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Abstract

The leave-one-out cross-validation scheme for generalization assessment of

neural network models is computationally expensive due to replicated train-

ing sessions. In this paper we suggest linear unlearning of examples as an

approach to approximative cross-validation. Further, we discuss the possibil-

ity of exploiting the ensemble of networks o�ered by leave-one-out for per-

forming ensemble predictions. We show that the generalization performance

of the equally weighted ensemble predictor is identical to that of the network

trained on the whole training set.

Numerical experiments on the sunspot time series prediction benchmark

demonstrates the potential of the linear unlearning technique.

1 Introduction

Consider nonlinear regression in which the output y is regressed nonlinearly on the

input vector x. In this paper we focus on a neural network implementation, in which

the output is predicted by by = F (x;w) where F (�) denotes the nonlinear mapping
of the neural net and w is the vector of network parameters.

The conditional input-output distribution, i.e., the probability distribution of the

output conditioned on a test input, is a basic objective for neural net modeling.

A main source of uncertainty, when estimating the parameters of the conditional

distribution, is the random selection of training data. The associated risk of over�t-

ting is of major concern in neural network design. The use of system identi�cation

design tools in neural net learning has been pioneered by (Moody, 1991), who de-

rived estimators for the expected generalization error of regularized networks. These
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estimates, however, depend on a number of assumptions that can be quite hard to

justify. Hence, it would be highly desirable to be able to perform an additional

data-driven consistency check o�ered by the cross-validation technique.

The idea of cross-validation (Stone, 1974), (Toussaint, 1974) is based on training

and testing on disjunct subsets resampled from the database, forming the cross-

validation ensemble of models. The leave-one-out (LOO) ensemble of networks

trained on all subsets leaving out one training example is an attractive | though

computationally expensive | vehicle for generalization assessment of a neural net-

work model. For the conventional neural net approaches unlearning of examples is

not possible, and one basically has to train the full ensemble of networks, making

the approach computationally unfeasible.

In this paper we suggest approximate evaluation of the ensemble using linear

unlearning of individual examples. It is assumed that unlearning of a single exam-

ple only a�ects the network weights slightly. Under this hypothesis we estimate the

change in the network parameters within the quadratic approximation of the network

cost function. Using the ensemble we derive an estimator for the test error of a regu-

larized network which in fact is similar to an estimate due to (Wahba, 1990), but dif-

ferent from the conventional estimators as FPE (Akaike, 1969), Wahba's GCV, and

GPE (Moody, 1991). The proposed method is further related to NCV (Moody, 1994)

which approximates leave-v-out cross-validation. We �nally discuss the possibility

of exploiting the ensemble of networks for making ensemble predictions and for

obtaining error bars on future examples.

The leave-one-out test error is compared to that obtained through linear un-

learning on a benchmark case showing the viability of the approach.

2 Linear Unlearning

The network cost function is assumed to be a sum of the loss function E(w) (additive

in the example losses denoted �
1.) and a regularization term R(w), as shown by

C(w) = E(w) +R(w) =
NX
�=1

� (y�; by�;w) +R(w) (1)

where y� is desired the output2 (target) and N is the number of training examples,

i.e., input-output pairs: D = [ (x1; y1); � � � ; (xN ; yN) ]. Training on the full set of

examples provides a parameter vector denoted by cw; hence,

@C (cw)

@w
= 0: (2)

1Most learning problems come with a natural loss measure, e.g., the squared error measure

� (y; by) = (y � by)2, where the desired target is denoted y and the network output is denoted by
2For simplicity we consider single output networks only. However, without further ado, the

theory is valid for multiple output networks.
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Likewise, a leave-one-out ensemble of network parameters, fcw�gN�=1, is obtained by

training on the N subsets, D�, containing N � 1 examples:

C�(w) =
NX

�=1;�6=�

� (y�; by�;w) +R(w); (3)

hence,
@C� (cw�)

@w
= 0: (4)

We suggest to estimate the variation of the parameter vectors of the leave-one-out

ensemble, �w� � cw� �cw, by using a Taylor expansion of equation (4). Since

C�(w) = C(w)� � (y�; by�;w) ; (5)

