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Abstract

The goal of this project is to create a Matlab based framework for sound envi-
ronment classi�cation including an investigation of the most robust features for
classi�cation of various sound environments.

Hearing aids use di�erent ampli�cation strategies targeted at di�erent situa-
tions/sound environments. The di�erent ampli�cation strategies are normally
chosen by the user with a remote control or via a program switch mounted on
the hearing aid. Modern hearing aids contain various detectors which are used
to automatically change a number of parameters of the hearing aid. The detec-
tors are typically not fully descriptive for the sound environment. This project is
seeking to improve the classi�cation of the various sound environments relevant
for the hearing aid user and focus is on two classes; car environment against
miscellaneous environments.

The �nal framework is build up by a number of sound �les covering the di�erent
sound environments, a list of features is con�gured from the openSMILE toolkit
[12] and a classi�cation tree is used as the classifying algorithm. By using
the build robust framework a sensitivity of 91.6% ± 4.69% and a speci�city of
96.44%±3.13% is achieved, but an expansion of the framework is recommended
before an implementation in a hearing aid.
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Resumé

Formålet med dette speciale er at skabe et Matlab baseret framework til lydmiljø
klassi�kation og herunder undersøge de mest robuste features til klassi�kation
af forskellige lydmiljøer.

Høreapparater bruger forskellige strategier til forstærkning af forskellige situa-
tioner/lydmiljøer. Normalt vælges denne forstærkning af brugeren med en fjer-
nbetjening eller ved at skifte program på en knap på høreapparatet. Moderne
høreapparater indeholder forskellige detektorer der bruges til automatisk at skif-
te mellem en række parametre i høreapparatet. Disse detektorer beskriver typisk
ikke lydmiljøer fyldestgørende. Dette projekt søger at forbedre klassi�kationen
af de forskellige lydmiljøer der er relevante for en høreapparatsbruger, og har
fokus på to klasser; bil miljø mod diverse andre lydmiljøer.

Det endelige framework er opbygget af et antal lyd�ler der dækker de pågæl-
dende lydmiljøer, en liste af features kon�gureret fra openSMILE værktøjet [12]
og et klassi�kationstræ benyttes som klassi�kations algoritme. Ved at benytte
det opbyggede robuste framework, opnås en sensitivitet på 91.6% ± 4.69% og
en speci�citet på 96.44% ± 3.13%, men en udvidelse af frameworket anbefales
inden en implementering i et høreapparat.
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Nomenclature

PCC probability of correct classi�cation

ACF Auto correlation function

BM Basilar membrane

BTE Behind-the-ear

CF Characteristic frequency

CGAV spectral center of gravity

CGFS �uctuations of the spectral center of gravity

CIC Completely-in-the-canal

CS compressed sensing

dB decibel

FA false alarm rate

FN False negative

FP False positive

GA genetic algorithm

GMM Gaussian mixture model

HATS head and torso simulator

HMM hidden Markov model

HR hit rate



x Nomenclature

ICA independent component analysis

IFT inverse Fourier transform

ITC In-the-canal

ITE In-the-ear

k-NN k-nearest neighbour

kHZ kilohertz

LPC linear prediction coe�cients

MFCC Mel-frequency cepstral coe�cient

misc miscellaneous

OH overall hit rate

RITE Receiver in the ear

rms root mean square

SBS sequential backward search

SFS sequential forward search

SNR signal-to-noise ratio

SPL sound pressure level

TN True negative

TP True positive

ZCR zero-crossing rate
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Chapter 1

Introduction

1.1 Motivation

Hearing loss is a big problem in today's society. Many with a hearing impairment
still have issues when it comes to the hearing aids on the market today, a
great number of all hearing aids end in a drawer without being used [15]. It
is believed that bad overall bene�t is partly associated with poor selection of
program modes for di�erent situations. User satisfaction with hearing aids is
investigated in this work and it is seen that an automatic program selection is
found to be a valuable and desirable function appreciated by the user even if its
performance is not perfect. This has led to many studies trying to �nd a way
to satisfy the hearing aid users and has also motivated this work.

Di�cult sound environments are of as much importance than all other sound
environments and the more sound environments a hearing aid can automati-
cally detect, the more satis�ed a user will hopefully be. This has led to the
focus in this study where classi�cation of car environment versus miscellaneous
environments is explored.

1.2 Project aim

The goal of this project is to create a Matlab based framework for sound environ-
ment classi�cation and to investigate the most robust features for classi�cation
of various sound environments.



2 Introduction

Scope:

- A list of sound environments must be chosen

- A number of sound recordings covering the di�erent sound environments
must be generated

- A list of features to investigate must be chosen

- A classi�cation method must be chosen

- A Matlab based framework for the analysis must be created,

Speci�cations:

- The Framework must be easy to extend, both when it comes to sound
environments and features

- The Framework must provide means to optimize performance of the clas-
si�cation

- The Framework must provide analysis of the classi�cation to indicate the
robustness the classi�cation

1.3 Structure

In Chapter 2 background information is given on the ear, hearing loss, hearing
aids and user satisfaction. Chapter 3 includes the state of the art and in Chap-
ter 4 a data description is provided. Chapter 5 provides a technical description
of the relevant features and the classi�er used in this work followed by Chap-
ter 6 which describes the classi�cation system and used performance measures.
Results from all the tests the framework has been put through can be seen in
Chapter 7 and �nally a conclusion is provided in Chapter 8.



Chapter 2

Background

Basic knowledge about the human ear is important in order to understand hear-
ing loss. The anatomy of the ear, concepts related to hearing and the two main
types of hearing loss are presented in this chapter. The most common types of
hearing aids are introduced along with a description of the user's opinion of the
need of hearing aids.

2.1 The Ear and the Auditory System

The organs of hearing, the ears, are made up of three main parts; the outer
ears, the middle ears and the inner ears. The anatomy of the ear can be seen
in Figure 2.1. The inner ear functions in both hearing and balance, whereas
the outer and middle ear only is involved in hearing. The outer ear consists of
the pinna and the external ear canal. The pinna modi�es the incoming sound
and is important in the ability of localizing sounds. Acoustic signals reach the
outer ear as sound waves and are conducted through the external ear canal
towards the tympanic membrane. The tympanic membrane, or eardrum, is a
thin membrane that forms an airtight barrier between the outer and the middle
ear. Sound waves reaching the tympanic membrane, through the external ear
canal, cause it to vibrate about its equilibrium point in time with the sound
pressure waves.

The middle ear is an air �lled cavity containing three tiny bones, the auditory
ossicles; the malleus (hammer), the incus (anvil) and the stapes (stirrup). They



4 Background

Figure 2.1: Anatomy of the ear [1].

transmit and amplify the vibrations from the tympanic membrane to the cochlea
in the inner ear through the oval window, one of two covered openings of the
middle ear separating it from the inner ear. The vibration of the tympanic
membrane causes vibration of all three ossicles and this transfers the vibration
to the oval window. Size di�erence between the tympanic membrane and the oval
window results in about a 20-fold ampli�cation of the vibration when crossing
the middle ear. Ampli�cation is required to cause adequate vibration in the
liquid of the inner ear. The middle ear improves sound transmission and reduces
the amount of re�ected sound.

The inner ear consists on one side of the cochlea, and on the other side of the
balance organ, which is not important for hearing, see Figure 2.1. The cochlea
is the part of the inner ear that is stimulated by sound. In short terms, the
cochlea transforms the mechanical vibrations into electrical nerve impulses that
travel via the auditory nerve to the brain, where they form the actual impression
of sound. The cochlea, which is shaped like a spiral shell of of snail, has liquid
�lled canals and cavities with bony rigid walls. Along its way, two membranes
divide it, the vestibular membrane and the basilar membrane (BM).

The cochlea starts at the point where the oval window is situated, this is known
as the base while the other end, the inner tip, is known as the apex. At the apex
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there is a small opening called the helicotrema between the BM and the walls of
the cochlea. Vibrations of the �uid in the cochlea are transmitted through the
vestibular membrane which cause distortion of the basilar membrane. These
distortions, together with weaker waves coming through the helicotrema, cause
waves in the scala tympani �uid and result in the vibration of the membrane of
the round window. When the oval window is set in motion, the BM is moving
because of a pressure di�erence that is applied across the membrane.

Sounds of di�erent frequencies strongly a�ect the displacement of the BM by its
mechanical properties, which vary from base to apex. At the base it is narrow
and sti� while it is wider and much less sti� at the apex. This cause sounds
with high-frequencies to produce maximum displacement of the BM near the
base with little movement of the remainder of the membrane. Low-frequency
sounds, on the other hand, produce displacement all along the BM but reaches
its maximum closer to the apex. The BM movement results in a frequency to
place mapping where each place on the BM gives a maximum displacement to
a di�erent frequency called the characteristic frequency (CF). BM displacement
translates mechanical movement to neural activity through movement of the
outer hair cells. The cochlea contains approximateliy 12000 outer hair cells and
approximately 3500 inner hair cells placed along the cochlea from the base to
the apex [22]. Outer hair cells are related to the BM mechanical properties.
Each inner hair cell is connected to several neurons in the main auditory nerve,
and the inner hair cell microvilli are bent as they move against the tectorial
membrane. Higher amplitude of the BM movement generates a higher �ring
rate in the neurons. This section is based on inspiration from [19] and [30].

The process of sound transduction is summarised in Figure 2.2. Here the path-
way of conversion of sound energy into a neural signal that is interpreted by the
brain as sound perception is shown. The sound waves travel through the vari-
ous parts of the ear and the conversion of waves into mechanical signals lead to
action potentials in the auditory nerve which �nally result in an interpretation
in the brain and hearing occurs.
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Figure 2.2: Sound transduction from the conversion of sound energy into a
neural signal [1].

2.2 Hearing Loss

There are two main categories used for the type of hearing loss that can occur:
conductive and sensorineural. They can appear isolatedly or simultaneously
[19].

Conductive hearing loss occurs when there is a defect outside the cochlea, usually
in the middle ear, and this reduces the transmission of sound to the cochlea.
The cochlea itself and the neuronal pathways for hearing function normally.
Causes for conductive loss can be infections of the middle ear (otitis media),
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growth of bone over the oval window (ostosclerosis), injuries to the bones in the
middle ear, abnormalities at the eardrum or wax in the ear canal. A conductive
loss causes a non-normal attenuation of the incoming sound, soft sounds are no
longer audible and intense sounds are reduced in loudness. This attenuation is
thus frequency dependent and linear and can usually be compensated for with a
simple hearing aid because the ampli�ed sound waves it produces may provide
normal stimulation to the cochlear once the blockage has been passed. Surgical
treatment can be e�ective if the degree of hearing loss justi�es this. This type
of hearing loss can be accounted for up to 10% of all hearing losses [29].

The term sensorineural hearing loss is used when the hearing loss arises from a
defect in the cochlea, in the auditory nerve or in higher centres in the auditory
system. Sound waves are transmitted normally to the cochlea, but the ability
to respond to the sound waves is impaired. Hearing loss arising from a defect
in the cochlea is known as a cochlear loss and includes damage to the inner
and outer hair cells whereas, if neural disturbances occurs at a higher point
in the auditory pathway than the cochlear, it is known as retrocochlear loss.
Acoustic trauma, drugs or infections can cause a cochlear sensorineural hearing
loss [22]. It is usually permanent, complicated to compensate for with a hearing
aid and cannot be treated by surgery. Even though a hearing aid has di�culties
compensating for the hearing loss, they are often used to amplify sound waves
by applying more gain to soft sounds and less gain to loud sounds, helping to
overcome the altered loudness perception of reduced sound volume and sound
clarity. Sensorineural hearing loss can be accounted for up to 90 % of all hearing
losses [29].

Hearing loss due to ageing is the most common and is called presbyacusis. In
the elderly, the extent of loss increases with frequency and a slowly growing
permanent damage to the hair cells is the cause. The National Institute of
Deafness and Other Communication Disorders claims that about 30-35 percent
of adults between the ages of 65 and 75 years have a hearing loss. It is estimated
that 40-50 percent of people at age 75 and older have a hearing loss [22].

If conductive and sensorineural components appear simultaneously, the hearing
loss is called a mixed hearing loss. This includes damages to the outer or middle
ear and the cochlea or sensory nerve or all at the same time. A central hearing
loss may also occur, but there is currently no treatment available for this type of
hearing loss, why this will only brie�y be mentioned here. This type of hearing
loss is caused by a disorder in the central auditory nervous system and usually
manifest itself in poor word recognition and speech reception. This type of
hearing loss is rare and is usually caused by a tumor or other changes in the
neural structure [29].
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2.3 Hearing Aids

There are four types of hearing aids that are the most common, these are listed
below.

- Completely-in-the-canal (CIC)

- In-the-canal (ITC)

- In-the-ear (ITE)

- Behind-the ear (BTE)

The BTE has the largest physical size, is the oldest of the styles and comes is in
di�erent variants. These include one with standard tubing and custom earmold,
one with a thin tube and a dome or one with a receiver in the ear (RITE) . Five
of the di�erent styles can be seen in Figure 2.3.

Figure 2.3: Di�erent hearing aid styles. From left to right is the CIC, ITC,
ITE, BTE, one with a thin tube and one with a receiver in the ear
(RITE). Figure from [2].

Each style has its advantages and disadvantages, but since progress in technology
has made it possible to reduce the size of the hearing aid components, especially
the smaller styles have become popular since they can be hidden in the ear. But
since they are blocking up the ear canal, they usually have a built in vent
to prevent the occlusion e�ect where you hear both the sound waves carried
through the air and sound transmitted from the bones of the scull, e.g. from
chewing and breathing [29]. Here the BTE with receiver in the ear leave the ear
canal open, called open �tting, which is an advantage because of the wearing
comfort and no occlusion occurs.
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2.4 User Satisfaction with Hearing Aids

Nearly all hearing aid users in the western world wear digital hearing aids. In
many studies the user satisfaction with hearing aids have been tracked, e.g. the
MarkeTrak study conducted in America since 1991 where hearing aid users have
participated [15]. This study is an ongoing study that is repeated with a couple
of years interval to track the trends of the hearing aid market and the users.

The hearing loss population is increasing along with the binaural rates while the
average age of hearing aids has dropped. New technology improves the hearing
aids all the time and this is one of the reasons why the average age of hearing
aids has dropped. In the mentioned MarkeTrak study, the top ten factors related
to overall customer satisfaction was registered [15]:

1. Overall Bene�t (71 %)

2. Clarity of Sound (70 %)

3. Value (performance of the hearing aid relative to price) (68 %)

4. Natural Sounding (66 %)

5. Reliability of the Hearing Aid (65 %)

6. Richness or Fidelity of Sound (65 %)

7. Use in Noisy Situations (63 %)

8. Ability to Hear in Small Groups (63 %)

9. Comfort with Loud Sounds (60 %)

10. Sound of Voice (occlusion) (60 %)

The intensity of satisfaction is important to the user. The more passionate
they are about their hearing aid experience, the more likely they are to wear
them, recommend them to their friends and develop brand loyalty. All three are
elements that, along with the perception of bene�t, are very important when it
comes to the utility of hearing aids. An important part of the experience is the
ability to choose di�erent settings in di�erent listening situations.

