
Visualization nature-inspired
meta-heuristics for optimization

problems

Hans Erik Nielsen

Kongens Lyngby 2012

2012-12

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary (Danish)

Målet for denne afhandling er at visualisere og implementere forskellige meta-
heuriske algoritmer og derved vise at disse algoritmer kan bruges i praksis. Meta-
heuriske algoritmer er insprireret af naturen, og indeholder en vis tilfældighed,
men på trods af de opfører sig tilfældigt kan de bruges til at få resultater, som
optimale bit-strenge eller korteste vej rund i en graf. Algoritmerne (1+1)EA
og RLS er visualiseret på den måde at spredningen af 1-taller i en bit-streng
afgører positionen af et punkt i en rund �gur. SA og ACO med MMAS er visua-
liseret i en 2-d graf, hvor problemet med Travelling Salesman Problem løses ved
hjælp af disse algoritmer. Visuelt bliver rundturen i grafen kortere og kortere, jo
længere algoritmerne kører. Der bliver beskrevet, hvordan algoritmerne er gået
fra teori til en software implementation og hvilke problemer, der har opstået i
forbindelse med implementationen. Desuden beskrives forskellige videreudvik-
linger af programmet, som kunne implementeres i en ny version af programmet.
Algoritmernes e�ektivitet i softwaren er testet og analyseret. Testene beskriver,
hvilken af (1+1)EA og RLS, der opnår den bedste e�ektivitet i udviklingen af
den stærkeste bit-streng. Testene ved Simuleret Annealing og Ant Colonization
Optimazation tester deres e�ektivitet og sammenligner denne med brute for-
ce. Deres e�ektivitet sammenlignes desuden med hinanden. Der re�ekteres over
deres e�ektivitet og der gives et bud på deres e�ektivitet i større data-mængder.

ii

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling at the Technical University of Denmark in ful�lment of the require-
ments for acquiring an B.Sc. in Informatics.

The thesis deals with Visualization of nature-inspired meta-heuristics for opti-
mization problems. In which some meta-heuristics algorithms are investigated
and later implemented into a software framework to show they are working and
also that they are working e�cient.

The thesis consists of a description of the used algorithms, software implemen-
tation and test/analysis.

The references are in usual LATEX typesetting notation, details about the source
is available in the Bibliography list.

Lyngby, 09-May-2012

Hans Erik Nielsen

iv

Acknowledgements

I would like to thank my supervisor, Carsten Witt, for advices and answers
for my many questions during the duration of the project and also supporting
me with lots of material and implementation ideas. I would also like to thank
my family and friends for understanding my priority of the time between the
project and the time being with them. My workplace also deserves a great
thanks for being �exible when it comes to my work time. Last I want to thank
my girlfriend, Sara, for supporting me through out the project and waking me
up in the morning.

vi

Contents

Summary (Danish) i

Preface iii

Acknowledgements v

1 Introduction 1

2 Basic Graph Theory 3

3 Nature-inspired algorithms 7
3.1 Evolution algorithms . 7
3.2 Fitness functions . 8
3.3 Comparing (1+1)EA and RLS 9
3.4 2-opt . 9
3.5 Simulated annealing . 10
3.6 Ant colonization optimization . 11
3.7 Comparing SA and ACO . 12

4 Software 15
4.1 Choice of platform . 15
4.2 Requirement Analysis GUI . 15
4.3 Graphical User Interface . 16
4.4 Implementation of the algorithms 17

4.4.1 (1+1)EA and RLS . 17
4.4.2 Permutations . 18
4.4.3 File Load . 18
4.4.4 Simulated Annealing . 19
4.4.5 Ant Colonization Optimization 20

viii CONTENTS

4.5 Problems during implementation 21
4.5.1 Technical problems . 21
4.5.2 Algorithmic . 22

4.6 Possible extensions . 23
4.6.1 Algorithmic . 23
4.6.2 Technical . 24

5 Analysis and Results from the program 25
5.1 (1+1)EA and RLS . 25

5.1.1 Goal of the test . 25
5.1.2 Test . 26

5.2 Simulated Annealing . 26
5.2.1 Goal of the test . 26
5.2.2 Test . 27
5.2.3 Conclusion on SA . 28

5.3 ACO . 28
5.3.1 Goal of the test . 28
5.3.2 Test . 29
5.3.3 Conclusion on ACO . 30

5.4 Comparing ACO to SA . 30
5.4.1 Comparing results . 30

5.5 Conclusion on the permutation test 30

6 Conclusion 33

A Tables and Graphs 35

Bibliography 43

Chapter 1

Introduction

Meta-heuristics algorithms are methods to solve problems, where these meth-
ods are based on things in the nature. Meta-heuristic algorithms are often used
in optimization problems, where they evolve into a better solution over time.
Most of the research of meta-heuristic algorithms is relative new[10] and the
algorithms are therefore not used in many applications, in this thesis I will show
that meta-heuristic algorithms can work in an application. To give a better
on understanding how they work, the algorithms are implemented visually, the
framework of this thesis is also implemented in a way, where it is easy to extend
the program. More speci�c I will show that an Evolution Algorithm can be
implemented visually and how it can evolve over a string generation over gener-
ation. I will show how Simulated Annealing and Ant Colonization Optimization
can be visually implemented to �nd short paths in a graph. The thesis consists
of 6 chapters, where the �rst is this introduction. The second chapter describes
a bit graph theory used in the thesis. The third chapter is a review of the theo-
retical algorithms used in the program. The fourth chapter is a description on
how the algorithms has gone from theory into the actual implementation. The
�fth chapter covers testing of the program in regards to the algorithms and also
contains a bit of analysis of the performance. The sixth chapter contains a small
summary of the thesis and conclusion.

2 Introduction

Chapter 2

Basic Graph Theory

In order to explain the algorithms and data structures used in this thesis, a bit
basic knowledge of graph theory is needed. In this thesis a graph (G) consists of
a �nite number of vertices called (v) and �nite number of edges called (e). An
edge (e) connects two vertices to each other and the two vertices relationship
with each other is neighbours N. Each edge has a weigh, one can de�ne this as
the cost of travelling on the speci�c edge. In this thesis and implementation this
cost is always the Euclidean distance, i.e. the length between the two vertices.
A cycle in graph theory is when you travel from a vertex (v) in (G) along a
path that consists of distinct edges and you end up in the same vertex (v) as
you began. An example on a cycle is drawn in Figure 2.1.

A Hamiltonian cycle, the de�nition is based on the web-page [9], is a path were
all vertices are connected to each other in that way that if you start at a random
vertex (v) in the graph (G) and travel along all the edges, you will at some point
end up in the starting vertex and also have visited all the other vertices in (G).
An example of a Hamiltonian cycle is given in Figure 2.2.

