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Abstract

In this paper we propose a method for construction of feed-forward neural classi�ers based on reg-

ularization and adaptive architectures. Using a penalized maximum likelihood scheme, we derive a

modi�ed form of the entropic error measure and an algebraic estimate of the test error. In conjunction

with Optimal Brain Damage pruning, a test error estimate is used to select the network architecture.

The scheme is evaluated on four classi�cation problems.

Keywords: Neural classi�ers, Architecture optimization, Regularization, Generalization estimation.
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1 INTRODUCTION

Pattern recognition is an important aspect of most scienti�c �elds and indeed the objective of most

neural network applications. Some of the classic applications of neural networks like Sejnowski and

Rosenbergs \NetTalk" concern classi�cation of patterns into a �nite number of categories. In modern

approaches to pattern recognition the objective is to produce class probabilities for a given pattern.

Using Bayes decision theory, the \hard" classi�er selects the class with the highest class probability,

hence, minimizing the probability of error. If di�erent costs are associated with the individual classes,

a risk-based approach can be adopted (Bishop, 1995),(Ripley, 1996). The conventional approach to

pattern recognition is statistical and concerns the modeling of stationary class-conditional probability

distributions by a certain set of basis functions, e.g., Parzen windows or Gaussian mixtures (Duda &

Hart, 1973),(Bishop, 1995),(Ripley, 1996).

In this paper we de�ne and analyze a system for construction and evaluation of feed-forward neural

classi�ers based on regularization and adaptive architectures. The proposed scheme is a generalization

of the approach we have suggested for time series processing (Svarer, Hansen, & Larsen, 1993; Svarer,

Hansen, Larsen, & Rasmussen, 1993) and for binary classi�cation in the context of a medical application

(Hintz-Madsen, Hansen, Larsen, Olesen, & Drzewiecki, 1995). The key concept of the new methodology

for optimization of neural classi�ers is an asymptotic estimate of the test error of the classi�er providing

an algebraic expression in terms of the training error and a model complexity estimate. Our approach

is a penalized maximum likelihood scheme. The likelihood is formulated using a simple stationary noise

model of the pattern source. For any given input pattern there can be de�ned a probability distribution

over a �xed �nite set of classes. The training set involves simply labeled data, i.e., each input vector

is associated with a single class label. The task of the network is to estimate the relative frequencies

of class labels for a given pattern. In conjunction with SoftMax normalization of the outputs of a

standard, computationally universal, feed-forward network we recover a slightly modi�ed form of the

so-called entropic error measure (Bridle, 1990). For a �xed architecture the neural network weights

are estimated using a Gauss-Newton scheme (Seber & Wild, 1995), while the model architecture is

optimized using Optimal Brain Damage (Cun, Denker, & Solla, 1990). The problem of proper selection

of regularization parameters is also briey discussed, see also (Larsen, L.K. Hansen, Svarer, & Ohlsson,

1996).

While most of the components of our approach have been described in brief conference papers,

we have here aimed at a complete account of the computational aspects as well as thorough tests on

practical examples.

2 NEURAL CLASSIFIERS

Assume we have a training set, D, consisting of q input-output pairs

D = f(x�; y�)j� = 1; :::; qg (1)

where x is an input vector consisting of nI elements and y is the corresponding class label. In this

presentation we will assume that the class label is of the de�nite form y = 1; :::; nO, with nO being the

number of classes. An alternative soft target assignment might be relevant in some practical contexts

where the target could be, e.g., an estimate of class probabilities for the given input (Ripley, 1996).

We aim to model the posterior probability distribution

p(y = ijx); i = 1; : : : ; nO: (2)

In some applications it might be desirable to use a rejection threshold when classifying, that is if all

of the posterior probabilities fall below this threshold then no classi�cation decision is made, see e.g.,

(Duda & Hart, 1973), (Hintz-Madsen et al., 1995).

