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Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical 
University of Denmark in partial fulfillment of the requirements for acquiring the 
degree of Master of Science in engineering.

The  thesis  deals  with  the  automatic  transcription  of  drums  music.  Literature 
survey, mainly focused on limited computational complexity of the algorithms, has 
been conducted. Based on simulation trials' results, an FPGA system is designed 
and implemented, which recognizes in real-time the instruments of a limited drum 
kit through the use of a single microphone.
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I
Introduction

1.1 Automatic music trancription

Automatic  music  trancription  is  defined  as  the  "analysis  of  an acoustic  music 
signal so as to write down the pitch, onset time, duration and source of each sound that 
occurs in it" [1]. Usually symbols of notes are used in order to indicate these parameters, 
but depending on the type of music and the instruments taking part in it, written music 
may take various forms. Applications of automatic music trancription comprise:

• Music information retrieval (MIR) applications. MIR is an interdisciplinary field 
(combines  knowledge  from  musicology,  psycho-acoustics,  signal  processing, 
machine learning, etc) about the extraction of musically meaningful information 
from live  or  recorded  music.  Examples  of  MIR applications  are  recommender 
systems (which suggest  new songs  based on their  similarity  to  a  user's  input 
song),  genre/artist  identification,  music  generation  (combination  of  the 
information retrieved from a track with mathematical models in order to generate 
algorithmic  music)  and source  separation  (which  decomposes  multi-instrument 
music into tracks containing only one instrument or type of sound).

• (Real time) music processing, such as changing the loudness, the pitch, or the 
timings of specific sound events.

• Human-computer interaction in various applications, such as musically oriented 
computer games or instructive applications (electronic tutors).

• Music related equipment, such as music-synchronous light effects.

A complete automatic transcription containing the pitch, the timing information 
and the source instrument of every single sound event is hardly achievable in "real-world" 
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music. In many cases the goal is redefined as being able to transcribe only some well-
defined part of the music signal, such as the dominant melody or the most prominent 
drum sounds (partial transcription). What is achievable could be intuitively estimated by 
considering  what  an  average  listener  perceives  while  listening  to  music.  Although 
recognizing musical instruments, tapping along the rhythm, or humming the main melody 
are relatively easy tasks, this is not the case with more complex aspects like recognizing 
different pitch intervals and timing relationships.   

The motivation regarding the real-time automatic transcription came into life after 
the flourish of such systems in industry, during the last years. More and more interactive 
applications  (such  as  electronic  tutor  systems  or  games)  which  require  the  real-time 
processing and feedback on musically meaningful sound events are being developed1. In 
most of the cases they are based on digital interfaces, such as MIDI, in order to recognise 
these events, but this limits the instruments that could be used to some of the electronic 
ones. In other cases the information about the sound events is indirectly extracted. For 
example,  through the use of piezoelectric sensors attached to the skins of  the drums, 
someone could get the information regarding when a specific instrument was hit, without 
dealing at all with the sound itself. In the general case, though, a drummer (still) uses 
acoustic drum kits and the most straightforward recognition approach is based on the use 
of  a  single  microphone's  input,  rather  than the use  of  several  microphones  setups or 
sensors which indirectly provide some aspects of the transcription.

1.2 Drums' transcription and sound characteristics  

This project's topic is the real-time automatic transcription of a polyphonic music 
signal which consists of sounds originated from the various instruments of a typical drum 
kit  (illustrated  in  figure  1.1).  It  is  assumed  that  other  instruments  are  absent. 
"Polyphonic" means that more than one notes (or better strokes in case of percussions) 
may exist simultaneously on two, or more, different instruments of the drum kit. The 
absence  of  vocals,  other  instruments'  sounds  and  of  any  loud  noise  in  general,  in 
combination with the intrinsic characteristics of the drums' sounds, simplify our task. 
According to the definition of the automatic music transcription four different aspects of a 
music signal's sound events have to be recognized:

• the duration
• the pitch
• the onset time
• the source instrument

However,  in  the  drums-only  case  both  duration  and  pitch  are  not  critical,  or  even 
meaningful in the typical percussion instruments of a drum kit. 

1   Few examples are the Guitar Hero, the Rocksmith and the JamGuru.
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Figure 1.12: 1. Bass drum, 2. floor tom, 3. snare drum, 4. hanging toms, 5. hi-hat cymbal, 6. crash cymbal, 7. 
ride cymbal, 8. splash cymbal, 9. china type cymbal

If  the  transcription's  target  was  music  played  by  an  instrument like  violin  or 
saxophone, finding out the starting time of a note would not be enough; it would be also 
necessary to know how much time the sound lasted.  This  duration is  not fixed,  but 
determined by the violin/saxophone player, and as such it must be found as part of the 
transcription procedure. In the case of drums-only music the duration of a sound event is 
not of our interest, since strokes on a specific drum/cymbal produce sounds of more or 
less the same duration; and that duration is very short. 

A  worth  noting  difference  is  between  membranophones (instruments  with  a 
skin/membrane stretched across a frame – snare drums, bass drums, tom-toms, etc.) and 
idiophones (the metal plates – ride, crash, hi-hat, etc.): membranophones' sounds are 
shorter than idiophones' ones. A stroke on a typical bass drum could last 100-200ms, 
while a stroke on a ride cymbal  five to ten times more. In both cases, though, it takes  
only few milliseconds for the signal's energy to reach its peak and begin to decay. The top 
of figure 1.2 illustrates the time-domain signals of a stroke on a bass drum (left) and on a 
ride cymbal (right). The bottom part depicts their spectrograms. The sound of the bass 
stroke is inaudible after 100-200ms, while after the same period ride's sound is still audible 
but considerably limited to a small subset of its initial frequency content.

Beyond the duration, the pitch is also not of our interest. Pitch is a property 
closely related, but not equivalent, to frequency. It allows the ordering of the perceived 
sounds on a frequency-related scale. The instruments of a typical drum kit are considered 
unpitched3,  meaning that  they are  normally  not  used to play melodies.  Their  sounds 

2 The figure is taken from http://en.wikipedia.org/wiki/Drum_kit 

3 There are pitched percussion instruments, not found in drum kits, though. Some characteristic ones are the 
balafon, the marimba, the xylophone and the tabla.
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contain such complex harmonic overtones and wide range of prominent frequencies that 
no pitch is discernible. The sounds of the different type of strokes on a specific instrument 
(meaning the different intensities of the hit, hitting the drum/cymbal with a different 
type of stick or hitting it on a different spot) contain frequencies in the same, more or 
less,  wide ranges. Membranophones tend to have most of their spectral energy in the 
lower range of the frequency spectrum, typically below 1000Hz, while idiophones' spectral 
energy is more evenly spread out, resulting in more high-frequency content [2]. This is 
clearly shown in figure 1.2. Below the lower membrane of the snare drum (the one not 
being hit by the stick) there is a metal belt attached, whose vibrations cause the existence 
of more high-frequency energy in snare drum's sounds.

Figure 1.2: Bass and ride strokes signals in time-domain (top) and in frequency-domain (bottom) 

It is common in practice to describe a sound's temporal characteristics with the 
attack time, the decay time, the sustain level and the release time (ADSR – figure 1.3). 
The attack time refers to the initial phase of the sound event where the amplitude of the 
signal begins from zero and reaches an (initial)  peak.  The sustain phase is  absent in 
drums' sounds.

Figure 1.34: Attack, decay, sustain and release time of a sound event

4   The figure is taken from http://en.wikipedia.org/wiki/Synthesizer#ADSR_envelope
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The onset time of a stroke refers to the beginning of the attack phase or to a 
moment  during it.  The audio onset  detection  is  an  active  research area5.  There  is  a 
distinction between the physical and the perceptual onset time. The physical onset refers 
to the starting point of the attack time phase, while the perceptual onset is an attempt to 
define it in line with the human perception, as the subjective time that a listener first 
notices a sound event. In [4] the perceptual onset time is considered to occur when the 
signal reaches a level of approximately 6-15 dB below its maximum value. There are some 
instruments, for instance the flute, whose attack time is very long and the distinction 
between the physical and the perceptual onset time makes sense. However, in case of 
percussion instruments' sounds the time between zero and maximum energy of a stroke is 
almost instantaneous [2]. In [5] it is stated that the difference between the physical and 
the perceptual onset times in percussion sounds is on the order of magnitude of a few 
milliseconds, while it could be as much as 50-100ms for a note bowed slowly on a violin. 

1.3 Thesis' objectives and structure

This project's first objective is the literature survey on methods that could locate 
the onset times of strokes and classify them, that is find the specific drum/cymbal that 
was hit. Simultaneous strokes on two or more instruments are also taken into account. As  
it  is  presented in the next  chapters,  the implemented system's  temporal  resolution is 
approximately 10ms. Given that the difference between the physical and the perceptual 
onset times is on the order of few milliseconds, it is clear that this distinction cannot be  
reached by it. Beyond that, the transcription algorithm inevitably recognises the onset 
times of the strokes with a short latency of approximately 10-40ms (see section 4.7). For 
instance, if the physical onset time of a stroke was t1, then the output onset time for the 
recognised stroke would be t1latency , where latency∈[10, 40 ]ms. However, since this 
latency applies to all sound events it can be taken into account in order to correct the 
output onset time value and approximate the real one.

In the vast majority of the relevant work the transcription is limited to the basic 
instruments of a drum kit, namely the snare drum, the bass (or kick) drum and the hi-
hat. In cases where the transcription concerns more (pitched) instruments, played along 
with the drums, the limitation is usually even higher; only the snare and bass drums may 
be transcribed reliably in practice. This is not surprising since the complexity is greatly 
reduced  by  limiting  the  number  of  the  target  instruments  (tom-toms  drums  and 
ride/crash cymbals are usually ignored, but are always part of a typical modern drum 
kit). Testing with more than 3 instruments revealed that the worse results were due to 
the fact that when the main regions of energy of different sources overlap, as is often the 
case with drums such as snares and tom-toms, then it is harder for the sources to be 
separated correctly [2]. 

Nonetheless,  these  limited  systems  do  deal  with  the  most  commonly  occuring 
drums. Therefore they are a good starting point for further improvements. They could 

5 See  http://www.music-ir.org/mirex/wiki/MIREX_HOME
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form  the  basis  of  elaborate  algorithms,  capable  of  transcribing  more  (percussive) 
instruments. The instruments of interest, also in this project, are limited to the hi-hat 
cymbal, snare drum and bass drum. An in-depth investigation of how such an automatic 
transcription algorithm could perform better than the (state-of-the-art) implementations 
briefly  presented  in  the  next  chapter,  or  how it  could  scale  up  to  more  than  three 
instruments, by utilising elaborate analysis and classification methods, was not part of the 
objectives. What is important in this work is the relatively small total number of the 
algorithm's computations. However, a test with tom-toms and cymbals was performed in 
simulation, so as to uncover few of the transcription challenges they bring.

The second objective is to implement the algorithm on an FPGA development 
board, so as the system to run in real-time, giving to a drummer a low-latency feedback 
regarding  which  (combination  of)  drums/cymbals  were  hit.  Before  the  hardware 
implementation the development of the algorithm preceded in Matlab, where its necessary 
"tuning" to our needs took place. The simulation is based on test and training samples 
that were recorded using the same microphone and drum kits. The algorithm's core is  
then programmed in VHDL and tested on Terasic's DE2-70 development board.

In  chapter  2  the  basic  approaches  to  unpitched  percussion  transcription  are 
outlined. The simulation results  and the "tuning" of  the algorithm for our needs are 
presented in chapter 3. In chapter 4 the design and implementation of the hardware are 
described. The performance of the algorithm is evaluated in chapter 5.
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II
Background and related 

work

2.1 Approaches to drums transcription

According to [2]: "approaches to percussion transcription can be roughly divided 
into two categories:  pattern recognition applied to sound events  and separation-based 
systems". Pattern recognition approaches try to firstly locate a stroke and then classify it, 
while  separation-based  techniques  combine  detection  and  classification  into  a  single 
technique. 

Depending on the application the transcription results are used for, some systems 
utilize  preprocessing of  training data in  order to  extract various temporal or  spectral 
features  from  the  specific  drum  kit  to  be  used.  This  prior  knowledge  makes  the 
transcription easier. It is more practical in interactive systems, such as electronic tutors or 
games, rather than in transcription of different audio recordings, where different drum kits 
were used.

2.1.1 Pattern recognition approaches

Pattern recognition approaches' stages are shown in figure 2.1. They begin with 
the  segmentation  of  the  signal  into  events,  by  either  locating  potential  strokes  and 
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segmenting the signal using this information, or a simpler segmentation based on a regular 
temporal grid. Both ways come with their own problems. Locating the potential strokes 
must be reliable enough so as not to misinterpret noise as a stroke. Moreover, it must be 
able to detect a potential stroke even when it is masked by another stroke which occured 
simultaneously or few milliseconds before/after. On the other hand, using a temporal grid 
requires the calculation of the appropriate fixed grid spacing, which has to be related to 
the fastest "rhythmic pulse" present in the signal. Therefore it is applicable only to cases 
where the tempo of a music track is known, or can be easily found. 

Figure 2.1: The three stages of pattern recognition approaches

After  the  signal's  segmentation  feature  extraction  follows,  for  each  one  of  the 
segments. Based on the feature values the classification algorithm classify the segments 
into the proper category; that is recognize the source instrument if there was indeed a 
stroke detected.  Mel-frequency cepstral  coefficients  (MFCCs) are  widely  used  both  in 
speech and music recognition.  The computation of  the MFCCs is  based on frequency 
bands which are equally spaced in the mel scale, rather than being linearly spaced. The 
mel scale is a scale of pitches judged by listeners to be equal in distance one from another 
[11].   Other common features are the bandwise energy descriptors, where the frequency 
range is divided into few frequency bands and the energy content of each is computed and 
used as a feature, as well as the spectral centroid, spread, skewness and kurtosis [2]. Less 
often time-domain features are used, such as the temporal centroid and the zero crossing 
rate. 