�w� satis�es

J��w� � g� + o(k�w�k) = 0: (6)

where o(�) is the vector order function. We further have de�ned the the Hessian of

the regularized cost function, J�, and the gradient of the example loss, g�, by
3:

J� =
@
2
C� (cw)

@w@w>
; g� =

@� (y�; by�;cw)

@w
: (7)

Solving equation (6), with the additional assumption that the regularized Hessian

is non-singular, we �nd the N weight vectors in the ensemble given by:

cw� = cw + J
�1
� g� + o(k�w�k): (8)

With this ensemble in hand, we can get approximations of various interesting quan-

tities which help us in validating the network model.

2.1 Average Generalization Error Estimate

A common measure of the quality of a neural model is the expected generaliza-

tion error4 (see e.g., (Larsen & Hansen, 1994), (Moody, 1991)) de�ned as the ex-

pected loss on a test sample, further taking the expectation w.r.t. to the training

set distribution5:

hEtest(cw)i
D
=
D
h�(y; by;cw)i(x;y)

E
D
=
Z �Z

�(y; by;cw) � p(x; y) dxdy
�
p(D) dD:

(9)

where h�i(x;y) is the expectation w.r.t. to the joint input-output probability density

p(x; y), and p(D) is the joint probability density of the training data. h�iD denotes

the expectation w.r.t. to all training sets of size N 6.

3Here we implicitly assume that the cost function is twice continuously di�erentiable.
4Also known as the expected test error or the expected prediction risk.
5By assumption all expectations exist, i.e., Etest <1.
6Note, for notational convenience, we do not explicitly distinguish between the particular real-

ization of the data set and the data set regarded as a random variable.
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Since p(x; y) is unknown we seek for an estimate of hEtestiD, like the leave-one-
out test error given by,

ELOO =
1

N

NX
�=1

� (y�; by�;cw�) : (10)

In general, it is di�cult to give quantitative results on the LOO test error as an

estimator of hEtestiD; however, one simple theorem applies:

Theorem 1 If the training data are independently distributed, ELOO is an un-

biased estimate of hEtest(cw�)iD�
where D� is the training data with sample � left

out, and cw� is the estimate obtained by training on N � 1 examples.

Proof Assume training data independence, then p(D) = p(D�) � p(x�; y�). The

proof simply follows by evaluating hELOOiD. �

Theorem 2 An o(1=N) approximation of the LOO test error (10) is given by

bELOO =
1

N

NX
�=1

h
� (y�; by�;cw) + g

>
� J

�1
� g�

i
: (11)

Proof From (6) it is easy to verify that �w� = O(1=N), where O(�) is the Landau
order function. For consistency, the approximation of the LOO estimator should not

include terms of O(1=N i), i � 2. Thus expanding the LOO test error (10) linearly

in �w� and using (7), (8) we get the desired result. Note that o(1=N) is the order

function, i.e., if a(N) = o(1=N) then a(N)=N ! 0 as N !1. �

Since only one data example is left out when resampling, we generally expect the

o(1=N) approximation to be fairly good | even for moderate training set sizes.

Only in the case of a network which is linear in the parameters and trained with

a quadratic cost function7, it is possible to obtain an exact expression (see further

(Wahba, 1990) and section 3.1).

3 Mean Square Error Learning

Our scheme can be applied to any cost function and network type requiring the cost

to be twice continuously di�erentiable in the weights. Here we consider the standard

case of a regression net trained with the mean square error measure. Let F (x;w)

be the network function, then the loss is the squared error between the output and

the predicted output, as follows:

� (y�; by�;w) = (y� � F (x�;w))
2
: (12)

Introducing the gradient of the network function, h� = @F (x�;cw)=@w we use (7)

and �nd

g� = �2 (y� � F (x�;cw))h�: (13)

7That is, � = (y� by)2 and R(w) / w>
w. Furthermore, (10) should be expanded quadratically

in �w�.
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3.1 The LOO Test Error

If (13) is inserted in (11) we get:

bELOO =
1

N

NX
�=1

(y� � F (x�;cw))
2
h
1 + 4h>� J

�1
� h�

i
: (14)