To represent these distributions we choose the following feed-forward network architecture:

hj(x
�) = tanh

 
nIX
k=1

wjkx
�

k
+ wj0

!
(3)

�i(x
�) =

nHX
j=1

Wijhj(x
�) +Wi0 (4)
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with nI input units, nH hidden units, nO output units, and parameters u = (w;W), where wj0
and Wi0 are thresholds. To ensure that the outputs can be interpreted as probabilities, we use the

normalized exponential transformation known as SoftMax (Bridle, 1990):

p̂(y� = ijx
�
) �

exp[�i(x
�)]P

nO

i0=1
exp[�i0 (x�)]

(5)

where p̂(y� = ijx�) is the estimated probability, that x� belongs to class i. Numerical aspects of

equation (5) are discussed in appendix A.

Assuming that the training data are drawn independently, the likelihood of the model can be ex-

pressed as

P (Dju) =

qY
�=1

nOY
i=1

p̂(y� = ijx
�
)�i;y� (6)

where the Kronecker delta is de�ned by: �i;y� = 1 if i = y�, otherwise �i;y� = 0.

Training is based on minimization of the negative normalized log-likelihood

E(u) = �
1

q
logP (Dju) =

1

q

qX
�=1

�(x�; y�;u) (7)

where

�(x�; y�;u) = �

nOX
i=1

�i;y�

"
�i(x

�)� log

 
nOX
i0=1

exp[�i0 (x
�)]

!#
: (8)

Numerical aspects of equation (8) are discussed in appendix A.

In order to eliminate over�tting and ensure numerical stability, we augment the cost function by a

regularization term, e.g., a simple weight decay, to form a penalized log-likelihood,

C(u) = E(u) +
1

2
uTRu (9)

where R is a positive de�nite matrix. In this paper we consider a diagonal matrix with elements

2�j�j;k=q.

The gradient of (7) is

@E(u)

@uj
= �

1

q

qX
�=1

nOX
i=1

[�i;y� � p̂(y� = ijx�)]
@�i(x

�)

@uj
: (10)

See appendix B for details.

The matrix of second derivatives (the Hessian) can be expressed as

Hjk �
@2E(u)

@uj@uk
�

1

q

qX
�=1

nOX
i=1

nOX
i0=1

p̂(y� = ijx�) [�i;i0 � p̂(y� = i0jx�)]
@�i0(x

�)

@uk

@�i(x
�)

@uj
(11)

where we have used a Gauss-Newton like approximation. See appendix B for details.

It is important to notice that the Hessian in (11) is singular everywhere for the SoftMax network.

This is due to the redundant output representation (5) which leaves the set of outputs invariant to

certain linear transformations of the hidden-to-output weights. The use of regularization, however,

ensures that the e�ects of this symmetry don't interfere with training or evaluation of the network. We

are currently working on a modi�ed implementation which explicitly removes the SoftMax redundancy

(Andersen, Larsen, Hansen, & Hintz-Madsen, 1997).

Using matrix/vector notation the Gauss-Newton paradigm of updating the weights can now be

computed as (Seber & Wild, 1995)

unew = u� � (H+R)
�1

�
@E

@u
+Ru

�
(12)
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where Ru and R are the �rst and second derivatives of the regularization term, respectively, and � is

a step-size, that may be used to ensure a decrease in the cost function, e.g., by line search.

The determination of regularization parameters is an issue of ongoing research. A natural approach

is to minimize the test error with respect to the regularization parameters. Here one may use an

estimate of the test error, as derived in the next section. This technique is demonstrated in section

3.1. Another approach which is based on minimization of a validation error has been implemented in

(Larsen et al., 1996).

2.1 Test Error Estimate

One of the main objectives in our approach is to estimate a network model with a high generalization

ability. In order to obtain this we need an estimate of the generalization ability of a model. The

generalization, or test error, for a given network u may be de�ned as

Etest(u) =

Z
�(x; y;u)P (x; y) dxdy (13)

where P (x; y) is the true underlying distribution of examples and �(x; y;u) is the error on example

(x; y). Since the test error involves an average over all possible examples, it is in general not accessible,

but it can be estimated by using additional statistical assumptions, thus giving us the following estimate

for the average test error of a network u estimated on a training set D (Murata, Yoshizawa, & Amari,

1994), dhEtesti = Etrain(u(D)) +
Ne�

q
(14)

where Etrain(u(D)) is the training error of the model. The e�ective number of parameters is given by

Ne� = Tr[H(H+R)�1], where R is the second derivative of the regularization term.