Some of the de�nitions are a bit free, not all edges have to be travelled to
form a Hamiltonian cycle, the Hamiltonian cycle can be formed by a sub-part
of the graph as long as all the vertices are contained in the path. This extra
de�nition of a Hamiltonian cycle will be used in the implementation of the ACO
algorithm. The de�nition of a Hamiltonian cycle is the fundamental idea behind

4 Basic Graph Theory

Figure 2.1: The points 1,2,3 together form a cycle

Figure 2.2: All the points in the graph(1,2,3,4,5) together form a Hamiltonian
cycle

the travelling salesperson problem(TSP). To �nd a solution for TSP, one must
�nd a Hamiltonian cycle in the graph. However TSP is not only about �nding

5

a solution, it is also about �nding a good solution. A good solution means that
�nding a Hamiltonian cycle with a short distance and it is preferable to �nd the
shortest cycle of them all. But �nding the shortest cycle is not the most simple
thing in the world. TSP is a so called NP-complete problem, which means all
combinations have to be tried before it can be veri�ed which is the shortest
cycle. Using this a simple brute force algorithm would �nd the shortest path
by going through all the combinations one by one. This will however take a lot
of time and is not very e�cient, if there are more than 4 vertices. This thesis
and implementation will use meta-heuristics algorithms instead of brute force
to make faster and e�cient solutions to the TSP. These solutions might not �nd
the shortest path, but they will however give a good estimate on the shortest
path.

6 Basic Graph Theory

Chapter 3

Nature-inspired algorithms

The meta-heuristic algorithms that are visualized in the program are described
in this section. There is a description of each of the algorithms both in pseudo-
code and text. The sections also holds theory for the non-meta-heuristic algo-
rithms used in the implementation.

3.1 Evolution algorithms

Evolution describes the changes from a former generation to a newer generation.
The changes can both be good and bad, but is made to overcome a problem. Eg.
this can be seen in the evolution of laptops which has evolved to smaller devices
to make them more mobile. A theory, that uses evolution as it's backbone,
is survival of the �ttest or natural selection. The theory predicts that the
individuals that are best to adapt, has the highest chance to survive. Evolution
algorithms are based on this idea. The algorithm implemented in the program
is based on a the algorithm (1+1) EA, which is described in [7]. The algorithm
'Random Local Search' is described in the same book, which has also been
implemented, this algorithm is not a meta-heuristic, however it is similar to
(1+1) EA and it is therefore good to use this algorithm to compare with the
(1+1) EA. The two algorithm is (1+1) EA Algorithm 1 and RLS Algorithm

8 Nature-inspired algorithms

2. The algorithm 1 �nds the strongest individual of the parent and child. The
strongest of the two survives while the other one dies. This means that a parent
can live for many generations before a child becomes stronger than its parent
and take over the role as parent. To determinate who is the strongest, a �tness
function is used. Each bit in the string has a 1/n chance of �ipping its value.
The RLS Algorithm 2. has the same principals as (1+1) EA Algorithm 1. But
instead of each bit having 1/n chance of �ipping. RLS chooses a random bit
and �ips it. In RLS one bit will always �ip, but also at most one bit will �ip,
while (1+1) EA potentially all bits can �ip, but also no bits at all.

Algorithm 1 (1+1)Evolution Algorithm (1+1) EAb

1. Choose s ∈ 0, 1n uniform at random.
2. Produce s′ by �ipping each bit of s independently of the other bits with
probability 1/n.
3. Replace s with s′ if f(s′) ≤ f(s)
4. Steps 2 and 3 forever.

Algorithm 2 Algorithm 1 Random Local Search(RLS)

1. Choose s ∈ 0, 1n uniform at random.
2. Choose i ∈ 1, ..., n uniform at random and �ip the i'th bit of s.
3. Replace s with s′ if f(s′) ≤ f(s).
4. Steps 2 and 3 forever.

3.2 Fitness functions

This part describes the �tness functions used in the program. A �tness func-
tion can in a few words be described as a rule, which decide whether the child
generation is stronger than it's parent. In the both algorithm 1 and 2 this is
the step 3. The �tness functions used in the program are OneMax and Leadin-
gOnes. OneMax chooses the bit-string containing the most ones. LeadingOnes
is similar, it chooses the bit-string containing the most consecutive serie of 1's.

3.3 Comparing (1+1)EA and RLS 9

3.3 Comparing (1+1)EA and RLS

As mentioned before it makes sense to compare (1+1) EA to RLS. The basic
idea behind both algorithms are almost identical. They have almost the same
running time as both of them in average changes one bit per generation, however
as pointed out in e.g book [3] RLS is a bit better than (1+1) EA, this theory
will be tested using the implementations of the algorithms. The investigation
and results are described later on in section 5.1.

3.4 2-opt

2-opt is not a meta-heuristics algorithm. But mere an algorithm used to switch
2 edges [8]. The original idea is to switch edges that crosses with edges that
does not cross. In this thesis it is used to switch the edges for a meta-heuristic
algorithm, namely Simulated Annealing(SA). SA will be described in section
3.5. The implementation used in this thesis also makes sure that the Hamilto-
nian circle is not broken. That is when 2 edges switch the graph will still be one
connected graph. To solve this problem, all the edges consists of a 'To' and a
'From' vertex. The graph has a �ow in one direction one could say. This can be
used to make sure that the graph stays connected. When two edges are deleted,
�gure 3.2, and are about to switch for two other edges, the two 'To' vertices will
connect to each other and vice versa for the 'From' vertices, this will make sure
that the graph stays connected. The �ow in the graph will then be messed up,
�gure 3.3. So the �ow has to be re-ordered to be ready for another 2-opt step.
This is done by taking a vertex in the graph and �nding one of it's connected
neighbour, make the �ow go that way, then �nd the neighbour's neighbour and
make the �ow go that way. This is repeated until you end up in the start vertex,
see �gure 3.4. The �ow is then sorted and is ready for another 2-opt. This
whole description is illustrated in �gures 3.1, 3.2, 3.3 and 3.4. .

Figure 3.1: How the graph is connected at the start point

10 Nature-inspired algorithms

Figure 3.2: Two edges is deleted to be replaced by two new ones

Figure 3.3: The new edges connects with a partner with the same �ow eg. out
to out

Figure 3.4: Edges with opposite �ow gets redirected

3.5 Simulated annealing

SA is based on the natural process that happens when heated iron gets cooled.
The small crystals in the iron goes from jumping around in a random pattern to
jump around in a strict pattern. The algorithm 3 is loosely based on the algo-
rithm in article [6]. The algorithm 3 chooses two edges and switches them, this
step is done by 2-Opt in the implementation, if the new solution has a shorter
path it will switch to the new solution. If the new solution instead has a longer
path, it has a chance to switch to this solution. The chance for switching to the
new solution is based on the current temperature. The current temperature is

3.6 Ant colonization optimization 11

calculated using the current generation of the run. The temperature starts at a
high degree and goes towards lower degree. A high temperature means a good
chance to do a switch to a worse solution. And the lower the temperature gets
the lower the chance of switching to a worse solution will get. The temperature
section of the algorithm has been made to avoid getting into local minimums
and therefore not �nding a good solution.