A possible improvement of the utility of hearing aids is an automatic switching
mode that can automatically sense the current acoustic situation and automat-
ically switch to the best mode. Nowadays the user can select between several
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modes for di�erent situations, but this requires that the user recognises the
acoustic environment and then switch to the best mode using a switch on the
hearing aid or a remote control. In [9], a study was conducted where hearing
impaired subjects tested the usefulness, acceptance and problems of an auto-
matic program selection mode in a hearing aid from the users point of view. 63
subjects tested if the automatic program switch mode of the test instrument
changed between modes in the desired way and if the switching was found to be
helpful. It was found that adjusting for individual preferences in the frequency
of switching mode could be useful, mostly the programs switched expectedly to
a program that matched the situation quite well and 75% of the test subjects
found the automatic system to be "quite useful" or "very useful" why an au-
tomatic program selection was found to be a valuable and desirable function
appreciated by the user even if its performance is not perfect. This has highly
motivated the work of others along with the work in this study. Focus has
mainly been on recognising speech, speech in noise and music, which is seen
clearly in the following state of the art chapter.



Chapter 3

State of the Art

Classi�cation of sound environments is a topic of interest in many contexts,
especially for the hearing aid companies. Some classi�cation already occurs in
the hearing aids on the market, but some sound environments have been found
di�cult to classify. Some of these di�cult environments are interesting to the
hearing aid user, since most users sees it as an advantage if the hearing aid can
readjust to the desired settings for the certain environment. Therefore, devel-
oping an automatic classi�cation algorithm expanded with more environments,
even the di�cult ones, is desired. The get an overview of the newest research
in the �eld, this project was initiated with a literature study. It turned out
that little has been published regarding classi�cation of sound environments,
but methods applicable for this �eld has been used in other contexts, why focus
in the literature study has been on these methods. It has been explored what
features seem to be of most use, what classi�ers are most common and how this
a�ects the classi�cation rates in the �elds of investigation.

Di�erent articles and reports on the subject will be presented, while trying to
follow a common structure in each of the presentations. The summaries will
therefore cover the following points when possible:

• Data Description

• The Method

• The Results

• Other Remarks of Relevance
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3.1 The Quest of Environmental Sound Classi�-

cation

Many hearing aid users would �nd it helpful if they should not themselves change
settings of their aids going from one listening environment to another. This
consumer wish has led to a research �eld with many di�erent and interesting
approaches, all trying to get a robust classi�cation of prede�ned environments
(classes) at a low computational cost in order to permit an implementation in
future hearing aids. Following is a number of studies focusing on this particular
problem. All have a common approach, trying to �nd appropriate features along
with a more or less simple classi�er, but they still all di�er in their choices of both
features and classi�ers. Without a common standard of features and classi�ers,
there is still room for improvement within the �eld, but the best points from
each study are taken into account in the work of this project.

3.1.1 Sound Classi�cation in Hearing Aids Inspired by
Auditory Scene Analysis

Authors: M. Büchler, S. Allegro, S. Launer, and N. Dillier, ENT Depart-
ment, University Hospital Zurich, Zurich, Switzerland and Phonak AG, Staefa,
Switzerland, 2005 [9]

The purpose of this study is to �nd appropriate features for a sound classi�-
cation system for the automatic recognition of the acoustic environment. The
features are chosen as a combination of well-known auditory grouping features
with features that are inspired by auditory scene analysis. These are evaluated
with di�erent types of pattern classi�ers. The goal was to �nd a combination of
features and classi�er that gives a good hit rate for reasonable computational
e�ort [9].

Data Description: A sound database was generated and used for evaluation.
This contained four di�erent sound classes: speech, speech in noise, noise and
music. The database contains 300 real-world sounds of 30-second length each,
sampled at 22 kHz/16 bit. The sounds were either recorded in the real world
or in a sound proof room or taken from other media. The database has the
following distribution of the four classes; 60 speech signals, 80 speech in noise,
80 noise and 80 music. Speech in noise signals contains speech signals mixed
with noise signals at a signal-to-noise ratio (SNR) between +2 and -9 dB. Each
of the signals were manually labelled with the one of the four classes they belong
to .
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Method: A combination of 11 auditory features (2 from amplitude modula-
tion, 2 from spectral pro�le, 2 from harmonicity and 5 from amplitude onsets)
and 6 classi�ers (rule-based, minimum distance, Bayes, neural network, hidden
Markov models (HMM) and a two-stage classi�er (best HMM and rule-based))
were to be tested. Not all combinations of the features were chosen for the eval-
uation since this would have provided about 214 di�erent feature sets. Therefore
an iterative strategy was developed heuristically to �nd the best feature set by
trying to combine features that describe di�erent attributes of the signal. Each
of the about 30 sets of features then was processed for each classi�er in order
to �nd the optimal combination. Classi�cation was calculated once per second
for each of the sounds (resulting in 30 calculations per sound), and the output
for a given sound was taken as the class that occurred most frequently. 80 % of
the sounds were used for training of the classi�er and tested on the remaining
20 %. The test/training split was chosen at random and repeated 100 times so
tha actual score was the mean of these 100 cycles.

Results: In Figure 3.1 the results for the six classi�ers with the best parameter
and feature set can be seen. It is seen that the simpler approaches reach a hit
rate of around 80 % which, with the more complicated systems can be approved
to around 90 %. The features in the best feature sets that are not exactly
self-explanatory are: m1, m2, m3 which are values for the modulation depth of
three modulation frequency ranges; CGFS is �uctuations of the spectral center
of gravity and describes dynamic properties of the spectral pro�le and CGAV is
the spectral center of gravity which is a static characterization of the spectral
pro�le [9].

It seems that the proper decision to make about what set of features gives the
best result depends on what classi�er is chosen. This is important to have in
mind when a feature set is chosen in this project. An investigation of several
features seems to be recommendable.

3.1.2 An E�cient Robust Sound Classi�cation Algorithm
for Hearing Aids

Authors: P. Nordqvist and A. Leijon, Department of Speech, Music and Hearing,
Royal Institute of Technology, Stockholm, Sweden, 2004 [23]

The purpose of this study is, by an e�cient robust sound classi�cation algorithm,
to enable a hearing aid to automatically change its behaviour for di�erent listen-
ing environments according to the user's preferences [23]. The aim is to make
the classi�cation robust and insensitive to changes within one listening, since
the user moves around and focus are mainly on the classes speech in quiet and
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Figure 3.1: Classi�cation results for all six classi�ers tested in the study by
Büchler et al. For each classi�er, the score for best parameter and
feature set is given [9].

speech in noise since the authors �nd these to be the most important listening
environments,and not only this, but also classi�cation between speech in various
types of noise.

Data Description: The input stimuli are speech mixed with a variety of back-
ground noises. There is a total of 47795 test stimuli, each 14 s long, representing
185 h of sound. The presentation level of the speech lies between 64 and 74 dB
SPL , the level is randomly chosen and so is the SNR with values between 0
and +5 dB. Training material consist of speech in tra�c, speech in babble and
clean speech. Test sounds include these along with a range of other background
noises. In this implementation, a single sound source or a combination of two
sound sources is de�ned as a listening environment. Music environments are
not included in this study.

Method: The present work mainly uses features from the modulation char-
acteristics of the signal, namely the cepstrum which is the result of taking the
Inverse Fourier transform (IFT) of the logarithm of the spectrum of a signal.
The absolute sound pressure level and the absolute spectrum shape contain in-
formation about the current listening environment, but since they are to easily
a�ected by easily changeable factors, their values are not taken into account
in this study. Focus lies on the classi�er, and here HMMs are chosen. First a
sound source classi�cation occurs where the layer consist of one HMM for each
included sound source, here the state probabilities are calculated. The output
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data from this classi�cation are further processed by a hierarchical HMM in
order to determine the listening environment. The environment model consists
of �ve states and a transition probability matrix. A state diagram of this model
can be seen in Figure 3.2.

Figure 3.2: State diagram for the environmental hierarchical HMM containing
�ve states. The dashed arrows indicate transitions between listen-
ing environments, these have low probability. The solid arrows
represent transitions between states within one listening environ-
ment, these have relatively high probabilities. From [23].

Results: It is obvious that the sounds included in the training of the classi�er
were the easiest ones to correctly classify. For both clean speech and speech in
tra�c noise, the hit rate was 99.5 %, and for speech in babble noise it was 96.7
%. The false alarm rates were low, 0.2, 0.3 and 1.7 % respectively. The classi�er
was tested with the test sound shifted abruptly which made the classi�er output
shift from one environment to another within 5-10 s after the change of stimulus,
except for clean speech to another listening environment which took about 2-3 s.
Given environments with a varied number of speakers (1, 2, 4 or 8), the signals
with one or two peakers were classi�ed as clean speech and the others as speech
in babble. Adjusting the SNR made a speech signal of 64 dB SPL be classi�ed
as speech in babble with a SNR interval between 0 and +5 dB and with a SNR
of +10 dB or greater the signal was classi�ed as clean speech. The impact of
reverberation turned out to classify speech from a distant speaker (outside the
reverberation radius) as speech in babble whereas speech from the listener itself
was classi�ed as clean speech.

The classi�cation can be said to be robust with respect to level and spectrum
variations, since these features are not used. This system is �exible and easy
to update since the de�nitions of the listening environments can be changed,
and sound sources can be added or removed. This is highly recommended for a
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future system to make it easier to test all kinds of situations without to many
alterations.

3.1.3 Computational Auditory Scene Recognition

Authors: V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi and T. Sorsa, Sig-
nal Processing Laboratory, Tampere University of Technology, Tampere, Fin-
land and Speech and Audio Systems Laboratory, Nokia Research Center, Nokia
Group, Finland, 2002 [27]

The purpose of this study is to classify auditory scenes into prede�ned classes.
For this a newly developed concept, auditory scene recognition, is used. This is
aimed at recognising a listening environment only using audio information, so
recognition of the context is of interest here instead of analysing and interpreting
discrete sound events. This work is conducted in 2002 and thus is some of the
�rst within this �eld.

Data Description: A variety of di�erent auditory scenes were used for real-
world recordings. 226 measurements were made using two di�erent con�gura-
tions, 55 recordings using a binaural setup and 171 recordings using a stereo
setup. Six classes were categorised according to common characteristics of the
scenes, the six being outdoors, vehicles, public, o�ces, home and reverberant
places. Some of the recordings can be associated with more than one class, but
for one recording, multiple class labels was not allowed.

Method: Two di�erent but almost equally e�ective systems are used. For each
of the systems, di�erent features were tested. Temporal, frequency and cepstral
features are tested with the two classi�ers; a k-nearest neighbour classi�er (k-
NN) and a Gaussian mixture model (GMM) . For the k-NN classi�er it turned
out that increase of the number of neighbours only had a minor e�ect on the
performance, why a 1-NN classi�er was chosen and for the GMM the optimal
order was found to be �ve. The training set included all the recorded audio
material and the test set included the material from 17 of 26 possible scenes. Test
set duration was 30 s, training set was 160 s for all the cases. The classi�cation
performance was evaluated using the leave-one-out methods for cross-validation.
This can be bene�cial since the system never before has heard the particular
sound while the training data is utilized maximally.

Results: Not all combinations of features were examined due to computation
time. 11 combinations were chosen and tested with both of the classi�ers. This
resulted in a number of recognition rates for test sets of 30 s length. 26 trained
scenes were used, which gives a random guess rate of 4 %. All the recognition
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rates for the 11 feature set combinations can be seen in �gure 3.3.

Figure 3.3: Recognitions rates obtained using the 1-NN and GMM for di�erent
features. The dashed line indicates the random guess rate. From
[27].

This work suggest that focus in the future work within the environment recog-
nition process should be put on modelling distinct sound events. This has been
focus for several studies following in the years after this work but is still of
interest since nothing yet is as good as the human solution to this problem.

3.1.4 Adaptive Environment Classi�cation System for Hear-
ing Aids

Authors: L. Lamarche, C. Giguère, W. Gueaieb, T. Aboulnasr, and H. Oth-
man, School of Information Technology and Engineering (SITE), University of
Ottawa, Ontario, Canada, 2010 [16]

The purpose of this study is, on the long-term, to develop fully trainable hearing
aids in which both the acoustical environments encountered in everyday life
and the settings preferred by the user in each environment can be learned.
A framework is designed for adaptive classi�cation which allow classes to be
be added, deleted and tuned based on the environments the user encounters,
without intervention or o�ine training [16].
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Data Description: A sound database consisting of real-world sound �les as-
sembled from a wide range of sources was used. Each sound �le with the speci�-
cations 30 s long, 20 kHz sampling and 16 bits, mono and with labels according
to the class of the sound. In the study, a total of 960 sound �les were used,
belonging to the classes speech, noise and music. Speech and noise were divided
into test and training �les whereas music �les were only used in the testing
phase in order to evaluate adaptive classi�cation.

Method: Only three features were considered in this work to maintain low
complexity. The �rst two envelope-related features are depth of amplitude mod-
ulations in two modulation frequency ranges, 0-4 Hz (feature 1) and 4-16 Hz
(feature 2). The third feature carries information about the �ne structure of the
signal and is the temporal variance of the instantaneous frequency (feature 3).
These three features were chosen for their ability to distinguish between speech,
noise and music environments [16]. The characteristic feature vectors are stored
in a bu�er which supplies this information every 15-60 s depending on the rate
at which the classi�er needs to be updated. Two adpative classi�cation systems
are developed and tested; the minimum distance classi�er using an Euclidian
metric and the Bayesian classi�er. Both are static classi�ers which, in this work,
are extended to adaptive sound classi�cation systems that can split and merge
classes based on the feature patterns of the environments they encounter.

Results: Performance of the adaptive classi�ers was compared to a best-case
non-adaptive fully supervised three-class system trained on the entire data [16].
Classi�cation accuracy was measured by the hit rate (HR), overall hit rate (OH)
and the false alarm rate (FA). For both of the classi�ers four post-splitting op-
tions were considered; globally re-estimating the prototypes of the splitting and
new classes (PS1), locally estimating the prototype of the splitting class while
globally re-estimate the prototype of the new class (PS2), keeping the origi-
nal splitting class prototype unchanged while locally estimating the prototype
of the new class (PS3) and keeping the original splitting class prototype un-
changed while globally re-estimating the prototype of the new class (PS4) [16].
A splitting and a merging algorithm were tested for both of the classi�ers. For
the minimum distance classi�er, the results can be seen in Figure 3.4 and for
the Bayesian classi�er, the results can be seen in Figure 3.5. In all the cases,
the results are compared to the results from non-adaptive supervised learning.

Comparing the two splitting algorithms for the adaptive classi�ers, it can be
seen, that the Bayesian classi�er achieves the highest OH with a maximum of
86.8 % (PS4 option) compared to the best minimum distance classi�er option
which with option PS3 gives an OH of 83.0 %. These adaptive classi�ers are pro-
posed only to be used with trainable hearing aids so a tracking of the behaviour
of the user could create a fully learning classi�cation system where both the
class environments encountered by the user and the preferences for each class
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(a) Splitting accuracy (b) Merging accuracy.

Figure 3.4: Accuracies of the adaptive minimum distance classi�er, without
and with four post-splitting options, compared to non-adaptive
supervised learning. From [16].

(a) Splitting accuracy. (b) Merging accuracy.

Figure 3.5: Accuracies of the adaptive Bayesian classi�er, without and with
four post-splitting options, compared to non-adaptive supervised
learning. From [16].

could be learned.

3.1.5 Evaluation of Sound Classi�cation Algorithms for
Hearing Aid Applications

Authors: JJ. Xiang, M. F. McKinney, and K. Fitz andT. Zhang, Starkey Lab-
oratories, Washington, USA, 2010 [34]

In this study, more sophisticated features and classi�ers are tested in a number
of experiments in order to asses their impact on automatic acoustic environment
classi�cation performance.