The feature set could comprise many features and is generally selected through a 
trial and error procedure. The properties of the input music signal help us determine 
which features perform better. The feature set could be also selected automatically, by 
testing different combinations, a procedure that requires though to find an appropriate 
function which evaluates their quality, which is not that simple in practice. In [2] it is 
remarked: "it was noticed that in most cases, using a feature set that has been chosen via 
some feature selection method yielded better results than using all the available features."

After the segment's features are extracted, they feed the classification algorithm. 
The detection of a stroke in the segment may be necessary, before classifying it into the 
recognised (combination of) instrument(s). Classification approaches are divided into two 
categories; those which try to detect the presence of any given drum/cymbal separately, 
so that simultaneous multiple strokes are recognized as the sum of individually recognised 
strokes on one instrument, and the ones which  try to recognize directly each different 
combination of simultaneous strokes. Few examples are the decision-trees (sequences of 
questions whose answers determine the excluded possible results and the next questions), 
or methods which compare the analysed data to stored fixed data – outcome of a training 
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procedure (for instance k-nearest neighbors or support vector machines – SVMs). None of 
these  methods  seem  to  perform  clearly  better  than  the  others,  so  some  advanced 
techniques  and  higher-level  processing  have  been  incorporated  to  increase  the 
performance, such as language modelling with explicit N-grams, hidden Markov models, or 
choosing the best feature subset dynamically [12]. 

2.1.2 Separation-based approaches

The  implemented  algorithm,  which  is  based  on  the  non-negative  matrix 
factorization (NNMF), belongs to the separation-based (or source-separation) approaches. 
The independent subspace analysis (ISA) and the non-negative sparse coding (NNSC) are 
similar methods. What makes them attractive is that they analyze a single-channel signal 
in such a way that they may separate intrinsically the different instruments, or generally 
the different sound types of interest. They output distinct streams, called components, 
which make the transcription easier in case they are musically meaningful. In 2.1.2.1 it is 
discussed what "musically meaningful" could mean, in other words how components are 
associated  with  the  different  sources  of  the  sounds.  What  follows  in  2.1.2.2  is  a 
presentation of the input signal's data representations. The approximated factorisation of 
the signal, which results to the source-separation itself, is presented in 2.1.2.3. In the last 
subsection a widely used audio onset algorithm is outlined.

2.1.2.1 Sources and components

Separation-based algorithms are meaningful in single-channel signals obtained by 
one microphone or by mixing down more microphones (combine them into one signal), as 
figure 2.2 depicts. Single-channel (mono) and two-channels (stereo) signals are usually 
used in practice as  inputs. In case of multi-channel recordings, where the signal of each 
instrument has its own channel, the separation-based techniques are not preferred6. The 
use of multiple microphones itself separates the music signal in regard to the different 
instruments-sources. 

Figure 2.2: A single channel's signal is usually the input of separation-based approaches, while the output 
components do not necessarily correspond to one and only one of the sources, unless we force it 

6   An exemption is the independent component analysis (ICA), that requires at least as many channels as  
there are sources [13]

- 9 -



Source-separation may not refer only to cases where each instrument is a single 
source. Depending on the application, a transcription could require, for instance, twenty 
violins playing simultaneously in an orchestra to be assigned to a single source. Another 
one may require each different violin to be considered as a single source, while for the 
needs of a third one the assignment of one source to each one of the equally-pitched notes  
could be needed, regardless of the specific violin the sound originated from. 

The algorithms referred to above could be designed to output meaningful musically 
streams, but in order to achieve that it is necessary to utilise prior knowledge regarding 
the instruments' sound properties. Otherwise the separation is "blind", in the sense that it 
is unknown in advance how the separated components relate to the musically meaningful 
sources. Of course, there may be applications whose properties or careful "tuning" of their 
parameters,  combined with the properties of the signal to be transcribed, lead to the 
"blind" separation being musically meaningful. But this is usually the case when the total 
number of components is small and the various instruments' sounds spectrums do not 
extensively  overlap.  If  NNMF,  ISA,  or  NNSC  were  applied  without  forcing  any 
predetermined separation scheme, the resulting components would be determined by the 
specific algorithm's properties, the properties of the input signal and the total number of 
components. The latter is usually our only influence on the resulting separation.

Hypothetically  the  transcription  of  music  played  by  three  instruments  is  the 
objective; one bass drum, one guitar and one piano played along. Let the number of 
components, C, of each source be equal to one, resulting to total number of components 
equal to three. Then, after applying a separation-based method the separation result could 
be: 

• one  component  which  "captured"  the  bass  drum  and  few  of  the  piano's  low 
frequency notes, 

• another component which "captured" most of the guitars's notes,
• and a third component "capturing" all the rest sound events. 

Depending on the value of  C and the signal's and algorithm's properties any separation 
result is possible, even the preferred one. If the number of components of each source is  
increased, then the possibility of a musically meaningful "blind" separation is dramatically 
decreased.

Therefore further processing is necessary in order to find out which source the 
components refer to. An unsupervised classification algorithm could be used in order to 
interpret them. Alternately, prior knowledge about the sources could be utilised, so as to 
classify the components. However, forcing a predetermined separation scheme is easily 
achieved, by training the algorithm to our specific instruments' sounds, a procedure that 
is described in 2.2.2 for the NNMF case.
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2.1.2.2 Input data representation

Short-time signal processing of possibly overlapping frames (or segments) of the 
signal is utilised to get the input signal's data representation. Each frame's duration is on 
the  order  of  magnitude  of  few  milliseconds,  usually  around  5-20ms,  since  percussion 
sounds have very short duration as it was previously mentioned in 1.2. Similarly to what 
was  stated  above  regarding  the  pattern  recognition  approaches,  the  signal  may  be 
processed both in time and frequency domains.

Time-domain ones are more straightforward to compute and there is no loss of 
information, like after applying a transform in the frequency-domain. As it is stated in 
[13] the problem with time-domain representations is that "the phase of the signal within 
each frame varies depending on the frame's position". This means that all the possible 
different positions of a sound event inside a frame must be taken into account, which is 
not practical. 

Regarding frequency-domain representations the discrete Fourier transform (DFT) 
of each frame is computed. Let the frame's length be N samples, that came of a sampling 
rate  of  fs Hz.  Then the  DFT output  (spectrum) consists  of  N complex  values,  each 
corresponding to a different frequency, linearly spaced apart by fs/N in the range [0, fs  ]. 
For  2048  samples  and 44.1kHz  the  frequency  resolution  is  approximately  21.5Hz.  By 
considering  the  magnitude  or  the  power  spectrum,  the  phases  of  the  complex-valued 
transform  are  discarded,  eliminating  the  phase-related  problems  of  time-domain 
representations. Magnitude spectrum refers to the case where the magnitude of DFT's 
complex-valued output is used, while power spectrum refers to the case where the squared 
magnitude is used. The concatenation of the frames' magnitude/power spectrums let us 
visualize the music signal (spectrogram); for instance, in figure 2.3 the blue colour means 
that the power has a small value, while the red colour means it has a large one. In cases 
that high frequency resolution is not needed (such as in our case), the magnitudes or the 
powers are usually summed up in frequency bands, whose width and partitioning depends 
on the application. The less bands used, the coarser the frequency resolution becomes.

The linear summation of time-domain signals does not imply the linear summation 
of their magnitude or power spectra, since phases of the source signals affect the result. 
When two signals,  y1(t) and  y2(t), sum in the time domain, their complex-valued DFT 
outputs sum linearly:  X(k) = Y1(k) + Y2(k),  but this equality does not apply for the 
magnitude or power spectra. However, if the phases of  Y1(k)  and Y2(k) are uniformly 
distributed and independent of each other, we can write [13]:

E {∣X k ∣2}=∣Y 1k ∣2∣Y 2k ∣
2   

 
where  E{} denotes the expectation. This means that in the expectation sense we can 
approximate time domain summation in the power spectral domain, a result which holds 
for more than two sources as well. Even though magnitude spectrogram representation 
has  been  widely  used  and  it  often  produces  good  results,  it  does  not  have  similar 
theoretical justification [13].
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2.1.2.3 The approximated factorisation

NNMF, ISA and NNSC assume that the input signal's spectrogram X results from 
the  superposition  of  k spectrograms  Yj of  the  same  size  (k is  the  total  number  of 
components  and  j=1,2,...,k).  The  size  of  X is m×n ,  where  m is  the  number  of 
frequency bands and n is the total number of time frames. Each frequency band contains 
the sum of magnitudes/powers of all the frequencies inside the band's range. In figure 2.3 
the spectrogram of a drum rhythm is illustrated. The spectrum of the i-th frame, X i, is 
equal to Y i, where Y i=Y 1

iY 2
i...Y k

i .

Further,  it  is  assumed that  each  one  of  the  spectrograms  Yj can  be  uniquely 
represented by the outer product of a frequency basis vector bj (of length m) and a time-
varying gain gj (of length n) [2]:

X=∑
j=1

k

Y j=∑
j=1

k

b j g j
T

If each basis vector, bj, captures one source's features, then the corresponding time-varying 
gain vector,  gj, can be translated as the level of the contribution of this source to each 
frame's content. Figure 2.4 illustrates the vectors  bj and gj for the same rhythm's input 
signal, which comprise only the three instruments of interest (snare, bass and hi-hat). The
frequency range is [0,  22.05kHz] and is partitioned into 25 bands (the first 25 critical 
bands – see 3.4.3). Note that the frequency bands, fb, are not linearly spaced (although 
they  are  depicted  like  they  were).  Instead,  the  first  ones  are  narrow (fb1=[0,100Hz), 
fb2=[100Hz,200Hz), ..., fb6=[630Hz,770Hz), ..., fb10=[1.08kHz,1.27kHz)), while the last ones 
are very wide (fb24=[12kHz,15.5kHz) and fb25=[15.5kHz, 22.05kHz) ). It is clearly shown in 
the figure that hi-hat's basis vector has large values only in the high frequency bands 
(fb21-fb25), bass' basis vector only in the low frequency bands (fb1-fb2), while snare's one 
both in low frequency (fb3-fb8) and high frequency bands (fb22-fb23). 

Ideally all of gj's local maxima would mean that a stroke on the specific source did 
occur at maxima's frames. But this is not the case since strokes on specific sources (or, 
more often, combinations of simultaneous strokes on two or more sources) may result in 
local maxima presence in another source's gain vector, without any stroke occuring in the 
latter source. Depending on the algorithm they could be misinterpreted as  recognized 
strokes (false onset detection). In the example of figure 2.4 this is the case for false snare 
onsets at every stroke on the bass drum, and vice versa, for false bass onsets at every 
stroke on the snare drum. However, the amplitude of the false onsets' local maxima is 
considerably lower, allowing the use of a threshold in order to distinguish the false and 
the correct onsets. This is why further processing, usually inspired by Klapuri's onset 
detection algorithm, is usually needed, in order to detect the real strokes out of the time-
varying gain vectors.
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Figure 2.3: The input signal's spectrogram is assumed to be equal to the superposition of k spectrograms

Figure 2.4: The basis vector, b, and the time-varying gain vector, g, for each component
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2.1.2.4 Klapuri's audio onset detection algorithm

Many algorithms that detect the onsets  of  sound events  are based on such an 
algorithm proposed by Klapuri in [3]. The overview of Klapuri's algorithm is illustrated in 
figure 2.5. Its input could be any kind of polyphonic music, containing many instruments, 
and its objective is the detection of the starting point (onset) of each single sound event. 
Depending on the application its output may be the input of a classifier, which recognizes 
to which instrument each onset corresponds to.

After the signal is normalized to 70dB level it is divided into 21 non-overlapping 
frequency bands. Then the algorithm detects onsets in every band, determining their time 
and intensity. The time detection is based on the calculation of the first order difference 
function of each band's logarithm. The intensity is taken from the first order difference 
function of the band's signal multiplied by the band's center frequency. Detected band's 
onsets that are closer than 50ms to another onset of larger intensity are ignored. The 
various bands' results are combined in the last phase of the algorithm and onsets closer 
than  50ms  to  a  more  intense  one  are  again  ignored.  Finally,  a  threshold  value 
distinguishing the true from the false onsets is determined and the algorithm yields its 
final results.

Figure 2.5 (taken from [3]): Klapuri's system overview (top) and processing at each frequency band (bottom)

2.2  Non-Negative Matrix Factorisation based approaches

When the  magnitude or power spectrograms are used, by definition the basis 
matrices are non-negative. Some of the separation-based algorithms do not guarantee the 
non-negativity of both the basis and the time-varying gain matrices, producing negative 
values  as  well.  Apart  from the  fact  that  there  is  no  physical  interpretation of  these 
negative values, there is also another reason that non-negativity is a useful property. In 
[13] the following important conclusion is stated for NNMF, a method which guarantees 
the  non-negativity  of  both  matrices:  "it  has  turned  out  that  the  non-negativity 
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restrictions alone are sufficient for  the  separation of  the  sources,  without  the  explicit 
assumption of statistical independence". 

NNMF has been used for feature extraction and identification in text and spectral 
data mining, as well as in data compression applications. Its principles were originally 
developed by Pentti Paatero in '90s (positive matrix factorization), but has been widely 
known after Daniel Lee and Sebastian Seung's work in '00s. In [14] two computational 
methods for the factorisation are proposed by the latter.  The NNMF problem can be 
stated as follows:

[NNMF  problem] Given  a  non-negative  matrix  X∈Rm×n  and  a  positive  integer 
kmin {m , n} , find non-negative matrices B∈Rm×k  and G∈Rk×n  so that:

X≈B⋅G

The product B⋅G is  called a factorisation of  X,  although  X is  not necessarily 
equal to it. In fact, it is an approximate factorization of rank at most k. According to [15]: 
"an approximate decision on the value of  k is critical in practice, but the choice of  k is 
very  often  problem  dependent.  In  most  cases,  however,  k is  chosen  such  that 
k≪min {m ,n }  in which case B⋅G can be thought of as a compressed form of the data 

in X". 