Algorithm 3 Simulated Annealing (SA)

Require: t := 1
Require: T (0) = |E|3
while true do
Choose randomly two distinct edges e′ and e′′ in the graph G, e′ and e′′

must not have any vertices v in common
let (vi, vi+1), (vj, vj+1), i < j be the chosen edges p with weight sum s1.
(vi, vj), (vi+1, vj+1), i < j is the two edges p′ after a 2-opt move and their
summed weight is s2.
Get the current temperature T (t) and a random value r between 0 and
T (0), to calculate probability to accept a worse solution.
if s2 < s1 then
change p to p′

else if r < T (t) then
change p to p′

else
keep p

end if
t+ 1

end while

3.6 Ant colonization optimization

ACO is an algorithm based on ants abilities to �nd the shortest path to their
food sources from their nest, the �rst algorithm was proposed in 1992 by Marco
Dorigo [1]. In this thesis and program the ACO algorithm known as ACO
MMAS(Max-Min Ant System) has been implemented and investigated, the al-
gorithm is described in the article [5]. The pseudo code is displayed in algorithm
4, algorithm 5 and algorithm 6. The algorithm is described in a similar way
in book [7], however the algorithm described in article [5] seemed more simple
and it is the one that is used in this thesis. The algorithm constructs a path
in the graph based on a chance to �nd the next vertex. When a path has been

12 Nature-inspired algorithms

constructed, the algorithm checks whether the new path is shorter than the pre-
vious found path. The shortest path updates pheromone on its edges, meaning
the chance to select the same edges again increases and this continues as long
as wanted. The Max-Min name in the algorithm is an reference to the update
function 6, which makes sure that edges chances does not become too small or
too big. This step is made to make the algorithm more e�ective and prevent
the algorithm to be locked at a given path.

Algorithm 4 The algorithm MMAS ∗.
Require: 1. function MMAS ∗ on G = (V,E) is τ(e)← 1/|V |, for all e ∈ E;
2. x′ ← construct(τ);
3. update(τ, x′);
while true do
4. x← construct (τ);
if f(x) < f(x′) then
5. x′ ← x;

end if
6. τ ← update(τ, x′);

end while

Algorithm 5 The algorithm construct

Require: 1. function construct based on τ, η, α, β is
for k = 0 to n− 2 do
2. R←

∑
y∈N(e1,...,ek)

τ(y)α × η(y)β ;

3. Choose one neighbour z ∈ N(e1, ..., ek) where the probability of selection

of any �xed z ∈ N(e1, ..., ek) is
τ(z)α × η(z)β

R
end for
4.Let en be the (unique) edge completing the tour;
5. return (e1, ..., en).

3.7 Comparing SA and ACO

SA and ACO does not have much in common other than they can be used to
solve the same problems. However they form a similar problem as RLS compared

3.7 Comparing SA and ACO 13

Algorithm 6 τ ′ = update (τ, x)

τ ′ =
if e ∈ E(x) then
min ((1− p) ∗ τ(e) + p, τmax)

else
max ((1− p) ∗ τ(e), τmin)

end if

to (1+1) EA did. One of the algorithms, SA, tries to change it's solution for
every generation, but it can only do one change. While the other algorithm,
ACO, only has a chance to change it's solution per generation, but can make
as many changes as there are edges. This comparison will be investigated in
section 5.4.

14 Nature-inspired algorithms

Chapter 4

Software

This chapter contains descriptions and thoughts on how the program design and
algorithms has been implemented in a framework.

4.1 Choice of platform

For the implementation .NET with C# and WPF(Windows Presentation Foun-
dation) is used. The reasons why I choose to work on the .NET platform rather
than JAVA or other technologies is that it is easy to make a good looking
graphical user interface but also to get some more experience in working with
the .NET technology. The disadvantages to use .NET rather than JAVA is that
it is only compilable on windows based machines. The book [2] has been used
as a reference from time to time, when implementing various elements.

4.2 Requirement Analysis GUI

Before starting the actual coding of the program, an outline of the programs
feature was made. Before even taking a look at the algorithms, all the basic

16 Software

program features has to be implemented. Since the program is about visual-
ization, this requirement analysis deals with the Graphical User Interface(GUI)
and not algorithms that is to be implemented. The program is designed to hold
one window with 3 panels. A menu panel in the top, a canvas panel in the left
and middle and a tool-panel to the right. The panels has the following features.

1. Canvas, panel visualizing the graph

(a) Displaying vertices

(b) Displaying edges

2. Menu

(a) Load, able to load a TSP �le

(b) Close, closes the program

3. Tools panel

(a) Button for generating a graph

(b) Drop-down box to choose size of search space

(c) Radio-buttons able to choose algorithm

(d) Radio-buttons able to choose search-space, eg. bit-string/permutations

(e) Text box to display statistics about the running algorithm, like gen-
eration, distances

(f) Button to make the algorithms run/stop

4.3 Graphical User Interface

The GUI is intended to be as simple as possible. There are no features that are
hidden away in sub-menus etc. The radio buttons are designed to hold features
for both bit-strings and permutations to save space, i.e. one radio button has
two uses. It was into consideration making non supported features blank out
and not visible, but there was not a simple way to do this. There were several
more things that were into consideration and it will be addressed in section 4.5.
For features that need a value a combo-box is used with a limited number of
choices for the value. The limitation helps to keep the GUI simple, but this
could easily by replaced with more choices or another mean of input-box like a
text-box. All the combo-boxes has a default value to avoid errors, but also to
able to use the program without tinkering with too many settings.

4.4 Implementation of the algorithms 17

4.4 Implementation of the algorithms

This section will cover how the algorithms have been implemented into the
program. The algorithms are both described how they are visualized and how
the data structure is made. The software methods will not be addressed directly,
but a class diagram is located in the appendix in �gure A.5.

4.4.1 (1+1)EA and RLS

This section will cover both (1+1)EA and RLS as both the visualization and
data structure are almost identical.

4.4.1.1 Visualization

The evolution algorithm (1 + 1EA) and the similar RLS algorithm has been
implemented the following way. The user has to be in 'Bit-String mode', this
mode is chosen by a radio-button. There is another mode called permutation,
used for permutation problems, this mode will be described later. When the
user is in 'Bit-String' mode an red circle drawing will appear in the canvas. The
user can choose how big a bit-string that should be generated in a combo-box
�eld, default is 8, but the user can choose to generate 16,32 or 64 bits instead. In
another drop-down �eld the user chooses to use either OneMax or LeadingOnes
as the �tness function, OneMax is marked as default. The user has to click on
the button 'generate' to make a random bit-string. Depending on the spread
of the 1's and 0's in the bit-string a dot will be displayed inside the drawing.
The dot is located in the bottom of the circle, if there are more 1's than 0's and
likewise the dot will appear in the top of the circle if there is a majority of 0's.
The dot will appear to the right if the spread of the 1's in the bit-string more
intensive in the right section of the bit-string compared to the left and vice versa.
In both the �tness functions OneMax and LeadingOnes the dot will appear in
the bottom of the circle, when the bit-string is optimal. The coordinate of the
dot is calculated by using the locations of the 1's in the string, i.e. what number
the bit is in the row of bits, e.g. for the string 0001, the 1 is at location 4. Using
the size of the string and the sum of the locations where the 1's are located,
the x-coordinate for the dot is made. The y-coordinate is just calculated using
the percentage of 1's in the whole string. When one of the algorithms are run
it stops when it is optimal. The button 'Run' is used to begin the algorithm.
One can clear the graph with the button clear.

