2_L : 15
# LUT3 : 385
# LUT3_L : 25
# LUT4 : 1013
# LUT4_D : 92
# LUT4_L : 266
# MUXF5 : 268
# Fl ipFlops /Latches : 1390
# FDC : 430
# FDCE : 925
# FDPE : 35
# Clock Buf f e r s : 2
# BUFGP : 2
# IO Buf f e r s : 351
# IBUF : 176
# OBUF : 175
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 1450 out of 8672 16%
Number of S l i c e F l ip Flops : 1390 out of 17344 8%
Number of 4 input LUTs : 1994 out of 17344 11%
Number of IOs : 353
Number of bonded IOBs : 353 out of 250 141% (∗)
Number of GCLKs: 2 out of 24 8%

[ . . . ]

Timing Summary :
−−−−−−−−−−−−−−−
Speed Grade : −4

Minimum per iod : 7 .566 ns (Maximum Frequency : 132.163MHz)
Minimum input a r r i v a l time be fo r e c lock : 7 .695 ns
Maximum output requ i r ed time after c lock : 4 .283 ns
Maximum combinat ional path delay : No path found

Timing Deta i l :
−−−−−−−−−−−−−−
All va lues d i sp layed in nanoseconds ( ns )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ c lkLocal ’

Clock per iod : 7 .566 ns ( f requency : 132.163MHz)
Total number of paths / de s t i na t i on port s : 18238 / 510

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 7 .566 ns ( Leve l s of Logic = 5)

Source : f i f oGen [ 1 ] . f i f o /readP/ring_2 (FF)
Dest inat ion : route r / port1 / se l Int_0 (FF)
Source Clock : c lkLoca l r i s i n g
Dest inat ion Clock : c lkLoca l r i s i n g

Data Path : f i f oGen [ 1 ] . f i f o /readP/ring_2 to route r / port1 / se l Int_0
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
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FDPE:C−>Q 77 0.591 1.451 f i foGen [ 1 ] . f i f o /readP/ring_2 (
f i foGen [ 1 ] . f i f o /readP/ring_2 )

LUT3: I0−>O 1 0.704 0.000 f i foGen [ 1 ] . f i f o /dataR<0>365_F (N492
)

MUXF5: I0−>O 3 0.321 0.535 f i f oGen [ 1 ] . f i f o /dataR<0>365 (
f i f oGen [ 1 ] . f i f o /dataR<0>365)

LUT4: I3−>O 19 0.704 1.089 f i f oGen [ 1 ] . f i f o /dataR<0>3113_2 (
f i foGen [ 1 ] . f i f o /dataR<0>3113_1)

LUT4: I3−>O 1 0.704 0.455 route r / port1 / se l IntNext <0>_SW1 (
N401)

LUT4: I2−>O 1 0.704 0.000 route r / port1 / se l IntNext <0> ( route r /
port1 / se l IntNext <0>)

FDC:D 0.308 route r / port1 / se l Int_0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 7 .566 ns (4 .036 ns l og i c , 3 .530 ns route )

(53.3% log i c , 46.7% route )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ clkNeighbour ’

Clock per iod : 5 .260 ns ( f requency : 190.108MHz)
Total number of paths / de s t i na t i on port s : 3610 / 940

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Delay : 5 .260 ns ( Leve l s of Logic = 2)
Source : f i f oGen [ 4 ] . f i f o / f u l lDe t / sync1 (FF)
Dest inat ion : f i f oGen [ 4 ] . f i f o /dataBuf_4_34 (FF)
Source Clock : c lkNeighbour r i s i n g
Dest inat ion Clock : c lkNeighbour r i s i n g