Data Description: A database composed of sounds from �ve classes is used.
These classes are: speech, music, wind noise, machine noise and others with
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a duration of 40, 14, 12, 73 and 22 minutes respectively. Music comes from a
database which contains 80 15 s audio music samples, the remaining samples are
recorded by the author for this study. The class speech contains both clean and
noisy speech, where the noisy speech is generated by randomly mixing signals
of clean speech with noise signals at three levels of SNR: -6 dB, 0 dB and 6 dB.
The class others contain all sounds that are not described by the other classes.

Method: A low-level feature set and MFCCs are used in this study, the �rst
one including both temporal and spectral features including the logarithms of
these features. In the MFCC set, the �rst 12 coe�cients are included. The
feature set is speci�c to the choice of classi�er where focus in this study is
on a quadratic Gaussian classi�er, a GMM and an ergodic HMM. The feature
selection is performed for each of the classi�ers.

Results: A combination a each of the classi�ers with the two sets of features
has been evaluated. The result of this can be seen in Figure 3.6. There is no
signi�cant di�erence in classi�cation performance between the two feature sets
given that more than �ve features are used in both cases.

Figure 3.6: Error rate as a function of the number of employed features. Per-
formance is evaluated for the possible combinations of each of the
classi�ers with the two sets of features. From [34].

The advantage of using advanced classi�cation models with the low-level feature
set becomes obvious in this study. When the computational cost is limited, the
low-level feature set is de�nitely recommendable. 5-7 features should be used
in order to balance the performance and the computational cost in the most
suitable way. This should be taken into account in future work.
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3.1.6 Feature Selection for Sound Classi�cation in Hear-
ing Aids Through Restricted Search Driven by Ge-
netic Algorithms

Authors: E. Alexandre, L. Cuadra, M. Rosa, and F. López-Ferreras, Department
of Signal Theory and Communications, University of Alcalá, Madrid, Spain,
2007 [5]

The purpose of this study is to develop an automatic sound classi�er for digital
hearing aids that aims to enhance listening comprehension when the user goes
from one listening environment to another [5].

Data Description: The sound database in this study consists of 2936 �les
from three main classes; speech in quiet, speech in noise and noise. Each of the
�les have a length of 2.5 s with 22050 Hz sampling frequency with 16 bits per
sample. The classes contain 509, 1455 and 972 �les respectively. Music �les have
in this case been categorized as noise sources. The speech in noise signals exhibit
di�erent SNR ranging from 0 to 10 dB. All the �les were randomly divided in
to three groups, training, validation and testing with a division corresponding
to 35 %, 15 % and 50 %.

Method: 38 features were considered in this study; mean and variance were
calculated for 16 di�erent spectral and temporal features, the high zer crossing
ration and the low short-time energy ratio were calculated along with 20 Mel
frequency cepstral coe�cients. All these features were calculated from both the
original time-domain sound signal and from the linear prediction coe�cients
(LPC) resulting in the creation of a feature vector containing the �nal 76 fea-
tures. The classi�er chosen is the two-layer Fisher linear discriminant which
is a genetic algorithm (GA). Results are produced using 4 options; a conven-
tional GA without the m-features operator, a GA with the m-features operator,
a sequential forward search (SFS) and a sequential backward search (SBS).

Results: The two layers of the algorithm each represent a split problem, the �rst
layer classifying speech/nonspeech and the second layer classifying clean/noisy
speech. Each of these two problems give a probability of correct classi�cation.
This is calculated for each of the four options mentioned in the methods for
di�erent numbers of features, resulting in the functions seen in Figure 3.7.

Using more features does not necessarily improve the probability of correct clas-
si�cation, PCC , but it de�nitely requires a larger computational cost. With the
GA using m-features operator, only 11 features are needed for the speech/nonspeech
classi�cation to reach the same PCC as the unconstrained GA, both of them
performing better than the SFS and the SBS. This method allows a subset of
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(a) Speech/nonspeech problem (b) Clean/noisy speech problem.

Figure 3.7: Probability of correct classi�cation, PCC as a function of the num-
ber of features reached for the unconstrained GA, the GA with the
m-features operator, the SFS and the SBS. From [5].

signal-describing features to be selected in order to get a high PCC . This is
desirable for any classi�cation system developed for hearing aids.

3.1.7 Pitch Based Sound Classi�cation

Authors: A. B. Nielsen, L. K. Hansen and U. Kjems, Intelligent Signal Pro-
cessing, Technical University of Denmark, Lyngby, Denmark and Oticon A/S,
Smørum, Denmark, 2006 [21]

The purpose of this study is to create a classi�cation system based solely on the
pitch to classify three classes; music, speech and noise. In such a system a pitch
estimator, pitch features and a classi�cation model is necessary. To enhance
e�ciency of this system, e�ort has gone to �nding features that separate the
classes well instead of focusing on a complex classi�cation model.

Data Description: Training data comes from a database consisting of three
clean classes; speech, music and noise. The speech was taken from two di�erent
clean speech databases and was supplemented with other clean speech sources
in di�erent languages, totalling 42 minutes. The music, totalling 50 minutes,
comes from various recordings from di�erent genres. The noise contains various
noise sources such as tra�c, factory noise and many people talking and has a
total duration of 40 minutes. The test set consist of public available sounds, 35
miutes of speech, 38 minutes of music and 23 minutes of noise. Applied settings
gives approximately 40 pitch samples per second and overlap is used to obtain
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a classi�cation every second. These settings makes the training set size around
7000 samples and the test set is approximately 5500 samples [21].

Method: A total of 28 features are found calculating the pitch and a measure
for the pitch error. Four features yielded the best performance, these four are:
the standard deviation of the reliability signal, the pitch abs-di�erence based on
histograms, the distance from the pitch to a 12'th octave musical note and the
di�erence between the highest and the lowest pitch in a reliable window. For
classi�cation, a procilistic model is used based on the soft-max output function.
The model is trained using maximum likelihood and three inputs are used;
linear, quadratic including the squares of the features and a quadratic where all
the covariance combinations are used.

Results: 1 s classi�cation windows lead to the results seen in Figure 3.8 and
Figure 3.9

Figure 3.8: Negative log likelihoods of the training and test error. The test
error shows no improvement when using more than 7 features.
From [21].

In general, the more complex models show better training error, but when it
comes to test error not much is gained from using the more complex systems,
from a number of �ve features the linear model performs better. Some of the
functionalities of this system would give good results if they were implemented in
hearing aids, because this could possibly increase the classi�cation functionality.
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Figure 3.9: Classi�cation error for both training and test data with 1 s win-
dows. A test classi�cation error of just below 0.05 is achieved.
From [21].

3.1.8 An E�cient Code for Environmental Sound Classi-
�cation

Authors: R. Arora and R. A. Lut�, Department of Electrical and Computer
Engineering and Auditory Behavioral Research Laboratory, University of Wis-
consin, Wisconsin, USA and Department of Communicative Disorders and Au-
ditory Behavioral Research Laboratory, University of Wisconson, Wisconsin,
2009 [6]

The purpose of this study is to develop an automated sound recognition system
that e�ectively deals with e�cient encoding of potential signals and the interfer-
ence produced by sound sources considered as noise. A new approach is tested
using compressed sensing (CS).

Data Description: 50 environmental sounds were used in the simulations, 25
targets and 25 interferers. These sounds come from high-quality sound e�ects
CDs where the sounds have been shown to be easily identi�ed by human listen-
ers. All recordings were normalised in duration to 3.6 s by zero padding when
necessary and equated in total rms. The sounds were down-sampled from 44.1
kHZ to 4kHz and then contained 14400 samples. Target-to-interference ratios
were introduced ranging from -20 to 20 dB.

Method: Compressed sensing is used by projecting the signal onto a basis that
has nothing in common with the structure of the signals and shares no features
with the signal. The one basis that can live up to this property for all signals is
the random basis, which has noise waveforms as basis functions. In this way, the
basis is ensured to have some measurable correlation with any signal, positive or
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negative. Only a small number of these correlations are required to recover the
signal without error. Almost all signals (except continuous broadband noise)
are sparse in either the frequency or the time domain. This sparsity can be used
advantageous in classi�cation of environmental sounds.

Results: Selected at random areM Gaussian noise waveforms each of length N
to construct an M ×N matrix as the random basis to be used in all conditions,
M is ranging from 1 to 256 [6]. CS achieves a near perfect classi�cation with only
128 projections of an arbitrary set of sounds, even with a target-to-interference
ratio as low as -20 dB.

The listening situations in this work are not as realistic as what a human listener
might encounter. If the features of CS is implemented in a computational model,
it still remains to be seen if this model would eventually approach the perfor-
mance of the human classi�er. The results of this work encourage speculations
as to if and how CS might be incorporated in order to obtain this result.

3.2 Approaches Developed for Improvement of

Speech Perception

Many approaches have been developed to improve speech perception in hearing
aids. The one included here has interesting sound signal recordings.

3.2.1 New Idea of Hearing Aid Algorithm to Enhance
Speech Discrimination in a Noisy Environment and
its Experimental Results

Authors: S. M. Lee, J. H. Won, S. Y. Kwon, Y.-C. Park, I. Y. Kim and S.
I. Kim, Department of Biomedical Engineering, College of Medicine, Hanyang
University, Seoul, Korea and Department of Computer Science, College of En-
gineering, Yonsei University, Wonju, Korea, 2004 [18]

The purpose of this study is to improve speech perception in a noisy environ-
ment. This s done using an algorithm that combines independent component
analysis (ICA) with multi-band loudness compensation.

Data Description: The authors recorded mixed signals using a hearing aid in
a real room. The speech source was located 1 min front of the hearing aid, and
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the noise source was placed 1 m behind it [18]. The speech signals was either
a one-syllable signal from a male or a two-syllable signal from a female. The
noise signals used were a car, babble and factory noises.

Method: The mixture signals received in the front and rear microphones can
be separated by using ICA. This is used for speech in a noisy environment.
Afterwards the loudness perception of the hearing impaired person is restored
using an eight-band loudness correction algorithm by using the procedure re-
ferred to as the frequency sampling method. The output can be selected to be
either from the front or rear direction. This is implemented to make it possible
to choose the front direction only, since the hearing impaired, in most cases, are
interested in speech from the front.

Results: The proposed method was compared to a spectral subtraction method.
Figure 3.10 shows a source signal of the one-syllable male talker and car noise.
The recorded signal of the male in the car is separated using both the proposed
method and the spectral subtraction method.

Figure 3.10: Speech and noise input and output signals. A: original one-
syllable male talker, B: car noise, C: mixed signal from the front
microphone, D: mixed signal from the rear microphone, E: out-
put speech signal extracted by the proposed method, F: out-
put speech signal extracted by the spectral subtraction method.
From [18].

The SNR improves drastically when extracting the speech signal using the pro-
posed method compared to the spectral subtraction method. This seems to be
the tendency in various noise environments, all getting higher SNR values with
the method separating signals using ICA and restoring the loudness perception
by using an eight-band loudness correction algorithm.
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Data Description

For this project, a number of sound �les were generated using the Greenhouse
sound database at Oticon. This database consist of numerous sound record-
ings, including impulse responses from di�erent rooms with a large variety of
reverberation. These rooms can be used to describe more or less realistic sound
environments, recordings from a car, a cantina (café), a staircase and a bath-
room form basis for realistic sound environments whereas impulse responses
from anechoic rooms and meeting rooms at Oticon form a basis of environments
simulating realistic environments of rooms with the same size and reverberation
time. All together, impulse responses from 9 environments where used, these
being:

- Atlantic

- Canada

- Caf�é

- Car

- Cellar

- Faroe Islands

- Germany

- Japan North

- Staircase
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Only one loudspeaker was used in the measurement setup. This was done to
assure that the input to the HATS was the same in every recording without
colouring from di�erent loudspeakers. The impulse responses all have a sample
rate of 48 kHz with 24 bit recording. The impulse responses have been post-
processed to remove the very long tails, so that only the part of the tail above
the noise �oor is kept. In some of the environments, di�erent types of hearing
aids were used for the recording. The setup on a HATS can be seen in Figure
4.1.

Figure 4.1: Di�erent setups for impulse recordings on a HATS. Setup 1 shows
the microphone placements for a Agil BTE shell. Also the sound
at the eardrums should be recorded simultaneously (all together
6 simultaneous recordings). Setup 2 shows the microphone place-
ments for ITE shell recordings (all together 4 simultaneous record-
ings). Setup 3 shows the microphone for Dual BTE shell record-
ings. Here too, a simultaneous recording at the ear drum should
be made (all together 6 simultaneous recordings). [26].

The setup with six microphones placed on a HATS mannequin was used in all
cases with a setup like the �rst one in Figure 4.1. Sound re�ections from the
rooms were recorded on the HATS with sound sources from di�erent directions.
Setup 1 was chosen for further sound �le generation in all the environments.

4.1 Description of Sound Environments

The listed environments are all (except car) names of a room or a location at
Oticon. Following is a description of each of them, mainly by a visualisation
of the rooms describing their size, placement of the listener and placement of
loudspeakers corresponding to sources in the environment. In each of the en-
vironments di�erent placement of sources were considered. In all the rooms a
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realistic environment has been set up including di�erent noise sources (more
about these in Section 4.2) as well as situations trying, in their best way, to
imitate the placement of the car.

4.1.1 Atlantic

The setup in the bathroom Atlantic can be seen in Figure 4.2. This setup
was chosen since it is the one of the Atlantic setups that can resemble position
of a target source in a car the most. Further explanation of the content and
placement of sources in this environment will be given in Chapter 7.

Figure 4.2: Setup of the measurements in the bathroom "Atlantic". [33].
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4.1.2 Canada

The setup in the meeting room Canada can be seen in Figure 4.3. Recordings
in Canada have loudspeaker placements equally distributed in a circle around
the listener. This placement is useful in simulating realistic situations in such a
room, but not so helpful when a car situation is imitated. Further explanation of
the content and placement of sources, including the imitation of a car situation,
in this environment will be given in Chapter 7.

Figure 4.3: Setup of the measurements in the meeting room "Canada". [33].
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4.1.3 Caf�é

The setup in the canteen Café can be seen in Figure 4.4. Recordings in Café have
loudspeaker placements in di�erent positions around the listener, corresponding
to placement of other people by the tables in the canteen. This placement can
both be used for a realistic setup in the canteen and one that imitates a car
situation. Further explanation of the content and placement of sources in this
environment will be given in Chapter 7.

Figure 4.4: Setup of the measurements in the canteen "Café". [33].
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4.1.4 Car (Ford Scorpio)

Recordings have been made in a Ford Scorpio with possible source placement
as seen in Figure 4.5. Placement of the HATS in the car environment is based
on a possible expansion of the recordings in the car, recording engine noise,
wind noise and so on while the car is driving. Therefore the HATS has not
been placed in the driving seat. The further recordings have not been made yet,
and the placement of the HATS is a bit unrealistic in this environment, since a
listener in the passenger seat in a realistic situation would turn its head towards
the target source. This is not possible in this recording, so this would mainly
be a realistic setup for a car in a country where the driver sits at the right front
seat.

Figure 4.5: Setup of the measurements in a Ford Scorpio "Car". [26].
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4.1.5 Cellar

Recording in the Cellar can be seen in Figure 4.6. The recordings were set
up at the end of a long corridor in a corner space next to an elevator. This
room is therefore not a closed room like the others, but are still considered this
in the further work. Recordings in Cellar have loudspeaker placements equally
distributed in a circle around the listener. There are not as many possible source
placements as in some of the other rooms, but there a still a fair amount making
it possible to simulate di�erent situations in a cellar environment. Further
explanation of the content and placement of sources, including the imitation of
a car situation, in this environment will be given in Chapter 7.