In brief, the following assumptions enter the derivation of (14):

� Independence of input and error on output.

� Many examples per weight: Ne�=q ! 0.

� There exists a network, u�, that implements the true model.

For a detailed discussion on test error estimates and their assumptions, see, e.g., (Larsen, 1992),

(Larsen, 1993). This estimate of the test error averaged over all possible training sets may be used

to select the optimal network e.g., among a nested family of pruned networks; hence, be used as a

pruning stop criterion similarly to our procedure for evaluation of function approximation networks

(Svarer et al., 1993, 1993).

2.2 Pruning with Optimal Brain Damage

In order to reduce and optimize a networks architecture, we recommend to apply a pruning scheme such

as Optimal Brain Damage (OBD) (Cun et al., 1990). The aim of OBD is to estimate the importance of

the weights for the training error and rank the weights according to their importance. If the importance

is estimated using a second order expansion of the training error around its minimum, the saliency for

a weight ui is (Svarer et al., 1993)

si =

�
Rii +

1

2
Hii

�
u2
i

(15)

where the Hessian Hii is given by (11) and Rii is the i'th diagonal element of R.

The following assumptions enter the derivation of OBD:

� The training error is at a minimum.

� The terms of third and higher orders in the deleted weights can be neglected.
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� The o�-diagonal terms in the Hessian,
@
2
E(u)

@uj@uk
, can be neglected (if more than one weight is

pruned).

By repeatedly removing weights with the smallest saliencies and retraining the resulting network, a

nested family of networks is obtained. Here we may use the previously derived test error estimate to

select the \optimal" network.

2.3 Recipe Overview

The algorithm can be summarized by the following:

1. Determine regularization parameters (e.g. by using the grid-sampling technique described below

in section 3.1).

2. Train/retrain network using Gauss-Newton optimization.

3. Compute the estimated test error.

4. Compute OBD saliencies and remove a percentage of the weights with the smallest saliency. Goto

2, if # of remaining weights > 0.

5. Select the network with the smallest estimated test error as the optimal network.

2.4 Comments on Algorithm Complexity

When choosing an algorithm for solving a particular problem, it is necessary not only to ensure that the

algorithm is theoretically well founded, but it should also be applicable in practice. One limiting factor

is the available computational resources. Though a diminishing problem, it still needs consideration.

In this section we'll briey discuss the complexity of the proposed algorithm.

For each training iteration it is necessary to compute the regularized Hessian and its inverse. Com-

puting the Hessian is an O(qnO
2N2) operation, where q is the number of training examples, nO the

number of classes and N the number of weights, while inverting the regularized Hessian is an O(N3)

operation. Since the number of training examples is usually larger than the number of weights, it is the

computation of the Hessian that can be a limiting factor.

As a guiding principle, this algorithm will on a computer with performance equivalent to a Pentium

200 MHz machine produce results in hours when dealing with network con�gurations of hundreds of

weights, while using thousands of weights is less feasible and will take considerable longer.

Note, that after each pruning step with OBD, it is usually only necessary to retrain the network for

just a few iterations. Because only weights with small saliencies are removed, the minimum of the cost

function is only slightly changed.

3 EXPERIMENTS

The proposed methodology for constructing neural classi�ers has been evaluated on several problems:

the arti�cial contiguity problem, the real world problems of glass classi�cation, bacteria cell classi�cation,

and skin lesion classi�cation.

3.1 The Contiguity Problem

The contiguity problem has been used for evaluating optimization schemes, see e.g., (Denker et al., 1987),

(Gorodkin, Hansen, Krogh, Svarer, & Winther, 1993). The boolean input vector (�1) is interpreted
as a one-dimensional image and connected clumps of +1's are counted. Two classes are de�ned: those

with two and three clumps. We consider the case, where nI = 10. In this case there are 792 legal input

patterns consisting of 432 patterns with three clumps and 360 with two clumps. We use a randomly
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Figure 1: The estimated test error for the contiguity problem as function of the weight decay parameters.

