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Preface

Music can be described, represented, and experienced in various ways and forms. For
example, music can be described in textual form not only supplying information on composers,
musicians, specific performances, or song lyrics, but also offering detailed descriptions of
structural, harmonic, melodic, and rhythmic aspects. Music annotations, social tags, and
statistical information on user behavior and music consumption are also obtained from
and distributed on the world wide web. Furthermore, music notation can be encoded in
text-based formats such as MusicXML, or symbolic formats such as MIDI. Beside textual
data, increasingly more types of music-related multimedia data such as audio, image or video
data are widely available. Because of the proliferation of portable music players and novel
ways of music access supported by streaming services, many listeners enjoy ubiquitous access
to huge music collections containing audio recordings, digitized images of scanned sheet
music and album covers, and an increasing number of video clips of music performances and
dances.

This volume is devoted to the topic of multimodal music processing, where both the
availability of multiple, complementary sources of music-related information and the role of
the human user is considered. Our goals in producing this volume are two-fold: Firstly, we
want to spur progress in the development of techniques and tools for organizing, analyzing,
retrieving, navigating, recommending, and presenting music-related data. To illustrate the
potential and functioning of these techniques, many concrete application scenarios as well as
user interfaces are described. Also various intricacies and challenges one has to face when
processing music are discussed. Our second goal is to introduce the vibrant and exciting
field of music processing to a wider readership within and outside academia. To this end,
we have assembled thirteen overview-like contributions that describe the state-of-the-art of
various music processing tasks, give numerous pointers to the literature, discuss different
application scenarios, and indicate future research directions. Focusing on general concepts
and supplying many illustrative examples, our hope is to offer some valuable insights into
the multidisciplinary world of music processing in an informative and non-technical way.

When dealing with various types of multimodal music material, one key issue concerns
the development of methods for identifying and establishing semantic relationships across
various music representations and formats. In the first contribution, Thomas et al. discuss
the problem of automatically synchronizing two important types of music representations:
sheet music and audio files. While sheet music describes a piece of music visually using
abstract symbols (e. g., notes), audio files allow for reproducing a specific acoustic realization
of a piece of music. The availability of such linking structures forms the basis for novel
interfaces that allow users to conveniently navigate within audio collections by means of the
explicit information specified by a musical score. The second contribution on lyrics-to-audio
alignment by Fujihara and Goto deals with a conceptually similar task, where the objective
is to estimate a temporal relationship between lyrics and an audio recording of a given song.
Locating the lyrics (text-based representation) within a singing voice (acoustic representation)
constitutes a challenging problem requiring methods from speech as well as music processing.
Again, to highlight the importance of this task, various Karaoke and retrieval applications
are described.

The abundance of multiple information sources does not only open up new ways for music
navigation and retrieval, but can also be used for supporting and improving the analysis of
music data by exploiting cross-modal correlations. The next three contributions discuss such
Multimodal Music Processing. Dagstuhl Follow-Ups, Vol. 3. ISBN 978-3-939897-37-8.
Editors: Meinard Müller, Masataka Goto, and Markus Schedl
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viii Preface

multimodal approaches for music analysis. Essid and Richard first give an overview of general
fusion principles and then discuss various case studies that highlight how video, acoustic,
and sensor information can be fused in an integrated analysis framework. For example,
the authors show how visual cues can be used to support audio-based drum transcription.
Furthermore, in the case study of dance scene analysis various types of motion representations
(e. g. obtained from inertial sensors or depth image sensors) are combined with video and
audio representations. Konz and Müller show in their contribution how the harmonic analysis
of audio recording can be improved and stabilized by exploiting multiple versions of the
same piece of music. Using a late-fusion approach by analyzing the harmonic properties
of several audio versions synchronously, the authors show that consistencies across several
versions indicate harmonically stable passages in the piece of music, which may have some
deeper musical meaning. Finally, Ewert and Müller show how additional note information as
specified by a musical score can be exploited to support the task of source separation. Since
such sources, which may correspond to a melody, a bassline, a drum track, or an instrument
track, are mixed into monaural or stereo audio signals and highly correlated in the musical
context, the problem generally becomes intractable. Here, the additional score information
can be employed to alleviate and guide the separation process.

In the next two contributions, the potential of the multimodal analysis techniques are
highlighted by means of different interactive application scenarios. Dittmar et al. show how
techniques such as music transcription and sound separation open up new possibilities for
various music learning, practicing, and gaming applications. In particular, a music software
is presented which provides the entertainment and engagement of music video games while
offering appropriate methods to develop musical skills. This software also offers functionalities
that allow users to create personalized content for the game, e. g., by generating solo and
accompaniment track from user-specified audio material. Dannenberg addressed in his
contribution the problem of creating computer music systems that can perform live music
in association with human performers. Besides the above mentioned synchronization and
linking techniques, this scenario requires advanced real-time music analysis and synthesis
techniques that allow the system to react to a human performance in an intelligent way.

Besides the music processing techniques and their applications as discussed so far, the
problem of finding and retrieving relevant information from heterogenous and distributed
music collections has substantially gained importance during the last decade. As exposed in
the subsequent three contributions, the term “multimodality” can be recognized at several
levels in the retrieval context. For example, one may consider different types of textual,
acoustic, or visual representations of music. Or one may also consider different modalities
to access music collections – query-by-example, direct querying, browsing, metadata-based
search, visual user interfaces, just to name a few. The contribution by Schedl et al. gives
an overview of various aspects of multimodal music retrieval with a particular focus on the
issue on how to build personalized systems that particularly address the user’s interest and
behavior. In particular various relations between computational features and the human music
perception are discussed, accounting for user-centered aspects such as similarity, diversity,
familiarity, hotness, recentness, novelty, serendipity, and transparency. The contribution by
Grosche et al. approaches the topic of music information retrieval from another perspective.
In the case that textual descriptions are not available one requires retrieval strategies which
only access the contents of the raw audio material. The authors give an overview of various
content-based retrieval approaches that follow the query-by-example paradigm. Based on
the principles of granularity and specificity, various notions and levels of similarity used
to compare different audio recordings (or fragments) are discussed. Müller and Driedger
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illustrate how various content-based analysis and retrieval techniques come into play and act
together when considering a data-driven application scenario for generating sound tracks.
Here, the objective is to create computer-assisted tools that allow users to easily and
intuitively generate aesthetically appealing music tracks for a given multimedia stream such
as a computer game or slide show.

The last three contributions of this volume reflect on the kind of role music processing
has played in the past and offer a few thoughts on challenges, open problems, and future
directions. As noted by Weninger et al., the relatively young fields of music processing
and music information retrieval have been influenced by neighboring domains in signal
processing and machine learning, including automatic speech recognition, image processing
and text information retrieval. In their contribution, the authors give various examples for
methodology transfer, show parallel developments in the different domains, and indicate how
neighboring fields may now benefit from the music domain. In a stimulating and provocative
contribution, Goto describes his visions on how computed-based music processing methods
may help to generate new music, to predict music trends, and to enrich our daily lives. Picking
up some recent developments in Japan, various grand challenges are presented that not only
indicate future research directions but also should help to increase both the attraction and
social impact of research in multimodal music processing and music information retrieval. In
the final contribution, Liem et al. reflect on the kind of impact that music processing has
had across disciplinary boundaries and discuss various technology adoption issues that were
experienced with professional music stakeholders in audio mixing, performance, musicology
and sales industry. The music domain offers many possibilities for truly cross-disciplinary
collaboration and technology. However, in order to achieve this, careful consideration of the
users’ actual need as well as an investment in understanding the involved communities will
be essential.

This volume, which is based on our Dagstuhl seminar on “Multimodal Music Processing”
held in January 2011, is the result of the work by many people. First of all, we thank the
authors for their contributions as well as the reviewers for their valuable feedback. We are
grateful to the Cluster of Excellence on Multimodal Computing and Interaction (MMCI) at
Saarland University for their support. We highly appreciate and wish to thank the Dagstuhl
board and the Dagstuhl office for supporting us in having the seminar. In particular, we want
to thank Marc Herbstritt, who was extremely helpful with his advice and active support in
preparing and editing this volume. Thank you very much.

March 2012 Meinard Müller, Masataka Goto, and Markus Schedl
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Linking Sheet Music and Audio – Challenges and
New Approaches
Verena Thomas1, Christian Fremerey∗2, Meinard Müller†3, and
Michael Clausen4
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Abstract
Score and audio files are the two most important ways to represent, convey, record, store, and
experience music. While score describes a piece of music on an abstract level using symbols
such as notes, keys, and measures, audio files allow for reproducing a specific acoustic realization
of the piece. Each of these representations reflects different facets of music yielding insights
into aspects ranging from structural elements (e. g., motives, themes, musical form) to specific
performance aspects (e. g., artistic shaping, sound). Therefore, the simultaneous access to score
and audio representations is of great importance. In this paper, we address the problem of
automatically generating musically relevant linking structures between the various data sources
that are available for a given piece of music. In particular, we discuss the task of sheet music-
audio synchronization1 with the aim to link regions in images of scanned scores to musically
corresponding sections in an audio recording of the same piece. Such linking structures form
the basis for novel interfaces that allow users to access and explore multimodal sources of music
within a single framework. As our main contributions, we give an overview of the state-of-the-art
for this kind of synchronization task, we present some novel approaches, and indicate future
research directions. In particular, we address problems that arise in the presence of structural
differences and discuss challenges when applying optical music recognition to complex orchestral
scores. Finally, potential applications of the synchronization results are presented.

1998 ACM Subject Classification H.5.1 Multimedia Information Systems, H.5.5 Sound and
Music Computing, I.5 Pattern Recognition, J.5 Arts and Humanities–Music

Keywords and phrases Music signals, audio, sheet music, music synchronization, alignment,
optical music recognition, user interfaces, multimodality

Digital Object Identifier 10.4230/DFU.Vol3.11041.1

1 Introduction

Significant advances in data storage, data acquisition, computing power, and the worldwide
web are among the fundamental achievements of modern information technology. This

∗ Christian Fremerey is now with Steinberg Media Technologies GmbH, Germany.
† Meinard Müller has been supported by the Cluster of Excellence on Multimodal Computing and

Interaction (MMCI). He is now with Bonn University, Department of Computer Science III, Germany.
1 We use the term sheet music as equivalent to scanned images of music notation while score refers to

music notation itself or symbolic representations thereof.

© Verena Thomas, Christian Fremerey, Meinard Müller, and Michael Clausen;
licensed under Creative Commons License CC-BY-ND
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2 Linking Sheet Music and Audio Recordings

technological progress opened up new ways towards solving problems that appeared nearly
unsolvable fifty years ago. One such problem is the long-term preservation of our cultural
heritage. Libraries, archives, and museums throughout the world have collected vast amounts
of precious cultural material. The physical objects are not only difficult to access, but
also threatened from decay. Therefore, numerous national and international digitization
initiatives have been launched with the goal to create digital surrogates and to preserve our
cultural heritage.2 However, generating and collecting digitized surrogates represents only
the beginning of an entire process chain that is needed to avoid digital graveyards. To make
the digitized data accessible, one requires automated methods for processing, organizing,
annotating, and linking the data. Furthermore, intuitive and flexible interfaces are needed
that support a user in searching, browsing, navigating, and extracting useful information
from a digital collection.

In this paper, we address this problem from the perspective of a digital music library
project,3 which has digitized and collected large amounts of Western classical music. Such
collections typically contain different kinds of music-related documents of various formats
including text, symbolic, audio, image, and video data. Three prominent examples of such
data types are sheet music, symbolic score data, and audio recordings. Music data is often
digitized in some systematic fashion using (semi-)automatic methods. For example, entire
sheet music books can be digitized in a bulk process by using scanners with automatic
page turners. This typically results in huge amounts of high-resolution digital images
stored in formats such as TIFF or PDF. One can further process the image data to obtain
symbolic music representations that can be exported into formats such as MusicXML,4
LilyPond,5 or MIDI.6 This is done by using optical music recognition (OMR), the musical
equivalent to optical character recognition (OCR) as used in text processing. Symbolic
music representations and MIDI files are also obtained from music notation software or from
electronic instruments. Last but not least, modern digital music libraries contain more and
more digitized audio material in form of WAV or MP3 files. Such files are obtained by
systematically ripping available CD collections, converting tape recordings, or digitizing old
vinyl recordings.

As a result of such systematic digitization efforts, one often obtains data sets that contain
items of a single type,7 see also Figure 1. For example, scanning entire sheet music books
results in a collection of image files, where each file corresponds to a specific page. Or,
ripping a data set of CD recordings, one obtains a collection of audio files, where each file
corresponds to an audio track. In the case of digitizing a vinyl recording, a track covers an
entire side of the recording that may comprise several pieces of music.8 In order to make
the data accessible in a user-friendly and consistent way, various postprocessing steps are
required. For example, the scanned pages of sheet music need to be pooled, cut, or combined
to form musically meaningful units such as movements or songs. Furthermore, these units

2 For example, the project Presto Space (http://www.prestospace.org) or the internet portal Europeana
(http://www.europeana.eu).

3 Probado, for more information we refer to http://www.probado.de/en_home.html.
4 http://www.recordare.com/musicxml
5 http://lilypond.org
6 http://www.midi.org
7 For example, the Archival Sound Recordings of the British Library (http://sounds.bl.uk), the Chopin

Early Editions (http://chopin.lib.uchicago.edu), or the Munich Digitization Center of the Bavarian
State Library (http://bsb-mdz12-spiegel.bsb.lrz.de/~mdz).

8 The notion of a piece of music usually refers to individual movements or songs within bigger compositions.
However, the particular segmentation applied by music libraries can vary.
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audio lyrics 

Freude, schoener Goetterfunken, 

Tochter aus Elysium, 

Wir betreten feuertrunken, 

Himmlische dein Heiligtum. 

Deine Zauber binden wieder, 

Was die Mode streng geteilt; 

Alle Menschen werden Brueder, 

Wo dein sanfter Fluegel weilt. 

 

Wem der grosse Wurf gelungen, 

Eines Freundes Freund zu sein, 

Wer ein holdes Weib errungen, 

Mische seine Jubel ein! 

Ja - wer auch nur eine Seele 

Sein nennt auf dem Erdenrund! 

Und wer's nie gekonnt, der stehle 

Weinend sich aus diesem Bund! 

Das Wandern ist des Müllers Lust,  

Das Wandern!  

Das muss ein schlechter Müller 

sein,  

Dem niemals fiel das Wandern ein,  

Das Wandern.  

 

Vom Wasser haben wir's gelernt,  

Vom Wasser!  

Das hat nicht Rast bei Tag und 

Nacht,  

Ist stets auf Wanderschaft 

bedacht,  

Das Wasser.  

 

Das sehn wir auch den Rädern ab,  

Den Rädern!  

Die gar nicht gerne stille stehn,  

Die sich mein Tag nicht müde 

drehn,  

Die Räder 

Magnificat anima mea Dominum, 

et exsultavit spiritus meus in Deo 

salvatore meo. 

Quia respexit humilitatem ancillae 

suae. 

Ecce enim ex hoc beatam me 

dicent omnes generationes. 

Quia fecit mihi magna, qui potens 

est, 

et sanctum nomen eius. 

Et misericordia eius in progenies 

et progenies 

timentibus eum. 

Fecit potentiam in brachio suo, 

dispersit superbos mente cordis 

sui. 

Deposuit potentes de sede 

et exaltavit humiles. 

Esurientes implevit bonis 

et divites dimisit inanes. 

Suscepit Israel puerum suum, 

score 

Schubert, 

Op. 25 No. 1, 

»Das Wandern« 

Beethoven, 

Op. 125, 

1st mvmt.  

Liszt, Dante 

Symphony, 

1st mvmt. 

 

 

 

 

Freude, schoener Goetterfunken, 

Tochter aus Elysium, 

Wir betreten feuertrunken, 

Himmlische dein Heiligtum. 

Deine Zauber binden wieder, 

Was die Mode streng geteilt; 

Alle Menschen werden Brueder, 

Wo dein sanfter Fluegel weilt. 

 

Wem der grosse Wurf gelungen, 

Eines Freundes Freund zu sein, 

Wer ein holdes Weib errungen, 

Mische seine Jubel ein! 

Ja - wer auch nur eine Seele 

Sein nennt auf dem Erdenrund! 

Und wer's nie gekonnt, der stehle 

Weinend sich aus diesem Bund! 

 

 

Magnificat anima mea Dominum, 

et exsultavit spiritus meus in Deo 

salvatore meo. 

Quia respexit humilitatem ancillae 

suae. 

Ecce enim ex hoc beatam me dicent 

omnes generationes. 

Quia fecit mihi magna, qui potens est, 

et sanctum nomen eius. 

Et misericordia eius in progenies et 

progenies 

timentibus eum. 

Fecit potentiam in brachio suo, 

dispersit superbos mente cordis sui. 

Deposuit potentes de sede 

et exaltavit humiles. 

Esurientes implevit bonis 

et divites dimisit inanes. 

Suscepit Israel puerum suum, 

 

 

 

 

Das Wandern ist des Müllers Lust,  

Das Wandern!  

Das muss ein schlechter Müller sein,  

Dem niemals fiel das Wandern ein,  

Das Wandern.  

 

Vom Wasser haben wir's gelernt,  

Vom Wasser!  

Das hat nicht Rast bei Tag und Nacht,  

Ist stets auf Wanderschaft bedacht,  

Das Wasser.  

 

Das sehn wir auch den Rädern ab,  

Den Rädern!  

Die gar nicht gerne stille stehn,  

Die sich mein Tag nicht müde drehn,  

Die Räder 

Figure 1 Change from a document and document type centered data collection (left) to an
arrangement focusing on pieces of music (right).

need to be assigned to the respective musical work and annotated accordingly. Similarly,
audio tracks are to be identified and trimmed to meet certain standards and conventions.
Finally, suitable metadata needs to be attached to the digitized documents. When trying
to automate the stated postprocessing steps for real-world music collections, they become
challenging research problems. The main issues are the inconsistency and the complexity of
the given data. For instance, sheet music contains a lot of textual metadata but its extraction
and proper interpretation are non-trivial tasks (e.g., Allegro can likewise constitute a tempo
instruction or the name of a piece of music, see [25] for further details).

The availability of accurate metadata is essential for organizing and indexing huge
music collections. For example, searching for the keywords “Beethoven” and “Op. 125”,
one should be able to retrieve all documents that refer to Beethoven Symphony No. 9.
In this way, suitable metadata information allows for re-arranging the music documents
to obtain a data collection, where all versions that refer to the same piece of music are
compiled irrespective of their format or modality, see Figure 1. However, such a document-
level compilation of musically related versions constitutes only the first step towards a
comprehensive system for multimodal music navigation and browsing. In the next step, one
requires linking structures that reveal the musical relations within and across the various
documents at a lower hierarchical level. For example, such a linking structure may reveal the
musical correspondence between notes depicted in a scanned sheet music document and time
positions in an audio recording of the same piece of music. Such links would then allow for
a synchronous display of the audible measure in the sheet music representation during the
playback of a music recording. Similarly, in a retrieval scenario, a musical theme or passage
could be marked in the image domain to retrieve all available music recordings where this
theme or passage is played.

In this paper, we address the problem of how suitable linking structures between different
versions of the same piece of music can be computed in a fully automated fashion. In particular,
we focus on the multimodal scenario of linking sheet music representations with corresponding
audio representations, a task we also refer to as sheet music-audio synchronization, see
Figure 2a. In Section 2, we give an overview of an automated synchronization procedure and
discuss various challenges that arise in the processing pipeline. One major step in this pipeline
is to extract explicit note events from the digitized sheet music images by using OMR. Even
though there is already various commercial OMR software on the market for many years,
the robust extraction of symbolic information is still problematic for complex scores. Some
of these challenges are discussed in Section 3. In particular, certain extraction errors have
severe consequences, which may lead to erroneous assignments of entire instrument tracks or
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4 Linking Sheet Music and Audio Recordings

(a) Score-audio synchronization on the measure-level. Time segments in the audio stream are mapped to
individual measures in the score representation. The depicted audio track contains a repetition. Therefore,
the according score measures have to be mapped to both audio segments.

(b) Score-audio mapping on the detail level of pieces of music. The score and the audio data are segmented
into individual pieces of music. Afterwards, the correct score-audio pairs have to be determined.

Figure 2 Examples for score-audio synchronization on different detail levels.

to deviations in the global music structure. In Section 4, we discuss common computational
approaches to sheet music-audio synchronization and present various strategies how the
resulting global differences between documents can be handled within the synchronization
pipeline. Finally, in Section 5, we describe some applications and novel interfaces that are
based on synchronization results. We conclude the paper with an outlook on future work. A
discussion of relevant work can be found in the respective sections.

2 Task Specification

The goal of music synchronization is the generation of semantically meaningful bidirectional
mappings between two music documents representing the same piece of music. Those
documents can be of the same data type (e.g., audio-audio synchronization) or of different
data types (e.g., score-audio synchronization or lyrics-audio synchronization). In the case of
score-audio synchronization the created linking structures map regions in a musical score,
e.g., pages or measures, to semantically corresponding sections in an audio stream (see Figure
2).

Although the task of score-audio synchronization appears to be straightforward, there
exist several aspects along which the task and its realization can vary (see Figure 3). The
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Score-Audio 

Synchronization

Figure 3 Aspects of score-audio synchronization.

particular choice of settings with respect to these aspects is always influenced by the intended
application of the synchronization results.

The first choice concerns the sought detail level or granularity of the synchronization.
A very coarse synchronization level would be a mapping between score and audio sections
representing the same piece of music, see Figure 2b (e.g., Neue Mozart-Ausgabe9). This type
of alignment is also referred to as score-audio mapping. Finer detail levels include page-wise
[2, 21], system-wise, measure-wise [34], or note-wise [8, 46] linking structures between two
music documents. The choice of granularity can in turn affect the level of automation. The
manual annotation of the linking structure might be achievable for page-wise synchronizations.
However, for finer granularities semi-automated or automated synchronization algorithms
would be preferable. While automatic approaches do not need (and also not allow) any user
interaction, in semi-automatic approaches some user interaction is required. However, the
extent of the manual interaction can vary between manually correcting a proposed alignment
on the selected detail level and correcting high-level aspects (e.g., the repeat structure) before
recalculating the alignment. The selected automation level obviously also depends on the
amount of data to be processed. For a single piece of music given only one score and one
audio interpretation, a full-fledged synchronization algorithm might not be required. But,
for the digitized music collection of a library, manual alignment becomes impossible. Finally,
reliability or accuracy requirements also take part in the automation decision.

Another huge differentiation concerns the runtime scenario. In online synchronization,
the audio stream is only given up to the current playback position and the synchronization
should produce an estimation of the current score position in real-time. There exist two
important applications of online score-audio synchronization techniques, namely score follow-
ing and automated accompaniment [13, 17, 36, 37, 46, 48, 54]. The real-time requirements
of this task turn local deviations between the score and the audio into a hard problem.
Furthermore, recovery from local synchronization errors is problematic. In contrast, in offline
synchronization the complete audio recording and the complete score data are accessible
throughout the entire synchronization process [34, 42]. Also, the computation is not required
to run in real-time. Due to the loosened calculation time requirements and the availability
of the entire audio and score data during calculation, offline synchronization algorithms
usually achieve higher accuracies and are more robust with regard to local deviations in the
input data. The calculated linking structures can afterwards be accessed to allow for, e.g.,
score-based navigation in audio files.

The genre/style of the music to be synchronized also influences the task of score-audio
synchronization. While Western classical music and most popular music feature strong

9 http://www.nma.at
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6 Linking Sheet Music and Audio Recordings

melodic/harmonic components other music styles, like African music, may mainly feature
rhythmic drumming sounds. Obviously, using harmonic information for the synchronization of
rhythmic music will prove ineffective and therefore different approaches have to be employed.

The type of input data—more precisely the score representation—constitutes the last
aspect of score-audio synchronization. The score data can either be available as scanned
images of music notation (i.e., sheet music) or as symbolic score (e.g., MIDI or MusicXML).
Obviously, the choice of score input affects the type of challenges to be mastered during
synchronization. While symbolic score representations are usually of reasonable quality and
the extraction of the individual music events is straightforward, some sort of rendering is
required to present the score data. In contrast, sheet music already provides a visualization.
But the music information needs to be reconstructed from the image data before the linking
structures can be calculated. OMR systems approach this task and achieve high reconstruction
rates for printed Western music. Nevertheless, the inclusion of OMR into the synchronization
process may result in defective symbolic score data (see Section 3). Usually, the errors are of
mainly local nature. Thus, by choosing a slightly coarser detail level (e.g., measure level)
sound synchronization results can be achieved. For a differentiation between these two types
of input data, the term sheet music-audio synchronization is often utilized if scanned images
are given as score input.

Various researchers are active in the field of score-audio synchronization and work on all
settings of the listed aspects has been reported. Considering all aspects and their specific
challenges would go beyond the scope of this paper. Instead, we focus on the task of
automated offline sheet music-audio synchronization for Western classical music producing
linking structures on the measure level. Furthermore, the processing of large music collections
should be possible.

The basic idea in most score-audio synchronization scenarios is to transform both input
data types into a common mid-level representation. These data streams can then be
synchronized by applying standard alignment techniques, see Section 4 for an overview.
Independent of the selected approach, one has to cope with the following problems to get
reasonable synchronization results:

Differences in structure: A score can contain a variety of symbols representing jump
instructions (e.g., repeat marks, segno signs, or keywords such as da capo, Coda, or Fine,
see Figure 4). While OMR systems are capable of detecting repeat marks, they often
fail to reliably detect most other textual jump instructions in the score. Therefore, the
correct playback sequence of the measures cannot be reconstructed. However, even if all
jump instructions are correctly recognized, the audio recording may reveal additional
repeats or omissions of entire passages notated in the score. Again, the given sequence of
measures does not coincide with the one actually played in the audio recording. Such
structural differences lead to major challenges in score-audio synchronization.

Figure 4 Examples of jump indicators used in music notation (adapted from [25]).

Differences between music representations: Score pages and audio recordings
represent a piece of music on different levels of abstraction and capture different facets
of the music. One example is the tempo. Music notation may provide some written
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Largo Allegro Adagio Largo Allegro

Figure 5 Extract of Beethoven’s Piano Sonata No. 17 (publisher: Henle Verlag, pianist: V. Ashke-
nazy). In the first nine measures alone four substantial tempo changes are performed. Thus, the
duration of the measures in the audio recording varies significantly. However, in the score only vague
instructions are available that result at best in an approximation of the intended tempo changes.

information on the intended tempo of a piece of music and tempo changes therein (e.g.,
instructions such as Allegro or Ritardando). However, those instructions provide only a
rough specification of the tempo and leave a lot of space for interpretation. Therefore,
different performers might deviate significantly in their specific tempo choices. In addition,
most musicians even add tempo changes that are not specified by the score to emphasize
certain musical passages. For an example we refer to Figure 5.
The differences in the loudness of instruments and the loudness variations during the
progression of a piece of music are further important characteristics of a given performance.
Just like tempo, loudness is notated only in a very vague way and OMR systems often fail
to detect the few available instructions. Similarly, music notation only provides timbre
information through instrument labels. Therefore, timbre-related sound properties such
as instrument-dependent overtone energy distributions are not explicitly captured by the
score.
In conclusion, in view of practicability, score-audio synchronization techniques need to
be robust towards variations in tempo, loudness, and timbre to deal with the mentioned
document type related differences.
Errors in the input data: As already mentioned, OMR is not capable of reconstructing
the score information perfectly. The errors introduced by OMR can be divided into
local and global ones. Local errors concern, e.g., misidentifications of accidentals, missed
notes, or wrong note durations. In contrast, examples for global errors are errors in
the detection of the musical key or the ignorance of transposing instruments. Further
details will be presented in Section 3. While for sheet music, errors are introduced during
the reconstruction from the scanned images, the audio recordings themselves can be
erroneous. The performer(s) may locally play some wrong notes or a global detuning
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8 Linking Sheet Music and Audio Recordings

occurred. For Western classical music a tuning of 440 Hz for the note A4 was defined as
standard. However, most orchestras slightly deviate from this tuning.10 Furthermore, for
Baroque music a deviation by a whole semitone is common.
Sheet music-audio mapping: Especially in library scenarios, the goal is not the
synchronization of one piece of music. Usually, the input consists of whole sheet music
books and whole CD collections. Therefore, before calculating the linking structures, the
score and the audio data need to be segmented into individual pieces of music. As the
order in the sheet music books and on the CDs might differ, a mapping on this granularity
level needs to be created before the actual synchronizations can be calculated.

Although we focus on sheet music-audio synchronization in this contribution, most of the
mentioned problems also exist for other score-audio synchronization variants.

3 Optical Music Recognition

Similarly to optical character recognition (OCR) with the goal to reconstruct the textual
information given on scanned text pages, optical music recognition (OMR) aims at restoring
musical information from scanned images of sheet music. But, the automatic reconstruction
of music notation from scanned images has to be considered much harder than OCR. Music
notation is two-dimensional, contains more symbols, and those symbols mostly overlap with
the staves. A large number of approaches to OMR has been proposed and several commercial
and non-commercial OMR systems are available today. Three more popular commercial
systems are SharpEye,11 SmartScore,12 and PhotoScore.13 All of them operate on common
Western classical music. While the former two only work for printed sheet music, PhotoScore
also offers the recognition of handwritten scores. Two prominent examples for non-commercial
OMR systems are Gamera14 and Audiveris.15 While Audiveris is not competitive in terms
of recognition rates, Gamera is actually a more general tool for image analysis. Therefore,
Gamera requires training on the data to be recognized to yield adequate recognition results.
Since the introduction of OMR in the late 1960s [45] many researchers worked in the field
and relevant work on the improvement of the recognition techniques has been reported. For
further information, we refer to the comprehensive OMR bibliography by Fujinaga [29].

As with score-audio synchronization, there are three factors that affect the difficulty
of the OMR task and the selection of the pursued approach. First, there exist different
types of scores (e.g., medieval notation, modern notation or lute tablatures) that differ
significantly in their symbol selection and their basic layout. Therefore, the type of music
notation present on the images has to be considered. Second, the transcription format is of
influence. Printed score is regular and usually well formatted while handwritten score can be
rather unsteady and scrawly. Additionally, crossing outs, corrections, and marginal notes
make the interpretation of handwritten scores even more challenging. Finally, the envisioned
application of the resulting symbolic representation influences the required precision. OMR
results intended for playback or score rendering have to present a much higher accuracy on
the note level than a reconstruction serving as score representation during sheet music-audio
synchronization on the measure level (see Section 4). In the first scenario, most OMR systems

10List of standard pitches in international orchestras: http://members.aon.at/fnistl/
11 http://www.music-scanning.com
12 http://www.musitek.com
13 http://www.sibelius.at/photoscore.htm
14 http://gamera.informatik.hsnr.de
15 http://audiveris.kenai.com
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Figure 6 Examples of common OMR errors. Left: Besides wrong note durations and an
accidental mistaken for a note, the staff system was split into two systems. Middle: The key
signature was not correctly recognized for the lower staff. Right: In the lower staff, the clef was not
detected.

support the creation of an initial approximation of a symbolic representation and provide
user interfaces for manual correction.

Several studies on the performance of OMR systems and the types of errors that occur
were conducted [10, 11, 12, 25]. Those studies show that OMR systems vary with regard to
their strengths and weaknesses. However, the types or classes of recognition errors are the
same for all systems. Some examples of common errors are given in Figure 6. Most of those
errors are of a local nature and concern individual music symbols or small groups thereof.
Examples are articulation marks, ornaments, accidentals, dynamics, and note durations that
are mistaken for some other symbol or missed altogether. In the context of sheet music-audio
synchronization those local errors are less severe because the applied synchronization methods
are capable of managing local deviations between the two sequences to be aligned. In contrast,
several types of recognition errors, influencing larger areas of the score, exist. Those might
include wrong time signatures, missed clefs, wrong key signatures, staff systems being split
up (e.g., due to arpeggios traveling through several staves or due to textual annotations
disrupting the vertical measure lines), or missed repetition instructions. While the time
signature is of little importance for sheet music-audio synchronization, the other error types
can have a strong impact on the alignment result. To achieve high quality alignments, these
kinds of errors should be corrected, either by offering user interfaces for manual intervention
or by developing new OMR techniques improving on those specific deficits.

Another shortcoming of most OMR systems is the interpretation of textual information
in the score. While some systems are capable of determining text such as lyrics correctly,
text-based instructions on dynamics, title headings, and instruments are often recognized
without associating their (musical) meaning or are not detected at all. For sheet music-
audio synchronization the most significant textual information is the one on transposing
instruments.16 If transposing instruments are part of the orchestra and their specific
transposition is not considered during the reconstruction, their voices will be shifted with
respect to the remaining score, see Figure 7. However, to the best of our knowledge, no OMR
system considers this type of information and attempts its detection.

16For transposing instruments, the sounding pitches are several semitones higher/lower than the notes
written in the score.
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Figure 7 Voices of transposing instruments are shifted with respect to other voices if their
transpositions are not known. Middle: Erroneous reconstruction in absence of transposition
information. Right: Correct symbolic representation of the highlighted score extract.
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Figure 8 Illustration of chroma features for the first few measures from the third movement of
Beethoven’s Piano Sonata No. 23. The color values represent the intensity of a chroma at a given
position (black: low intensity, red: medium intensity and yellow/white: high intensity). The left
diagram shows a chroma sequence created from the depicted sheet music extract. The middle and
the right diagram show the chroma features for two audio interpretations of the same music extract.
The chroma features clearly capture the higher tuning (by one semitone) of the second recordings.

4 Sheet Music-Audio Synchronization

The goal of sheet music-audio synchronization is to link regions in two-dimensional score
images to semantically corresponding temporal sections in audio recordings. Therefore, the
two data sources need to be made comparable by transforming them into a common mid-level
representation. In the synchronization context, chroma-based music features turned out to be
a powerful and robust mid-level representation [7, 31]. A chroma vector represents the energy
distribution among the 12 pitch classes of the equal-tempered chromatic scale (C, C#, D, ...,
B) for a given temporal section of the data, see Figure 8. Chroma features have the property
of eliminating differences in timbre and loudness to a certain extend while preserving the
harmonic progression in the music. Therefore, their application is most reasonable for music
with a clear harmonic progression, like most Western classical music. In addition, by choosing
the size of the sections represented by individual chroma vectors appropriately, local errors in
the input data can be canceled out for the most part. To transform sheet music into chroma,
OMR is performed on the score scans. Afterwards, a MIDI file is created from this data
assuming a fixed tempo and standard tuning (see [34] for more information).
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Figure 9 (a) Local cost matrix for the score chromagram and one of the audio chromagrams
depicted in Figure 8. The optimal alignment path is highlighted in light blue. (b) Example of
allowed steps during DTW based synchronization. (c) Illustration of a left-to-right connected HMM
with 3 states.

At the moment, we assume that we are given one sheet music representation and one
audio interpretation of the same piece of music. We will address the issue of sheet music-audio
mapping in Section 4.1. Furthermore, we will for now assume that the structure of the score
and the audio recording coincide. Some ideas on how to handle structural differences will be
presented in Section 4.2. After calculating chroma features for both music representations,
a local cost matrix can be constructed by pair-wise measuring the similarity between the
vectors of the two chroma sequences. Then, the goal is the identification of a path through
this matrix that is connecting the two beginnings and endings of the feature sequences and is
optimal with respect to the local costs along the path (optimal alignment path). See Figure
9a for an example.

There exist two commonly used computational approaches to this task. The first approach
is called dynamic time warping (DTW) and is based on dynamic programming techniques
[1, 18, 24, 31, 42, 43]. After creating the local cost matrix using an appropriate cost measure
an accumulated cost matrix is constructed. In this matrix the entry at position (n, m) contains
the minimal cost of any alignment path starting at (1, 1) and ending at (n, m). However,
during the creation of the alignment path only a certain set of steps is allowed to move
through the matrix, e.g., {(1, 0), (0, 1), (1, 1)}, see Figure 9b. The optimal alignment path is
then constructed by backtracking through the matrix using the allowed steps. At each point
we chose the predecessor with the lowest accumulated costs. The second approach applies
Hidden Markov Models (HMM) to determine the optimal alignment path [36, 37, 46, 48]. In
this scenario one of the feature sequences is used as hidden states of the HMM and the other
sequence forms the set of observations. Usually a left-to-right connected HMM structure is
used for score-audio synchronization, see Figure 9c.

In combination with chroma features these alignment techniques allow for some variations
in timbre, loudness, and tempo. In addition, small deviations in the data streams (due to
errors) can be handled. In contrast, tuning differences are not considered by the presented
approaches. Here, the feature sequences show significant differences that can result in a poor
synchronization quality (see Figure 8). To suitably adjust the chroma features, a tuning
estimation step can be included in the feature calculation process [19]. Instead, one may
also apply brute-force techniques such as trying out all possible cyclic shifts of the chroma
features [30, 39]. Thus, the presented approaches already cope with some of the problems
mentioned in Section 2. In the remainder of this section we want to introduce approaches
tackling some of the remaining unsolved problems (i.e., structural differences, certain types
of errors, and sheet music-audio mapping).
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4.1 Sheet Music-Audio Mapping
Arranging the music data in a digital library in a work-centered way or, more precisely, piece
of music-wise has proven beneficial. Thus in the context of a digitization project to build up
a large digital music library, one important task is to group all documents that belong to
the same piece of music, see Figure 1. Note that in this scenario, the music documents that
are to be organized are not given as individual songs or movements, but rather as complete
sheet music books or audio CD collections that usually contain several pieces of music.17 In
addition, we typically have to deal with numerous versions of audio recordings of one and the
same piece of music,18 and also with a number of different score versions (different publishers,
piano reductions, orchestra parts, transcriptions, etc.) of that piece. Thus, the final goal at
this level of detail is to segment both the score books and the audio recordings in such a way
that each segment corresponds to one piece of music. Furthermore, each segment should be
provided with the appropriate metadata. This segmentation and annotation process, called
sheet music-audio mapping, is a crucial prerequisite for the sheet music-audio synchronization
described in the previous section. One possibility to solve this task is to manually perform
this segmentation and annotation. However, for large collections this would be an endless
undertaking. Thus semi-automatic or even fully automatic mapping techniques should be
developed.

For audio recordings and short audio extracts, music identification services like Shazam19

can provide a user with metadata. Furthermore, ID3 tags, CD covers, or annotation databases
such as Gracenote20 and DE-PARCON21 can contain information on the recorded piece of
music. However, their automated interpretation can quickly become a challenging task. To
name just two prominent issues, the opus numbers given by the different sources might not
use the same catalogue or the titles might be given in different spellings or different languages.
Furthermore, the mentioned services do not provide information for public domain recordings.
Another issue can be introduced by audio tracks containing several pieces of music. Here,
the exact start and end positions of the individual pieces of music have to be determined.22
However, this information is usually not provided on CD covers or in metadata databases.
Still, the mentioned information sources can be used to support the manual segmentation
and annotation process. The automatic extraction and analysis of textual information on
scanned score images has to be considered at least equally challenging.

Given one annotated audio recording of all the pieces contained in a score book, Fremerey
et al. [25, 27] propose an automatic identification and annotation approach for sheet music
that is based on content-based matching. One key strategy of the proposed procedure is to
reduce the two different types of music data, the audio recordings as well as the scanned
sheet music, to sequences of chroma features, which then allow for a direct comparison across
the two domains using a variant of efficient index-based audio matching, see [33]. To this
end, the scan feature sequence is compared to the audio feature sequence using subsequence
dynamic time warping. The resulting matching curve combined with the information on the

17 In the context of the Probado project, the Bavarian State Library in Munich digitized more than 900
sheet music books (approx. 72, 000 score pages) and about 800 audio CDs.

18For example, the British Library Sounds include recordings of about 750 performances of Beethoven
String Quartets, as played by 90 ensembles, see http://sounds.bl.uk/Classical-music/Beethoven

19 http://www.shazam.com
20 www.gracenote.com
21 http://www.de-parcon.de/mid/index.html
22Usually, longer periods of silence can hint at the beginning of a new piece. However, the direction attacca

resulting in two successive movements played without a pause, can prevent this clue from existing.
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Figure 10 Score block sequence β1β2β3β4 created from notated score jumps and alignment path
for an audio with block structure β1β2β3β2β4 (adapted from [25]).

audio segmentation finally gives both the segmentation and the annotation of the scanned
sheet music.

In the same manner, additional audio recordings of already known pieces can be segmented
and annotated. Therefore, through the presented approach the manual processing of only
one manifestation of each piece of music is required.

4.2 Dealing with Structural Differences

When comparing and synchronizing scores and performances, it may happen that their
global musical structures disagree due to repeats and jumps performed differently than
suggested in the score. These structural differences have to be resolved to achieve meaningful
synchronizations. In the scenario of online score-audio synchronization this issue has already
been addressed [2, 35, 44, 51]. Pardo and Birmingham [44] and Arzt et al. [2] both use
structural information available in the score data to determine music segments where no
jumps can occur. In the first publication an extended HMM is used to allow for jumps
between the known segment boundaries. In the second approach an extension of the DTW
approach to music synchronization is used to tackle structural differences. At each ending
of a section, three hypotheses are pursued in parallel. First, the performance continues on
to the next section. Second, the current section is repeated. Third, the subsequent section
is skipped. After enough time has passed in the performance the most likely hypothesis is
kept and followed. Besides approaches exploiting structural information available from the
score, Müller et al. [38, 40] approached a more general case where two data sources (e.g.,
two audio recordings) are given but no information on allowed repeats or jumps is available.
In this case, only partial alignments of possibly large portions of the two documents to be
synchronized are computed.

Fremerey et al. [25, 26] presented a method for offline sheet music-audio synchronization
in the presence of structural differences, called JumpDTW. Here, jump information is derived
from the sheet music reconstruction thus creating a block segmentation of the piece of music
(see Figure 10). As already mentioned, OMR systems may not recognize all types of jump
instructions (especially, textual instructions are often missed). Therefore, bold double bar
lines are used as block boundaries. At the end of each block the performance can then either
continue to the next block or jump to the beginning of any other block in the piece, including
the current one (in contrast to [2] where only forward jumps skipping at most one block are
considered). To allow for jumps at block endings, the set of DTW steps is modified. For
all block endings, transitions to all block starts in the score are added to the usual steps.
By calculating an optimal alignment path using a thus modified accumulated cost matrix,
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14 Linking Sheet Music and Audio Recordings

Figure 11 Examples of transposition labels applied by different editors.

possible jumps in the performance can be detected and considered during the synchronization
process.

4.3 Dealing with Orchestral Music
Because of the large number of instruments in orchestral music, the score notation inevitably
becomes more complex. Typically, this results in a decreased OMR accuracy. Furthermore,
orchestral scores contain information commonly neglected by OMR systems. One very impor-
tant example is the transposition information. The specific transposition of an instrument
is usually marked in the score by textual information such as “Clarinet in E”, see Figure
11. Obviously, by disregarding this information during the OMR reconstruction, the pitch
information for transposing instruments will be incorrect. In the context of sheet music-audio
synchronization such global errors in the reconstructed symbolic score data can result in a
significant accuracy loss [52, 53].

...
...

...
...

...
...

Figure 12 Extracts from Franz Liszt: Eine Sinfonie nach Dantes Divina Commedia using
compressed notation (publisher: Breitkopf & Härtel).