Figure 4.6: Setup of the measurements in the cellar "Cellar". [33].
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4.1.6 Faroe Islands

Recording in the sound proof room Faroe Islands can be seen in Figure 4.7.Record-
ings in the soundproof room Faroe Islands have a loudspeaker placements equal
to the one in Canada thus with reversed rotation direction, but the same remarks
go for this room as well.

Figure 4.7: Setup of the measurements in the sound proof room "Faroe Is-
lands". [33].
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4.1.7 Germany

Recording in the meeting room Germany can be seen in Figure 4.8.In the meet-
ing room Germany, four di�erent setups have been used for recording. Here
setup D has been chosen in order to be able to imitate a car situation in the
best possible way. Further explanation of the content and placement of sources,
including the imitation of a car situation, in this environment will be given in
Chapter 7.

Figure 4.8: Setup of the measurements in the meeting room "Germany". [33].
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4.1.8 Japan North

In the meeting room Japan North, the HATS was placed between two tables with
the nose 90 ◦C away from the window. Measurements was done in the angles
0 ◦C, 45 ◦C, 90 ◦C, 135 ◦C, 180 ◦C, 225 ◦C, 270 ◦C, 315 ◦C, with the loudspeaker
placement starting 50 cm from the center of the HATS, and increased with 50
cm for each measurement until a wall was reach. A photograph of the setup can
be seen in Figure 4.9.The very �exible placement of the loudspeakers make it
possible to simulate many situations in this room. This comes in handy both
when imitating a car situation and other more realistic source placements. See
Chapter 7 for further details.

Figure 4.9: Photograph of the setup of the measurements in the meeting room
"Japan North". [32].
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4.1.9 Staircase

Recording in the Staircase can be seen in Figure 4.10. The staircase goes froom
the cellar to the second �oor and the setup was placed at the north east ground
�oor. Recordings in the Staircase have a much di�erent loudspeaker placement
than the other environments. There are two possible source placements at the
same level as the listener and one placement on the level below and one on the
level above the listener. This can cause problems when an imitation of the car
situation is considered, but the placement of the sound sources in this situation
and in more realistic situations will be given in Chapter 7.

Figure 4.10: Setup of the measurements in the staircase "Staircase". [33].
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4.2 Sound Source Signals

In all the generated sound �les a number of speech signals are used either as
target or background speakers. Along with these a number of noise signals are
used as well to generate environments with both speakers and realistic noise. A
description of the speech and noise signals used follow here.

4.2.1 Speech Signals

Three speech signals are chosen from an English speaker setup. One female
speaker is used for target source in all generated sound signals while a dia-
logue between two male speakers are used as non-target speech in the setups
where speaker noise is included. The target source is taken from the "English
monologues, some with raised e�ort" and the noise speaker sources comes from
"English dialogues - 2 male voices". More information about the three �les can
be found in Appendix B.

4.2.2 Noise Signals

Many sounds can be found in the Greenhouse database, and a lot of them can
make sense as noise sounds in the generated environments. To be sure that a
classifying algorithm does not base di�erences in the environments on di�erences
from recording equipment, it is important to chose a set of noise sounds that
all are recorded with the same equipment. ICRA2 [7] is an example of such
a sound set. These recordings have been made as a part of a project at the
Technical University of Denmark and contains a broad variety of sounds, some
more realistic to occur in the given environments than others. From these sounds
the most usable ones have been chosen, and an analysis of which sounds that
could be realistic in which environments form the basis of the included noise
sounds. Examples of noises that can occur in most of the environments are
hair dryer, vacuum cleaner, ventilation, music of di�erent genres and keyboard
typing. A list of all the possible realistic noise �les to be chosen from can be
seen in Appendix B.
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4.3 Generating Sounds

A simulation tool called Acoustic Simulation is used to generate all the sound
�les used in this work. The tool is developed at Oticon and uses sounds from
the Greenhouse database to create new sounds which can be a single sound
or combinations of di�erent sounds. Most importantly it is possible to create
di�erent acoustic environments using recorded impulse responses from di�erent
rooms convoluted with any number of wanted sound sources in the signal. The
level of the target source and the noise sources can each be speci�ed along
with an overall SNR which gives the �nal input level at the listeners eardrum.
The placement of the sources is also to be speci�ed according to the possible
placements of the given room (depending on the loudspeaker placements in the
original recordings).

For all the environments described earlier, a number of sound �les have been
generated. First of all, the number of speech sources in the signal is varied.
The target source, the female speaker, is present in all generated sounds. The
two male speakers are either not included (the �lenames end with _1source),
one is included (the �lenames end with _2sources) or both are included (the
�lenames end with _3sources). Each of the created signals in this work contains
a target source that is set to a level of 65 dB in all cases. Every other included
source in any of the signals is set to a level of 55 dB. There are many sounds �t
for noise sources, and for each environment, it is carefully considered which of
the noise signals mentioned in Section 4 that are realistic for the environment.
Sound signals are then created placing these noise signals in realistic positions
for each of the environments by generating a �le in Matlab for all the wanted
environments, one for each combination of speakers with the potential noise
sources for that environment. A list of all the possible scenarios for each of the
environments can be seen in Appendix B.

The signals are created by specifying which source at what position should be
a part of the sound signal. Impulse responses have been measured for di�erent
positions in the chosen environments, so by specifying the position of a source,
the source signal is convolved with the impulse response from that position. All
the convoluted signals are then added and result in the �nal sound signal from
the speci�c environment with the speci�ed speaker and noise sources at their
respective positions.

When creating the sound signals, it is possible to de�ne an overall level of both
the target signal and the noise sources at the eardrum along with the signal to
noise ratio. If nothing is speci�ed, the target source and the noise sources will be
added with the level they each where speci�ed to have. When specifying both
the overall input level at the eardrums and the signal to noise ratio, the sources
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are scaled to �t these levels. If no scaling is speci�ed, the levels of the target
and noise sources will create a signal with a SNR depending on the included
sources. If an overall input level at the eardrum is speci�ed along with an SNR,
the target and noise sources will scale accordingly to the chosen parameters.
This is not a realistic situation, but can be used in cases where testing evolves
around these parameters.

In this work, three cases are compared, one with no scaling, one with an overall
level set to 65 dB with a SNR = 0 dB and one with an overall level of 65 dB
with a SNR = 10 dB. The testing of these three cases can be seen in Section
7.2.

4.4 Sound Data

Di�erent types of datasets have been created, �rst of all a small dataset has
been generated to perform some of the preliminary tests. The small dataset
consist of two di�erent environments, Car and Canada. For each of the environ-
ments, three sound �les are generated, one including only the target source, one
including the target source and one noise source and one including the target
source and two noise sources. All of the sources in this dataset are speakers,
those described in Subsection 4.2.1 are used in all the generated sound �les. In
testing the target direction, a special dataset is generated, this is described in
the relevant section. Using a small dataset for the preliminary tests seem most
reasonable since they will show the tendency of the behaviour no matter how
much data is included but it will save a lot of time on the calculations. In testing
the target direction, all environments that �t the speci�cations for this test are
included.

A big dataset has also been generated and used to test the �nal framework.
This set include the nine environments mentioned earlier where for all eight en-
vironments that are not the Car, nine sets of sound signals have been generated
containing di�erent noise sources (these all di�er from environment to environ-
ment representing possible setups including only realistic noise signals). A tenth
situation is generated containing only speaker sources. For each of these ten se-
tups three signals are generated containing one, two or three speakers, the �rst
one only including the target source and the others containing also either one or
both of the noise speaker sources. For the Car, nine situations are created using
realistic noise sources, one situation is created containing only speaker sources
and ten situations are created using semi-realistic noise sources. All together
this results in 280 sound signals.
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In the tests where the big dataset is used, a division is created in order to
generate a training set and a test set. The optimal division would be a "leave-
one-environment-out" method, but this is not possible because of the constraints
of only having one Car setup. Since the optimal split is not possible, data is
divided into a training and test set so half of the sounds are used for training and
the other half is used for testing. The same setups but with di�erent number of
speakers are used in the same part of the split so none of the tested sounds are
used for the training. For the Car, the ten semi-realistic situations are used for
training and the ten realistic situations are used for testing. For the other eight
environments, all the even numbered signals are used for training and all the
odd numbered signals are used for testing. The assignment of an even or an odd
number to the situation is done randomly, only the tenth situation where no
other sounds than the speakers are included is not randomly chosen to have this
number. This is done to assure the training always includes the situation with
no background noise. In all the environments, only realistic setups are used for
testing.
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Chapter 5

Technical Description of the

Classi�cation System

A classi�cation system typically consist of a number of steps, going from a sound
to a classi�cation of the sound using feature extraction and pattern classi�ca-
tion. Many sound classi�cation algorithms have been developed and described
through the years, but only few are designed for hearing aid applications.

The general structure of a sound classi�cation system can be seen in Figure 5.1.
From sound data, a number of characteristic features can be extracted, this is
done in the feature extraction step. These features are then used with some
pattern classi�er to give an output that is recognised as a sound class. In this
work, the desired sound classes are the environments, that is, identi�cation of
the environment entered by the hearing aid user.

Figure 5.1: General block diagram of a sound classi�cation system for identi-
�cation of sound environments.
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5.1 Audio Features

The features of a sound signal has to be extracted in order to classify the sig-
nal into a given class, the features will decide the class of the signal. Feature
extraction involves the analysis of the input of the sound signal, the extraction
techniques can be classi�ed as temporal (time-domain) and spectral (frequency-
domain) analysis. Temporal analysis uses the waveform of the sound signal
itself whereas spectral analysis uses spectral representation of the sound sig-
nal for analysis. Two types of acoustic features exist, physical and perceptual
features. The perceptual features describe the sensation of a sound described
by how a human perceives it. Examples of these are loudness, brightness and
timbre. Physical features refer to features that can be calculated mathemati-
cally from the sound wave such as spectrum, spectral centroid and fundamental
frequency. It is only the physical features that are further grouped into spectral
and temporal features.

All features are extracted by breaking the input signal into smaller windows or
frames and compute the variation of each feature over time by computing one
feature value for each of the windows or frames. Feature extraction is of utmost
importance in classi�cation of sound signals why the selection of the best feature
set makes the classi�cation problem more e�cient.

Selecting the best feature set is a crucial step in building a classi�cation system.
The selection of features can either be done manually based on results from
previous classi�cation systems, or an algorithm can be used to �nd the most
suitable features that can discriminate between the classes to be classi�ed. In
this work the last approach is implemented, more about this implementation
and feature selection can be found in Subsection 5.1.8. The feature sets that
turn out to be of importance di�er from the other sets and depend on the input
signals. It turns out that every training set gets a di�erent set of important
features. Even though the speci�c feature sets turn out to di�er from training
set to training set, there are still common features that are always included
regardless of what training set, of sound signals, is looked upon. Many features
could be mentioned in the following, but focus is in the ones that are included in
the feature extraction of this work. These features are described in the following
subsections.

5.1.1 Zero-Crossing Rate

The zero-crossing rate (ZCR) counts the number of times the sign of the sig-
nal amplitude changes, the number of time-domain zero crossings within one
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window. The feature measures the frequency content of the signal and can be
calculated as follows

ZCR =

∑W−1
n=1 |sgn(x(n))− sgn(x(n− 1))|

2W
(5.1)

where x is the time-domain signal, W is the size of the window and sgn is the
sign function de�ned as

sgn(x) =

 1 x > 0
0 x = 0
−1 x < 0

(5.2)

ZCR is often used in speech processing. Here the counts of zero-crossings can
be used to help distinguish between voiced and un-voiced speech. Un-voiced
sounds are very noise-like and have a high ZCR. ZCR can be used to make a
rough estimation of the fundamental frequency for single-voiced signals while
for complex signals it can be used as a simple measure of noisiness. The ZCR
can also be used to determine if a signal has a DC o�set. If there are few
zero-crossings, it might mean that the signal is o�set from the zero-line.

5.1.2 Mel-Frequency Scale Spectrum

The Mel-frequency scale is a linear frequency spacing below 1000 Hz and a
logarithmic spacing above 1000 Hz. This scale is computed since we now that
human ears amplify tones under 1000 Hz with a linear scale and for frequencies
higher that 1000 Hz frequencies are ampli�ed logarithmically. This gives rise
to placing more �lters in the low frequency regions and less number of �lters
in high frequency regions. The scale is based on pitch comparison and the
reference point between this scale and frequency measurement in Hz is de�ned
by assigning a perceptual pitch of 1000 Mels to a 1000 Hz tone, 40 dB above the
threshold of the listener. To compute a Mel-frequency value from a frequency
value in Hz, the following approximate formula can be used [25]

Mel(f) = 2595 log10(1 +
f

700
) (5.3)

The Mel spectrum is computed by multiplying the power spectrum of a sound
signal by each of the triangular Mel weighting �lters spaced uniformly and inte-
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grating the result. In this work a range from 0 to 8000 Hz is considered divided
into K = 26 uniformly distributed Mel weighting �lters.

5.1.3 MFCC

When the Mel spectrum is computed it is possible to calculate the cepstrum
of this spectrum by taking the logarithm of the powers at each of the Mel
frequencies, take the discrete cosine transform of the list of Mel log powers,
as if it were a signal and then the Mel frequency cepstral coe�cients MFCCs
are the amplitudes of the resulting spectrum. A schematic illustration of these
calculations can be seen in Figure 5.2

Figure 5.2: Schematic illustration of the steps in the calculation of MFCCs.

The MFCC is computed by [36]:

MFCC(d) =

K∑
k=1

Xk cos

[
d(k − 0.5)

π

K

]
, d = 1, 2, · · · , D (5.4)

whereMFCC(d) is the dth MFCC and K is the number of Mel weighting �lters.
In this work 13 coe�cients are included (0-12), that is D = 13.

5.1.4 Spectral Features

Spectral features are in useful for distinguishing energy content in signals. Some
of those that turn out to be of most importance are mentioned here.

5.1.4.1 Spectral Roll-O�

The X · 100 percent spectral roll-o� point, P , is determined as the frequency
below which X · 100 percent of the total signal energy fall. If only the spectral
roll-o� is mentioned, it refers to the 95 % roll-o� point.
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5.1.4.2 Spectral Flux

Spectral �ux measures the change in the shape of the power spectrum. It is
de�ned as the Euclidean distance between the power spectra of two succes-
sive/close frames. For N FFT bins is computed as

SFk =

N−1∑
n=1

[
|Xk(n)| − |Xk−1(n)|

]2
, (5.5)

where k is the index of the frame.

Spectral �ux is e�cient in discriminating speech/music, since speech in the
frame-to-frame spectra �uctuate more than in music, particularly unvoiced
speech.

5.1.4.3 Spectral Frequency Band Energy

The spectral frequency band compute energy in the given spectral band by
rectangular summation of FFT bins in this band (FFT magnitudes).

Ebands[n] = LoFrq(Hz)−HiFrq(Hz) (5.6)

5.1.4.4 Spectral Centroid

The spectral centroid represents the midpoint of the spectral power distribution.
The spectral centroid, SC, at time t is computed by

SC =

∑
∀f f ·Xt(n)∑
∀f ·Xt(n)

, (5.7)

where Xt(n) is the spectral magnitude at time t in bin n.
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5.1.4.5 Spectral Maximum and Minimum Position

The position of the maximum and minimum magnitude spectral bin (in Hz)

5.1.5 Power Cepstrum

To calculate the power cepstrum, a squared magnitude of the Fourier transform
of the logarithm of the magnitude of the Fourier transform is applied, that is
the cepstrum, c(n), is given by

c(n) =
1

2π

∫ π

−π
log
∣∣∣X(ejω)

∣∣∣ejωndω, −∞ < n <∞ (5.8)

The power cepstrum can be used for identi�cation of any periodic structure in
a power spectrum and is ideal in detecting periodic e�ects such as harmonic
patterns. Power cepstrum is generally used in conjunction with spectral anal-
ysis, since it identi�es items which spectral analysis does not identify while it
suppresses information about the spectral content [24].