The grid indicates the points where the estimated test error is sampled.

selected training set with 150 patterns and a test set with 510 patterns both containing an even split

of the two classes.

Initially a network architecture consisting of 10 input units, 8 hidden units and 2 output units

was chosen. We only employ two di�erent weight decays: �w for the input-to-hidden weights and �W
for the hidden-to-output weights. By sampling the space spanned by �w and �W for non-pruned

networks1 with e.g., a 3�3 grid and computing the estimated test error , it is possible to �t e.g., a

diagonal quadratic form2 in a least-square sense to the sample points, locate the minimum3 of the

quadratic form and use the weight decays found for the design of the network. This is shown in �gure

1 and 2. In order to cover a large range of values for the regularization parameters, it's appropriate

to use a logarithmic scale for the sampling grid. The values for �w and �W should be chosen large

enough to ensure numerical stability in equation 12, yet small enough in order not to impose too large a

restriction on the number of degrees of freedom. This method is a quick and dirty way to determine the

approximate order of magnitude for the regularization parameters and works best when the estimated

test error surface is close to being convex. This is typically the case due to the nature of the test error

estimate.

Next ten fully connected networks were trained4 using the estimated weight decay parameters,

subsequently pruned using the OBD saliency ranking, removing one weight per iteration. In �gure 3

and 4 the distribution of the individual test errors is shown for fully connected networks and pruned

networks, respectively. The error distribution shows that the mean error is predominantly driven by

a few examples with a high error, thus suggesting that one should monitor the median5 error as well

in order to get a good indication of a network's performance. This problem arises due to the nature

of the logarithm in the error function and one should be aware of this property when evaluating the

performance.

Seven of the ten pruned networks had a classi�cation6 error on the test set between 0% and 3:3%,

while three networks had an error of 16� 19%. In (Gorodkin et al., 1993) seven of ten networks had

an error of 8 � 38% using the same size of training set, while three networks had errors around 0%.

Compared with these results, our classi�er design scheme has a signi�cantly higher yield.

1To reduce the computational burden.
2Diagonal quadratic form: (z � z0) = (x� x0)

2=a2 + (y � y0)
2=b2.

3In case the minimum is located outside the sample-grid, one should relocate the grid and �nd a new minimum.
4Training was stopped when the 2-norm of the gradient vector was below 10�5.
5Emedian(u) = median f�(x�; y�;u)j� = 1; :::; qg, where � is the error measure de�ned by equation (8).
6Following Bayes decision theory, the network output with the highest probability determines the class label.
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Figure 2: Quadratic form �tted to the 3�3 grid for the contiguity problem shown in �gure 1. Minimum

located at (�w; �W ) = (0:68; 2:8 � 10�4).
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Figure 3: The distribution of the errors of the individual test examples for 10 fully connected contiguity

networks combined in one pool. Notice the \long tail" of the distribution resulting in a high mean error

(0.94) and a small median error (0.022) i.e., the mean is predominantly driven by a few examples with

high error.
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Figure 4: The distribution of the errors of the individual test examples for 10 pruned contiguity

networks selected by the minimum of the estimated test error combined in one pool. The mean error is

0.37 and the median error is 0.0014 showing a signi�cant performance improvement as result of pruning

compared to the fully connected networks in �gure 3.

3.2 The Glass Classi�cation Problem

The real world glass classi�cation problem is a part of the Proben1 neural network benchmark collection

(Prechelt, 1994). The task is to classify glass splinters into six classes. The glass splinters have been

chemical analyzed and nine di�erent measures have been extracted from the analysis, see (Prechelt,

1994) for details. The original dataset (glass1) consists of 214 examples divided into a training set

(107), a validation set (54) and a test set (53). Since our approach doesn't require a validation set,

we have used two di�erent training scenarios: one using the original training set and one using a new

training set consisting of the original training and validation set. The initial network architecture

chosen consisted of 9 input units, 6 hidden units and 6 output units. We estimated the regularization

parameters using the sample-grid technique and the small training set. The parameters were found to

be �w = 2:2 � 10�2 and �W = 4:7 � 10�4.