NNMF  is  applied  in  the  following  manner:  given  a  set  of  multivariate  m-
dimensional data vectors, the vectors are placed in the columns of a m×n  matrix X. 
After the approximate factorisation of X into the matrices B and G, X≈B⋅G  can be 
rewritten column by column as x≈B⋅g , where x and g are the corresponding columns 
of X and G. In other words, each data vector x is approximated by a linear combination 
of the columns of B, weighted by the components of g. Therefore, B can be regarded as 
containing a basis that is optimized for the linear approximation of the data in X.

2.2.1 Update rules and cost functions

The matrices B and G are calculated by applying iteratively update rules to them 
and evaluating their resulting updated values. There are various approaches proposed in 
order to do so. [15] contains an extensive survey on them, presenting rules which are 
optimized on different aspects, such as computational efficiency, or convergence properties 
and speed. One of the update rules set proposed in [14] (theorem 2) is used in this project;  
the  multiplicative  update  rules  for  the  minimisation  of  the  divergence D X∥BG  . 
V αβ denotes the element V α , β  of a matrix V , 1 denotes an all-ones matrix of size 

equal to the size of  X, .× denotes the element-wise multiplication and ./ the element-
wise division:

B B .×[X . /B⋅G ⋅GT . /1⋅G T ]
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GG .×[BT⋅ X ./B⋅G  . /BT⋅1 ]

D X∥B⋅G =∑
α=1

m

∑
β=1

n

[ X αβ⋅log10X αβ /Β⋅Gαβ −X αβΒ⋅G αβ ]

The values of  B and  G are initialized with random positive values. After each 
iteration the new values of B and G are found, by multiplying the current values by some 
factor that depends on the quality of the approximation X≈B⋅G . The approximation's 
quality  is  quantified  by  a  cost  function,  which  is  calculated  after  each  iteration  and 
determines when the convergence is supposed to be achieved. In our case, D X∥B⋅G  is 
lower bound by zero (which it reaches if and only if  X=B⋅G ) and reduces to the 
Kullback-Leibler  divergence  when ∑

ij
X ij=∑

ij
B⋅G ij=1 [14].  In  [14]  it  is  also  proved 

that: "the quality of the approximation improves monotonically with the application of 
these update rules. In practice, this means that repeated iteration of the update rules is 
guaranteed to converge to a locally optimal matrix factorisation". 

2.2.2 Using prior knowledge about the sources

As it was explained in 2.1.2.1 the "blind" separation into the resulting components 
could be avoided by incorporating a training stage.  If such an approach is implemented, 
the algorithm does not need to identify to which component(s) each source associates to 
after the separation, but this is predetermined. During the training, consecutive NNMFs 
are applied to monophonic input signals, which refer to the sounds of only one of our 
instruments/sources. 

For simplicity the scenario where each source is described by one and only one 
component  is  again  examined.  If  NNMF was  applied  to  a  monophonic  input  signal's 
spectrogram  Xi  ,  then  the  result  would  be  the  approximation  X i≈B i⋅G i ,  where 
X i∈R

m×n , Bi∈R
m×1  and Gi∈R

1×n (m is the number of frequency bands and n the 
total number of frames of the input signal). The resulting basis matrix, therefore, is a 
single column one, which adapted to the frequency content of this specific source (see in 
figure  2.4  the  differences  among  Bsnare,  Bbass and  Bhihat ,  which  are  the  result  of  the 
described methodology). If consecutive NNMFs were applied to each one of our sources' 
sounds, we would end up finding such a unique basis vector  Bi  for each one of our 
different sources. If, for instance, the number of sources was equal to 3 (as in our case,  
where we transcribe snare drum, bass drum and hi-hat), then after this first training stage 
a  fixed  basis  matrix Bfixed=[B snareBbassBhihat ] would  be  formed,  where 
Bi=[bi

1 b i
2 bi

3 ...bi
m]T . 

The second stage of the algorithm makes use of this fixed basis matrix, by running 
only the multiplicative update rule for the time-varying gain G, ignoring the one for the 
basis matrix Bfixed. The input signal in this stage is the polyphonic signal, the subject of 
the transcription. Following the same example as above, it means that the input signal 
consists of any combination of simultaneous strokes on the three sources, as well as, of 
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course,  strokes  on  only  a  single  instrument.  The  time-varying  gain  Gi indicates  the 
contribution  of  the  i-th source,  since  the  polyphonic  signal  is  approximated  by  the 
weighted, by the values of G, sum of the basis vectors Bi of all the sources. 

Figure 2.6 depicts this procedure in the general case, where the number of sources 
is  equal to  s,  the number of  frequency bands is  m,  the total  number of  frames/time 
windows processed is n and the number of components each source is represented by is c. 
The dimensions of Bi are m×c , the ones of X are m×n and the ones of G c×n . 
It  is  worth  noting  that  a  different  c for  each  source  could  be  chosen: 

ci={csnare , cbass , ... , cetc} . G's dimensions become s⋅∑
i=1

s

ci ×n  in this case.

Figure 2.6: The use of NNMF with prior knowledge about the sources

After  the  training  NNMFs  which  produce  the  s fixed  basis  matrices,  another 
NNMF  is  applied,  using  this  fixed  matrix  to  approximate  our  polyphonic  signal's 
magnitude spectrogram X. What follows is determined by the value of c and the signal's 
properties.  If  c was equal to one for every source,  the gain matrix  G itself  could be 
considered as the transcription results we are looking for. In this case, the sources' onsets 
times are taken by the frame's position; that is for the i-th frame equal to i⋅Δt , where 
Δt  denotes  the  temporal  resolution  (10ms  in  our  case).  The  only  requirement  for  a 
processed  frame  to  be  considered  that  it  contains  a  recognized  stroke  is  that  the 
corresponding source's value of G is greater than a threshold value (see figure 2.6). There 
are many ways for these thresholds to be found. The simplest one is to determine them 
during the training stage, by storing the maximum value,  max(Gi), of every row of  G. 
Then, a safe threshold could be found by testing max(Gi)/n for different values of n>1. 
In the next subsection, 2.2.3, an example of another method is presented, which also takes 
into  account  only  the  training  samples  but  in  a  more  supervised  way. Alternatively, 
another  algorithm,  which  adapts  to  better  values  by  also  taking  into  account  the 
polyphonic signal's values of G, could be used.

If taking directly the sources' onset times from G is not possible, then what follows 
in order to find them is:
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• the onset detection: the need for it was discussed in 2.1.2.3,  and in 2.1.2.4 a 
common  in  practice  algorithm  for  polyphonic  audio  signals  was  presented. 
Klapuri's algorithm is usually a common starting point for the onset detection, 
even in implementations where the input is not an audio signal itself, like the 
input G in our case.      

• if  C>1  and the sources' onset times cannot be reliably taken neither from  G 
itself,  nor  from  an  onset  detection  algorithm,  this  means  that  there  is 
contradiction in some of the components referring to the same source. Therefore, 
some  components  need  to  be  rejected,  and/or  the  information  of  multiple 
components need to be combined in order to find a single source's onset times 
(see 3.4.6 and appendix D for an example). 

The 2-stages procedure described above is not the only way prior knowledge about 
the  sources  could  be  used  in  order  to  make  the  transcription  easier.  An  even  more 
supervised one is to manually define the basis matrix. It is applicable in cases where it is 
known in advance that regardless of the specific instrument's particularities, its sounds 
have  well-known  frequency  content.  Let's  consider,  for  instance,  a  violin's  music 
transcription  case  where  each  component  of  NNMF is  assigned  to  all  equally-pitched 
notes. Then someone could approach the problem of predetermining the separation scheme 
by forcing the use of fixed basis vectors, which are manually constructed based on the 
information about which fundamental frequencies and harmonic overtones each note is 
supposed to produce. The manually defined basis matrix could either remain constant, or 
alternatively adapt to the observed data of the polyphonic signal to be transcribed.

Whatever was presented above concerns systems which focus on only low-level 
recognition. However, knowledge at a higher abstraction level could be also utilized; either 
prior,  or  knowledge  gained  after  processing  the  polyphonic  signal.  Let's  consider  the 
automatic  speech  recognition  problem.  The  recognition  approaches  described  so  far 
resemble the case where in speech recognition each phoneme is recognized independently, 
regardless of its context. But this is not the case in practice, since by utilizing linguistic 
knowledge  the  performance  of  such  systems  can  improve  considerably  [2].  By 
incorporating similar approaches the performance of automatic transcription systems could 
be also improved. Such approaches could refer to simplistic scenarios where the music 
player predefines some characteristics of the music he/she is going to play, like the tempo.  
In more advanced approaches the statistical dependencies of sound event sequences of the 
transcribed music could be modelled and used to correct the transcription results.

2.2.3 Relevant work on NNMF-based transcription systems

The work of Jouni Paulus and Tuomas Virtanen on an NNMF-based automatic 
transcription system of drums-only music ([12]) has been a guide for this project. The 
instruments of interest are also limited to the three basic ones: snare drum, bass drum and 
hi-hat cymbal. It follows the methodology presented in the previous subsection and as 
such it needs initial training in order to find the fixed basis matrix Bfixed. In their case the 
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training samples used were not only produced by a single instrument of each type. Instead 
the authors used monophonic recordings of various snare drums (and similarly bass drums 
and hi-hats) in order to find the basis matrix of each. Then, they averaged them creating 
a generic snare drum model, which was used in the same way in the next stage of their 
algorithm. That is it was kept fixed in order to predefine the separation scheme, and so 
only  a  multiplicative  update  rule  for  the  time-varying  matrix  G was  used  for  the 
minimisation of the divergence function. 

The signal was represented by the magnitude spectrogram, while the length of 
each frame was 24ms with 75% overlap between consecutive frames, leading to an actual 
temporal resolution of 6ms. The frequency resolution was a rather coarse one, since only 
five bands were used (20-180Hz, 180-400Hz, 400-1000Hz, 1-10kHz, 10-20kHz).   

The onset detection of each instrument is done from the corresponding row of the 
time-varying  gain  matrix  G.  The  authors  implemented  an  algorithm  motivated  by 
Klapuri's onset detection one. Its block diagram is illustrated in figure 2.7.

Figure 2.7 (taken from [12]): Onset detection algorithm of [12] 

After the gain a t is normalised to the range [0,1] ( 0≤ a t≤1 ), it is compressed with 
a t=log 1100⋅a t and the time difference a t

'= a t− a t−1 is taken. The low-pass filter 
is used to reduce the low-amplitude ripple in the resulting time-difference signals and then 
the filtered signal is subjected to peak picking. Thresholding is used to pick only the most 
prominent  peaks.  Each  instrument/source  has  its  own  threshold,  which  is  estimated 
automatically during the training stage of the algorithm in the following supervised way: 
the training samples contain single instrument strokes whose onset times are predefined. 
During the training stage's NNMFs the recognized onsets are compared to the reference 
ones and the threshold values are chosen so that the number of undetected onsets and 
extraneous detections is minimised [12].  

The performance of the system was evaluated with recorded material (fairly simple 
patterns  containing  only  snare,  bass  and  hi-hat)  from  several  acoustic  drum  kits  in 
different locations (medium-sized room, acoustically damped hall and anechoic chamber). 
The recording was made using many microphones, close microphones for snare and bass 
drums and overhead microphones for hi-hats. The recorded signals were mixed down to 
produce two different single-channel signals: one unprocessed and a "production-grade" 
processed one, with compression, reverb and other effects which attempted to resemble 
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drum tracks on commercial recordings. Two other transcription systems were evaluated 
with the same recordings' data, so as a comparison among them to make sense. One of 
them belonged to the pattern recognition approaches and is based on an SVM classifier, 
while  the  other  one  was  also  a  separation-based  method  (PSA).  The  NNMF-based 
algorithm performed better than both of them, achieving a successful recognition of 96% 
and 94% of the strokes in the unprocessed and the "production-grade" processed signals, 
respectively. The SVM system achieved 87% and 92%, while the PSA 67% and 63%, 
respectively.

2.3  The Fourier transform

The ear itself is a kind of Fourier analyzer, meaning that sound is spread out along 
the inner ear according to the frequency. As a result, the hearing in the brain is based on 
a kind of "short term spectrum analysis" of the sound [8]. When someone listens to a mix  
of sounds which have different frequency content, the hearing process is able to separate 
them out. In other words, it allows us to mentally "unmix" the sounds, source-separation 
is an intrinsic ability of human hearing7. 

The Fourier transform can be defined for discrete or continuous, finite or infinite 
signals. In case of the discrete ones it is called DFT (Discrete Fourier Transform) and if it  
is applied to a finite sampled signal x(n) of length N it is given by:

X k =∑
n=0

N−1

x ne− jk n , k∈[0, N−1]

X is  called  the  spectrum  of  x(n).  DFT  is  a  function  of  discrete  frequency 
k , k∈[0,N−1 ] ,  where the frequencies  k=

2 k
N  are given by the angles of  N 

points uniformly distributed along the unit circle in the complex plane. For the existence 
of the Fourier transform it is sufficient for the signal  x(n) to be absolutely integrable. 
There is never a question of existence of the Fourier transform in real-world signals, but 
only in idealized ones, such as sinusoids that go on forever in time [8].