18 Software

4.4.1.2 Data Structure

The random bit-string, that is used as a search-space, is generated simply by
using the build-in random function in c #. The classes for the �tness functions,
LeadingOnes and OneMax, both contains methods to check if the new generation
is stronger according to the �tness function. Using the bit-string the coordinates
for the dot gets calculated. Each bit uses its position in the string as a value.
These values are counted together and the mean value is found and the mean
is used to calculate the position on the x-axis. The position on the y-axis is
calculated using the ratio of 1's in the string. Both the implementations of
(1+1)EA and RLS take a string as an input and randomly calculates a new
string. (1+1)EA goes through the whole bit-string and each bit has a chance
to �ip, the chance to �ip is 1/n where n is the length of the bit-string. RLS
randomly picks a bit and �ips it.

4.4.2 Permutations

To run the permutation algorithms, the user has to be in permutation mode. To
be in permutation mode, the radio button permutation should be checked. The
structure and visualization for the permutation algorithms are a lot di�erent
than the bit-string algorithms. It consists of a graph, i.e. vertices and edges.
The vertices has several properties, e.g. X-, Y-coordinates. There are actually
two X-,Y-coordinate properties, because the vertices are glued onto the canvas
in the point that is in the top left corner of the vertex, the vertices also has
X,Y-properties to hold the middle of the vertices. These middle points of the
vertices are used to connect edges on, else the edges would connect to each other
in the top-left corner of the vertices. The edges only has the X-,Y- coordinates,
which they use to know where to be drawn. There are two ways of making a
searchable graph. One is by hitting �le and load. The edges are made by the
order they are loaded into the program. The other way of making a searchable
graph is with the generate button. The graph uses the size of the 'search space
combo-box' to set the number of vertices to be generated. The graphs generated
randomly with generate button also have randomly generated edges. In both
cases the vertices and edges form a Hamiltonian cycle.

4.4.3 File Load

A load button has been implemented with a load function. The program is
able to load TSP-�les from [4] with the Euclid 2-d format, like berlin52. The

4.4 Implementation of the algorithms 19

load button only works as long as the user is in permutation mode. There will
be displayed an error message, if any attempt of loading a �le while in bit-
string mode. The function checks if the �le has EUC2D in it to state whether
it is a legal �le or not. Afterwards it removes the text in front of the coordi-
nates. Thereafter it makes the sub-string containing the coordinates to actual
coordinates and it inserts them onto the canvas. For �les containing coordi-
nates with a coordinate value over 800, it will scale down all the coordinates
by a factor calculated by taking the largest number and 800. The calculation
is scaleddown = 800/largestnumber. For graphs where the largest number is
under 400, a constant(scaled up) is multiplied to the coordinates to make the
graph look bigger. To avoid the distance being meshed up, a ratio is calculated
using scaled down/scaled up, the ratio = 1/scaleddownor1/scaledup. This
ratio is multiplied to the distance, so the distance will be displayed correctly.
Parameters to use with the loaded �le should be made before opening it.

4.4.4 Simulated Annealing

The algorithm Simulated Annealing has been implemented using permutations
as the search space. Therefore the implementation is very di�erent than (1+1)EA
and RLS. SA uses 2-opt to switch edges. The 2-opt class could be used with
other algorithms if needed.

4.4.4.1 Visualization

The graph redraws every time the graph get updated, i.e. when a 2-opt move is
made. The algorithm runs as long as the number of speci�ed generations steps
are chosen in the combo-box. When the graph is redraw it looks like only two
edges shifts, but in reality all the edges gets redrawn even though only two edges
get new data. This is due to the fact all the edges gets reordered every time a
2-opt move occurs. The re-ordering is explained in the part about 2-opt at 3.4.

4.4.4.2 Data Structure

To make the cycle for SA, two classes has been made. One for the algorithm
SA and one for two-opt, the two classes has been made to make the program
easier to extend with other algorithms. SA in the program works the following
way. It takes the current graph and does a two-opt move, however it does
not signal the drawing mechanism, which means it will not get drawn at this

20 Software

moment. The class SA has a method to check whether the new solution is
better than the previous one, if it is the case the move gets 'legalized' and the
program signal to draw the new solution. If the new solution is worse than the
previous one, the move will only get legalized by a chance, which is calculated
by the temperature. If the move is dropped the former solution will be remade.
The temperature is calculated using the following parameters. The starting
temperature is calculated t(0) = e3 where e is the number of edges, Alpha is
1 − 1/e This alpha determinates how fast the temperature drop. The current
temperature is calculated using the following t(g) = αg−1 × t(0) where g is the
current generation. To check whether a new worse solution should be accepted,
a random number is generated between 0 and t(0). If the generated number is
smaller than t(g) the new solution get accepted and �nally drawn in the canvas.

4.4.5 Ant Colonization Optimization

Visually ACO is similar to SA, but there are some visual di�erences. The data-
structure is also very di�erent than SA.

4.4.5.1 Visualization

As mentioned above the visualization is similar to SA, but ACO does not have
a limit on how many edges switch places at a time. There is a chance that all
the edges will switch in the same generation. This is however must unlikely to
happen often as each travelled edge gets a larger chance of being used again, if
it already has been a part of the solution. Therefore the visualization tends to
look the same as SA.

4.4.5.2 Data Structure

The data structure of ACO is a bit more complex than SA and way more than
any of the other implemented algorithms. This is because the algorithm contains
a few more steps, but also because these steps require a lot of data manipulation.
To help calculating the cycle, two 2-dimensional arrays/matrices are set up. One
array contains all the distances between the vertices. This is used to fast look up
the new distance for the path and the data is not updated while the algorithm is
running. An example on the distance matrix is given in A.1. The other matrix
contains the chance of going to the next vertex. The matrix containing the
chances will get updated every time a new generation is made and the chances

4.5 Problems during implementation 21

are updated in relation to the best path. This update step is step 6. in the
algorithm 4 and the update it self is described in 6. This chance matrix keeps
track on the probabilities of each vertex travelling to any other vertex. The
chance matrix consists of sorted values, which is used as intervals. To calculate
which vertex to choose as the next in the path, a random number from 0-1 is
made. The vertex with the right interval is the next vertex, which is the vertex
that is the �rst vertex that is bigger than the random value. An example on the
chance array is given in A.2 and how the values look like after an update is given
in A.3. There is however more to it than this as each vertex is visited, their
chance for being visited again has to be deleted. An array keeps track on the
vertices current in the path, i.e. the already visited vertices, and another array
keeps track of the vertices that have yet to be visited. When a looking for the
next vertex, these vertices arrays makes sure that the intervals of the already
visited vertices are spread equally between other unvisited vertices. When a
cycle has been found, the cycle is looked up in the distance matrix to form the
new cycle's distance. A function checks whether the new cycle is better than the
old. The best of the two cycles updates the pheromone chances in correlation
with the update rules in algorithm 6. There were a few problems with this,
which will be addressed in section 4.5.2. At this point the GUI needs to redraw
itself and to do this a signal is used. A double changes its value, which signals
the GUI to redraw. This double changes value every time a generation has been
passed. The algorithm runs as long as the maximum generation combo-box is
set to.