Data Path : f i f oGen [ 4 ] . f i f o / f u l lDe t / sync1 to f i f oGen [ 4 ] . f i f o /dataBuf_4_34
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDC:C−>Q 2 0.591 0.526 f i foGen [ 4 ] . f i f o / f u l lDe t / sync1 (

f i f oGen [ 4 ] . f i f o / f u l lDe t / sync1 )
LUT3: I1−>O 10 0.704 0.917 f i f oGen [ 4 ] . f i f o /writeEnInt1 (

f i f oGen [ 4 ] . f i f o /writeEnInt )
LUT3: I2−>O 35 0.704 1.263 f i f oGen [ 4 ] . f i f o /dataBuf_4_and00001

( f i f oGen [ 4 ] . f i f o /dataBuf_4_and0000 )
FDCE:CE 0.555 f i f oGen [ 4 ] . f i f o /dataBuf_4_0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 5 .260 ns (2 .554 ns l og i c , 2 .706 ns route )

(48.6% log i c , 51.4% route )

[ . . . ]



B
.4

FP
G

A
Im

plem
entation

and
T
est

77

B.4 FPGA Implementation and Test

synth/TestEnv.syr
Release 10 .1 − xst K.31 ( nt )
Copyright ( c ) 1995−2008 Xi l inx , Inc . All r i g h t s r e s e rved .

[ . . . ]

=========================================================================
∗ HDL Analys i s ∗
=========================================================================
Analyzing Entity <TestEnv> in l ibrary <work> (Architecture <behaviour >) .
WARNING: Xst :790 − "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/ fpgaTest .

vhd" l i n e 105 : Index value ( s ) does not match array range , s imulat ion
mismatch .

WARNING: Xst :790 − "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/ fpgaTest .
vhd" l i n e 106 : Index value ( s ) does not match array range , s imulat ion
mismatch .

WARNING: Xst :790 − "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/ fpgaTest .
vhd" l i n e 111 : Index value ( s ) does not match array range , s imulat ion
mismatch .

WARNING: Xst :790 − "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/ fpgaTest .
vhd" l i n e 113 : Index value ( s ) does not match array range , s imulat ion
mismatch .

Entity <TestEnv> analyzed . Unit <TestEnv> generated .

Analyzing Entity <sevseg> in l ibrary <work> (Architecture <Behavioral >) .
INFO: Xst :1561 − "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/ sevseg . vhd"

l i n e 118 : Mux i s complete : d e f au l t of case i s di scarded
INFO: Xst :1561 − "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/ sevseg . vhd"

l i n e 336 : Mux i s complete : d e f au l t of case i s di scarded
WARNING: Xst :819 − "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/ sevseg .

vhd" l i n e 156 : One or more s i g n a l s are miss ing in the process s e n s i t i v i t y
l i s t . To enable s yn the s i s of FPGA/CPLD hardware , XST w i l l assume that a l l
neces sary s i g n a l s are present in the s e n s i t i v i t y l i s t . P lease note that the
r e s u l t of the syn the s i s may d i f f e r from the i n i t i a l des ign s p e c i f i c a t i o n .
The miss ing s i g n a l s are :

<led3 >, <leddp >, <led2 >, <led1 >, <led0>
Entity <sevseg> analyzed . Unit <sevseg> generated .

Analyzing Entity <route rF i fo > in l ibrary <work> (Architecture <structure >) .
Entity <route rF i fo > analyzed . Unit <route rF i fo > generated .

Analyzing generic Entity <f i f o .2> in l ibrary <work> (Architecture <structure >) .
N = 5
W = 35

Entity <f i f o .2> analyzed . Unit < f i f o .2> generated .

Analyzing generic Entity <tokenRing .3> in l ibrary <work> (Architecture <behaviour
>) .

N = 5
de f au l t = 3

Entity <tokenRing .3> analyzed . Unit <tokenRing .3> generated .

Analyzing generic Entity <tokenRing .4> in l ibrary <work> (Architecture <behaviour
>) .

N = 5
de f au l t = 12

Entity <tokenRing .4> analyzed . Unit <tokenRing .4> generated .

Analyzing generic Entity <fu l lD e t e c t o r .2> in l ibrary <work> (Architecture <
behaviour >) .

N = 5
Entity <fu l lD e t e c t o r .2> analyzed . Unit <f u l lD e t e c t o r .2> generated .