Furthermore, it is often well motivated to invoke the so-called Gauss-Newton approx-

imation for mean square error based problems (see e.g., (Ljung, 1987)), in which,

J =
@
2
C(cw)

@w@w>
=

@
2
E(cw)

@w@w>
+
@
2
R(cw)

@w@w>
� 2

NX
�=1

h�h
>
� +

@
2
R(cw)

@w@w>
(15)

Within this approximation the estimator takes a particular simple form. Using,

J� = J � 2h�h
>
� , and the matrix inversion lemma (see e.g., (Ljung, 1987)) we �nd:

J
�1
� = J

�1 +
2J�1

h�h
>
� J

�1

1� 2h>� J
�1
h�

: (16)

Inserting this expression into the estimate (14) we get the remarkable simple result,

bELOO =
1

N

NX
�=1

(y� � F (x�;cw))
2 1 + 2h>� J

�1
h�

1� 2h>� J
�1
h�

: (17)

With a pointer to classical test error estimators, (17) may be interpreted as a mod-

i�ed \example based" FPE. Thus the term, 2h>� J
�1
h�, corresponds to the e�ective

number of parameters divided by the training set size for the particular example

�. With this construction one may hope that the statistical properties of the input

distribution are reected in the estimator. In the conventional asymptotically esti-

mators the properties of the input distribution are eliminated from the theory by

invoking the limit of large training sets. For further reference, see (Moody, 1991)

and (Larsen & Hansen, 1994).

There is a close connection with (17) and the \leaving-one-out lemma"

(Stone, 1974), (Wahba, 1990) which relates the LOO errors �(y�; by�;cw�) with the

losses from the full set model, �(y�; by�;cw). In fact, if the model is linear in the

weights and weight decay regularization is used (i.e., a quadratic regularizer) then

the estimate coincides with the \leaving-one-out lemma" except that one has to take

the regularization into account. Suppose the network is linear, i.e., F (x;w) = w
>
x,

then the LOO test error reads:

ELOO =
1

N

NX
�=1

�
y� �cw>

x�

�2
�
1� 2h>� J

�1
h�

�2 : (18)

Notice that this is an exact expression unlike the result of theorem 2.
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3.2 Ensemble Of Networks

With the ensemble of LOO estimates fcw�gN�=1 one might consider the ensemble

network output which results by combining F (x;cw�).

Now, for the sake of generality, we consider leave-v-out cross-validation. That is,

split the training setD intoK disjoint cross-validation sets of size v, with N = Kv
8,

and train on the remaining N � v samples. The training sets are denoted by D�,

� 2 [1;K].

Considering the ensemble network, we state the following

Theorem 3 Assume a leave-v-out cross-validation scenario, and let C�(w) be the

cost function (1) evaluated on the training data D�, � 2 [1;K]. The loss is the

mean square error, and the weight estimates are de�ned as cw� = argminwC�(w).

Secondly, assume that the data are generated according to y� = �(x�) + n�

where �(�) is a nonlinear function, and n� is zero mean white noise with variance

�
2
n <1, independent of the input. Further, that the neural model is complete, i.e.,

9w�
; 8x : F (x;w�) � �(x).

Thirdly, assume that the ensemble network is de�ned by

�F (x;cw1; � � � ;cwK) =
KX
�=1

u�F (x;cw�) (19)

where fu�gK�=1 is a set of weights, independent on the training data
9
, satisfyingP

� u� = 1.

The following properties then applies to the expected generalization error (9):

1. The expected generalization error is minimized when u� = 1=K, � 2 [1;K].

2. In the o(1=N) approximation
10
, the expected generalization error of the ensem-

ble network equals that of using a single network trained on all data.

Proof Using a o(1=N) approximation of the expected generalization error,

(Larsen & Hansen, 1994) showed for a single network trained on all N data:

hEtestiD = �
2
n (1 +me�=N) + o(1=N) (20)

where me� is the e�ective number of weights,

me� = tr

� f
H�

e
J
�1

�
f
H�

e
J
�1

�

�
; (21)

tr [�] is the trace operator, and the \true" scaled Hessians11 are de�ned by:

f
H� =

*
@
2
Etest(w

�)

@w@w>

+
(x;y)

; e
J� =

f
H� +

1

N

@
2
R(w�)

@w@w>
: (22)

8The results presented are easily modi�ed to deal with the case of v not being a divisor of N .
9The case where the weights depend on data is e.g., treated in (Krogh & Vedelsby, 1995).