5.1.6 Log Energy

This component computes logarithmic (log) signal energy from frames. The
logarithmic energy (LOGenergy), Et, can for the frame size, N , be computed
as [12]

Et = log

[∑N
n=0 x

2
n

N

]
(5.9)

5.1.7 Fundamental Frequency

The fundamental frequency and the probability of voicing is computed via an
ACF/Cepstrum based method. The input must be an ACF �eld and a Cepstrum
�eld, concatenated exactly in this order. The output is then the fundamental
frequency (pitch), F0, and the envelope of the fundamental frequency can be
calculated from exponential decay smoothing.
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5.1.8 Feature Extraction

One of the most important things of a classi�cation system is the feature ex-
traction. It is therefore of great importance that the right features are chosen in
order to get the best possible classi�cation. In a classi�cation, the best feature
set depends on the classi�er it is used together with. In this work a classi�cation
tree is used in order to investigate which features that describe the sound envi-
ronment signals in the best way without them being a part of a more complex
classifying system. For the purpose of feature extraction, the openSMILE [12]
feature extraction toolkit is used. It is a modular and �exible feature extractor
for signal processing and machine learning applications. It is a purely C++
function under the GNU license. The toolkit combines features from music in-
formation retrieval and speech processing and makes it possible to extract large
audio feature spaces both o�-line and in realtime on-line processing. A binary
version of the tool is available, which makes it possible to use the tool without
compiling any source code. The feature extraction can thus be implemented as
a part of a Matlab function (this is done in the generate_features function)
with a speci�ed con�guration �le in order to get an output in form of a .csv �le
containing all the values of the calculated features for the speci�ed sound signal.

In this work, the con�guration �le "emo_large.conf" is used in order to extract
57 low-level descriptors along with the �rst and second derivatives of these
descriptors in a combination with 39 possible functionals, all in order to extract
a large set of 6669 features, 1st level functionals of low-level descriptors.

The following (audio speci�c) low-level descriptors are computed by the emo_large
con�guration �le [12]:

- Frame Energy

- Critical Band spectra (Mel)

- Mel-Frequency-Cepstral Coe�cients (MFCC)

- Fundamental Frequency (via ACF/Cepstrum method)

- Probability of Voicing

- Power Cepstrum

- Zero-Crossing rate

- Spectral features (Magnitude of: arbitrary band energies, roll-o� points,
centroid, maxpos, minpos, �ux)
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This con�guration extracts the features from 25 ms audio frames (sampled
at a rate of 1 s). A Hamming function is used to window the frames and a
pre-emphasis with k = 0.97 is applied using a 1-st order di�erence equation:
y[n] = x[n]− k · x[n− 1]. It provides feature sets containing 6669 features given
by the logarithmic energy, Mel spectra from 26 bands with a range from 0 to 8
kHz by applying overlapping triangular �lters equidistant on the Mel scale to an
FFT magnitude spectrum, 13 MFCC (0-12) from the 26 Mel-frequency bands,
and applies a cepstral liftering �lter with a weight parameter of 22, Pitch (F0),
Probability of voicing, F0 envelope, zero-crossing rate, spectral features (5 arbi-
trary band energies; bands[0]=0-250 Hz, bands[1]=0-650 Hz, bands[2]=250-650
Hz, bands[3]=1000-4000 Hz, bands[4]=3010-9123 Hz, 4 roll-o� points; rollO�[0]
= 0.25, rollO�[1] = 0.50, rollO�[2] = 0.75, rollO�[3] = 0.90, centroid, maximum
position, minimum position, �ux) and delta and delta delta.

The su�x _sma appended to the names of the low-level descriptors indicates
that they were smoothed by a moving average �lter with window length 3. The
su�x _de appended to _sma su�x indicates that the current feature is a 1st
order delta coe�cient (di�erential) of the smoothed low-level descriptor.

In all the features that refers directly to the input data, the wave �le, an abbre-
viation of pcm_ is put in front of the feature name [3].

In order to map contours of low-level descriptors onto a vector of �xed dimen-
sionality, the following functionals are applied:

- Extreme values and positions

- Regression (linear and quadratic approximation, regression error)

- Moments (standard deviation, variance, kurtosis, skewness)

- Percentiles and percentile ranges

- Peaks

- Means (arithmetic, quadratic, geometric)

A speci�ed list of all the functionals can be found in Appendix C.

5.2 Classifying Algorithm

In this work a classi�cation based decision tree is used as a the classifying al-
gorithm. This section will focus on a description of the tested classi�cation
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algorithm, �rst the general theory behind classi�cation trees and then speci�-
cally the Matlab function used.

5.2.1 Classi�cation Tree

Using a binary classi�cation tree is a way to analyse data in a �exible, non-
parametric way and gives an interesting way of looking at data. The use of
decision trees can be dated back to the 1960s since the use of trees was un-
thinkable before computer-based calculations became possible [8]. The general
classi�cation problem is rather simple, measurements are made in some case and
from these measurements it is desirable to predict which class the case belongs
to. The goal is then to �nd a systematic way of predicting this class.

The entire construction of a tree revolves, according to [8], around three ele-
ments:

1. The selection of the splits

2. The decisions when to declare a node terminal or continue splitting it

3. The assignment of each terminal node to a class

A tree classi�er is constructed by repeated splits of a measurement space into
two subgroups until a terminal subset called node is reached. Each terminal
node is denoted by a class label. More than one terminal node might be from
the same class label and putting all of those with the same class label together,
gives the partition corresponding to the classi�er. The tree classi�er predicts a
class for a measurement by a number of steps. The �rst split decides which of
the two child nodes the measurement belongs to. The splitting continues until a
terminal node is reached where the class is predicted by the class label attached
to that terminal node. The �rst issue of the construction is how to select the
splits to reduce the measurement space into smaller and smaller pieces, making
sure that the data in the child nodes are purer than the data in the parent node.
In the root node, a search is made through all possible splits to �nd the one that
gives the largest decrease in impurity. This procedure is repeated for each of the
following nodes separately. For each branch node, the left child node corresponds
to the points that satisfy the condition, and the right child node corresponds to
the points that do not satisfy the condition. To decide when a terminate node
is reached, a heuristic rule is designed such that when no signi�cant decrease in
impurity is possible, the node is not split further and becomes a terminal node.
The tree is a convenient classi�er since, if a measurement from an unknown
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class is dropped into the tree and ends up in a terminal node, it is classi�ed as
the class from that terminal node [8]. One way to see how accurate a classi�er
works, is to test the classi�er on cases whose correct classi�cation has been
observed. In this way it is possible to estimate the true misclassi�cation rate.

An example of the principle of mapping from a two-dimensional feature space to
a decision space can be seen in Figure 5.3. For every point in the feature space,
a class is de�ned by mapping it to the decision space. The borders between
the classes are found by training the classi�er, here they are made up for the
simple example. Once the borders are �xed, a test dataset, independent of the
training set, is used to �nd the performance of the classi�er. Going from the
feature space to the decision space in this small example would provide a tree
as the one also seen in the �gure. The �rst split puri�es the child nodes and
the left child node satisfy the condition given for the split. At the terminal
nodes a classi�cation is made assigning the given class to each of the points
from the feature space ending in that node. As can be seen this will lead to
some misclassi�cation, but this is unavoidable in most cases, especially when a
simple classi�er as a classi�cation tree is used.

Setting a stopping rule for the tree can be very complicated, the splitting can be
stopped either to soon at some terminal nodes or be continued too far in other
parts of the tree. So instead of an attempt to stop the splitting at the right
set of terminal nodes, the splitting should be continued until all terminal nodes
are very small, resulting in a large tree. This tree can then be pruned upwards
resulting in in a decreasing sequence of subtrees and then cross-validation or
test sample estimates can be used to pick out the subtree having the lowest
estimated misclassi�cation rate. This method is implemented in the Matlab
function described in 5.2.2.

5.2.2 Matlab Function classregtree

A Matlab function, classregtree, is a part of the Statistics toolbox in Matlab,
and with this function, a classi�cation tree is build. The entire function with all
its posibilities is inspired by the theory presented in [8]. In the function, input is
given as X, an n-by-m matrix of predictor values, and y, a vector of n response
values as a function of the predictors. When the function is run, output is given
as t, a binary tree where each branching node is split based on the values of a
column of X, see equation 5.10 for notation.

t = classregtree(X, y) (5.10)
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Figure 5.3: Pattern classi�cation viewed as mapping a feature space, V , into
a decision space, Q. The division of the square can be represented
by the given classi�cation tree. Here for a two-dimensional feature
space. With inspiration from [8].

At the expense of more computation, the training set can be divided into a
number of cross-validation samples, v, and then one sample can be used to test
the performance of the classi�er on the remaining (v − 1) samples and �nally
average the v such estimates. When choosing the number of cross-validations,
it is important to notice that in [8] they have tested the adequate number
of partitions of the sample, v. Adequate accuracy was gained with a 10-fold
cross-validation, v = 10. In some cases, smaller values of v has given adequate
accuracy, but no situations have ever implied that taking a value of v larger
than 10 would signi�cantly improve the accuracy for the selected tree. Therefore
v = 10 in this framework to ensure an adequate accuracy in the cross-validation
without it being to computationally time consuming with a large dataset.

In Matlab the test function can be speci�ed to either test or cross-validation.
For the training set, the test version is calculated. This results in a cost vec-
tor, the standard error of each cost value, a vector containing the number of
terminal nodes for each subtree, and a scalar containing the estimated best
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level of pruning. When cross-validation is chosen, the function uses the 10-fold
cross-validation to compute the cost vector by partitioning the sample into 10
subsamples, chosen randomly with roughly equal size and class proportions. For
each subsample, the function �ts a tree to the remaining data and uses it to
predict the subsample. It pools the information from all subsamples to compute
the cost for the whole sample. The same values are generated for the test set
as for the training set, but using the best level from the cross-validation of the
training set to decide the point of the smallest tree within 1 standard error of
the minimum cost tree.

The best level of pruning, derived from the cross-validation, can then be used
to specify the pruning level in the prune function. This function takes the
classi�cation tree of input and prunes it to a speci�ed level. In this work, the
best level of pruning is used. If this level is 0, no pruning occurs. Classi�cation
trees are pruned by �rst pruning the branches giving less improvement in error
cost.



Chapter 6

Description of the

Classi�cation System

The sequence of the classi�cation framework, used in this work, is described
in this chapter along with the performance measures that are used to evaluate
the classi�cations. The description is supported by a �owchart very shortly
presenting the steps of the framework in order to clarify the steps along with
their input and output.

6.1 Classi�cation Framework

The basic outline is run from the function run_test. This �le starts by run-
ning the function matlabsetup which is used to add and remove Matlab and
Java paths for the current workspace and to check for speci�c built in Mat-
lab toolbox versions. The run_test �le is speci�ed for each new test bench
in order to perform the correct steps for that certain test bench. All of the
following functions and �les will automatically run when the run_test func-
tion is executed. Then a framework of generating sounds, extracting features,
generating classi�er data and running classi�er is initiated with the function
generate_sounds. This function calls the m-�les in the sound_specs folder.
These �les are created as functions to call the acoustic simulator tool and create
output structures that can be used further on to generate sound �les in .wav
format. These sounds are then used to extract features using the openSMILE
toolbox in generate_features. The feature extraction is based on the con�g-
ure �le chosen from the setup in the toolbox. First of all it is tested using the
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emo_large.conf �le which extracts 6669 features. The features extracted are
saved in .csv format to further use in the generation of the classi�cation data.
This data is used in generate_classifier_data to make a .mat �le containing
all samples, the features calculated for each sample and a label marking if the
�le is from a car environment or not. If the feature �le begins with "car_" a
vector is generated containing ones in the same number of rows as the feature
�le contains otherwise a row of zeros is created. This is used further on to load
all data and create a test and training split in generate_classifier_input.
This split is used in run_classifier to create a set of training data and test
data and from this using the classregtree function de�ne which of the features
that are relevant for a correct classi�cation of the given test data set. Here a
cross-validation is also performed in order to �nd the best combination of fea-
tures for a potential pruning of the classi�cation tree. From this a confusion
matrix is calculated in analyze_data to �nd the correct and false classi�cation
rate for the two possible classes. Finally all the features used for classi�cation
are extracted and plotted using run_feature_extraction. A visualisation of
the sequence of the framework can be seen in Figure 6.1.

For some of the tests, the framework is altered a bit. This goes for example for
the tests where one single dataset is being created (the last ones of the conducted
tests, see Section 7.2). In these cases, the framework works the same way until
the function generate_classifier_data where a .mat �le is created, but all
the functions up till this point is run both for a prede�ned training and test
set. From here on the function generate_classifier_input_single_dataset

is used to create a single input �le for the run_classifier function where the
split into training and test data was decided already before any of the functions
are run. The predetermined split is still used in the classregtree function to
de�ne which features that are relevant for a correct classi�cation of the given test
dataset. A possible pruning is still of interest in the single dataset tests along
with the confusion matrix and extraction and plots of the relevant features. In
a �nal test the features from the pruning are the only ones in focus, so here
feature extraction is only based on these features. There is no point in pruning
the resulting classi�cation tree from this test further why pruning is disabled in
this test and no cross-validation is performed.

Note the acoustic simulator tool can only be used when the computer is con-
nected to the network at Oticon. If the user is not connected to this net-
work, only sounds that have already been generated can be used. In this sit-
uation, the entire run_test should not be executed, but a sound_�les folder
should already be available containing a number of .wav �les and then the
rest of the functions can be run one by one from generate_features until
run_feature_extraction.
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Figure 6.1: The sequence of the classi�cation framework going from generation
of sounds over feature extraction to the classi�cation of the sounds
and further analysis of the classi�ed signals.

6.2 Performance Measures

To be able to compare the outcome of the classifying system within di�erent
tests and with other classifying systems, it is important with some standardised
measures of how the system performs and for this, parameters that de�ne the
performance of the system are needed. In sound environment studies, there is
no golden standard of how to present the outcome of the classifying system.
Displaying scores of a classi�er can be done in many ways, and some of the
most used ways, as seen in Chapter 3, are classi�cation error/recognition rate
or by hit rate, overall hit rate and false alarm rate. A confusion matrix, and
scores like sensitivity and speci�city can be also be used.
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6.2.1 Classi�action Rate

The correct classi�cation rate and classi�cation error rate are measures of how
well the classi�cation system �ts the data. A classi�cation system strives to
obtain good classi�cation wherefore the correct classi�cation rate and classi�-
cation error rate are often used as measures of how well the system performs.
The correct classi�cation rate, p, for a test set with N sound signals can be
calculated as [31]:

p =
1

N

N∑
n=1

l(n), (6.1)

where l = 1 if the sound signal is correctly classi�ed and 0 otherwise. The
classi�cation error rate can then be calculated as 1− p, so the two measures are
said to be complementary, and therefore it does not matter which of these two
that are used.