Analyzing generic Entity <emptyDetector .2> in l ibrary <work> (Architecture <
structure >) .

N = 5
Entity <emptyDetector .2> analyzed . Unit <emptyDetector .2> generated .

Analyzing Entity <router> in l ibrary <work> (Architecture <struct >) .
Entity <router> analyzed . Unit <router> generated .

Analyzing Entity <HPU> in l ibrary <work> (Architecture <struct >) .
Entity <HPU> analyzed . Unit <HPU> generated .

Analyzing Entity <Xbar> in l ibrary <work> (Architecture <structure >) .
Entity <Xbar> analyzed . Unit <Xbar> generated .

Analyzing generic Entity <f i f o .1> in l ibrary <work> (Architecture <structure >) .
N = 10
W = 35

Entity <f i f o .1> analyzed . Unit < f i f o .1> generated .

Analyzing generic Entity <tokenRing .1> in l ibrary <work> (Architecture <behaviour
>) .

N = 10
de f au l t = 3

Entity <tokenRing .1> analyzed . Unit <tokenRing .1> generated .

Analyzing generic Entity <tokenRing .2> in l ibrary <work> (Architecture <behaviour
>) .

N = 10
de f au l t = 12

Entity <tokenRing .2> analyzed . Unit <tokenRing .2> generated .

Analyzing generic Entity <fu l lD e t e c t o r .1> in l ibrary <work> (Architecture <
behaviour >) .

N = 10
Entity <fu l lD e t e c t o r .1> analyzed . Unit <f u l lD e t e c t o r .1> generated .

Analyzing generic Entity <emptyDetector .1> in l ibrary <work> (Architecture <
structure >) .

N = 10
Entity <emptyDetector .1> analyzed . Unit <emptyDetector .1> generated .

Analyzing Entity <ClockDivider> in l ibrary <work> (Architecture <BEHAVIORAL>) .
Set user−de f ined property "CAPACITANCE␣=␣␣DONT_CARE" for i n s tance <

CLKIN_IBUFG_INST> in unit <ClockDivider >.
Set user−de f ined property "IBUF_DELAY_VALUE␣=␣␣0" for i n s tance <

CLKIN_IBUFG_INST> in unit <ClockDivider >.
Set user−de f ined property "IOSTANDARD␣=␣␣DEFAULT" for i n s tance <

CLKIN_IBUFG_INST> in unit <ClockDivider >.
Set user−de f ined property "CLKDV_DIVIDE␣=␣␣5.0000000000000000 " for i n s tance <

DCM_SP_INST> in unit <ClockDivider >.
Set user−de f ined property "CLKFX_DIVIDE␣=␣␣1" for i n s tance <DCM_SP_INST> in

unit <ClockDivider >.
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Set user−de f ined property "CLKFX_MULTIPLY␣=␣␣4" for i n s tance <DCM_SP_INST> in
unit <ClockDivider >.

Set user−de f ined property "CLKIN_DIVIDE_BY_2␣=␣␣FALSE" for i n s tance <
DCM_SP_INST> in unit <ClockDivider >.

Set user−de f ined property "CLKIN_PERIOD␣=␣␣20.0000000000000000 " for i n s tance
<DCM_SP_INST> in unit <ClockDivider >.

Set user−de f ined property "CLKOUT_PHASE_SHIFT␣=␣␣NONE" for i n s tance <
DCM_SP_INST> in unit <ClockDivider >.

Set user−de f ined property "CLK_FEEDBACK␣=␣␣1X" for i n s tance <DCM_SP_INST> in
unit <ClockDivider >.

Set user−de f ined property "DESKEW_ADJUST␣=␣␣SYSTEM_SYNCHRONOUS" for i n s tance
<DCM_SP_INST> in unit <ClockDivider >.

Set user−de f ined property "DFS_FREQUENCY_MODE␣=␣␣LOW" for i n s tance <
DCM_SP_INST> in unit <ClockDivider >.