10See e.g., (Larsen & Hansen, 1994), (Moody, 1991).
11Note that eJ� does not scale with N , whereas J does.
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h�i(x;y) denotes the expectation w.r.t. the joint input-output density p(x; y) and w�

are the optimal weights.

De�ne the weight uctuations �w� = w
� � cw� and let hEtest(cw1; � � � ;cwK)iD

denote the expected generalization error of the ensemble network (19). Using a

technique similar to that reported in (Larsen & Hansen, 1994), we perform a second

order Taylor series expansion of the expected generalization error around w� = w
�,

as follows:

hEtest(cw1; � � � ;cwK)iD = Etest(w
�
; � � � ;w�) +

KX
�=1

@Etest(w
�
; � � � ;w�)

@w>
�

h�w�iD

+
1

2

KX
=1

KX
�=1

tr

"
@
2
Etest(w

�
; � � � ;w�)

@w@w
>
�

h�w�w
>
� iD

#

+
KX
�=1

o

�
k�w�k2

�
: (23)

Since w� de�nes the optimal weight vector, the following facts are easily recognized:

� Etest(w
�
; � � � ;w�) = �

2
n

� w
� = arg minwEtest(w); hence, @Etest(w

�
; � � � ;w�)=@w� = 0.

Furthermore, straightforward calculations show

@
2
Etest(w

�
; � � � ;w�)

@w@w
>
�

= uu�
fH�: (24)

Thus (23) reads:

hEtest(cw1; � � � ;cwK)iD = �
2
n +

1

2

KX
=1

KX
�=1

uu�tr
h fH�h�w�w

>
� iD

i
+

KX
�=1

o

�
k�w�k2

�
:

(25)

What remains is to �nd the covariance matrix of the weight uctuations. Expanding

@C�(w)=@w to �rst order in �w� and using the fact that @C�(cw�)=@w = 0 one

gets12

�w� =

"
@
2
C�(w)

@w@w>

#�1 X
�2D�

2
@F (x�;w

�)

@w
n� �

@R(w�)

@w
: (26)

Using this expression it can be shown that

h�w�w
>
� iD =

uu� � eJ�1

�

24 4

(N � v)2

X
�12D

X
�22D�

*
@F (x�1 ;w

�)

@w
n�1

@F (x�2 ;w
�)

@w>
n�2

+
D

35 e
J
�1

�

+o(1=N): (27)

12The notation � 2 D� means that the summation runs over the indices of the data in training

set D� .
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Since the noise is white, the expectation h�iD only gives a non-zero contribution,

viz. �2n, when �1 = �2. When  = � this occurs N � v times, whereas when  6= �

it occurs N � 2v times; equal to the overlap between two di�erent training sets. In

consequence, (25) becomes

hEtest(cw1; � � � ;cwK)iD = �
2
n +

�
2
nme�

N � v

24 KX
�=1

u
2
� +

N � 2v

N � v

KX
=1

KX
�=1;� 6=

uu�:

35 (28)

In order to �nd the weights u� which minimizes (28) under the constraint
P

� u� = 1,

we apply a Lagrange technique. That is, minimize instead the Lagrange function

L = hEtest(cw1; � � � ;cwK)iD + �(
P

� u� � 1) with � denoting the Lagrange multi-

plier. It is easily veri�ed that u� = 1=K, � 2 [1;K], minimizes the Lagrange func-

tion. Moreover, straightforward manipulations shows that hEtest(cw1; � � � ;cwK)iD =

hEtest(cw)iD. �

Although the ensemble network does not deliver better generalization perfor-

mance, one might hypothesize that the individual predictions for a test input x could

be used to obtain sensible error bars. Error bars were mentioned in

(Buntine & Weigend, 1991) who formulated the classical result see

(Seber & Wild, 1989), p. 193 in a neural network context.