In �gure 5-6 and �gure 7-8 we show the pruning results of networks trained with the small and large

training set, respectively, using the estimated regularization parameters. The \optimal" network found

with the small training set had a classi�cation error of 32% on the test set, while the \optimal" network

found with the large training set had an error of 28%. In (Prechelt, 1994) Prechelt reports a test error

of 32% for a �xed network architecture using the small training set. The validation set is used to stop

training, thus he e�ectively uses both the training and validation set for training (Sj�oberg, 1995). Our

approach using the estimated test error for model selection eliminates the need for a validation set, thus

allowing us to use more data for the actual training resulting in a better generalization performance.

The problem of comparing the performance of neural network models is addressed in (Larsen & Hansen,

1995).

For comparison a standard k-Nearest-Neighbor7 (k-N-N) classi�cation (Duda & Hart, 1973) was

performed using the large training set. The training error may be computed from the training set by

including each training pattern in the majority vote. A leave-one-out \validation" error on the training

set may be computed by excluding each training pattern from the vote. Finally, the test patterns may

be classi�ed by voting among the k nearest neighbors found among the training patterns. Using the

leave-one-out validation error we found that k = 2 was optimal for this data set. The 2-N-N scheme

7Within k-N-N a pattern is classi�ed according to a majority vote among its k nearest neighbors using the simple

Euclidean metric.
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Figure 5: Pruning of a glass classi�cation network using the small training set. The vertical line indicates

the \optimal" network selected by the minimum of the estimated test error. Note that the test error

is very high and evolves quite di�erently from the classi�cation error on the test set shown in �gure 6.

The development of the median test error is more similar to the development of the classi�cation error

on the test set.
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Figure 6: The classi�cation error during pruning of a glass classi�cation network using the small training

set. The vertical line indicates the \optimal" network selected by the minimum of the estimated test

error shown in �gure 5.
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Figure 7: Pruning of a glass classi�cation network using the large training set. The vertical line indicates

the \optimal" network selected by the estimated test error.
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Figure 8: The classi�cation error during pruning of a glass classi�cation network using the large training

set. The vertical line indicates the \optimal" network selected by the estimated test error shown in

�gure 7. Notice the overall lower classi�cation error on the test set compared to �gure 6.
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Figure 9: Pruning of a bacteria cell network. The vertical line indicates the \optimal" network selected

by the minimum of the estimated test error.

had a classi�cation error of 34% on the test set. Thus the performance of the optimized k-N-N scheme

cannot match Prechelt's or our networks.

3.3 The Bacteria Cell Classi�cation Problem

In order to evaluate the quality of water in e.g. oceans and lakes, it is desirable to know the type and

extent of bacteria cells in water samples. Here we address the problem of classifying cells in microscopic

images into �ve di�erent morphological classes. 398 cells have been detected and their shapes are

described by 10 complex Fourier descriptors (Granlund, 1972). The dataset is divided into a training

set (320) and a test set (78).

Initially a network architecture consisting of 20 input units, 6 hidden units and 5 output units

was chosen. The regularization parameters were after preliminary experiments set to �w = 0:5 and

�W = 0:5.

In �gure 9 a typical pruning scenario for a network is shown. Before pruning this particular network

classi�ed 96:9% of the training set and 85:9% of the test set correctly, while the \optimal" pruned

network in �gure 10 had a classi�cation rate of 92:5% on the training set and 92:3% on the test set.

Thus the pruning has increased the generalization ability of the network.

A k-N-N classi�cation was performed for comparison. Using the leave-one-out validation error as

described in section 3.2 we found that k = 3 was optimal for this data set. The 3-N-N scheme classi�ed

91:0% of the test set correctly. Thus for this data set the performance of the neural and k-N-N classi�er

is similar.