Set user−de f ined property "DLL_FREQUENCY_MODE␣=␣␣LOW" for i n s tance <
DCM_SP_INST> in unit <ClockDivider >.

Set user−de f ined property "DSS_MODE␣=␣␣NONE" for i n s tance <DCM_SP_INST> in
unit <ClockDivider >.

Set user−de f ined property "DUTY_CYCLE_CORRECTION␣=␣␣TRUE" for i n s tance <
DCM_SP_INST> in unit <ClockDivider >.

Set user−de f ined property "FACTORY_JF␣=␣␣C080" for i n s tance <DCM_SP_INST> in
unit <ClockDivider >.

Set user−de f ined property "PHASE_SHIFT␣=␣␣0" for i n s tance <DCM_SP_INST> in
unit <ClockDivider >.

Set user−de f ined property "STARTUP_WAIT␣=␣␣FALSE" for i n s tance <DCM_SP_INST>
in unit <ClockDivider >.

Entity <ClockDivider> analyzed . Unit <ClockDivider> generated .

=========================================================================
∗ HDL Synthes i s ∗
=========================================================================

Performing b i d i r e c t i o n a l port r e s o l u t i o n . . .

Synthes i z ing Unit <sevseg >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

sevseg . vhd" .
Register <leddp<1>> equ iva l en t to <leddp<0>> has been removed
Register <leddp<2>> equ iva l en t to <leddp<0>> has been removed
Register <leddp<3>> equ iva l en t to <leddp<0>> has been removed
Found f i n i t e s t a t e machine <FSM_0> for signal <curan >.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| S ta te s | 4 |
| Trans i t i ons | 4 |
| Inputs | 0 |
| Outputs | 8 |
| Clock | c lk2 ( r i s ing_edge ) |
| Reset | r s t ( p o s i t i v e ) |
| Reset type | synchronous |
| Reset State | 11 |
| Power Up State | 11 |
| Encoding | automatic |
| Implementation | LUT |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Found 1−b i t register for signal <clk2 >.
Found 14−b i t up counter for signal <count >.
Found 4−b i t register for signal <led0 >.
Found 4−b i t register for signal <led1 >.
Found 4−b i t register for signal <led2 >.
Found 4−b i t register for signal <led3 >.
Found 1−b i t register for signal <leddp<0>>.
Summary :

i n f e r r e d 1 F in i t e State Machine ( s ) .

i n f e r r e d 1 Counter ( s ) .
i n f e r r e d 18 D−type f l i p−f l o p ( s ) .

Unit <sevseg> synthes i z ed .

Synthes i z ing Unit <tokenRing_3>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing_3> synthes i z ed .

Synthes i z ing Unit <tokenRing_4>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 5−b i t register for signal <ring >.

Unit <tokenRing_4> synthes i z ed .

Synthes i z ing Unit <ful lDetector_2 >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f u l l d e t e c t o r . vhd" .
Found 1−b i t register for signal <sync0 >.
Found 1−b i t register for signal <sync1 >.
Found 1−b i t register for signal <sync2 >.
Summary :

i n f e r r e d 3 D−type f l i p−f l o p ( s ) .
Unit <ful lDetector_2> synthes i z ed .

Synthes i z ing Unit <emptyDetector_2 >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

emptydetector . vhd" .
Found 5−b i t register for signal <syncWriteP >.
Summary :

i n f e r r e d 5 D−type f l i p−f l o p ( s ) .
Unit <emptyDetector_2> synthes i z ed .

Synthes i z ing Unit <HPU>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

hpu . vhd" .
Found 4−b i t register for signal <se l I n t >.
Summary :

i n f e r r e d 4 D−type f l i p−f l o p ( s ) .
Unit <HPU> synthes i z ed .

Synthes i z ing Unit <Xbar>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

xbar . vhd" .
Unit <Xbar> synthes i z ed .

Synthes i z ing Unit <tokenRing_1>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
Found 10−b i t register for signal <ring >.