In Western classical music, the score notation usually obeys some common typesetting
conventions. Examples are the textual transposition information but also the introduction
of all instruments playing in a piece of music by labeling the staves of the first system.
Furthermore, a fixed instrument order and the usage of braces and accolades help in reading
the score [49]. But despite of all these rules, the task of determining which instrument
is supposed to play in a given staff (instrument-staff mapping) and whether or not it
is a transposing instrument can be challenging. For most scores the number of staves
remains constant throughout the entire piece of music. Therefore the instrument names and
transposition information are often omitted after the first system and the information given
in the first system needs to be passed on to the remaining systems. The task of determining
the instrument of a staff and its transposition becomes even more complicated for compressed
score notations where staves of pausing instruments are removed (see Figure 12). Here, the
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instrument order is still valid, but some of the instruments introduced in the first system
may be missing. To clarify the instrument-staff mapping in these cases, textual information
is given. However, in these cases the instrument names are usually abbreviated and therefore
more difficult to recognize. Furthermore, transposition information is often only provided
in the first system of a piece or in the case that the transposition changes. The textual
information might be omitted altogether if the instrument-staff mapping is obvious for a
human reader (e.g., strings are always the last instrument group in a system).

Although a great deal of research on OMR has been conducted (see, e.g., [4, 29]), the
particular challenges of orchestral scores have not yet been addressed properly. A first
approach for the reconstruction of the transposition information was presented in [53]. The
instrument-staff mapping as well as the transposition information are reconstructed during
three distinct processing steps.

In the first step, the textual information available on the score scans is recovered and
interpreted to regain as many instrument labels and transposition labels as possible, see
Figure 13. Using the staff location information available in the OMR result, image regions
that possibly contain text/words naming an instrument or a transposition are detected and
processed by an OCR engine. Subsequently, the detected instruments are mapped to the
according staves. To account for different spellings and abbreviations, a library of all possible
textual representations of the instruments is used as additional knowledge. Transpositions are
recognized by searching for the keyword “in” followed by a valid transposition information.

piccolo 

flute 

oboe 

clarinet 

English horn 

B 

OCR 

Piccolo. 

Plauti I. II. 

Oboi I.n. 

Clariiietti LH in B 

Corno inglese. 

Library 
Look-Up 

keyword 
„in“ 

B 

Text Instrument  

Flauto flute 

Clarinette Clarinet 

Clarinetti Clarinet 

Clar. Clarinet 

Clarino Trumpet 

… … 

Clariiietti LH 

Map 

Instrument library 

Figure 13 Overview: Reconstruction of instrument and transposition labels from the textual
information in the score.

In the second step, the reconstruction from the previous step is used as initialization of
an iterative process, see Figure 14. To this end, musical knowledge and common notation
conventions are employed. As both the OCR-reconstruction and all information deduced
through musical knowledge are uncertain, all instrument-staff mappings are equipped with
plausibility values. Besides filling missing mappings, the following iterative update process
also strengthens/weakens existing plausibilities. Each iteration of step two can again be
divided into three parts. First, the already detected instrument information is successively
propagated between consecutive systems by employing the convention that the initially
established instrument order is not altered. If two instruments occur in both systems and
the number of intermediate staves between these instruments coincides, the instrument
information of the intermediate staves of the first system is propagated to the according
staves in the subsequent system. Second, musical properties such as “trombone and tuba
play in subsequent staves and are grouped by an accolade” are deduced from the score and
employed to determine the instrumentation. In the third and final part, the instrument order
established in the first system is used again. For all subsequent systems deviations from this
order are determined and the according instrument-staff mappings are weakened.

In the last step of the proposed method, the transposition labels given in the first
system (and reconstructed in step one) are transferred to the remaining systems. Thereby a
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Music notation 
properties 

Propagation 

Instrument order 
constraint 

horn 

horn 

horn 

? 

piccolo 

oboe 

flute 

clarinet 

piccolo 

flute 

oboe 

clarinet 

English horn 

B 

piccolo 

? 

? 

clarinet 

piccolo 

flute 

oboe 

clarinet 

English horn 

B 

BEGIN BEGIN 

END END 

Figure 14 Overview: Recursive approach to the reconstruction of missing instrument and
transposition labels.

global correction of the transposition information is achieved even if textual transposition
information is only available in the first system.

5 Applications of Sheet Music-Audio Synchronization

In Section 1 we already touched upon possible applications of sheet music-audio synchroniza-
tion. In this section we first give a more detailed overview of existing user interfaces that
employ synchronization techniques (using sheet music or symbolic score data). Then, we
focus on current issues in music information retrieval (MIR) and show how to incorporate
sheet music-audio synchronization to solve specific MIR tasks.

5.1 User Interfaces

The Laboratorio di Informatica Musicale at the University of Milan developed the IEEE 1599
standard for the comprehensive description of music content. The proposed XML-format
can handle and relate information of various kinds including music symbols, printed scores,
audio recordings, text, and images. In addition, music analysis results and synchronization
information can be stored as well. Based on this IEEE standard, user interfaces for the
simultaneous presentation of multiple music documents have been proposed [3, 5, 6]. To this
end, the synchronization results are used for enhanced, multimodal music navigation. At the
moment, the synchronization information is created manually but work towards automated
score-audio synchronization has been reported [14]. Another project that uses manually
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created alignment information is the Variations project [21].23 The goal of Variations is
the development of a digital music library system to be used in the education context. The
system offers music analysis and annotation tools (e.g., structure analysis, time stretching)
and page-wise score-audio synchronization. Work on automated synchronization has been
described in [47].

Wedelmusic is one of the first systems presenting sheet music and audio data simultane-
ously [8]. During playback a marker moves through the sheet music to identify the currently
audible musical position. In addition, page turning is performed automatically by gradually
replacing the current sheet/system with the next one. However, the employed automatic
synchronization approach was rather simple. Using the start and end points in the sheet
music and the audio as anchor points, linear interpolation was applied. As local tempo
deviations may result in alignment errors, a user interface for the manual rework of the
proposed synchronization was available. Xia et al. [55] present a rehearsal management tool
for musicians that exploits semi-automated score-audio synchronization. Here, recordings of
various rehearsals are clustered and aligned to a score representation of the piece of music.
Additional challenges are introduced by the fact that the recordings can differ in length
and may cover different parts of the piece. In the Probado project, a digital music library
system for the management of large document collections was developed (see Figure 15).
The most prominent features are content-based retrieval techniques and a multimodal music
presentation implemented by sheet music-audio synchronization [15, 16]. The alignment
structures are calculated nearly automatically in this system.

Another application designed to support musicians is automated accompaniment. To
this end, online score-audio synchronization determines the current position in the score
as well as the current tempo to replay a time-stretched audio recording. Two well known
accompaniment systems are Music Plus One by Raphael [46, 48] and ANTESCOFO by
Cont [13].

5.2 MIR Research

There are various MIR tasks that exploit score information as additional knowledge. For
example, in score-informed source separation one assumes that along with the audio recording
a synchronized MIDI file is given. Through this file the occurring note events along with
their position and duration in the audio are specified. We refer to Ewert and Müller [23] for
an extensive overview. At the moment, all approaches use symbolic score data (e.g., MIDI)
but sheet music may be applicable as well. However, in this case recognition errors need
to be considered by the source separation method. A similar task is the estimation of note
intensities in an audio recording where the notes are specified by a symbolic representation
[22]. Again, to avoid the manual creation of a MIDI file, the exploitation of score scans
together with sheet music-audio synchronization techniques, seems reasonable.

Another important research topic is lyrics-audio synchronization [28, 32]. Instead of using
the commonly employed speech analysis techniques, sheet music can be added as additional
information. Thereby, the lyrics can be derived from the OMR results. Afterwards, the
lyrics-audio alignment can be calculated by means of the sheet music-audio synchronization
[15, 41, 50].

23 http://www.dlib.indiana.edu/projects/variations3
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(a) (b)

(c) (d)

Figure 15 The Probado music user interface. (a) Search interface with a result presentation on
the piece of music level. On the bottom right, access to all documents containing the selected piece
is provided. Besides sheet music (b), the interface offers visualizations of audio recordings (c) and
lyrics (d). Sheet music-audio synchronization results allow for the currently audible measure to be
highlighted. Equally, the sung word is marked in the lyrics [50]. Different sheet music edition or
other audio recordings can easily be selected. During a document change, the linking structures
help to preserve the musical position and playback continues smoothly.

There are several other tasks where score-audio synchronization might help reducing the
complexity of the problem. Some examples are structure analysis, chord recognition, and
melody extraction.

6 Outlook

Although, current sheet music-audio synchronization algorithms perform quite well, there
still exist some open issues. First, to allow for a higher level of detail, the input data has
to become more reliable. In particular, the OMR accuracy needs to be improved. After
achieving a high-resolution synchronization, e.g., on the note level, the question of how to
present this alignment structure arises. For orchestral music, highlighting the currently
audible notes in all voices would result in a very nervous visualization. At the moment only
printed sheet music of reasonable quality is being used. However, huge amounts of old sheet
music volumes exist that are heavily yellowed and stained. In addition, large collections
of handwritten scores and hand-annotated printed sheet music are available. Some OMR
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systems are capable of dealing with those types of sheet music but the applicability of the
resulting symbolic representation (in terms of recognition accuracy) to the synchronization
task would have to be investigated.

In Section 4.1, we discussed the task of sheet music-audio mapping and presented a
method for segmenting and identifying score data using already segmented and identified
audio documents. With this approach, at least one version of a piece of music has to be
manually annotated. For large music databases a full automation or at least some support in
the unavoidable manual tasks is highly desired. Looking at sheet music and CD booklets, they
contain a wealth of textual information (composer, title, opus number, etc.). Automatically
detecting and interpreting this information constitutes an important future step.

One can think of a variety of applications that would benefit from the presented synchro-
nization techniques. The method could be extended to allow for online score following and
live accompaniment of musicians using a scanned score. In [20, 44] the synchronization of
lead sheets with a fully instrumented audio recording was suggested. In a similar manner,
the sheet music of individual voices could be synchronized to an orchestra recording. These
linking structures could for example be of use in the context of digital orchestra stands
[9]. All parts are synchronized to the conductors score and upon selecting a position in the
conductors score the position in all score visualization changes accordingly.
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Abstract
Automatic lyrics-to-audio alignment techniques have been drawing attention in the last years
and various studies have been made in this field. The objective of lyrics-to-audio alignment is
to estimate a temporal relationship between lyrics and musical audio signals and can be applied
to various applications such as Karaoke-style lyrics display. In this contribution, we provide
an overview of recent development in this research topic, where we put a particular focus on
categorization of various methods and on applications.
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1 Introduction

Music is an important media content in both industrial and cultural aspects, and a singing
voice (vocal) is one of the most important elements of music in many music genres, especially
in popular music. Thus, research that deals with singing voices is gaining in importance from
cultural, industrial and academic perspectives. Lyrics are one of the most important aspects
of singing voices. Since the lyrics of a song represent its theme and story, they are essential
for creating an impression of the song. When a song is heard, for example, most people
would follow the lyrics while listening to the vocal melody. This is why music videos often
help people to enjoy music by displaying synchronized lyrics as a Karaoke-style caption.

In this paper we overview several research attempts that deal with automatic synchroniz-
ation between music and lyrics, also known as lyrics-to-audio alignment. To deal with lyrics
in music, one of the ultimate goals is automatic lyric recognition (i.e., the dictation of lyrics
in a mixture of singing voices and accompaniments). However, since this goal has not yet
been achieved even for ordinary speech in noisy environments with satisfactory accuracy,
it is not a realistic way to pursue automatic dictation of the lyrics in the first place. As
a matter of fact, though several research attempts have been made to pursue this goal
[23, 19, 21, 5, 14], none of them achieved satisfactory performance in natural environments
under realistic assumptions so far. From this perspective, it can be said that lyrics-to-audio
alignment is a reasonable problem setting because not only does the problem itself have a
number of practical applications but knowledge accumulated by tackling this problem can
also be a stepping-stone for automatic lyric recognition.

The rest of this paper is organized as follows. We continue with defining the problem
of lyrics-to-audio alignment and describing main challenges of this task. Then, Section 3
summarizes numerous study attempts and introduces some representative works. In Section 4,
we introduce applications of lyrics-to-audio alignment techniques.
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Figure 1 Example of word-level alignment and phoneme-level alignment.

2 Lyrics-to-Audio Alignment

2.1 Problem Definition and Applications
Given audio signals of singing voices and corresponding textual lyrics as input data, lyrics-
to-audio alignment can be defined as a problem of estimating the temporal relationship
between them. To this end, start and end times of every block of certain length in lyrics are
estimated. Here, the term ”block“ means a fragment of lyrics, the size of which depends on
the application as described below, and can be either phoneme, syllable, word, phrase, line,
or paragraph (See Figure 1).

Numerous applications of this technique are conceivable, such as a music player with
Karaoke-like lyrics display function, automatic generation of subtitles of music videos, and
the generation of audio thumbnails. Apart from these consumer-oriented applications, this
technique can also be used as a basic building block for other singing voice research, such as
singing voice synthesis [16] and analysis of the relationship between musical audio signals
and lyrics [17]. In the case of music video subtitles, granularity of synchronization does not
have to be very precise and line or phrase level alignment is sufficient. If the precise timing of
the lyrics is needed such as in the case of Karaoke-like display, on the other hand, phoneme
or word level alignment is imperative.

2.2 Difficulties
The problem of lyrics-to-audio alignment bears a relationship to text-to-speech alignment
used in automatic speech recognition research, which is generally conducted by using a forced
alignment techniques with mel-frequency cepstral coefficients (MFCCs), phonetic hidden
Markov models (HMMs), and the Viterbi algorithm1 [25]. However, it is difficult to directly
apply the forced alignment technique to singing voices because there are several difficulties

1 Hereafter, we use a term “forced alignment” to refer to this particular technique that can align transcribed
text and speech signals by using phonetic HMMs and the Viterbi algorithm.
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intrinsic to singing voices:
1. Fluctuation of acoustic characteristics. It is known that the singing voice has more

complicated frequency and dynamic characteristics than speech [20]. For example,
fluctuation of fundamental frequency (F0) 2 and loudness of singing voices are far stronger
than those of speech sounds.

2. Influences of accompaniment sounds. Singing voice signals are generally accompanied
by other instruments, which make it difficult even for a human to understand what is
being sung. This is mainly because spectrum of the singing voices are overlapped and
distorted by those of accompaniment sounds. Thus, it is necessary to either reduce such
negative influences or use features robust to them.

3. Incomplete lyrics. Available textual lyrics do not always correspond exactly to what is
sung in a song. For example, repetitive paragraphs are sometimes omitted for the sake of
simplicity and utterances of interjections (such as “yeah” and “oh”) are often excluded in
the lyrics. This is particularly problematic when lyrics are taken from the Internet [8].

3 Literature Review

After overviewing studies of this field, this section describes brief explanations of representative
works.

3.1 Overview of Previous Studies
A number of studies have been made in the field of lyrics-to-audio alignment [10, 6, 24, 15,
9, 13, 7, 3, 12]. Except for early research [10], most of the studies dealt with singing voices
in polyphonic popular music. Since lyrics are inevitably language-dependent, it is not easy
to prepare training data for a number of several languages. Thus, evaluations were usually
conducted by using songs sung in a single language such as English [6, 7], Chinese [24], and
Japanese [3]. With that being said, except for a study that specialized in Cantonese [24],
most of them are applicable to any language in principle.

These studies can be categorized according to the following two main viewpoints:
1. Primary cue for aligning music and lyrics. To achieve an accurate estimation of a tem-

poral relationship between music and lyrics, it is important to deliberately design features
(or representation) that are used to represent music and lyrics and methods to compare
these features since such features and methods directly affect the performance of an entire
system.

2. Additional methods for improving performance. Polyphonic audio signals are so com-
plex that it is not easy to align music and lyrics accurately just by using a single method.
Thus, many studies have integrated several additional methods and information to im-
prove performance of alignment such as music understanding techniques and musical
knowledge.

Table 1 summarizes the conventional studies from these viewpoints.

3.1.1 Primary Cue for Aligning Music and Lyrics
To characterize algorithms for lyrics-to-audio alignment, it is of central importance to
categorize what kind of features they extract from audio and lyrics and how they compare

2 “F0”, which represents how high a sound is, is sometimes referred as “pitch” although, strictly speaking,
their definitions are different because the F0 is a physical feature while the pitch is a perceptual feature.
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Table 1 Summarization of the conventional studies.

Authors Primary method Other additional methods
Loscos et al. [10] The forced alignment with MFCCs
Iskandar et al. [6] The forced alignment with MFCCs Song structure

Musical knowledge
Wong et al. [24] Comparison of F0 contours Vocal enhancement

Vocal detection
Onset detection

Müller et al. [15] Audio-to-MIDI alignment
with lyrics-enhanced MIDI files

Lee et al. [9] Dynamic programming Structural segmentation
with manually-labeled lyrics segmentation

Mesaros et al. [13] The forced alignment Vocal segregation
Kan et al. [7] Phoneme duration Beat detection

Structure detection
Vocal detection

Fujihara et al. [3] The forced alignment Vocal segregation
Vocal detection
Fricative detection

Mauch et al. [12] The forced alignment with chord labels Vocal segregation
Vocal detection

them. From this viewpoint, conventional studies can be categorized into the following three
categories; those that use acoustic phonetic features, those that use other features, and those
that use features taken from external sources.

Studies that fall into the first category [10, 6, 13, 3] adopt the forced alignment. It
compares phonetic features (such as MFCCs) extracted from audio signals with a phone
model consisting of a sequence of phonemes in the lyrics. Since the forced alignment technique
is mainly designed for clean speech signals, the main focus of these studies lies in how to
apply it to singing voices with accompaniment sounds. For this purpose, most of the studies
incorporate various additional methods described in Section 3.1.2.

The second category contains studies that do not use the forced alignment technique.
Wong et al. [24] used the tonal characteristics of Cantonese language and compared the
tone of each word in the lyrics with the F0 of the singing voice. Kan et al. developed a
system called LyricAlly [7], which used the duration of each phoneme as a main cue for a
fine alignment along with structural information for a coarse alignment.

Instead of directly comparing music and lyrics, studies of the third category deploy
external information and use them as a cue for alignment. For example, Müller et al.
[15] used MIDI files that are manually aligned with lyrics. Then, by executing automatic
alignment between music recordings and the MIDI file, they indirectly estimated temporal
relationship between music and lyrics. Lee et al. [9], assuming that manually-annotated
segmentation labels (such as Chorus and Verse) are available, aligned these labels with
automatically-estimated structural segmentation by using dynamic programming. While
these strategies could result in simpler or more accurate alignments, the range of songs to
which the algorithms are applicable is inevitably limited.

In addition to the above mentioned works, Mauch et al. [12] used both acoustic phonetic
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features and external information at the same time. It can be said that this work belongs
to both the first and third categories. More specifically, assuming that the textual chord
information provided in the paired chords-lyrics format is available, they integrated lyrics-
to-audio alignment and chord-to-audio alignment. Chord alignment, which is more reliable
but can be done in only bar or note level, worked as a coarse alignment, followed by a fine
alignment achieved by singing voice alignment.

3.1.2 Additional Methods for Improving Performance

In addition to the primary cues described above, most of the studies sought to improve
their algorithm by incorporating other music understanding and signal processing methods.
For example, some studies used vocal detection methods as a preprocessing step [24, 7, 3].
Regions detected as non-vocal are excluded from the allocation of lyrics. Methods for
reducing the influence of accompaniment sounds and enhance singing voices were also used
in [24, 13, 3]. This process is usually done before extracting features from audio signals to
enable feature extractors to accurately capture the characteristics of singing voices. Fujihara
et al. [3] and Mesaros et al. [13] used singing voice segregation techniques based on harmonic
structures, and Wong et al. [24] used bass and drum reduction and center signal segregation
methods. Other information such as beat [7], song structure [9, 7], onset [24], fricative sound
[3], and musical knowledge about rhythms and notes [6] were automatically extracted and
incorporated.

3.2 A Lyrics-to-Audio Alignment Method for Cantonese Popular Music

Wong et al. developed a lyrics-to-audio alignment method based on tonal characteristics
of Cantonese popular music [24]. Cantonese, which is a tone language, distinguishes the
meaning of a word by changing the pitch level. Their method took advantage of this fact
and tried to align music and lyrics by using pitches extracted from audio signals and those
estimated from lyrics, assuming that the contour of the lyrics and that of the musical melody
match perfectly. In their method, a vocal signal enhancement algorithm based on center
signal estimation and bass and drum reduction methods was used to detect the onsets of
the syllables and to estimate the corresponding pitches. They then used a dynamic time
warping algorithm to align lyrics and music. Figure 2 shows a block diagram of the method.

To estimate the onsets and the pitch accurately, the authors developed a vocal signal
enhancement technique. Based on the assumption that only singing voice and drum signals
are located at the center in stereo audio signals, they extracted center parts of the stereo
recordings by using a spectral subtraction method. Bass and drum sounds were then removed
by subtracting the average spectrum within five-second segments.

Then the onsets of vocal notes, which are expected to correspond to syllables, were
detected as the smallest unit of alignment. They first extracted the amplitude envelope
of the signal and detected candidates of the onsets by using a difference of the amplitude
envelope. Finally they eliminated non-vocal onsets by using a neural network classifier with
standard audio features such as spectrum flux, zero-crossing rate, and Mel-frequency cepstral
coefficients (MFCCs).

As features for aligning music and lyrics, they used pitch contours. Pitch contours of
audio signals were extracted by a standard F0 estimation method, and that of lyrics were
estimated from the lyrics based on linguistic rules. These two types of pitch contours are
aligned by using dynamic time warping.
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Vocal Signal Enhancement

Onset Detection

Non-Vocal Pruning

Lyrics Feature Extraction

Dynamic Time Warping

Stereo Audio Signals

Stereo Audio Signals

Event Times

Pruned Onset Times

Lyrics Features Audio Features

Alignment Result

Lyrics

Figure 2 A block diagram of a lyrics-to-audio alignment method in [24].

3.3 LyricAlly
Kan et al. developed a lyrics-to-audio alignment system called LyricAlly [7]. It integrates
several music understanding techniques such as beat detection, chorus detection, and vocal
estimation. They first conducted section-level alignment, which was followed by line-level
alignment. Figure 3 shows a block diagram of LyricAlly.

Three kinds of music understanding techniques, namely hierarchical rhythm structure
detection, chorus detection, and vocal detection, were executed as a preprocessing step, to
constrain and simplify the synchronization process based on musical knowledge. Input lyrics
were then analyzed to estimate the duration of the lyrics. This duration estimation process
was done based on supervised training.

Assuming a song is consisted of a specific type of song structure (Verse-Chorus-Verse-
Chorus) and that each section of lyrics is already marked as a single block, they first conducted
section level alignment based on the chorus section detected by using the chorus and vocal
detectors. Then, they conducted line-level alignment by using duration information estimated
from lyrics.

3.4 A Lyrics-to-Audio Alignment Method based on the forced
Alignment

Fujihara et al. developed a lyrics-to-audio alignment method based on the forced alignment
technique [3]. Because the ordinary forced alignment technique used in automatic speech
recognition is negatively influenced by accompaniment sounds performed together with a
vocal and also by interlude sections in which the vocal is not performed, they first obtained
the waveform of the melody by using a vocal segregation method proposed in [2]. They then
detected the vocal region in the separated melody’s audio signal, using a vocal detection
method based on a Hidden Markov Model (HMM). They also detected the fricative sound
and incorporated this information into the next alignment stage. Finally, they aligned the
lyrics and the separated vocal audio signals by using the forced alignment technique. Figure
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Figure 3 A block diagram of Lyrically [7].

Vocal Segregation

Feature Extraction

Audio Signals

Segregated Signals

Phoneme 
Network

Alignment Result

Lyrics

Vocal Detection Fricative Detection

Vocal Sections Fricative SectionsFeature Vectors

Lyrics Processing

Viterbi alignment

Figure 4 A block diagram of a lyrics-to-audio-alignment method proposed in [3].

4 shows an overview of this method.
Before extracting a feature that represents the phonetic information of a singing voice from

polyphonic audio signals, they tried to segregate vocal sound from accompaniment sounds
by using a melody detection and resynthesis technique based on a harmonic structure [2].
The technique consists of the following three parts:
1. Estimate the fundamental frequency (F0) of the melody by using a method called

PreFEst [4].
2. Extract the harmonic structure corresponding to the melody.
3. Resynthesize the audio signal (waveform) corresponding to the melody by using a sinus-

oidal synthesis.
This melody resynthesis usually results in vocal signals with bad sound quality for a human
perception and it makes it even more difficult for humans to recognize lyrics. However, for a
computer, which does not have a sophisticated perceptive system that humans have, this
process is important.

The authors developed a vocal detection method to eliminate the influence of non-vocal
regions. The method is based on supervised-training of characteristics of singing voices and
non-vocal sounds. This method is needed because the melody detection technique assumed
that the F0 of the melody is the most predominant in each frame and could not detect
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Figure 5 A hidden Markov model (HMM) for vocal activity detection [3].

0.50 1 1.5 2.2
Time (Sec.)

Freq. (Hz)

0

4000

8000

Fricative soundSnare drum High-hat

Figure 6 Example spectrogram depicting snare drum, fricative, and high-hat cymbal sounds [3].
The characteristics of fricative sounds are depicted as vertical lines or clouds along the frequency
axis, whereas periodic source components tend to have horizontal lines.

regions where vocal does not exist. Thus, such regions have to be eliminated before actually
aligning lyrics to segregated signals. An HMM was introduced that transitions back and
forth between a vocal state, sV , and a non-vocal state, sN , as shown in Figure 5. Vocal state
means that vocals are present and non-vocal state means that vocals are absent. Given the
feature vectors of input audio signals, xt, at time t, the problem of vocal detection is finding
the most likely sequence of vocal and non-vocal states, Ŝ = {s1, · · · , st, · · · } (st ∈ {sV , sN}).

Ŝ = argmax
S

∑

t

{log p(xt|st) + log p(st+1|st)} , (1)

where p(x|s) represents an output probability of state s, and p(st+1|st) represents a state
transition probability for the transition from state st to state st+1. Unlike other previous
studies on vocal detection [1, 22, 18], this methods could automatically control the balance
between vocal and non-vocal regions.

The forced alignment technique used in automatic speech recognition research synchronizes
speech signals and texts by making phoneme networks that consist of all the vowels and
consonants. However, since the vocal segregation method, which is based on the harmonic
structure of the melody, cannot segregate unvoiced consonants that do not have harmonic
structure, it is difficult for the general forced alignment technique to align unvoiced consonants
correctly. Therefore, the authors developed a method for detecting unvoiced consonants
from the original audio signals. They particularly focused on the unvoiced fricative sounds
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Nothing taken. Nothing lost. 

N AA TH IH NG  AH N T EY K AH N  N AA TH IH NG  L AO S T 

Phoneme network

Sequence of the phonemes 

Original lyrics 

N TH spAA NGIH AH N T KEY NAH

sp N TH spAA NGIH L AO S T

Figure 7 Example for converting from original lyrics to a phoneme network [3].

(a type of unvoiced consonant) because their durations are generally longer than those of
the other unvoiced consonants and because they expose salient frequency components in the
spectrum. They first suppressed peak components in the spectrum, which is not related to
fricative sounds. The fricative sounds were then detected by using the ratio of the power
of a band where salient frequency components of fricative sounds exist to that of the other
bands. Figure 6 shows an example of a fricative sound to be detected. Then, in the forced
alignment stage, fricative consonants were only allowed to appear in the detected candidates
of fricative regions.

To actually align lyrics and music, a phoneme network was created from the given lyrics
and feature vectors are extracted from separated vocal signals. Figure 7 shows an example of
conversion from lyrics to a phoneme network. The phoneme network consists of sequentially
connected HMMs of phonemes that appeared in the lyrics. Each HMM represents sound
characteristic of a corresponding phoneme and is used to compare likelihood of feature vectors
extracted from audio signals. Finally, the forced alignment was executed by calculating the
most likely path of a sequence of the feature vectors and the phoneme network. The authors
used the proportion of the length of the sections which are correctly labeled as a quality
measure and reported that the system achieved 90% accuracy for 8 out of 10 songs.

4 Applications to Music Player and Lyrics-based Music Retrieval

Due to the diffusion of the personal computer and the portable music player, there has been
a growing opportunity to listen to songs using devices that have screens. It is natural to
consider using that screens to enrich users’ experience in music appreciation by displaying
lyrics and related information on it. This section introduces three examples of this idea,
which display synchronized lyrics estimated by lyrics-to-audio alignment techniques and
utilize it to lyrics-based music retrieval or music navigation.

4.1 Lyrics-based Music Retrieval
Müller et al. proposed a lyrics search engine based on their lyrics-to-audio alignment [15].
Their system was developed as a plug-in software on the SyncPlayer framework, which is a
software framework that integrates various MIR-techniques. Figure 8 (taken from [15]) shows
a screenshot of their system. The three windows on the left side display lyrics synchronously
and the right window enables lyrics-based search. It should be noted that users can directly
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Figure 8 Screenshot of lyric-based search system developed on the SyncPlayer framework [15].

jump to the corresponding matching positions within the audio recordings from the search
results.

4.2 LyricSynchronizer
Fujihara et al. developed a music playback interface called LyricSynchronizer based on their
algorithm for lyrics synchronization [3]. This music playback interface offers the following
two functions: displaying synchronized lyrics, and jump-by-clicking-the-lyrics functions. The
former function displays the current position of the lyrics as shown in Figure 9. Although
this function resembles the lyrics display in Karaoke, manually labeled temporal information
is required in it. Using the latter function, users can change the current playback position
by clicking a phrase in the lyrics. This function is useful when users want to listen only to
sections of interest.

4.3 SongPrompter
Mauch et al. developed a software system called SongPrompter [11] by utilizing their lyrics-
and-chord-to-audio alignment method [12]. This system acts as a performance guide by
showing lyrics, chords, beats and bar marks along with music playback. Unlike the previous
two examples, this software is designed for music performer. Figure 10 shows a screenshot of
the system. As can be seen in the figure, both lyrics and chords are shown in the horizontal
scrolling bar so that players can play music and sing without memorizing lyrics and chords
or turning pages.
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Figure 9 Screenshot of LyricSynchronizer [3].

5 Conclusions

In this paper, we described recent developments in lyrics-to-audio alignment research. We
first defined the problem of lyrics-to-audio alignment and then gave an overview of current
work. Finally, we introduced several applications of lyrics-to-audio alignment techniques.

Thanks to the advancements of this research fields, it is possible to align lyrics and
audio with satisfactory accuracy for songs in which vocals pronounce words clearly and
the sounds of vocals are mixed louder. On the other hand, there are still songs of which
it is not easy to estimate the correct alignments. As mentioned in Section 3.1, most of
lyrics-to-audio alignment techniques have sought to improve their performance by integrating
various signal processing and music understanding techniques. This is because singing voices
are highly correlated with other elements in music (e.g. melody F0s and chords) and, thus,
the understandings of such elements can help aligning lyrics and singing voices.

To advance this field further, we think that the following three approaches can be
conceivable:
Integrating of other signal processing and music understanding techniques. We believe

that it is a promising direction to integrate fruits of a broader array of research field. For
example, recent developments of source separation research can contribute to lyrics-to-
audio alignment research. It is also possible to incorporate music classification methods
such as genre detection and singer identification to select a model which is most suited
for an input song.

A more sophisticated way of integrating information. As a way of integrating various in-
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Figure 10 SongPrompter interface screenshot and usage example [11].

formation extracted by several music understanding techniques, most of the current studies
took a straightforward approach: each music understanding technique was regarded as
independent and only the results from different techniques were integrated. However, we
believe it is possible to boost the performance by integrating the process of each music
understanding technique so that each technique works in a mutually complementary
manner.

Practically-oriented approach by utilizing external information. Finally, it is also interest-
ing to incorporate external information available on the Web or other places. This
approach, which narrows the range of applicable songs but can lead to interesting applic-
ations, was already taken by Müller et al. (lyrics-aligned MIDI) [15] and Mauch et al.
(lyrics with chord annotation) [12] and resulted in the appealing applications as described
in the previous section. We think that there could be other sources of information that
are easy to obtain and can be beneficial to improve the performance.
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Abstract
Music is often processed through its acoustic realization. This is restrictive in the sense that
music is clearly a highly multimodal concept where various types of heterogeneous information
can be associated to a given piece of music (a musical score, musicians’ gestures, lyrics, user-
generated metadata, etc.). This has recently led researchers to apprehend music through its
various facets, giving rise to multimodal music analysis studies. This article gives a synthetic
overview of methods that have been successfully employed in multimodal signal analysis. In
particular, their use in music content processing is discussed in more details through five case
studies that highlight different multimodal integration techniques. The case studies include an
example of cross-modal correlation for music video analysis, an audiovisual drum transcription
system, a description of the concept of informed source separation, a discussion of multimodal
dance-scene analysis, and an example of user-interactive music analysis. In the light of these case
studies, some perspectives of multimodality in music processing are finally suggested.
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1 Introduction

While the most natural way to perceive music is through its acoustic rendering, it is clear
that it is a highly multimodal concept that can be sensed in a variety of ways: music is
materialized in the head of a composer, or a trained musician reading a musical-score; it is
translated into sound and motion in a performer’s gestures or a dancer’s movements and
steps; it becomes visual art when it is illustrated by disc cover designs or transformed into an
audiovisual production; not to mention its textual dimension that encapsulates not only the
lyrics (in sung music) and editorial metadata, but also social web content such as user-tags,
reviews, ratings, etc.

Consequently, treating music only through its acoustic realization appears to be quite
restrictive, which has led researchers in the general field of music content analysis to appre-
hend it through its various facets, giving rise to multimodal music analysis studies. To our
knowledge the earliest contributions along this line dealt with two modalities, that is the
audio and score modalities, in order to perform music-to-score matching [10, 66]. The more
complex visual modality has not been exploited in music analysis until the late 90s [60],
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in contrast to the speech processing domain where audiovisual speech recognition systems
have been imagined in the 80s [59]. Not surprisingly, the earliest works on audiovisual music
were dedicated to the analysis of piano music [60], [62], probably due to the possibility to
segment the keyboard keys and track the musician’s fingers positions on the keyboard more
easily than with other instruments.

Since then, our field of interest has seen a variety of multimodal studies spanning a wide
range of techniques and applications, an overview of which is proposed in this article. We will
first provide a synthetic view of methods that have been successfully employed in multimodal
research works in general and discuss their use for music processing. Subsequently, we will
discuss a selection of case studies we have contributed to, and highlight the related future
research directions that seem promising to us.

2 Multimodal Techniques

Multimodal processing techniques, in general, fall into one of two categories of a binary
taxonomy: early integration techniques as opposed to late integration techniques.1 The
former refers to the process whereby a system directly exploits the “raw” low-level features
used to describe each data stream, without any further transformations other than basic
postprocessing (typically denoising, normalisation, resampling, etc.). By contrast, the lat-
ter is employed to indicate that the joint exploitation of the modalities is performed at a
decision-level, typically by combining the outputs of intermediate monomodal classifiers.
This distinction will be useful to understand the differences between the techniques presen-
ted hereafter. Another interesting distinction is the following: the effort of characterizing
the “relationships” between the different modalities reflecting the content being analyzed
is referred to as cross-modal processing, while the problem of efficiently combining the in-
formation conveyed by the different modalities (to perform a more thorough analysis of the
content) is called multimodal fusion. Below we further describe the previous paradigms and
discuss their exploitation in the field of music processing.

2.1 Cross-Modal Processing
The relationships between the modalities considered can be expressed in several different
ways.

In the first place, when dealing with modalities having a temporal dimension (typically
audio signals, video signals, or musical scores), it might be required to temporally align the
different data streams in case they are not initially synchronized. In fact, achieving this
synchronization may be one’s ultimate goal: for instance when dealing with the audio and
score modalities, this task is often referred to as music-to-score alignment (or music-to-score
synchronization) [50, 41]. Since the latter is already well covered in other articles of this
book, we will here assume that the data streams considered are temporally aligned.

Assuming synchronized features, many proposals have been made to measure a form of
dependency between two heterogeneous data streams, part of which remain under-exploited
in the music information retrieval community, despite their potential. For the sake of clarity,
we make the assumption (without loss of generality) that two streams of data are considered:
an audio stream and a video stream. Though the methods presented in the following have

1 It is worth mentioning that hybrid approaches exist too.
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been mainly applied to those two particular modalities, they can be used with any other
parallel data streams whose dependency is to be characterized.

A number of techniques have been suggested to map the observed audio and visual fea-
ture vectors to a low dimensional space where a measure of “dependency” between them
can be computed. Let us assume the n observed audio feature vectors xa ∈ RDa are as-
sembled column-wise in a (n×Da)-matrix Xa, and the corresponding visual feature vectors2
xv ∈ RDv are assembled column-wise in a (n × Dv)-matrix Xv. The methods we describe
here aim to find two mappings fa and fv (that reduce the dimensions of the audio and
visual feature vectors), such that a dependency measure Sav(fa(Xa), fv(Xv)) is maximized.
Various approaches can be described using this same formalism. Darrel et. al. choose the
mutual information [8] as a dependency measure and seek single-layer perceptrons fa and
fv projecting the audiovisual feature vectors to a 2-dimensional space. Other more popular
approaches, for which closed-form solutions can be found, use linear mappings to project
the feature streams:

Canonical Correlation Analysis (CCA), first introduced by Hotelling [33], aims at finding
pairs of unit-norm vectors ta and tv such that

(ta, tv) = arg max
(ta,tv)∈RDa×RDv

corr(tt
aXa, tt

vXv) . (1)

An alternative to the previous (expected to be more robust than CCA) is Co-Inertia
Analysis (CoIA). It consists in maximizing the covariance between the projected audio
and visual features:

(ta, tv) = arg max
(ta,tv)∈RDa×RDv

cov(tt
aXa, tt

vXv) . (2)

Yet another configuration known as Cross-modal Factor Analysis (CFA), and found to
be more robust than CCA in [45], seeks two matrices Ta and Tv, such that

(Ta, Tv) = arg max
(Ta,Tv)

(1− ||TaXa − TvXv||2F ) = arg min
(Ta,Tv)

||TaXa − TvXv||2F ; (3)

with TaT t
a = I and TvT t

v = I. ||X||F denotes the Frobenius norm of matrix X.

Note that the previous techniques can be kernelized to study non-linear coupling between
the modalities considered (see for instance [44, 31]).

The interested reader is referred to [33, 31, 45] for further details on these techniques,
and to [25] for a comparative study. Examples of applications in the field of music content
processing are mentioned in Section 2.4.

2.2 Feature-Level Fusion
Feature-level fusion is the (early integration) process of combining different types of features
from different modalities into a common feature representation.

The most basic audiovisual feature fusion approach consists in concatenating the audio
and visual feature vectors, xa and xv, to form a global feature vector xav = [xa, xv]. However,

2 The underlying assumption is that the (synchronized) audio and visual features are extracted at the
same rate, which is often obtained by downsampling the audio features or upsampling the video features,
or by using temporal integration techniques [40].
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the dimensionality of the resulting representation is often too high, leading researchers to
resort to dimensionality reduction methods.

A common approach is to use feature transformation techniques such as Principal Com-
ponent Analysis (PCA) [5], Independent Component Analysis (ICA) [63], or Linear Dis-
criminant Analysis [5]. An interesting alternative, is feature selection [30] which aims to
select only useful descriptors for a given task and discard the others. Indeed, when applied
to the feature vectors xav, feature selection can be considered as a feature fusion technique
whereby the output will hopefully retain the “best of xa and xv” i.e. a subset of the most
relevant audiovisual features (with respect to the selection criterion).

Nevertheless, the two previous approaches can be considered as limited owing to the dif-
ferent physical nature of the audio-visual features to be combined. In particular, the features
do not necessarily live in the same metric space, and are not necessarily extracted from the
same temporal segments. Consequently, there has been a number of proposals attempting
to address these limitations. One possible approach consists in building separate kernels for
different features, before determining new optimal kernels (as convex combinations of the
individual ones) in order to use them for classification [70]. Another possible approach of
note is the construction of joint audiovisual representations, envisaged as audiovisual atoms
in [38], and audiovisual grouplets in [39], both exploiting audiovisual correlations. The joint
audiovisual representation may in particular be built using one of the audiovisual subspace
methods described in Section 2.1 (see [45] for an example).

2.3 Decision-level fusion

Late fusion or the idea of combining intermediate monomodal decisions3 in order to achieve
a more accurate multimodal characterization of a content has been explored extensively,
under various configurations.

Numerous works rely on majority voting procedures whereby final global decisions are
made based on a weighted sum of individual voters, each typically corresponding to a decision
taken on a particular modality. The weights are often chosen using either heuristics or
trial-and-error procedures (see for example [46]). This idea can be better formalized using
a Bayesian framework, which allows for taking into account the uncertainty about each
classifier’s decisions, as done in [36]. Also, solutions to deal with the potential imprecision
of some modalities have been proposed using the Dempster-Shafer theory [19]. Another
widely used strategy consists in using the monomodal classifiers outputs as features, on the
basis of which a new classifier, that is expected to optimally perform the desired multimodal
fusion, is learned [68].

The previous approaches do not account for the dynamic properties of the media streams
considered, nor do they allow for encoding prior knowledge about the dependency structure
in the data, in particular the temporal and/or cross-modal dependencies. To this end,
sophisticated dynamic classifiers have been utilized, ranging from variants of (multi-stream)
Hidden Markov Models (HMM) [28, 52, 43, 1], through more general Dynamic Bayesian
Networks (DBN) [6, 27], to even more general graphical models such as Conditional Random
Fields (CRF) [41, 3].

3 These decisions are generally output by previously trained classifiers.
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Table 1 Case studies presented. The “Modalities” are the ones taken into account in the corres-
ponding case study; “Cross-modal” indicates whether the method presented performs cross-modal
analysis; “Fusion” indicates whether it exploits multimodal fusion and “Section” is where in this
chapter the case study is presented.

Case studies Modalities Cross-modal Fusion Section
Audiovisual correlation audio, video • ◦ 3.1.1
in music videos
Audiovisual drum audio, video ◦ • 3.1.2
transcription
Music in motion: audio, motion, depth, • • 3.2
analyzing dance scenes video, choreographies
Interactive music analysis audio, human • • 3.3
Informed source separation audio, score, human • ◦ 3.4

2.4 Discussion
Many of the techniques mentioned above have been exploited in multimodal music content
analysis research. Cross-modal analysis seems to be particularly popular within this domain.
For instance, CCA has been used both for studying correlations between sounds and human
motion or gestures [54, 55], and correlations between music and words, in view of creating a
musically meaningful vocabulary [65]. Also, heuristic rules for the association of higher-level
descriptors extracted from different modalities have been employed [4, 21]. In fact, it seems
that approaches relying on heuristic rules are mainstream, be it for specific content analysis
tasks, such as music video summarization [71], or more general classification problems (see
for example [46] where the output of audio and visual classifiers are heuristically combined).