4.5 Problems during implementation

When working on a larger project which contains complex algorithms and tech-
nical features. There is a big chance of running into problems. While making
the program I encountered both algorithmic and technical problems.

4.5.1 Technical problems

There was a technical problem with the drawing of the graph while calculating
the Hamiltonian path. The problem was caused due to the lesser experience
with WPF/C# and it was the di�erence compared to JAVA that gave some
headaches. In WPF when you want to update the GUI while calculating, you
have to use a speci�c tool called the dispatcher. The dispatcher gives the per-
mission to update the GUI, while a calculation is under way. Each edge has
a dispatcher to notify that it needs to be drawn again. The same goes with

22 Software

the node running in the circle for bit-strings. However these dispatchers gave
more than one problem. Because the search space size is user-selected and does
not a �xed size, the numbers of dispatchers cannot be �xed either as it has to
follow the right amount of edges. However a dispatcher is a special class and it
cannot use for-loops values in the normal way, the class is simply made to ignore
these values. The dispatcher has to get a local value passed to it. To solve this
problem a local integer should be assigned to the iteration in the for-loop and
this local value can be passed to the dispatcher. The solution is rather simple,
but annoying as it does not follow regular programming standards.

4.5.2 Algorithmic

Some of the problems that occurred during the implementation of the algo-
rithms, was caused due to the initial design was �awed. This happened at the
design of the two-opt algorithm. Where after the testing of the algorithm the
Hamiltonian cycle could brake, i.e. make two unconnected graphs. Therefore
the reordering of the graph was made, this reordering is described in �gure 3.1
to 3.4. Another problem that occurred during the implementation was how
to decide when the algorithms should stop when running permutations. For
bit-strings the algorithm ends when it is optimal, this is easy and fast to do, it
just involves counting the current number of 1's and compare this number to
the size of the bit-string. However it is not easy to �nd the most optimal solu-
tion for permutations. Originally there was a counter that counted generations
without changes and after a speci�c number was reached the algorithm would
end. But this feature was dropped, as it was hard to �nd a good calculation to
determinate on, how many consecutive generations without any changes should
be allowed. This is especially a problem on larger graphs, where the algorithms
can run through many generations without changing anything. The algorithm
was instead set to run after a speci�c number of generations. Algorithmic wise
the ACO algorithm is rather complex to implement even though the algorithm
itself is pretty simple. The data-structure to hold the chances of the edges gave
a few problems. As mentioned earlier the chances of �nding the next vertex is
found using intervals. It is important to keep these intervals within the right
range. Because a lot of parameters have in�uence on the chances and therefore a
lot can go wrong. The intervals go from 0-1 and vertices not available to move to
has the value -1. One must make sure that these -1 values does not get updated,
but also that the other values does not use a too large interval. There were some
trouble with some chance-values got past the 0-1 interval. There were several
bugs which caused this. Some was caused by small casting errors, which could
easily be �xed. One of these was a pheromone bug, the string containing the
pheromone value did not paste the right value as it ignored any 0's in front of it,
e.g it ignored the zero in 0.1 and made it into 1. This large pheromone caused

4.6 Possible extensions 23

some odd values and therefore make the chance matrix bugged. This could lead
to a exception and a shut down of the program. The most annoying thing about
these intervals was however the Max-Min step. This step makes the algorithm
much more complex, when making an edge pheromone the minimum value, the
percentage must be taken from another place and it is the same with the maxi-
mum value, where the percentage must be given to other edges. In start of the
implementation of the ACO algorithm, this was not done and the edges would
fast get negative values, which would make them invisible to other vertices and
therefore impossible to visit. To solve this problem two things was implemented,
one to solve each of the two problems. To ensure that the minimum edge value
was kept, the edge with the largest chance would give some of it's percentage to
these edges that needed more chance. To avoid the intervals getting mesh up by
the maximum edge value, the surplus of the percentage from a maximum edge
gets assigned to the edge going out from the �rst vertex in the list. By doing
this one would assume that the vertices would always have a bigger chance of
going to this vertex. This is however avoided by always starting the tour from
this vertex and it's pheromone chance will instead be evenly handed out to the
other vertices, when �nding the next vertex.

4.6 Possible extensions

As this program only has a few features a lot of extensions could be made. Here
is a few of the ideas considered in the making of the project.

4.6.1 Algorithmic

Other meta-heuristic algorithms would of course make sense to implement. The
two-opt class makes it easy to implement new algorithms using a two-opt switch-
ing function. This could be the (1+1)EA algorithm or similar. SA could also
have been implemented for bit-strings to compare it with (1+1)EA. I would have
liked to implement a more complex swarm algorithm like the �re�y algorithm
[11], but the schedule of the project made it to di�cult to start implementing
it.

24 Software

4.6.2 Technical

At the start of the project I had an idea to make the algorithms and graph
dynamic. Which means that you could manipulate with the graph while it ran
through the algorithm. The graph is dynamic and can be manipulated during
a run, however the algorithms are not implemented to work with the dynamic
graph. This could however be a extension to the program. Another tool to
implement would be the ability to make your own graph vertex by vertex. An
early version of the program had this feature, but dropped as there was not
a straightforward design for the edges to reconnect the graph without having
the dynamic graph. There could also be extensions for the GUI. It would have
been cool, if when a search-space was chosen the rest of the GUI would switch
to the features used for that search-space, and it would hide the features that
was unusable. This would have been great for the usability, but as priority
of features to implement got bigger this would seem a small extension to use
precious time on.

Chapter 5

Analysis and Results from
the program

The program can be used to visualize several meta-heuristic algorithms like
(1+1)EA, Simulated Annealing and Ant Colonization Optimization. However
the program can also be used to show how the di�erent kind of algorithms
perform e�ciently.

5.1 (1+1)EA and RLS

5.1.1 Goal of the test

For testing the bit-string algorithms, 8 times 10 tests have been conducted. The
tests are made to get an approximate number of generations it will take before a
random bit-string is at it's optimal state according to it's �tness function. This
way it is easy to get an overview, which is the fast algorithm and also whether
the �tness function has any in�uence on run-time of the algorithm.