Unit <tokenRing_1> synthes i z ed .

Synthes i z ing Unit <tokenRing_2>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

tokenr ing . vhd" .
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Found 10−b i t register for signal <ring >.
Unit <tokenRing_2> synthes i z ed .

Synthes i z ing Unit <ful lDetector_1 >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f u l l d e t e c t o r . vhd" .
Found 1−b i t register for signal <sync0 >.
Found 1−b i t register for signal <sync1 >.
Found 1−b i t register for signal <sync2 >.
Summary :

i n f e r r e d 3 D−type f l i p−f l o p ( s ) .
Unit <ful lDetector_1> synthes i z ed .

Synthes i z ing Unit <emptyDetector_1 >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

emptydetector . vhd" .
Found 10−b i t register for signal <syncWriteP >.
Summary :

i n f e r r e d 10 D−type f l i p−f l o p ( s ) .
Unit <emptyDetector_1> synthes i z ed .

Synthes i z ing Unit <f i fo_1 >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f i f o . vhd" .
Found 350−b i t register for signal <dataBuf >.

INFO: Xst :738 − HDL ADVISOR − 350 f l i p−f l o p s were i n f e r r e d for signal <dataBuf >.
You may be t ry ing to de s c r i b e a RAM in a way that i s incompat ib le with block
and d i s t r i bu t ed RAM re sou r c e s a va i l a b l e on Xi l inx devices , or with a
s p e c i f i c template that i s not supported . Please review the Xi l inx r e s ou r c e s
documentation and the XST user manual for coding gu i d e l i n e s . Taking
advantage of RAM re sou r c e s w i l l l ead to improved dev ice usage and reduced
syn the s i s time .

Summary :
i n f e r r e d 350 D−type f l i p−f l o p ( s ) .

Unit <f i fo_1> synthes i z ed .

Synthes i z ing Unit <ClockDivider >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / Xi l inx /mesorouter

/ClockDivider . vhd" .
Unit <ClockDivider> synthes i z ed .

Synthes i z ing Unit <f i fo_2 >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

f i f o . vhd" .
Found 175−b i t register for signal <dataBuf >.
Summary :

i n f e r r e d 175 D−type f l i p−f l o p ( s ) .
Unit <f i fo_2> synthes i z ed .

Synthes i z ing Unit <router >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

route r . vhd" .
Found 175−b i t register for signal <HPUout>.
Found 175−b i t register for signal <XbarOut>.
Found 20−b i t register for signal <XbarSel >.
Summary :

i n f e r r e d 370 D−type f l i p−f l o p ( s ) .
Unit <router> synthes i z ed .

Synthes i z ing Unit <route rF i fo >.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

r ou t e rF i f o . vhd" .
WARNING: Xst :646 − Signal <f i f oFu l l > i s ass igned but never used . This unconnected

signal w i l l be trimmed during the opt imizat ion process .
WARNING: Xst :646 − Signal <fifoEmpty> i s ass igned but never used . This unconnected

signal w i l l be trimmed during the opt imizat ion process .
Unit <route rF i fo > synthes i z ed .

Synthes i z ing Unit <TestEnv>.
Related source f i l e i s "D:/ Users /acb/Documents/DTU/Bachelor / s r c /mesochronous/

fpgaTest . vhd" .
WARNING: Xst :647 − Input <sw<7:6>> i s never used . This port w i l l be preserved and

l e f t unconnected i f i t be longs to a top−l e v e l block or i t be longs to a sub−
block and the h i e rarchy of t h i s sub−block i s preserved .

WARNING: Xst :647 − Input <btnOk> i s never used . This port w i l l be preserved and
l e f t unconnected i f i t be longs to a top−l e v e l block or i t be longs to a sub−
block and the h i e rarchy of t h i s sub−block i s preserved .

WARNING: Xst :646 − Signal <f i f oFu l l > i s ass igned but never used . This unconnected
signal w i l l be trimmed during the opt imizat ion process .