We believe there is a great potential in exploiting the more sophisticated cross-modal
techniques and dynamic statistical models previously mentioned to be able to better express
one’s prior knowledge on the data structure (features dependency, temporal synchronisation,
multi-scale effects, higher-level cross-modal concept relationships, etc.) and fully exploit the
valuable information that is encoded in it. This of course entails a formalisation effort
which is expected to be rewarding both in terms of performance and generalization insofar
as the purpose of using common architectures for different applications can be pursued.
Modeling the ambiguity and imprecision of intermediate (mono-modal) decisions thanks to
the Dempster-Shafer theory of evidence is another interesting idea that is believed to hold
much promise.

3 Case Studies

We now present particular multimodal music applications that we have treated in the past
few years illustrating the techniques introduced in Section 2. Table 1 gives an overview of
these case studies indicating the modalities considered and the class of techniques employed.

3.1 Audiovisual Music
3.1.1 Audiovisual Correlation in Music Videos
The first case study is dedicated to a specific aspect of multimodal signal analysis and aims
at exploiting the correlation between the audio and visual modalities in music videos [21].
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Figure 1 Overview of the audio-visual content structuring system (from [21]).

In the case of music videos, a large palette of semantic relationships between the audio
and video streams may be used by the artists at the production stage. For example, main-
stream music videos show dancers or performers, but some videos have a narrative content
based on higher-level features of the song (such as structure or mood) while others explore
new forms of visual metaphors [26, 42, 53].

In this case study (further described in [21]) high-level structures of the audio and video
streams are separately extracted in order to measure the correlations between these struc-
tures. The objective in such an approach is to characterize the synchrony of significant
events and changes in the music and the accompanying images.

It is clear that a large number of salient events can be defined both for audio and visual
streams. In music signals, note or chord changes are obviously important events. Thus, an
efficient mid-level temporal structuring of a music piece can be achieved by detecting the
onsets of such events which coarsely capture the rhythmic properties of the music (many
onset detection methods exist and the interested reader may consult the tutorial given in
[2]).

In parallel, the events of interest to be extracted from the video include rapid movements
such as dance steps, movements of musicians or any action sequence (similarly many ap-
proaches exist and such events can be for example detected using motion activity detectors
[37]).

At a higher level, a music piece can be temporally segmented in sections, characterized
by distinct dynamic, tonal or timbral properties and corresponding to the musical structure
of the piece, i.e. choruses, verses, fill-ins, etc. Such segments can be either obtained by
identifying large blocks in a self-similarity matrix computed on the signal (see for example
[58, 7] in the framework of automatic summarization) or by exploiting novelty detection
methods which allow for determining boundaries between homogeneous temporal segments
[21].

For the video part, the higher level description is obtained by means of a segmentation
into shots. In fact, shot changes events are semantically important in the sense that they
may be correlated with the rhythm or section changes in the music.

These four segmentation processes produce detection functions (represented in Figure
1) ideally exhibiting peaks whenever an event or section change is detected. The detection
functions can be thresholded to obtain the temporal location of salient events and segment
boundaries, or directly considered to measure correlations.

The experiments reported in [21] have shown that the correlation between note onset
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(music) and shot changes (video) is particularly appropriate for cross-media authoring or
cross-media retrieval applications (e.g. audio retrieval from video or vice-versa video retrieval
from audio). In the latter case, it obviously depends on the genre of the music videos. For
instance, for narrative videos, where the music video has a strong narrative content and
chronology, the proposed mid-level correlations are not adequate since they cannot capture
such high level semantic links. Understanding music lyrics, music emotion from audio and
video, represent some of the very attractive current and future lines of research in this
domain.

This case study is thus an illustration of an exclusively cross-modal application, where
multimodal fusion per se is not employed, in the sense that one is only interested in detecting
the synchrony between the audio and visual streams and not in interpreting or automatically
annotating the individual streams. Note that such a matching of the audio and video content
at a structural level opens the path for numerous applications, ranging from temporal re-
synchronization of mismatched audio and video streams to audio-driven video editing, or
soundtrack retrieval by video query.

3.1.2 Audiovisual Drum Transcription
Drum transcription in polyphonic music is a particularly interesting case study for mul-
timodal music analysis. Indeed, for many musical instruments (brass and woods in particu-
lar) a small visible movement of the musician’s body or fingers may induce a large variation
of the produced sound. On the contrary, the nature of the drum kit (e.g. consisting of sev-
eral drum elements which are physically located at rather different locations) implies that a
rather specific movement is needed from the drummer to hit each of the drum elements. It
is then expected that multimodality is of great benefit for automatic drum transcription.

Even though a number of studies exist for drum solo transcription (see [18]) or for
monomodal (audio-only) drum transcription of polyphonic music signals [24], [57], there has
been only a few studies exploiting multimodality. A number of multimodal experiments
were conducted by S. Dahl showing the relationship between body movements and emotions
in marimba performances or the correlation between video features and musical accents in
drumming [9].

In [22], a multimodal system for drum transcription is described exploiting both the
video and audio modalities. In this work several early-fusion and late-fusion techniques were
evaluated on drum-solos and it was shown that feature-level fusion by simple concatenation
of audio and video features can achieve significant improvements compared to either of the
monomodal transcription systems. However, with such simple integration schemes, it does
not seem obvious that the strength of each modality is well exploited. In this initial system,
there is indeed no intent to understand the semantics of the images or to extract higher-level
features.

A different strategy is followed in [49] where the video modality is used as a detection
process. More precisely (see Figure 2), the video sequence is first analyzed to detect the
position of each drum element (drums and cymbals) in the scene, and more specifically the
part of the instrument hit by the drum sticks. A geometric criterion is used to detect the
drum tops (which are of circular shape). Then, a simple motion intensity feature coupled
with foreground object segmentation is used to detect drum strokes on each of the detected
drum tops. The transcription is obtained by identifying which drum instrument corresponds
to each detected drum top. In parallel, the audio transcription system can also be used,
as an additional source of information, to unequivocally assign each detected region to the
corresponding drum instrument. Finally, once a video transcription is obtained, it can
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Video processing

Audio processing

Multimodal processing

Video stream Drum tops 
segmentation Hit detection
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instrument mapping

Audio transcriptionAudio stream

Video transcription

Audio/video fusion Audiovisual 
Transcription

Figure 2 Overview of the audio/video analysis drum transcription system (from [49]).

be fused with an audio transcription or other video transcriptions obtained from different
cameras.

This multimodal system outperformed both the monomodal systems and the system
based on the traditional early and late fusion methods (the evaluation was performed on the
Audiovisual ENST-Drums database [23]). One of the interesting lessons that can be learned
from this work is that exploiting high-level information obtained from one modality to drive
(or at least help) the processing of the other modality can be a better strategy than merely
relying on direct feature-level or decision-level fusion.

3.2 Music in Motion: Analyzing Dance Scenes
Dancing is another manifestation of the multimodal nature of music. Indeed, it can be
considered as a form of motion-rendering of music by dancers. For most dance styles, the
analysis of a dancer’s movements cannot be abstracted from the related music, as the steps
and movements of the choreography are expected to be responses to particular musical
events, an observation that has been successfully exploited in [61, 11].

We here describe a new multimodal dance dataset that is particularly challenging in
terms of open research issues, namely the 3DLife dance dataset4 [14].

The dataset consists of multimodal recordings of Salsa dancers, captured at different
sites with different pieces of equipment, as illustrated in Figure 3. This includes:

synchronized 16-channel audio capture of dancers’ step sounds, voice and music;
synchronized 5-camera video capture of the dancers from multiple viewpoints covering
whole body, plus 4 non-synchronized additional video captures;
inertial (accelerometer + gyroscope + magnometer) sensor data captured from multiple
sensors on the dancers’ bodys;
depth maps for dancers’ performances captured using a Microsoft Kinect;
original music excerpts;
different types of ground-truth annotations, for instance, annotations of the music in
terms of beats, annotations of the choreographies with step time codes relative to the
music and ratings of the dancers’ performances (by the Salsa teacher).

Over 20 dancers have been captured, each performing 2 to 5 solo Salsa choreographies
among a set of 5 pre-defined ones. The dancers have been instructed to execute these
choreographies respecting the same musical timing, i.e. all are expected to synchronize

4 http://perso.telecom-paristech.fr/˜essid/3dlife-gc-11/
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Figure 3 Recording setup at Telecom ParisTech studio.
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steps/movements to particular music beats. Salsa music was chosen for this data corpus
as it is a music genre that is centered at dance expression, with highly structured, yet not
straightforward rhythmic patterns.

The dancers’ degree of mastering of Salsa is variable. In particular there are two reference
dancers which are considered as the dance teachers whose performances are viewed as the
ideal templates to be followed by the other “student-dancers”. In fact, this dataset has been
designed in view of a broad application scenario that is an online virtual environment for
dance teaching (see [14] for more details).

A number of exciting research questions are raised by such a scenario, many of which
are intimately connected to multimodal music content analysis issues, in particular:

multimodal dance performance analysis, including dance step/movement tracking and
recognition;
dance performance rating, which may involve the alignment of a dance-student perform-
ance against the teacher’s performance for comparison, and/or the analysis of the stu-
dent’s “sense of rhythm” by assessing his/her movements timing with respect to musical
timing;
musical rhythm analysis using the analysis of the timing of a (reliable) dancer’s move-
ments;
automatic dance synthesis for virtual agents.

Some of these tasks have already been approached. For instance encouraging results
have been obtained for automatic dance performance rating [13], though more sophisticated
approaches are needed towards a more accurate evaluation of a performance that would
allow for highlighting a dancer’s mistakes across the duration of a choreography.

3.3 User-Interactive Music Analysis
The analysis of some forms of music which cannot be represented by musical scores, in
particular electro-acoustic music [48], cannot be envisaged without taking into account the
viewpoint of a human analyst, for instance a musicologist. This is owing to the highly
subjective nature of such an analysis that is linked to high-level cultural and cognitive
processes.

Hence, interactive schemes have been considered for the development of electro-acoustic
music analysis systems [29]. This scenario is considered as a particularly challenging mul-
timodal scenario in which the music takes two forms: on the one hand, an audio recording
(and possibly its visual waveform or spectrogram representation), and on the other hand
the analyst’s mental perception of the recording. Here the goal is to reach a representation
of the recording that matches, insofar as it is feasible, its representation in the mind of the
musicologist, in a reasonable period of time. Such a representation often takes a graphical
form in which visual objects are chosen by the analyst to represent sound objects. The
interested reader is referred to [35] for examples.

In his work, Gulluni has focused on electro-acoustic music pieces that can be represented
as the superposition of sound objects. Using relevance-feedback and active learning techniques
(see [29] for more details on these techniques), satisfactory performance has been obtained
at transcribing such a content into sound objects [29].

Many exciting extensions could be addressed in the continuation of this work. Notably,
the user could be equipped with more advanced interfaces, such as EEG5 headsets, in his/her

5 ElectroEncephaloGraphy: “the recording of electrical activity along the scalp”, see [67] for more details.
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interaction with the computer analysis system (which has been so far limited to keyboard
and mouse feedback), thus allowing it to take into account their cerebral feedback while
listening to the music. Even more general physiological recordings could be employed with
the aim to characterize the user’s emotional responses to the content, for example ECG,
blood pressure, sweat activity, etc.

3.4 Partially-Informed Source Separation
The gradual shift of the general domain of music signal processing from the analysis of
isolated notes or monophonic signals to the more challenging and more realistic case of
polyphonic music explains the increase of interest for source separation paradigms. Indeed,
one of the popular means to deal with polyphony is to first split the signals into individual
sources (or components) that can then be individually processed as monophonic signals
[51, Section V]. Even if the source separation is, in many situations, not explicit (and may
only provide a mid-level representation on which subsequent processing would be easier), it
remains a very challenging task for common music recordings (e.g. mono or at best stereo
recordings of complex polyphonic signals).

However, performances of source separation systems can be significantly improved by
incorporating some prior information about the sources and the mixing process. In unsu-
pervised source separation, this information can be given in form of a specific source model
(as for example the source/filter model used in [12] for singing voice separation). But in
some cases, one may have access to a richer information that describes the content. This
additional information can be provided by a user [64] or by a more or less accurate transcrip-
tion of the music signal (see for example [32], [16] for score-informed transcription systems).
In [64], the goal is to separate the singing voice from the polyphonic recording using some
information provided by a user. To that aim, the user mimics the desired source by simply
singing or humming the main melody. The source separation is then performed using both
the original polyphonic music signal and the user provided input. Since the user’s signal is
simpler to process (no polyphony) and carries many audible similarities with the original
signal in both frequency and temporal behaviors, it greatly helps the source separation.

In some cases, one may have access to a more or less accurate transcription of the
polyphonic music by means for example of a MIDI score. The usefulness of this MIDI score
(possibly obtained on the Web) depends on its quality or in other words on its accuracy to
represent the original recording content.

In real case scenarios, it is usually important to first align the score to the audio recordings
(see for example [41, 17, 34, 50]). Then, once aligned, the score is used to guide the source
separation. For example, the score is used in [69] for obtaining improved spatial information
about the sources in a stereo source separation problem. In other works, the aligned MIDI
score is used as priors in the probabilistic model (such as Probabilistic Latent Component
Analysis in [20] and [32]). The MIDI score can also be used to define harmonic filters which
are built from the fundamental frequencies of each active notes [15]. It is also possible using
score informed source separation to focus on specific parts of the music. For example in [16],
an automated approach is proposed for the decomposition of a monaural piano recording
into sound sources corresponding to the left and the right hands.

The different examples discussed above all exploit another source of information, other
than the original audio signal. In all cases, this leads to significant improvements in separ-
ation quality.

However, it seems reasonable to assume that the strategy followed in these studies can
be extrapolated to a much wider set of information sources including for example the lyrics
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of the song, the gender of the singer or possibly his or her emotional state. The availability
of cover versions, of some of the separated sources as in recent informed source separation
methods ([47],[56]) or of user tags for appropriate source models selection also appear to be
extremely valuable sources of information.

4 Conclusion

Signal processing for music analysis is a vibrant and rapidly evolving field of research. The
richness and complexity of the music content call for methods that take into account music-
specific characteristics including concepts such as pitch, harmony, rhythm, and instrument-
ation. Nevertheless, a growing trend in music analysis is to tackle the problem in a more
global manner and to exploit, whenever possible, the multimodal or multi-faceted aspects
of music. In this paper, we have proposed a short synthetic view of some methods that
have been successfully used in multimodal signal processing. We have also briefly discussed
five case studies as recent examples of successful exploitation of multimodality in music
processing. In the light of these case studies, it seems clear that multimodality in music
processing is very promising. Although many important challenges in this field are ahead of
us, we would like to highlight three main directions for future work:

Towards extended multimodality: Most current studies focus on a limited number
of modalities (audio and video, audio and score, audio and tags, . . . ). Since music
is by nature truly multidimensional there is a great interest to incorporate multiple
information sources or modality for music analysis tasks (including source separation),
such as for example song lyrics, singer/performer’s motion and emotional state, user
tags, physiological signals (EEG6, ECG7, . . . ), etc.
Towards extended cross-modality: There are no particular reasons why cross-modality
should be expressed through simple linear couplings. There is thus a clear perspective
to extend the current approaches to non-linear coupling between modalities using for
example “kernelized correlations”.
Towards extended user interaction: In most studies, the user is not directly involved
in the music analysis stage. It seems however important to strengthen the involvement
of users by further developing the concept of relevance feedback or active learning which
should allow for designing better human-aware multimodal music systems.
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Abstract

The automated extraction of chord labels from audio recordings is a central task in music in-
formation retrieval. Here, the chord labeling is typically performed on a specific audio version
of a piece of music, produced under certain recording conditions, played on specific instruments
and characterized by individual styles of the musicians. As a consequence, the obtained chord
labeling results are strongly influenced by version-dependent characteristics. In this chapter, we
show that analyzing the harmonic properties of several audio versions synchronously stabilizes the
chord labeling result in the sense that inconsistencies indicate version-dependent characteristics,
whereas consistencies across several versions indicate harmonically stable passages in the piece
of music. In particular, we show that consistently labeled passages often correspond to correctly
labeled passages. Our experiments show that the cross-version labeling procedure significantly
increases the precision of the result while keeping the recall at a relatively high level. Further-
more, we introduce a powerful visualization which reveals the harmonically stable passages on a
musical time axis specified in bars. Finally, we demonstrate how this visualization facilitates a
better understanding of classification errors and may be used by music experts as a helpful tool
for exploring harmonic structures.
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1 Introduction

Automated chord labeling, which deals with the computer-based harmonic analysis of
audio recordings, is one of the central tasks in the field of music information retrieval
(MIR) [2, 3, 4, 6, 8, 11, 13, 14, 19, 20, 22, 23]. Harmony is a fundamental attribute of
Western tonal music and the succession of chords over time often forms the basis of a piece
of music. Thus, chord progressions constitute a powerful mid-level representation for the
underlying musical signal and can be applied for various MIR tasks.
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The evaluation of chord labeling procedures is typically performed on large audio collec-
tions, where the automatically extracted chord labels are compared to manually generated
ground truth annotations. Here, a piece to be analyzed is typically represented by an
audio recording, which possesses version-dependent characteristics. For example, specific
instruments are used, which have instrument-dependent sound properties, e. g., concerning
the energy distributions in the harmonics. Similarly, room acoustics and other recording
conditions may have a significant impact on the audio signal’s spectral properties. Finally, by
emphasizing certain voices or suppressing others, a musician can change the sound in order
to shape the piece of music. As a consequence, the chord labeling results strongly depend on
specific characteristics of the considered audio recording. Another major problem arises from
the fact, that audio-based recognition results refer to the physical time axis given in seconds
of the considered audio recording, whereas score-based analysis results obtained by music
experts typically refer to a musical time axis given in bars. This simple fact alone makes
it often difficult to get musicologists involved into the evaluation process of audio-based
music analysis. For example, for the evaluation of chord labeling procedures, ground truth
annotations are required. While the manual generation of audio-based annotations is a
tedious and time-consuming process musicians are trained to derive chord labels by means
of printed sheet music. Such labels, however, are only of limited use for the evaluation of
audio-based recognition results. First research efforts have been directed towards the use of
score-based ground truth labels for audio-based chord recognition, where it turned out that
incorporating such ground truth labels may significantly improve machine learning methods
for chord recognition [12, 15].

In this chapter, we build upon a cross-version chord recognition approach previously
suggested in [10]. By exploiting the fact that for a musical work there often exist a large
number of different audio recordings as well as symbolic representations, we analyze the
available versions independently using some automated chord labeling procedure and employ
a late-fusion approach to merge the version-dependent analysis results. Here, the idea is to
overcome the strong dependency of chord labeling results on a specific version. We show that
by using such a cross-version approach one can achieve a stabilization of the chord labeling
results. In particular, we observe that more or less random decisions in the automated chord
labeling typically differ across several versions. Such passages often correspond to harmonically
instable passages leading to inconsistencies. In contrast, consistencies across several versions
typically indicate harmonically stable passages. As one main contribution, we show that
consistently labeled passages often correspond to correct labeling results. Consequently, one
can exploit the consistency information to significantly increase the precision of the result
while keeping the recall at a relatively high level, which can be regarded as a stabilization of
the labeling procedure. Furthermore, we show that our cross-version approach is conceptually
different to a constraint-based approach, where only chord labels are considered that are
particularly close to a given chord model. Unlike our cross-version approach, using such
simple constraints leads to a significant loss in recall. As another contribution, we describe
how to transform the time axis of analysis results obtained from audio recordings to a
common musical time axis given in bars. This not only facilitates a convenient evaluation
by a musicologist, but also allows for comparing analysis results across different recorded
performances.

Finally, we introduce a powerful visualization which is based on the cross-version chord
labeling (another interesting approach for visualizing harmonic structures of tonal music has
been suggested in [21]). The cross-version visualization indicates the harmonically stable
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passages in an intuitive and non-technical way leading the user to passages dominated by
a certain key also referred to as tonal centers. Furthermore, in the case that score-based
ground truth labels are also provided, the visualization allows for an in-depth error analysis
of chord labeling procedures, which deepens the understanding not only for the employed
chord recognizer but also for the music material. Additionally, we exemplarily show how the
cross-version visualization may serve musicologists as a helpful tool for exploring harmonic
structures of a piece of music.

The remainder of this chapter is organized as follows. First, in Section 2 we give an
overview of the cross-version chord labeling framework. In Section 3 we show that using a
cross-version approach a stabilization of the chord labeling results can be achieved. Afterwards,
in Section 4 we exemplarily demonstrate how the cross-version visualization may be used as
a supportive tool for exploring harmonic structures before concluding in Section 5 with open
problems and future work.

2 Cross-Version Framework

In this section, we describe the cross-version chord labeling procedure following a similar
approach as introduced in [10]. Figure 1 shows the employed procedure in a schematic
overview. At this point, we emphasize that our approach is not meant to be of technical
nature, and we refer to [3, 13] for an overview of state-of-the-art chord labeling procedures.
Instead, we introduce a simple yet powerful paradigm which exploits the availability of
different versions of a given piece of music.

In the following, we first give a short introduction to music synchronization and describe
how synchronization procedures can be used to transform the time axis of audio-based
analysis results to a performance-independent musical time axis. Afterwards, we present
the employed chord labeling procedure before introducing the concept of cross-version chord
labeling. Finally, by means of several music examples, we illustrate the usefulness of our
cross-version visualization.

2.1 Synchronization

In the context of the presented cross-version chord labeling approach the concept of music
synchronization is of particular importance. In general, the goal of music synchronization is
to determine for a given region in one version of a piece of music the corresponding region
within another version [9, 17]. Most synchronization algorithms rely on some variant of
dynamic time warping (DTW) and can be summarized as follows. First, the two given
versions of a piece of music are converted into feature sequences, say X := (x1, x2, . . . , xN )
and Y := (y1, y2, . . . , yM ), respectively. In the synchronization context, chroma features1
have turned out to yield robust mid-level representations even in the presence of significant
musical variations [1, 7, 17, 18]. Chroma features show a high degree of invariance towards
changes in timbre and instrumentation while closely correlating to the harmonic progression
of the piece of music. From the feature sequences, an N ×M cost matrix C is built up

1 Implementations of various chroma feature variants are available at www.mpi-inf.mpg.de/resources/
MIR/chromatoolbox/, see also [18].
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by evaluating a local cost measure c for each pair of features, i. e., C(n,m) = c(xn, ym) for
n ∈ [1 : N ] := {1, 2, . . . , N} and m ∈ [1 : M ]. Then, a cost-minimizing alignment path, which
constitutes the final synchronization result, is computed from C via dynamic programming.
For a detailed account on DTW and music synchronization we refer to [9, 17] and the
references therein. Based on this general strategy, we employ a multiscale synchronization
algorithm based on high-resolution audio features as described in [5]. This approach, which
combines the high temporal accuracy of onset features with the robustness of chroma features,
generally yields robust music alignments of high temporal accuracy.

2.2 Musical Time Axis

The alignment techniques can be used to transform the time axis of audio-based analysis
results to a common musical time axis, see Figure 1 for an overview. To this end, we assume
that for a certain piece of music we are given a MIDI representation of the musical score,
where the MIDI time axis follows a musically meaningful time axis in bars. Such a MIDI file
can be obtained by automatically exporting a score in computer-readable format, which in
turn can be generated by applying OMR (optical music recognition) software to scanned sheet
music, see Figure 1a. Now, given an audio recording of the same piece of music, one can apply
music synchronization procedures to establish temporal links between the timelines of the
MIDI representation and the audio version. This linking information allows for transferring
bar or beat positions from the MIDI timeline to corresponding time positions (given in
seconds) of the audio timeline. Then, the audio timeline can be partitioned into segments
each corresponding to e. g. one musical beat or bar. Based on this musically meaningful
segmentation, beat- or bar-synchronous audio features can be determined. Then each feature
vector corresponds to a musically meaningful time unit that is independent of the respective
recorded performance. We will use such synchronized features to directly compare the chord
labeling results across the different versions.

2.3 Chord Labeling

The chord labeling is then performed on the basis of the synchronized chroma features,
where we furthermore apply a tuning estimation to balance out possible deviations of the
performances from standard tuning [7, 13]. Note that numerous chord labeling procedures
have been described in the literature. State-of-the-art chord recognizers typically employ
statistical models such as hidden Markov models [11, 22, 23] or more general graphical
models [13] to incorporate smoothness priors and temporal continuity into the recognition
process. Since the respective chord labeling procedure is not in the focus of this chapter, we
use a basic template-based chord labeling procedure [6], which better illustrates the kind of
information that is enhanced and stabilized by our cross-version strategy. However, note
that more complex chord recognizers can be used instead.

In the following, we consider 24 chord categories comprising the twelve major and the
twelve minor chords, following the conventions as used for MIREX 2010 [16]. Let Λ denote
the set of these 24 categories, then for each λ ∈ Λ we define a binary template tλ that
corresponds to the respective chord. The template-based chord labeling procedure consists
in assigning to each frame (here, exemplarily, we use a bar-wise frame level) the chord label
that minimizes a predefined distance d (in our implementation, we use the cosine distance)
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Figure 1 Schematic overview of the employed cross-version framework. Here, the beginning
of Beethoven’s Fifth (bb. 1-13) is used as an example. (a) Export of the score to a neutral
MIDI representation. Here, the score corresponds to a piano reduction of Beethoven’s Fifth. (b)
Visualization of the automatically derived chord labels for a specific audio recording. The time axis in
bars is obtained by synchronizing the audio recording with the MIDI representation. The horizontal
black lines in the visualization represent the bassline extracted from the MIDI representation.
(c) Cross-version visualization (38 different audio recordings). The horizontal black lines in the
visualization represent the bassline extracted from the MIDI representation.

between the corresponding template and a given feature vector referred to as x:

λx := argmin
λ∈Λ

d(tλ, x). (1)

As result, we obtain for each audio version a sequence of automatically extracted bar-wise
chord labels. Figure 1b shows the automatically extracted chord labels for a specific audio
recording of the first 13 bars of Beethoven’s Symphony No. 5, Op. 67, the so-called Beethoven’s
Fifth. The vertical axis represents the 24 chord categories, where major and minor chords
with the same root note are visualized next to each other. Capital letters correspond to
major chords, whereas lower case letters correspond to minor chords. The horizontal axis
represents the time axis given in bars. The automatically derived chord labels are shown in
red, e. g., the chord label for bar 1 corresponds to G major, whereas the chord label for bar
2 corresponds to E[ major. As the bassline of a harmonic progression plays an important
role for the understanding of harmonic structures, we have visualized it as an additional
information in the middle of the corresponding major and minor chord having the bassline
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as root note. The bassline is automatically extracted from the MIDI representation by
determining the lowest of all present MIDI notes at every point in time.

2.4 Cross-Version Chord Labeling

As mentioned in the introduction, the chord labeling results not only depend on the piece of
music but also on the acoustic and artistic characteristics of the specific audio recording. To
alleviate the dependence on such characteristics, one can exploit the fact that for classical
pieces of music usually many different recorded performances exist. Here, our idea is to
perform the chord labeling across several versions of a given piece of music and then to resolve
the dependency of the chord labels on a specific version by using some kind of late-fusion
strategy. Since the automatically extracted chord labels for the different performances are
given bar-wise, one can overlay the performance-specific chord labels for all considered
recorded performances resulting in a cross-version visualization. Figure 1c shows a cross-
version visualization for the beginning of Beethoven’s Fifth (bb. 1-13), where 38 different
performances are considered. The color-scale ranging from bright yellow to dark red indicates
the degree of consistency of the chord labels across the various performances, where red
entries point to consistencies and yellow entries to inconsistencies. For example, bar 2 is
labeled highly consistently, whereas bar 3 is labeled inconsistently across the considered
performances.

In this way, the cross-version visualization directly reveals chord label consistencies and
inconsistencies across the different performances giving a deeper insight into the chord
labeling procedure as well as the underlying music material. As we will show, consistently
labeled passages generally correspond to harmonically stable passages, which are clearly
dominated by a certain key. In some cases, consistencies may also point to consistent
misclassifications which might be taken as an indicator for inadequacies of the underlying
chord labeling model. For example, considering only 24 major and minor chords, it is
obvious that more complex chords such as, e. g., diminished chords can not be captured. In
contrast, inconsistencies generally point to harmonically instable passages or ambiguities
in the underlying music material. For example, incomplete chords as well as additional
notes such as trills, appoggiaturas or suspended notes lead to chord ambiguities causing an
inconsistent labeling across the different performances.

2.5 Examples

To illustrate our cross-version approach, we now discuss some real-world music examples.
We first refer to the introductory bars of Beethoven’s Fifth (see Figure 1). Figure 1b shows
the visualization of the automatically derived chord labels for a specific audio recording.
Following the time axis in bars, the visualization allows for a direct comparison to the score.
As the score reveals the first five bars (bb. 1-5) do not contain complete triads. Instead, the
characteristic “fate motif” appears, which is presented in octaves in unison. The visualization
shows that the automatically derived chord labels for these introductory bars, aside from
bar 3, are meaningful in the sense that they represent chords having the presented note of
the respective bar as root note. However, in bar 3, where f is played in unison, E[ major
is detected. This might be an indicator for inaccuracies in the synchronization since the
previous bar (b. 2) is dominated by the note e[. The same problem appears in bar 6. Bars
7-10 are then labeled as C minor. A closer look at the score reveals that in this passage
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(bb. 8-10) C minor is clearly present. However, in the beginning of this passage (b. 7) C minor
with suspended sixth (a[) leads into the C minor chord (bb. 8-10). In fact, C minor with
suspended sixth corresponds to the notes of A[ major. However, the suspended sixth (a[)
is played in a very soft way in the considered recording, which might be the reason for the
detection of C minor. Bars 11-13 then are labeled in a meaningful way as G major.

The cross-version visualization (Figure 1c) now directly reveals consistently and inconsist-
ently labeled passages. For example, one observes the following highly consistently labeled
passages, which may correspond to harmonically stable passages: bars 1-2, 4-5 and 8-13. As
previously described, bars 1-2 and 4-5 refer to the fate motif in unison, thus not containing
complete triads. These bars are now consistently labeled as a chord having the respective
note of the considered bar as root note. Comparing bars 8-13 to the score shows that they
indeed correspond to passages being clearly dominated by a certain harmony. Bars 8-10 are
consistently labeled correctly as C minor reflecting the harmonic stability of this passage,
which is clearly dominated by a C minor triad. Similarly, bars 11-13 are correctly identified
by the visualization as harmonically stable, being dominated by G major. In contrast, one
directly observes that bar 3 is labeled inconsistently. This inconsistent labeling may be due
to local inaccuracies in the underlying synchronization procedure. For a larger amount of
recordings this bar is labeled as F major (or as E[ major) having as root the note presented
in unison in this bar (or in the previous bar). In fact, bar 3 was already misclassified as E[
major considering a single audio recording before. The cross-version visualization now clearly
identifies this bar to be problematic in view of the underlying synchronization procedure.
Finally, bar 7 attracts attention since it is labeled for approximately half of the recordings as
C minor and as A[ major for the other half. Here, C minor with suspended sixth (a[) is present,
which indeed sounds equivalently to A[ major. Since the suspended a[ is usually played in a
soft way, for many recordings (including the previously discussed specific recording) this bar
is misclassifed as C minor. However, the cross-version visualization shows that for the largest
part of recordings this bar is correctly classified (with regard to the sound) as A[ major.

As the previously discussed example shows, ground truth data is not necessarily needed
to derive valuable information from the cross-version visualization concerning the employed
chord labeling procedure as well as the underlying music material. However, assuming the
case that score-based ground truth labels are provided by a trained musician, this information
can be easily incorporated into our cross-version approach, see Figure 2. In this way, errors
(deviations from the ground truth) can be subdivided into errors being specific to a certain
audio version (inconsistent misclassifications) and errors independent of a specific version
(consistent misclassifications). While inconsistent misclassifications may point to ambiguities
in the underlying music material, consistent misclassifications may point to inadequacies in
the underlying chord labeling framework. In the following, we illustrate such an in-depth
error analysis by means of two examples. The score-based ground truth annotations used
in our experiments have been generated by a trained musician on the bar-level using the
shorthands and conventions proposed by Harte et al. [8].

Figure 2 shows the cross-version visualization for a different excerpt of Beethoven’s
Fifth (bb. 40-47). On the left, the previously introduced visualization is shown, where the
automatically derived cross-version chord labels are visualized without considering ground
truth chord labels. On the right, an extension of this cross-version visualization is presented,
where the cross-version chord labels are compared to score-based ground truth labels. In
this visualization we now distinguish two different color scales: one color scale ranging from
dark blue to bright green and the previously introduced color scale ranging from dark red
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Figure 2 Cross-version visualization for Beethoven’s Fifth (bb. 40-47). Here, 38 different audio
recordings are considered. Left: Cross-version visualization of the automatically derived chord labels.
Right: Cross-version visualization, where the automatically derived chord labels are overlayed with
score-based ground truth chord labels.

to yellow. The first color scale from blue to green serves two purposes. Firstly, it encodes
the score-based ground truth chord labels. Secondly, it shows the degree of consistency
between the automatically generated audio labels and the score labels. For example, the
dark blue entries in bars 44-47 show, that a C minor chord is specified in the score-based
ground truth labels, and all automatically derived chord labels coincide with the score label
here. In contrast, the bright green entry in bar 40 shows that the score-based chord label
corresponds to F minor, but most of the automatically derived chord labels differ from the
score label, specifying a C major chord. Analogously, the second color scale from dark red to
yellow also fulfills two purposes. Firstly, it encodes the automatically derived chord labels
that differ from the score-based labels. Secondly, it measures the universality of an error.
For example, in bars 44-47 there are no red or yellow entries, since the score-based labels
and the automatically derived labels coincide here. However, in bar 40 most automatically
derived chord labels differ from the score-based labels. Here most chord labels specify a C
major chord.

The cross-version visualization of the automatically derived chord labels (see Figure 2,
left) reveals two highly consistently labeled passages: bar 43, labeled highly consistently
as F minor, and bars 44-47, which are labeled as C minor across all considered recorded
performances. Comparing to the score, bars 44-47 indeed turn out to be a harmonically stable
passage which is clearly dominated by C minor. Consequently, this highly consistently labeled
passage is labeled correctly, which is shown in the visualization, where the automatically
derived chord labels are compared to score-based ground truth labels (see Figure 2, right).
In contrast, bar 43 is labeled consistently as F minor (see Figure 2, left), but comparing to
the score one finds out that besides of an F minor chord two additional notes (b and d) are
contained in this bar, suggesting the dominant G major. Therefore, a clear assignment of a
triad is not possible on the bar level. This is also the reason that there is no score-based label
assigned to this bar in the ground truth annotation (see Figure 2, right). The remaining
bars are labeled rather inconsistently indicating harmonic instability or ambiguities in the
underlying music material (see Figure 2, left). A closer look at the score reveals that these
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Figure 3 Cross-version visualization for Bach’s Prelude BWV 846 in C major (bb. 11-15). Here,
five different audio recordings are considered. Left: Cross-version visualization of the automatically
derived chord labels. Right: Cross-version visualization, where the automatically derived chord
labels are overlayed with score-based ground truth chord labels.

bars are characterized by suspended notes on the first beat. These additional notes which do
not belong to the underlying chords are mainly responsible for the inconsistent labeling. The
comparison with the score-based ground truth annotation reveals that for bars 40 and 41
indeed most of the automatically derived chord labels differ from the ground truth annotation
(see Figure 2, right).

Figure 3 shows the cross-version visualization for an excerpt of Bach’s Prelude BWV
846 in C major (bb. 11-15), where five different recorded performances are considered. The
visualization reveals 3 bars which are labeled correctly with high consistency (b. 11, b. 13, and
b. 15) and two bars, which are misclassified for most of the considered audio versions (b. 12
and b. 14). Comparing to the score one finds out that the correctly labeled passages indeed
correspond to bars, where clear major or minor chords are present. In contrast, bars 12 and
14 are problematic in the sense that they contain diminished seventh chords which can not
be assigned in a meaningful way to one of the considered 24 major and minor chords, thus
producing misclassifications. In this case, an extension of the considered chord categories to
also include diminished seventh chords might solve the problem.

3 Stabilizing Chord Labeling

In this section we show that analyzing the harmonic properties of several audio versions
synchronously stabilizes the chord labeling result in the sense that inconsistencies indicate
version-dependent characteristics, whereas consistencies across several versions indicate
harmonically stable passages in the piece of music. To this end, we introduce a cross-
version voting strategy and compare it with a simple constraint-based strategy using a single
version. This comparison demonstrates that our voting strategy is conceptually different
from simply imposing stricter conditions in the template-based approach. The two strategies
are illustrated by means of the first 19 bars of Beethoven’s Piano Sonata Op. 27 No. 2, the
so-called Moonlight Sonata, see Figure 4.
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Figure 4 Visualization of the chord labeling result for Beethoven’s Moonlight Sonata (bb. 1-19).
In the left column (b-d) the cross-version voting strategy is used considering seven performances,
whereas in the right column (e-g) the constraint-based strategy is used considering only a single
audio recording (Barenboim). Bars, for which no score-based ground truth label exists (since the
clear assignment of a harmony is not possible), are left unconsidered in the evaluation. (a) Score
of bars 1-7. (b) Visualization of consistencies and inconsistencies in the cross-version analysis. (c)
Cross-version majority voting strategy. (d) Cross-version voting strategy with ν = 0.5. (e) Basic
strategy. (f) Constraint-based strategy with γ = 0.3. (g) Constraint-based strategy with γ = 0.1.

3.1 Cross-Version Voting Strategy

By overlaying the chord labeling results as described in Section 2.4 for the first 19 bars
of Beethoven’s Moonlight Sonata considering seven different audio versions, we obtain a
cross-version visualization, see Figure 4b. The cross-version strategy now reveals consistencies
and inconsistencies in the chord labeling across all audio versions. For example, one directly
notices that the misclassification in bar 10, when considering a specific audio version (see
Figure 4e), seems to be version-dependent. Considering several audio versions, bar 10
is more or less consistently labeled correctly as E minor. In contrast, a more consistent
misclassification (C major instead of E minor was labeled for four versions) can be found in
bar 16.
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In the following experiment, we investigate to which extent the consistency information
across several audio versions may be exploited to stabilize chord labeling. In the majority
voting strategy we keep for each bar exactly one of the automatically extracted chord labels,
namely the most consistent chord label across all versions. All remaining audio chord labels
are left unconsidered in the evaluation. This results in a visualization which is shown in
Figure 4c. Blue entries (correct: C) now indicate areas, where the audio chord label agrees
with the ground truth chord label. In contrast, green and red entries encode the differences
between the chord labels. Here, red entries (false positives: FP) correspond to the audio
chord labels, whereas green entries (false negatives: FN) correspond to the ground truth
labels. As one directly notices, besides one misclassification in bar 16, the above mentioned
highly consistent error, all chords are now correctly classified resulting in a significant increase
of precision.

In the next step, we further constrain the degree of consistency by introducing a consistency
parameter ν ∈ [0, 1]. To this end, we consider only bars which are labeled consistently for
more than (ν · 100)% of the audio versions. All other bars are left unannotated. For example,
ν = 0.5 signifies that we keep in the evaluation only passages, where for more than 50% of
the audio versions the extracted chord labels agree. Figure 4d shows the visualization of
the chord labeling result for ν = 0.5, where the voting procedure succeeds in eliminating all
misclassifications. At the same time only three correct classifications are taken out of the
evaluation. In this way, the precision further increases (amounting to 100% in Figure 4d),
while the recall still remains on a relatively high level (amounting to 60% in Figure 4d).

As the example described above shows, the cross-version voting approach succeeds in
significantly increasing the precision, while keeping the recall at a relatively high level. For
a quantitative evaluation of the cross-version voting strategy we refer to the experiments
described in Section 3.3.

3.2 Constraint-Based Strategy

To better illustrate the potential of our cross-version voting strategy, we now consider a
constraint-based stabilizing procedure. Using the template-based approach described in
Section 2.3, the automatically derived chord label for a given bar is defined by the template
having the minimal distance to the feature vector, in the following referred to as basic strategy.
Figure 4e shows a visualization of the chord labeling result. As the visualization reveals the
first bar is correctly identified as C] minor, whereas bar 2 is misclassified, being identified
as E major although being labeled as C] minor in the ground truth. Here, a C] minor 7th
chord is present in the ground truth, being mapped to C] minor. In fact, this seventh chord
contains all the tones for E major, which explains the misclassification.

As we can see from the example, using the basic strategy, it obviously happens that for
bars containing complex chords none of the given 24 templates fits well to the present feature
vector. Here, the chord template of minimal distance may have a rather large distance to
the feature vector. To counteract this case, we now introduce a parameter γ ∈ [0, 1], which
represents an upper threshold for the distance between the assigned chord template and the
feature vector. In this way, we obtain a constraint-based procedure, where only chord labels
λ are kept for which

d(tλ, x) < γ. (2)
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Table 1 Overview of the pieces and number of versions used in our experiments.

Composer Piece # (Versions) Identifier
Bach Prelude C Major BWV 846 5 ‘Bach’

Beethoven Moonlight Sonata Op. 27 No. 2 7 ‘BeetM’(first movement)

Beethoven Fifth Symphony Op. 67 38 ‘Beet5’(first movement)
Chopin Mazurka Op. 68 No. 3 49 ‘Chopin’

All feature vectors x that have a larger distance than γ to any of the chord templates are left
unannotated. In the following experiment, the idea is to successively decrease the parameter
γ in order to investigate its influence on the chord labeling result.

Figure 4f shows the visualization for γ = 0.3. Obviously, one misclassification (bb. 16) is
now taken out of the evaluation. However, at the same time two previously correctly classified
chords (bb. 6, bb. 11) are left unconsidered in the evaluation, resulting in a decrease of the
recall. Here, again seventh chords are present being correctly classified but having a relatively
large distance to the template vector. Further decreasing the parameter γ is accompanied by a
dramatical loss in recall while the precision increases moderately (Figure 4g). For quantitative
results of the evaluation of the constraint-based strategy we refer to the experiments shown
in Figure 5.

3.3 Experiments

In this section we quantitatively evaluate the various chord labeling strategies using a dataset
that comprises four classical pieces of music, see Table 1. At this point, we want to emphasize
that our main object is not in increasing the F -measure, defined below. Instead, in the
application we have in mind, we are interested in finding passages, where one obtains correct
chord labels with high guarantee. Therefore, our aim is to increase the precision, however,
without losing too much of the recall.

In the following, we denote the automatically derived audio chord labels as La, and the
ground truth chord labels as Lgt. For our bar-wise evaluation, we use precision (P ), recall
(R) and F -measure (F ) defined as follows:

P = #(La ∩ Lgt)
#La

, R = #(La ∩ Lgt)
#Lgt

, F = 2 · P ·R
P +R

. (3)

We first discuss the cross-version voting strategy. Figure 5 shows curves for P , R and F
for the four pieces in the dataset, where the horizontal axis now represents the parameter ν
ranging between 0.5 and 0.8 except for the position labeled by ‘Maj’ corresponding to the
majority voting strategy. First of all, one notices that performing the chord labeling across
several versions using the majority voting strategy, precision, recall and F -measure already
improve by 10-30% in comparison to the basic strategy based on a specific version (see ‘Min’
in Figure 5).
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Figure 5 Top: Cross-version voting strategy. Curves for precision (P ), recall (R) and F -measure
(F ) using the majority voting strategy (Maj), and four different consistency parameters ν from 0.5
to 0.8. Bottom: Constraint-based strategy based on a specific version. Curves for the mean value
of precision (P ), recall (R) and F -measure (F ) using the basic strategy (Min) and five different
settings for γ from 0.5 to 0.1.