26 Analysis and Results from the program

5.1.2 Test

The tests consists of 10 tests on a random 8-bit/16-bit string using (1+1) EA
and the �tness function OneMax, 10 tests on a random 8-bit/16-bit string using
RLS with OneMax, 10 test on a random 8-bit/16-bit string using (1+1)EA with
LeadingOnes, and �nally 10 tests on a random 8-bit/16-bit string using RLS
with LeadingOnes. The data from the tests is both displayed with all the 10
tests and without the two highest and lowest values to eliminate coincidences.
The generations counts are displayed in the tables A.4, A.5, A.6, A.7. As
the tables show (1+1)EA is much slower than RLS. This is also suggested in
the theory part in section 3.3.

5.1.2.1 Conclusion on (1+1)EA and RLS

(1+1)EA has never been intended as an fast algorithm, but as an simple meta-
heuristic algorithm based on evolution. It is a good introduction algorithm used
to explain the principles of a nature-inspired algorithms. The tests showed that
it seems the di�erence between the performance between RLS and (1+1)EA gets
even bigger as the size of the search-space increases, this is seen in the tables
A.4, A.5, A.6, A.7 and in the 'summary' table A.8. It is worth noticing
that both (1+1)EA and RLS does much worse running LeadingOnes compared
to OneMax. This is however not surprising as LeadingOnes only chooses the
longest string of consecutive 1's and therefore at some point will have to wait
for 1 or 2 speci�c bits to �ip before proceeding. Where OneMax just have to
wait for 0's to �ip. The �tness function does not a�ect runtime of the any of two
algorithms more than the other, this is seen in table A.8, where the di�erence is
almost the same whether the �tness function is LeadingOnes or OneMax. The
short conclusion to this must be that it is better to always �ip 1 bit than have
a chance to �ip each bit.

5.2 Simulated Annealing

5.2.1 Goal of the test

SA has been implemented on permutations, where it �nds a short Hamiltonian
cycle. SA makes use of the 2-opt switch edges feature. This feature is one of
the algorithm's weak points. Because it always only switches two edges, one can
assume that the chance of �nding the best cycle in a big graph is way harder

5.2 Simulated Annealing 27

than �nding a good cycle in a small graph. Therefore the following hypothesis
5.1. will be investigated.

Hypotese 5.1 The e�ectiveness of SA decreases as the search-space size in-

creases.

The see whether the hypothesis holds or it is rejected several tests with di�erent
search-spaces are run using SA. If the theory holds an estimate on the critical
size of the search space is made, i.e. where the algorithm looses it e�ectiveness.
The test will also compare the number of generations to the number, it would
take to �nd the most optimal cycle using brute force. As one cannot be sure
to know when the most optimal route is reached, tt will be decided visually by
the rules that no edges may cross and no extreme edges can be in the graph,
i.e. there is visually a 2-opt move that will make the path shorter. The TSP
�le, berlin52, will also be used for testing. The advantage for testing with �les
from the TSPlib is that the shortest path distance is known and therefore the
algorithm can easily be evaluated. The TSP test is used to test the e�ciency of
algorithm and see how fast and close it gets to the shortest path in the graph.
The algorithm will run for 15000 generation and the results will be noted. The
distance the algorithm is aiming for is 7542, which is the shortest path in the
�le.

5.2.2 Test

Starting with �nding whether 5.1 holds. Like the tests with bit-strings, 10
test of each type was tested. Here types are 8, 16 and 32 vertices search-space.
The test results are displayed in table A.9. Where they are displayed with and
without the two extreme maximum and minimum values. Just by looking at the
values, it seems that the needed generations for �nding a good path increases a
lot when the search-space gets bigger. In table A.10 the generation per vertex
has been calculated. Table A.10 shows that the hypothesis 5.1 holds. The value
per vertex increases more than the double when the search-space gets doubled.
This is however pretty good compared to brute force, where the running time is
n!, SA gives a decent answer in a running time that is comparable to n2 for small
search-spaces, when the search-space gets larger,i.e. 32+ vertices, the running
time gets more comparable to n3, the correlation between number of vertices
and generations can be see in graph A.1. This estimate is given from tests in
the program and not theoretical analysis of the algorithm. The algorithm works
pretty good even though it has some draw-backs at bigger graphs. Because
it only switches 2 edges, it will take a long amount of time to get a good
solution. This leads to the test of e�ciency of the algorithm, where the test on

28 Analysis and Results from the program

berlin52 was made. However with the suggested running time of the algorithm
before �nding a very good solution, the algorithm will have to run for about
523 = 140608 generations before coming up with a really good answer to the
berlin52 �le. In this test with berlin52 only 15000 generations is run, which still
should give a decent answer. The test was run and after 15000 generations it
ended with a distance at 13355, which is rather bad compared to 7542. However
given the estimated running time of at least 140608, the distance after the �rst
15000 generations is pretty good. The distance is not that bad either when
looking at the visualized graph A.2. There are no crossed edges and by simply
looking at the graph it is hard to �nd many pair of edges to switch to make the
graph shorter.

5.2.3 Conclusion on SA

The algorithm works pretty well and is much better than brute force, even
thought it does not always give the shortest answer. There is however also
some problems with the algorithm, especially on larger graphs the temperature
becomes less practical even thought it starts on a higher temperature, it gets
too low too fast, which may cause the graph getting into local minimums and
stuck at larger distances than the shortest path. The algorithm could properly
be faster, if the temperature-step was designed in another way than this im-
plementation in this program. But it seems it will always perform better than
brute force.

5.3 ACO

5.3.1 Goal of the test

ACO will run a similar test as SA. This will give some insight on how e�cient
the algorithm actually is, but this will also give the chance to compare ACO to
SA. The comparison will however be covered in the next section 5.4. Whereas
in this section will look on ACO's performance compared to brute-force and it's
scalability. The same hypothesis that was set for SA is used for ACO.

Hypotese 5.2 The e�ectiveness of ACO decreases as the search-space size

increases.

5.3 ACO 29

ACO is not bound only to switch two edges at a time and could in theory switch
all the edges in one move. However the chances for switching gets smaller and
smaller and therefore it might only rarely switch. To avoid getting stuck too
often all tests are performed with the pheromone value set to 0.1, as a higher
value will reach τ -max and -min faster.