3.4 The Skin Lesion Classi�cation Problem

The incidence of malignant melanoma, the most lethal of skin cancers, has risen rapidly during the last

50 years. Fortunately patients can be saved from this life-threatening cancer, if it is detected at an early

stage. Thus, in recent years, there has been an increased interest in schemes for automatic and early

detection of melanoma. Digital imaging may assist and improve the possibility of such early detections.

A review of digital imaging in this �eld was recently published in \Skin Research and Technology"

(Stoecker, Moss, Ercal, & Umbaugh, 1995).

From a collection of color photographs of skin tumors at The National University Hospital of Den-

mark 21 statistical measurements describing color and texture properties have been acquired for each

tumor and are used for classi�cation into three groups: Benign nevi (non-cancer), dysplastic nevi (non-

cancer, but increased risk of developing cancer) and melanoma.
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Figure 10: The \optimal" pruned bacteria cell network selected by the minimum estimated test error

in �gure 9. Note that a large number of inputs are not used. A vertical line thorugh a node indicates

that a threshold is present.

Table 1: Confusion matrix for the test set using fully connected (103 weights) and pruned networks

(41-62 weights). The mean and standard deviation of ten runs are reported. Note that the classi�er

performs best for the critical melanoma class. y indicates the estimated output classes.

Fully connected ANN Pruned ANN

Conf. mat. Benign nevi Dyspl. nevi Melanoma Benign nevi Dyspl. nevi Melanoma

Benign neviy 42.4�9.1% 29.0�6.2% 22.0�10.1% 47.6�9.3% 27.5�7.6% 18.5�8.8%

Dyspl. neviy 24.3�5.2% 49.5�6.9% 5.5�3.7% 22.4�6.0% 53.5�5.8% 5.5�4.4%

Melanomay 33.3�6.7% 21.5�6.7% 72.5�7.6% 30.0�8.4% 19.0�3.9% 76.0�7.8%

A total of 180 images with an even split of the three classes were used for training and 60 images

were used for testing. Ten feed-forward networks with an initial architecture consisting of 21 inputs, 4

hidden units and 3 output units were trained and subsequently pruned; hence resulting in ten nested

families of pruned networks. The estimate of the test error for each family was used to select the network

with the lowest estimated generalization error. The weight decay parameters were after preliminary

experiments set to �w = 0:1 and �W = 1.

In �gure 11-13 a typical pruning scenario is shown. Table 1 shows the confusion matrix for the

test set classi�ed with the fully connected networks and the selected \optimal" networks. The mean

and standard deviation of the ten runs are reported. Overall the fully connected networks classi�ed

89:6� 1:6% of the training set and 54:6� 4:1% of the test set correctly, while the results for the pruned

networks are 86:7� 3:6% for the training set and 58:9 � 2:1% for the test set. Thus the pruning has

increased the generalization ability of the networks. An important e�ect of the pruning approach is the

selection of input features, that are salient for the classi�cation; thus providing us with information that

can be used in clinical dermatology. Of the ten pruned networks, four didn't use input 15 and three

didn't use input 16. Such information can be valuable feedback for the design of future experiments. In

the particular case, the two inputs that some networks discard are color variances, suggesting that these

do not carry useful information for the classi�er. Hence, we might e.g. investigate the color control of

the illumination system in order to stabilize color variances.

A k-N-N classi�cation was performed for comparison. Using the validation error as described in

section 3.2 we found that k = 6 was optimal for this data set. The 6-N-N scheme classi�ed 74:7% of the

training set and 57:3% of the test set correctly. Thus the performance of the optimized k-N-N scheme

fall in between the pruned and fully connected networks.
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Figure 11: Pruning of a skin lesion network. The vertical line indicates the \optimal" network selected

by the estimated test error. Notice the big di�erence between the test error and median test error.
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Figure 12: The classi�cation error during pruning of a skin lesion network. Note again that the median

test error in �gure 11 follows the development of the classi�cation test error better than the test error.
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Figure 13: The \optimal" pruned skin lesion network (from 103 to 48 weights) selected by the minimum

of the estimated test error in �gure 11. Note that two inputs are not used.