Table 2 Basic chord labeling based on specific versions. The table shows mean, minimum and
maximum F -measures over all recorded performances of a given piece.

Mean Min Max
Bach 0.7000 0.4375 0.8750
BeetM 0.7473 0.6923 0.8718
Chopin 0.6345 0.4545 1.0000
Beet5 0.5967 0.5282 0.8345

Furthermore, for all four examples the precision rapidly increases, so that for ν = 0.5
already a high precision is reached: 95% (Bach), 94% (BeetM), 100% (Chopin) and 77%
(Beet5). At the same time the recall remains on a rather high level, still amounting to
59% (Bach), 77% (BeetM), 76% (Chopin) and 63% (Beet5). In this way, our experiments
show that consistently labeled passages across several versions often correspond to correctly
labeled passages. Increasing the consistency parameter ν further increases the precision
values, while the recall still remains at acceptably high levels. In summary, exploiting the
consistency information of the chord labels across several versions succeeds in stabilizing the
chord labeling, resulting in a significant increase of precision without loosing too much of the
recall.

We now compare these results with the ones obtained from the constraint-based strategy.
Figure 5 shows curves for P , R, and F for the four pieces in our dataset. Here, P , R, and
F correspond to mean values, which are obtained by first applying the constraint-based
strategy on every version in the dataset separately and then averaging over all these versions.
In the visualization, the horizontal axis represents the parameter γ ranging between 0.5 and

0.1 except for the position labeled by ‘Min’ corresponding to the basic labeling strategy. As
one directly notices, there is a clear tendency visible for all four examples in our database.
For increasing γ the precision also slowly increases reaching a high value of roughly 80% for
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Figure 6 Cross-version visualization for the first movement of Beethoven’s Piano Sonata Op. 49
No. 2. Here, six different recorded performances are considered.

γ = 0.1. However, at the same time the recall dramatically drops down to roughly 10% for
γ = 0.1. Obviously, using the constraint-based strategy one can also increase precision values
as misclassifications are taken out of the evaluation, however at the same time previously
correct classifications are excluded resulting in a declining recall. Because of the dramatic
loss of recall, this simple constraint-based strategy is not suited for stabilizing the chord
labeling results.

Furthermore, our experiments reveal that performing the chord labeling based on a
specific audio recording, the version-dependent results can vary greatly. This is shown by
Table 2 indicating the mean F -measure, as well as the minimal and maximal F -measure
achieved over all available recordings when using the basic labeling strategy (there was also
a MIDI-synthesized version in each of the four groups). For example, the F -measure for
one version of Bach amounts to 43.75%, corresponding to the minimal F -measure over all
versions, whereas for another version the F -measure amounts to 87.5%, corresponding to the
maximal F -measure over all versions. The average F -measure over the five versions amounts
to 70%. These strong variations of the chord labeling results across different versions can
not be explained by tuning effects, as we compensated for possible tuning deviations in the
feature extraction step. A manual inspection showed that, for most cases, musical ambiguities
are responsible for strong differences between the version-dependent results.

4 Exploring Harmonic Structures

As the experiments described above have shown, consistently labeled passages across several
versions often correspond to correctly labeled passages. This opens the way for large-scale
harmonic analyses on the basis of huge recorded music corpora, where cross-version chord
labels of high reliability can be used instead of manually generated ground truth labels. In
current work, we apply our cross-version analysis framework for automatically revealing
hidden harmonic relations across different pieces of specific music corpora. In particular,
in a collaboration with musicologists, we are investigating how to locate tonal centers, i. e.
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Figure 7 Exposition (bb. 1-52) of Beethoven’s Piano Sonata Op. 49 No. 2. Musically meaningful
sections are marked in the score: first group (blue), transition (yellow), second group (red), third
theme (green), cadential group (purple).

Figure 8 Cross-version visualization for the exposition of Beethoven’s Piano Sonata Op. 49 No. 2.
Here, six different recorded performances are considered.

passages which are dominated by a certain key, within large music corpora. Here, in the
context of a harmonic analysis on a relatively coarse temporal level, our cross-version analysis
has turned out to be a valuable tool that can reliably differentiate between harmonically
stable and harmonically instable passages.

In the following, we exemplarily demonstrate how our cross-version visualization may
serve musicologists as a helpful tool for exploring harmonic structures of a musical work.
As example we use the first movement of Beethoven’s Sonata Op. 49 No. 2 (see Figure 7).
Figure 6 shows the cross-version visualization as an overview, where six different recorded
performances are considered. The first movement is divided into three different form
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parts: exposition (bb. 1-52) and its repetition (bb. 53-104), development (bb. 105-118) and
recapitulation (bb. 119-174).2 These parts are marked by vertical black lines and can be
clearly separated from each other by their harmonic structures. The exposition is clearly
dominated by the tonic G major and the dominant D major, which represent the keys of the
first and the second theme, respectively. In contrast, the development is characterized by a
greater variety of quickly changing harmonies: mainly D minor, A minor, E major, E minor
and B major appear in the visualization as tonal centers. Finally, in the recapitulation, the
tonic G major is stabilized: it appears now as the main tonal center (the second theme is
likewise presented in the tonic), supported by shorter appearances of subdominant C major
and dominant D major.

Apart from reflecting large-scale harmonic structures, the cross-version visualization
allows for a more detailed bar-wise harmonic analysis, which we now exemplarily perform for
the exposition of the sonata (see Figure 7 and Figure 8). The exposition is divided into five
musically meaningful subparts, which again are characterized by specific harmonic structures:
first group (A; bb. 1-14), transition (B; bb. 15-20), second group (C; bb. 20-35), third theme
(D; bb. 36-48) and cadential group (E; bb. 49-52). These subparts of the exposition are
marked by vertical black lines and displayed as color-coded blocks on top of the visualization
(for a comparison to the score, see Figure 7).

As the visualization reveals the first theme (A) is characterized by harmonic stability,
especially in the beginning where the tonic G major is clearly present. However, one directly
observes two bars which are labeled inconsistently across the various performances indicating
harmonic instability: bars 7 and 8. Comparing to the score, one finds out that in bar 7
indeed two different harmonies appear, which is the reason for the inconsistent labeling on the
bar-level. Similarly, bar 8 contains several harmonies including a diminished seventh chord,
a chromatic melodic line and a trill so that no unique chord label can be assigned to this bar.
The transition (B) is characterized by harmonic stable passages in the tonic G major and the
dominant D major. As the score reveals, this section is indeed characterized by a bar-wise
change between these two chords so that the transition leads to the entrance of the second
theme (C) appearing in the dominant D major. The visualization clearly reflects that the key
of the second theme is D major. However, some of the bars also exhibit inconsistencies. For
example, bars 21-24 are classified as F] minor instead of D major for some of the recordings. A
closer look at the score reveals that in these introductory bars of the second theme the leading
tone c] of D major is often present, which musically stabilizes D major but at the same time
produces (together with the notes f] and a of the D major chord) a chord ambiguity leading
to the classification F] minor for some of the performances. A similar confusion occurs in
bars 28-30, where the performers strongly emphasize the leading tone c]. The second theme
is followed by a kind of third theme (D), which exhibits many inconsistencies. A comparison
to the score shows that this passage is characterized by chromatic runs which are responsible
for the inconsistent labeling across the considered performances. The exposition finally closes
with the cadential group (E), which usually stabilizes the tonic in the end. Surprisingly, the
visualization reveals that the labeling for this section is not as consistent as one may expect.
Here, the score shows that the tonic D major indeed dominates this passage, but the leading
tone c] appears again together with the suspended fourth g.

2 Note, that bar numbering in printed sheet music usually does not take into account repetitions.



V. Konz and M. Müller 69

5 Conclusions

In this chapter, we presented a cross-version approach for chord labeling. In particular, we
showed that consistently labeled passages across several versions often correspond to correctly
labeled passages. Presenting the cross-version analysis results on a musically meaningful
time axis in bars also helps to make the analysis results better accessible to music experts.
Firstly, the presented approach allows for involving musicologists in the evaluation process of
automated chord labeling procedures. For example, the cross-version visualization opens the
way for an interdisciplinary collaboration, where musicologists may greatly support computer
scientists in performing an in-depth error analysis of the employed chord labeling procedure
based on the score. Secondly, the cross-version visualization may serve musicologists as
a helpful tool for exploring harmonic structures of a musical work. Because of their high
reliability, cross-version chord labels may be an alternative to manually generated ground
truth labels. This may particularly hold for large-scale harmonic analyses on the basis of
huge corpora of recorded music.

As for future work, we need to perform more detailed quantitative evaluations to verify
our hypothesis that our cross-version approach indeed leads to a stabilization of the chord
labeling results. Furthermore, we plan to apply our cross-version framework on the entire
corpus of Beethoven’s piano sonatas. In collaboration with musicologists, we are currently
investigating harmonic structures across different movements for some of the sonatas. Here,
our automated methods may help to investigate which tonal centers occur in a specific sonata
and how they are functionally related to each other. In this context, a structure-oriented
analysis, which analyzes tonal centers according to the different form parts of the classical
sonata form, is of great musicological meaning as each such part is characterized by a specific
occurrence of certain harmonies. Performing this analysis across the complete corpus of
Beethoven’s piano sonatas, we aim to quantify and better understand from a music-historical
perspective how Beethoven has applied tonal centers in his work. Finally, we plan to use
our automated framework for exploring harmonic structures across even larger and more
complex corpora of musical works, such as the corpus of Wagner’s operas. Here, due to
the vast amount of data, a purely manual harmonic analysis is hardly possible. Also, being
characterized by complex harmonies and rich orchestrations, the detection of large-scale
harmonic relations within and across the operas becomes a challenging task.
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Abstract
In recent years, the processing of audio recordings by exploiting additional musical knowledge
has turned out to be a promising research direction. In particular, additional note information
as specified by a musical score or a MIDI file has been employed to support various audio
processing tasks such as source separation, audio parameterization, performance analysis, or
instrument equalization. In this contribution, we provide an overview of approaches for score-
informed source separation and illustrate their potential by discussing innovative applications
and interfaces. Additionally, to illustrate some basic principles behind these approaches, we
demonstrate how score information can be integrated into the well-known non-negative matrix
factorization (NMF) framework. Finally, we compare this approach to advanced methods based
on parametric models.
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1 Introduction

The decomposition of a mixture of superimposed acoustic sound sources into its constituent
components, a task also known as source separation, is one of the central research topics
in digital audio signal processing. For example, in speech signal processing, an important
task is to separate the voice of a specific speaker from a mixture of conversations of multiple
speakers and background noises ("Cocktail party scenario"), see for example [29]. Also in the
field of musical signal processing, there are many related issues that are commonly subsumed
under the notion of source separation. In the musical context, a source might correspond
to a melody, a bassline, a drum track, or an instrument track. To extract such sources,
various elaborate processing and analysis methods have been developed, which have led to
significant improvements for tasks such as instrument recognition [22], harmonic analysis
[47], or melody estimation [12]. Most of these methods exploit certain spectral and temporal
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Figure 1 Score-informed source separation: (a) Instrument tracks as specified by a given score
are employed for the separation of instrument sounds from a polyphonic audio recording (figure
inspired by [24]). (b) Separated signals corresponding to instrument tracks can be remixed by the
user in real-time (figure inspired by [27]).

properties of the sound sources to be extracted. For example, the melody is often the leading
voice characterized by its dominance in dynamics and by its temporal continuity [3, 9]. The
track of a bass guitar may be identified by specifically looking at the lower part of the
frequency spectrum [19]. Furthermore, when extracting the drum track, one often relies on
the assumption that the other sources are of harmonic nature. Then one can exploit that
percussive elements (vertical spectral structures) are fundamentally different from harmonic
elements (horizontal spectral structures) [36]. Last but not least, a human singing voice can
often be distinguished from other musical sources because of the presence of vibrato and
portamento (sliding voice) effects [40].

In the last years, also multimodal, score-informed source separation strategies have been
employed where one assumes the availability of a score representation along with the music
recording. The score provides valuable information in two respects. On the one hand, pitch
and timing of note events provide a rough guidance within the separation process. On the
other hand, the score provides a natural way of specifying what and how sound sources are
to be separated. For example, in [24] the score’s natural partition into instrument tracks is
exploited to extract each individual instrument from a given audio recording, see Figure 1a
for an illustration. Here, the score provides additional cues on the sources’ spectral and
temporal properties. In [27], it was demonstrated that this concept can be incorporated
into an intuitive and easy-to-use interface. Here, the user can adjust the volume of each
instrument in real-time using an interactive instrument equalizer, see Figure 1b. Developing
this idea further, one can extend the instrument equalizer to a more general voice or note
equalizer [14], where the user can not only emphasize or attenuate whole instrument tracks
but also specific note groups played by different or the same instrument. Here, a group of
notes might correspond to a motif, a voice, the left or the right hand of a piano score, or a
staff as illustrated in Figure 2a. Incorporating these concepts into multimodal music players
[5, 6], one can intuitively select note groups in the score and separate or enhance them in
the audio recording in real-time, see Figure 2b.

In this contribution, we give an overview of strategies that employ score information
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Figure 1. Decomposition of a piano recording into two sound
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Figure 2 Score-informed voice separation: (a) Decomposition of a piano recording into two sound
sources corresponding to the left and right hand as specified by a musical score. Shown are the first
four measures of Chopin’s Prélude “Raindrop” (Op. 28 No. 15). (b) Prototypical implementation of
a voice equalizer based on the multimodal music player proposed in [5]. By selecting a staff/hand in
the scanned score image the corresponding group of notes is separated/enhanced in real-time.

for separating musically meaningful sound sources from polyphonic music recordings. In
Section 2, we summarize available score-informed source separation methods. Here, we focus
on conceptual differences between the individual approaches rather than giving technical
details. Then, using the well-known non-negative matrix factorization (NMF) framework as
an example, we demonstrate in Section 3 how score information can be employed to guide
the separation process. Finally, as an alternative to NMF-based approaches, we discuss in
Section 4 advanced source separation methods based on parametric models. Conclusions and
prospects on future work are given in Section 5.

2 Methods for Score-Informed Source Separation

In general, separating sound sources from polyphonic music recordings requires an under-
standing of many musical and technical aspects. For example, one has to account for the
complexity of musical sound sources, the interaction and superposition of such sources in
polyphonic mixtures, room acoustics, and recording conditions. Additionally, in many studio
productions, numerous digital effect filters are applied to the recording thus making the task
even more complex. However, although being extremely difficult, source separation is mostly
pursued in a blind fashion, where as little prior knowledge as possible is used.

A natural idea to facilitate the separation process is to incorporate additional musical cues,
for example, employing available musical score data. In this context, music synchronization
methods are of particular importance [7, 8, 16, 28, 33]. Given a MIDI file representing
the score and an audio recording representing an interpretation of a piece of music, the
goal is to determine for each MIDI note event its corresponding time position in the audio
recording. By adjusting the onset position and duration of each MIDI event, one can use the
computed alignment to transform the original score-like MIDI file to a synchronized MIDI file,
which runs synchronously to the audio, see Figure 3. Each score-informed source separation
approach treats this problem differently. Some approaches consider or even account for
typical differences between the score and a given interpretation, for example, in terms of
structure, ornamentation, the interpretation of trills and arpeggios as well as additional
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Figure 3 Music synchronization for a score and an audio recording of Chopin’s Op. 28 No. 15:
(a) Musical score. (b) Audio recording of an interpretation taken from the SMD database [34].
(c) Score-like MIDI file generated from the score shown in (a). (d) Synchronized MIDI file.

and missed notes. Other approaches simply assume that perfectly synchronized MIDI files
are available. This assumption, however, is often not realistic. In real-world scenarios, one
typically has to adjust a MIDI file to a given audio recording so that perfect synchronicity
can not be guaranteed.

Early approaches adopt score and MIDI information only for evaluation purposes, for
example, to investigate the influence of a pitch estimation step in a complex separation system
[37]. One of the first approaches focusing on the conceptual benefits of incorporating score
information was proposed in [42]. Here, the task consists in separating a single instrument
specified by a given score-like MIDI file from a polyphonic music recording. The main idea is
based on designing a filter, which in some sense optimally extracts the instrument from the
recording. To compute the MIDI-audio synchronization, the authors refer to a procedure
previously proposed in [41]. While presenting a novel application idea, this early work has
several conceptual limitations. First of all, the proposed filter design procedure models all
non-target sound sources as Gaussian noise. Therefore, in cases where the target instrument
is accompanied by other instruments, this assumption is obviously violated. Furthermore, the
proposed method assumes that the score provides an exact specification of the fundamental
frequency for the target instrument for each analysis frame. This assumption is not realistic,
since the score usually provides only high-level note information of the piece of music without
specifying tuning or small pitch deviations of the respective music recording.

Subsequently proposed systems were not subject to such strict limitations. In [54], the
authors integrate score information into a system for blind source separation previously
described in [53] (an extended version was presented in [52]). Here, the goal is to extract
individual instruments from a music recording, which then enables a user to create new
music by remixing the extracted sound sources. In this approach, stereo information is
employed in a first step to determine for each analysis frame the number of concurrent
sources. Frames identified to contain only a single source are used as cues in the consecutive
pitch-tracking step to support the separation in frames with multiple sources. The authors
incorporate score information into this process as a rough guidance for the pitch-tracking.
The underlying MIDI-audio alignment is based on a procedure proposed by Hu et al. [25].
A technical limitation of the approach is its dependency on reliable stereo information to
identify the sources. This is problematic for many commercial studio productions, where
spatial information contained in the stereo recordings is often corrupted by digital effect
filters and virtual room acoustics. Furthermore, the influence of the alignment step is hard to
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assess from the experimental results, as the method is only evaluated on a dataset consisting
of four-second snippets of synthetically created MIDI sonifications.

While score information is used in [54] mostly as an add-on to an existing source separation
system, Han and Raphael presented in [20, 21] a model that completely relies on available score
data. In their contribution, the authors aim at removing the soloist from orchestral music
recordings to generate recordings that can be used as a basis for automated accompaniment
systems [7]. Relying on score information at an early stage of their algorithmic pipeline
allowed for innovative computational concepts. On the one hand, the method represents
a given input spectrogram as a compound of note-event based models. This allows for
effectively using the score information to specify the temporal and spectral extent in which a
note-event is permitted to be active. On the other hand, the score is used to identify the
instruments occurring in a given music recording. This way, some instrument-dependent
model parameters such as overtone energy distributions can simply be learnt from monophonic
training material in advance and fixed afterwards. A benefit of this approach is that the
parameter estimation process becomes efficient (as only a small set of parameters needs to
be adjusted) and robust (as unreasonable parameter values are prevented by the model).
However, a drawback is that the model can be imprecise, in particular when the training
instruments differ strongly from the ones used in the given recording.

Roughly at the same time, Itoyama et al. presented a system, which explored novel
application scenarios based on score-informed source separation [27]. This system allows a
user to adjust the volume of each instrument in a polyphonic music recording in real-time.
To this end, the system separates the individual instrument tracks in a preprocessing step as
follows. In a first step, a MIDI synthesizer is employed to create one audio representation for
each of the instrument tracks contained in a given MIDI file. This audio data is used as prior
knowledge to initialize a note-based spectrogram model. Next, the model parameters are
adapted to a given audio recording by minimizing a Kullback-Leibler distance between the
given and the model spectrogram. Here, to allow only musically meaningful values for the
model parameters, strong deviations form the initial values set in the first step are penalized.
In a final step, the spectrogram model is employed to isolate the individual instrument tracks
as specified by the MIDI file. Technically, the model is based on the harmonic-temporal-
structured clustering (HTC) model proposed in [30], which will be discussed in more detail
in Section 4. To control the influence of their percussion related submodel on the remaining
system, the authors have to resort to smoothing and regulation techniques [26], which further
increase the complexity of the system. Furthermore, alignment issues are not considered in
this approach, hence it is not clear how the system behaves in real-world scenarios starting
with score-like MIDI files.

Using MIDI-synthesized audio material for initialization purposes was also proposed by
Gansemann et al. in [17, 18]. Given a MIDI file and an audio recording for a piece of music, the
approach starts by sonifying the MIDI instrument tracks using a wavetable synthesizer similar
to [27]. In a next step, probabilistic latent component analysis (PLCA) [43] is employed
to identify the most important spectral components for each sonification. Here, PLCA is a
probabilistic formulation of the well-known non-negative matrix factorization (NMF) method,
which will be discussed in more detail in Section 3. In a last step, the instrument-wise
spectral components are used as initialization and additional knowledge for a prior-based
PLCA analysis of the original audio recording [45]. The results of this final analysis are
subsequently used to extract each instrument from the original recording. Incorporating an
alignment procedure by Turetsky and Ellis [46], the authors aim at using full-length score-like
MIDI files as they can be found in real-world scenarios. While this approach presents a
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Figure 4 Score-informed parametric spectrogram model as employed in [13]. (a) Original
magnitude spectrogram for a recording of Chopin’s Op. 28 No. 15. (b) Model spectrogram after
initialization with note events from a score-like MIDI file. (c) Model spectrogram after the
synchronization step. (d) Model spectrogram after the estimation of remaining model parameters.

novel computational concept, the approach suffers from several weaknesses. Similar to all
approaches relying on synthetic audio material as prior knowledge, this method’s separation
quality depends on the spectral similarity between the MIDI instruments and the actual
target instruments. Moreover, this method also requires that the MIDI instruments have a
similar tuning as the instruments in the given audio recording. For large tuning deviations,
the separation quality might be significantly reduced.

An alternative way of using MIDI information for initialization purposes was presented
in [24]. Here, instead of generating synthetic audio, the MIDI file is used to directly instruct
the underlying spectrogram model when a given instrument is active with a certain pitch.
This way, the separation performance does not depend on the quality of an underlying
MIDI synthesizer. However, as a drawback, no expectations about the spectral shape of
an instrument are incorporated, which may lead to a less robust separation process. As a
novel contribution, the method employs a parametric NMF variant [23], which significantly
enhances the modeling accuracy for instruments with vibrato and glissando. A technical
limitation of this model is that all harmonic sounds in an analysis frame are assumed to be a
compound of stationary sinusoidals. To evaluate the instrument separation quality of this
approach, the authors neglect the alignment step and employ synthetic MIDI sonifications of
Bach, Beethoven and Boccherini pieces.

While most score-informed source separation techniques aim at re-synthesizing the
separation results with the goal to produce acoustically appealing sound sources, the method
proposed in [13] employs these techniques for analysis purposes. Given a MIDI file and an
audio recording for a piece of music, the task consists of estimating an intensity for each
MIDI note event as occurring in the recording. On the one hand, this enables a user to
analyze and compare different interpretations of a piece in terms of dynamics on a note-level.
On the other hand, it allows for enriching a given score-like MIDI representation with
performance-specific subtleties. The approach employs a parametric model that describes
the spectrogram of a given recorded performance as a sum of note-event spectrograms, see
Fig. 4. In a first step, the model is initialized with pitch, onset and duration information
obtained from a given score-like MIDI file, see Fig. 4b. After that, music synchronization
techniques are employed to determine for each note event the corresponding position in the
audio recording, see Fig. 4c. In a next step, additional model parameters are iteratively
refined such that the model spectrogram approximates the original spectrogram as accurately
as possible, see Fig. 4d. In a final step, the individual note intensities are estimated using
the adapted note-event spectrograms described by the model. The approach is evaluated
based on audio and MIDI velocity values recorded via a Yamaha Disklavier. The influence of
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the synchronization step is evaluated by artificially distorting the MIDI time information,
which only roughly indicates the methods’ performance for real-world score-like MIDI files.

As demonstrated in [14], a similar model can also be used to create acoustically appealing
separation results. Here, the separation system is embedded into a multimodal music
interface [6] to create a voice equalizer, see Figure 2b, which allows the user to intuitively
select arbitrary note groups and attenuate or emphasize them in real-time. To demonstrate
the applicability of this approach in real-world scenarios, the authors employ score-like MIDI
files from the Mutopia Project1 in combination with real audio recordings taken from the
SMD [34] and European archive2 databases and make their separation results available on
a website3. One of the drawbacks of this system and the one proposed in [27] is that the
separation has to be performed in advance, while the remixing step can be performed in
real-time.

As demonstrated by Duan and Pardo in [10], the separation step can be performed
in a low-delay real-time fashion. To this end, the authors replace the usually employed
offline synchronization step by an online approach [11], which aligns a given MIDI file and
a corresponding audio recording in real-time, a task often referred to as score-following
[4, 7]. For each analysis frame, their separation system first estimates the exact fundamental
frequency of each pitch using the aligned MIDI file as a guidance. In a next step, each pitch
is extracted using a harmonic mask and assigned to one of the instruments as specified by
the MIDI file. To make this process feasible in real-time, the mask is computed using a fixed
overtone model, which is not adapted to a given recording.

Overall, while source separation has been a field of research for decades, using score
information to guide the separation process is a relatively recent approach. As demonstrated
by the contributions discussed in this section, score guidance allows for novel and innovative
applications of source separation techniques. Furthermore, the additional musical cues
provided by the score often allow for a gain in separation quality, which is difficult to achieve
otherwise. Here, robust music synchronization techniques allow for using score-informed
source separation methods in real-world scenarios, where usually no perfectly aligned MIDI
file is available. In the next section, we give an impression of how score-informed source
separation can be performed in practice.

3 Score-Informed Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) has turned out to be a powerful tool for modeling,
analyzing and separating the constituent parts of polyphonic music recordings. For example,
NMF variants form the basis of methods for pitch estimation [2, 44], source separation [50],
and pattern and motive identification [51]. However, using classic NMF it is often hard
to predict which properties of the input are captured after the learning process. In this
section, we show how the classical NMF framework can be extended in a straightforward
way using available score data. As we will see, the basic idea is to replace the standard NMF
initialization without changing the established and computationally efficient NMF learning
process. This way, a musically meaningful factorization structure can be enforced, which
stabilizes NMF-based source separation.

1 http://www.mutopiaproject.org
2 http://www.europarchive.org
3 http://www.mpi-inf.mpg.de/resources/MIR/2011-ISMIR-VoiceSeparation/
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Figure 5 Non-negative matrix factorization (NMF). (a) A given non-negative matrix V is
approximated as a product of two non-negative matrices W and H typically having a much smaller
rank. (b) Example factorization of a magnitude spectrogram for an audio recording of Chopin’s
Op. 28 No. 15 taken from the SMD database [34].

3.1 Non-Negative Matrix Factorization
In classic non-negative matrix factorization, one approximates a spectral representation of a
given recording by a product of two non-negative matrices. More exactly, given a magnitude
spectrogram V ∈ RM×N

≥0 of a music recording, NMF seeks to find non-negative matrices
W ∈ RM×K

≥0 and H ∈ RK×N
≥0 such that V ≈ W · H, see Figure 5a. In this context, the

columns ofW are often referred to as template vectors and the rows of H as the corresponding
activations. As an example, Figure 5b shows a factorization for a recording of Chopin’s
Op. 28 No. 15. Here, the free parameter K is set to the number of pitches that occur in
the corresponding part of the piece. In this case, the activation matrix H is similar to a
pianoroll representation and shows when these pitches become active.

In the classical approach for computing such a factorization, one employs some form
of gradient descent to minimize a distance measure D(V,W · H) with respect to W and
H, where D is typically based on the Euclidean norm or a variant of the Kullback-Leibler
divergence, see [31]. However, to account for the non-negativity constraints forW and H, one
usually has to resort to rather complex optimization algorithms [35]. As an easy-to-implement
alternative, Lee and Seung proposed multiplicative update rules, which are derived from
gradient descent by choosing a specific step size [31]. Using the popular Kullback-Leibler
variant as a distance measure, these rules can be written as

Hkn ← Hkn

∑
i WikVin/(WH)in∑

j Wjk
and Wmk ←Wmk

∑
i HkiVmi/(WH)mi∑

j Hkj
,

wherem ∈ [1 : M ] := {1, 2, . . . ,M}, n ∈ [1 : N ], and k ∈ [1 : K]. For vectorized programming
languages such as Matlab it is useful to express these rules in matrix notation:

H ← H � W> · ( V
W ·H )

W> · J and W ←W � ( V
W ·H ) ·H>
J ·H> ,

where the · operator denotes the usual matrix product, the � operator denotes the Hadam-
ard product (point-wise multiplication), J ∈ RM×N denotes the matrix of ones, and the
division is understood pointwise. These multiplicative update rules have several interesting
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Figure 6 Classical NMF factorization for the magnitude spectrogram shown in Figure 5. (a)
Random initialization of W . (b) Random initialization of H. (c) Learnt W . (d) Learnt H.

properties. First, the Kullback-Leibler distance measure is non-increasing under these rules4.
Furthermore, initializing W and H with non-negative random values, these rules guarantee
that W and H remain non-negative during the entire learning process.

In general, however, NMF factorizations computed in this classical way can not be as easily
interpreted as the example shown in Figure 5b. For example, Figure 6 shows a factorization
based on the classical NMF algorithm for the magnitude spectrogram shown in Figure 5b
(again using K = 12). Here, the initialization of W and H with random values does not lead
to a musically meaningful structure in the computed factorization. Furthermore, the free
parameter K is usually set according to simple rules of thumb that usually do not account
for any musical prior knowledge. As a result, the factorization often becomes completely
unpredictable and lacks clear musical semantics.

Another important property of multiplicative update rules is that zero-valued entries re-
main zero during the entire learning process. Combined with musically informed initialization

4 As pointed out by several authors [1, 32, 56], however, multiplicative rules do not guarantee in general
convergence to a local minimum of the employed distance measure.
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Figure 7 NMF factorization resulting from harmonic initialization of the template vectors for
the magnitude spectrogram shown in Figure 5. (a) Harmonic initialization of W . (b) Random
initialization of H. (c) Learnt W . (d) Learnt H.

schemes, this yields a straightforward way to enforce a specific structure of a factorization as
proposed in [39, 49]. Here, one first creates one template vector for each possible MIDI pitch.
Then, a harmonic structure is imposed by inserting zero-valued entries into the template
initialization at positions where no partial is expected for a given pitch, see Figure 7a. The
remaining entries are initialized according to a simplified overtone model. As we see in
Figure 7c, the learning process based on multiplicative rules not only retains this harmonic
structure but further refines it such that each template vector has a clear pitch association.
This is a significant gain in structure compared to the unpredictable results computed via
standard NMF as shown in Figure 6. However, looking at the resulting factorization in
Figure 7c/d reveals that template vectors are still often ‘misused’, for example to represent
onsets. This becomes particularly apparent in the template for MIDI pitch 58, where energy
is distributed over a larger number of frequency bands compared to the other templates
(Figure 7c). Here, instead of representing harmonic components of the spectrum, the template
is misused to explain parts of the broadband energy distribution related to onsets. This is also
reflected by the short-term intensity bursts in the corresponding activation row (Figure 7d).



S. Ewert and M. Müller 83

49 56 58 61 63 65 66 68 70 72 73 77
0

500

1000

1500

F
re

q
u

en
cy

[H
z]

MIDI pitch

(a)

0 1 2 3 4 5 6 7 8

49

56

58

61

63

65

66

68

70

72

73

77

M
ID

I
p

it
ch

Time [sec]

(b)

49 56 58 61 63 65 66 68 70 72 73 77
0

500

1000

1500

F
re

q
u

en
cy

[H
z]

MIDI pitch

(c)

0 1 2 3 4 5 6 7 8

49

56

58

61

63

65

66

68

70

72

73

77
M

ID
I

p
it

ch

Time [sec]

(d)

Figure 8 NMF factorization resulting from harmonic initialization of the template vectors
and score-informed activation constraints for the magnitude spectrogram shown in Figure 5. (a)
Harmonic initialization of W . (b) Score-informed initialization of H. (c) Learnt W . (d) Learnt H.

3.2 Integrating Score Information

Possible ways to further stabilize the factorization by incorporating additional score informa-
tion were investigated in [15]. For example, in addition to the constraints on the template
vectors, one can also impose constraints on the activations by incorporating note timing
information. To generate such information, one employs music synchronization techniques in
a first step to determine for each MIDI note event its corresponding position in the audio
recording [16]. Next, based on the synchronized MIDI information, one marks suitable regions
in H to determine where a given pitch can be active, see Figure 8b. The remaining entries
are set to zero. To account for possible alignment inaccuracies, the temporal boundaries for
these regions can be chosen relatively generous. As a result, the activation matrix H can
be interpreted as a coarse piano roll representation of the synchronized MIDI file. As to be
expected, combining these activation constraints with those for the template vectors further
stabilizes the factorization. For example, most of the activation onset noise, which was
present in Figure 7d, is suppressed in Figure 8d. Furthermore, almost all template vectors
now have a well-defined harmonic structure. In some sense, the synchronization step can be
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Figure 9 Extended NMF model with additional onset templates for the magnitude spectrogram
shown in Figure 5. (a) Initialization of harmonic and onset template vectors in W . (b) Score-
informed initialization of the corresponding activations in H. (c) Learnt W . (d) Learnt H.

seen to yield a first rough factorization, which is then refined by the NMF-based learning
procedure.

So far, the model only represents harmonic parts of the signal and does not account for
percussive elements such as onsets. Making again use of the score information, we extend
the model by incorporating dedicated onset template vectors, see Figure 9a. Here, opposed
to many other approaches, we take into account that the spectral shape for onsets is for
many instruments (including the piano) not the same as for white noise but depends on the
respective pitch. Therefore, instead of using one onset template jointly for all pitches as for
example in [55], we use one onset vector for each pitch as suggested in [15]. Contrary to the
harmonic templates, we do not enforce here any spectral constraints but initialize the onset
templates uniformly and let the learning process derive their shape.

While the onset templates are hard to constrain in a meaningful way, the ephemeral
nature of percussive sounds allows for imposing strict constraints on their activations. Using
the synchronized MIDI, one has a rough estimate of the position of each onset. Initializing a
small neighborhood around these positions to the value one in the corresponding activation
while leaving all remaining entries at zero strongly restrains the time points where onset
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templates are allowed to be active, see Figure 9b. Again, a tolerance should be used to
compensate for possible synchronization inaccuracies. Looking at the resulting factorization
shown in Figure 9c and 9d, we see that the learnt harmonic vectors have the clearest
harmonic structure compared to all previous factorizations. Here, a reason is that percussive
broadband energy is now captured by the onset templates, with the result that onsets now
have a significantly less disturbing influence on the harmonic templates. Furthermore, the
impulse-like activations of most onset templates at the start of note events indicate that
these templates indeed represent onsets.

In summary, one can say that a combination of template and activation constraints
leads to meaningful and robust matrix factorizations. Here, as for the case of the onset
templates, constraints on the activation side can compensate for using relatively loose or even
no constraints on the template side and vice versa. Furthermore, even though all constraints
are hard in the sense that zero-entries in W and H remain zero throughout the learning
process, one can use rather generous constraint regions to account for synchronization errors
and retain some degree of flexibility. As one major advantage, the extended NMF model
using hard constraints allows for using exactly the same multiplicative update rules as in
classical NMF, thus it inherits the ease of implementability and computational efficiency.

3.3 Separation Process
By means of the initial constraint regions, a factorization as shown in Figure 9 describes
how each note event of a given MIDI file manifests in the spectrogram of a corresponding
audio recording. We now describe how this spectrogram model can be employed to separate
note groups such as a melody line, the staff of the right hand, a specific motive, or the
accompaniment from the recording. The only requirement is that the notes to be considered
are somehow specified by the user or by some labeling of the score. As an illustrating example,
we consider here the task of separating the left from the right hand staff as specified by a
given score, see Figure 10a. While staffs do not always correspond to musically meaningful
note groups, it demonstrates how note groups could be easily specified in a natural way.

For the separation, we exploit that every non-zero entry in H is associated with a specific
note event, see Figure 9d. Therefore, we can partition H into two new matrices HL and
HR, which contain either the activations for the left or the right hand, see Figure 10a/b.
A straightforward way to create an audible separation result could be to multiply these
two matrices with the template matrix W , shown in Figure 9c, and to invert the resulting
spectrogram. However, as NMF-based models are typically used to compute a rough
approximation of the original magnitude spectrogram spectral nuances in a given recording
are usually not captured. Therefore, the resulting audio recording would sound rather
unnatural.

An alternative to this direct sonification is commonly referred to as masking. Here, one
first derives masking matrices via

ML := WHL

WH + ε
and MR := WHR

WH + ε
,

where the division is understood pointwise and ε is a small positive constant to avoid
a potential division by zero, see Figure 10c/d. ML and MR have the same size as the
original spectrogram V and, having values between 0 and 1, indicate how strongly each
entry in V belongs to either the left or the right hand. Multiplying these masking matrices
point-wisely with V , one obtains a separated spectrogram for the left and the right hand,
see Figure 10e/f. Finally, to obtain the separated audio signals, one applies an inverse
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Figure 10 Illustration of the separation process for the left and the right hand. (a)/(b): Partition
of the activation matrix H (Figure 9d) into HL and HR. (c)/(d): Masking matrices ML and MR.
(e)/(f): Separated spectrograms.

discrete Fourier transform in combination with an overlapp-add technique to the separated
spectrograms. The necessary phase information is provided by the original spectrogram.
This way, masking-based separation allows for preserving most spectral details of the original
recording, which is important to create acoustically appealing results. However, by filtering
the original audio data, masking may also retain more non-target spectrogram components
compared to a direct sonification.

The quality of a separation result is often measured in terms of signal-to-distortion ratios
(SDR) as proposed in [48]. While illustrating some general tendencies, these measures often
do not capture the overall perceptual separation quality. In particular, in combination
with synthetic audio material, one does not get an impression of the separation quality in
real-world scenarios. To allow for a subjective, perceptual evaluation of their score-informed
NMF variant, the authors in [15] provide a website5 with separation results using real audio
recordings and score-like MIDI files. Here, using full-length pieces by Bach, Beethoven and
Chopin, most the audio material was taken from the SMD [34] dataset, while the MIDI
files were provided by the Mutopia Project6. Some additional historical recordings were
also taken from the European Archive7. To roughly indicate general quality differences
between the NMF variants in a quantitative fashion, the authors also conducted experiments

5 http://www.mpi-inf.mpg.de/resources/MIR/ICASSP2012-ScoreInformedNMF/
6 http://www.mutopiaproject.org
7 http://www.europarchive.org
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Figure 11 Harmonic-Temporal-Structured Clustering (HTC): (a) Template vector composed of
several Gaussians. (b) Activation described by smooth, overlapping Gaussians. (c) Spectrogram
model resulting from a combination of template vectors and activations similar to NMF. (d)
Advanced HTC variant with an additional transient submodel. Figures are inspired by [55].

based on synthetic audio and the SDR measure. Here, on average, the strategy based on
the harmonic initialization of W yielded the lowest SDR value. Combining this strategy
with the score-informed initialization of H as in Figure 8 leads to a significant SDR-gain
of roughly 1.5 dB. Finally, additionally integrating onset templates leads to another gain of
roughly 1.2 dB.

4 Parametric Models

In addition to NMF, there are numerous other classical source separation methods which
allow for the integration of score information. Many of the approaches discussed in Section 2
are based on so called parametric models [13, 14, 20, 24, 27], which have been widely used
for blind source separation and music transcription. While these approaches differ strongly
in their details, the common idea is to adapt a set of parameters such that the underlying
model explains the spectrogram of a given recording as accurately as possible. Here, typical
parameters are related to acoustical and musical properties such as pitch, amplitude and
timbre. In this section, we exemplarily discuss some aspects of the harmonic-temporal-
structured clustering model (HTC) [55], which was employed in [26, 27] for score-informed
source separation. After a brief description of the main ideas underlying the HTC approach,
we summarize some conceptual differences to the NMF model.

4.1 Harmonic-Temporal-Structured Clustering (HTC)
Harmonic-Temporal-Structured Clustering (HTC) employs a parametric model to approxim-
ate the magnitude spectrogram of a given audio recording. Compared to NMF, specialized
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Figure 12 Score-informed NMF factorization for a recording of Chopin’s Op. 28 No. 4 taken
from the SMD database [34]. (a) Score and MIDI representation. (b) NMF factorization computed
using the method presented in Section 3. (c) Zoomed template vector for pitch 57. (d) Zoomed
activation for pitch 71. The red markers indicate positions discussed in the text.

model components take over the role of template vectors and activations. For example, each
HTC template consists of several Gaussians, which represent the partials of a harmonic sound,
see Figure 11a. To adapt the model to different instruments and their specific overtone energy
distribution, the HTC model allows for scaling the height of each Gaussian individually
using a set of parameters (γ1, . . . , γ7 in Figure 11a). An additional parameter f0 specifies
the fundamental frequency for the template. Assuming a harmonic relationship between the
overtones, this parameter controls the exact location of each partial.

Gaussians are also used in HTC to represent the activations, see Figure 11b. The position
of these Gaussians is typically fixed such that only suitable height parameters can be adapted
(parameters α1, . . . , α7 in Figure 11b). By choosing suitable values for the variances and
positions of the Gaussians, one obtains an overall smooth activation progression. Combining
the HTC templates and activations similar to NMF, one obtains a spectrogram model as
shown in Figure 11c. Recently proposed extensions of this model even allow for an integration
of transient and onset models [27, 55], see Figure 11d. Again using a smoothed representation
based on Gaussians, these additional models represent the broadband energy distribution
usually found at onset positions.

Since the HTC model follows similar ideas as NMF, one can also employ similar strategies
to incorporate score information. For example, note timing information can be used to
restrict the use of the activation parameters. Furthermore, MIDI pitch information can be
used to set the number of templates in the HTC model to the actual number of pitches in
the piece. This is similar to setting the value of the free parameter K in NMF.
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4.2 Comparison between HTC and NMF
To compare the HTC model with NMF, we consider an NMF factorization for an audio
recording of Chopin’s Prélude No. 4. Using the method presented in Section 3, one obtains a
factorization as shown in Figure 12b. Here, similar to Figure 9, we see that almost all learnt
harmonic template vectors have a well-defined harmonic structure. For a closer inspection of
an exception, we plot the template for pitch 57 as a function over frequency in Figure 12c.
We see a small peak at 930 Hz (see red marking), which does not fit into the harmonic
pattern. Enforcing a meaningful distance between partials, the Gaussian-based HTC model
offers here a straightforward way to enforce a clear harmonic relationship. However, this
additional robustness against spurious peaks comes at the cost of model inaccuracies. One
reason is that partials almost never perfectly take the form of a Gaussian, see [38], such that
the HTC model leads to an additional inevitable approximation error.

Furthermore, the approximation accuracy does not only depend on the templates but also
on the activations. To give an example, we plot the activation for pitch 71 as a function over
time in Figure 12d. Here, we see three distinct peaks at 1.8, 2.3 and 6.6 seconds, respectively,
which correspond to the three middle B notes, see Figure 12a. However, there are additional,
smaller peaks at 5.4 and 9.6 seconds (marked in red), which do not seem to make any musical
sense. Using Gaussians spanning several frames to model the activation, such short-time
irregular peaks are smoothed out. However, whether this is meaningful depends on the
application. In Figure 12a, we see that a note event with pitch 71 (middle B) is played after
2.3 seconds and is held afterwards. Then, after 5.4 seconds, a note event with pitch 72 is
played. Since in this recording all piano dampers are up, the consequence is that the onset of
pitch 72 also results in excitations of the neighboring pitches, in particular of the strings of
pitch 71. Therefore, the small peak at 5.4 seconds in the NMF activation is indeed a physical
fact rather than an extraction error.