A test set needs to be large in order for a classi�cation rate to be calculated
correctly [28]. The estimate for a classi�cation count has a binomial(N, p) dis-
tribution. Therefore it is possible to calculate the standard error bars as

SE = 2 ·
√
p · (1− p)

N
(6.2)

6.2.2 Confusion Matrix

In a confusion matrix it is easy to visually represent the outcome of a classi�ca-
tion system. All correct classi�cations are located in the diagonal of the matrix,
and a misclassi�cation will then be represented by any non-zero value outside
the diagonal, in this way it is easy to see if the system is confusing two classes.
It is desirable to know which classes are confused, which can be found by the
calculation [28]:

eij = P{decision j | class i} (6.3)

A visual representation of a confusion matrix for a two class classi�cation system
can be seen in Figure 6.2. Here a correct classi�cation is marked with a darker
blue color in the diagonal of the matrix.
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Figure 6.2: Confusion matrix for a two class system. In the confusion matrix,
the rows represent the true classes and the columns the predicted
classes.

6.2.3 Sensitivity and Speci�city

From the rates in the confusion matrix it is possible to calculate two often
used statistical measures of the performance, namely the sensitivity and the
speci�city. These measures are often used when presenting medical data, since
sensitivity describes how good a test is at detecting what is being tested for,
so how well a test detects a medical condition and speci�city is the opposite of
sensitivity, that is it describes how many of the true negatives in a test that are
detected. For any test, there is usually a trade-o� between the measures. The
equations for the measures of the two are as follows

Sensitivity =
TP

TP + FN
Specificity =

TN

FP + TN
(6.4)

If the values in the confusion matrix is given in percentages, the two diagonal
entries correspond to the sensitivity and speci�city respectively.

The true positive (TP) and the true negative (TN) values can also be expressed
as the number of correctly classi�ed sounds in the classes whereas the false
positive (FP) and the false negative (FN) value also can be expressed as the
number of sounds of other classes wrongly classi�ed in this class. For each
class a hit rate can be calculated, this indicates how many sounds are correctly
classi�ed out of the total number of sounds in that class. A false alarm rate can
also be calculated for each class, here the number of sounds wrongly classi�ed as
a class out of the total number of sounds not coming from this class is calculated.
The overall hit rate can then be found as the mean of the hit rates of all classes.
Using the TP, TN, FP, FN values or the hit rate, false alarm rate and overall
hit rate are thus two di�erent ways of expressing the performance.
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Chapter 7

Evaluation of the

Classi�cation System

In this section, a description of the tests that have been made during the devel-
opment of the framework, will follow. These tests include a couple of preliminary
tests that are conducted to clarify how the generation of the sounds handle the
output and to optimize the settings for the sound �les. The following will be
tested

• Preliminary tests

� a clari�cation of the number of channels that are used

� the elimination of the possibility to use cues in the classi�cation based
on the target sources in the signals

� the impact of the direction of the target source

• the importance of the split of data into training set and test set

• the in�uence of noise sources in all environments, both realistic and semi-
realistic noise sources

• the in�uence of a scaling of the signals to obtain a predetermined SNR
compared to signals with �xed target and noise levels for each source
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7.1 Preliminary Tests

7.1.1 Number of Channels

Here it is tested whether the number of channels included has a saying in the
results. When the sounds are generated, it is possible to specify the number
of channels to include, four channels is the maximum possibility. As described
earlier, the four channels to be included is front and rear in both left and right
side. These correspond to the positions that have been measured on the HATS
during the recordings of the impulse responses.

This test is important to clarify if only one channel or all the possible channels
have to be included when generating the sounds in order to represent the envi-
ronment as realistically as possible. It is not obvious from the documentation
of the feature extractor if it extracts information from a single channel or from
all the includes channels. This is important to clarify, since source direction will
have more in�uence on the classi�cation if all channels are included. If it turns
out that only one of the channels is included and repeated in the three other
channels, there is no point in including all four channels, and it is then possible
to include omnidirectional noise, since there is no di�erence in how the sounds
enter the hearing aid in the di�erent channels. There is also a possibility that
the classi�er chooses the channel that gives the smallest classi�cation training
error. If there is a di�erence in the channels, and all four channels actually are
represented with their di�erence, more caution has to be put into the generation
of the signals, especially when it comes to the noise sources since it then will
not be possible to include omnidirectional noise as easily as in the case where
only one channel is included and repeated.

Small datasets were created from three situations, one including only one chan-
nel, the second has the �rst channel repeated in all four channels and the third
have the channels set to get their input from each of their respective positions.
These datasets were created to discover if a di�erence occurred between them. A
di�erence between the last described situation and the others would mean that
every channel is included, and the setup would resemble a realistic hearing aid
situation which would be good for the reliability of the test but would make the
addition of noise signals more di�cult. A visual inspection of the time signals in
all three situations were used along with the results in a confusion matrix from
each of the situations. The signals can be seen in Figure 7.1 and the matrices
in Table 7.1.

The number of channels included is tested using the small dataset described
earlier. The test is conducted using the leave-one-out method, training on �ve
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Figure 7.1: Time signals from three di�erent situations, one including only
one channel (top), one where the �rst channel was repeated in all
four channels (middle) and one where the channels were set to get
the input from each of their respective positions (bottom). One
channel from each of the signals is shown.

sound signals and testing the sixth sound signal with this setup. From the
sound signals and the confusion matrices it can be seen that there is a di�erence
from the single channel to the multiple channel setup. The total scale of the
signal was in this test set to be 65 dB at the eardrum, so when four channels
are added instead of just one, the amplitude of each of the signals is decreased.
Also the correct classi�cation is decreased, apparently it becomes more di�cult
to distinguish a car environment from a non-car environment when all possible
directions of the sound is included. Even though it results in lower TP value
for the car, it is necessary to include all four channels from here on out to
create the most realistic hearing aid sound setup since the feature extraction
actually is based on all channels. This also means that adding noise becomes
more di�cult, and care must be taken when especially omni-directional noise is
being simulated.

7.1.2 Elimination of Number of Speakers

The importance of elimination of number of speakers is tested using the small
dataset described in Section 4.4. In the previous test, the number of speakers
was not taken into account. This means that the number of speakers could
have been a potential cue in the classi�cation of the sound environments. To
make sure this is not the case, the framework is altered such that when a sound
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Table 7.1: Classi�cation rates for the test of number of channels from three
di�erent situations. Top: including only one channel, Middle:

the �rst channel was repeated in all four channels and Bottom:

the channels were set to get the input from each of their respective
positions.

car misc
car 0.8933± 0.2521 0.1067
misc 0.1333 0.8667± 0.2775

car misc
car 0.8933± 0.2521 0.1067
misc 0.1333 0.8667± 0.2775

car misc
car 0.8000± 0.3266 0.2000
misc 0.1333 0.8667± 0.2775

signal with one source is used for testing, no other sound signals with only one
source is used for the training of the classi�er etc. So instead of training with
the leave-one-out method, the classi�er is trained by a "leave all other sound
signals with the same number of speaker sources out" principle. The confusion
matrix for the multiple channel setup tested in the previous subsection should
be compared to the one trained with the new method proposed here. The two
matrices can be seen in Table 7.2.

Table 7.2: Classi�cation rate for the test where number of speakers is elimi-
nated as a cue option. Top: Multiple channel obtained with the
leave-one-out method. Bottom: Multiple channel with the "leave
all other sound signals with the same number of speaker sources
out" principle.

car misc
car 0.8000± 0.3266 0.2000
misc 0.1333 0.8667± 0.2775

car misc
car 0.8667± 0.2775 0.1333
misc 0.0933 0.9067± 0.2375

From the confusion matrices it can be seen that eliminating the number of speak-
ers as a possible classi�cation cue results in a higher correct classi�cation rate
for both the car and the miscellaneous (misc) situation. This result turns out
very bene�cial since the input to the classi�er from here on has to be separated
in this way, to make sure that it is not the di�erent number of speakers that
gives rise to the correct classi�cation rate.
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7.1.3 The Impact of Target Direction

The impact of target direction is tested by using the environments where a car
situation is possible to simulate, that is placing one target source to the left of
the listener and the possibility to include two noise sources, one placed behind
the listener and one placed behind the target source. This setup is possible in
four of the environments; Café, Car, Japan North and Staircase. In these four
environments two sets of sound signals are generated, one where the speakers are
placed as in the car, and one where, in the three environments that are not a car,
the speakers are rotated relative to the listener so the target source is in front
of the listener, and the two possible speaker noise sources are placed one behind
the target source and one next to the �rst noise source respectively. Calculations
for these situations have been made in order to compare if it becomes easier to
classify the car environment if all the speaker sources are not placed as in the
car, but a bit more realistically considering the environment they are placed in.
The confusion matrices for both the situations can be seen in Table 7.3.

Table 7.3: Classi�cation rate for testing the target direction. Top: Placement
of the speakers is as similar as possible to the possible placements
in a car. Bottom: Direction of the target is in front of the listener.

car misc
car 0.7867± 0.2365 0.2133
misc 0.0489 0.9511± 0.1245

car misc
car 0.8800± 0.1876 0.1200
misc 0.0978 0.9022± 0.1715

It can be seen from the results of the two setups, that placing the target source in
front of the listener and the speaker noise sources according to the target source,
improves the correct classi�cation rate of the car environment compared to when
all speakers are placed exactly as in the car. This means that the placement
of the sources in the car environment is an important factor in classifying this
environment. This makes good sense and was also expected, since the location of
the speakers and noise sources is well de�ned in the car environment compared
to other environments, there are not many alternative ways for the speakers to
be placed, so of course this is an important factor to exploit when looking for
car environment classi�cation.
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7.2 Single dataset

Until the last of the mentioned preliminary tests was conducted, the placement
and the number of talkers was the exact same as in the car, or was resembling
as much as possible, given the certain environment structure. From here on,
the placement of both the target, the speaker noise sources and all other noise
sources will be considered from situation to situation in order to create as re-
alistic environments as possible. Furthermore, the framework is altered again
such that it is possible to create one single dataset as input for the classi�er.
The split into training and test set is conducted before the creation of the single
dataset such that none of the sound signals used for the training set is repeated
in the test set. The datasets and the split into training and test set are as
described in Section 4.4.

Splitting in this way is necessary since sound �les only exist from one car situ-
ation. It would be preferable if more then one car situation existed, since then
it would be possible to run the framework with a "leave-one-environment out"
method. But since impulse response recordings have only been made for one
car situation, training of the car environment must come from the same car
situation as is used for testing.

7.2.1 Test of the Scaling of the Sound Signals at the Eardrum

When creating the sound signals, it is possible to specify both the overall input
level at the eardrums along with a signal to noise ratio. This is described in
detail in Chapter 4. In the following, it will be tested what this scaling does
for the classi�cation of the signals. First of all, a scenario with �xed target and
noise levels for each source is presented, here there is neither speci�ed an overall
input level nor a SNR. In this case the overall level depends on the number and
placements of the target and noise sources. Two other cases is studied as well,
both where an overall input level is set to 65 dB, one with an SNR of 0 dB and
one with an SNR of 10 dB.

7.2.1.1 Fixed Target and Noise Levels for Each Source

Making sure that no overall input level at the eardrum is de�ned and that no
SNR is speci�ed, makes the signals a combination of the sources, and any level
of noise depends only on how many noise sources is included, their speci�ed
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level and their placement. Creating signals in this way and testing them with
the framework result in the following confusion matrix.

Table 7.4: Testing the situation with �xed target and noise levels for each
source

car misc
car 0.9160± 0.0469 0.0840
misc 0.0356 0.9644± 0.0313

7.2.1.2 Final SNR Set to 0 dB

Setting the overall input level at the eardrum to 65 dB and the SNR to 0
dB makes the signals a great confusion between the speech target and the noise
signals. Focus in this case will be unclear since the SNR forces the levels of both
target and noise to be equal. This results in the following confusion matrix.

Table 7.5: Testing the situation where the overall input level is set to 65 dB
with a SNR of 0 dB

car misc
car 0.8027± 0.0673 0.1973
misc 0.0629 0.9371± 0.0410

7.2.1.3 Final SNR Set to 10 dB

Setting the overall input level at the eardrum to 65 dB and the SNR to 10 dB
makes the signals focus much more on the speech target than on any of the noise
signals. This results in the following confusion matrix.

Table 7.6: Testing the situation where the overall input level is set to 65 dB
with a SNR of 10 dB

car misc
car 0.8720± 0.0565 0.1280
misc 0.0516 0.9484± 0.0374

A scaling of the overall input level at the eardrum is not the most realistic
way to represent how a hearing aid processes the sounds, but in some cases
it can be useful when trying to simulate certain situations. From the results
above it can be seen that the situation with �xed target and noise levels for
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each source results in the highest TP value for the car of 91.6% compared to
only 80.27% and 87.2% in the other tests. The combination of all the possible
noise signals stands more out when there is no limit set for the overall level of
these. This gives a more realistic representation of the environments, since all
the environments are created to make it possible for the classi�er to distinguish
between realistic environments. Testing the possibility of specifying the overall
input level and a SNR results in the conclusion that this is not bene�cial for the
correct classi�cation rate. Creating signals with �xed target and noise levels for
each source gives a much higher correct classi�cation and is therefore considered
as the best possible way to represent the di�erent environments. This is also
the most realistic way to represent these. From this test it is decided that only
situations with �xed target and noise levels for each source are considered in
the �nal framework and in any of the following tests.

7.2.2 Further Analysis of the Situation with Fixed Target
and Noise Levels for Each Source

From the previous test, it is obvious that the situation with �xed target and
noise levels for each source results in the highest correct classi�cation rate. This
situation will therefore be used for the further investigations of the possibilities
for the classi�cation. First of all the training set will be analysed with a cross-
validation to �nd the best possible feature set for a pruning of the classi�cation
tree and to reduce the number of features considered.

For the single dataset with �xed target and noise levels for each source, a test is
conducted to �nd if it is possible to prune the feature set and by this reduce the
number of terminal nodes in the classi�cation tree. For this, a cross-validation
is used, see Section 5.2.2. Calculating a cross-validation for the tree can be
used to decide if the tree should be pruned. When a cross-validation is used,
three error rates can be plotted, for train data, validation data and test data,
these error rates can be seen in Figure 7.2. In the �gure, the solid line shows the
estimated cost for each tree size, the dashed line marks one standard error above
the minimum, and the red square marks the smallest tree under the dashed line.
In the plot of the test set, the red square marks the smallest tree from the cross
validation of the training set. Both of these squares are set to mark where a
possible pruning of the tree could result in a tree with less calculations (minimum
cost) and therefore also fewer terminal nodes.

The error rate for the train data decreases with a higher number of terminal
nodes. The error rate is a measure of how well the classi�er performs with the
speci�ed number of terminal nodes. A low error rate is preferable since this
indicates an improvement in the classi�er, but the more terminal nodes that are
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Figure 7.2: Left:Plot of the error rate for the training set, Middle: the val-
idation set, Right: for the test set for the situation with �xed
target and noise levels for each source. The solid line shows the
estimated cost for each tree size, the dashed line marks one stan-
dard error above the minimum, and the red square marks the
smallest tree under the dashed line for the validation set.

included in the tree, the higher is the computational cost. The cross-validation
is therefore used to see if a pruning of the tree can reduce the number of terminal
nodes while still getting an acceptable low error rate. It can be seen in this case
presented here, that it is not possible to prune the tree to get a lower acceptable
error rate, the largest tree considered is the only tree where the error rate falls
beneath the one standard error above the minimum for the validation set.

The curve for the training set behaves as expected, with a level in the beginning
corresponding to chance, since the car environment forms 21.43% of the training
data. Increasing the tree size then decreases the error rate for each step as
expected. The validation set behaves almost in the same way, but an increasing
error rate can occur with an increase in tree size, this all depends on which part
of data is used for the subsamples that are validated. Looking at the test set
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rate could give rise to a suspicion that a pruning of this tree could be bene�cial.
This is di�cult to be sure of, and the number of terminal nodes is in this case
already fairly small, so a pruning is not conducted in this case.