WARNING: Xst :646 − Signal <fifoEmpty> i s ass igned but never used . This unconnected
signal w i l l be trimmed during the opt imizat ion process .

WARNING: Xst :646 − Signal <clkLockedOut> i s ass igned but never used . This
unconnected signal w i l l be trimmed during the opt imizat ion process .

WARNING: Xst :646 − Signal <clkBufG> i s ass igned but never used . This unconnected
signal w i l l be trimmed during the opt imizat ion process .

WARNING: Xst :646 − Signal <clk0Out> i s ass igned but never used . This unconnected
signal w i l l be trimmed during the opt imizat ion process .

Found f i n i t e s t a t e machine <FSM_1> for signal <sendState >.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| S ta te s | 4 |
| Trans i t i ons | 6 |
| Inputs | 2 |
| Outputs | 5 |
| Clock | clkW ( r i s ing_edge ) |
| Reset | r e s e t ( p o s i t i v e ) |
| Reset type | asynchronous |
| Reset State | i d l e |
| Power Up State | i d l e |
| Encoding | automatic |
| Implementation | LUT |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Found 3−b i t comparator equal for signal <fifoDest$cmp_eq0000> created at l i n e

94 .
Found 5−b i t 3−to−1 mul t ip l exe r for signal <fi foRen >.
Found 48−b i t register for signal <numRecvd>.
Found 48−b i t 3−to−1 mul t ip l exe r for signal <numRecvdNext>.
Found 8−b i t adder for signal <numRecvdNext_0$addsub0000>.
Found 35−b i t comparator equal for signal <numRecvdNext_0$cmp_eq0000> created

at l i n e 151 .
Found 8−b i t adder for signal <numRecvdNext_1$addsub0000>.
Found 35−b i t comparator equal for signal <numRecvdNext_1$cmp_eq0000> created

at l i n e 151 .
Found 8−b i t adder for signal <numRecvdNext_2$addsub0000>.
Found 35−b i t comparator equal for signal <numRecvdNext_2$cmp_eq0000> created

at l i n e 151 .
Found 8−b i t adder for signal <numRecvdNext_3$addsub0000>.
Found 35−b i t comparator equal for signal <numRecvdNext_3$cmp_eq0000> created

at l i n e 151 .
Found 8−b i t adder for signal <numRecvdNext_4$addsub0000>.
Found 8−b i t adder for signal <numRecvdNext_5$add0000> created at l i n e 155 .
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Found 35−b i t comparator equal for signal <numRecvdNext_5$cmp_eq0000> created
at l i n e 160 .

Found 8−b i t 3−to−1 mul t ip l exe r for signal <numRecvdNext_5$mux0000> created at
l i n e 141 .

Found 8−b i t 3−to−1 mul t ip l exe r for signal <numRecvdNext_5$mux0001> created at
l i n e 141 .

Found 8−b i t 3−to−1 mul t ip l exe r for signal <numRecvdNext_5$mux0002> created at
l i n e 141 .

Found 8−b i t 3−to−1 mul t ip l exe r for signal <numRecvdNext_5$mux0003> created at
l i n e 141 .

Found 8−b i t register for signal <numSent>.
Found 8−b i t adder for signal <numSent$addsub0000>.
Found 175−b i t register for signal <recvBuf >.
Found 10−b i t register for signal <recvState >.
Found 10−b i t 3−to−1 mul t ip l exe r for signal <recvStateNext >.
Found 3−b i t up counter for signal <sendDest >.
Found 3−b i t register for signal <sendOrg>.
Found 3−b i t adder for signal <sendOrgNext$addsub0000> created at l i n e 126 .
Found 31−b i t up counter for signal <s e r i a l >.
Summary :

i n f e r r e d 1 F in i t e State Machine ( s ) .
i n f e r r e d 2 Counter ( s ) .
i n f e r r e d 236 D−type f l i p−f l o p ( s ) .
i n f e r r e d 8 Adder/ Subtractor ( s ) .
i n f e r r e d 6 Comparator ( s ) .
i n f e r r e d 95 Mult ip l exer ( s ) .