4 CONCLUSION

We have developed a methodology for construction and evaluation of neural classi�ers. Our aim was

to present a practical approach dealing with the problems of over�tting and model selection without

the use of a validation set. The approach was applied to one arti�cial and three real world problems.

It was shown that the test error estimator for classi�ers could be used to select optimal networks

among families of pruned networks, thus increasing the generalization ability compared to non-pruned

networks. Currently, the aim is to establish more empirical data for the validation of the neural classi�er

construction approach.

A NUMERICAL CONSIDERATIONS

When doing computer simulations, one has to consider the e�ects of calculations with �nite word-

length data. Here we rewrite the SoftMax equation (5) and the error measure in equation (8) to

prevent overow caused by the exponential function. The reformulations ensure that the argument to

the exponential function is always smaller than or equal to zero. Equation (5) can be rewritten as

p̂(y� = ijx�) =
exp[�i(x

�)]P
i0
exp[�i0 (x�)]

(16)

=
exp[�i(x

�)� �imax(x
�)]P

i0
exp[�i0 (x�)� �imax(x

�)]
(17)

=
exp[�i(x�) � �imax(x

�)]

1 +
P

i0 6=imax
exp[�i0(x�)� �imax(x

�)]
(18)

where

�imax(x
�) = max

i

f�i(x
�)g: (19)

Equation (8) is reformulated as

�(x�; y�;u) = �
X
i

�i;y�

"
�i(x

�)� log

 X
i0

exp[�i0 (x
�)]

!#
(20)

= �
X
i

�i;y�

"
�i(x

�)� log

 
exp[�imax(x

�)]
X
i0

exp[�i0 (x
�)� �imax(x

�)]

!#
(21)
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= �
X
i

�i;y�

24�i(x�)� �imax(x
�)� log

0@1 + X
i0 6=imax

exp[�i0 (x
�)� �imax(x

�)]

1A35(22)
where �imax(x

�) is given by (19).

B COMPUTATION OF GRADIENT AND HESSIAN

The gradient of (7) is

@E(u)

@uj
= �

1

q

qX
�=1

nOX
i=1

�i;y�

24@�i(x�)
@uj

�

P
nO

i0=1

�
exp[�i0(x

�)]
@�i0 (x

�
)

@uj

�
P

nO

i00=1
exp[�i00 (x�)]

35 (23)

= �
1

q

qX
�=1

nOX
i=1

nOX
i0=1

�i;y�

24�i0;i @�i(x�)
@uj

�
exp[�i0(x

�)]
@�i0 (x

�
)

@ujP
nO

i00=1
exp[�i00 (x�)]

35 (24)

= �
1

q

qX
�=1

nOX
i=1

nOX
i0=1

�i;y� [�i0;i � p̂(y� = i0jx�)]
@�i0 (x

�)

@uj
(25)

where �i;y� = 1 if i = y�, otherwise �i;y� = 0.

Note that only when the index i equals the correct class for example x� in (25), is the contribution

to the gradient non-zero. This means that equation (25) can be reduced to

@E(u)

@uj
= �

1

q

qX
�=1

nOX
i=1

[�i;y� � p̂(y� = ijx�)]
@�i(x

�)

@uj
(26)

The Hessian can be expressed as

@2E(u)

@uj@uk
= �

1

q

qX
�=1

nOX
i=1

�
[�i;y� � p̂(y� = ijx�)]

@2�i(x
�)

@uj@uk
�
@p̂(y� = ijx�)

@uk

@�i(x
�)

@uj

�
(27)

�
1

q

qX
�=1

nOX
i=1

@p̂(y� = ijx�)

@uk

@�i(x
�)

@uj
(28)

=
1

q

qX
�=1

nOX
i=1

nOX
i0=1

p̂(y� = ijx�) [�i;i0 � p̂(y� = i0jx�)]
@�i0(x

�)

@uk

@�i(x
�)

@uj
(29)

where we have used the Gauss-Newton approximation (Seber & Wild, 1995). This is motivated by

Fisher's argument which is valid when using a log-likelihood cost function.
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