If x(n) is a real-valued signal, as most of the signals encountered in practice, then 
its spectrum is Hermitian (or "conjugate symmetric"). The real part of Hermitian spectra 
is even, while the imaginary part is odd [8]. In other words, the first half of the spectrum's 
complex-valued numbers have exactly the same magnitude with the last half of them, 
since their real parts are equal, while the imaginary ones are opposites. 

7   Various research results of psychoacoustics  (the science of the human perception of sound) have been 
applied successfully to audio applications
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2.3.1 Window Functions

In spectrum analysis of audio signals almost always a short segment of the signal is 
analyzed,  rather  than the whole  of  it.  This  is  the  case  mainly  because  the  ear  itself  
"Fourier  analyzes" only  a  short  segment of  audio signals  at  a time (on the order  of 
magnitude of 10-20ms) [8]. The proper way to extract a short segment from a longer 
signal  is  to  multiply  it  by  a  window  function.  The  benefit  of  windowing  is  the 
minimization of side lobes, which cause "spectral leakage". The side lobes are present 
except if the segment is periodic and an integer number of periods is the input of the 
Fourier  transform,  because  the  transform considers  each  segment  as  one  period  of  a 
periodic signal (figure 2.8a illustrates this case). 

Figure 2.8b shows an un-windowed periodic signal of a slightly lower frequency, 
whose segment's length is not an integer number of periods; this results to the existence of 
high side lobes. For the DFT it is like the two endpoints of the time-domain waveform are 
connected,  so  as  2.8a  has  no  discontinuity  at  all,  but   2.8b  does  have.  These 
discontinuities cause the side lobes and this is what window functions attempt to correct 
by nullifying the first and last samples of every segment.  2.8c illustrates the spectrum of 
the same signal with 2.8b, but multiplied by a window function. The side lobes are clearly 
lower than the un-windowed case, all but the two ones at the left and at the right of the  
signal's frequency. These two frequencies are around 10dB higher than the un-windowed 
case and they are the price we need to pay for the better performance of the rest. 

The selection of the proper window function requires mainly a trade-off between 
the level of the side lobes and the width of the main lobe and should be done in an 
application  specific  basis.  The  increase  of  the  main  lobe's  width  is  what  causes  the 
adjacent bins in the left and in the right of the signal's frequency to increase, comparing 
to the un-windowed case, in the example of figure 2.8. The un-windowed case is identical 
to applying a rectangular window function, which is defined for a segment of length M as:

wR n=1, when −M−1
2

≤n≤M−1
2

and wR n=0, otherwise

Below we present the rectangular window's properties in order to use them as a starting 
point on the evaluation of few representative "real" window functions' properties. The 
time-domain waveform and its DFT are illustrated in figure 2.9. The main-lobe width is 
equal to 4π/M radians per sample, so the bigger M becomes, the narrower is the main-
lobe giving better frequency resolution. The first side-lobe is only 13dB lower than the 
main-lobe's peak and the value of M has no impact on it.

By multiplying the rectangular window by one period of a cosine the generalized 
Hamming window family is taken:

wH n=wR n [2cos 
2n
M

]
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For α=0.5 and β=0.25 the Hann window is taken, while for  α=0.54 and β=0.23 the 
Hamming window (illustrated in figures 2.10 and 2.11). The main-lobe's width has been 
doubled in both cases compared to the rectangular window case and is equal to  8π/M 
radians per sample, giving a coarser frequency resolution. The first side-lobe has been 
drastically decreased,  though,  being approximately 31.5dB and 41.5dB lower than the 
main-lobe's peak in Hann and Hamming windows, respectively. In [8] it is stated that 
“since the Hamming window side-lobe level is more than 40 dB down, it is often a good 
choice for “1% accurate systems”, such as 8-bit audio signal processing systems”.

(a) (b) (c)
Figure 2.88: an integer number of periods results to no "spectral leakage" at all (a), while a non-integer one 

results to high "spectral leakage (b), which is reduced by applying a window function (c)  

Figure 2.9: The rectangular window 

8   the figure is taken from http://zone.ni.com/devzone/cda/tut/p/id/4844
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Figure 2.10: The Hann window

Figure 2.11: The Hamming window

Audio signals of higher quality may require higher quality window functions. The 
Blackman-Harris is a generalization of the Hamming family and is given by:

 wBH n=wR n∑
l=1

L−1

l cos l
2
M

n 

For  L=4 and  α0=0.35875,  α1=0.48829,  α2=0.14128 and  α3=0.01168 the  4-term 
Blackman-Harris window is taken (figure 2.12), which in expense of a quadruple main-
lobe's  width,  compared  to  the  rectangular  window  case,  has  a  side-lobe  level  of 
approximately 92dB lower than the main-lobe's peak. 

Figure 2.12: The 4-term Blackman-Harris window
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There are a lot of other window functions, such as the Bartlett, the DPSS, the 
Kaiser,  the Dolph-Chebyshev, etc. (see [8] and [9]). Depending on the signal's properties 
one should mainly determine the attenuation level of the side-lobes needed and the main-
lobe's width that can afford to sacrifice (but as well as other less important properties of 
the windows, that were not referred above, such as the roll-off of the side-lobes) in order 
to make the appropriate selection.

2.3.2 The Short-Time Fourier Transform (STFT)

The STFT is the time-ordered sequence of spectra, taken by the DFT of short-
length frames. It is used to compute the classic spectrogram, which is extensively used for 
speech and audio signals  in general.  STFT can be viewed as a function of  either the 
frame's time or the bin's frequency. Let the frame's length be equal to  N samples. The 
first  frame's  DFT  results  to  the  leftmost  “spectrum-column”  illustrated  in  the 
spectrograms. Usually the successive frames are overlapping;  that is  the second frame 
consists of the N-R last samples from the first one plus the R following ones. The R is 
called hop-size. Before the DFT is computed the frame's samples are usually multiplied by 
a window function; the properties of the window function determine the proper range of 
values of the hop-size, so that there are no “artifacts” due to the overlapping. According to  
[8] “the Constant Overlap-Add (COLA) constraint ensures that the successive frames will 
overlap in time in such a way that all data are weighted equally”. Regarding the Hann 
and Hamming window functions any hop-size R>N/2 does not violate this constraint, 
with  commonly  used  values  being  N/4<R<N/2.  In  case  of  Blackman-Harris  window 
function, R should be greater than N/3.

Human  hearing  extends  roughly  to  the  range  20Hz-20kHz,  although  there  are 
considerable differences between individuals. If we assumed that an audio signal has no 
frequencies larger than 20kHz, then according to the Nyquist-Shannon sampling theorem a 
sampling rate f s=2⋅20kHz=40kHz would allow the perfect reconstruction of the signal9. 
In practice sampling rates of 44.1kHz-96kHz are used in audio applications. Although any 
fs greater than 40kHz is (more than) enough in order to cover the whole hearing range, 
often greater values are used. According to the signal's content this might lead to worse 
results, if proper processing of the signal was not anticipated.

The  frame's  length,  N,  determines  the  frequency  resolution;  that  is  the 
quantization level, or the width of each frequency bin:

F res=
f s
N  

and the temporal resolution of the STFT:

9 Actually this is true only in the idealised case, where the signal is sampled for infinite time; any time-
limited  sampled  signal  cannot  be  perfectly  bandlimited.  Therefore,  in  practice  only  a  very  good 
approximation is taken, instead of a perfect reconstruction.
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T res=
N
f s

For instance, if fs=44.1kHz  and N=32  then Fres=1378.125Hz and Tres=0.726ms, while 
for N=8192,  Fres=5.38Hz and  Tres=185.8ms. In figure 2.13 the spectrograms of a signal 
x(t),  composed  of  one  out  of  four  frequencies  (10Hz,  25Hz,  50Hz  and  100Hz),  are 
illustrated for various non-overlapping frame lengths (10, 50, 150 and 400 samples/frame). 
It is clearly shown that by increasing N the frequency resolution gets better, while the 
time resolution gets worse. The definition of x(t) is:

    x  t ={cos 2⋅10t / s , if 0t5scos 2⋅25t / s , if 5t10s
cos 2⋅50t / s , if 10t15s
cos 2⋅100t/ s , if 15t20s

In  case  of  overlapping  frames  the  hop-size  R determines  the  actual  temporal 
resolution of the STFT:

 T actualRes=
R
f s

For instance, if fs=44.1kHz  and R=441  then Tres=10ms, while for R=44100 it becomes 
equal to 1s.

Figure 2.1310: Spectrograms of x(t) for N=10 (25ms) at top left, to N=400 (1000ms) at bottom right

10  The figure is taken from http://en.wikipedia.org/wiki/STFT
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III
Implemented transcription 

algorithm and simulation

3.1 Introduction

The  implemented  algorithm  utilises  the  NNMF  with  prior  knowledge,  a 
methodology described in 2.2.2. The reason NNMF is preferred is its lack of computational 
complexity, while its performance is comparable to, or even better than, more complex 
methods. Simulation's aim is not only to confirm that this methodology works, at least for 
a limited drum kit. It is also necessary in order to determine the parameters that give the 
best transcription results, so as to design the hardware implementation based on them, 
namely:

• the segmentation of the signal,  that is  the length of each FFT's frame which, 
together with the level of the successive frames' overlap and the sampling rate, 
gives the actual temporal resolution,

• the window function applied to the frame, 
• the frequency bands' partitioning,
• the  divergence  threshold  of  the  cost  function,  under  which  we  consider  that 

convergence has been achieved, and
• the number of components each source corresponds to.

3.2 Recordings

Recordings of training samples and test rthythms took place in a common, poorly 
soundproofed  room.  The  drum kit  was  a  rather  old  one,  in  bad  condition,  although 
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another, decent drum kit, was also recorded in the same room and tested without any 
difference at the transcription's performance.    

The setup is based on a single microphone's input. Although more microphones 
could be used, mixed down to one signal, having only one microphone is more realistic 
and practical. It also suits more to the separation-based approaches, since this is usually 
why they  are  used  for:  "mixing  up" a  single-channel's  signal.  Moreover,  using  many 
microphones, each dedicated to only one or a limited number of instruments, makes sense 
in professional recordings of drums, where each channel needs separate processing. If the 
multiple  microphones  are  carefully11 setup  and  mixed  down  after  the  proper  pre-
processing,  so  as  there  is  minimum interference  among them,  a  higher  quality,  more 
"clear" input signal is taken, which makes the transcription less challenging.

3.2.1 Recording equipment

The hardware used for recording consists of the AKG's microphone Perception 170 
and the Native Instuments' sound-card Guitar Rig Session I/O. Perception 170 is a small-
diaphragm  condenser  microphone  with  cardioid  polar  pattern,  suitable  for  acoustic 
instruments and percussions. Its frequency range is 20Hz-20kHz and its frequency response 
is illustrated in figure 3.1. At its peak at 9-13kHz the microphone barely doubles (+6dB) 
the magnitude of the input signal. The sensitivity of the microphone is equal to 12mV/Pa, 
meaning that it converts sound pressure of 1Pa to 12mV output voltage. The output is 
taken by a three-pins XLR connector, which beyond the ground uses both the other lines 
to drive the same signal, after it inverts it in one of them12.   

Guitar Rig Session I/O sound-card is external, powered by a USB port. It provides 
the  48V  ”phantom  power”  that  the  microphone  needs  to  function,  as  all  condenser 
microphones do. Its analog to digital converter can be programmed to sample with either 
16 or 24-bit resolution in a sampling rate of 44.1, 48, 96 or 192kHz. Test and training 
samples were recorded in 44.1kHz with a 16-bit resolution. 

In order to acquire the sound-card's converted signal Audacity 1.3.13 was used. 
Audacity is a widely used, open source tool for audio processing and recording.

11   In practice the proper placements, spacings and orientations of multiple microphones to achieve a high-
quality recording of a drum kit is a complex task. Let a microphone A, attached to a snare drum which is 1 
metre away from a high-tom drum (with another microphone B attached to it), be subject to leakage from the  
high-tom strokes. Since sound roughly travels 1 metre in 3ms, A will output the leakage from high-tom with 
3ms of delay. As it was mentioned the strokes on percussion instruments in general have a very short attack 
time (on the order of a few milliseconds). The delay introduced by A would result to the ”blur” of the high-
tom's stroke, if it was not taken into account and properly corrected before the mixing down of the signal.

12   This way if the microphone's output is amplified by a differential amplifier, the noise voltage that was  
added to both signals (in the same level since the impedances at the source and at the load are identical) will  
be  cancelled  out,  making  the  use  of  long  cables  possible  in  environments  with  high  electromagnetic  
interference.
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Figure 3.113: The frequency curve of AKG Perception 170 

3.2.2 Tempo, note's value and time signature in the common 
musical notation scheme

Tempo defines the speed successive notes must be performed with. It is defined as 
beats per minute (bpm) and if we assign to the beat one specific note value (whole note, 
half note, quarter note, etc) it uniquely determines the performance's speed in a common 
music notation scheme, like the one in figure 3.2. On the contrary, it means nothing by 
itself,  without  determining  ”which  is  the  beat"  among  the  various  note  values.  The 
convention found in  the vast  majority  of  cases  in  practice,  and also  followed in  this 
project, is quarter notes to be considered as the beats. 

The note value denotes its duration relatively to the other notes. For example, a 
whole note must be played with the double duration comparing to a half note, the same 
with a half note comparing to a quarter note, etc. One bar (or measure) contains notes 
whose total duration is equal to the time signature. The successive bars are separated by 
vertical lines.

The time signature is a fraction written once in the beginning of a tablature. If it 
is equal to 4/4, which is the most common time signature in western music, one bar must 
contain notes whose total duration is equal to the duration of four quarter notes (any 
combination of notes whose values sum up to this duration, like just one whole note, or 
one  half  note  plus  one  quarter  note  plus  two eighth  notes,  and  so  on).  Similarly,  a 
tablature with time signature equal to 7/8 must contain bars whose note values' sum is 
equal to seven eighth note values' sum. 