5 Conclusion

Music signals possess specific characteristics that are not shared by spoken speech or audio
signals from other domains. For example, for sound mixtures of polyphonic music, the
general assumption that sources are somehow orthogonal in the spectral domain is often
violated. This makes the separation of musical sources or voices very difficult. To remedy
this problem, various approaches have been suggested that use additional cues as specified
by a musical score.

In this paper, we have given a comprehensive overview of state-of-the-art source separation
techniques that exploit additional score information in various ways. In particular, we
discussed in detail a score-informed variant of NMF, where the integration of constraints
can be done in a straightforward manner already at the initialization stage. We showed
that by constraining both the template vectors and the activations, one obtains robust
and musically meaningful separation results. Opposed to parametric models, where the
integration of additional priors often leads to an increase in the computational complexity,
score-informed NMF variants employ the same update rules as the original NMF and inherit
its computational efficiency.

Besides stabilizing the separation process, the availability of score information also
facilitates a natural and user-friendly way of specifying the voices or note groups to be
separated. This opens up new ways for audio editing applications, where a user can simply
mark certain note groups within a visual representation of the score, which are then separated,
removed, amplified, or attenuated in a corresponding music recording. For the future, we
plan to develop multimodal interfaces that realize such functionalities.
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So far, we have conducted experiments mainly on piano music. In this context, we showed
how the score-informed NMF framework can be extended by integrating additional onset
templates without sacrificing robustness. A promising research direction is to further expand
the NMF model to account for other musical aspects such as timbre or instrumentation and
then to apply the NMF framework to other types of music.
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Abstract
This paper addresses the use of Music Information Retrieval (MIR) techniques in music education
and their integration in learning software. A general overview of systems that are either commer-
cially available or in research stage is presented. Furthermore, three well-known MIR methods
used in music learning systems and their state-of-the-art are described: music transcription, solo
and accompaniment track creation, and generation of performance instructions. As a represent-
ative example of a music learning system developed within the MIR community, the Songs SSee
software is outlined. Finally, challenges and directions for future research are described.
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1 Introduction

The rapid development of music technology in the past decades has dramatically changed
the way people interact with music today. The way people enjoy and relate to music has
changed due to the enormous flexibility given by digital music formats, the huge amount
of available information, the numerous platforms for searching, sharing, and recommending
music, and the powerful tools for mixing and editing audio.

Consequently, the potential of applying such technologies to music education was re-
cognized. An automatic system that could potentially give instructions and feedback in
terms of rhythm, pitch, intonation, expression, and other musical aspects could become a
very powerful teaching and learning tool. However, in the early years between the 1980s
and the early 2000s, automatic methods for pitch detection, music transcription, and sound
separation among other methods, were still in very preliminary stages. Consequently, initial
systems for music education, even though innovative and creative, had many restrictions and
mainly relied on the possibilities offered by recording studios. In the late 1980s, play-along
CDs became popular and offered a number of specially recorded tracks where the user could
play with the provided accompaniment. Furthermore, instructional videos were recorded,
which mainly featured famous musicians that offered some guidelines in terms of performance
and practice. Later on, and mainly aiming for entertainment and not explicitly for music
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education, the video game community approached music with rhythm games that required the
user to follow and repeat patterns of fingering gestures on special hardware controllers. The
first commercial music rhythm game dates back to 1996 [35]. Even though these systems were
not specifically created as educational tools, they were and still are particularly successful in
creating interest in music performance and thus play an educational role.

Interactive applications with a more formal approach to music education have been
created such as web services and software tools that guide students through different musical
topics like music history or musical instruments. These systems mainly find use in music
schools and universities as part of their class work and usually present a set of predefined
lectures or practices that the students need to complete.

Recent developments in portable devices like smart-phones and tablets resulted in higher
processing power, more powerful audio processing features, and more appealing visuals. As
a result, the app market has had an immense growth and everyday more music-related
applications are available for both the Android and iOS market. The MIR community
has had its share in the development of pitch detection, audio recommendation, and audio
identification algorithms necessary for such applications.

The usage of music technology in music education is an ongoing process: on the one
hand it completely relies on the accomplishments of the scientific community; on the other
hand, it is a process that requires a progressive change of mentality in a community where
many processes and techniques still remain very traditional. The development of new
music education systems faces many challenges: (1) Development of music technologies
robust and efficient enough to be delivered to the final user. (2) Bridging the gap between
two communities—music education and music technology—that have completely different
environments and mentalities. (3) Design of appealing and entertaining systems capable of
creating interest while developing real musical skills.

The remainder of this paper is organized as follows: Section 2 describes some relevant
systems for music education, Section 3 presents three Music Information Retrieval (MIR)
methods applied in music education applications, Section 4 describes Songs SSee—a current
music education system developed within the MIR community. Finally, Section 5 discusses
future challenges faced by the music information retrieval community and Section 6 draws
some conclusions.

2 Related Systems for Music Education

This section gives a general overview of music education systems that are either commer-
cially available or representative of the state-of-the-art in the MIR community. In general,
music education systems can be broadly classified in three categories: play-along CDs and
instructional videos, video games, and software for music education.

2.1 Published Music Education Material
Starting in the 1980s, play-along CDs and instructional videos became popular as an
alternative way to practice an instrument. Play-along CDs consist of specially recorded
versions of popular musical pieces, where the user plays along to the recorded accompaniment.
The main advantage of these systems is that users can practice with their own musical
instrument: any progress is directly achieved by real instrumental practice. Furthermore,
these systems allow users to get familiar with accompaniment parts—for example, piano
or orchestra accompaniments—and as such, they became a popular tool for concert and
contest preparation. On the other hand, the amount of available content is limited by the
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particularly high production costs of such systems: in many cases, large ensembles and
long recording sessions are needed for the production of one track. In this sense, play-along
CDs are mainly available for very popular songs and for some representative concerts of the
instrumental repertoire. Music Minus One1, for example, offers a large catalog of play-along
CDs for different instruments, ensembles, and genres. The Hal Leonard Corporation2 has
published a series of jazz play-alongs for different instruments, with compilations of music
of different artists, jazz standards, and thematic editions. Another very popular series of
play-alongs is the jazz series published by Jamey Aebersold3 with a catalog of over a 100
items featuring different artists, playing techniques, and jazz standards.

Instructional videos came out as an educational tool where renowned musicians addressed
particular topics—playing techniques, improvisation, warm-up exercises—and offered hints
and instructions to help users to improve their skills and to achieve a certain goal. For theses
cases, the popularity of a certain musician, as opposed to the popularity of a musical piece,
was used as a marketing tool. The idea that you could play like famous musicians do, was
very appealing. With time, the catalog of instructional videos grew both in size and diversity,
featuring not only famous musicians, but also different playing techniques, learning methods,
and the very famous self-teaching videos. The popular VHS tapes from the 1980s and 1990s
where slowly replaced by digital formats like the VCD and DVD. Alfred Music Publishing4,
Berklee Press5, Icons of Rock6 and Homespun7 all offer a series of instructional videos for
different instruments and styles.

The main weakness of both play-along CDs and instructional videos is that there is no
direct feedback for the user in terms of performance evaluation. Users have to completely rely
on their own perception and assessment, which in case of beginners, can be a real challenge.
However, these types of learning material have played a very important role as they offer an
alternative way to practice at home, helping to keep the motivation for learning, and offering
the flexibility of practicing on your own time, pace, and schedule.

2.2 Music Video Games
The 1990s was the decade where the development of music rhythm games8 had
a solid start, leading to the great popularity of music games in the next decade.
The 1996 release and popularity gain of the game PaRappa the Rapper for Sony
PlayStation 1 was an important propeller of the music game development9.
Later examples of popular releases in the music video game community are

Guitar Hero10, Rock Band11, and the karaoke game SingStar12. Guitar Hero has been

1 Music Minus One: http://www.musicminusone.com
2 Hal Leonard Corporation:

http://www.halleonard.com/promo/promo.do?promotion=590001&subsiteid=1
3 Jamey Aebersold: http://www.jazzbooks.com/jazz/category/AEBPLA
4 Alfred Music Publishing: http://www.alfred.com/Browse/Formats/DVD.aspx
5 Berklee Pree: http://www.berkleepress.com/catalog/product-type-browse?product_type_id=10
6 Icons of Rock: http://www.livetojam.com/ltjstore/index.php5?app=ccp0&ns=splash
7 Homespun: http://www.homespuntapes.com/home.html
8 Type of music video games that challenge a player’s sense of rhythm. They usually require the user to

press a sequence of buttons shown on the screen.
9 PaRappa the Rapper: http://www.gamestop.com/psp/games/parappa-the-rapper/65476
10 Guitar Hero: http://www.guitarhero.com
11 Rock Band: http://www.rockband.com
12 Singstar: http://www.singstar.com
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released for different video game consoles like Microsoft Xbox 360, Sony PS3, and also for
Windows PCs. The series started as a pure rhythm guitar music game in which the user had
to press the correct button at the right time, requiring rapid reflexes and good hand-to-eye
coordination [23]. The controller resembles a real guitar but instead of strings and frets, it
has five buttons and a strum bar.

(a) Guitar Hero (b) Singstar (c) Rock Band 3 (d) Rocksmith

Figure 1 Music Rhythm Games.

Rock Band 3 has been released for Microsoft Xbox 360, Nintendo Wii, Sony PS3, and
Nintendo DS. It supports up to three singers with a three-part harmony recognition feature.
It was released with a set of 83 songs and has full compatibility with all Rock Band peripherals
as well as most Guitar Hero instruments.

One important characteristic of the above mentioned rhythm games is that, while being
entertaining and successful in creating interest in music performance, they often fail to
develop musical skills that can be directly transfered to real musical instruments as game
controllers cannot really capture complexities and intricacies of musical instruments.

(a) Guitar Hero gui-
tars

(b) Rock Band 3
drum set

(c) Rock Band 3 key-
board

(d) Rock Band 3 gui-
tar

Figure 2 Music game controllers.

SingStar was released for Sony PlayStation 2 & 3. Like conventional karaoke games, it
offers the possibility to sing along to the included songs with the lyrics shown synchronously.
Additionally, the singing input is automatically rated by the game, which requires the original
vocal tracks to be transcribed beforehand by the producers of the game.

The first commercial release in the video game community that allows users to play with
real guitars is Rocksmith13, released in the United States in September 2011 for Microsoft
Xbox 360, Windows, and Sony PS3. The system allows users to connect their guitar output
via USB interface. The user’s performance is rated based on analysis of the audio signal.
Like other music games, Rocksmith delivers a set of songs specifically edited for the game.
As an additional feature, Rocksmith offers a series of mini-games with scales, finger dexterity,

13 Rocksmith: http://rocksmith.ubi.com/rocksmith/en-US/home/
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or chord exercises for developing playing skills. This represents a major leap in the music
game community as no special hardware controllers are needed and, instead of following
button sequences, the user actually plays a real guitar with the fret and string information
provided in the game. Furthermore, the inclusion of additional exercise-games paves the way
from mere gaming and entertainment to music education.
A common limitation of the music games mentioned above is that content is entirely limited to
a set of songs delivered with each game. Even if a great effort is made to deliver popular songs
appealing to a wide audience, personal tastes can never be completely covered. Furthermore,
content is in general limited to pop and rock releases, ignoring the large amount of other
musical genres and styles.

2.3 Music Education Software
In terms of commercial systems for music education, Music Delta14, Smart Music15 and
GarageBand16 present interactive alternatives to music learning. Music Delta is a web based
system developed by Grieg Music Education comprising music curricula, content articles,
and interactive tools. There are two versions available: (1) Music Delta Master, an online
textbook which offers different performance stages and a special tool for composing and
remixing. (2) Music Delta planet, specially designed for elementary school children where
topics as music history and composers are presented in an entertaining way.
SmartMusic is a Windows and Mac software developed by MakeMusic especially for bands,
orchestras, and vocals. Users can play their instruments to the computer microphone and
receive immediate feedback from the software. One of the biggest strengths of the system is
that teachers can assign tasks for the students to practice at home. The student’s progress
can be tracked and personal rating system can be generated. Currently, there are around
2000 musical pieces available for the software.
GarageBand is a software released by Apple for Mac and iPad. Among many other features,
it provides the possibility to learn how to play piano and guitar with specially designed
content, performance feedback, and appealing user interfaces. Users can play directly to the
computer microphone or through USB connection.

With a slightly different approach, Songle17 offers a web service for active music listening.
Users can select a song from the list or register to include an audio file via URL. The system
uses MIR techniques to analyze the audio file and then displays information regarding melody
line, chords, structural segments, and beat grid. As errors are expected in the automatic
analysis, users can edit, correct, and include missing information [21]. The main idea behind
this system is to allow users to have a deeper understanding of music and enrich the listening
experience.

2.4 Music-Related Mobile Apps
As mentioned in Section 1, the development of apps for smartphones and tablets has grown
very rapidly in the last years. Many music-related applications are already on the market,
some of them dealing with music learning and playing. Rock Prodigy18 is a guitar playing

14 Music Delta: http://www.musicdelta.com
15 Smart Music: http://www.smartmusic.com
16 Garage Band: http://www.apple.com/ilife/garageband/
17 Songle: http://songle.jp
18 Rock Prodigy: http://www.rockprodigy.com
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app developed for the iPad, iPhone, and iPod Touch. Users can play their guitar directly to
microphone and, based on a lesson plan and a rating system, receive performance feedback
from the application. The lesson plan offers chords, rhythm, scales, technique, and theory
exercises. There are also popular songs available for purchase that can be played within
the app. Tonara19 is an interactive sheet music iPad app where users can download and
view music directly on their iPad. The app records input directly from the microphone and
automatically detects the user’s position in the score as the user plays. The system can be
used with any musical instrument but currently only violin, piano, flute, and cello scores are
available for purchase. Wild Chords20 is a music game developed by Ovelin and designed
to help beginners familiarize with guitar chords. It is available as an iPad app and uses
appealing visuals and references to animals to help users identify the chords. The game
records audio input directly from the microphone and no hardware controllers are needed.

2.5 Research Projects
In the past years a few research projects have dealt with the development of E-learning
systems for music education. The IMUTUS 21 (Interactive Music Tuition System), the
VEMUS 22(Virtual European Music School), and the i-Maestro 23 (Interactive Multimedia
Environment for Technology Enhanced Music Education and Creative Collaborative Compos-
ition and Performance), were all European based projects partially funded by the European
Commission that addressed music education from an interactive point of view. IMUTUS
focused on the recorder with the goal developing a practice environment where students
could perform and get immediate feedback from their renditions. VEMUS was proposed as a
follow up project of IMUTUS and addressed the inclusion of further musical instruments and
the development of tools for self-practicing, music teaching, and remote learning. i-Maestro
focused on the violin family and besides offering enhanced and collaborative practice tools,
the project also addresses gesture and posture analysis based on audio visual systems and
sensors attached to the performer’s body.

Music Plus One [44] is a system for musical accompaniment developed in the attempt to
make computer accompaniments more aesthetic and perceptually pleasing. It was developed
in the School of Informatics & Computing in Indiana University. The idea behind the system
is that a computer-driven orchestra listens, learns, and follows the soloist’s expression and
timing. The system is composed of three main blocks: (1) Listen: based on a Hidden Markov
Model, this stage performs real-time score matching by identifying note onsets. (2) Play:
generates an audio output by phase vocoding a pre-existing audio recording (3) Predict:
predicts future timing by using a Kalman filter-like model.

Antescofo [9] is both a score-following system and a language for musical composition
developed by the Music Representation Research Group at IRCAM. It allows automatic
recognition of the player’s position and tempo in a musical score. Antescofo can be used
in interactive accompaniment scenarios and as a practicing tool. It can also be used as
a composition tool by synchronizing and programming electronic events and computer
generated sounds with instrumental performances. It also serves as a research tool for tempo
and performance analysis.

19 Tonara: http://tonara.com
20 Wild Chords: http://www.wildchords.com
21 IMUTUS: http://www.exodus.gr/imutus/index.htm
22 VEMUS: http://www.tehne.ro/projects/vemus_virtual_music_school.html
23 i-maestro: http://www.i-maestro.org
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Songs SSee [8] is a software developed within a project that started in 2010 at the
Fraunhofer Institute for Digital Media Technology (IDMT)24. The main goal was to apply
state-of-the-art MIR techniques in the development of a music education and learning tool. It
takes advantage of pitch extraction, music transcription, and sound separation technologies
to allow the user to play with real musical instruments—guitar, bass, piano, saxophone,
trumpet, flute and voice. The system returns immediate performance feedback based on a
rating system, and gives the user flexibility in terms of the content that can be used with
the application—the user can load audio files to create content for the game. In Section 4, a
thorough description of Songs SSee 25 is presented.

A slightly different approach is taken in the project KOPRA-M26, that started in 2011 at
the Fraunhofer Institute for Digital Media Technology (IDMT). This project is focused on
measurement of competencies in music. For this matter, a systematic methodology and a
proprietary software solution to assign and control music tasks is developed. The outcomes
of this project are targeted to German secondary school students. An important aspect is
the (semi-)automatic scoring procedure for evaluating different singing and rhythm tasks.
By employing MIR methods, an attempt is made to model ratings given by human experts
through regression methods.

3 MIR Methods for Music Learning Applications

3.1 Music Transcription
Music transcription refers to the process of automatically extracting parameters such as
pitch, onset, duration, and loudness of the notes played by any instrument within a recorded
piece of music. Furthermore, rhythmic and tonal content provided by the beat grid and the
musical key, are also of importance when transferring note sequences into common music
notation. We refer to these parameters as score parameters since they generally do not make
assumptions on the particular instrument that is notated.
The automatic transcription of a music piece is a very demanding task since it embraces
many different analysis steps such as instrument recognition, multiple fundamental frequency
analysis, and rhythmic analysis [30]. Depending on the type of musical instrument to be
transcribed, music transcription algorithms are often associated with melody transcription,
polyphonic transcription, drum transcription, or bass transcription [11]. The challenges
in automatically transcribing music pieces are diverse. First, music recordings usually
consist of multiple sound sources overlapping constructively or destructively in time and
frequency. Mutual dependencies between the different sources exist due to rhythm and
tonality. Furthermore, the number of sound sources is in general unknown and not easily
extracted and consequently, often needs to be given as a parameter to the algorithms. Second,
all sound sources have very diverse spectral and temporal characteristics that strongly depend
on the instrument type and the applied playing techniques (see also Section 3.1.1). Finally,
different instruments can be associated with different functional groups such as the main
melody or the bass line.
Transcribing the main melody is the most popular task due to the various applications in
music education or karaoke systems. If multiple melodies are played simultaneously, different
perceptual criteria need to be considered by the transcription algorithm in order to identify

24 Fraunhofer IDMT: http://www.idmt.fraunhofer.de/en.html
25 Songs2See: http://www.songs2see.com
26 KOPRA-M: http://www.idmt.fraunhofer.de/de/projekte/laufende_projekte/KOPRA-M.html
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the main melody. A selection of existing transcription algorithms are thoroughly described
in [20], [4], and [3]. In general, state-of-the art automatic music transcription algorithms
consist of the following parts:

Time-frequency representation: In order to separately analyze frequency components
of different instruments, a suitable time-frequency representation needs to be computed.
Commonly used techniques are the Short-time Fourier Transform (STFT), the Multi-
Resolution FFT (MR-FFT) [12], the Constant-Q Transform [5], or the resonator time
frequency image (RTFI) [56].
Spectral decomposition: Often based on harmonic templates, techniques such as
Non-Negative Matrix Factorization (NMF) [33] or Probabilistic Latent Component Ana-
lysis (PLCA) [48] are used to decompose the time-frequency representation into the
contributions of different (harmonic) instruments. Spectral decomposition yields one or
multiple fundamental frequency estimates for each time frame.
Onset detection & note tracking: Probabilistic models such as Hidden-Markov
Models (HMM) [41] are applied to model the temporal progression of notes and to
estimate their onset and offset time. Based on the frame-wise fundamental frequency
estimates, the pitch can be extracted for each note event.

The Music Information Retrieval Evaluation eXchange (MIREX27) contest offers several
transcription-related tasks such as “Audio Melody Extraction”, “Multiple Fundamental
Frequency Estimation & Tracking”, and “Audio Onset Detection”. In this annual contest,
various algorithms based on signal processing techniques are evaluated and compared.

In the context of music education, automatic music transcription is an indispensable tool
for the automatic generation of music exercises from arbitrary recordings. Music transcription
applications allow to detect playing errors in real-time. Thus, the musical performance can
be evaluated immediately. By using these applications, music students are not restricted to
take lessons in the environment of a music school anymore. Instead, they can use automatic
learning tools always and everywhere, which increases their motivation and enhances their
musical experience.

3.1.1 Extraction of Instrument-Specific Parameters
In contrast to the score parameters discussed in the previous section, there are other
parameters that describe performance aspects on a specific instrument. These instrument-
specific parameters provide cues about the applied playing techniques such as finger-style
guitar play or slap-style bass guitar play. They can also describe different techniques such as
vibrato or string bending used by the musician as expressive gestures during the performance.
These techniques alter the fundamental frequency of a note in a characteristic way and can be
parametrized with different levels of granularity, depending on the context of application [1].
Some studies focus solely on estimating instrument-specific parameters from audio recordings
whereas other studies use these parameters to improve music synthesis algorithms. In this
section, four selected studies are briefly discussed that focus on the clarinet, the classical
guitar, and the bass guitar.

Sterling et al. [49] presented a physical modelling synthesis algorithm that incorporates
two typical performance gestures for clarinet synthesis—tonguing and the pitch bend. Pitch
bending allows the musician to alter the fundamental frequency within a range of about a

27 http://www.music-ir.org/mirex/wiki/2011:Main_Page
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semitone. Tonguing relates to the note articulation and controls the onset and offsets while
maintaining a constant blowing pressure.

In [38], Özaslan and Arcus focused on two expression styles performed on the classical
guitar—the legato technique, which corresponds to the hammer-on and pull-off techniques,
and the glissando technique, which corresponds to the slide technique. Both techniques
result in an ascending or descending pitch after the note is initially plucked. The authors
use a high frequency content (HFC) measure to detect the pluck onset with its percussive
characteristics. Between note onsets, the YIN fundamental frequency estimation algorithm
[10] was used to characterize the pitch progression. The note release part was segmented
into five segments to analyze whether a continuous or an abrupt change of the fundamental
frequency appears.

Laurson et al. [32] presented a method for synthesizing the use of rasgueado technique
on the classical guitar, which is a rhythmically complex strumming technique primarily used
in flamenco music. The technique is characterized by fast consecutive note plucks with the
finger nails of all five fingers of the plucking hand and an upwards and downwards movement
of the plucking hand. The authors extract signal characteristics—timing and amplitude of
individual note attacks—from real-world recordings and use it to re-synthesize the recording.

Abeßer et al. [2] presented a feature-based approach for automatically estimating the
plucking style and expression style from isolated bass guitar notes. The authors used a
taxonomy of ten playing techniques and described several audio features that capture specific
characteristics of the different techniques. The parameter estimation is interpreted as a
classification problem.

3.1.2 Spatial Transcription Using Different Modalities

In addition to the score parameters and instrument-specific parameters discussed in the
previous sections, two more aspects need to be considered in order to get a better semantic
description of a performed instrument track. Firstly, when music is performed on a string
instrument such as the bass or the guitar, a given set of notes can usually be played on
different positions on the instrument neck. Due to the tuning of the strings and the available
number of frets, the assignment between note pitch and fretboard position—fret number and
string number—is ambiguous. Second, different fingers of the playing hand can be used in
order to play a note within a fixed fretboard position. Consequently, various fingerings are
possible to play the same set of notes. This fact holds true also for other instruments such
as the piano and the trumpet. The process of finding the optimal fingering is discussed in
Section 3.3.2.

In order to chose suitable fretboard positions and fingerings, musicians usually try
to minimize the amount of physical strain that is necessary to play an instrument. For
string instruments, this strain is caused by finger stretching and hand movement across the
instrument neck. We refer to spatial transcription as the process of estimating the applied
fretboard positions. In order to automatically estimate the fretboard positions and the
fingering from a given musical recording, the sole focus on the audio analysis is often not
sufficient. This is mainly due to the fact that the change of fingering barely alters the sonic
properties of the recorded signal. In the following sections, we discuss different approaches
that include methods from computer vision as a multi-modal extension of audio analysis.
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3.1.2.1 Audio-visual Approaches

Already in 2003, Smaragdis and Casey [47] proposed the use of audio-visual data for the
extraction of independent objects from multi-modal scenes. They utilized early fusion by
means of concatenating audio spectra and corresponding image frames and using Independent
Component Analysis (ICA). Although merely a proposal, their paper included an early
practical example: onset detection of piano notes by analyzing both a recorded video of the
played keyboard and the corresponding audio signal.

Hybryk and Kim [25] proposed a combined audio and video analysis approach to estimate
the fretboard position of chords that were played on an acoustic guitar. First, the authors
aim at identifying all played chords in terms of their “chord style”, i.e., their root note
and mode such as E minor. The Specmurt algorithm [46] is used to analyze the spectral
distribution of multiple notes with their corresponding harmonics. The outcome is a set of
fundamental frequencies that can be associated to different note pitches. The amplitude
weights of the harmonic components are optimized for different pitch values. Based on the
computed “chord style” (e.g., E minor), the “chord voicing” is estimated by tracking the
spatial position of the gripping hand. The chord voicing describes the way the chords are
played on the fretboard.

Paleari et. al. [39] presented a method for multimodal music transcription of acoustic
guitars. The performing musicians were recorded using two microphones and a digital video
camera. In addition to audio analysis, the visual modality was used to track the hand of
the guitar player over time and to estimate the fretboard position. The fretboard position
is initially detected by analyzing the video signal and then spatially tracked over time.
Furthermore, the system detects the position of the playing hand and fuses the information
from audio and video analysis to estimate the fretboard position.

3.1.2.2 Visual Approaches

Other approaches solely use computer vision techniques for spatial transcription. Burns and
Wanderley [6] presented an algorithm for real-time finger tracking. They use cameras attached
to the guitar in order to get video recordings of the playing hand on the instrument neck.
Kerdvibulvech and Saito [28] use a stereo camera setup to record a guitar player. Their system
for finger tracking requires the musician to use colored fingertips. The main disadvantage
of these approaches is that both the attached cameras as well as the colored fingertips are
unnatural for the guitar player. Therefore,this may influence the user’s expressive gestures
and playing style.

3.1.2.3 Enhanced Instruments

A different approach is followed when using enhanced music instruments that comprise
additional sensors and controllers to directly measure the desired parameters instead of
estimating them from an audio or video signal. The major disadvantage of enhanced
instruments is that despite of their high accuracy in estimating performance and spatial
parameters, they are obtrusive to the musicians and may affect their performance on the
instrument [25].

Music game controllers as depicted in Figure 2 were introduced as parts of music games
such as Guitar Hero or Rockband. These controllers imitate real instruments in shape and
functions and are usually purchased in combination with the corresponding game. However,
the controllers often simplify the original musical instruments. The Guitar Hero controller,
for instance, reduces the number of available frets on the instrument track from 22 to 4 and
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furthermore encodes each fret with a different color. The player does not pluck strings but
instead presses colored buttons. These simplifications reduce the complexity of performance
instructions within the music games and guarantee faster learning success for beginners. The
main disadvantage of such controllers is that even though they have a similar instrument
shape, their way of playing differs strongly from real instruments. Thus, learning to use the
controllers does not necessarily help when learning to play a real instrument.

Hexaphonic pickups allow guitar players and bass guitar players to use their instruments
as MIDI input devices, a feature otherwise only available to keyboard players using MIDI
keyboards. Since each instrument string is captured individually without any spectral overlap
or additional sound sources, a fast and robust pitch detection with very low latency and very
high accuracy can be realized using the individual pickup signals as input. This transcription
process is usually implemented in an additional hardware device. This way, hexaphonic
pickup signals can be converted into MIDI signals nearly in real-time. These MIDI signals
allow the musician to intuitively play and control sequencer software, samplers, or virtual
instruments in real time.

3.2 Solo & Accompaniment Track Creation
The idea that users can take any recording of their choice—no matter how, where, and when
it was created—and obtain solo and accompaniment tracks to play along with, represents a
very appealing and flexible approach for practicing music. Whether it be playing along to the
Berlin Philharmonic or to the Count Basie Orchestra, all would be possible. Besides being a
powerful practicing aid, solo and accompaniment tracks can also be used for performance
and musicological studies. We consider sound source separation as a common ground for solo
and accompaniment track creation algorithms and further describe it in the next section.

3.2.1 Source Separation
In the context of solo and accompaniment track creation, some separation systems have
specifically focused on singing voice extraction from polyphonic audio—the solo instrument
is always assumed to be the singing voice. In [34], a system based on classification of
vocal/non-vocal sections of the audio file, followed by a pitch detection stage and grouping
of the time frequency tiles was proposed. In [45], voice extraction is achieved by main
melody transcription and sinusoidal modeling. A system based on pitch detection and
non-negative matrix factorization (NMF) is proposed in [52]. Others have focused on the
separation of harmonic from percussive components of an audio track [37], [19]. Similarly, a
system is proposed in [7] to specifically address the extraction of saxophone parts in classical
saxophone recordings and in [16], a score-guided system for left and right hand separation in
piano recordings is proposed. More general algorithms have also been proposed for main
melody separation regardless of the instrument used: Durrieu [14] proposes a source/filter
approach with a two-stage parameter estimation and Wiener filtering based separation. In
[31], Lagrange proposes a main melody extraction system based on a graph partitioning
strategy—normalized cuts, sinusoidal modeling and computational auditory scene analysis
(CASA).

In [8], a system for solo and accompaniment track creation is presented. This algorithm
is included in the Songs SSee application (see Section 4). The system is composed of five
building blocks shown in the diagram in Figure 3. It was designed with the goal of taking
audio files from commercial recordings and by means of a pitch detection algorithm and a
sound separation scheme, identify the predominant melody in the track, extract the main
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melody and deliver two independent tracks for the accompaniment and solo instrument. The
different processing blocks are briefly explained:

Pitch 
Detection

F0 
Re�nement

Harmonic 
Re�nement

Spectral
 Masking

Post 
Processing

Input 
Audio

Output 
Audio

Figure 3 Block diagram of the solo and accompaniment track creation algorithm.

Pitch Detection: The pitch detection algorithm proposed in [13] is used, which uses a
multi-resolution FFT as a front end. After an initial peak detection stage, pitch candidates
are obtained based on a pair-wise evaluation of spectral peaks. Tones are formed based
on information of past analysis frames, gathered to analyze long term spectral envelopes,
magnitude and pitch information. The main voice is obtained from the pitch candidates
using a salience measure.
F0 Refinement: To further improve F0 estimations, a refinement stage is proposed
where the magnitude spectrogram is interpolated in a narrow band around each initial F0
value and its constituent harmonics. To obtain a more realistic estimate of the harmonic
series, an inharmonicity measure is introduced where harmonic components are not
expected to be exact integer multiples of the fundamental frequency but may slightly
deviate from the theoretic values.
Harmonic Refinement: The underlying principle at this stage is that the higher the
harmonic number of a partial, the more its location will deviate from the calculated
harmonic location, i.e., multiple integer of the fundamental frequency. Three main aspects
are considered here: (1) Each harmonic component is allowed to have an independent
deviation from the calculated harmonic location. (2) Each partial is allowed to deviate
from its harmonic location a maximum of one quarter tone. (3) Acoustic differences of
string and wind instruments are considered.
Spectral Filtering: After the complete harmonic series has been estimated, an initial
binary mask is created where each time-frequency tile is defined either as part of the
solo instrument or the accompaniment. To compensate for spectral leakage in the time
frequency transform, a tolerance band is defined where not only the specific time frequency
tile found in the harmonic refinement stage is filtered out but also the tiles within a band
centered at the estimated location.
Post Processing: A final refinement stage is implemented where the different tones are
independently processed to remove attacks and possible artifacts caused by inaccurate
classification of the time-frequency tiles. Two cases are considered: (1) Due to the
particular characteristics of the pitch detection algorithm, a few processing frames are
necessary before a valid F0 value is detected. This sometimes causes the pitch detection
algorithm to miss the attack frames that belong to each tone. To compensate for the
inherent delay in the pitch detection algorithm, a region of 70 ms before the start of each
tone is searched for harmonic components that correlate with the harmonic structure of
each tone. The binary mask is modified accordingly to include the attack frames found
for each tone. (2) Percussion hits are often mistakenly detected as being part of a tone.
To reduce the perceptual impact of these inaccuracies, a final analysis of the tone is
performed where the harmonic series is analyzed as a whole and transients occurring
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(a) Score, tablature

(b) Piano roll

Figure 4 Score, tablature, and piano-roll representation of a bass-line.

in several harmonic components simultaneously are detected. For these time-frequency
tiles, the spectral mask is weighted and is no longer binary. Finally, the complex valued
spectrogram is masked and independent solo and accompaniment tracks are re-synthesized
by means of an inverse short term Fourier transform.

3.3 Performance Instructions
3.3.1 Music Representations
In this section, three different symbolic music representations are compared. First, we briefly
review the score and the tablature representations since they are the two most popular written
representations of a music pieces. Afterwards, we discuss the piano-roll representation, which
is often used in music production software, music education applications, as well as in music
games. In the three representations, each note is described as a temporal event that is
characterized by a set of distinct parameters such as note pitch or duration. As an example,
a bass line is illustrated as score, tablature, and piano-roll representation in Figure 4.

The score notation is the oldest and most popular written representation of music. It
offers a unified and well-established vocabulary for musicians to notate music pieces for
different instruments. Furthermore, the score notation provides a compact visualization of
the rhythmic, harmonic, and structural properties of a music piece.

The tablature representation, on the other hand, is specialized on the geometry of fretted
string instruments such as the guitar or the bass guitar. Each note is visualized according
to its fretboard position, i.e., the applied string number and fret number. Due to the
instrument construction and tuning of most string instruments, notes with the same pitch
can be played in different fretboard positions. The choice of the fretboard position usually
depends on the stylistic preferences of the musician and the style of music. Tablatures often
include additional performance instructions that indicate the playing techniques for each note.
These techniques range from frequency modulation techniques such as vibrato or bending to
plucking techniques such as muted play or slap style for the bass guitar. The main advantage
of the tablature representation is that it resolves the ambiguity between note pitch and
fretboard position. This benefit comes along with several problems: (1) Tablatures are hard
to read for musicians who play other instruments such as the piano, trumpet, or saxophone.
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(2) Tablatures often do not contain any information about the rhythmic properties of notes.
Different note lengths are sometimes encoded in different distances between the characters but
this method is often ambiguous. (3) Tablatures, which are nowadays easily accessible from
the Internet, are often incomplete or erroneous because they were written by semi-professional
musicians. Without the help of a teacher, music students often cannot identify the erroneous
parts. Instead, the students might adopt inherent mistakes without even being aware of it.

Finally, the piano-roll representation is often used in music sequencer programs where
each note is represented as a rectangle. The rectangle’s length encodes the note duration
and its horizontal and vertical coordinates encode the note onset and pitch, respectively.

All three representations discussed in this section fail to provide information on micro-
tonality or micro-timing of a music piece. These aspects can usually be neglected in basic
music education where the main focus of study is more on learning to play melodies than to
imitate a particular performance style. Once the student reaches a certain skill level, the
precise imitation of a given performance and artistic shaping becomes more important. Here,
even slight differences in terms of micro-tonality (intonation) or micro-timing can be of high
importance.

3.3.2 Automatic Generation of Fingering Instructions
Fingering instructions indicate which finger or set of fingers of the playing hand are to be
used in order to play a particular note on an instrument. Both score notation and tablatures
can provide this information by means of a number printed on top of each note. This number
encodes the index of the finger that is to be used. However, most often, this information
is not given. Since multiple fingerings are usually possible, finding the most convenient
fingering is a challenging task. In general, fingering instructions can be generated manually
or automatically. Trained music experts can derive optimal fingerings manually based on
their experience. Even though this approach leads to proper performance instructions, it is
time consuming and inapplicable for a fast analysis of a large number of songs. Furthermore,
this manual process clearly stands in contrast to the idea of a complete automatic music
transcription system. Therefore, automatic algorithms for fingering generation were developed
based on the same criteria that musical experts apply.

In terms of applicable fingerings, musical instruments can be categorized into three
different types. Instruments of the first type, such as the piano, have an 1-to-N relationship
between note pitch values and possible fingerings. Each note pitch is generated by one distinct
key but each key can be pressed by different fingers. Instruments of the second type, such
as the saxophone or the trumpet, have an N-to-1 relationship between pitch and fingering.
These instruments can produce each pitch with possibly different fingerings but each fingering
has a unique finger assignment. For instance, each key on the saxophone is associated to one
finger but the same note pitch can be played by using different key combinations. These
combinations require a different amount of physical strain both for gripping and blowing the
instrument. Similar to the fretboard positions for string instruments discussed in Section
3.1.2, the choice of the fingering depends on the stylistic preferences, performance level,
and the musical context within a music piece. The most complex case is the third type of
instruments with an N-to-N relationship such as the guitar or the bass guitar. On these
instruments, each note can be played at different positions on the instrument neck as well as
using different fingers.

Algorithms for automatic fingering generation have to be tailored towards the specific
properties of musical instruments, including geometry, tuning, and pitch range. Furthermore,
these algorithms have to be scalable to music pieces of different lengths. Usually, a cost value
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is assigned to each possible fingering in order to automatically derive the optimal fingering.
The process of manually selecting the optimal fingering is influenced by different factors

that are part of an underlying cognitive process of the musician [40]. In this study, the
authors focused on piano fingerings but discussed several factors that can be applied to other
instruments:

Biomechanical criteria: These criteria relate mostly to physical strain, i.e., the neces-
sary effort to play a note on the instrument.
Cognitive criteria: These criteria are often related to the given musical context such
as the rhythmic structure of a piece. As an example, strong accents are usually played
with stronger fingers.
Conventional criteria: One of these criteria, for example, indicates that musicians
prefer using fingering patterns that they already learned over new patterns.
Additional criteria: These criteria comprise musical style, timbre, and intonation and
describe how these factors are affected by different fingerings.

Furthermore, the skill level of the musician strongly influences the choice of fingerings.
Algorithms for automatic fingering generation need to include these criteria for generating
usable results.

Most methods found in the literature focus on the guitar and the piano likely due to their
high popularity. For polyphonic guitar fingerings, the presented methods usually distinguish
between two different types of costs as in [27], [42], and [43]. Horizontal costs describe
the difficulty of changing between different fretboard positions and vertical costs describe
the complexity of a chord shape at a fixed position. Kasimi et al. [27] use the Viterbi
Algorithm to determine the optimal fingering for a given note sequence. In contrast, Tuohy
and Potter [50] follow a two-step approach. First, they use a genetic algorithm to generate
a tablature representation. Then, they apply a neural network that was trained based on
expert knowledge to derive the optimal fingering. Radisavljevic et al. [43] introduce the
“path difference learning” approach, which allows to adapt the cost factors to the individual
needs and abilities of the musician.

Presented methods for piano fingerings focus usually on short monophonic melody phrases.
Hart et al. [24] assigned cost values to different transitions between white and black keys on
the piano. In [40], Parncutt et al. empirically found that pianist in average, read eight notes
ahead when playing monophonic melodies. The authors assigned cost values based on the
size of intervals and used a set of twelve rules to derive an optimal fingering. Yonebayashi
et al. [54] use a Hidden Markov Model to model different fingering positions and apply the
Viterbi Algorithm to derive the final fingering.

Similar approaches to obtain optimal fingerings were discussed for the flute in [18] and for
the trumpet in [26]. A detailed comparison of the presented methods can be found in [53].

4 Songs2See

Songs SSee28 is an application software for music learning, practice, and gaming
which integrates various state-of-the-art MIR algorithms. In developing this system,
the following requirements were taken into consideration:

1. The system should allow the use of real musical instruments or the voice without requiring
special game controllers.

28 http://www.songs2see.com
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2. Users should be able to create their own musical exercise-content by loading audio files
and using the analysis features available in the software.

3. The system should provide the entertainment and engagement of music video games while
offering appropriate methods to develop musical skills.

4.1 System Architecture
Songs SSee consists of two main applications: the Songs SSee Editor, used to create content for
the game, and the Songs SSee Game, used at practice time. Figure 5 shows a block diagram
of the system.
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Learn to play by playing:

Figure 5 Songs SSee block diagram.

The Songs SSee Game is a platform-independent application based on Adobe Flash. The
Songs SSee Editor is a stand-alone application currently available for Windows PCs. The
only additional hardware needed for Songs SSee are speakers or headphones and a computer
microphone to capture the performances. The standard work-flow in Songs SSee is as follows:
(1) Choose or create the content to be played: either select a track from the delivered
songbook or load an audio file to the Songs SSee Editor and use the analysis tools to create
content for the game. The Editor sessions can be exported for the Game as .s2p files. (2)
Load file in the Songs SSee Game. (3) Select the desired instrument from the drop-down
menu. (4) Run the Game and start playing. Besides the options already outlined, both the
Songs SSee Editor and Game offer several processing and performance options that will be
further explained in the next sections.

4.2 Songs2See Game
The Songs SSee Game is an application where users can practice a selected musical piece on
their own musical instrument. There are several features in the Songs SSee Game:

Score-like display of the main melody: The Songs SSee Game View, shown in Figure
6, combines elements both from standard piano roll views and score notation. The main
goal was to include as many musical elements as possible without requiring the user to
be able to read music beforehand. The length of the note is displayed both by using
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music notation symbols—sixteenth notes, eight notes, quarter notes, half notes, whole
notes, triplets, and their corresponding rests—and by displaying colored bars of different
lengths behind each symbol. Note pitch is displayed both by placing the note objects in
the correct position on the staff, and by writing the note names inside the note heads.
The clef and key signature are also displayed on this view.

Figure 6 Game View.

Different instrument support: The Songs SSee Game currently supports bass, guitar,
piano, saxophone, trumpet, flute, and singing voice. The user can select any of these
instruments from the drop-down menu and an image of the instrument will be shown in
the Instrument View. Figure 7 shows the different options for the instrument selection.

(a) Guitar (b) Piano (c) Trumpet

(d) Saxophone (e) Flute (f) Voice

Figure 7 Instruments supported in Songs SSee.