If we return to the speci�c LOO case, approximate predictions for a new test

input, x, are obtained by expanding the network function F (x;w), as follows:

F (x;cw�) = F (x;cw) +
@F (x;cw)

@w>
�w�; (29)

hence, using (6), (16),

F (x;cw�) = F (x;cw)� (y� � F (x�;cw))
h
>(x)J�1

h�

1� h
>
� J

�1
h�

(30)

where h(x) = @F (x;cw)=@w.

Unfortunately, it turns out that that the error bars which can be formed from

(30) are only qualitative by nature, i.e., they may indicate in which parts of the

input region high errors can be expected. The reason for this statement should be

sought in the following: First the uctuations among the individual predictions only

reect the variations due to the the fact that we estimate from a �nite training set.

That is, the noise inherent in the data generating system n� is not included. The

latter is easily incorporated by estimating the noise variance by other means, e.g.,

�
2
n = E(cw)=(N �m

0
e�), where m

0
e� reects an e�ective number of weights which dif-

fers slightly from me� , as reported by (Larsen & Hansen, 1994). More importantly,

the uctuations in the predictions do not scale properly with N . From the theory of

the so-called Jackknife estimator (see e.g., (Fox et al., 1980), (Seber & Wild, 1989)),

it is known that in order to estimate the covariance matrix of the weight uctua-

tions from the LOO ensemble, we need to multiply the LOO uctuations �w�

in (6) by a factor of
p
N � 1. We are currently pursuing this topic further, see

(Larsen & Hansen, 1995).
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4 Numerical Example

For illustration of the test error estimate and the ensemble predictions we study the

well-known \sunspot" prediction benchmark (Weigend et al., 1990). The network

is a tapped delay line architecture with I = 12 input units, H = 3 hidden sigmoid

units and a single linear output unit. The network function can be written as:

F (x�;w) =
HX
j=1

w
H
j tanh

 
I�1X
i=0

w
I
ijx��i + w

I
i0

!
+ w

H
0 (31)

where x� = [x�; � � � ; x��I+1] is the input vector with x� denoting the sunspot activity
in the years 1700{1979 and w = [wI

;w
H ] are the network parameters. The loss

function is the squared error, and the regularization is a simple weight decay, i.e.,

R(w) = �jwj2, with � = 0:01. We used a second order batch mode Gauss-Newton

algorithm for training.

In �gure 1 we show how the individual test errors (squared residuals) entering the
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Figure 1: Correlation of individual squared errors (losses) in the leave-one-out (10) with

the linear unlearned leave-one-out estimates (17) on the N = 209 sunspot training set.

test error estimate (17) correlate with the results of a full leave-one-out procedure,

i.e., the result of training N = 209 networks on the corresponding subsets of the

sunspot training set.

The LOO test error estimates (10), (17) are:

ELOO = 0:0050; bELOO = 0:0047 (32)

which gives a 6% discrepancy.
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To illustrate the capacity of the ensemble for representing the distribution of

predictions on test inputs we show in �gure 2 the ensemble evaluated on the sunspot

\test set 1" (years 1921{1955). In the upper panel is shown the exact leave-one-

out ensemble predictions, while in the lower panel we show the predictions of the

approximate linearly unlearned ensemble. Recall that the uctuations on these

�gures are merely qualitative by nature, i.e., in the regions where large uctuations

occurs we believe that the true error is high.

5 Conclusion

This paper suggested to use linear unlearning of examples to approximate the com-

putationally expensive leave-one-out cross-validation technique. Numerical studies

on the sunspot time series prediction benchmark demonstrated the viability of this

approach.

We analyzed the possibility of employing the ensemble of networks produced by

the cross-validation scheme for constructing an ensemble predictor. Considering a

linear combination of networks, it was shown that the generalization performance is

identical to that of using a single network trained on the full set of data.
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Figure 2: Estimates of the leave-one out ensemble on the sunspot \test set 1" (1921{

1955) (above). Estimates of the linearly unlearned ensemble on \test set 1" (1921{1955)

(below). The 209 network predictions are indicated by individual heavy dots, and the

dotted line indicates the predicted output F (x;cw).
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