Figure 3.2 illustrates the main groove recorded, used for testing the algorithm in 
simulation. The quarter note is considered to be the beat and the time signature is 4/4. If 
the tempo is 60bpm then four beats, that each of bars contains, have total duration of 4 

13  The figure is taken from 
http://www.akg.com/site/products/powerslave,id,1056,pid,1056,nodeid,2,_language,EN,view,specs.html
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seconds. This means that the successive eighth notes' onset times distance is equal to 
500ms and the one of sixteenth notes is 250ms. The maximum tempo that we performed 
and  recorded  is  150bpm,  meaning  that  these  distances  become  200ms  and  100ms, 
respectively. Automatic transcription systems may not allow a stroke to be recognised if it 
occurs before a minimum time interval passes from the last recognised stroke. In [3] the 
authors use such an interval of 50ms14.  That makes the speed of  our rhythms pretty 
challenging. Such an interval of 50ms was also used in our case, but applied only to each 
instrument itself, meaning that a stroke on the i-th instrument would not be recognised, if 
no more than 50ms passed after the recognition of another stroke on the same instrument 
i.

Figure 3.2: tempo, note values, time signature, bars and time difference between successive notes.

Therefore, it has been clear why the information about the onset times of the 
strokes, together with the information about which instruments were hit,  may not be 
enough to uniquely determine how the notes should be written; because this also depends 
on the music notation scheme to be used. For example, if we were to fill just a simple  
time grid with the recognized strokes, then we would not need any more information. But, 
in  order  to  write  the  notes  on a  common tablature,  like  the  one in  figure  3.2,  it  is 
14   To get an idea of how restrictive this is, it is worth noting that only a few drummers in the world can  
play sixteenth notes on double-bass (that is they have two bass drums, one at each foot) in a greater tempo 
than 250bpm. This means that a right foot's bass stroke is followed by a left foot's bass stroke (and so on)  
with only 60ms separating the successive strokes. This speed is "insane" (more than 16 hits in one second), 
but still lower than what a system with 50ms limitation can handle.
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necessary to know the time signature, the tempo and the note value that refers to tempo's 
"beat". However, these parameters'  values are invariate in the vast majority of music 
tracks, or change only few times during them. More precisely, the "beat" is almost always 
assigned to the quarter note value and the time signature rarely change during the same 
track. The tempo, though, could change, but is usually kept invariate for many bars. In 
case a drummer defined the tempo, the "beat" and the time signature in advance, it 
would be possible for an automatic transcription system to output what he played in the 
classic music notation scheme, something that is beyond the scope of this project.

3.2.3 Test and training samples

Two  of  the  test  rhythms  that  were  recorded  and  tested  in  simulation  are 
illustrated in figure 3.3. The top one consists of only the three instruments, while the 
bottom one, in addition to them, contains two tom-toms (high-tom and low-tom) as well 
as two cymbals (ride and crash). They were recorded in four different tempos (60, 90, 120 
and 150 bpm), so as to test the algorithm's performance from a relatively slow speed up to 
a  challenging  one.  Figure  3.3  depicts  that  all  possible  combinations  of  simultaneous 
strokes are present in the simple rhythm, namely snare plus bass, bass plus hi-hat, hi-hat 
plus snare and snare plus bass plus hi-hat, together with the strokes on just a single 
instrument. Their sum is 7 different sound events that the algorithm should be able to 
distinguish.

Figure 3.3: Three-instruments rhythm (top) and seven-instruments one (bottom)
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It must be clarified that "hi-hat stroke" means in our case the "closed hi-hat" type 
of stroke. The hi-hat is a unique type of cymbal since it consists of two metal plates, 
which are mounted on a stand, one on top of the other. The relative position of the two 
cymbals is determined by a foot pedal. When the foot pedal is pressed, then the two 
cymbals are held together, there is no space between them, and that is the "closed hi-hat" 
position. The less  the foot pedal is  pressed,  the greater the plates'  distance becomes, 
reaching its maximum value when the pedal is free ("open hi-hat"). The closed hi-hat 
stroke is one of the most important, since it produces a short length sound, unlike the 
other cymbals, which is usually used by the drummer to help him "count" the beats and 
properly adjust the timings of the strokes.

The  7-instruments  rhythm  does  not  contain  all  possible  combinations  of 
simultaneous strokes, since this number is large, it would make the recording complex and 
transcribing more than three instruments is out of this project's scope. In order to figure 
out how many different combinations could exist among these seven sources we need to 
take into account what is realistic in practice. For instance, the simultaneous strokes on 
three cymbals is impossible since all cymbals are hit by the hands' sticks. Actually it is 
only  the  bass  drum's  stroke  that  is  driven  by  the  drummer's  foot.  This  limits  the 
maximum number of simultaneous strokes to three (both hands hit a drum or cymbal and 
the foot also hits the bass drum – the other foot always keeps the hi-hat closed). The total 
number of combinations becomes equal to the sum of:

•   7 single strokes

• 72= 7!
2!7−2!

=21 combinations of simultaneous strokes on two sources

• 62= 6!
2!6−2!

=15 combinations of  simultaneous strokes on three sources,  with 

the bass drum always included

Beyond the rhythms that were  recorded to test  the transcription performance, 
short training samples were also recorded. They consist of successive strokes on only one 
instrument, with total length of 1.5s. One to eight strokes in each sample were tested, 
without any difference at all to the results. 

3.3 Algorithm's pseudocode

The system that is illustrated in figure 3.4 was implemented and tested in Matlab. 
Its pseudocode follows below. The number of sources in the general case is equal to S, the 
number of frequency bands is M, the total number of frames/time windows is N and the 
number  of  components  each  source  is  represented  with  is  C.  The  element-wise 
multiplication and division of two matrices is denoted by ” .× ” and ” ./ ”, respectively, 
and 1 denotes an all-ones matrix.
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Figure 3.4: The implemented algorithm

xsnare  import snare training sample
xbass   import bass training sample
xhihat  import closed hihat training sample
xetc    ...(remaining training samples)
xtest   import polyphonic test signal

for every instrument i∈{snare ,bass ,hihat , ...}  
 Yi   get STFT of windowFunction(xi)

   Xi   get band-wise sums of Yi's magnitude spectrogram
  initialize matrices Bi ( M ×C ) and Gi ( C×N i ) to ones 

  while {cost function > convergence threshold}
   Bi

new B i .×[X i . /Bi⋅Gi⋅GiT . /1⋅GiT ]
 Gi

newGi .×[ B iT⋅ X i . / Bi⋅G i . /B i
T⋅1]

    costFunction∑
m=1

M

∑
n=1

N i [X i
m, n⋅log10 

X i
m , n

B i⋅Gi
m ,n  − X i

m, n  B i⋅Gi
m ,n]

  end while
   save Bi

end for
Bfixed <- concatenate Bi s: [Bsnare Bbass Bhihat ...]

for n = 1 to Ntest 
  initialize matrix Gn ( S⋅C×1 ) to ones

Y test
n  get STFT of the windowed n-th frame
X test
n  get band-wise sums of Ytest's magnitude spectrogram

   while {cost function > convergence threshold}
          Gn , newG n .×[ B fixedT ⋅ X test

n . /B fixed⋅G
n . /Bfixed

T ⋅1]

       costFunction∑
m=1

M [X testm ,n⋅log10 X test
m, n

Bfixed⋅Gtest
m, n  − X test

m ,n  Bfixed⋅Gtest
m, n]

   end while
 end for
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3.4 Simulation results

3.4.1 Determining frame's overlapping level and length

In order to find the optimal frame's length,  N, the optimal value of the actual 
temporal resolution, TactualRes, must be taken into account. The actual temporal resolution 
depends only on the value of the hop-size, R, if the sampling rate, fs ,  is constant. Since 
the inequality  N>R must hold (for N=R there is no overlapping), the frame's length 
should be:

N  R= T actualRes⋅ f s

For  fs=44.1kHz, 441 new samples come every 10ms. A sound of a drum, or the initial 
phase of it in case of a cymbal, could last even less than 100ms.  Therefore an actual 
temporal resolution on the order of 5-50ms is required, corresponding to 220-2205 samples. 
As it was previously mentioned in 2.3.2, the choice of the window function affects the 
range of R, so that the successive frames will overlap in time in such a way that sampled 
data are weighted equally. In case of Hann and Hamming windows a safe choice for R is  
given  by  R>N/2,  while  for  Blackman-Harris  windows  by  R>N/3.  Therefore,  if  it  is 
assumed  that  220<R<2205,  the  possible  values  for  the  frame's  size  are,  in  case  of 
Hamming window: 440<N<4410 while R/N>50% holds. N is usually equal to a power of 
two and if it is not, the edges of each frame are zero-padded in order to become so. 

In figure 3.5 the transcription results for N={512, 1024, 2048, 4096} are illustrated. 
Table 3.1 shows the actual temporal resolution and overlapping level of each value. The 
frequency bands are the 25 critical ones, the divergence threshold is 10 -4, the number of 
components of each source is 1 and the input file is the rhythm of 150bpm. As N gets 
larger the time resolution worsens, as it is more clearly shown at the zoomed part of the 
hi-hat's transcription. However, a large N results to smoother transcription, with less local 
maxima that  could be misinterpreted as  onsets.  It  is  worth noting,  though,  that  the 
results are pretty close to each other and any value of N could be used. 

The  horizontal  dashed  green  line  defines  the  correct  onset  threshold  for  each 
source; if a value of the row of G that corresponds to this source is greater than the 
threshold,  an onset  is  recognized.  Each source  has  its  own threshold value.  It  is  not 
analytically computed by one of the methodologies described in 2.2.2,  but rather was 
drawn on top of the Matlab's figures just to give an indication regarding the distances 
among the correct and the possible false onsets. All four values of N result to the same 
four false onsets, although for a larger N the magnitude is considerably smaller, at least in 
the case that is depicted in the zoomed hi-hat's segment. That could be explained by the 
higher frequency resolution that prevents a (combination of) stroke(s) to create a false 
onset on a source that was not hit.
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N R Overlapping level =(N-R)/N TactualRes =R/fs
512 samples 265 samples ≈ 52% ≈ 6ms

1024 samples 441 samples ≈ 57% 10ms

2048 samples 441 samples ≈ 78% 10ms

4096 samples 441 samples ≈ 89% 10ms

Table 3.1: The actual temporal resolution for various hop-sizes and constant frame length of 4096 samples

Figure 3.5: Transcription of the 150bpm rhythm for various frame's lengths

The transcription results for the 60bpm rhythm15 and N={512, 1024, 2048, 4096} 
are illustrated in figure 3.6. The rest parameters are the same as above. In this case the 
number of false onsets is only one. It is worth noting that the 8 hi-hat strokes have, more 
or less, the same magnitude, while this was not the case for the 150bpm rhythm of figure 
3.5. It happens simply because the recorded strokes themselves have equal intensity in the 
60bpm rhythm, while every second stroke of the 150bpm is of much lower intensity. That 
is the usual way of playing hi-hat in high tempos and was recorded like that in order to 
check if different stroke dynamics are tolerated by the algorithm. At least in the closed hi-
hat case, dynamics of low intensity result to low values in G; so low that if a threshold 
covering them had to be found, inevitably the two last false onsets of hi-hat would have 
been exposed. 

15   The 90bpm and 120 bpm rhythms have exactly the same behavior with the 60bpm and the 150bpm,  
respectively, and that's why they are not presented. The rest of the tests concern only the 150bpm rhythm.
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Beyond the strokes of lower intensity, more intense strokes may also cause false 
onsets recognition. This can be explained by their different frequency content, caused by 
two factors. Firstly, the physical properties of the instruments, which result to different 
frequency content in case of different stroke's dynamics. Secondly, the fact that all the 
instruments are mounted on the same rack, and hence are being vibrated even if another 
instrument was hit, especially for intense strokes. Appendix A contains the transcription 
of  successive  strokes  of  increasing  intensity  on  each  single  instrument.  The  intensity 
covers a wide range of dynamics, from barely listenable strokes to unrealistically intense 
ones. Hi-hat does not produce much “noise” on snare and bass, but snare and bass strokes 
produce  considerable  noise  on  hi-hat  and  snare,  respectively,  whose  magnitude  is 
increasing for intense strokes.  

Figure 3.6: Transcription of the 60bpm rhythm for various frame's lengths

Figure 3.7 shows the impact of the actual temporal resolution to the results; for 
N=4096 samples, the values of R={221, 441, 661, 882, 1764, 2646} are tested. The rest of 
parameters are the same as above. For R=2646 the inequality N<2R is violated, but the 
transcription  is  relatively  close  to  the  lower  values'  ones.  For  5-20ms the  results  are 
almost identical. The chosen value of TactualRes is 10ms. The six values of R correspond to 
the actual temporal resolutions and overlapping levels of table 3.2.

R Overlapping level =(N-R)/N TactualRes =R/fs
221 samples ≈ 95% ≈ 5ms

441 samples ≈ 89% 10ms

661 samples ≈ 84% ≈ 15ms

882 samples ≈ 79% 20ms

1764 samples ≈ 57% 40ms

2646 samples ≈ 35% 60ms

Table 3.2: The actual temporal resolution for various hop-sizes and constant frame length of 4096 samples
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Figure 3.7: Transcription of the 150bpm rhythm for various actual temporal resolutions

3.4.2 Determining the window function

In order to examine how applying different window functions affects the results, 
four window functions were tested: the rectangular window, the Hann, the Hamming and 
the 4-term Blackman-Harris one. The frame's length is equal to 2048 samples, the hop-size 
is 441 samples, the frequency bands are the first 25 critical ones, the divergence threshold 
is 10-4, the number of components of each source is 1 and the input file is the rhythm of  
150bpm. 