Instrument-specific fingering generation and display: Every time the user loads
a musical piece into the Game, the system automatically generates a fingering animation
that describes the most common fingering sequence for the loaded melody. The fingering
generation algorithm is instrument-specific and combines several criteria discussed in
Sect. 3.3.2 for fingering selection. For instance, in the case of the trumpet, the blowing
requirements are also displayed (see Figure 7c). For all instruments, the fingering for
the current note in the note sequence is displayed in blue and the next note is displayed
in green. This allows the user to prepare in advance for the next note in the melody
sequence. In the event that the user wants to play a song on a musical instrument whose
register does not allow to play all the notes—some notes might be too high or too low to
be played in that particular instrument—a red sign will be displayed over the instrument
to warn the user about register problems (see Figure 7d).
Real-time performance feedback: Based on a real-time pitch detection algorithm
[22], the user’s performance is rated based on the pitch information extracted from the
original audio track. When the user hits the note, the note will be painted in green and
the user will score points with a maximum of 10000 points per song. When the user plays
a wrong note, the error will be displayed and a reference for correction will be given.
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Selection and looping option: The user can select particularly difficult segments
within the song and practice them separately. There is also a looping option where the
selected segment will be played repeatedly.
Learning mode: This option is meant to help users familiarize with the fingerings and
performance requirements of a new song. When the Learning Mode is selected, the Game
will be halted on each note until the user plays it correctly. This will give the user enough
time to check finger positions, pitch, and all other performance details needed in the
piece.
Songbook and loading options: The user has two possibilities in terms of loading
content into the Game: (1) The Songs SSee Game is delivered with a set of songs that can
be accessed through the Songbook icon. (2) Users can create their own content using the
Songs SSee Editor and exporting the session as an s2p file—the proprietary Songs SSee
format.
Other options: Through the Options Menu, users can access several performance and
set-up options: adjust delay between audio and visual to perfectly synchronize the Game
with the performance, select the microphone input and adjust the gain, choose language,
show or hide note names, enable or disable left hand mode for left-handed guitar players.
In the Audio Menu, users can adjust the playback level as well as the balance between
the accompaniment and solo tracks.

4.3 Songs2See Editor
The Songs SSee Editor is a software component that allows users to create exercise content
for the game. Additionally, it offers many general features that can potentially be used for
many other applications outside Songs SSee . The following options are available:

(a) Piano Roll View (b) Key Detection Assistant (c) Beat Grid Editor

Figure 8 Songs SSee Editor: Piano Roll View, Key Assistant, and Beat Grid Editor.

Import options: One of the most powerful features of the Songs SSee Editor is that it
allows the user to create material for the Game starting from different types and formats
of audio material: WAV, MP3, MIDI, and MusicXML are supported. These four import
possibilities make it possible to combine the use of the Songs SSee Editor with other
powerful processing tools as score-writing and sequencer software.
Main melody extraction: Every audio file imported into the Songs SSee Editor is
automatically analyzed to extract the main melody. The employed algorithm [13] detects
the most salient voice in the track regardless of the instrument played or the type of music.
Results are displayed in the form of note objects in a Piano Roll View (see Figure 8a).
As errors are expected, the user is allowed to create new notes, delete or merge existing
notes, and adjust the length or the pitch of existing note objects. Audible feedback is
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provided every time the user creates a new note or adjusts the pitch of an existing one.
These options facilitate the process of correcting the melody extraction results.
Key detection: The audio material imported into the Editor is also analyzed to extract
key information. By using the Import Wizard (see Figure 8b), the user is presented
with the five most probable keys and has the option to play the corresponding chords
or root notes to help decision making. The key of the song can be changed at any time.
The piano keys in the Piano Roll View that correspond to the notes in the selected key
will be marked to guide the user through the editing process. The selected key is also
important in terms of notation as this will be the key used when using the MusicXML
export options.
Tempo and beat-grid extraction: Tempo and beat extraction as presented in [11] are
also performed when an audio file is loaded into the Editor. The automatic beat extraction
currently only supports 4/4 time signatures. Considering possible extraction errors and
the large amount of musical pieces written in other time signatures, the Songs SSee Editor
offers a processing tool called the Beat Grid Editor (see Figure 8c), where every beat can
be independently modified and shifted. The downbeats can be modified and quick options
for doubling or halving the tempo are available. A tapping option is also available, where
the user can tap the beats of the song or sections of it.
Solo and accompaniment track creation: The sound separation algorithm described
in Section 3.2.1 is used to create independent solo and accompaniment tracks. The results
from the main melody extraction are directly used in the separation stage. Therefore,
the quality of the separation results is directly dependent on the quality of the extracted
melody. The algorithm has been optimized to allow users to correct information in
the melody extraction and receive immediate separation results based on the included
changes.
Export options: Every Songs SSee Editor session can be exported for the Game as an
s2p file—the proprietary format of Songs SSee . All the necessary information for playback
and performance is contained within this file. Furthermore, the intermediate results in
the processing chain can also be exported to be used in other applications. For example,
the solo and accompaniment tracks created can be exported as MP3 and then be used as
learning and practicing material outside the Songs SSee environment. The results from
the main melody extraction can be exported as MusicXML or MIDI files and be used
with score-writing or sequencer software.

5 Future Challenges

As described in the preceding sections, the state-of-the-art of MIR techniques for music
education is already quite advanced. However, there are still numerous challenges present
that motivate further research into specific directions. Some of them will be discussed in the
following sections.

5.1 Polyphonic Music

Despite years of research, the automatic transcription of polyphonic music is still considered
the holy grail in the MIR community. Many algorithms have been proposed that address
polyphonic music played on monotimbral instruments, such as piano or guitar. The software
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Celemony Melodyne29 incorporates polyphonic transcription and sound separation of such
data and is successfully used in music recording studios. During the last years, a multitude of
novel signal processing front-ends for multi-pitch estimation have been proposed. Examples
are Specmurt analysis [46] and systems as the ones presented in [29],[55],[4]. However, these
methods only reveal pitch candidates and do not explicitly consider interference of un-pitched
sounds such as drums. The majority of the proposed methods exhibit only straight forward
post-processing based on empirical thresholds. One promising research direction is the usage
of data-driven post-processing methods to train probabilistic models—such as HMMs. These
methods rely on huge amounts of manually annotated audio material which can then be used
to denoise the extracted multi-pitch candidates. These kinds of data can be derived from
semi-automatic alignment of existing MIDI files to real-world recordings [17].

5.2 Sound Separation
Even though good results can be achieved in experiments under controlled or restricted
conditions, most sound separation algorithms still lack robustness in real-world scenarios. A
general solution, capable of identifying independent sound sources regardless of their timbre,
salience, or recording conditions, has not been found.

With the recent development of perceptual measures for quality assessment [15], the sound
separation community made an important step towards the development of structured and
meaningful evaluation schemes. However, further research has to be conducted in terms of
perceptual quality of extracted sources in order to better characterize algorithm artifacts and
source interferences in terms of their perceptual impact. Separation evaluation campaigns
as the Data Analysis Competition 05 have also been conducted since 200530. The first
separation campaign [51] specifically addressing Stereo Audio Source Separation (SASSEC)
was conducted in 200731 and the SISEC (Signal Separation Evaluation Campaign) also
included an audio separation task in 2011. The LVA/ICA32 2012 (International Conference
on Latent Variable Analysis and Signal Separation), included a special session on real-world
constraints and opportunities in audio source separation. These efforts represent an important
step to push current state-of-the-art both in theoretical and practical aspects.

5.3 Improved Parametrization/Transcription
An improved parametrization of music recordings will be beneficial for various applications
ranging from sound synthesis, music transcription, as well as music performance analysis.
Each musical instrument has a unique set of playing techniques and gestures that constitute
the “expressive vocabulary” of a performing musician. These gestures result in various sound
events of different timbral characteristics. A detailed parametrization needs to be based on
sophisticated models of sound production for each particular instrument. The applicability
of these models can be evaluated by applying sound synthesis algorithm that are based on
these models in order to re-synthesize the parametrized recordings. The main evaluation
question remains: To what extend does a given model re-synthesize detected notes from a
given recording while at the same time capturing the most important timbral characteristics
of an instrument?

29 Celemony Melodyne Editor: http://www.celemony.com
30 Data Analysis Competition 05: http://mlsp2005.conwiz.dk/index.php@id=30.html
31 SASSEC 07: http://www.irisa.fr/metiss/SASSEC07/
32 LVA/ICA 2012: http://events.ortra.com/lva/
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5.4 Non-Western Music
MIR methods have mainly addressed the characteristics of Western music genres. This is
mainly due to the fact that state-of-the-art technologies were not robust enough to propose
generalized solutions and constraints had to be placed in most methods to consistently
address a particular problem. However, both due to the advances in the MIR community and
to the spread of MIR research to Asian, African, and Latin American countries, a very strong
interest in addressing other musics has emerged. New methods have to be developed to
properly address the often complicated and intricate rhythmic and harmonic characteristics
of these music styles. Collaboration between research facilities and experts from the different
communities such as MIR and musicology is crucial to overcome current limitations.

5.5 Improvement of Computational Efficiency
One important obstacle for the inclusion of many MIR algorithms in commercial products
is computational cost. Processing and time requirements are, in many cases, still very
demanding, and even when they grant performance robustness, they also prevent the
algorithms from being included in commercial applications. As in any research process, initial
stages are always result-oriented. However, an effort has to be made to streamline algorithms
to allow robust performance under standard computational capacities and facilitate real-time
applications. As an example, under practical considerations, it is often sufficient to replace
constant-Q spectra by conventional spectra obtained by Fast Fourier Transform subsequently
resampled to a logarithmic frequency axis [36]. Although problematic from a signal theoretic
point of view, this computationally efficient approach is often successfully used in music
transcription methods.

5.6 Multi-User Applications
An important development direction for current music video games is the inclusion of multi-
user applications that not only bring the entertainment and information contained within
the game, but also further competition, engagement, and immersion from the interaction
with other users. In music in particular, interaction with others is an expected scenario.
Musicians rarely play alone and in most cases, they have to learn to interact and communicate
with other musicians in order to produce an artistic ensemble performance. However, for
multi-user applications to be feasible, algorithm efficiency has to be improved, real-time
conditions have to be met, and latency and algorithmic delays reduced to the minimum.
Furthermore, in the case of music learning applications, new feedback, rating and instruction
approaches have to developed in order to properly assess the interaction and interplay with
regard to intonation and timing.

5.7 Music Technology & Music Education
The inclusion of music technologies in both formal and informal music education is still
fairly new. However, new generations grow up and live submerged in a digital era where
possibilities are endless. This poses an important challenge to the music education community,
as in order to reach the new generations, education methods have to evolve correspondingly.
Nonetheless, changing mentalities and opening minds to new approaches is never an easy
process and even less in a community as traditional as the music education community. This
necessarily implies that music technology and music education have to work together to
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reach a common goal: develop systems for music education that can be flexible, appealing,
and suitable for developing real musical skills.

6 Conclusions

A general overview of the use of MIR technologies in music learning applications has been
presented. Both the evolution of the community over time and its current state-of-the-art
suggest that music education will be rapidly and dramatically influenced by computer-based
music technologies in the next years. Systems get more robust and flexible every day,
a multitude of platforms is available, and there is a growing interest for pushing forward
research in the field. Nonetheless, the community still faces many challenges in terms of future
research directions, many of them pointing out to the imminent need for collaboration between
different fields and communities. Music technologies swiftly evolve and consequently, the
way people interact with music. In the same manner, music education and learning systems
have to evolve and take advantage of the many possibilities provided by new technologies.
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Abstract
Human Computer Music Performance (HCMP) is the study of music performance by live hu-
man performers and real-time computer-based performers. One goal of HCMP is to create a
highly autonomous artificial performer that can fill the role of a human, especially in a popular
music setting. This will require advances in automated music listening and understanding, new
representations for music, techniques for music synchronization, real-time human-computer com-
munication, music generation, sound synthesis, and sound diffusion. Thus, HCMP is an ideal
framework to motivate and integrate advanced music research. In addition, HCMP has the po-
tential to benefit millions of practicing musicians, both amateurs and professionals alike. The
vision of HCMP, the problems that must be solved, and some recent progress are presented.
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Performing arts, H.5.1 Multimedia Information Systems

Keywords and phrases Interactive performance, music processing, music signals, music analysis,
music synthesis, audio, score
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1 Introduction

Human Computer Music Performance (HCMP) is a new term intended to describe an emerging
practice of creating computer music systems that can perform live music in association with
human performers [11]. Interactive music performance itself is not new; however, even
after decades of work in this area, examples of intelligent, competent, autonomous music
performance by computer are rare. Moreover, some very general problems of music listening
and generation need to be solved to enable a rich practice of HCMP. This contribution
describes many problems of live music performance. It is hoped that researchers will be
inspired to consider these problems and perhaps solve them.

Interactive music systems to date fall into several different categories. Probably, the
most extensive work has been with experimental music where there are few traditions or
constraints. This has freed creators from concerns of synchronization, harmonic structure,
adherence to predetermined forms, etc. Instead, the focus can be on interactivity, gestural
control, algorithmic composition, and new synthesis techniques, which have all advanced
greatly over several decades [43, 46].

Another area of focus is score following and computer accompaniment [15]. These systems
assume that music details are predetermined by the composer, and the main interactive task
is synchronization. Typically, computer accompaniment systems have no “understanding” or
representation of music theory, structure, or form, and there is no need to generate music
other than to play predetermined notes or sounds. One might say computer accompaniment
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Figure 1 A high-level view of a Human Computer Music Performance (HCMP) system.

has been successful because all of the effort can be focused on two clear problems: (1)
real-time alignment of a performance to a score, and (2) musically adjusting the playback of
an accompaniment to synchronize to another player.

A limitation of computer accompaniment is that real-time alignment is not always useful
or applicable to music synchronization. A common situation in popular music is that there
is no detailed score to which a performance can be compared and aligned. For example,
lead sheets may notate only chords. Even where a melody is notated in detail, it is often
understood that the rhythms can be interpreted freely. Alignment to a score that is freely
interpreted does not give very useful information about musical tempo and location. In these
cases, a very different approach must be taken to synchronize musicians.

“Popular music” (for lack of a better term) is defined here to be music with a generally
steady tempo, clear structures of sections, phrases, harmony, melody, and meter, and usually
a substantial amount of improvisation. Synchronization in popular music tends to be based
on beats and measures rather than on a score. The score is likely to be imprecise (as in a lead
sheet that only specifies chords and melody), and even when the score suggests every note
to play, musicians are usually free to interpret the music, adding their own chord voicings,
strumming patterns, syncopations, etc. Because of the difficulty of synchronizing machines
to humans, it is common for humans to synchronize to machines or to the playback of fixed
media as in Karaoke performance, street musicians playing along with backing tracks, and
practicing with Music Minus [36] recordings.

At present, HCMP is more of a vision than a practice. The vision is for autonomous
computer systems to play the role of a skilled musician in a live performance of popular
music.1 Figure 1 gives a high-level view of a complete HCMP system. Musicians are sensed
not only by machine listening but also through a variety of sensors and interfaces. Musical

1 The term HCMP is really applicable to all forms of live music performance involving humans and
computers. If the term is used more broadly, then we may need more specific terms, e.g. HCMPPM for
popular music, HCMPSF for synchronization by score following, etc. I will simply use HCMP for now.
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decision making relates real-time music performance to music representations that could
be very specific or only musical sketches. Music is generated, synthesized, and diffused via
loudspeakers into the performance space. Non-audio feedback in the form of displays, tactile
feedback, and music notation are also generated to communicate with the live performers.
Editors are also available to create and alter music for the HCMP system. Realizing the
vision of HCMP will require solutions to a number of problems:

Synchronization in beat-based music is largely unexplored from the standpoint of imple-
menting systems with musical competence. Of course, automatic beat tracking has been
studied, but highly reliable and robust systems do not exist. Studies of human synchron-
ization in music are found in the literature of performance analysis, for example [41].
Communication among musicians is especially important in popular music where the
score may only be a sketch and where performers are generally free to alter the form of
the music in mid-performance.
Musicians plan performances based on very abstract representations of the music. For
example, “I’ll solo and you come in on the bridge” is almost a complete recipe for
performing a ballad, but this is possible only because the musicians have shared conventions
for describing music structure and organizing performances.
Musicians transform some representation of music into live sound. This may involve
the composition of parts, e.g. writing a bass line given a chord progression. Once notes
and phrases are determined, they must be synthesized musically or perhaps performed
acoustically by a robot. Finally, sounds must be diffused into the performance space,
ideally in a way that conveys the impression of live performance rather than the mere
playback of a recording.

After a short discussion of related work, these problems are considered one-by-one in the
following sections. We conclude with a discussion of the possible impact HCMP research can
have on the future of music.

2 Related Work

As mentioned above, most of the work to date on interactive computer music addresses
problems of experimental contemporary art music and Western art music, but ignores the
problems of popular music or music with a steady tempo, where scores are not so helpful
and where timing must be very precise. In the commercial world, Ableton Live [1] provides
a powerful interface for beat-based music production and control, and it provides some
real-time time-stretching and tempo adjustment capabilities, but it is not meant to function
as a virtual musician. Robertson and Plumbley’s B-Keeper system [42] extends Ableton Live
with a real-time beat tracker and user interface so that a user can synchronize music to a
live drummer. This system implements some components of an HCMP system, but does not
address other issues.

Conducting systems [5, 8, 13, 29] are closely related to HCMP, and differ mainly in
that they assume a dedicated person (the conductor) to give commands to the computer.
Conducting is certainly an interesting way to synchronize computer performers with humans
in a live performance. Conducting systems have been used in public performances, including
some controversial performances of traditional works where electronics was used in place of
an acoustic orchestra [19].

In some conducting systems, all of the music is assumed to be generated by the computer,
so cues and synchronization are not critical issues. Many conducting systems have focused
on issues of adjusting tempo in real time and performing real-time time stretching of audio
and video in live interactive performance of classical music.
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On the other hand, popular music performance with human musicians raises the issues
of accurate synchronization, and how to handle cuts, repeats, and other changes in form.
Another issue is that conducting systems require a human conductor. Even if there is already
a conductor, it is common to add another conductor specifically to operate the computer
system. This is important because any technical “solution” that requires the full-time efforts
of a person has to be compared to the possibility of simply adding another human musician to
the existing ensemble. In contrast to a conducting system, an autonomous virtual musician
seems to be a better solution for a small group playing popular music.

3 Beat Tracking, Tempo, and Synchronization

The irony of working with “steady beat” music is that in live performance, the tempo is
never truly steady. Variations of 5 to 10 percent over time periods on the order of one minute
are to be expected, and fairly sudden tempo changes are common as well. In spite of this
variation, “steady beat” music is, for the most part, very steady, and the predictability of beat
times is crucial to synchronization, given that all the parts may be improvised and therefore
unpredictable. HCMP systems need to identify beats accurately and reliably. This might be
achieved with a combination of automatic beat tracking software [7, 16, 17, 23, 24, 32, 35]
and gestural sensors such as foot pedals or accelerometers.

Automation is desirable but tends to be not so reliable in two ways. First, automatic
beat trackers often make serious mistakes, losing track of the beat altogether. Although
the literature often implies that beat tracking is largely solved, even state-of-the-art beat
trackers fail too often to be used in live performance. The second problem is that automatic
beat tracking precision is not high. One might expect that when beat trackers work, they
are synchronized to audio features such as snare drum hits, which should be easy to detect,
reliable, and precisely timed. In reality, music audio often contains events that are slightly
offset from the true beat times and which result in inaccuracies. It seems that humans
and automatic beat trackers are using very different processes to identify beats, and these
processes are not always consistent.

Human input through tapping is more robust that beat-tracking, but tapping can be
a distraction to musicians. Also, musicians who are distracted by performance tasks can
tap with inadvertently large skews between the tap times and the true beat times. As
with automatic beat tracking, there are precision problems with tapping, especially foot
tapping, which otherwise is one of the most reliable and least obtrusive ways of getting beat
information from live performers.

In addition to identifying beats, HCMP systems need to know how beats relate to the
overall music structure. An important level of structure is the measure or bar. These
groups of 4 beats (typically) are the points of transitions such as chord changes and phrase
beginnings. By determining measure boundaries, HCMP systems can better interpret cues
or signals from humans. These cues are often ambiguous at the beat level but usually refer
to the nearest measure boundary. Robustly detecting measure boundaries is an interesting
real-time music analysis problem [27, 38].

4 Human Computer Communication

While computer accompaniment systems and beat trackers focus on extracting information
from music audio, much of the interaction in a music performance is external to the audio
channel. Musicians give visual signals, make eye contact, and use body gestures to commu-
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nicate music information, including cues for synchronization. Not all signals are explicit. For
example, as a trumpet player, I can usually tell when a fellow player is about to play by
noticing when the trumpet is lifted and when the player takes a breath. I may not even be
consciously aware of this communication, but it exerts a strong influence that may help me
to take corrective action if I am not synchronized to the other players.

Similarly, HCMP systems should develop simple and natural communication channels
between computer and human musicians. In fact HCMP is intended to sound a bit like
HCI–Human Computer Interaction–and HCMP research needs to build upon HCI techniques
and approaches [40]. This is a rich area for research, especially given the many possibilities
of sensors and computer processing. We need to explore real-time interaction techniques for
performing musicians as well as real-time displays that allow computers to communicate
with and give cues to humans.

Nicolas Gold and I [22] have identified multiple classes of cues in an effort to describe
musical communications more systematically. A Static Score Position Cue communicates
the current position in the score to correct synchronization problems. An Intention Cue is
used to indicate the direction of the performance when there are options. For example, “this
is the last time we will repeat this section.” A Voicing/Arrangement Cue is used to modify
the performance, for example by telling a player to begin playing, to play louder, or to play
more notes.

We have developed a music notation-based interface for HCMP in my lab [30]. (See
Figure 2.) The music notation system, inspired by earlier work [10], is bi-directional: The
computer can display its location by highlighting bar lines in the music to confirm to the
human that it is in the right location. On the other hand, the human can touch or click on
locations in the score to give cues or to tell the computer where to begin in a rehearsal.

Other modes of interaction are also possible. For example, we have developed a small
touch sensor that can be worn on the finger and used to give cues while playing a musical
instrument. Nicolas Gold wrote software to interpret several different free hand cues using a
Kinect [33]. I have used foot tapping at half tempo (cut time) to indicate tempo and 4 taps
at full tempo to cue the beginning of some music. The possibilities seem endless.

5 Music Structure

Music structure and representation has received much attention, but HCMP seems to raise
some unique questions. The main idea is that music often includes repetition and hierarchical
structure. For example, a popular song form can be described as “AABA,” indicating that
the first section (usually 8 measures) is repeated, followed by a contrasting “B” part, and
then the “A” part is repeated again at the end. In practice, sections are usually varied
slightly from one instance to the next. An interesting challenge for music processing is to
detect music structure automatically from audio [2, 14, 39] or symbolic scores [28].

Popular music scores exist in multiple forms, and coordinating these somewhat informal
objects systematically will require careful design of models, representations, and interfaces [22].
The typical musical score uses repeat signs and other constructs to make the notation more
compact. Often, there are exceptions where the music is played differently on each repetition.
Sometimes, the exceptions are handled in a standard way, such as first and second ending
notation, but often there are informal annotations, e.g. “Play 1x only.” We call this the
static score, in analogy to static computer programs.

When a static score is “executed” or unfolded to create a linear sequence of events, the
fact that repetitions are different and occur at different times can be represented directly,
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Figure 2 A bi-directional interactive music interface for HCMP. The computer can scroll
music and highlight its current position. The human can point to locations to give cues, correct
synchronization problems, or indicate starting locations in rehearsals.

albeit with greater redundancy. We call this the dynamic score in analogy to the dynamic
(run-time) execution sequence of a program. The mapping between static scores and dynamic
scores is complicated by non-determinism. For example, a repeat may be marked “ad lib,”
meaning that the number of repetitions is to be determined at performance time. Thus, the
dynamic score cannot be fully determined until performance time.

However, dynamic scores are not just ephemeral traces of a performance. An audio
recording corresponds to the dynamic score as does a MIDI sequence. If a performance
consists of humans reading static scores and an HCMP system playing from a MIDI file and
an audio file, then clearly the static and dynamic representations must be reconciled. See
[21] for related work.

In popular music, scores are often informal, and musicians often create informal plans
that do not match the implied plan of the score. For example, musicians might decide to
play intro, verse, chorus, chorus, ending, even if the score shows a second verse. In popular
music, it is accepted practice to alter the structure in this way. Musicians might even decide
to change the key of the second chorus. We call these informal plans “arrangements.” An
HCMP system must be able to access information from a static score, a dynamic score, and
an arrangement in order to make a performance plan that is consistent with the intentions
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of human musicians. It must be easy for human musicians to make and communicate
arrangements in a few seconds or even during the performance, because these decisions are
often made on the spot during a performance. Building simple tools to manage music where
these fairly abstract concepts come into play is also a challenge.

6 Music Generation, Synthesis, and Diffusion

There are many ways that computer musicians can actually produce sound. The simplest
technique is to use MIDI scores and conventional synthesizers. This approach may work very
well in certain situations, but it assumes there is a detailed score including dynamics and
expressive timing, and that the instrument can be synthesized adequately. An alternative is
to play back prerecorded audio using time-stretching techniques to adjust the tempo of the
recording and synchronize it to the live performers [12]. This works well, but it requires a lot
of time and effort to prepare and it assumes that live musicians are available to perform the
necessary parts in the recording session. Current synthesis methods for many instruments
are not very convincing, and even good synthesis methods often require such careful control
that satisfactory results are very hard to obtain. Progress is being made in research systems,
e.g. [18, 37], and commercial systems, e.g. [31, 34, 44], but HCMP could benefit from new
research in synthesis methods. Ideally, one would like to render a score into a convincing
performance including musical phrasing, stylistically appropriate timing and articulation,
dynamics, and vibrato.

A common task for a popular music performer is to play according to a “lead sheet” or
“chord chart,” which specifies the key, harmony and structure of the music (and sometimes
the melody), but few if any other details. From this information, a drummer can create
an appropriate rhythm that matches the structure of the song, a bass player can provide a
rhythmic and harmonic foundation, a keyboard or guitar player can play chords according to
the harmony, and other musicians can harmonize the melody or improvise a solo. Writing a
new song might be considered a highly creative and difficult task, but creating a bass part
or playing piano to accompany a singer is a routine task for a working musician. In fact,
most musicians can create very musical parts without errors in real time as they read a
lead sheet. In the field of popular music performance, many musicians are actually more
comfortable improvising parts from a lead sheet than reading conventional music where every
note is indicated explicitly. Thus, creating musical parts from a sketch such as a lead sheet
is a fundamental skill that should be implemented by an HCMP system. This is especially
important when human performers do not already play the instrument to be played by
HCMP and therefore lack the skill or experience to compose the part.

Programs such as Band-in-a-Box [26] perform the music-from-lead-sheet task already, but
do not give the user too much control over music generation. Instead, Band-in-a-Box offers a
wide variety of styles from which the user can select. It seems that research into machine
learning, musical analogy, music similarity, and models of musical style can lead to more
flexible and controllable music generation.

Finally, one of the problems with computer-generated sound is diffusion into an acoustic
space. The one-dimensional audio signal must be converted to three-dimensional sound
waves through loudspeakers, which impart their own audible radiation characteristics onto
the sound. As computer and digital audio equipment prices have fallen, there has been much
interest in using many audio channels to drive arrays of speakers to improve and control the
diffusion of sound in two or three dimensions. Examples include linear speaker arrays to
produce controlled wavefronts [4, 6], spherical speaker arrays to simulate sound sources with
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frequency-dependent radiation patterns [3, 9], and our own work on convolution-based stereo
panning and placement [25]. The challenge for HCMP is to completely integrate computer
performance with live acoustic instruments. The techniques will depend upon the situation,
but there is a need for improvements in sound reinforcement with implications for all audio
interfaces.

7 Example

One substantial performance [12] using HCMP has been presented at Carnegie Mellon
University. I worked with the student jazz band, with assistance from David Pellow, the
director, and John Wilson, an arranger. We set out to create a string orchestra that could
play along with a live jazz band. Our musical goal was that the strings plus jazz band sound
as good as possible. We decided to emphasize practical considerations and reliability over
cutting-edge research, and our experience has helped to formulate some of the problems and
approaches suggested above.

John Wilson was commissioned to write for jazz band and strings. We decided to structure
the piece so that the string players do not play continuously, but instead play during a
number of segments of the music. The human rhythm section (drums, bass, and piano)
plays continuously throughout the piece. This allowed for interplay between the band and
the strings. It also had functional purposes: Because the strings were silent at many times,
each entrance could be cued separately. If anything went wrong, there would soon be an
opportunity to make another entrance. In addition, the sectional nature allowed for efficient
recording and editing.

To the computer, the string parts are just sounds that need to be cued to begin on a
particular beat and synchronized to the following beats. When each sound ends, the system
prepares to play the next. Synchronization is handled in the simplest way imaginable. A foot
pedal is used to tap beats (in cut time, about 85 taps per minute) to establish the tempo
and throughout the performance. A small keyboard is used to cue entrances.

One thing we learned is that some new listening skills are required. In one rehearsal,
the tapper (a skilled percussionist) started listening to the string section under control and
naturally started to tap along with the strings rather than the band. Once the band was
ignored, the tapper and strings started to drift away from the live band. As soon as the
strings were obviously out of synchronization, the tapper resynchronized to the live band,
but I had written code to reject “spurious” taps that fell more than 30% of a beat from the
expected beat time, and the corrective taps were ignored. (Since then, we have disabled the
“spurious” tap rejection feature.)

Sound generation is based on the pitch-synchronous, overlap-add (PSOLA) [45] approach
to time stretching. The requirement for real-time performance, continuous (every tap)
update, latency compensation, and synchronization across multiple (20) channels led to
some innovative implementation details. Most PSOLA systems are designed to time stretch
by a given factor over a given time span. PSOLA works by inserting or deleting whole
pitch periods, thus the operation of PSOLA is not really continuous stretching but an
approximation that is quantized to pitch periods. We have 20 separate channels, each with a
single instrument and its own set of pitch periods. Due to the quantization, it is difficult to
predict the exact duration of input audio that will be consumed, and there is the possibility
that stretched tracks will lose synchronization with the accumulation of quantization errors.
To ensure that all tracks remain synchronized, we use a feedback mechanism: The overall
control system adjusts the global stretch factor so that the mean audio file position will
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Figure 3 An HCMP performance. The live jazz ensemble is complemented by a 20-piece virtual
string orchestra played over an array of loudspeakers visible behind the band.

synchronize with the live band. Then, the per-track stretch factor is adjusted slightly for
each track to drive the track’s audio file position toward the global mean.

Finally, sound diffusion is based on multiple (8) speaker systems arranged across the
stage (see Figure 3). Each of the 20 input channels represents one close-miked string (violin,
viola, or cello). Each instrument channel is directed to only one speaker. Rather than a
homogenized orchestra sound spread across many speakers, we have individual instrument
sounds radiating from multiple locations and mixing in the room as with an acoustic ensemble.
The results were so convincing that an audio engineer wanted to know what reverberation
plug-in we used for the recordings, yet the recordings were actually dry and all sense of
“stereo” and reverberation resulted from the diffusion scheme.

8 Conclusions

From a scientific standpoint, Human Computer Music Performance (HCMP) offers a frame-
work to organize, motivate, and coordinate an array of interesting research efforts. It suggests
that we study music and music performance from many points of view, developing new
techniques for sensing music beats, tempo, and structure, as well as new ways for musicians
to communicate music intentions, especially to computer-based performers. The fundamental
problems underlying HCMP are general problems of Music Understanding, thus there are
broad implications. As the “Multimodal Music Processing” theme of this book suggests, this
work is truly multimodal, dealing with various levels of discrete and symbolic scores, music
performance data such as MIDI, music audio, graphical displays, gesture sensors, and other
forms of musical communication. The models and analysis techniques introduced will have
applications in other music-related studies such as music information retrieval, music theory,
and music cognition.

Digital sound synthesis has been an object of study for half a century, and has connections
to auditory perception, acoustics, digital signal processing, speech synthesis, and mathematics.
HCMP challenges us to investigate new techniques for time-stretching and pitch shifting as
well as to consider the importance of sound diffusion in the perception of music synthesis
quality.

More broadly, HCMP addresses complex, real-time cooperative tasks. New interfaces are
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needed to coordinate computers and humans with a minimal amount of explicit or manual
control. This could have implications for other human-computer interaction scenarios such as
driving and piloting, directing disaster relief, or complex mission control where tasks must be
delegated and coordinated. HCMP problems suggest an integrated approach that combines
machine learning with human factors studies to create reliable interfaces; advances in this
area should have many applications beyond music.

Music making is practiced in the majority of households in the United States. The
National Association of Music Merchants reported that industry retail sales in 2006 were
about 8 billion dollars in the U.S. This includes sales of over 5 million musical instruments,
but does not include music education, music recordings, or music performance. Thus, the
potential societal impact of effective new music technology is enormous. HCMP seems to be
an application area where recent advances in music understanding and music information
processing can be leveraged to benefit millions of people. Producing results that are extremely
practical and useful is not just an altruistic project for researchers. By integrating academic
research to create a practice of popular music-making, the research community stands to
gain greater recognition and support from society.

Another motivation for research in Human Computer Music Performance is purely artistic.
One could criticize HCMP as an effort to further reduce and automate popular music, which
is already formulaic. Would it not be better to devote efforts to experimental music and
new art forms? My hope is to leverage the conventions, opportunities, and sheer numbers
in popular music to obtain a widespread practice of HCMP. I am convinced that if this
succeeds, at least a few artists in a million will invent some truly creative uses for HCMP
technology that transcend existing musical practice. Thus, HCMP could be an important
path by which technology shapes the future of music.
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Abstract
Personalized and user-aware systems for retrieving multimedia items are becoming increasingly
important as the amount of available multimedia data has been spiraling. A personalized system
is one that incorporates information about the user into its data processing part (e.g., a particular
user taste for a movie genre). A context-aware system, in contrast, takes into account dynamic
aspects of the user context when processing the data (e.g., location and time where/when a user
issues a query). Today’s user-adaptive systems often incorporate both aspects.

Particularly focusing on the music domain, this article gives an overview of different aspects
we deem important to build personalized music retrieval systems. In this vein, we first give an
overview of factors that influence the human perception of music. We then propose and discuss
various requirements for a personalized, user-aware music retrieval system. Eventually, the state-
of-the-art in building such systems is reviewed, taking in particular aspects of similarity and
serendipity into account.
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1 Introduction

Multimodal music processing and retrieval can be regarded as subfields of music information
research (MIR), a discipline that has substantially gained importance during the last decade.
Multimodality can be recognized at several levels in MIR, for example, different modalities
to access music collections (query-by-example, direct querying, browsing, metadata-based
search, visual user interfaces) or different representations of music items themselves – score
sheet, symbolic MIDI, digital audio waveform, or textual lyrics, just to name a few.
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In this article, multimodality relates to the integration of various knowledge sources in
music processing systems. A key source of knowledge is given by aspects linked to the user
and his or her usage of the system, which is the focus of the present study. The article at hand
hence gives an overview of the state-of-the-art in modeling and determining properties of
music and listeners using features of different kinds. These features all relate to how music is
perceived by humans. First, a broad categorization of such features is presented in Section 2.
Also references to related work on extracting and processing the respective features is given
for each feature category. Subsequently, various research endeavors and directions deemed to
be important by the authors for the future of personalized, multimodal music retrieval are
presented. More precisely, we present a set of requirements important for user-aware music
retrieval systems in Section 3. Two vital prerequisites to build user-aware music retrieval
applications, such as personalized music recommender systems or user-adaptive browsing
interfaces, are first elaborating similarity measures that are capable of revealing similarity
relations as perceived by humans and second provide a serendipitous experience to the user.
In order to develop the mentioned, sophisticated similarity measures, we need methods that
capture musical similarity at different levels using different modalities, for example, timbre,
rhythm, harmony, lyrics, or co-listening information. A review of the state-of-the-art in
building such adaptive similarity measures is presented in Section 4. The latter requirement,
ensuring a certain degree of serendipity in retrieval results, necessitates to take into account
various user-dependent factors. For example, it is important for a serendipitous system
to have information about the user’s music taste and preference, where taste refers to a
long-term inclination and preference describes a rather short-term, situation-dependent
affection. Both are likely to change over time, although taste usually changes only gradually
and at a slower rate than preference. More details on serendipity aspects in personalized
music retrieval are given in Section 5. Finally, in Section 6, we draw conclusions and indicate
some directions for future research.

2 Computational Aspects of Music Perception and Similarity

Developing computational features that encode knowledge on how we humans perceive music
is one of the grand challenges in MIR. It is a particular endeavor for various reasons. Among
others, music perception is very subjective and influenced for example by the listener’s music
preferences, but also highly dependent on his or her musical training as well as social and
sociographic background. Moreover, perceptually relevant features may be extracted from
very different media and representations of music, which describe a wide variety of aspects.
Media encoding music or music-related data range from score sheets to digital audio files
and from textual lyrics to images of cover artwork. Which of these multimodal aspects
influence human perception of music, in which way and to which extent is still an open
research question.
Computational music features can be broadly categorized into three classes, according to the
authors: music content, music context, and user context, cf. Figure 1.

2.1 Music Content
In traditional MIR, features extracted by applying signal processing techniques to audio
signals were dominant. Such features are commonly denoted as signal-based, audio-based, or
content-based. In addition to audio signals, the music content may be described by various
other modalities, such as handwritten or digitized score, or video clips.
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music 
content

Examples:
- rhythm patterns
- MFCC models
- melodiousness
- percussiveness
- loudness

music 
context

user 
context

Examples:
- collaborative tags
- song lyrics
- album cover artwork
- artist's background
- playlist co-occurrences

Examples:
- mood
- activities
- social context
- spatio-temporal context
- physiological aspects

music 
perception

Figure 1 Feature categories to describe music.

Thorough overviews of common extraction techniques are presented in [17, 28, 65]. Music
content-based features may be low-level representations that stem directly from the audio
signal, for example Mel Frequency Cepstral Coefficients (MFCCs) [54], zero-crossing rate
[29], amplitude envelope [15], bandwidth and band energy ratio [52], spectral centroid [82],
fundamental frequency or chroma features [11]. As mentioned in [28], most low-level features
do not make sense to the majority of the listeners, although they are easily exploited by
computing systems.

Alternatively, content-based features may be derived or aggregated from low-level proper-
ties, and therefore represent aspects on a higher level of music understanding. Such features
are often named mid-level features. Machine learning, statistical modeling and models of the
human auditory system make mid-level descriptors possible, usually by gathering large sets
of observations. Mid-level features usually aim at capturing either timbral aspects of music,
which were traditionally modeled via MFCCs [2], rhythmic aspects, for example described via
beat histograms [92] or fluctuation patterns [78, 69], and tonal aspects such as predominant
melody[73], key or chord progression [27], often derived from chroma features.

Recent work aims at inferring more specific high-level concepts, meaningful to users, such
as melodiousness, complexity, danceability, aggressiveness [70, 68, 90], mood [44], or genre
[31]. The transition from low- or mid-level descriptors to high-level descriptors requires
bridging the semantic gap. According to [28], high-level or semantic feature extractors require
to include an induction procedure that has to be carried out by means of a user model, and
not only a data model as in the case of mid-level descriptors.

2.2 Music Context
The music context can be described as all information relevant to the music item under
consideration, albeit not directly extractable from the music manifestation itself. For example,
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the meaning of a song’s lyrics [40, 36], the political background of the musician, or the
geographic origin of an artist [30, 81, 80] are likely to have a strong impact on how music is
perceived and interpreted, but are not manifested in the signal.

An overview of the state-of-the-art in music context-based feature extraction (and simi-
larity estimation) can be found in [76]. The majority of the approaches covering the music
context are strongly related to Web content mining [53] as the Web provides contextual
information on music artists in abundance. For example, in [34] the authors construct term
profiles created from artist-related Web pages to derive music similarity information. RSS
feeds are extracted and analyzed in [18]. Alternative sources to mine music context-related
data include playlists (e.g., radio stations and mix tapes, i.e., user-generated playlists)
[3, 16, 67] and Peer-to-Peer networks [83, 55, 24, 96]. In these cases, co-occurrence analysis
is commonly employed to derive similarity information on the artist- or track-level. Co-
occurrences of artist names on Web pages are also used to infer artist similarity information
[77] and for artist-to-genre classification [79]. Song lyrics as a source of music context-related
information are analyzed, for example, in [56] to derive similarity information, in [45] for
mood classification, and in [60] for genre classification. Another source for the music context
is collaborative tags, mined for example from last.fm [43] in [25, 51] or gathered via tagging
games [59, 91, 46].

2.3 User Context
Scientific work on MIR that takes into account aspects of the user context is still relatively
sparse and covers diverse topics. It can be broadly divided into user music-seeking behavior
studies, user preferences elicitation, multifaceted user and similarity models, and personalized,
user-aware recommender systems.

User Music-Seeking Behavior Studies

Several MIR researchers, largely with backgrounds in library and information sciences, have
devoted studies to music-seeking behavior and information requirements of users. While
these studies typically are conducted on a much smaller-scaled population than usually
found in engineering settings, they are detailed and give qualitative insight into real-life and
every-day music behavior. Many of them strikingly point out how the reception of music is
not just guided by the characteristics of the music audio signal, but is strongly influenced by
multimodal influences that do not necessarily have to do with the music.

Cunningham et al. [22] conducted an ethnographic study of music searching and browsing
techniques. Important findings regarding this chapter were that music shopping often was a
collaborative activity, with a social function going beyond music listening, and a ‘surprisingly
visual’ activity too, with shoppers identifying music genres that they liked through the
appearance of album covers. The influential role of visual means in musical settings also
appears in other user studies, e.g. Bainbridge et al. [6], in which a user-centered personal
digital library is designed with the spatial hypermedia paradigm, and recently Barthet and
Dixon [10], describing an ethnographic study of musicologists at the British Library. In
the latter study, visualization of audio signals aided the musicologists with exploring and
studying music recordings, but also could steer the users’ attention towards specific details.
A visual spectrogram display pointed out signal features (e.g. vibrato) that the user was not
aware of, but also deemphasized sound aspects that could not be seen: “I completely forgot
about the bassoon, it feels like it is unimportant now, but I was once struck by it”.

Social context is a strong influence on music taste. Laplante [42] found that young adults
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had a strong penchant for informal channels (e.g. friends), but a low trust of experts (e.g.
music store staff). Furthermore, it was noted that music discoveries often were the result of
passive rather than active search behavior – this points towards serendipitous finds, which
will be discussed in the upcoming sections of this chapter.

The reasons why we remember, like or hate music also are strongly determined by context.
In a study of reasons why people dislike songs [21], the factors of influence were lyrics, the
earworm effect (getting a song stuck in your head without wanting this), quality of the singing
voice, dislike of music videos, over-exposure of a song, pretentiousness of the performing
artist, clashing taste cultures (disliking the social community associated with a certain style)
and unfortunate personal associations. An extensive study by Lee [49] of natural language
music queries also illustrates frequent associative notions: dormant searches get rekindled
because similar thematic context settings are encountered (e.g. searching for information
on a ‘spooky tune’ that has been used in cartoons to signify that someone has died, after
hearing it being played on Halloween), and songs get a special affective meaning because
they had been heard in special affective settings (“My grandfather, who was born in 1899,
used to sing me to sleep with this song and I can’t remember the words”).

Findings from user studies as described in this paragraph have not widely been adopted
in the design of MIR systems yet, but still will be very relevant when studying user context.

User Preferences Elicitation

An obvious way to obtain information about the taste, preferences and behavior of a user
is context logging. However, this can pose privacy issues. In a study on users’ acceptance
of context logging in the context of music applications by Nürnberger and Stober [89], the
authors found significant differences in the participants’ willingness to reveal different kinds of
personal data on various scopes. Most participants indicated to eagerly share music metadata,
information about ambient light and noise, mouse and keyboard logs, and their status in
instant messaging applications. When it comes to used applications, facial expressions, bio
signals, and GPS positions, however, a majority of users are reluctant to share their data. As
for country-dependent differences, US-Americans were found to have on overall much lesser
reservations to share personal data than Germans and Austrians. One has to note, however,
that the results might be biased as 70% of the 305 participants were from Germany.