5.3.2 Test

The test results gave some surprises, during the �rst test with 8-vertices. The
ACO algorithm performed really bad. The problem is that the τ -max and -min
values are too high and too low. When using the τ from [5], which is displayed
in algorithm 6. The result of the test with the ACO algorithm using 0.1 in
pheromone level on a 8 vertices search space is displayed in table A.11. The
hypothesis 5.2 seems to hold as the algorithm did not produce any really good
results within 15000 generation when doubling the search-space to 16. Which
again leads to ACO has some scalability issues, when it comes to large �les.
However it will must likely outperform brute force on all graphs. But the bad
test lead to some analysis and rethinking on the implementation of the ACO
algorithm and by studying various runs, it seemed that when the max-τ value
was reached for most of the edges, the algorithm rarely shifted edges and when
it did, it was only 2 edges, like SA. Because of the algorithm's bad performance,
some tuning was attempted by improving the max-,min- τ . The τ value was
assigned a strength value, the strength value makes the maximum τ lower and
minimum higher when the strength is high and vice versa when the strength
value is low. This will force the algorithm to shift more often if the strength is
high. The ACO algorithm was tested with a strength value set at 5 and again
with pheromone set a 0.1 and 10 new tests were conducted. τ is calculated
by τ − max = 1 − (1/n ∗ s) and τ − min = 1/n2 ∗ s. The results from the
test with s = 5 are listed in table A.12. The table suggest that making the
edges shift more frequently ACO will perform better. However the test did not
show a major improvement in �nding a shorter cycle and therefore needed more
investigating. To test whether the value of τ -max and -min a�ects the runtime
and e�ciency of ACO, a test on the TSP�le berlin52 was made to test the
e�ciency on a larger graph. The two graphs can be seen at A.3 and A.4. The
algorithm with the strength set to 5, clearly outperformed the algorithm with
the standard strength of 1. Where ACO with s = 1 had a distance of 16554
after 15000 generations, ACO with s = 5 had 14163.

30 Analysis and Results from the program

5.3.3 Conclusion on ACO

MMAS ACO works, however the standard implementation uses too many gen-
erations without doing anything, which is a resource and time waste. By ma-
nipulating with the τ values and make it shift more often, the algorithm seemed
to perform better. This is because of less wasted generations. The little change
to the τ values could increase the performance of the algorithm. It could be
interesting to investigate if there is an optimal max− τ value from an analysis
point of view. An optimal value would not waste many generations, but also
it would not switch too many edges per generations as too many switches will
make the algorithm less e�ective and if the values get too big it would just be
a random path algorithm.

5.4 Comparing ACO to SA

It is natural to compare ACO to SA as they are both solving the same problem
and they are both meta-heuristic algorithms. Visually they perform similar and
it is hard to spot the di�erence, if one does not know which algorithm is running.

5.4.1 Comparing results

By looking at the �ndings in the SA and ACO tests, it is easy to conclude
that the test results for SA is much better than ACO. The ACO algorithm
performed better with the change to the τ and the algorithm can properly be
tuned to perform similar to SA.

5.5 Conclusion on the permutation test

The test showed that both SA and ACO are better than brute force. When
ACO's chance matrix is saturated,all vertices has a favourite neighbour with a
τ close to the maximum τ , the changes that happen most common only consists
of a move similar to 2-opt/SA. But where SA in every generation tries to make
a new solution ACO only has a chance to make a new solution and it will often
end up doing the same solution multiple times in a row and therefore becoming
less e�cient compared to SA. And just like the �nal words on the test and

5.5 Conclusion on the permutation test 31

analysis on bit-string, the same thing applies to SA versus ACO. It is better to
change 1 thing every time than have a chance to change many.

32 Analysis and Results from the program

Chapter 6

Conclusion

To summarize the project �ndings, all the algorithms implemented (1+1EA) 1,
RLS 2, SA 3 and ACO MMAS 4 all are pretty simple in theory and (1+1)EA,
RLS and SA are also very simple to implement. ACO is a bit more complex
as it has a lot of parameters. But in the end all the algorithms has been suc-
cessfully visually implemented and they are all solving their problem. For the
permutations algorithms, SA and ACO, their e�ciency seemed far better than
Brute Force. SA performed really good in all the tests and it could be used
in a real application. ACO did not perform that good in the test, however af-
ter a simple tuning of the algorithm, it performed better and with some more
tuning it might perform better or similar to SA. For the bit-strings RLS per-
formed better than (1+1)EA and there is no parameters to change in (1+1)EA
and therefore it has the worse e�ciency of the two. For both permutation and
�nding optimal bit-strings, the algorithms that changed every generation was
best. RLS for bit-strings and SA for permutations. There are many other meta-
heuristic algorithms and features that could have been implemented into a the
software framework. This program and thesis only covers a few, however the
program could easily be extended with other algorithms and features in the fu-
ture. Other algorithms might change the my picture of the e�cient algorithms
being the ones that ensure change.

34 Conclusion

Appendix A

Tables and Graphs

This appendix contains a few graphs displaying the data from the tests.

- 1 2 3 4
1 -1 4 7 7
2 4 -1 3 3
3 7 3 -1 5
4 7 3 5 -1

Table A.1: Example on the distance matrix

36 Tables and Graphs

- 1 2 3 4 5 6 7 8 9 10 11
1 -1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2 0.1 -1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
3 0.1 0.2 -1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
4 0.1 0.2 0.3 -1 0.4 0.5 0.6 0.7 0.8 0.9 1.0
5 0.1 0.2 0.3 0.4 -1 0.5 0.6 0.7 0.8 0.9 1.0
6 0.1 0.2 0.3 0.4 0.5 -1 0.6 0.7 0.8 0.9 1.0
7 0.1 0.2 0.3 0.4 0.5 0.6 -1 0.7 0.8 0.9 1.0
8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 -1 0.8 0.9 1.0
9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -1 0.9 1.0
10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -1 1.0
11 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -1

Table A.2: Example on a starting chance matrix with 11 vertices, 11 has been
chosen to ensure a simple example

Figure A.1: The graph displays the correlation between number of vertices
and the performance of SA

Figure A.2: The berlin52 graph after 15000 generations running SA. Distance
is 13355

37

- 1 2 3 4 5 6 7 8 9 10 11
1 -1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
2 0.19 -1 0.28 0.37 0.46 0.55 0.64 0.73 0.82 0.91 1.0
3 0.09 0.28 -1 0.37 0.46 0.55 0.64 0.73 0.82 0.91 1.0
4 0.09 0.18 0.37 -1 0.46 0.55 0.64 0.73 0.82 0.91 1.0
5 0.09 0.18 0.27 0.46 -1 0.55 0.64 0.73 0.82 0.91 1.0
6 0.09 0.18 0.27 0.36 0.55 -1 0.64 0.73 0.82 0.91 1.0
7 0.09 0.18 0.27 0.36 0.45 0.64 -1 0.73 0.82 0.91 1.0
8 0.09 0.18 0.27 0.36 0.45 0.54 0.73 -1 0.82 0.91 1.0
9 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.82 -1 0.91 1.0
10 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.91 -1 1.0
11 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 1.0 -1

Table A.3: Example on the �rst updated chance matrix with a pheromone
level set at 0.1 and the path 1,2,3,4,5,6,7,8,9,10,11

Table A.4: In this �rst experiment with a 8 bit-string using the OneMax �t-
ness function, the experiment showed that RLS is almost twice
as e�cient compared to (1+1)EA. Without the extremes the data
shows the same pattern.