The transcription results are illustrated in figure 3.8. No window function seems to 
perform better than the others. Even the un-windowed case produces as good results as 
the windowed ones. That can be explained from the properties of the drums' sounds; since 
they contain frequencies in very wide ranges, the spectral leakage has no impact on the 
results. Although the Blackman-Harris window results to slightly larger values for G, it 
does so for both the correct and the false onsets, therefore that cannot be considered as an 
advantage. However, the Hamming window was chosen to be implemented, since it is the 
most common choice in practice.

3.4.3 Determining the frequency bands

In this subsection different partitioning schemes of the frequency range are tested. 
So far, only the 25 critical bands were used. They are based on the Bark frequency scale, 
which  “ranges from 1 to 24 Barks, corresponding to the first 24 critical bands of hearing.  
The published Bark band edges are given in Hertz as [0, 100, 200, 300, 400, 510, 630, 770,  
920, 1080, 1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 
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Figure 3.8: Transcription of the 150bpm rhythm for various window functions

12000, 15500]” [16]. A 25th band was appended, ranging from the 25th Bark edge, 15500Hz, 
to the half of our sampling rate, 22050Hz. 

Beyond the 25 critical bands, the other band partitioning schemes tested were the 
5-bands scheme of [12], defined by the following band edges [0, 180, 400, 1000, 10000, 
22050],  the 9-bands scheme defined by [0,  100, 200, 300, 400, 500, 1000, 5000, 10000, 
22050] and two schemes of 128 and 512 linearly spaced bands, corresponding to equal 
bands of approximately 172Hz and 43Hz, respectively. The frame's length is equal to 2048 
samples,  the  hop-size  is  441  samples,  the  Hamming  window  is  used,  the  divergence 
threshold is 10-4, the number of components of each source is 1 and the input file is the 
rhythm of 150bpm.  

Figure 3.9 shows that the frequency resolution is not an issue for the given signal's 
properties. The clear differences in the frequency content among the strokes on snare, bass 
and hi-hat make it possible for a 5-bands scheme, that contains band widths on the order 
of 180-12050Hz, to perform as good as a linearly spaced one, with band width equal to 
43Hz. 

This is also clearly depicted at the values of the fixed matrices B that came of the 
training NNMFs in the 5-bands case, shown in table 3.3. The bass has its energy mainly 
in the first band, snare in the fourth and hi-hat in the fifth one. We might be able to 
reduce the number of bands to three without considerably affecting the results, although 
that  would  introduce  very  poor  resolution  in  case  more  instruments  need  to  be 
transcribed. On the contrary, the 25 critical bands were used, allowing more instruments, 
which demand finer resolution, to be introduced.
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band (Hz) snare bass hi-hat

0-180 5.27 125.84 1.39

180-400 36.54 57.25 2.45

400-1000 41.38 60.67 7.03

1000-10000 95.80 55.54 61.90

10000-22050 33.72 10.09 94.66

    
Table 3.3: The values of the fixed matrix B for the 5-bands scheme

Figure 3.9: Transcription of the 150bpm rhythm for various frequency bands schemes

3.4.4 Determining the convergence threshold

NNMF runs iteratively until the product of the two approximated matrices, B and 
G, is close enough to X, the magnitude spectrogram input matrix. The quality of the 
approximation is  quantified by the cost  function in  the  end of  each iteration.  If  the 
difference of the updated cost function's value from its previous value is less than the 
divergence threshold, then the algorithm is considered to have been converged. In figure 
3.10  the  transcription  results  for  six  values  of  divergence  thresholds  are  illustrated. 
Frame's  length  is  2048  samples,  hop-size  is  441  samples,  Hamming  window  is  used, 
frequency  partitioning  of  25  critical  bands,  each  source  is  represented  by  a  single 
component and the input file is the rhythm of 150bpm. The results are very close to each 
other, except in the case of threshold equal to 100 (see the zoomed spots, all possibly false 
onsets).

Table 3.4 depicts the average and maximum numbers of iterations for the same 
values, showing that in the case of threshold being equal to 100, only 2 iterations of the 
update rules took place in average. The table's values concern the NNMF with the fixed
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Figure 3.10: Transcription of the 150bpm rhythm for various divergence thresholds

basis matrix, since this is the only NNMF that needs to run in real-time in the next 
chapter's hardware implementation. The training NNMFs have no real-time requirements 
and as such could use a lower threshold value. That is not necessary, though, since alike 
the fixed basis NNMF they do not need many iterations in order to find good values for 
the  fixed  matrices.  Therefore,  the  same  divergence  threshold  was  used  for  both  the 
training NNMFs and the fixed basis one.  Table B.1 in appendix B shows the snare's basis 
matrices for three thresholds. The values are very close even in the extreme cases. 

3.4.5 Determing the number of components per source

Each source could use more than one component, as it was discussed in 2.1.2.1. 
Figure 3.11 depicts the case where each source is represented by two components. Frame's 
length  is  2048  samples,  the  hop-size  is  441  samples,  Hamming  window  is  used,  the 
frequency bands are the 25 critical ones, the divergence threshold is 10 -4 and the input file 
is the rhythm of 150bpm. The two components are colored green and black, while a safe 
threshold is shown in red color. The introduction of the second component has improved
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divergence 
threshold

average number 
of iterations

maximum number 
of iterations

10-11 654 20940

10-7 304 3051

10-4 110 604

10-2 39 159

1 10 30

100 2 5

Table 3.4: The average and maximum numbers of iterations 

considerably the transcription results. If only one component is taken into account (the 
highlighted ones – black colored for the snare and green colored for the bass and hi-hat), 
then a threshold can be found so as only one false onset is recognized, rather than four. 

Introducing more components does not succeed in eliminating that false onset. As 
it  was  mentioned  before,  the  usage  of  multiple  components  per  source  requires  an 
algorithm that finds which is the “correct” one. In case the number of components is large 
(more than 4 in our case), inevitably the information of more than one components must 
be  combined in  order  to  find  all  the  correct  onsets,  adding  more  complexity  to  this 
algorithm. For simplicity,  our implementation concerns the one component per source 
case.

Figure 3.11: Transcription of the 150bpm rhythm for two components per source

- 41 -



3.4.6 Testing seven-instruments rhythms

When more instruments are introduced the transcription's performance worsens. 
The second rhythm's transcription is illustrated in figure 3.12, showing the results in case 
two tom-toms, one ride cymbal and a crash cymbal take part in the rhythm.  Frame's 
length  is  2048  samples,  the  hop-size  is  441  samples,  Hamming  window  is  used,  the 
frequency bands are the 25 critical ones, the divergence threshold is 10 -4 and the input file 
is  the  rhythm of  60bpm. In  appendix  C the  spectrograms of  the  seven  instruments' 
training samples are illustrated. Only 12 out of the 46 realistic combinations of strokes are 
present in the rhythm, as it was mentioned in 3.2.3. Beyond the snare and bass drums 
which perform with 100% success rate, the rest instruments' rate becomes 50%. 

Testing for more than one components per source reveals the usefulness of multiple 
components. In appendix D the transcription of the same rhythm is illustrated, for seven 
components per source. It turns out that by combining 2-4 out of the 7 components and 
ignoring the rest, a 100% success rate can be achieved for every instrument, but the hi-
hat.  The  combination  in  most  of  the  cases  regards  just  the  addition  of  the  2-4 
components' values. In the case of crash, though, another type of combination may be 
more uselful; that is recognizing the onset based on the value of one component only if it 
is followed by a specific behavior of a second component (see figure D.7).

 Figure 3.12: Transcription of the seven instruments rhythm (60bpm)
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IV
 

Hardware's design and 
implementation

4.1 System's overview

The hardware  part  was  implemented for  Terasic's  DE2-70  development board. 
DE2-70 hosts one of the biggest FPGAs of Altera's Cyclone II series. It also provides an 
audio CODEC chipset and a microphone input. The system's overview is illustrated in 
figure 4.1. It comprises six main blocks, which handle the initialization of the CODEC, 
the  ADC communication,  the  Hamming window function,  the  Fourier  transform,  the 
magnitude spectrogram computation and the NNMF. Each of the modules is analytically 
described in the next sections. 

The synthesis tool used was Altera's Quartus II 11.0 and simulation of most of the 
modules was done in Modelsim SE 6.6d. The synthesis resulted to the usage of:

• 18% of the available logic elements (12,309/68,416),
• 31.6% of the available memory bits (364,042/1,152,000),
• 12% of the embedded 9-bit multipliers (36/300), and
• 50% of the available PLLs (2/4).

The implemented system does not include the training stage of  the algorithm. 
However,  the training stage is  the same with the real-time core that is  implemented, 
extended with the calculations needed in order to find the fixed basis matrices B. These 
calculations are the supplementary of the real-time core's calculations needed in order to 
find  the  gain  matrix  G,  and  as  such  would  be  implemented  in  the  same  way.  The 
implementation  of  the  training  stage  would  require  more  memory  (58% in  total,  or 
667,869/1,152,000, for training samples of length equal to 1.5 seconds). The values of the 
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fixed basis matrix B are taken from the Matlab's simulation.
 

The real-time core has a hard real-time requirement of 10ms, since every 441 new 
samples, that are fetched every (roughly) 10ms, the new time frame's spectrum must be 
calculated and then approximated by NNMF. For the demonstration purposes 3 LEDs are 
driven, each corresponding to one of the three sources. Each time a stroke is recognized, 
the corresponding LED alters its state.  A minimum time of 50ms needs to pass for a new 
stroke on the same source to be recognized. The board's 50MHz clock is the input of both 
PLLs, which output a 19.93MHz clock needed by the audio CODEC chipset and the 
internal global clock of the system, equal to 50MHz. The synthesis resulted to a maximum 
possible frequency of approximately 58MHz. For the debugging needs an UART module is  
implemented, in order to send to a PC values of various stages of the algorithm. The 
UART module is taken from [19].

Figure 4.1: The overview of the system

4.2 WM8731 audio CODEC

The  WM8731  is  an  audio  CODEC  (COder-DECoder)  chipset  from  Wolfson 
Electronics, part of the development board DE2-70. Its block diagram is shown in figure 
4.2. The paths used for the needs of this project are highlighted. Among the other features 
it hosts, it  provides an analog-to-digital converter (ADC), with programmable sample 
rates in the range 8-96kHz, and word lengths of 16-32bits. It also has a microphone input,  
with  2  stages  of  gain  made  up  of  two  inverting  operational  amplifiers,  allowing 
microphones of different sensitivities to be used. The first stage comprises a nominal gain 
of G1=50k/10k=5. By adding an external resistor (Rmic) the gain can be adjusted as:

G1=50k /Rmic10k
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DE2-70 uses such a resistor Rmic=330Ω, resulting to G1=4.84. The second stage consists of 
a 0dB gain that can be programmed to provide an additional fixed 20dB. 

In order to decide if the second gain stage is needed, the dynamic range of the 
ADC's outputs was examined. With the help of LEDs, that were flashing whenever the 
16-bit  signed  output  of  the  ADC  was  greater  than ∣±4096∣,∣±2048∣, or∣±1024∣ ,  it  was 
determined  that  the  vast  majority  of  strokes  produced  values  in  the  range
[∣±1024∣,∣±2048∣] ,  while  more  intense  strokes  were  surpassing ∣±2048∣ ,  but  never
∣±4096∣ . Hence, the dynamic range of the sampled data is 13bits (sign bit included). If 

the fixed 20dB gain was used, which concerns a gain equal to 10, 16 bits might not be 
enough (resulting to unwanted clipping), and therefore it was not used.

Figure 4.2 (taken from [17]): The block diagram of WM8731

WM8731 can either generate the clock it needs and function as a master device, by 
connecting an external crystal between the XTI/MCLK input and XTO output pins, or 
receive its clock by a component other than WM8731 and function as a slave. In the latter 
case, which is the one used, the external clock is applied directly through the XTI/MCLK 
input, without any software configuration needed. 

In figure 4.3 the interface between WM8731, functioning in slave mode, and the 
FPGA is outlined. While in slave mode the WM8731 sends the sampled data, ADCDATA, 
in response to the externally applied clocks, BCLK and ADCLRC. In the next subsection, 
4.4.1,  the  initializer  module  is  described.  It  configures,  over  the  I2C, the  registers  of 
WM8731 to sample at 44.1kHz, outputting 16 bits words. In 4.4.2 a closer look is taken at  
how the sampled data are fetched by the ADC controller. 
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Figure 4.3: The interface between the FPGA and WM8731 in slave mode

4.2.1 Initialization of WM8731

The software control interface of WM8731 let us specify its operating settings. It 
requires communication on a two-wire serial interface, consisting of the I2C_CLOCK and 
I2C_DATA signals  (SCLK and SDIN in  the  block  diagram,  respectively).  In  DE2-70 
board's  implementation,  WM8731 listens  only  to  the  address  0011010.  The  initializer 
FPGA module initiates a data transfer by establishing a start condition, defined by a high 
to low transition on I2C_DATA, while I2C_CLOCK remains high. This indicates that an 
address and data transfer will follow. If the correct address is received, and R/W bit is '0', 
indicating a write, then WM8731 responds by pulling I2C_DATA low on the next clock 
pulse (ACK). WM8731 is a write only device and will only respond if R/W is '0'. 

Once the correct address has been acknowledged,  the initializer sends the first 
eight data bits (B15-B8, MSB first), WM8731 acknowledges, then the remaining eight bits 
are sent (B7-B0) and WM8731 acknowledges again. Therefore, 24 bits must be sent for a 
register to be configured. A stop condition is established with a low to high transition of 
I2C_DATA, while  I2C_CLOCK is high. If a start or stop condition is detected out of 
sequence at any point during the transfer, the device jumps to the idle condition. In case 
the described sequence of events completes successfully, the WM8731's 9-bit register, with 
the  7-bit  address  B15-B9,  is  updated  with  the  data  B8-B0.  Figure  4.4  depicts  the 
procedure described above.
 