Unit <TestEnv> synthes i z ed .

INFO: Xst :1767 − HDL ADVISOR − Resource shar ing has i d e n t i f i e d that some
ar i thmet i c ope ra t i ons in t h i s des ign can share the same phys i ca l r e s ou r c e s
for reduced dev ice u t i l i z a t i o n . For improved c lock frequency you may try to
d i s ab l e r e source shar ing .

=========================================================================
HDL Synthes i s Report

Macro S t a t i s t i c s
# Adders/ Subtractors : 8
3−b i t adder : 1
8−b i t adder : 7

# Counters : 3
14−b i t up counter : 1
3−b i t up counter : 1
31−b i t up counter : 1

# Reg i s t e r s : 175
1−b i t register : 32
10−b i t register : 15
2−b i t register : 5
20−b i t register : 1
3−b i t register : 1
35−b i t register : 90
4−b i t register : 9
5−b i t register : 15
8−b i t register : 7

# Comparators : 6
3−b i t comparator equal : 1
35−b i t comparator equal : 5

# Mul t ip l exe r s : 20
1−b i t 3−to−1 mul t ip l exe r : 5
2−b i t 3−to−1 mul t ip l exe r : 5
8−b i t 3−to−1 mul t ip l exe r : 10

=========================================================================

[ . . . ]

=========================================================================
∗ Final Report ∗
=========================================================================
Final Resu l t s
RTL Top Level Output File Name : TestEnv . ngr
Top Level Output File Name : TestEnv
Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : NO

Design S t a t i s t i c s
# IOs : 31

Ce l l Usage :
# BELS : 4504
# BUF : 7
# GND : 1
# INV : 11
# LUT1 : 43
# LUT2 : 855
# LUT2_D : 1
# LUT2_L : 15
# LUT3 : 701
# LUT3_D : 15
# LUT3_L : 11
# LUT4 : 2051
# LUT4_D : 43
# LUT4_L : 349
# MUXCY : 133
# MUXF5 : 224
# VCC : 1
# XORCY : 43
# Fl ipFlops /Latches : 3493
# FDC : 725
# FDCE : 2693
# FDP : 1
# FDPE : 41
# FDR : 24
# FDRE : 1
# FDRS : 8
# Clock Buf f e r s : 2
# BUFG : 2
# IO Buf f e r s : 28
# IBUF : 7
# IBUFG : 1
# OBUF : 20
# DCMs : 1
# DCM_SP : 1
=========================================================================

Device u t i l i z a t i o n summary :
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Se l e c t ed Device : 3 s1200efg320−4

Number of S l i c e s : 2937 out of 8672 33%
Number of S l i c e F l ip Flops : 3493 out of 17344 20%
Number of 4 input LUTs : 4095 out of 17344 23%
Number of IOs : 31
Number of bonded IOBs : 28 out of 250 11%
Number of GCLKs: 2 out of 24 8%
Number of DCMs: 1 out of 8 12%
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[ . . . ]

Timing Summary :
−−−−−−−−−−−−−−−
Speed Grade : −4

Minimum per iod : 22.438 ns (Maximum Frequency : 44.567MHz)
Minimum input a r r i v a l time be fo r e c lock : 12.253 ns
Maximum output requ i r ed time after c lock : 10.148 ns
Maximum combinat ional path delay : 2 .675 ns

Timing Deta i l :
−−−−−−−−−−−−−−
All va lues d i sp layed in nanoseconds ( ns )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’DCM/CLKDV_BUF’

Clock per iod : 22.438 ns ( f requency : 44.567MHz)
Total number of paths / de s t i na t i on port s : 2245321 / 6248

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 11.219 ns ( Leve l s of Logic = 25)

Source : f i f oGen [ 3 ] . f i f o /dataBuf_3_1 (FF)
Dest inat ion : numRecvd_5_6 (FF)
Source Clock : DCM/CLKDV_BUF r i s i n g
Dest inat ion Clock : DCM/CLKDV_BUF f a l l i n g