8-bit OneMax
10 tests without extremes

RLS (1+1)EA RLS (1+1)EA
13 32 13 32
1 29 - 29
10 38 10 38
12 27 12 27
19 44 19 -
14 11 14 -
24 18 - 18
14 43 14 -
11 2 - -
21 20 - 20
13,9 26,4 13,67 27,33

38 Tables and Graphs

Table A.5: Using LeadingOnes the pattern is the same as before even though
the di�erence gets a bit smaller.

8-bit LeadingOnes
10 tests without extremes

RLS (1+1)EA RLS (1+1)EA
58 61 - 61
57 44 57 44
23 44 23 44
23 44 23 -
17 60 17 60
61 50 - 50
13 56 - 56
26 27 26 -
16 64 - -
45 66 45 -
33,9 51,6 31,83 52,5

Table A.6: The di�erence becomes even larger when using a longer bit-string
in the OneMax experiment.

16-bit OneMax
10 tests without extremes

RLS (1+1)EA RLS (1+1)EA
24 104 24 104
19 27 - -
21 34 21 -
15 93 - 93
44 150 44 -
24 46 24 46
26 86 26 86
24 129 24 -
26 66 26 66
26 99 - 99
24,9 83,4 24,16 82,33

39

Table A.7: In the last experiment where a 16-bit string with LeadingOnes was
used, the di�erence is also pretty large. It was the only experiment
where removing the extremes had a big in�uence on the average
generation count.

16-bit LeadingOnes
10 tests without extremes

RLS (1+1)EA RLS (1+1)EA
25 328 - 328
16 180 - 180
95 146 - 146
83 332 - -
43 194 43 194
64 119 64 -
65 136 65 136
48 470 48 -
56 108 56 -
56 146 56 146
55,1 215,9 55,33 188,33

Table A.8: By comparing the average run time of RLS and (1+1)EA, it is easy
to see RLS is better, but also the �tness function does not a�ect
one algorithm over the other

Comparing (1+1)EA to RLS
Test name RLS (1+1)EA Di�erence
8-Onemax 13,67 27,3 1,997074

8-LeadingOnes 31,83 52,5 1,649387
16-Onemax 24,17 82,33 3,406289

16-LeadingOnes 55,33 188,33 3,403759

40 Tables and Graphs

Table A.9: SA performed well in all the test cases

Simulated Annealing
10 tests without extremes

8 16 32 8 16 32
96 144 1416 96 - 1416
21 317 965 - 317 -
144 404 1350 - 404 1350
104 345 1534 - 345 1534
98 317 1126 98 317 1126
55 282 1117 55 282 1117
26 384 969 26 384 -
25 583 1917 - - -
34 208 1834 34 - 1834
78 426 1999 78 - -
68,1 341 1428,1 64,5 341,5 1396,17

Table A.10: Increase in runtime per vertex

Simulated Annealing
generation per vertex without extremes
8 16 32 8 16 32

8,51 21,31 44,63 8,06 21,34 43,63

Table A.11: The stopping generation was set to 2000 and 4 tests reached this
mark, therefore the average runtime at least 900+

ACO ph = 0.1, strength=1
generation per vertex without extremes

8 8
97 -
921 921
124 124
2000 2000
188 188
45 -
2000 -
2000 -
144 144
2000 2000
951,9 896,7

41

Figure A.3: The berlin52 graph after 15000 generations running ACO with
pheromone 0.1 and strength 1. Distance is 16554

Table A.12: The strength value force the algorithm to shift more frequently

ACO ph = 0.1, strength=5
generation per vertex without extremes

8 8
990 990
34 -
2000 2000
50 50
2000 -
2000 -
1400 1400
33 -
54 54
44 44

860,5 756,33

Figure A.4: The berlin52 graph after 15000 generations running ACO with
pheromone 0.1 and strength 5. Distance is 14163

42 Tables and Graphs

Figure A.5: Overview of the program

Bibliography

[1] Marco A. Montes de Oca. Aco history.

[2] Arlen Feldman and Maxx Daymon. WPF in action with visual Studio 2008.
Manning, Greenwich, CT 06830, 2009.

[3] International Society for Genetic and Evolutionary Computation. Genetic
and Evolutionary computation - GECCO 2004. Springer, Berlin Heidelberg,
2004.

[4] Rubrecht-Karls-Universitat Heidelberg. Tsplib.

[5] Timo Kötzing, Frank Neumann, Heiko Röglin, and Carsten Witt. Theo-
retical analysis of two aco approaches for the traveling salesman problem.
Swarm Intell, 6:1�21, 2011.

[6] Klaus Meer. Simulated annealing versus metropolis for a tsp instance.
Information Processing Letters, 104:216�219, 2007.

[7] Frank Neumann and Carsten Witt. Bioinspired Computation in Combi-

natorial Optimization - Algorithms and Their Computational Complexity.
Springer, DTU, Denmark, 2010.

[8] Wikipedia's users. 2-opt wiki,http://en.wikipedia.org/wiki/2-opt.

[9] Wikipedia's users. Hamiltonian path,
http://en.wikipedia.org/wiki/hamiltonian_path.

[10] Wikipedia's users. Metaheuristic history,
http://en.wikipedia.org/wiki/metaheuristic.

[11] Xin-She Yang. Fire�y algorithm,http://en.wikipedia.org/wiki/�re�y_algorithm.

	Summary (Danish)
	Preface
	Acknowledgements
	1 Introduction
	2 Basic Graph Theory
	3 Nature-inspired algorithms
	3.1 Evolution algorithms
	3.2 Fitness functions
	3.3 Comparing (1+1)EA and RLS
	3.4 2-opt
	3.5 Simulated annealing
	3.6 Ant colonization optimization
	3.7 Comparing SA and ACO

	4 Software
	4.1 Choice of platform
	4.2 Requirement Analysis GUI
	4.3 Graphical User Interface
	4.4 Implementation of the algorithms
	4.4.1 (1+1)EA and RLS
	4.4.2 Permutations
	4.4.3 File Load
	4.4.4 Simulated Annealing
	4.4.5 Ant Colonization Optimization

	4.5 Problems during implementation
	4.5.1 Technical problems
	4.5.2 Algorithmic

	4.6 Possible extensions
	4.6.1 Algorithmic
	4.6.2 Technical

	5 Analysis and Results from the program
	5.1 (1+1)EA and RLS
	5.1.1 Goal of the test
	5.1.2 Test

	5.2 Simulated Annealing
	5.2.1 Goal of the test
	5.2.2 Test
	5.2.3 Conclusion on SA

	5.3 ACO
	5.3.1 Goal of the test
	5.3.2 Test
	5.3.3 Conclusion on ACO

	5.4 Comparing ACO to SA
	5.4.1 Comparing results

	5.5 Conclusion on the permutation test

	6 Conclusion
	A Tables and Graphs
	Bibliography