Figure 4.4 (taken from [17]): The two-wire serial interface for the software configuration of WM8731

There are 11 registers in WM8731 and 6 of them need to be configured, while 4 
keep their default values and the last one is only used in order to reset the device. Table 
4.1 summarizes the addresses of the registers and their values after the configuration.
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Register Address Register's value 24-bit value (hex) 
stored in ROM

Left Line In 0 0 1001 0111 (default) -

Right Line In 1 0 1001 0111 (default) -

Left Headphone Out 2 0 0111 1001 (default) -

Right Headphone Out 3 0 0111 1001 (default) -

Analogue Audio Path Control 4 0 0000 0100 340804

Digital Audio Path Control 5 0 0000 0000 340A00

Power Down Control 6 0 0111 1001 340C79

Digital Audio Interface Format 7 0 0000 0001 340E01

Sampling Control 8 0 0010 0010 341022

Active Control 9 0 0000 0001 341201

Table 4.1: WM8731's register values and addresses

The initializer's block diagram is shown in figure 4.5. Its finite-state machine is 
illustrated in figure 4.6. An 18bytes (6x24bits) ROM is used to store the registers' values 
shown  in  table  4.1.  The  dataControl  signal  controls  a  tri-state  buffer,  allowing  the 
WM8731 to pull the I2C_DATA line low, acknowledging that it received 8 bits of data. 

A 50kHz clock is generated by a counter, whose input is the main 50MHz clock of 
our system. I2C_CLOCK is generated by an OR gate, whose inputs are the counter's 
50kHz  clock  and  the  FSM's  signal  clockControl.  Any  frequency  in  the  range 
0<I2C_CLOCK<526kHz could be used. When all of the six registers are configured FSM's 
signal clockControl is kept high, deactivating the software control interface.  

Figure 4.5: The block diagram of the initializer module
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Figure 4.6: The FSM of the initializer module

4.2.2 Fetching the ADC samples

WM8731 can be configured to output the ADC's data in one of  the following 
modes: right justified, left justified, I2S or the DSP mode. The configured mode in our case 
is the left justified one, while the length of the output word is equal to 16 bits. In this 
mode the MSB of  the data is  available at the first  rising edge of  BCLK following a 
ADCLRC transition,  as  figure  4.7  illustrates.  The  left  and  right  channels'  data  are 
multiplexed. Since in our case ADC's input consists of a single channel, both left and right 
channels contain the same information. 

The 16-bit words are of signed 2's complement format and are being read during 
the left channel's periods.  ADCDATA is synchronous with the BCLK, with each data bit  
transition signified by a BCLK high to low transition. Each low to high transition of 
ADCLRC initiates the ADC controller to begin to store the new sample. ADCLRC must 
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always change on the falling edge of BCLK. The only requirement regarding the frequency 
of BCLK is to provide sufficient cycles for each ADCLRC transition to clock the chosen 
data word length (it could even be non-continuous). 

Figure 4.7 (taken from [17]): ADC's output in left justified mode

The chosen sampling rate, fs, is 44.1kHz and WM8731 is configured to be clocked 
by MCLK=384fs. A PLL, whose input is the 50MHz clock, is utilized in order to generate 
MCLK. Table 4.2 shows the closest value PLL can generate, given the 50MHz input. Our 
sampling rate is slightly higher than 44.1kHz. For simplicity, the frequency chosen for 
BCLK is equal to 32fs, the lowest possible value for data word length of 16 bits. BCLK is 
generated  by a  counter,  whose  input  is  the  MCLK,  while  ADCLRC is  generated  by 
another counter, whose input is the BCLK. The block diagram of the ADC controller is 
illustrated in figure 4.8. 

Clock Frequency
(expected)

Frequency
(in practice)

MCLK = 384fs 16.9344MHz 16.935484MHz

BCLK = 32fs 1.4112MHz 1.41129033MHz

ADCLRC = fs 44.1kHz 44.102822916kHz

Table 4.2: The approximated frequency values for the three clocks that drive the WM8731

Figure 4.8: The block diagram of the ADC controller module
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4.3 Window function

At every high to low transition of ADCLRC, the new sample from ADC is fetched 
by the Hamming controller. Before it is sent to the FFT module, it needs to be multiplied  
by the corresponding coefficient of the Hamming window function. Since the hop-size of 
the STFT is equal to 441 samples and the FFT is applied to 2048 samples, each new 
sample will take part in either the next four FFT computations, or the next five ones. The 
Hamming  controller  is  responsible  for  multiplying  each  new  sample  by  four  or  five 
coefficients and store the results to the hammRAM. Every time 441 new samples are 
fetched, Hamming controller initiates the next FFT computation, by asserting the signal 
”enableFFT”.

The  coefficients  of  the  2048-point  Hamming  window  function  are  stored  in 
hammROM. They are approximated by unsigned 8-bit values, in 1.7 fixed-point format, 
resulting to total size of hammROM equal to 2048bytes. The multiplication of a 16-bit 
sample (integer) by a sign-extended 9-bit coefficient results to a signed 25-bit product, in 
18.7 fixed-point format. Ignoring the 7 fractional bits and the two MSB, beyond the sign, 
the results are approximated by 16-bit signed natural numbers in 2's complement format. 
The two most-significant bits, beyond the sign, can be ignored because the coefficients' 
range is (0,1].

Hamming controller stores the inputs of the five upcoming FFTs in hammRAM, 
whose  size  is,  therefore,  equal  to 5⋅2048⋅16 bits=20kB. hammRAM's  structure  is 
illustrated in figure 4.9, as well as an example that shows the way Hamming controller 
stores the values in it. Let an FFT of the 3rd segment (addresses 4096-6143) be the last 
one computed, and 441-i-1 new samples to have been already fetched. Then, when the 
(441-i)-th  sample  arrives,  it  is  firstly  multiplied  by  hammROM[i]  and  stored  to  the 
address 6144+i, since the 4th segment is the next FFT input. Secondly, it is multiplied by 
hammROM[441+i] and stored to the address 8192+441+i, then to 0+882+i, and so on. If 
i<2047-1764=283, then the sample will be part of the next five FFTs, and otherwise of 
only the next four ones. 

Figure 4.9: hammRAM stores the upcoming five FFT's inputs

The Hamming controller's finite-state machine and block diagram are illustrated in 
figures  4.10  and  4.11,  respectively.  It  takes  25  cycles  for  five  multiplications  with 
Hamming coefficients to be computed and stored in hammRAM, after each high to low 
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transition of ADCLRC.  However, the next step (Fourier controller) is initiated at the 
next low to high transition of ADCLRC. Therefore, the latency of Hamming controller is 

roughly equal to 1
2
⋅ 1

44.1kHz
≈0.011ms.  

Figure 4.10: Hamming controller's FSM

Figure 4.11: Hamming controller's block diagram
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4.4 Discrete Fourier Transform

The  DFT is  based  on  Altera's  IP  core  ”FFT MegaCore  function”  ([18]).  FFT 
MegaCore is highly parameterizable, providing architectures for both fixed and variable 
input lengths. The fixed transform architecture accepts as inputs 2's complement format 
complex data. In our case the input consists of 2048 16-bit natural numbers, taken by one 
of the five segments of hammRAM. 

FFT MegaCore uses a block-floating-point architecture, which is a trade-off point 
between fixed-point and full-floating point architectures. Together with the data it also 
outputs an exponent, which is the same for all 2048 complex values of the output; the 
output data must be scaled by 2-exponent to account for the discarded LSBs during the 
transform.  In  case  of  2048  input  points  the  exponent  is  in  the  range  [-16,0].  The 
parameterization in our case is shown in table 4.3, while the resource usage and cycle 
count estimation are shown in table 4.4.

Transform length 2048 points

Data precision 16 bits

Twiddle precision 16 bits

FFT engine architecture Quad output

Number of parallel FFT engines 1

I/O data flow Burst

Table 4.3: FFT MegaCore function's parameters

Logic elements 3710

Memory bits 114688

9-bit embedded multipliers 24

Transform calculation cycles 2668

Block throughput cycles 6765

Table 4.4: FFT MegaCore function's ressource usage and performance
 

 The burst I/O data flow's interface is illustrated in figure 4.12. It is implemented 
by the finite-state machines of figure 4.14, part of the Fourier controller, whose block 
diagram is shown in figure 4.15. The signal sink_ready indicates that the FFT can accept 
a new block of data. When both sink_ready and sink_valid are asserted the data transfer 
to FFT occurs. The assertion for one cycle of the signal sink_sop indicates the start of the 
input block. On the next clock cycle, sink_sop is deasserted and the next 2047 input data 
samples must be loaded. On the last sample sink_eop must be asserted. The 16-bit wide 
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sink_real contains our input data, while sink_imag is always equal to zero. 

Figure 4.12: The burst I/O data flow interface signals  

Once  the  transform  has  been  completed,  FFT  asserts  source_valid  and,  if 
source_ready  is  asserted,  outputs  the  complex  data  to  the  16-bit  source_real  and 
source_imag signals. The exponent of each block is taken from source_exp. The signals 
source_sop and source_eop indicate the first and last output, respectively. The output 
data are stored in fourierRAM. We only need to store the first 1024 of them. Since the 
exponent is in the range [-16,0], each output needs 64 bits, 32 for the real part and 32 for 
the imaginary. Hence, fourierRAM's size is equal to 64 1024 bits=8kB. ⋅

It takes 6765 cycles (see table 4.4) for Fourier controller to read 2048 input data 
and output the result.  But since only half  of  the  outputs are  used,  the  next  step is 
initiated after 6765-1024= 5741 cycles, or roughly 0.115ms for our 50Mhz clock.   

 

Figure 4.13: Fourier controller's block diagram
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Figure 4.14: Fourier controller's input (left) and output (right) FSMs

4.5 Bandwise magnitude sums

Since the magnitude spectrogram is used, square roots calculations are necessary. If 
R  and I are the real and imaginary parts of a transform's output x, then its magnitude is:

∣x∣=R2I 2   

The square root's calculation is considered a demanding computationally task, therefore 
an approximation will just be used. A method which approximates the magnitude of a 
complex number, called "max plus beta min", is presented in [6]. If MAX=max{|R|, |I|} 
and MIN=min{|R|, |I|}, then the magnitude approximation is:

∣x∣≈MAXb⋅MIN , where  0b≤1
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For simplicity b=2-k, where k is a natural number. The average relative errors for b=1, 
b=0.5 and b=0.25 are shown in table 4.5, based on our test rhythm's data. 

Approximation Average relative error

b=1 27.25%

b=0.5 8.66%

b=0.25 3.19%

Table 4.5: Average relative errors of ”max plus beta min” magnitude's approximation

The Bands controller approximates the magnitude of the 1024 FFT outputs using 
the ”max plus beta min” with b=0.25. Then, it sums the magnitudes following the 25 
critical bands scheme. The block diagram of Bands controller is illustrated in figure 4.15, 
while its finite-state machine in 4.16. Taking into account the worst-case scenario each 
magnitude's width must have been 33 bits, while every band's sum 42 bits. However, in 
order to check if this increase of the number of bits could be ignored, the sums were sent 
through the UART, so as their range to be determined. As it was expected the widest of  
the sums, the 25th one, had the maximum value for hi-hat strokes. In case of strokes of 
normal intensity this was approximately 800,000hex, while for intense strokes it reached 
3,000,000hex.  Hence,  they  can  be  represented  by  24-bit  and  26-bit  word  lengths, 
respectively. Therefore, the increase is ignored and the sums' width is equal to 32-bit.

Since the FFT's length is 2048=211 points, a scale down by multiplying with 2-11 

could be applied to the Fourier transform's outputs. Instead of scaling down the 32-bit 
outputs before the magnitude and sums computations, the scale down occurs after the 
sums are found. As it was mentioned above the ADC output's dynamic range is 13 bits, 
while it is represented by 16 bits. In order to account for these 3 bits, a scale down by 
multiplying with 2-8, instead of 2-11, is implemented. This means that finally the bands 
sums' widths are 24 bits, resulting to bandsRAM's size of 25⋅24 bits=75 bytes.

Figure 4.15: Bands controller block diagram
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It  takes  6  cycles  for  each  FFT  output  to  be  read  from  fourierRAM and  its 
magnitude to be approximated and added to the corresponding band's sum. The first 
output needs 8 cycles and the storage of the 25 sums to bandsRAM takes 27 cycles. This 
means that following the assertion of enableBands signal, in total 6173 cycles are needed 
in order to get each frame's bandwise spectrum in bandsRAM. For a 50MHz clock, the 
duration of 6173 cycles is roughly equal to 0.123ms.

Figure 4.16: Bands controller FSM

4.6 Non-Negative Matrix Factorisation

The NNMF algorithm needs  to  perform the following calculations,  in  order  to 
update the value of the gain matrix G and find the new value of the cost function:

GnewG .×[Bfixed
T ⋅X . /Bfixed⋅G . /B fixed

T ⋅1]

costFunction∑
m=1

M

X [m ]⋅log10
X [m ]

Bfixed⋅G
new [m ]

 − X [m ]  Bfixed⋅G
new [m]
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The calculations are performed in the following five serially executed steps:

• step 1:  st1=X ./Bfixed⋅G  , 

• step 2:  st2=B fixed
T ⋅st1. /B fixed

T ⋅1 ,

• step 3:  st3=G newG .×st2 ,

• step 4 is identical to step 1,

• step 5:  costFunction∑
m=1

M

 X [m]⋅log10 st1 [m] − X [m ]  B fixed⋅G
new [m ]

The three first steps update the matrix G, step 4 re-calculates the matrix X ./Bfixed⋅G  , 
since its elements' logarithms are needed in step 5, which updates the cost function value.  
The algorithm iteratively runs the five steps, until the difference of the last two cost  
function's values is less than a constant threshold. 