The test of possible pruning was conducted for two other situations as well, the
situations also considered in the test of scaling. The error rate plots for these
tests can be seen in Appendix C. For the examples shown in the appendix, both
of the cases would result in a pruned tree in order to reduce the cost by reducing
the number of terminal nodes.

Deciding that no pruning is necessary in this case, makes it possible to move on
to look at the features selected for the classi�cation. 30 features are selected for
the feature set. A full list of these features can be seen in Appendix C along with
visual representations of all of them. Here the three most important features
are shown in order to give an idea of how the values are for the features in the
sound �les from the di�erent environments. These can bes seen in Figure 7.3
and Figure 7.4.

Figure 7.3: Feature used for the �rst split
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(a) Feature used for splitting the left child node from the �rst split

(b) Feature used for splitting the right child node from the �rst split

Figure 7.4: Feature number 2 and 3
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From the three most important features a clear di�erence can be seen between
the car environment and the other environments. When looking at the feature
set it becomes clear that the �rst three features all are spectral features. These
are used for the �rst splits and using these thus reduces the impurity of the �rst
nodes the most. The dataset is designed such that the speaker sources are the
same in all �les, the noises sources are somewhat the same depending on the
environment and the biggest di�erence in the sound �les are the environments
themselves (in form of the impulse responses used). One of the big di�erences
between especially the car environment compared with the other environments
is the reverberation time of this environment. For a car, the reverberation time
is very short compared to any other of the included environments. A car is a
small environment with many di�erent interior materials. But since most of the
noises in a car does not have directional cues for the human ear (mostly low
frequency noise occurs in a car) they tend to not cause many re�ections that a
human ear would catch. The reverberation time is therefore an important factor
in di�erentiating between a car environment and the other environments, and
since an environment with short reverberation time has a lower signal energy
than an environment with a long reverberation time (because of the tail in the
signal), spectral features can be used to distinguish between these situations.
From the �rst two features, it seems that a di�erence especially can be seen in
the frequency bands 0-250 Hz and 1000-4000 Hz.

The Mel-frequency spectra and the MFCCs seem to provide some important
information as well (feature number 4-6). These measures, along with the zero-
crossing rate (feature number 7), are often used in speech/music/noise classi-
�cation. Since the noise sources in most of the environments contain speech,
music and pure noise signals, it makes good sense that the given features are
important for the classi�cation. The car environment includes noise sources
that are not included in any of the other environments. This is in particular the
low-frequency noise from inside a moving car. Even though many di�erent kinds
of noise sources are placed in all the environments, those in the car stand out
enough for the features to catch the di�erences and use this in the classifying
process.

In general, the features used for classifying the car environment from the other
environments revolve around certain measures. These are summarised in Table
7.7.

7.2.3 Test of Speci�ed Features

The best feature set only contains 30 features out of 6669 possible features.
There is no point in calculating the values for all the other features when these



7.2 Single dataset 73

Table 7.7: The important features for use in car environment classi�cation

Spectral Features

Spectral frequency band energy (0-250 Hz)
Spectral frequency band energy (1000-4000 Hz)
Spectral �ux
Spectral centroid
Spectral maximum position

Mel spectrum features

MFCCs

Zero-crossing rate

Loarithmic energy

30 features are su�cient for the classi�cation. Thus, in order to minimize the
calculation time and computational cost, the framework is once again expanded
so it is possible to specify a feature set that should be used when the sound sig-
nals are classi�ed. This expansion will be useful in a situation where a new test
set is to be classi�ed, since there is no point in extracting multiple features for a
new test set when a feature set already has been de�ned. This implementation
will especially come in handy when the framework is expanded to the ability of
classifying more speci�c environments and not just car vs. misc (as it is now it
is only bene�cial if it is this speci�c classi�cation that is of interest).

In this following test, the features chosen are the 30 features from the feature
set found in the previous test. It is speci�ed that only these features should be
taken into account, and this time there is no interest in a possible pruning level,
since all the features selected are the relevant ones for this speci�c training set.
To see how the classi�er performs with this speci�ed feature set, the error rate
for the training and test data is plotted and can be seen in Figure 7.5. The
confusion matrix for this test is also calculated and can be seen in Table 7.8.

Table 7.8: Classi�cation rate for the no scale test where the features are re-
duced to only include the speci�c feature set speci�ed by the pre-
vious test.

car misc
car 0.9107± 0.0482 0.0813
misc 0.0313 0.9687± 0.0294

The classi�cation tree is now only build from the speci�ed features and in this
situation the classi�er �nds it is necessary to include some of the features more
than once and leave some of the features out. The full list of features can be seen
in Appendix C and it can be seen that up to and including feature number 9, the
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Figure 7.5: Left: Plot of the error rate for the training set Right: for the
test set for the test where the features are reduced to only include
the relevant feature set. The solid line shows the estimated cost
for each tree size, the dashed line marks one standard error above
the minimum.

two feature sets are identical. Including the features more than once result in a
lower TP value for the car and a higher TN value. This was not expected since
the test set is the exact same as was used in the further analysis of the situation
with �xed target and noise levels for each source. The classi�cation rates were
expected to have the same values for the two tests. The small deviation could
arise from the dataset from which the features are calculated. For the previous
test, the calculations were based on the cross-validated data whereas here they
are based on the training data. Only very small di�erences arise from the
di�erent treatment of the training data, but it seems that these small di�erences
are enough for the classi�er to �nd it necessary to include some of the features
more than once which then make the classi�cation rates deviate a little from
each other. Since the deviation is so small, this way of reducing the feature input
is still interesting and de�nitely something worth keeping in the �nal framework
because of the time saving and reduction in computational cost. Especially the
cross-validation is very time-consuming but not necessary when the feature set
already is found.
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Conclusion

In this thesis a framework has been build to identify the di�erent steps in a
sound environment classi�cation system. The framework is build as a standard
classi�cation system and goes through the steps of generating sounds, extracting
features, classifying the sounds and analyse the classi�cations. The framework is
build for classi�cation between two classes as it is, namely the car environment
and miscellaneous environments, but it is build with the intention of expanding
the framework in the future to make it possible to distinguish between more
classes.

For feature extraction, a con�guration using the openSMILE [12] toolkit was
implemented. This made it possible to extract 6669 low-level features and in
this way made it possible to investigate, from a broad variety, which features
were important in this sound environment classi�cation. It turned out that
spectral features, Mel-frequency scale spectrum features, MFCCs, zero-crossing
rate and logarithmic energy were the most important ones. This arises from
the nature of the tested sounds, since the di�erences in the sound �les from
the car environment to the other environments are found to be biggest in the
environments themselves and in the possible sound sources in the environments.

A classi�cation tree was used as the classifying algorithm, and this turned out
to be a good match for the large feature set, since this made it easy for the
system to decide which features were important.

Preliminary tests were made in order to learn how the features were extracted
and to prepare the framework for the �nal build. It turned out that the best
classi�cation rates were obtained with a framework were all used sounds were
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as true to their environment as possible and where the target and noise sources
had �xed levels when creating the sounds. Using the framework with the best
settings resulted in a sensitivity of 91.6%± 4.69% and a speci�city of 96.44%±
3.13%.

Despite of the results, an expansion of the framework is still recommended before
an implementation in a hearing aid.

Future Work

The work in this thesis give rise to a number of ideas for further improvements.
First of all an expanded sound database including realistically recorded noise
sources for a car situation would be of great use along with more than one car
situation. A �exibility for moving the HATS according to target direction would
also give more realistic setups.

When it comes to the framework, it is build so it is possible to easily extend,
both when it comes to sound environments and features. Features are inves-
tigated closely in this work, but an extension of classi�er investigation could
also be interesting to maybe identify a classi�er that could result in even better
classi�cations. The framework is robust in classifying car from miscellaneous
sounds, but this should be expanded to make it possible to classify even more
sound environments. This framework is not ready to implement in a hearing
aid before it can classify several sound environments.

The next step in this framework would be to implement an identi�cation of
the sources present in the environment (people, noise etc.), what these sources
express (speech, music, noise) and where are they placed relative to the listener.
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Appendix A

Matlab Scripts

All commented Matlab scripts, and sound �les that are needed to run the scripts if
the reader is not placed at Oticon while running the framework, can be found in the
zip-�le uploaded along with the thesis. The �les have been saved in the folders from
which they have to be run. All scripts (except for the run_test functions and the �les
used to generate the sound signals (sound_specs folder)) must be placed in the main
folder. An addpath has to be run to add the path to the main folder, this can be done
from initialize. In each of the test bench folders the speci�c run_test function
has to be placed (along with a folder called sound_�les if the reader is not placed at
Oticon while running the framework).

For the tests with a single dataset, only the sound �les from the no scale test is
included in the zip-�le since the sound �les take up a lot of space. With these sound
�les it is thus possible to run both the "single_data_set_no_scale" test and the
"select_features_no_scale" test.
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Appendix B

Speaker Signals, Noise

Sources and Positions

Information is provided for the speaker signals, for all realistic noise signals and �nally
the setup of all the combinations of sound signals in all the environments are provided.

B.1 Speaker Signals

The target source is the same in every sound �le. It has the following speci�cations:

Length: 151.7626 s
Sampling rate: 44100 Hz
Resolution: 16 bits
Number of Channels: 1
Filename: VWA-HP_-6dB.wav
Title: EnglishSpeakers - VWA-HP_-6dB
Description: English monologues, some with raised e�ort
Sound ID: GR_02699
Sound folder: english_speech

Table B.1: Information about the target speaker signal

In some of the sound �les, one or both of the following speaker noise signals are
included. They are a part of the same dialogue and have the following speci�cations:
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Length: 162.6326 s
Sampling rate: 44100 Hz
Resolution: 16 bits
Number of Channels: 1
Filename: VWA_0dB.wav
Title: EnglishSpeakers - VWA_0dB
Description: English monologues, some with raised e�ort
Sound ID: GR_02701
Sound folder: english_speech

Table B.2: Information about the �rst of the possible speaker noise signals

Length: 162.6326 s
Sampling rate: 44100 Hz
Resolution: 16 bits
Number of Channels: 1
Filename: VWA_0dB_Comp.wav
Title: EnglishSpeakers - VWA_0dB_Comp
Description: English monologues, some with raised e�ort
Sound ID: GR_02702
Sound folder: english_speech

Table B.3: Information about the second of the possible speaker noise signals

B.2 Possible Noise Signals - ICRA2 �les

Those of the ICRA2 sound �les that make sense in anyway to include in any of the
environments are listed below. [7]

GR_00804: Catina HATS
GR_00810: Hair dryer HATS
GR_00814: Vacuum Cleaner HATS
GR_00820: Industrial Dishwasher HATS
GR_00826: Tra�c Noise (High Intensity) HATS
GR_00832: Ventilation HATS
GR_00835: Bathwater HATS
GR_00838: Co�ee Machine HATS
GR_00844: Keyboard Typing HATS
GR_00850: Children Playing Inside HATS
GR_00871: Forest Birds (Very Soft) HATS
GR_00880: Classic Music HATS
GR_00883: Football Match (Stadium 6000-8000 People) HATS
GR_00886: Jazz Music HATS
GR_00889: Rock Music HATS
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GR_00892: Soft Music HATS
GR_00895: Badminton Match (Inside) HATS
GR_00898: Choir In Church HATS
GR_00901: Choir In Church With Organ HATS
GR_00904: Flute (Fast) HATS
GR_00907: Flute (Soft) HATS
GR_00910: Car Slow In City HATS
GR_00919: Party (60 People) HATS
GR_00925: Car 60 KMT HATS
GR_00928: Car Accelerating HATS
GR_00931: Car Motorway HATS
GR_00943: Party Close With Music HATS

B.3 Noise Signals and Placement in the Environ-

ments

For each of the environments, a list of the nine combinations of sound signals are
provided (the tenth always only include the speaker noise sources and none of the
ICRA2 noises). The list is given as the combination presented with the name of the
noise source followed by the position/positions of this source in a bracket (in some of
the environments the positions are numbered, in others they are identi�ed by their
angles). The number of the positions corresponds to the numbers used in the .m �les
from which the sound signals are created, and these numbers corresponds to possible
positions (where impulse responses have been recorded) in the given environment.

B.3.1 Atlantic

1. Includes noise sources in 1 position: Hair dryer (1)

2. Includes noise sources in 1 position: Vacuum Cleaner (1)

3. Includes noise sources in 1 position: Ventilation (1)

4. Includes noise sources in 1 position: Bathwater (1)

5. Includes noise sources in 1 position: Classic Music (1)

6. Includes noise sources in 1 position: Jazz Music (1)

7. Includes noise sources in 1 position: Rock Music (1)

8. Includes noise sources in 1 position: Soft Music (1)

9. Includes noise sources in 1 position: Flute (1)
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B.3.2 Café

1. Includes noise sources in 10 positions: Cantina (1 and 23), Tra�c Noise (6),
Jazz Music(7), Industrial Dishwasher (19), Children Playing Inside (20), Forest
Birds (20), Vacuum Cleaner (26), Co�ee Machine (27), Ventilation (27)

2. Includes noise sources in 5 positions: Co�ee Machine (20), Flute (22, 24 and
26), Ventilation (27)

3. Includes noise sources in 7 positions: Children Playing Inside (4, 6, 10, 12, 18
and 20), Soft Music (13)

4. Includes noise sources in 4 positions: Co�ee Machine (7), Vacuum Cleaner (13),
Ventilation (20), Industrial Dishwasher (26)

5. Includes noise sources in 10 positions: Cantina (1, 2, 3, 8, 9, 15, 16, 21, 22 and
23)

6. Includes noise sources in 7 positions: Forest Birds (6, 12, 20 and 26), Rock Music
(7), Vacuum Cleaner (24), Ventilation (27)

7. Includes noise sources in 10 positions: Tra�c Noise(6 and 26), Football Match
(14, 15, 16, 17, 18, 19 and 20), Ventilation (27)

8. Includes noise sources in 10 positions: Party Close with Music (2, 3, 4, 5, 8, 9,
15, 16, 24 and 25)

9. Includes noise sources in 10 positions: Party (3, 4, 8, 9, 16, 19, 20, 22, 26 and
27)

B.3.3 Canada

1. Includes noise sources in 3 positions: Badminton Match (75, 90 and 105)

2. Includes noise sources in 10 positions: Soft Music (195, 210, 225, 240, 255, 270,
285, 300, 315 and 330)

3. Includes noise sources in 10 positions: Children Playing Inside (45, 90, 135, 195,
225, 270, 285, 300, 315 and 345)

4. Includes noise sources in 10 positions: Keyboard Typing (15, 45, 90, 105, 120,
135, 150, 165, 180 and 195)

5. Includes noise sources in 1 position: Co�ee Machine (135)

6. Includes noise sources in 2 positions: Vacuum Cleaner (90 and 270)

7. Includes noise sources in 1 position: Hair dryer (15)

8. Includes noise sources in 5 positions: Classic Music (90), Vacuum Cleaner(135),
Keyboard Typing (195), Co�ee Machine (270), Hair dryer (345)

9. Includes noise sources in 10 positions: Party Close with Music (30, 60, 90, 120,
165, 195, 225, 255, 300 and 330)



Noise Signals and Placement in the Environments 87

B.3.4 Car

Including Realistic Noises:

1. Includes noise sources in 3 positions: Car Slow In City (1, 2 and 3)

2. Includes noise sources in 3 positions: Car 60 KMT (1, 2 and 3)

3. Includes noise sources in 3 positions: Car Accelerating (1, 2 and 3)

4. Includes noise sources in 3 positions: Car Motorway (1, 2 and 3)

5. Includes noise sources in 3 positions: Tra�c Noise (1, 2 and 3), Forest Birds (1,
2 and 3)

6. Includes noise sources in 3 positions: Car Slow In City (1, 2 and 3), Tra�c Noise
(1), Rock Music (2)

7. Includes noise sources in 3 positions: Car 60 KMT (1, 2 and 3), Jazz Music (1,
2 and 3)

8. Includes noise sources in 3 positions: Car Accelerating (1, 2 and 3), Keyboard
Typing (1, 2 and 3), Soft Music (1)

9. Includes noise sources in 3 positions: Car Motorway (1, 2 and 3), Classic Music
(1), Keyboard Typing (2)

Including Unrealistic Noises:

1. Includes noise sources in 3 positions: Children Playing Inside (1, 2 and 3)

2. Includes noise sources in 3 positions: Party Close with Music (1, 2 and 3)

3. Includes noise sources in 3 positions: Party (1, 2 and 3)

4. Includes noise sources in 1 position: Hair dryer (2)

5. Includes noise sources in 2 positions: Ventilation (1), Flute (2)

6. Includes noise sources in 1 position: Vacuum Cleaner (1)

7. Includes noise sources in 1 position: Co�ee Machine (3)

8. Includes noise sources in 3 positions: Bathwater (1, 2 and 3)

9. Includes noise sources in 3 positions: Football Match (1, 2 and 3)

10. Includes noise sources in 3 positions: Badminton Match (1, 2 and 3)

B.3.5 Cellar

1. Includes noise sources in 1 position: Hair dryer (8)

2. Includes noise sources in 1 position: Vacuum Cleaner (6)

3. Includes noise sources in 3 positions: Co�ee Machine (3), Industrial Dishwasher
(7), Ventilation (8)
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4. Includes noise sources in 5 positions: Keyboard Typing (2, 3, 6, 7 and 8)

5. Includes noise sources in 1 position: Classic Music (2)

6. Includes noise sources in 1 position: Ventilation (7)

7. Includes noise sources in 2 positions: Hair dryer (2), Soft Music (6)

8. Includes noise sources in 5 positions: Children Playing (2, 3, 6, 7 and 8)

9. Includes noise sources in 8 positions: Party Close with Music (1, 2, 3, 4, 5, 6, 7
and 8)

B.3.6 Faroe Islands

1. Includes noise sources in 3 positions: Badminton Match (255, 270 and 285)

2. Includes noise sources in 10 positions: Soft Music (30, 45, 60, 75, 90, 105, 120,
135, 150 and 165)

3. Includes noise sources in 10 positions: Children Playing Inside (15, 45, 60, 75,
90, 135, 165, 225, 270 and 315)

4. Includes noise sources in 10 positions: Keyboard Typing (165, 180, 195, 210,
225, 240, 255, 270, 315 and 345)

5. Includes noise sources in 1 position: Co�ee Machine (225)

6. Includes noise sources in 2 positions: Vacuum Cleaner (90 and 270)

7. Includes noise sources in 1 position: Hair dryer (345)

8. Includes noise sources in 5 positions: Classic Music (270), Vacuum Cleaner(225),
Keyboard Typing (165), Co�ee Machine (90), Hair dryer (15)

9. Includes noise sources in 10 positions: Party Close with Music (30, 60, 105, 135,
165, 195, 240, 270, 300 and 330)

B.3.7 Germany

1. Includes noise sources in 1 position: Hair dryer (8)

2. Includes noise sources in 1 position: Vacuum Cleaner (5)

3. Includes noise sources in 3 positions: Co�ee Machine (4), Ventilation (5), Foot-
ball Match (7)

4. Includes noise sources in 5 positions: Keyboard Typing (1, 2, 3, 4 and 5)

5. Includes noise sources in 1 position: Classic Music (3)

6. Includes noise sources in 1 position: Ventilation (5)

7. Includes noise sources in 2 positions: Hair dryer (7), Soft Music (8)

8. Includes noise sources in 5 positions: Children Playing Inside (3, 4, 5, 7 and 8)

9. Includes noise sources in 8 positions: Party Close with Music (1, 2, 3, 4, 5, 6, 7
and 8)



Noise Signals and Placement in the Environments 89

B.3.8 Japan North

In Japan North it is both possible to specify angle and distance. In each bracket
distance will be noted with a d in front.

1. Includes noise sources in 1 position: Football Match (270 d:300)

2. Includes noise sources in 1 position: Soft Music (225 d:300)

3. Includes noise sources in 10 positions: Children Playing (270 d:50, 100, 150, 200
and 250, 315 d:50, 100, 150, 200 and 250)

4. Includes noise sources in 10 positions: Keyboard Typing (90 d:100, 180 d:100,
0 d:200, 45 d:200, 90 d:200, 135 d:200, 180 d:200, 225 d:200, 270 d:200 and 315
d:200)

5. Includes noise sources in 1 position: Co�ee Machine (45 d:250)

6. Includes noise sources in 1 position: Vacuum Cleaner (45 d:200)

7. Includes noise sources in 5 positions: Tra�c Noise (135 d:450 and 500, 180 d:350,
225 d:450 and 500)

8. Includes noise sources in 6 positions: Hair dryer (45 d:150), Co�ee Machine (90
d:400), Keyboard Typing (135 d:200) Forest Birds (180 d:350), Classic Music
(270 d:300), Vacuum cleaner (315 d:200)

9. Includes noise sources in 10 positions: Party Close with Music (90 d:100, 180
d:100, 0 d:200, 45 d:200, 90 d:200, 135 d:200, 180 d:200, 225 d:200, 270 d:200
and 315 d:200)

B.3.9 Staircase

1. Includes noise sources in 3 positions: Jazz Music (2), Ventilation (3), Vacuum
Cleaner (4)

2. Includes noise sources in 2 positions: Ventilation (2), Vacuum Cleaner (3)

3. Includes noise sources in 1 position: Ventilation (2)

4. Includes noise sources in 1 position: Vacuum Cleaner (2)

5. Includes noise sources in 1 position: Jazz Music (2)

6. Includes noise sources in 2 positions: Soft Music (2), Ventilation (4)

7. Includes noise sources in 2 positions: Vacuum Cleaner (2), Rock Music (3)

8. Includes noise sources in 1 position: Choir In Church With Organ (2)

9. Includes noise sources in 1 position: Choir In Church (2)
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Appendix C

Feature Investigation

C.1 Features

C.1.1 Functionals

The 5 Extremes values include: max - The maximum value of the contour, min - The
minimum value of the contour, range = max-min, maxPos - The absolute position of
the maximum value (in frames), minPos - The absolute position of the minimum value
(in frames)

The 10 Regression values include: linregc1 - The slope (m) of a linear approximation
of the contour, linregc2 - The o�set (t) of a linear approximation of the contour,
linregerrA - The linear error computed as the di�erence of the linear approximation
and the actual contour, linregerrQ - The quadratic error computed as the di�erence
of the linear approximation and the actual contour, qregc1 - quadratic regression
coe�cient 1, qregc2 - quadratic regression coe�cient 2, qregc3 - quadratic regression
coe�cient 3, qregerrA - linear error between contour and quadratic regression line
(parabola), qregerrQ - quadratic error between contour and quadratic regression line
(parabola), centroid - centroid of contour (this is computed as a by-product of the
regression coe�cients)

The 4 Moments values include: variance, standard deviation, skewness, kurtosis

The 8 Percentiles values include: quartiles - quartile 1-3 (0.25, 0.5, 0.75), iqr - inter-
quartile ranges (2-1, 3-1, 3-1), percentile - array of p·100 percent percentiles to compute
(here set to 0.95 and 0.98), interp - set to 1, percentile values are linearly interpolated,
instead of being rounded to the nearest index in the sorted input array.
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The 1 Crossings values include: zero-crossing rate

The 4 Peaks values include: numPeaks - the number of peaks, meanPeakDist - mean
distance between peaks (relative to the input segment length, in seconds, or in frames),
peakMean - arithmetic mean of peaks, peakMeanMeanDist - (arithmetic mean of peaks
- arithmetic mean of all values)

The 7 Means values include: amean - arithmetic mean, absmean - arithmetic mean
of absolute values, qmean - quadratic mean, nzabsmean - arithmetic mean of absolute
values (of non-zero values only), nzqmean - quadratic mean (of non-zero values only),
nzgmean - geometric mean (of absolute values of non-zero values only), nnz - number
of non-zero values (relative to the input segment length, in seconds, or in frames)

C.1.2 Error Figures

Error rate plots for the two situations not included in Section 7.2 can be seen in Figure
C.1 and C.2. For both of these situations it can be seen that a pruning would result
in an error rate that is acceptable low with fewer terminal nodes than what the train
data suggests is necessary.

C.1.3 List of features

For the analysis of the best features in Section 7.2.2, the full list of features in their
prioritised numeration is provided in Table C.1 (notice that one of the features is
included in the set twice, namely 'pcm_LOGenergy_sma_range').

When the speci�ed feature set is used in the classi�cation system, it seems that some
of the features are included more than once. The full feature list for the speci�ed
feature set can be seen in Table C.2.

The following three features are not included in the new feature set: 'pcm_LOGenergy_sma_linregerrA',
'mfcc_sma[1]_range', 'pcm_LOGenergy_sma_maxPos'.

C.1.4 Plot of features

The full list of features are plotted in Figure C.3 to Figure C.16 (feature 1, 2 and 3
are not shown here since they are plotted in section 7.2.2).
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Figure C.1: Left:Plot of the error rate for the training set, Middle: the val-
idation set, Right: for the test set for the situation where the
�nal SNR is set to 0dB. The solid line shows the estimated cost
for each tree size, the dashed line marks one standard error above
the minimum, and the red square marks the smallest tree under
the dashed line for the validation set.
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Figure C.2: Left:Plot of the error rate for the training set, Middle: the val-
idation set, Right: for the test set for the situation where the
�nal SNR is set to 10dB. The solid line shows the estimated cost
for each tree size, the dashed line marks one standard error above
the minimum, and the red square marks the smallest tree under
the dashed line for the validation set.
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1: 'pcm_Mag_fband0-250_sma_de_qmean'
2: 'pcm_Mag_fband1000-4000_sma_de_de_percentile95.0'
3: 'pcm_Mag_spectralFlux_sma_de_qmean'
4: 'pcm_Mag_melspec_sma[6]_iqr2-3'
5: 'pcm_Mag_melspec_sma_de[21]_linregc1'
6: 'mfcc_sma[2]_linregc2'
7: 'pcm_Mag_fband0-250_sma_de_de_range'
8: 'pcm_zcr_sma_de_quartile1'
9: 'mfcc_sma[5]_linregc2'
10: 'pcm_LOGenergy_sma_linregerrA'
11: 'pcm_Mag_melspec_sma_de[24]_peakMeanMeanDist'
12: 'mfcc_sma[1]_range'
13: 'pcm_Mag_melspec_sma[1]_qregerrA'
14: 'pcm_Mag_spectralCentroid_sma_de_de_linregc1'
15: 'mfcc_sma[11]_nzgmean'
16: 'pcm_Mag_melspec_sma_de_de[23]_peakMean'
17: 'pcm_Mag_melspec_sma[14]_iqr1-2'
18: 'pcm_Mag_spectralCentroid_sma_de_skewness'
19: 'pcm_LOGenergy_sma_de_de_qregc3'
20: 'pcm_LOGenergy_sma_range'
21: 'pcm_Mag_melspec_sma[14]_qregc1'
22: 'pcm_LOGenergy_sma_range'
23: 'pcm_Mag_melspec_sma[15]_peakMean'
24: 'pcm_LOGenergy_sma_maxPos'
25: 'pcm_Mag_melspec_sma_de[0]_quartile1'
26: 'pcm_Mag_melspec_sma_de[7]_linregc1'
27: 'pcm_Mag_fband0-250_sma_de_de_centroid'
28: 'pcm_Mag_spectralMaxPos_sma_de_de_centroid'
29: 'pcm_LOGenergy_sma_de_skewness'
30: 'pcm_Mag_melspec_sma_de_de[10]_skewness'

Table C.1: Full list of features for the situation with the situation with �xed
target and noise levels for each source single dataset.
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1: 'pcm_Mag_fband0-250_sma_de_qmean'
2: 'pcm_Mag_fband1000-4000_sma_de_de_percentile95.0'
3: 'pcm_Mag_spectralFlux_sma_de_qmean'
4: 'pcm_Mag_melspec_sma[6]_iqr2-3'
5: 'pcm_Mag_melspec_sma_de[21]_linregc1'
6: 'mfcc_sma[2]_linregc2'
7: 'pcm_Mag_fband0-250_sma_de_de_range'
8: 'pcm_zcr_sma_de_quartile1'
9: 'mfcc_sma[5]_linregc2'
10: 'pcm_Mag_fband0-250_sma_de_qmean'
11: 'pcm_Mag_melspec_sma_de[24]_peakMeanMeanDist'
12: 'pcm_Mag_spectralFlux_sma_de_qmean'
13: 'pcm_Mag_melspec_sma[1]_qregerrA'
14: 'pcm_Mag_spectralCentroid_sma_de_de_linregc1'
15: 'mfcc_sma[11]_nzgmean'
16: 'pcm_Mag_melspec_sma_de_de[23]_peakMean'
17: 'pcm_Mag_melspec_sma[14]_iqr1-2'
18: 'pcm_Mag_spectralCentroid_sma_de_skewness'
19: 'pcm_LOGenergy_sma_de_de_qregc3'
20: 'pcm_Mag_fband0-250_sma_de_de_range'
21: 'pcm_Mag_melspec_sma[14]_qregc1'
22: 'pcm_zcr_sma_de_quartile1'
23: 'pcm_Mag_melspec_sma[15]_peakMean'
24: 'pcm_Mag_fband0-250_sma_de_qmean'
25: 'pcm_Mag_melspec_sma_de[0]_quartile1'
26: 'pcm_Mag_melspec_sma_de[7]_linregc1'
27: 'pcm_Mag_fband0-250_sma_de_de_centroid'
28: 'pcm_Mag_spectralMaxPos_sma_de_de_centroid'
29: 'pcm_LOGenergy_sma_de_skewness'
30: 'pcm_Mag_melspec_sma_de_de[10]_skewness'
31: 'pcm_Mag_spectralMaxPos_sma_de_de_centroid'
32: 'mfcc_sma[11]_nzgmean'
33: 'pcm_LOGenergy_sma_range'
34: 'mfcc_sma[11]_nzgmean'

Table C.2: Full list of features for the situation with speci�ed input feature
set.
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(a) Feature used for splitting the left child node from the left node of the second
split

(b) Feature used for splitting the right child node from the left node of the second
split

Figure C.3: Feature number 4 and 5
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(a) Feature used for splitting the left child node from the right node of the second
split

(b) Feature used for splitting the right child node from the right node of the
second split

Figure C.4: Feature number 6 and 7
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Figure C.5: Feature number 8 and 9
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Figure C.6: Feature number 10 and 11
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Figure C.7: Feature number 12 and 13
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Figure C.8: Feature number 14 and 15
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Figure C.9: Feature number 16 and 17
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Figure C.10: Feature number 18 and 19
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Figure C.11: Feature number 20 and 21
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Figure C.12: Feature number 22 and 23
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Figure C.13: Feature number 24 and 25
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Figure C.14: Feature number 26 and 27
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Figure C.15: Feature number 28 and 29
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Figure C.16: Feature number 30
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