An alternative to context logging is to explicitly ask the users to provide means to
characterize their musical preferences. One example of this methodology is presented in [32].
This study proposes a method to automatically generate, given a provided set of preferred
music tracks, an iconic representation of a user’s musical preferences – the Musical Avatar.
Starting from the raw audio signals, they compute a set of semantic descriptors which are
mapped to the visual domain by creating a humanoid cartoony character that represents
the user’s musical preferences. Examples of possible avatars are provided in Figure 2.
This representation of a users’s musical preferences is then used to provide personalized
recommendations in [13].

User and Similarity Models

One of the earliest works in user modeling for MIR is [19], where Chai and Barry present
some general considerations on modeling the user in a music retrieval system. They also
suggest an XML-based user modeling language for this purpose.

Zhang et al. present CompositeMap [100, 101], a model that takes into account similarity
aspects derived from music content as well as social factors. The authors propose a multimodal
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Figure 2 Examples of Musical Avatars representing the user’s musical preferences [58].

music similarity measure and show its applicability to the task of music retrieval. They also
allow a simple kind of personalization of this model by letting the user weight the individual
music dimensions on which similarity is estimated. However, they do neither take the user
context into consideration, nor do they try to learn a user’s preferences.

In [63] a multimodal music similarity model on the artist-level is proposed. To this end,
McFee and Lanckriet calculate a partial order embedding using kernel functions. Music
context- and content-based features are combined by this means. However, this model does
not incorporate any personalization strategies.

In [72] Pohle et al. present preliminary steps towards a simple personalized music retrieval
system. Based on a clustering of community-based tags extracted from last.fm, a small
number of musical concepts are derived using Non-Negative Matrix Factorization (NMF)
[48, 98]. Each music artist or band is then described by a “concept vector”. A user interface
allows for adjusting the weights of the individual concepts, based on which artists that
match the resulting distribution of the concepts best are recommended to the user. Zhang et
al. propose in [100] a very similar kind of personalization strategy via user-adjusted weights.

Knees and Widmer present in [37] an approach that incorporates relevance feedback [74]
into a text-based music search engine [35] to adapt the retrieval process to user preferences.
The search engine proposed by Knees et al. builds a model from music content features
(MFCCs) and music context features (term vector representations of artist-related Web
pages). To this end, a weight is computed for each (term, music item)-pair, based on the
term vectors. These weights are then smoothed, taking into account the closest neighbors
according to the content-based similarity measure (Kullback-Leibler divergence on Gaussian
Mixture Models of the MFCCs). To retrieve music via natural language queries, each textual
query issued to the system is expanded via a Google search, resulting again in a term weight
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vector. This query vector is subsequently compared to the smoothed weight vectors describing
the music pieces, and those with smallest distance to the query vector are returned.

Nürnberger and Detyniecki present in [66] a variant of the Self-Organizing Map (SOM)
[38] that is based on a model that adapts to user feedback. To this end, the user can move
data items on the SOM. This information is fed back into the SOM’s codebook, and the
mapping is adapted accordingly.

In [99] Xue et al. present a collaborative personalized search model that alleviates the
problems of data sparseness and cold-start for new users by combining information on
different levels (individuals, interest groups, and global). Although not explicitly targeted at
music retrieval, the idea of integrating data about the user, his peer group, and global data
to build a social retrieval model might be worth considering for MIR purposes.

User-Aware Music Recommendation

Baltrunas et al. present a user-aware music recommender system for usage in cars [7]. They
aim at learning relations between user aspects and music genres. As contextual aspects,
Baltrunas et al. look into driving style, road type, landscape, sleepiness, traffic conditions,
mood, weather, and time of day. Using a Web-based tool, the authors first assess in a user
study which of these contextual aspects influence the preference for music of a particular
genre, either in a positive of negative way. According to the study, driving style strongly
influences the choice for music from the genres Blues, Classical, and Metal, whereas sleepiness
seems to foster the decision for Pop, Country, and Reggae music. Furthermore, Baltrunas
et al. investigate the impact of user context on user ratings and found that in most cases
the awareness of a particular contextual situation had a negative effect on the ratings. The
most significant (negative) influence on user ratings had the conditions “sleepy” and “traffic
jam”. The authors of [7] then propose a music recommendation approach that employs an
extended Matrix Factorization [39] algorithm to predict item ratings. Their model includes
contextual condition and genre vectors.

Bogdanov et al. [13] present a system which automatically generates recommendations
from a user’s musical preferences, given her/his accounts on popular online music services.
Using these services, the system retrieves a set of tracks preferred by a user, and further tries
to infer a semantic description of musical preferences from raw audio information. Thereafter,
the system generates music recommendations, using a semantic music similarity measure.

Even though no detailed information on their approach is publicly available, last.fm [43]
builds user models based on its users’ listening habits, which are mined via the “AudioScrob-
bler” interface. Based on this data, last.fm offers personalized music recommendations and
playlist generation, however, without letting the user control (or even know) which factors
are taken into account. Another commercial example employing a collaborative filtering (CF)
[14] approach can be found in amazon.com’s music Web store [1]. Again, no details of the
exact approach are publicly available.

2.4 Further Remarks
Having presented the three basic feature categories (music content, music context, and user
context), we would like to note that there is an overlap between some of these. Indeed,
particular features cannot only be assigned to one group, but combine aspects of several
categories. For example, song lyrics are in principal music content. However, even state-of-
the-art techniques do not allow for converting sung lyrics into textual representations from the
audio signal, or even to derive some kind of higher level meaning. On the other hand, several
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lyrics portals on the Web (music context sources) offer such textual representations. Another
example is similarity measures based on collaborative filtering. They are music context-
related in the sense that the process is collaborative, however CF is used for personalizing a
music recommendation to a user or a group of users, hence it takes into account the user
context.

3 Important Aspects for Personalized Music Retrieval

Traditionally, evaluating music retrieval approaches focused on the concept of musical
similarity, meaning that the performance of a retrieval system is judged the better the more
similar the returned pieces are to a given seed. Although this is a very intuitive manner of
assessment, it does not take into account that the information need of the user might be
different. Indeed, for many common and popular MIR tasks, such as automated playlist
generation and music recommendation, the listener does not necessarily want to be offered a
list of closest matches in terms of acoustic similarity, as usually given by today’s content-based
music recommenders. User studies focusing on the perceived quality of automated, content-
based playlist generation [71, 50] showed that playlists with items that were acoustically very
similar were often deemed too perfect or homogeneous, and thus boring. In addition, users
were shown to judge playlist items differently based on the amount of (metadata) information
accompanying the playlist item [9, 50].
We therefore believe that a new generation of user-aware music retrieval systems should
not only focus on traditional similarity scores derived via applying audio signal processing
techniques, but also take other factors, including information from different modalities, into
account. More precisely, such factors include the following:

Similarity

Similarity relations in various dimensions should be taken into account. One set of dimensions
might be based on music properties such as rhythm, harmony, or timbre, inferred from
the audio signal; another might take into account the resemblance according to other data
sources, such as collaborative tags, playlist co-occurrences, or even images of album covers.
A third set of dimensions might be learned from a user’s listening preferences, for example,
by relating certain properties of the user context to particular categories of music. To give
an example, similarity could be defined as pieces that are usually listened together while a
user is jogging or while being together with friends.

Moreover, the user’s preferred music material should also influence the features and
their relevance for similarity computation. For instance, a retrieval system focusing in
classical music would need musically meaningful descriptors and similarity measures, while
in a retrieval scenario of mainstream popular music timbre can be informative enough for
distinguishing different types of music.

Diversity

Although the items in the results set of a music retrieval request should be similar, they
should also reveal a certain degree of diversity. For example, there is the well-known “album”
effect [95], i.e., due to same recording settings, tracks on one and the same album usually
show a higher level of similarity than other tracks (even by the same artist). To alleviate
this issue, some retrieval systems filter results from the same album or even by the same
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artist as the seed. Producing a well diversified result set for a given query is thus a common
requirement for IR systems.

Familiarity/Popularity vs. Hotness/Trendiness

These four terms or aspects are related to each other. Familiarity or popularity describes how
well-known an artist or song is, whereas hotness or trendiness relates to the amount of buzz
or attention an artist is currently getting [41]. Popularity has a more positive connotation
than the neutral expression of familiarity. However, we will use the terms interchangeably in
the remainder of the paper, likewise the terms hotness and trendiness. In terms of temporal
aspects, popularity can be seen as a longer lasting property, whereas hotness usually relates
to recent appreciation of typically shorter duration, although hot artists might also be very
familiar/popular to many people. To give an example, “The Beatles” are certainly popular,
whereas “Lady Gaga” currently tends to rank higher on the hotness dimension.

Recentness

This aspect distinguishes recently released pieces from pieces that are older and therefore
have a longer (playing) history. In contrast to the aspect of hotness, novelty does not require
an artist to be recently popular, just a temporal closeness to the present.

Novelty

This aspect describes whether a music item is novel to the user of the system. If a music
recommender keeps on suggesting tracks/artists well-known to the user, he or she will not be
satisfied, even if the recommended items are perfectly suited otherwise. Hence, presenting
novel recommendations is a vital requirement for a personalized recommender system.

Serendipity

Serendipity is a requirement often mentioned in the context of recommender systems. It
means that a user is surprised in a positive way since he discovered an item he did not expect.
In the context of music retrieval, we believe that the listener’s music preference and taste as
well as aspects of artist and song popularity have to be taken into account when we aim at
providing serendipitous results. For instance, a fan of medieval folk metal might be rather
disappointed and bored if the system recommends the band “Saltatio Mortis”, which is very
well known for this style of music. In contrast, for a user occasionally enjoying “Metallica”
but also “Bob Dylan”, the former mentioned band may be a serendipitous recommendation.

Apart from the listener’s music preference and taste, a user profile for a serendipitous
recommendation algorithm should take into account different categories of users as well as
their different cultural backgrounds. For instance, music perception of musicians is likely
to be quite dissimilar to that of music experts and editors, which is again different from
untrained, passive listeners.

Transparency

For the acceptance of user-aware music retrieval systems it is crucial how the results are
presented and explained. The presentation and explanation should be adapted to the users’
musical training and preferences. For instance, the system should provide clues about why
certain songs have been retrieved: “These two songs are similar because they share the same
harmonic progression, the same tempo, are from the same artists, were recorded by the same
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producer” or “This song was suggested because you are currently in an aggressive mood
while driving your car”, or even “This was your favorite song during the Summer you met
your future spouse”.

4 Adaptive Music Similarity Measures

Users of MIR systems may have a varying (musical) background and experience music in
different ways. Consequently, when comparing musical pieces with each other, opinions
may diverge. Moreover, different retrieval tasks may also require different views on music
similarity. In order to support individual user perspectives and multiple retrieval tasks, an
adaptable model of music similarity is required. Often, (dis-)similarity is modeled by a
distance measure. Either way, parameters need to be introduced that allow to adapt the
measure.

Direct Manipulation (Adaptability)

Depending on how complex the resulting model is, users may be able to manually adjust and
tweak the parameters according to their needs. For instance, Baumann et al. [12] describe
a joystick interface to control the weights of three similarity facets in a linear combination.
From a study with 10 users, it was concluded that users tend to use nearly similar joystick
settings throughout different environments for finding a set of similar songs given an anchor
song. Though the joystick interface was considered very intuitive by the users, it is unclear
whether it may be applied to more than three similarity facets. Similarly, the E-Mu Jukebox
described by Vignoli et al. [93] allows changing the similarity function that is applied to
create a playlist from a seed song. Here, five similarity facets (sound, tempo, mood, genre
and year) are visually represented by adapters that can be dragged on a bull’s eye. The
closer a facet is to the center, the higher is its weight in the similarity computation. Again,
a linear weighting scheme is used here. This interface is to some extent scalable with respect
to the number of facets but less intuitive. Indeed, a user study with 22 participants showed
that the interface is harder to use, but more useful compared to two control systems.

With an increasing number of facets, direct manual manipulation is likely to become more
difficult – even for a simple similarity model such as weighted linear combination. Moreover,
specific similarity preferences often exist only subconsciously and thus are hard to specify
explicitly. Instead of asking the user to explicitly state how he compares music, adaptive
MIR systems aim to learn suitable parameter settings from ground truth data (such as expert
annotations) or in an interactive way from user feedback.

Query and Relevance Feedback

The content-based MIR system for symbolic music described by Rolland [75] adjusts its
similarity model based on feedback received during successive interactions with the user
(search sessions). To model the similarity between a transcribed query and a melody, the
concept of pairings is introduced: A pairing is a part of an alignment (between query and
melody) that may comprise several notes and rests. Pairings can be classified into types and
for each type, a weight is defined that specifies the importance of the pairing type in the
similarity computation. In a ranked list of search results, the user can point out the correct
match and optionally some reasonable secondary matches. Given this feedback, the weight
for each pairing type is reinforced by a constant update factor if it contributes more to the
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similarity in the correct match than in the higher ranked false matches or otherwise decreased
respectively. This way, the system can adapt to the user’s way of comparing melodies.

The MUSIPER system developed by Sotiropoulos et al. [85] constructs music similarity
perception models of its users. To this end, users are asked to specify the degree of similarity
for retrieved music pieces. The system uses this relevance feedback to train several Radial
Basis Function Networks (RBFN) – a special form of neural network – in parallel. Each
RBFN represents a different similarity measure based on a different (content-based) feature
subset. The model parameters that are adapted during learning are the internal weights of the
networks. Finally, the network (and the respective feature subset) which best approximates
the similarity ratings specified by the user is selected. The authors report significant
improvement of perceived similarity in subsequent music retrievals during an evaluation with
100 participants and argue that the relation between subsets of features and personalized
music similarity could be verified.

Collection Clustering

Slaney et al. [84] apply several algorithms based on second-order statistics (whitening, Linear
Discriminant Analysis (LDA) [23], Relevant Component Analysis (RCA) [8]) and optimization
techniques (Neighborhood Component Analysis (NCA) [26], Large-Margin Nearest Neighbor
(LMNN) [94]) to learn Mahalanobis distance metrics for clustering songs by artist, album
or blog they appear on. For the optimization, an objective function that mimics the k-
nearest neighbor leave-one-out classification error is chosen. Songs are represented as vectors
containing various acoustic features. From their experiments, the authors conclude that all
algorithms lead to a significant improvement over the baseline. In particular, NCA and RCA
showed higher robustness with (artificially generated) noisy features.

The BeatlesExplorer [87] (Figure 3, top) is a prototype system for organization and
exploration of music collections that adapts to the user’s perceived similarity in that it learns
weights for different aspects of music similarity. Initially, a growing Self-Organizing Map
(SOM) is induced that clusters the music collection. The user has then the possibility to
change the location of songs on the map by simple drag-and-drop actions. Each movement
of a song causes a weight change in the underlying similarity measure based on a quadratic
programming scheme. As a result, the location of other songs may be modified as well.
Experiments simulating user interaction with the system show, that during this stepwise
adaptation the similarity measure indeed converges to one that captures how the user
compares songs.

The SoniXplorer [57] shown in Figure 3 (bottom) is another SOM-based system that also
adapts a weighted linear combination of basic similarities. Here, the SOM is displayed as
video-game-like virtual 3-D landscape accompanied by spatialized playback of songs. Apart
from moving songs on the map, the user can raise or lower the terrain to increase or decrease
barriers between regions. For the adaptation, a target distance matrix is derived from the
arrangement. Then a linear regression learner adapts the weighting accordingly.

Metric Learning with Relative Distance Constraints

In many publications, adapting music similarity is considered as a metric learning problem
subject to so-called relative distance constraints. A relative distance constraint (s, a, b)
demands that the object a is closer to the seed object s than object b, i.e., d(s, a) < d(s, b).
Such constraints can be seen as atomic bits of information fed to the adaptation algorithm.
They can be derived from a variety of higher-level application-dependent constraints. For
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Figure 3 Prototype interfaces for music collection structuring w.r.t. user-adaptive similarity.
Top: BeatlesExplorer [87]. Bottom: SoniXplorer [57].
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instance, if the user moves a song s from one cluster to a different one in the BeatlesExplorer
described above, this can be interpreted by the following set of relative distance constraints:

d(s, ct) < d(s, c) ∀c ∈ C \ {ct}

where C is the set of cluster cells of the SOM (each represented by a prototype) and ct

is the target cluster of the user’s drag-and-drop action. Bade et al. describe how relative
distance constraints can be derived from expert classifications of folk songs [4] or from an
existing personal hierarchy of folders with music files [5]. Alternatively, it is also possible
to ask the users directly to state the opinion for a triplet of songs as in the bonus round of
the TagATune game [47]. McFee et al. [64] use artist similarity triples collected in the web
survey described by Ellis et al. [24]. They further describe a graph-based technique to detect
and remove inconsistencies within sets of constraints such as direct contradictions.

Using relative distance constraints, the task of learning a suitable adaptation of a similarity
measure can be formulated as constraint optimization problem. Approaches are manifold
and very much depend on the underlying adaptable model of similarity and its parameters.
McFee et al. [64] apply a partial order embedding technique that maps artists into multiple
non-linear spaces (using different kernel matrices), learns a separate transformation for each
kernel, and concatenates the resulting vectors. The Euclidean distance in the resulting
embedding space corresponds to the perceived similarity. In further work [62], they use the
metric learning to rank (MLR) technique [61] – an extension of the Structural SVM approach
[33] – to adapt a Mahalanobis distance according to a ranking loss measure. This approach
is also applied by Wolff et al. [97] whose similarity adaptation experiments are based on the
MagnaTagATune dataset derived from the TagATune game [47].

Instead of adapting a Mahalanobis distance, the work of Stober et al. focuses on simpler
linear combination models. In [86], they describe various applications and respective adap-
tation algorithms which they evaluate and compare in [88] also using the MagnaTagATune
dataset. Their distance model, which is a weighted sum of m facet distances δf1 , . . . , δfm

, is
less expressive because of fewer parameters than the Mahalanobis distance but it can easily
be understood and directly manipulated by the user. This design choice specifically addresses
the users’ desire to remain in control and not to be patronized by an intelligent system that
“knows better”. Furthermore, this similarity model allows to reformulate the metric learning
task as a binary classification problem as described by Cheng et al. [20], which creates the
possibility to apply a wide range of sophisticated classification techniques such as SVM. As
Figure 4 illustrates, the idea is to rewrite each relative distance constraint d(s, a) < d(s, b) as

m∑

i=1
wi(δfi(s, b)− δfi(s, a)) =

m∑

i=1
wixi = wT x > 0

where xi is the distance difference w.r.t. facet fi. The positive training example (x,+1)
then represents the satisfied constraint whereas the negative example (−x,−1) represents its
violation (i.e., inverting the relation sign). For these training examples, the normal vector of
the hyperplane that separates the positive and negative instances contains the adapted facet
weights.

5 Novelty and Serendipity in Music Recommendation

The ability to recommend “interesting new music” is considered an important social factor
inside communities, especially among groups of young users (and groups of musicians). In
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relative distance constraints linear classification problem 

Figure 4 Transformation of a relative distance constraint for linear combination models into
two training instances of the corresponding binary classification problem as described in [20].

this context, we use the generic term “music” to address different kinds of recommendations,
from individual songs, albums, bands, or sub-genres. A good human recommender takes into
account two main components to highlight his role as a music connoisseur:

He is the first who is aware of music that the others do not know yet, although it is part
of their music genre of interest and thus it is likely that sooner or later this music would
have been found also without the recommendation.
He discovers music that might be enjoyed by others, disregarding some aspects of the
music content and context that would have suggested the opposite.

In the former case, the emphasis is on the novelty of the recommendations, where the
role of the human recommender is related to his/her ability to mine music collections and
to be at the same time up-to-date with the music market. In the latter case, the emphasis
is on serendipity because the human recommender can prove his ability to find unexpected
relations between music content, pointing towards music that will not be known without
his/her recommendation.

Obviously, automatic recommender systems do not have to establish their role inside a
community, yet these considerations about what motivates a human recommendation can be
a starting point in the development of recommender systems that take into account both
novelty and, more important, serendipity. This approach can take advantage of the fact that
the user who receives the recommendations can evaluate them also considering how his role
in the community will be affected by receiving given recommendations.

From this point of view, the concept of novelty may be extended to include also the
process of finding new music. For instance, a user who has in his profile an interest for the
recent work of a particular rock band can give a low value to the recommendation of a novel
song taken from the band’s first recorded album, which can be easily found in any catalogue
and a high value to the recommendation of a novel song by another band where some of the
musicians he likes appear as guest stars. According to these considerations, the novelty of
an item can be measured depending also on the difficulties that a user would encounter to
retrieve that particular item in a search session.

Also the concept of serendipity can be partially reconsidered depending on how human
recommendations are provided. A central role is played by the fact that the user would
not expect to like the recommended music item, because its average characteristics place it
far from his listening profile. In order to enjoy the recommended item, the user is required
to concentrate on a reduced set – maybe a single aspect – of the music dimensions that
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characterize it. For instance, a serendipitous experience for a user with a special interest for
classical music for flute is to discover that many background music in movies of the 1970s is
played on the flute. Or a serendipitous experience for a user interested in rock music with
strong rhythm is to discover Scottish music for drums only.

According to these considerations, serendipity can be related to the ability of selectively
suppress some dimensions of music content and context while recommending a list of music
items. As a side note, perhaps one of the reasons why pure text-based search systems are
still very popular among users of music recommender systems is that they suppress the
information which is not explicitly represented in tags and metadata, thus promoting this
aspect of serendipity.

6 Conclusions

The contribution of this article is threefold. First, we presented a broad categorization of
aspects that influence human music perception, namely computational features related to
music content, to music context, and to user context. We briefly reviewed the state-of-the-art
in extraction and use of features in each category. Second, we proposed several aspects
to take into account when elaborating user-aware music retrieval systems, more precisely,
similarity, diversity, familiarity, hotness, recentness, novelty, serendipity, and transparency.
Eventually, we thoroughly reported on recent developments in research on adaptive music
similarity measures and music recommendation focusing on novelty and serendipity aspects.

We believe that a lot of research is still needed to understand the mechanisms involved
in the perception of music similarity according to the three broad categories of aspects.
Investigating the relations between computational features and human music perception will
eventually pave the way to personalized, user-aware music retrieval systems and therefore is
a research endeavor worth pursuing.
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Abstract
The rapidly growing corpus of digital audio material requires novel retrieval strategies for ex-
ploring large music collections. Traditional retrieval strategies rely on metadata that describe
the actual audio content in words. In the case that such textual descriptions are not available,
one requires content-based retrieval strategies which only utilize the raw audio material. In
this contribution, we discuss content-based retrieval strategies that follow the query-by-example
paradigm: given an audio query, the task is to retrieve all documents that are somehow similar
or related to the query from a music collection. Such strategies can be loosely classified according
to their specificity, which refers to the degree of similarity between the query and the database
documents. Here, high specificity refers to a strict notion of similarity, whereas low specificity to
a rather vague one. Furthermore, we introduce a second classification principle based on gran-
ularity, where one distinguishes between fragment-level and document-level retrieval. Using a
classification scheme based on specificity and granularity, we identify various classes of retrieval
scenarios, which comprise audio identification, audio matching, and version identification. For
these three important classes, we give an overview of representative state-of-the-art approaches,
which also illustrate the sometimes subtle but crucial differences between the retrieval scenarios.
Finally, we give an outlook on a user-oriented retrieval system, which combines the various re-
trieval strategies in a unified framework.
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1 Introduction

The way music is stored, accessed, distributed, and consumed underwent a radical change in
the last decades. Nowadays, large collections containing millions of digital music documents
are accessible from anywhere around the world. Such a tremendous amount of readily
available music requires retrieval strategies that allow users to explore large music collections
in a convenient and enjoyable way. Most audio search engines rely on metadata and textual
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(a) (b) (c)

Figure 1 Illustration of retrieval concepts. (a) Traditional retrieval using textual metadata (e. g.,
artist, title) and a web search engine.1 (b) Retrieval based on rich and expressive metadata given
by tags.2 (c) Content-based retrieval using audio, MIDI, or score information.

annotations of the actual audio content [11]. Editorial metadata typically include descriptions
of the artist, title, or other release information. The drawback of a retrieval solely based on
editorial metadata is that the user needs to have a relatively clear idea of what he or she is
looking for. Typical query terms may be a title such as “Act naturally” when searching the
song by The Beatles or a composer’s name such as “Beethoven” (see Figure 1a). In other
words, traditional editorial metadata only allow to search for already known content. To
overcome these limitations, editorial metadata has been more and more complemented by
general and expressive annotations (so called tags) of the actual musical content [5, 25, 49].
Typically, tags give descriptions of the musical style or genre of a recording, but may also
include information about the mood, the musical key, or the tempo [31, 48]. In particular,
tags form the basis for music recommendation and navigation systems that make the audio
content accessible even when users are not looking for a specific song or artist but for
music that exhibits certain musical properties [49]. The generation of such annotations of
audio content, however, is typically a labor intensive and time-consuming process [11, 48].
Furthermore, often musical expert knowledge is required for creating reliable, consistent, and
musically meaningful annotations. To avoid this tedious process, recent attempts aim at
substituting expert-generated tags by user-generated tags [48]. However, such tags tend to
be less accurate, subjective, and rather noisy. In other words, they exhibit a high degree of
variability between users. Crowd (or social) tagging, one popular strategy in this context,
employs voting and filtering strategies based on large social networks of users for “cleaning”
the tags [31]. Relying on the “wisdom of the crowd” rather than the “power of the few” [27],
tags assigned by many users are considered more reliable than tags assigned by only a few
users. Figure 1b shows the Last.fm2 tag cloud for “Beethoven”. Here, the font size reflects
the frequency of the individual tags. One major drawback of this approach is that it relies
on a large crowd of users for creating reliable annotations [31]. While mainstream pop/rock
music is typically covered by such annotations, less popular genres are often scarcely tagged.
This phenomenon is also known as the “long-tail” problem [12, 48]. To overcome these
problems, content-based retrieval strategies have great potential as they do not rely on any
manually created metadata but are exclusively based on the audio content and cover the
entire audio material in an objective and reproducible way [11]. One possible approach is
to employ automated procedures for tagging music, such as automatic genre recognition,
mood recognition, or tempo estimation [4, 49]. The major drawback of these learning-based

1 www.google.com (accessed Dec. 18, 2011)
2 www.last.fm (accessed Dec. 18, 2011)
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Figure 2 Specificity/granularity pane showing the various facets of content-based music retrieval.

strategies is the requirement of large corpora of tagged music examples as training material
and the limitation to queries in textual form. Furthermore, the quality of the tags generated
by state-of-the-art procedures does not reach the quality of human generated tags [49].

In this contribution, we present and discuss various retrieval strategies based on audio
content that follow the query-by-example paradigm: given an audio recording or a fragment
of it (used as query or example), the task is to automatically retrieve documents from a
given music collection containing parts or aspects that are similar to it. As a result, retrieval
systems following this paradigm do not require any textual descriptions. However, the notion
of similarity used to compare different audio recordings (or fragments) is of crucial importance
and largely depends on the respective application as well as the user requirements.

Many different audio content-based retrieval systems have been proposed, following
different strategies and aiming at different application scenarios. Generally, such retrieval
systems can be characterized by various aspects such as the notion of similarity, the underlying
matching principles, or the query format. Following and extending the concept introduced
in [11], we consider the following two aspects: specificity and granularity, see Figure 2. The
specificity of a retrieval system refers to the degree of similarity between the query and the
database documents to be retrieved. High-specific retrieval systems return exact copies of the
query (in other words, they identify the query or occurrences of the query within database
documents), whereas low-specific retrieval systems return vague matches that are similar
with respect to some musical properties. As in [11], different content-based music retrieval
scenarios can be arranged along a specificity axis as shown in Figure 2 (horizontally). We
extend this classification scheme by introducing a second aspect, the granularity (or temporal
scope) of a retrieval scenario. In fragment-level retrieval scenarios, the query consists of a
short fragment of an audio recording, and the goal is to retrieve all musically related fragments
that are contained in the documents of a given music collection. Typically, such fragments
may cover only a few seconds of audio content or may correspond to a motif, a theme, or
a musical part of a recording. In contrast, in document-level retrieval, the query reflects
characteristics of an entire document and is compared with entire documents of the database.
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Here, the notion of similarity typically is rather coarse and the used features capture global
statistics of an entire recording. In this context, one has to distinguish between some kind of
internal and some kind of external granularity of the retrieval tasks. In our classification
scheme, we use the term fragment-level when a fragment-based similarity measure is used to
compare fragments of audio recordings (internal), even though entire documents are returned
as matches (external). Using such a classification allows for extending the specificity axis to
a specificity/granularity pane as shown in Figure 2. In particular, we have identified four
different groups of retrieval scenarios corresponding to the four clouds in Figure 2. Each of
the clouds, in turn, encloses a number of different retrieval scenarios. Obviously, the clouds
are not strictly separated but blend into each other. Even though this taxonomy is rather
vague and sometimes questionable, it gives an intuitive overview of the various retrieval
paradigms while illustrating their subtle but crucial differences.

An example of a high-specific fragment-level retrieval task is audio identification (some-
times also referred to as audio fingerprinting [8]). Given a small audio fragment as query,
the task of audio identification consists in identifying the particular audio recording that is
the source of the fragment [1]. Nowadays, audio identification is widely used in commercial
systems such as Shazam.3 Typically, the query fragment is exposed to signal distortions
on the transmission channel [8, 29]. Recent identification algorithms exhibit a high degree
of robustness against noise, MP3 compression artifacts, uniform temporal distortions, or
interferences of multiple signals [16, 22]. The high specificity of this retrieval task goes along
with a notion of similarity that is very close to the identity. To make this point clearer, we
distinguish between a piece of music (in an abstract sense) and a specific performance of
this piece. In particular for Western classical music, there typically exist a large number
of different recordings of the same piece of music performed by different musicians. Given
a query fragment, e. g., taken from a Bernstein recording of Beethoven’s Symphony No. 5,
audio fingerprinting systems are not capable of retrieving, e. g., a Karajan recording of the
same piece. Likewise, given a query fragment from a live performance of “Act naturally” by
The Beatles, the original studio recording of this song may not be found. The reason for
this is that existing fingerprinting algorithms are not designed to deal with strong non-linear
temporal distortions or with other musically motivated variations that affect, for example,
the tempo or the instrumentation.

At a lower specificity level, the goal of fragment-based audio matching is to retrieve all
audio fragments that musically correspond to a query fragment from all audio documents
contained in a given database [28, 37]. In this scenario, one explicitly allows semantically
motivated variations as they typically occur in different performances and arrangements of a
piece of music. These variations include significant non-linear global and local differences
in tempo, articulation, and phrasing as well as differences in executing note groups such as
grace notes, trills, or arpeggios. Furthermore, one has to deal with considerable dynamical
and spectral variations, which result from differences in instrumentation and loudness.

One instance of document-level retrieval at a similar specificity level as audio matching is
the task of version identification. Here, the goal is to identify different versions of the same
piece of music within a database [42]. In this scenario, one not only deals with changes in
instrumentation, tempo, and tonality, but also with more extreme variations concerning the
musical structure, key, or melody, as typically occurring in remixes and cover songs. This
requires document-level similarity measures to globally compare entire documents.

Finally, there are a number of even less specific document-level retrieval tasks which

3 www.shazam.com (accessed Dec. 18, 2011)
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can be grouped under the term category-based retrieval. This term encompasses retrieval
of documents whose relationship can be described by cultural or musicological categories.
Typical categories are genre [50], rhythm styles [19, 41], or mood and emotions [26, 47, 53]
and can be used in fragment as well as document-level retrieval tasks. Music recommendation
or general music similarity assessments [7, 54] can be seen as further document-level retrieval
tasks of low specificity.

In the following, we elaborate the aspects of specificity and granularity by means of
representative state-of-the-art content-based retrieval approaches. In particular, we highlight
characteristics and differences in requirements when designing and implementing systems for
audio identification, audio matching, and version identification. Furthermore, we address
efficiency and scalability issues. We start with discussing high-specific audio fingerprinting
(Section 2), continue with mid-specific audio matching (Section 3), and then discuss version
identification (Section 4). In Section 5, we discuss open problems in the field of content-based
retrieval and give an outlook on future directions.

2 Audio Identification

Of all content-based music retrieval tasks, audio identification has received most interest
and is now widely used in commercial applications. In the identification process, the audio
material is compared by means of so-called audio fingerprints, which are compact content-
based signatures of audio recordings [8]. In real-world applications, these fingerprints need
to fulfill certain requirements. First of all, the fingerprints should capture highly specific
characteristics so that a short audio fragment suffices to reliably identify the corresponding
recording and distinguish it from millions of other songs. However, in real-world scenarios,
audio signals are exposed to distortions on the transmission channel. In particular, the signal
is likely to be affected by noise, artifacts from lossy audio compression, pitch shifting, time
scaling, equalization, or dynamics compression. For a reliable identification, fingerprints have
to show a significant degree of robustness against such distortions. Furthermore, scalability is
an important issue for all content-based retrieval applications. A reliable audio identification
system needs to capture the entire digital music catalog, which is further growing every day.
In addition, to minimize storage requirements and transmission delays, fingerprints should be
compact and efficiently computable [8]. Most importantly, this also requires efficient retrieval
strategies to facilitate very fast database look-ups. These requirements are crucial for the
design of large-scale audio identification systems. To satisfy all these requirements, however,
one typically has to face a trade-off between contradicting principles.

There are various ways to design and compute fingerprints. One group of fingerprints
consist of short sequences of frame-based feature vectors such as Mel-Frequency Cepstral
Coefficients (MFCC) [9], Bark-scale spectrograms [22, 23], or a set of low-level descriptors [1].
For such representations, vector quantization [1] or thresholding [22] techniques, or temporal
statistics [38] are needed for obtaining the required robustness. Another group of fingerprints
consist of a sparse set of characteristic points such as spectral peaks [14, 52] or characteristic
wavelet coefficients [24]. As an example, we now describe the peak-based fingerprints
suggested by Wang [52], which are now commercially used in the Shazam music identification
service4.

The Shazam system provides a smartphone application that allows users to record a
short audio fragment of an unknown song using the built-in microphone. The application

4 www.shazam.com (accessed Dec. 18, 2011)
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Figure 3 Illustration of the Shazam audio identification system using a recording of “Act
naturally” by The Beatles as example. (a) Database document with extracted peak fingerprints. (b)
Query fragment (10 seconds) with extracted peak fingerprints. (c) Constellation map of database
document. (d) Constellation map of query document. (e) Superposition of the database fingerprints
and time-shifted query fingerprints.

then derives the audio fingerprints which are sent to a server that performs the database
look-up. The retrieval result is returned to the application and presented to the user together
with additional information about the identified song. In this approach, one first computes
a spectrogram from an audio recording using a short-time Fourier transform. Then, one
applies a peak-picking strategy that extracts local maxima in the magnitude spectrogram:
time-frequency points that are locally predominant. Figure 3 illustrates the basic retrieval
concept of the Shazam system using a recording of “Act naturally” by The Beatles. Figure 3a
and Figure 3b show the spectrogram for an example database document (30 seconds of
the recording) and a query fragment (10 seconds), respectively. The extracted peaks are
superimposed to the spectrograms. The peak-picking step reduces the complex spectrogram
to a “constellation map”, a low-dimensional sparse representation of the original signal by
means of a small set of time-frequency points, see Figure 3c and Figure 3d. According to [52],
the peaks are highly characteristic, reproducible, and robust against many, even significant
distortions of the signal. Note that a peak is only defined by its time and frequency values,
whereas magnitude values are no longer considered.

The general database look-up strategy works as follows. Given the constellation maps
for a query fragment and all database documents, one locally compares the query fragment
to all database fragments of the same size. More precisely, one counts matching peaks, i. e.,
peaks that occur in both constellation maps. A high count indicates that the corresponding
database fragment is likely to be a correct hit. This procedure is illustrated in Figure 3e,
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Figure 4 Illustration of the peak pairing strategy of the Shazam algorithm. (a) Anchor peak
and assigned target zone. (b) Pairing of anchor peak and target peaks to form hash values.

showing the superposition of the database fingerprints and time-shifted query fingerprints.
Both constellation maps show a high consistency (many red and blue points coincide) at a
fragment of the database document starting at time position 10 seconds, which indicates a
hit. However, note that not all query and database peaks coincide. This is because the query
was exposed to signal distortions on the transmission channel (in this example additive white
noise). Even under severe distortions of the query, there still is a high number of coinciding
peaks thus showing the robustness of these fingerprints.

Obviously, such an exhaustive search strategy is not feasible for a large database as the
run-time linearly depends on the number and sizes of the documents. For the constellation
maps, as proposed in [29], one tries to efficiently reduce the retrieval time using indexing
techniques—very fast operations with a sub-linear run-time. However, directly using the
peaks as hash values is not possible as the temporal component is not translation-invariant
and the frequency component alone does not have the required specificity. In [52], a strategy
is proposed, where one considers pairs of peaks. Here, one first fixes a peak to serve as
“anchor peak” and then assigns a “target zone” as indicated in Figure 4a. Then, pairs are
formed of the anchor and each peak in the target zone, and a hash value is obtained for each
pair of peaks as a combination of both frequency values and the time difference between the
peaks as indicated in Figure 4b. Using every peak as anchor peak, the number of items to
be indexed increases by a factor that depends on the number of peaks in the target zone.
This combinatorial hashing strategy has three advantages. Firstly, the resulting fingerprints
show a higher specificity than single peaks, leading to an acceleration of the retrieval as
fewer exact hits are found. Secondly, the fingerprints are translation-invariant as no absolute
timing information is captured. Thirdly, the combinatorial multiplication of the number of
fingerprints introduced by considering pairs of peaks as well as the local nature of the peak
pairs increases the robustness to signal degradations.

The Shazam audio identification system facilitates a high identification rate, while scaling
to large databases. One weakness of this algorithm is that it can not handle time scale
modifications of the audio as frequently occurring in the context of broadcasting monitoring.
The reason for this is that time scale modifications (also leading to frequency shifts) of the
query fragment completely change the hash values. Extensions of the original algorithms
dealing with this issue are presented in [14, 51].

3 Audio Matching

The problem of audio identification can be regarded as largely solved even for large scale
music collections. Less specific retrieval tasks, however, are still mostly unsolved. In this
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Figure 5 Illustration of various feature representations for the beginning of Beethoven’s Opus
67 (Symphony No. 5) in a Bernstein interpretation. (a) Score of the excerpt. (b) Waveform. (c)
Spectrogram with linear frequency axis. (d) Spectrogram with frequency axis corresponding to
musical pitches. (e) Chroma features. (f) Normalized chroma features. (g) Smoothed version of
chroma features, see also [36].

section, we highlight the difference between high-specific audio identification and mid-specific
audio matching while presenting strategies to cope with musically motivated variations. In
particular, we introduce chroma-based audio features [2, 17, 34] and sketch distance measures
that can deal with local tempo distortions. Finally, we indicate how the matching procedure
may be extended using indexing methods to scale to large datasets [10, 28].

For the audio matching task, suitable descriptors are required to capture characteristics
of the underlying piece of music, while being invariant to properties of a particular recording.
Chroma-based audio features [2, 34], sometimes also referred to as pitch class profiles [17],
are a well-established tool for analyzing Western tonal music and have turned out to be
a suitable mid-level representation in the retrieval context [10, 28, 37, 34]. Assuming the
equal-tempered scale, the chroma attributes correspond to the set {C, C], D, . . . , B} that
consists of the twelve pitch spelling attributes as used in Western music notation. Capturing
energy distributions in the twelve pitch classes, chroma-based audio features closely correlate
to the harmonic progression of the underlying piece of music. This is the reason why basically
every matching procedure relies on some type of chroma feature.

There are many ways for computing chroma features. For example, the decomposition
of an audio signal into a chroma representation (or chromagram) may be performed either
by using short-time Fourier transforms in combination with binning strategies [17] or by
employing suitable multirate filter banks [34, 36]. Figure 5 illustrates the computation of
chroma features for a recording of the first five measures of Beethoven’s Symphony No. 5
in a Bernstein interpretation. The main idea is that the fine-grained (and highly specific)
signal representation as given by a spectrogram (Figure 5c) is coarsened in a musically
meaningful way. Here, one adapts the frequency axis to represent the semitones of the equal
tempered scale (Figure 5d). The resulting representation captures musically relevant pitch
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Figure 6 Different representations and peak fingerprints extracted for recordings of the first 21

measures of Beethoven’s Symphony No. 5. (a) Spectrogram-based peaks for a Bernstein recording.
(b) Chromagram-based peaks for a Bernstein recording. (c) Spectrogram-based peaks for a Karajan
recording. (d) Chromagram-based peaks for a Karajan recording.

information of the underlying music piece, while being significantly more robust against
spectral distortions than the original spectrogram. To obtain chroma features, pitches
differing by octaves are summed up to yield a single value for each pitch class, see Figure 5e.
The resulting chroma features show increased robustness against changes in timbre, as
typically resulting from different instrumentations.

The degree of robustness of the chroma features against musically motivated variations
can be further increased by using suitable post-processing steps. See [36] for some chroma
variants.5 For example, normalizing the chroma vectors (Figure 5f) makes the features
invariant to changes in loudness or dynamics. Furthermore, applying a temporal smoothing
and downsampling step (see Figure 5g) may significantly increase robustness against local
temporal variations that typically occur as a result of local tempo changes or differences
in phrasing and articulation. There are many more variants of chroma features comprising
various processing steps. For example, applying logarithmic compression or whitening
procedures enhances small yet perceptually relevant spectral components and the robustness
to timbre [33, 35]. A peak picking of spectrum’s local maxima can enhance harmonics while
suppressing noise-like components [17, 13]. Furthermore, generalized chroma representations
with 24 or 36 bins (instead of the usual 12 bins) allow for dealing with differences in tuning [17].
Such variations in the feature extraction pipeline have a large influence and the resulting
chroma features can behave quite differently in the subsequent analysis task.

Figure 6 shows spectrograms and chroma features for two different interpretations (by
Bernstein and Karajan) of Beethoven’s Symphony No. 5. Obviously, the chroma features
exhibit a much higher similarity than the spectrograms, revealing the increased robustness
against musical variations. The fine-grained spectrograms, however, reveal characteristics of
the individual interpretations. To further illustrate this, Figure 6 also shows fingerprint peaks

5 MATLAB implementations for some chroma variants are supplied by the Chroma Toolbox:
www.mpi-inf.mpg.de/resources/MIR/chromatoolbox (accessed Dec. 18, 2011)
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Figure 7 Illustration of the the audio matching procedure for the beginning of Beethoven’s

Opus 67 (Symphony No. 5) using a query fragment corresponding to the first 22 seconds (measures
1-21) of a Bernstein interpretation and a database consisting of an entire recording of a Karajan
interpretation. Three different strategies are shown leading to three different matching curves. (a)
Strict subsequence matching. (b) DTW-based matching. (c) Multiple query scaling strategy.

for all representations. As expected, the spectrogram peaks are very inconsistent for the
different interpretations. The chromagram peaks, however, show at least some consistencies,
indicating that fingerprinting techniques could also be applicable for audio matching [6]. In
practice, however, the fragile peak picking step on the basis of the rather coarse chroma
features may not lead to robust results. Furthermore, one has to find a technique to deal with
the local and global tempo differences between the interpretations. See [21] for a detailed
investigation of this approach.