Fixed-point numbers are used. The widths of the elements of B and G are 12.4 
unsigned numbers. The integer part is 12 bits, since the product of B and G approximates 
the 24-bit unsigned integer spectrum stored in bandsRAM. G's values are initialized to 
ones, before each spectrum's approximation. Matlab simulation with fixed-point numbers 
was conducted and according to it, 4 fractional bits results to identical transcription to 
higher precision. The only impact of the lower precision is the higher divergence threshold 
needed to be used. 

4.6.1 Steps 1-3

The timing diagram of step 1 is illustrated in figure 4.17. Step 1 multiplies B with 
G  and  performs  the  element-wise  division X ./Bfixed⋅G  . The  matrix  BG  contains 
unsigned elements of format 26.8, while the division's results are 16.8 numbers. Every 3 
cycles a new element of BG is calculated and a new division starts. The divider is taken 
from Altera's libraries (lpm_divide). The divident (natural number, stored in bandsRAM) 
is shifted 16 bits to the left, so as the quotient to have 8 fractional bits. The divider needs 
a high number of pipeline stages (20 were used), but the divisions' throughput is equal to 
3 cycles. The fixed basis matrix B (25x3) is stored in matrixBRAM, while the gain matrix 
G (3x1) in matrixGRAM. Their sizes are equal to 150 bytes and 6 bytes, respectively. The 
25 division's results are stored in RAM_1, whose size is 75 bytes.

Before step 1 proceeds to the calculations, the 3 values of G are initialized to ones. 
It takes 6 cycles to do so and then 5 more cycles for the first division's divident and 
divisor to be ready. Then, after 20 cycles the first result is ready, while the 25 th one is 
ready after 72 more cycles.  During the following 3 cycles  the  last  result  is  stored in 
RAM_1 and step 2 is initiated. Hence, in total step 1 needs 6+5+20+72+3=106 cycles to 
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complete.  Since  G's  initialization  occurs  only  once  at  every  time  frame's  spectrum 
approximation the total number of cycles of step 1 is equal to 106+101(x-1), where x is  
the total number of NNMF's iterations needed to converge.   

Figure 4.17: Timing diagram of step 1

The timing diagram of step 2 is illustrated in figure 4.18. Step 2 multiplies BT 

(3x25) with the result of step 1 (25x1 matrix st1), as well as with a 25x1 matrix which 
contains  only  ones.  The  resulting  matrices'  elements  are  33.12  and  17.4  numbers, 
respectively. Then, it divides these two matrices element-wise and stores the result in 
RAM_2. The size of RAM_2 is equal to 9 bytes, since division's results are 16.8 fixed-
point numbers. Similarly with step 1, the divider's pipeline depth is 20. 

Two  cycles  after  step  2  is  initiated,  the  RAMs  values  are  read  and  the 
dividend/divisor values start to be calculated. It takes 25 cycles for a new divident/divisor 
to be found. In total three divisions are computed. Twenty cycles after the last one, the 
last result is ready and 2 cycles after, it is stored in RAM_2. Therefore, in total 99x 
cycles  are  needed  for  step  2  to  complete,  where  x  is  the  total  number  of  NNMF's 
iterations.
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Figure 4.18: Timing diagram of step 2

Step 3 updates matrix G's value, by multiplying element-wise the matrix G with 
the result of step 2 (3x1 matrix). The timing diagram is illustrated in figure 4.19. Two 
cycles after step 3 is initiated matrixG's RAM and RAM_2 are read. Five cycles later the 
three multiplications are computed and step 4 is initiated. Hence, step 3 needs 7x cycles, 
where x is the total number os NNMF's iterations.

Figure 4.19: Timing diagram of step 3
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4.6.2 Steps 4-5

Step 4 is identical to step 1, as it was mentioned above. Step 1 re-executes, needing 
101 cycles to complete (since G is never initialized at step 4). Hence, 101x cycles in total  
are needed for step 4, where x is the total number of NNMF's iterations.

Step  5  comprise  the  calculation  of  the  logarithms  of  step  4's  results,  the 
multiplication  of  each  logarithm  with  the  corresponding  value  of  bandsRAM,  the 
multiplication of matrices B and G and the additions that give the final cost function's 
values. The logarithm's value is approximated by linear interpolation, using two look-up 
tables, logROM and slopeROM. The logarithms of step 4's division results, whose format 
are 8.8 unsigned numbers, are calculated. Since there is plenty of memory available big 
look-up tables are used; both logROM and slopeROM's size is equal to 4096 words. Hence, 
the 12 MSB of the 8.8 number are used as an index for the two ROMs and the 4 LSB as  
the fraction. logROM stores the pre-calculated values of log(yk), where 

yk=2-8+k*2-4 and k=0...4095,

with signed 3.14 format. For that precision the mean relative error of the pre-calculated 
values is equal to 0.00971%, while it would be roughly equal to 3% for a 3.9 format. The 
slopeROM stores the pre-calculated slope values:

slope(k)=[log(yk+1)-log(yk)]/2-4, 

with unsigned (since logarithm is an increasing function) format of 5.14. The logarithm's 
approximation is given by:

log(X[m]/(BG)[m]) = logROM[addr] + slopeROM[addr]*fraction

where addr is equal to the 12 MSB bits, while fraction equals the 4 LSB bits.  

In figure 4.20 the timing diagram of step 5 is illustrated. Eight cycles after it is 
initiated, the first cost function's element is computed ( X(0)*log(0) – X(0) + BG(0) ). It 
takes  7  cycles  for  each  of  the  next  24  ones  to  be  computed.  Their  sum is  the  cost 
function's value. In total 183x cycles are needed for step 5 to complete, where x is equal to 
NNMF's iterations. Finally, 5 cycles after the last iteration, the values of G have been 
compared to the corresponding thresholds and in case they are greater than them, the 
signals to LEDs are updated.  
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Figure 4.20: Timing diagram of step 3

4.7 Latency and onset time detection

The  latency  since  the  441st sample  is  read  from  ADC,  the  last  one  Fourier 
transform waits for, until the LEDs alter their state, in case of a recognized stroke, is 
summarized below:

• ADC  controller  →  Hamming  controller:  there  is  no  latency,  since  Hamming 
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controller fetches the new sample at ADCLRC's high to low transitions. In order 
to fetch the value earlier, a higher frequency for BCLK must be used.

• Hamming controller → Fourier controller: the latency in our case is equal to half 
of  ADCLRC's  period  (approximately  0.011ms),  although it  could  be  25 cycles 
(0.5us for our 50MHz).

• Fourier controller → Bands controller: 5741 cycles, or approximately 0.115ms.

• Bands controller → NNMF: 6173 cycles, or approximately 0.123ms.

• NNMF → LEDs: in total the five steps' latency is equal to 491x+10 cycles, where 
x is the number of iterations NNMF needed to converge.

In case 1000 iterations were needed for NNMF to converge, the NNMF stage would 
need roughly 10ms in order to complete. However, the algorithm in simulation showed 
that such a high number of iterations is unnecessary. In fact, as it was shown in 3.4.4 any 
average number of iterations greater than 10 gives identical transcription results. Matlab's 
simulation for the fixed-point numbers, showed us that in order to get an average number 
of iterations equal to 100, a divergence threshold equal to 200 must be used. In addition,  
ignoring the cost  function's  value  and forcing always  ten iterations  to  occur,  had no 
impact on the performance, too. The latter means that 4920 cycles could be enough for 
NNMF, resulting to total latency of 0.011+0.115+0.123+0.0984=0.3474ms.  

The latency just described concerns only the computational part. In order to get 
an idea of what the latency of the onset's detection could be, other factors should be also 
taken into account.  In  an ideal  case,  let  a single  sample  turn a  time frame with no 
recognized strokes, into one with at least one recognized stroke. This sample may come 
first after a new Fourier computation has just began. Then, there is an additional latency 
of roughly 10ms, until the next transform starts. And beyond that, the fact that window 
functions are used must be also taken into account. Because the last 441 samples of the 
2048-points FFT are always multiplied by the lowest values of the window function (less 
than 0.4), and possibly an onset will be cancelled for (at least) one transform. Summing 
the above factors, an estimation that an onset is signalled from LEDs approximately 10-
40ms after it occurs seems logical.
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V
Conclusion

Regarding the hardware implementation, the performance of the system meets the 
expected one, since the vast majority of strokes are correctly recognized. Unrecognized 
strokes are more frequent in case of simultaneous strokes on at least two instruments. The 
tests were performed on the same drum kit, using the simulation's fixed basis matrix of 
the same kit's recordings. 

Regarding the specific NNMF-based approach, it has been shown, in both real's 
and simulation's results, that it behaves very reliably. In case more than one components 
per source are used, the transcription is reliable even with more instruments present. It  
could form a very computationally effective, automatic transcription system, together with 
an algorithm that combines the various components' information, in order to extract the 
correct onsets.  However, even the minimal core that was implemented could be used, 
without further additions, to implement a tempo tracker system; that is a system which 
focuses only on snare and bass drums, in order to extract the variations in tempo during a 
drumming performance.

Evaluating the work on the thesis project in general, very useful experience was 
gained  on  VHDL  programming,  a  main  thesis  project's  motivation.  In  addition, 
approaching the automatic transcription problem from scratch, the literature survey, and 
building an FPGA ”friendly” system has been an invaluable, instructive experience. A very 
important  lesson  taught  regards  to  the  debugging  procedure  of  the  VHDL  code. 
Surprisingly, at some premature tests the system worked for the first time, although bugs 
were present in various stages of the data flow. The performance was very poor, barely 
half of the strokes were recognized, but the fact that it showed that it is working was 
misleading itself. In the sense that this poor performance was pointing to possible bugs at 
some fixed-point calculations, where errors in following the radix point, or manipulating 
the data word widths, may easily lead to not so critically erroneous behavior. Indeed there 
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were such bugs, whose corrections though had the opposite effect to system's performance. 
Until a bug at the very first stage of the algorithm was found and, as always, regarded the 
simplest  thing;  that  was  a  wrong  configuration  bit  for  the  CODEC's  registers,  that 
resulted to a wrong frequency in the clocks of ADC controller. 
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Appendix A

Figure A.1: Snare's dynamics (recording)

Figure A.2: Transcription of snare's dynamics (considerable noise on hi-hat)

Figure A.3: Basse's dynamics (recording)
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Figure A.4: Transcription of basse's dynamics (considerable noise on snare, for very intense strokes)

Figure A.5: Hi-hat's dynamics (recording)

Figure A.6: Transcription of hi-hat's dynamics (negligible noise on both snare and bass)
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Appendix B

Table B.1 shows the Bsnare basis matrix values,  calculated for three different values of 
NNMF's divergence thresholds (10-11, 10-2, 100).

frequency band 
(Hz)

Bsnare for
divergence 
threshold
= 10-11

Bsnare for
divergence 
threshold

= 10-2

Bsnare for
divergence 
threshold

= 100

0-100 1.3726 1.1095 1.2348

100-200 7.8376 6.3353 7.0508

200-300 28.1783 22.7770 25.3495

300-400 11.6785 9.4399 10.5061

400-510 11.0821 8.9579 9.9696

510-630 12.2025 9.8635 10.9775

630-770 10.1586 8.2114 9.1388

770-920 11.1325 8.9985 10.0148

920-1080 6.3861 5.1620 5.7450

1080-1270 5.6378 4.5571 5.0718

1270-1480 6.0282 4.8727 5.4230

1480-1720 4.9896 4.0332 4.4887

1720-2000 4.6511 3.7595 4.1841

2000-2320 6.0283 4.8728 5.4231

2320-2700 5.2454 4.2400 4.7188

2700-3150 6.9593 5.6253 6.2606

3150-3700 6.9419 5.6113 6.2450

3700-4400 7.6547 6.1874 6.8862

4400-5300 9.5331 7.7057 8.5760

5300-6400 10.3215 8.3430 9.2853

6400-7700 11.4783 9.2781 10.3260

7700-9500 19.6498 15.8832 17.6771

9500-12000 19.3563 15.6460 17.4130

12000-15500 13.9664 11.2893 12.5643

15500-22050 11.1513 9.0137 10.0318

Table B.1: Snare's fixed basis matrices for three divergence thresholds
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Appendix C

Figure C.1: Snare's training sample spectrogram

Figure C.2: Bass' training sample spectrogram
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Figure C.3: Closed hi-hat's training sample spectrogram

Figure C.4: Low tom's training sample spectrogram

Figure C.5: High tom's training sample spectrogram

- 72 -



Figure C.6: Ride's training sample spectrogram

Figure C.7: Crashe's training sample spectrogram
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Appendix D

The  transcription  of  the  seven-instruments  60bpm  rhythm  follows.  Each  source  is 
represented by seven components; the useful ones are highlighted. In all the cases, except 
the hi-hat's, by adding the highlighted components of each source, the recognition results 
to 100% success rate. The hi-hat could be recognized correctly 3 out of 4 times, but also 2 
false onsets are recognized. 

Figure D.1: Transcription of snare for the seven-instruments rhythm 

Figure D.2: Transcription of bass for the seven-instruments rhythm
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Figure D.3: Transcription of closed hi-hat for the seven-instruments rhythm

Figure D.4: Transcription of low tom for the seven-instruments rhythm
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Figure D.5: Transcription of high tom for the seven-instruments rhythm

Figure D.6: Transcription of ride for the seven-instruments rhythm
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Figure D.7: Transcription of crash for the seven-instruments rhythm
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