Data Path : f i f oGen [ 3 ] . f i f o /dataBuf_3_1 to numRecvd_5_6
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDCE:C−>Q 1 0.591 0.455 f i f oGen [ 3 ] . f i f o /dataBuf_3_1 (

f i foGen [ 3 ] . f i f o /dataBuf_3_1 )
LUT4: I2−>O 1 0.704 0.499 f i foGen [ 3 ] . f i f o /dataR<1>20 ( f i f oGen

[ 3 ] . f i f o /dataR<1>20)
LUT4_L: I1−>LO 1 0.704 0.104 f i f oGen [ 3 ] . f i f o /dataR<1>43 ( f i foGen

[ 3 ] . f i f o /dataR<1>43)
LUT4: I3−>O 1 0.704 0.455 f i foGen [ 3 ] . f i f o /dataR<1>75 ( f i foOut

<3><1>)
LUT4: I2−>O 1 0.704 0.000

Mcompar_numRecvdNext_3_cmp_eq0000_lut<0> (
Mcompar_numRecvdNext_3_cmp_eq0000_lut<0>)

MUXCY: S−>O 1 0.464 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<0> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<0>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<1> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<1>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<2> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<2>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<3> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<3>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<4> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<4>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<5> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<5>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<6> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<6>)

MUXCY: CI−>O 1 0.059 0.000

Mcompar_numRecvdNext_3_cmp_eq0000_cy<7> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<7>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<8> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<8>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<9> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<9>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<10> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<10>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<11> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<11>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<12> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<12>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<13> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<13>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<14> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<14>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<15> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<15>)

MUXCY: CI−>O 1 0.059 0.000
Mcompar_numRecvdNext_3_cmp_eq0000_cy<16> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<16>)

MUXCY: CI−>O 9 0.459 0.855
Mcompar_numRecvdNext_3_cmp_eq0000_cy<17> (
Mcompar_numRecvdNext_3_cmp_eq0000_cy<17>)

LUT3: I2−>O 2 0.704 0.622 Mmux_numRecvdNext<5>7111 (N481 )
LUT4_D: I0−>O 3 0.704 0.535 Mmux_numRecvdNext<5>12 (N89)
LUT4: I3−>O 1 0.704 0.000 Mmux_numRecvdNext<5>7 (numRecvdNext

<5><6>)
FDC:D 0.308 numRecvd_5_6

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 11.219 ns (7 .694 ns l og i c , 3 .525 ns route )

(68.6% log i c , 31.4% route )

=========================================================================
Timing con s t r a i n t : Default per iod ana l y s i s for Clock ’ d i sp l ay / clk2 ’

Clock per iod : 3 .108 ns ( f requency : 321.750MHz)
Total number of paths / de s t i na t i on port s : 2 / 2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Delay : 3 .108 ns ( Leve l s of Logic = 1)

Source : d i sp l ay /curan_FSM_FFd1 (FF)
Dest inat ion : d i sp l ay /curan_FSM_FFd2 (FF)
Source Clock : d i sp l ay / c lk2 r i s i n g
Dest inat ion Clock : d i sp l ay / c lk2 r i s i n g

Data Path : d i sp l ay /curan_FSM_FFd1 to d i sp l ay /curan_FSM_FFd2
Gate Net

Ce l l : in−>out fanout Delay Delay Log i ca l Name (Net Name)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−
FDR:C−>Q 19 0.591 1.085 d i sp l ay /curan_FSM_FFd1 ( d i sp l ay /

curan_FSM_FFd1)
INV : I−>O 1 0.704 0.420 d i sp l ay /curan_FSM_FFd2−In1_INV_0 (

d i sp l ay /curan_FSM_FFd2−In )
FDR:D 0.308 d i sp l ay /curan_FSM_FFd2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Total 3 .108 ns (1 .603 ns l og i c , 1 .505 ns route )

(51.6% log i c , 48.4% route )
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