Instead of using sparse peak representations, one typically employs a subsequence search,
which is directly performed on the chroma features. Here, a query chromagram is compared
with all subsequences of database chromagrams. As a result one obtains a matching curve as
shown in Figure 7, where a small value indicates that the subsequence of the database starting
at this position is similar to the query sequence. Then the best match is the minimum
of the matching curve. In this context, one typically applies distance measures that can
deal with tempo differences between the versions, such as edit distances [3], dynamic time
warping (DTW) [34, 37], or the Smith-Waterman algorithm [43]. An alternative approach is
to linearly scale the query to simulate different tempi and then to minimize over the distances
obtained for all scaled variants [28]. Figure 7 shows three different matching curves which
are obtained using strict subsequence matching, DTW, and a multiple query strategy.

To speed up such exhaustive matching procedures, one requires methods that allow for
efficiently detecting near neighbors rather than exact matches. A first approach in this
direction uses inverted file indexing [28] and depends on a suitable codebook consisting
of a finite set of characteristic chroma vectors. Such a codebook can be obtained in an
unsupervised way using vector quantization or in a supervised way exploiting musical
knowledge about chords. The codebook then allows for classifying the chroma vectors of the
database and to index the vectors according to the assigned codebook vector. This results in
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an inverted list for each codebook vector. Then, an exact search can be performed efficiently
by intersecting suitable inverted lists. However, the performance of the exact search using
quantized chroma vectors greatly depends on the codebook. This requires fault-tolerance
mechanisms which partly eliminate the speed-up obtained by this method. Consequently, this
approach is only applicable for databases of medium size [28]. An approach presented in [10]
uses an index-based near neighbor strategy based on locality sensitive hashing (LSH). Instead
of considering long feature sequences, the audio material is split up into small overlapping
shingles that consist of short chroma feature subsequences. The shingles are then indexed
using locality sensitive hashing which allows for scaling this approach to larger datasets.
However, to cope with temporal variations, each shingle covers only a small portion of the
audio material and queries need to consist of a large number of shingles. The high number
of table look-ups induced by this strategy may become problematic for very large datasets
where the index is stored on a secondary storage device. The approach presented in [20] is
also based on LSH. However, to reduce the number of table look-ups, each query consists of
only a single shingle covering 15–25 seconds of the audio. To handle temporal variations, a
combination of local feature smoothing and global query scaling is proposed.

In summary, mid-specific audio matching using a combination of highly robust chroma
features and sequence-based similarity measures that account for different tempi results in a
good retrieval quality. However, the low specificity of this task makes indexing much harder
than in the case of audio identification. This task becomes even more challenging when
dealing with relatively short fragments on the query and database side.

4 Version Identification

In the previous tasks, a musical fragment is used as query and similar fragments or documents
are retrieved according to a given degree of specificity. The degree of specificity was very
high for audio identification and more relaxed for audio matching. If we allow for even less
specificity, we are facing the problem of version identification [42]. In this scenario, a user
wants to retrieve not only exact or near-duplicates of a given query, but also any existing
re-interpretation of it, no matter how radical such a re-interpretation might be. In general, a
version may differ from the original recording in many ways, possibly including significant
changes in timbre, instrumentation, tempo, main tonality, harmony, melody, and lyrics. For
example, in addition to the aforementioned Karajan’s rendition of Beethoven’s Symphony
No. 5, one could be also interested in a live performance of it, played by a punk-metal band
who changes the tempo in a non-uniform way, transposes the piece to another key, and skips
many notes as well as most parts of the original structure. These types of documents where,
despite numerous and important variations, one can still unequivocally glimpse the original
composition are the ones that motivate version identification.

Version identification is usually interpreted as a document-level retrieval task, where
a single similarity measure is considered to globally compare entire documents [3, 13, 46].
However, successful methods perform this global comparison on a local basis. Here, the
final similarity measure is inferred from locally comparing only parts of the documents—a
strategy that allows for dealing with non-trivial structural changes. This way, comparisons
are performed either on some representative part of the piece [18], on short, randomly chosen
subsequences of it [32], or on the best possible longest matching subsequence [43, 44].

A common approach to version identification starts from the previously introduced
chroma features; also more general representations of the tonal content such as chords or
tonal templates have been used [42]. Furthermore, melody-based approaches have been
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Figure 8 Similarity matrix for “Act naturally” by The Beatles, which is actually a cover version
of a song by Buck Owens. (a) Chroma features of the version by The Beatles. (b) Score matrix.
(c) Chroma features of the version by Buck Owens.

suggested, although recent findings suggest that this representation may be suboptimal
[15, 40]. Once a tonal representation is extracted from the audio, changes in the main
tonality need to be tackled, either in the extraction phase itself, or when performing pairwise
comparisons of such representations.

Tempo and timing deviations have a strong effect in the chroma feature sequences, hence
making their direct pairwise comparison problematic. An intuitive way to deal with global
tempo variations is to use beat-synchronous chroma representations [6, 13]. However, the
required beat tracking step is often error-prone for certain types of music and therefore may
negatively affect the final retrieval result. Again, as for the audio matching task, dynamic
programming algorithms are a standard choice for dealing with tempo variations [34], this time
applied in a local fashion to identify longest matching subsequences or local alignments [43, 44].

An example of such an alignment procedure is depicted in Figure 8 for our “Act naturally”
example by The Beatles. The chroma features of this version are shown in Figure 8c. Actually,
this song is originally not written by The Beatles but a cover version of a Buck Owens
song of the same name. The chroma features of the original version are shown in Figure 8a.
Alignment algorithms rely on some sort of scores (and penalties) for matching (mismatching)
individual chroma sequence elements. Such scores can be real-valued or binary. Figure 8b
shows a binary score matrix encoding pair-wise similarities between chroma vectors of the
two sequences. The binarization of score values provides some additional robustness against
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Figure 9 Accumulated score matrix with optimal alignment path for the “Act naturally” example
(as shown in Figure 8).

small spectral and tonal differences. Correspondences between versions are revealed by the
score matrix in the form of diagonal paths of high score. For example, in Figure 8, one
observes a diagonal path indicating that the first 60 seconds of the two versions exhibit a
high similarity.

For detecting such path structures, dynamic programming strategies make use of an
accumulated score matrix. In their local alignment version, where one is searching for
subsequence correspondences, this matrix reflects the lengths and quality of such matching
subsequences. Each element (consisting of a pair of indices) of the accumulated score matrix
corresponds to the end of a subsequence and its value encodes the score accumulated over all
elements of the subsequence. Figure 9 shows an example of the accumulated score matrix
obtained for the score matrix in Figure 8. The highest-valued element of the accumulated
score matrix corresponds to the end of the most similar matching subsequence. Typically,
this value is chosen as the final score for the document-level comparison of the two pieces.
Furthermore, the specific alignment path can be easily obtained by backtracking from
this highest element [34]. The alignment path is indicated by the red line in Figure 9.
Additional penalties account for the importance of insertions/deletions in the subsequences.
In fact, the way of deriving these scores and penalties is usually an important part of the
version identification algorithms and different variants have been proposed [3, 43, 44]. The
aforementioned final score is directly used for ranking candidate documents to a given query.
It has recently been shown that such rankings can be improved by combining different scores
obtained by different methods [39], and by exploiting the fact that alternative renditions of
the same piece naturally cluster together [30, 45].

The task of version identification allows for these and many other new avenues for
research [42]. However, one of the most challenging problems that remains to be solved is
to achieve high accuracy and scalability at the same time, allowing low-specific retrieval in
large music collections [6]. Unfortunately, the accuracies achieved with today’s non-scalable
approaches have not yet been reached by the scalable ones, the latter remaining far behind
the former.
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Figure 10 Joystick-like user interface for continuously adjusting the specificity and granularity
levels used in the retrieval process.

5 Outlook

In this paper, we have discussed three representative retrieval strategies based on the query-
by-example paradigm. Such content-based approaches provide mechanisms for discovering
and accessing music even in cases where the user does not explicitly know what he or she
is actually looking for. Furthermore, such approaches complement traditional approaches
that are based on metadata and tags. The considered level of specificity has a significant
impact on the implementation and efficiency of the retrieval system. In particular, search
tasks of high specificity typically lead to exact matching problems, which can be realized
efficiently using indexing techniques. In contrast, search tasks of low specificity need more
flexible and cost-intensive mechanisms for dealing with spectral, temporal, and structural
variations. As a consequence, the scalability to huge music collections comprising millions of
songs still poses many yet unsolved problems.

Besides efficiency issues, one also has to better account for user requirements in content-
based retrieval systems. For example, one may think of a comprehensive framework that
allows a user to adjust the specificity level at any stage of the search process. Here, the
system should be able to seamlessly change the retrieval paradigm from high-specific audio
identification, over mid-specific audio matching and version identification to low-specific
genre identification. Similarly, the user should be able to flexibly adapt the granularity
level to be considered in the search. Furthermore, the retrieval framework should comprise
control mechanisms for adjusting the musical properties of the employed similarity measure
to facilitate searches according to rhythm, melody, or harmony or any combination of these
aspects.

Figure 10 illustrates a possible user interface for such an integrated content-based retrieval
framework, where a joystick allows a user to continuously and instantly adjust the retrieval
specificity and granularity. For example, a user may listen to a recording of Beethoven’s Sym-
phony No. 5, which is first identified to be a Bernstein recording using an audio identification
strategy (moving the joystick to the leftmost position). Then, being interested in different
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versions of this piece, the user moves the joystick upwards (document-level) and to the right
(mid-specific), which triggers a version identification. Subsequently, shifting towards a more
detailed analysis of the piece, the user selects the famous fate motif as query and moves the
joystick downwards to perform some mid-specific fragment-based audio matching. Then, the
system returns the positions of all occurrences of the motif in all available interpretations.
Finally, moving the joystick to the rightmost position, the user may discover recordings of
pieces that exhibit some general similarity like style or mood. In combination with immediate
visualization, navigation, and feedback mechanisms, the user is able to successively refine and
adjust the query formulation as well as the retrieval strategy, thus leading to novel strategies
for exploring, browsing, and interacting with large collections of audio content.

Another major challenge refers to cross-modal music retrieval scenarios, where the query
as well as the retrieved documents can be of different modalities. For example, one might use
a small fragment of a musical score to query an audio database for recordings that are related
to this fragment. Or a short audio fragment might be used to query a database containing
MIDI files. In the future, comprehensive retrieval frameworks are to be developed that
offer multi-faceted search functionalities in heterogeneous and distributed music collections
containing all sorts of music-related documents.
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Abstract
Background music is often used to generate a specific atmosphere or to draw our attention to
specific events. For example in movies or computer games it is often the accompanying music
that conveys the emotional state of a scene and plays an important role for immersing the
viewer or player into the virtual environment. In view of home-made videos, slide shows, and
other consumer-generated visual media streams, there is a need for computer-assisted tools that
allow users to generate aesthetically appealing music tracks in an easy and intuitive way. In
this contribution, we consider a data-driven scenario where the musical raw material is given
in form of a database containing a variety of audio recordings. Then, for a given visual media
stream, the task consists in identifying, manipulating, overlaying, concatenating, and blending
suitable music clips to generate a music stream that satisfies certain constraints imposed by
the visual data stream and by user specifications. It is our main goal to give an overview of
various content-based music processing and retrieval techniques that become important in data-
driven sound track generation. In particular, we sketch a general pipeline that highlights how
the various techniques act together and come into play when generating musically plausible
transitions between subsequent music clips.
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1 Introduction

The computer-assisted generation of sound tracks for given visual media streams has signific-
antly gained in importance. For example, video games of these days are often accompanied
by music of high artistic value and excellent sound quality coming close to sound tracks of
movies. However, opposed to film music, the sound track underlying a video game has to
constantly adapt to the respective scene of the game and to interactively react to the player’s
input.

When developing a high-quality computer game, composers are asked to create specific
music clips that not only match the various scenes and characters of the game, but also
account for transitions within and across different scenes. To this end, the music needs to
contain various transition points that allow for smoothly connecting and bridging different
passages at specified or even arbitrary points in time. Even though there may be no real
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Figure 1 Sound track generation by concatenating existing audio clips.

alternatives to manually creating music in particular when artistic aspects are given priority,
such compositional approaches to sound track generation are costly and labor extensive.
Furthermore, the resulting music is highly specialized, and the system has a slow response
time when transitions are possible only at specific pre-defined positions.

As an inexpensive alternative, one may revert to parametric approaches, where the
background music is synthesized based on parametric models. Here, the free parameters
allow for specifying, adjusting, and triggering sound events and may directly be controlled
by scene annotations, by the moving objects within the scene, or by a user’s input. However,
even though offering fast response times, such parametric approaches may be aesthetically
questionable from a musical point of view.

The main focus of this work follows a third approach. To obtain appealing sound
tracks, one strategy is to simply play back an existing music recording that is in line with
a given visual data stream. Reverting to an audio database comprising high-quality music
recordings, the idea of such a data-driven approach is to identify and play back music clips
that correspond well to the visual scenes while accounting for user specifications. However, a
simple concatenation of audio clips may result in unpleasant and abrupt transitions between
subsequent audio clips. Therefore, one main challenge consists in the creation of musically
smooth and euphonious transitions, which are as pleasant as possible to the listener’s ear,
see Figure 1.

In this contribution, our main goal is to describe a possible pipeline for such a data-driven
sound track generation system while giving an overview of the necessary data processing
and retrieval techniques, see Figure 2. In the following, we exemplarily consider an online
scenario, where a visual data stream, which consists of a sequence of changing scenes that
are associated to certain categories (e. g., moods), is given. Furthermore, a comprehensive
music database that contains audio recordings of various genres, styles and moods serves as
basis for the sound track to be generated. These recordings are assumed to be annotated
with respect to the same categories as used to describe the visual scenes. For the current
scene, a specific audio recording is played back. As soon as the next scene change is pending,
the category of the subsequent scene as well as the tolerable delay for the transition needs
to be known. The system then determines a suitable region in the current audio recording,
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Figure 2 Overview of different retrieval and processing components required for a data-driven
sound track generation system.

also referred to as transition region. The waveform corresponding to this region is then
used as query clip, and content-based retrieval is performed to identify a suitable audio clip
in the music database—referred to as target clip—satisfying the following two properties.
Firstly, the clip should be contained in an audio recording that reflects the category of the
subsequent scene. Secondly, the target clip should be similar to the query clip to allow
for a smooth (e. g., harmonically and rhythmically plausible) transition. To this end, one
particularly needs a clip that has a similar harmonic progression as the query clip. In the
next step, the two clips are temporally synchronized by first estimating the beat positions
and then applying suitable time-scale modifications (similar to what a DJ is doing). The
actual transition from the current recording (containing the query clip) to the next recording
(containing the target clip) is then realized by blending from the synchronized query clip to
the target clip. Finally, to further improve the quality of the transition, one needs intelligent
equalization techniques that can be used to attenuate possibly interfering sound components
or to amplifying certain voices, instruments or notes.

In the sketched approach, various challenges arise. First, one needs similarity measures
and content-based retrieval strategies to search for and identify suitable music clips that
satisfy the given constraints. These constraints may not only be imposed by the visual input
and user specifications, but also by algorithmic and aesthetic considerations. Furthermore,
one requires a number of signal processing techniques that allow for adjusting the audio
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material with respect to various musical aspects including harmony, rhythm, tempo, or
polyphony. In the following, we give an overview of these techniques and provide suitable
links to the literature. The remainder of this contribution is organized as follows. In
Section 2, we discuss previous work that is related to the problem of automated sound track
generation. Then, in Section 3, we give an overview of the involved data processing and
retrieval techniques while highlighting how these techniques act together and come into
play in a data-driven soundtrack generation scenario. Finally, we conclude with Section 4
discussing challenges, limitations, and future work.

2 Related Work

The idea of generating new music by concatenating existing music fragments based on
euphonious transitions has a long history. At the end of the 18th century, “Musikalische
Würfelspiele” (“Musical dice games”) were a popular pastime, where a piano player had to
create music by suitably concatenating measures from known pieces that were randomly
chosen by throwing a dice [32, 22].

Nowadays the generation of dynamically changing music by concatenating pre-rendered
music clips has become an important issue in particular in the context of video games. As
emphasized in [70], the generation of suitable music can add emotional depth and soul to the
various scenes leading to a highly immersive gaming experience. To this end, the music not
only has to loosely reflect the mood of the respective scene, but also has to constantly adapt
to, or even to anticipate the game’s events and the player’s actions. The term adaptive audio
(or adaptive music) has been used to describe audio and music that responds appropriately
to gameplay [70]. As one requirement, to support the game’s continuity, music transitions
that seamlessly connect the various moods and intensities are needed. To this end, one
needs techniques that go far beyond a simple concatenation or cross-fade between subsequent
audio clips. Instead, short building blocks of music, different layers (e. g., percussion loops,
super-imposable melody and instrument tracks), as well as transitional cues are required
for creating adaptive music. The composition of music that does not follow a linear flow
(as is for traditional music) but that can be reassembled in a flexible and smooth fashion
constitutes a hard problem—musically as well as technically. For a detailed discussion and
further links, we also refer to [66].

There are various approaches to automatically generate music streams on the basis of
symbolic music representations. For example, [11] describes an automated music generation
system that works on the basis of MIDI files. Opposed to waveform-based audio repres-
entations, symbolic representations offer more flexibility and direct control since musical
parameters such as note events, instrumentation, or tempo are given explicitly and can be
therefore altered easily. On the downside, synthesizing music from a symbolic representation
often leads to unsatisfying results, e. g., because of the artificiality of the used synthetic
instruments or the lacking of performance nuances. Furthermore, high-quality symbolic
representations are often not available or hard to generate from existing audio material.

The automated remixing and concatenation of existing audio material constitutes a
challenging area of research. A prominent application scenario is what a disc jockey (DJ) is
typically doing: he not only selects appropriate music for the audience, but also tries to mix
and blend recorded music to create a continuous playback. First systems to automate this
process are described, e. g., in [8, 37]. In the mixing process, DJs pay particular attention to
a good rhythmical transition, which requires an adjustment of the tempo and a matching of
the beats. A tool to automate the process of finding good rhythmical transitions is described
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in [39]. Harmonic similarity of the two audio clips to be connected usually plays a minor
role, even though professional DJs also often try to take the musical key into consideration.
In [49], the authors describe a first system for concatenating audio clips to form a single long
audio stream, where the recordings are ordered in such a way that euphonious transitions
between the clips are possible. The positions of the transitions are chosen to maximize the
local harmonic and rhythmic similarity of the two subsequent audio clips. This scenario is
similar to what we want to consider in our contribution. However, we want to focus more on
the underlying techniques that are need for realizing such a framework, whereas [49] describe
a first overall system. Finally, we want to mention the work by [69], where the goal is to
temporally rearrange a given music recording to fit certain user-specified constraints. In
particular, suitable transitions points are identified within the audio material that allow for
deleting, copying, and rearranging certain parts while keeping the flow of the music. This
not only allows for an automated adjustment of the duration of a given recording but also
for linking certain parts of the recording to specified key frames of the visual data stream.

3 Music Retrieval and Processing

We now give an overview of the various content-based music retrieval and processing techniques
that are important in view of the described data-driven sound track generation scenario, see
also Figure 12 for an overview. In particular, we have a focus on the creation of musically
plausible transitions between audio recordings that are to be concatenated. To this end, one
requires methods from audio signal analysis to capture harmonic and rhythmic properties of
music recordings. Such properties form the basis for designing musically meaningful similarity
measures needed to identify potential transition regions. Then, one requires manipulation
techniques that allow for temporally (e. g., time-scaling, clipping) and spectrally (e. g.,
modulation, harmonic-percussive separation, voice equalization) manipulating the audio
material. Furthermore, synthesis methods (e. g., blending, morphing) are needed to render
the final audio stream. Last but not least, in view of efficiency and online capability, data
structures are to be developed that facilitate fast content-based search and encode, for
example, plausible transitions between music clips.

3.1 Category-based Classification
As mentioned in the introduction, we assume that the visual scenes are associated to certain
categories that may refer to the emotional content or mood of the scene. For example, the
current scene may be associated with the attribute “Angry” whereas the subsequent scene
may by associated with the attribute “Happy.” Then one important step in the sound track
generation scenario is to find music recordings that reflect the categories of the given scenes,
see Figure 3.

Actually, the automated classification of music recordings with respect to a given set of
categories has been a central topic in the field of music information retrieval. Generally, such
categories refer to cultural or musicological aspects [16] including genre [59, 63] or rhythm
styles [26, 61]. In our scenario, we are particularly interested in categories that refer to
mood or emotions [36, 41, 62]. However, as noted in [41], when organizing music in terms of
emotional content, one is faced with the problem that there is a “considerable disagreement
regarding the perception and interpretation of the emotions of a song or ambiguity within
the piece itself.” In other words, the categories are often ill-defined and highly subjective
with the result that the automation of the classification problem is still in its early stages,
see [41] for an overview.
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Figure 3 Visual scenes and music database annotated with respect to mood categories of the
valence-arousal space [58].

In the following, we assume that the recordings of the database have been annotated
according to given mood categories. Such annotations may be obtained by manual expert
classification or may be derived from contextual text information (e. g., websites, tags, and
lyrics) and content-based approaches [41]. In the music context, the most prominent way
to organize emotional descriptors is the two-dimensional valence-arousal space as originally
introduced in [58], see Figure 3. Here, the mood categories are arranged on a plane with
two independent axes that encode arousal (intensity) ranging from low to high and valence
(appraisal of polarity) ranging from negative to positive [41]. However, the specific nature of
the descriptive labels and their organization is not in the scope of this contribution. In the
following, we only require that both the visual scenes as well as the database documents are
characterized based on the same set of categories.

3.2 Content-based Audio Retrieval
In our online scenario, we assume that a music recording is played back underlying the
current visual scene. Once a scene change is pending and the category of the subsequent
scene is known, the goal is to find a music recording which category fits the subsequent
scene. Assuming suitable annotations as discussed in Section 3.1, this simply requires a table
look-up to retrieve all music documents of the desired category. In addition, we want to
generate a smooth transition from the current recording to the next one. Here, a simple
cross-fade between two recordings may result in unpleasant listening experiences due to
harmonic, melodic and rhythmic incompatibilities in the transition phase. Instead, the
goal is to generate musically transitions that do not intercept the flow of the multimedia
presentation. One way to achieve this goal is to specify a suitable region in the current
audio recording, where the transition to the next recording is to be performed. Based on the
corresponding clip, one then needs to identify a recording that contains a semantically related
target clip allowing for a plausible transition. This is exactly the point, where content-based
audio retrieval comes into play. In the following, we summarize two prominent retrieval
scenarios and describe the techniques used in our pipeline.

Actually, in content-based audio retrieval, various levels of specificity can be considered.
At the highest specificity level, the retrieval task is often referred to as audio identification
or audio fingerprinting. Here, given a small audio fragment as query, the task consists in
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Figure 4 Chroma-based audio matching procedure. The red arrows indicate temporal corres-
pondences between the query clip and a local section of a given music recording.

identifying the fragment (i. e., retrieving the audio recording containing the fragment along
with the fragment’s position) within a large audio collection [1, 5, 46, 68]. Note that at this
level, the notion of similarity is rather close to the identity. Even though recent identification
algorithms show a significant degree of robustness towards noise, MP3 compression artifacts,
and uniform temporal distortions, existing algorithms for audio identification can not deal
with strong non-linear temporal distortions or with other musically motivated variations that
concern, for example, the articulation or instrumentation.

In sound track generation scenarios as described in [69], where the goal is to identify
possible transition points within the same music recording, such strict notions of similarity
may be meaningful. However, when changing from one music recording to a completely
different one, a much coarser notion of similarity to identify potential transition regions is
required. The identification of such regions can be accomplished by using audio matching
techniques, where the goal is to retrieve all audio clips that musically correspond to the
query [54, 50, 45]. In audio matching, opposed to traditional audio identification, one
allows variations in musical aspects such as tempo, instrumentation, loudness, timbre, or
accentuation.

In our proposed pipeline, we are specifically looking for audio clips that are harmonically
related. Therefore, we use a chroma-based audio matching procedure as originally described
in [54]. The general idea is to convert the audio material into mid-level representations
that show a high degree of robustness to variations that are to be left unconsidered in the
comparison. On the other hand, the feature representations should capture characteristic
information that musically relate the identified clips to facilitate a plausible transition. In this
context, chroma-based audio features have turned out to be a suitable mid-level representa-
tion [3, 24, 51]. Assuming the equal-tempered scale, the chroma attributes correspond to the
set {C, C], D, . . . , B} that consists of the twelve pitch spelling attributes as used in Western
music notation. Representing the short-time content of a music representation in each of
the 12 pitch classes, chroma features1 show a large degree of robustness to variations in
timbre and dynamics, while keeping sufficient information to characterize the rough harmonic

1 MATLAB implementations for some chroma variants are supplied by the Chroma Toolbox:
www.mpi-inf.mpg.de/resources/MIR/chromatoolbox, see also [53]
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Figure 5 Beat tracking result (indicated by the red vertical lines) for a given music recording.

progression of the underlying piece of music. Based on these feature representations, the
query clip is locally compared with clips that are contained in the target music recordings
using alignment techniques. In particular, we use a local variant of Dynamic Time Warping
(DTW) that can be used to find optimal temporal correspondences between the query clip
and a local section of a given music recording [51]. Intuitively, these correspondences can
be thought of a linking structure as indicated by the red arrows shown in Figure 4. These
arrows encode how the feature sequences are to be warped (in a non-linear fashion) to match
each other.

In [54], the main application of audio matching is to identify different versions of the same
piece of music irrespective of the performance, instrumentation, or arrangement. As reported
in [45, 29], using a query length of roughly 20 seconds (or more) leads to a high precision
for this task. Now, in the sound track generation scenario as tackled in this paper, one is
typically not interested in different versions of the same piece of music, but in harmonically
related passages contained in different pieces. Such passages can be obtained when using
query clips of shorter duration (less than 10 seconds). In other words, what is considered a
false positive match in [54], may be a desirable match in our scenario.

3.3 Tempo and Beat Tracking
The chroma-based audio matching procedure is used to identify a target audio clip that
shares a similar harmonic progression with the query clip. In view of a rhythmically plausible
transition, one also needs to temporally synchronize the two clips—similar to what a DJ
is doing when matching the beats of two recordings. This leads us to further central tasks
referred to as tempo estimation and beat tracking, where the objective is to automatically
locate the beat positions within a given music recording, see Figure 5.

Most approaches to tempo estimation and beat tracking proceed in two steps. In the first
step, positions of note onsets within the music signal are estimated. Here, most approaches
capture changes of the signal’s energy or spectrum and derive a so-called novelty curve. The
peaks of such a curve yield good indicators for note onset candidates [4, 9]. In the second
step, the novelty curve is analyzed to detect reoccurring patterns and quasi-periodic pulse
trains [12, 17, 28, 57, 60, 72].

Even though most humans are able to tap along the musical beat when listening to a piece
of music, transferring this cognitive process into an automated system that reliably works for
a large variety of musical styles is a challenging task. In particular, beat tracking becomes
hard in the case that a music recording reveals significant tempo changes. This typically
occurs in expressive performances of classical music as a result of ritardandi, accelerandi,
fermatas, and rubato [30]. Furthermore, the extraction problem is complicated by the fact
that the notions of tempo and beat may not be clearly defined due to a complex hierarchical
structure of the rhythm [56]. In particular, there are various levels that are presumed to
contribute to the human perception of tempo and beat. All these difficulties and ambiguities
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Figure 6 Waveforms and chroma representations using a fixed-size windowing strategy (left) and
an adaptive windowing strategy using beat-synchronized windows (right).

have to be kept in mind when using the beat tracking results obtained from automated
methods.

Knowing beat positions is not only necessary to temporally synchronize the query and
target clip, as will be explained in Section 3.4, but is also beneficial for the feature computation
and matching step as we now explain in more detail. When transforming a waveform into
some feature representation, one typically splits up the signal into frames using a window
function of fixed size and then applies the transform to each frame. Each feature value
represents a local property averaged over the respective time window, which may result in
“noisy” features when the signal’s changes occur within a given window. As an alternative
to fixed-size windowing, one can employ a musically more meaningful adaptive windowing
strategy, where window boundaries are induced by previously extracted onset and beat
positions. Since musical changes typically occur at onset positions, this often leads to an
increased homogeneity within the adaptively determined frames which often improves the
resulting feature representation, see Figure 6 for an illustration. One major advantage of
using beat-synchronized audio features is that tempo differences between musically related
audio clips are compensated [18]. This alleviates the requirement of using cost-intensive
alignment procedures in the retrieval step as discussed in Section 3.2. Furthermore, knowing
the beat positions allows for converting a physical time axis (given in seconds) into a musically
meaningful time axis (given in beats or measures), which has huge benefits for presenting and
comparing music analysis results [43]. However, when relying on beat-synchronous features,
one should keep in mind that the quality of automatically extracted beats may be rather
poor for certain types of music [30].

3.4 Time-Scale Modification
Once the beat positions are known in the query and target clip, one needs techniques that
allow for locally speeding up or slowing down a music recording without changing other
characteristics such as the pitch. Originally introduced for speech signals, there are numerous
time stretching or time-scale modification (TSM) procedures. Most of these procedures are
based on a fundamental technique referred to as Overlap-and-Add (OLA). The idea is to
generate local copies of audio segments, which are obtained by windowing the original audio
signal using suitably shifted Hann windows. These copies are then added up (using a constant
window overlap) to produce the time-scale modified signal, see Figure 7 for an illustration.
Generally, this simple procedure often results in severe noise-like phase distortions and
stuttering artifacts which strongly downgrade the quality of the music signal.
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Figure 7 Illustration of the Overlap-and-Add (OLA) technique with blue indicating the waveforms
and green indicating the windows.

Figure 8 Non-linear time-scale modification of a music recording to temporally adjust beat
positions.

Various time-scale modification algorithms have been proposed that try to attenuate
these distortions. In general, one can distinguish between time-domain and frequency-domain
approaches. A widely used time-domain procedure is known as WSOLA (waveform-similarity-
based overlap-add) algorithm [65]. Here, phase discontinuities in the fundamental frequency
are prevented by slightly adapting the window positions to obtain the local copies using
correlation measures before the accumulation step is applied. On the other side, the most
common frequency-domain approach is known as phase vocoder [13], where one first generates
local copies as in the OLA procedure. Next, the phases of each local copy are adjusted in the
Fourier domain to achieve a frequency-wise phase coherence in the subsequent accumulation
step. To cope with various kinds of artifacts, numerous variants and hybrid methods have
been proposed, see, e. g., [2, 14, 15, 25, 27, 40].

In our sound track generation scenario it is of particular importance that the used TSM
procedure is capable of performing non-linear time-scale modifications. This is for example
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Figure 9 Cross-fade between beat-synchronized query clip and target clip.

needed when adjusting the beat grid of a music recording as shown in Figure 8. Finally, we
note that the problem of pitch shifting with the objective to change the pitch of an input
signal without changing its duration is dual to the time stretching problem. Here, to shift
the pitch of a signal, one can first apply a time-scale modification procedure to stretch the
signal and then use a simple sample rate conversion.

3.5 Intelligent Equalization and Blending
After the harmonically related query and target clips have been rhythmically synchronized,
one can compute a transition by applying a simple cross-fade between these two clips. Then
the transit from the current recording to the subsequent recording can be accomplished
smoothly using this transition, see Figure 9.

So far, harmonic and rhythmic aspects were used for retrieving and adjusting the query
and target clips. There are many more musical aspects such as instrumentation, musical
voices or melodic structures one may want to consider in the transition. To this end, one
requires techniques that allow for manipulating the audio material with regard to such
aspects. This leads us to another fundamental and challenging area of signal processing
generally referred to as source separation, where the goal is to decompose a given mixed
audio signal into its individual sound sources.

In the musical context, source separation often deals with automatically extracting
individual tracks that correspond to different instruments or musical voices from a given
audio recording, see [10, 52, 67] for an overview. A related task is to parameterize an audio
recording of a piece of music, where the parameters encode musical aspects such as pitch,
onset positions, note durations, as well as tuning and timbre aspects corresponding to specific
instruments [33, 48]. Exploiting the availability of additional information such as musical
scores, various score-informed source separation strategies have been proposed [19, 20, 21,
31, 71]. Having an explicit control over the various sources allows for building musically
meaning equalizers (instead of simple frequency-based equalizer) that allow for amplifying or
attenuating certain voices (instead of frequency bands), see, e. g., [38, 42] and Figure 10.

Decomposing a monaural audio signal into musical voices is, in general, an extremely
difficult problem. A special case is the decomposition of a music signal into a harmonic
and a percussive component. Here, various methods have been proposed based on matrix
decompositions of a spectrogram representation using machine learning techniques [34, 23, 47,
64]. In [55], a simple and fast algorithm that does not require any training material is proposed.
This iterative approach relies on the assumption that harmonic components correspond to
horizontal and percussive components to vertical structures within a spectrogram.
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Figure 10 Instrument-wise equalization of a music recording (similar to [38, 42]).

In view of a sound track generation scenario, source separation and voice equalization
techniques are important building blocks for the blending and morphing stage. Here, for
example, one may want to suppress distracting voices or to amplify percussive components
while concealing harmonic inconsistency. Actually, such techniques are also applied by DJs,
who often amplify low-frequency bands while attenuating disturbing high-frequency bands in
transition regions.

3.6 Indexing and Data Structures
In view of online capability of an overall sound track generation system, the efficient
identification of suitable transition regions becomes an important issue. In the following, we
want to touch on indexing and data structure issues.

Various indexing techniques have been applied for content-based audio retrieval. In case
of audio identification, standard hashing techniques can be applied to obtain very efficient
systems, see, e. g., [68]. For retrieval tasks on a lower specificity level, indexing become much
harder because the temporal order of events, as also emphasized in [7], is of crucial importance
for building up musically meaningful entities such as melodies or harmonic progressions.
To account for temporal context, one often reverts to small chunks of audio also referred
to as audio shingles, which leads, however, to features of high dimensionality. To index
such high-dimensional shingles, techniques such as local sensitive hashing (LSH) have been
applied for tasks such as cover song identification [6]. Here, being a document-based retrieval
scenario, a bag-of-feature approach is applied with the features being the audio shingles. Such
bag-of-feature approaches are not directly applicable to fragment-based retrieval scenarios
such as audio matching. In [45], an indexing method is described based on inverted files
which, however, only scales to medium size datasets. The idea of applying shingling and
LSH-based indexing techniques to audio matching, where a single shingle corresponds to an
entire audio clip of 10 to 20 seconds of duration, is investigated in [29].

Another idea to speed up the identification of transition candidates is to build up a
graph-like data structure that explicitly encodes musical relations between audio clips. Such
a data structure can be constructed from the given audio database in an off-line preprocessing
step. As starting point, we want to take up an idea from the field of computer animation.
Here, analogous to our music scenario, one important task consists in creating realistic,
controllable motions from prerecorded motion capture sequences. In [44], a procedure is
presented where a directed graph, referred to as motion graph, is constructed from a given



M. Müller and J. Driedger 187

Figure 11 Music graph in analogy to the motion graph introduced in [44].

corpus of motion capture data. The edges of the graph contain either pieces of original
motion data or automatically generated transitions, and the nodes serve as choice points
where these small bits of motion join seamlessly. Motions can then be generated simply by
building walks on the graph. Figure 11 illustrates this idea transferred to the music domain,
see also [35] for a similar concept.

4 Conclusions and Future Work

The main goal of this contribution was to show how different aspects of music retrieval and
audio processing come into play when dealing with applications such as data-driven sound
track generation. Rather than presenting a concrete system, we sketched a possible pipeline
for an online approach while discussing the necessary “ingredients” such as category-based
music classification, content-based audio retrieval, beat tracking, time-scale modification,
instrument equalization, and audio indexing. The intertwining and interaction of the various
tasks is again summarized and illustrated by Figure 12. Each of the mentioned tasks
constitutes itself a challenging research area with many open issues, in particular when
dealing with various genre and styles of music—we have given numerous pointers to the
literature that represent the state-of-the-art for the respective tasks.

Of course, when it comes to an actual realization and implementation of a concrete
sound track generation system, many more challenges arise and a complete automatization
of all steps neither seems feasible nor meaningful. However, there are many variants and
more restricted sound track generation scenarios that come into reach. One such scenario is
described in [69], where the duration of a given music recording is to be adjusted by suitably
deleting, copying, and rearranging certain parts of the recording while keeping the flow of the
music. Extending this scenario, a user may want to add background music to a slide show,
where he specifies for each slide a desired music recording as well as a duration parameter.
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Figure 12 Possible pipeline for an automated sound track generation system.

Then, the task would be to automatically find and reassemble suitable parts of the recordings
that not only fulfill the user constraints but also allow for euphonious transitions. Here, when
the slide show is known in advance, an offline optimization procedure may be acceptable
and efficiency issues become less significant. Furthermore, there may be different types of
transitions a user may be interested in. For example, if there is a sudden event in the visual
data stream, one may also want to have a surprising element in the sound track. Here, an
abrupt change from one music clip to another may be acceptable or even desired. Instead
of “complete solutions” that have been computed in a fully automated fashion, a user may
rather need flexible tools that allow him to identify, modify, and assemble audio material in
an intuitive and interactive way. Finally, perceptual issues need to be taken into account
when it comes to the final assessment of the generated sound track. This itself constitutes
an extremely difficult and interdisciplinary research area.

We hope that with this contribution we not only have given a useful overview of various
tasks indicating challenges and future research directions, but could also give the reader an
impression of the richness, depth and relevance of the research conducted in fields of music
information retrieval and music processing.
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Abstract
The emerging field of Music Information Retrieval (MIR) has been influenced by neighboring
domains in signal processing and machine learning, including automatic speech recognition, image
processing and text information retrieval. In this contribution, we start with concrete examples
for methodology transfer between speech and music processing, oriented on the building blocks
of pattern recognition: preprocessing, feature extraction, and classification/decoding. We then
assume a higher level viewpoint when describing sources of mutual inspiration derived from text
and image information retrieval. We conclude that dealing with the peculiarities of music in MIR
research has contributed to advancing the state-of-the-art in other fields, and that many future
challenges in MIR are strikingly similar to those that other research areas have been facing.
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1 Introduction

Music Information Retrieval (MIR) still is a relatively young field: Its first dedicated
symposium, ISMIR, was held in 2000, and a formal society for practitioners in the field,
taking over the ISMIR acronym, was only established in 2008. This does not mean that all
work in MIR needs to be newly invented: Analogous or very similar topics and areas to those
currently of interest in MIR research may already have been researched for years, or even
decades, in neighboring fields. Reusing and transferring findings from neighboring fields,
MIR research can jump-start and stand on the shoulders of giants. At the same time, the
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nature of music data may pose constraints or peculiarities that press for solutions beyond
the trodden paths in MIR, and thus can be of inspiration the other way around too. Such
opportunities for methodology transfer, both to and from the MIR field, are the focus of this
chapter.

In engineering contexts, audio typically is considered to be the main modality of music.
From this perspective, an obvious neighboring field to look at is automatic speech recognition
(ASR), which just like MIR strives to extract information from audio signals. Section 2 will
discuss several methodology transfers from ASR to MIR, while Section 3 gives a detailed
example of one of the first successful transfers from MIR back to ASR. Section 4 focuses on
the topic of evaluation, in which current MIR practice has strong connections to classical
approaches in Text Information Retrieval (IR). Finally, in Section 5, we consider MIR from
a higher-level, more philosophical viewpoint, pointing out similarities in open challenges
between MIR and Content-Based Image and Multimedia Retrieval, and arguing that MIR
may be the field that can give a considerable push towards addressing these challenges.

2 Synergies between Speech and Music Analysis

As stated above, it is hardly surprising that audio-based MIR has been influenced by ASR
research—as obvious opportunities to transfer ASR technologies to MIR, lyrics transcription
[38] or keyword spotting in lyrics [17] can be named. Yet, there are more intrinsic synergies
between speech and music analysis, where similar methodologies can be applied to seemingly
different tasks. These will be the focus of the following section. We point out areas where
speech and music analysis have been sources of mutual inspiration in the past, and sketch
some opportunities for future methodology transfer.

2.1 Multi-Source Audio Analysis in Speech and Music
Generally, music signals are composed of multiple sources, which can correspond to instru-
ments, singer(s), or the voices in a polyphonic piano piece; thus, aspects of multi-source signal
processing can be considered as an integral part of MIR. Similarly, research on speech recog-
nition in the presence of interfering sources (environmental noise, or even other speakers) has
a long tradition, resulting in numerous studies on source separation and model-based robust
speech recognition. Many approaches for speech source separation deal with multi-channel
input from microphone arrays by beamforming, i. e., exploitation of spatial information. An
example of such beamforming in music signals is the well-known ‘karaoke effect’ to remove the
singing voice in commercial stereophonic recordings: Many popular songs are mixed with the
vocals being equally distributed to the left and right channels, which corresponds to a center
position of the the vocalist in the recording/playback environment. In that case, the vocals
can be simply eliminated by channel subtraction, which can be regarded as a trivial example
of integrating spatial information into source separation. However, to highlight the aspects
of methodology transfer, we restrict the following discussion to monaural (single-channel)
analysis methods: We argue that the constraints of music signal processing—where usually
no more than two input channels are available—have leveraged a great deal of research on
monaural source separation, which has been fruitful for speech signal processing in turn. In
this section, we attempt a unified view on monaural audio source separation in speech and
music, presenting a rough taxonomy of tasks and applications where synergies are evident.
This taxonomy is oriented on the general procedure depicted in Figure 1, depending on which
of the system components (source models, transcription/alignment, synthesis) are present.
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Figure 1 A unified view on monaural multi-source analysis of speech and music. Spectral
(short-time Fourier Transform, STFT) or cepstral features (MFCCs) are extracted from the audio
signal, yielding a transcription based on non-negative matrix factorization (NMF), graphical models
(GM), recurrent neural networks (RNN) or other machine learning algorithms. The transcription can
be used to synthesize signals corresponding to the sources or to enable (more robust) transcription
in turn.

Polyphonic transcription and multi-source decoding

The goal of these tasks is not primarily the synthesis of each source as a waveform signal,
but to gain a higher-level transcription of each source’s contributions, e. g., the notes played
by different instruments, or the transcription of the utterances by several speakers in a
cross-talk scenario (the ‘cocktail party problem’). Polyphonic transcription of monaural
music signals can be achieved by sparse coding through non-negative matrix factorization
(NMF) [64, 68], representing the spectrogram as the product of note spectra and a sparse
non-negative activation matrix. These sparse NMF techniques have successfully been ported
to the speech domain to reveal the phonetic content of utterances spoken in multi-source
environments [18]: Determining the individual notes played by various instruments and their
position in the spectrogram can be regarded as analogous to detecting individual phonemes
in the presence of interfering talkers or environmental noise. An important common feature
of these ‘joint decoding’ approaches for multi-source speech and music signals is the explicit
modeling of parallel occurrence of sources; this can also be done by a graphical model
representation of probabilistic dependencies between sources, as demonstrated in [69] for
multi-talker ASR. Furthermore, polyphonic transcription approaches that use discriminative
models for multiple note targets [46] or one-versus-all classification [50] seem to be partly
inspired by ‘multi-condition training’ in ASR, where speech overlaid with interfering sources
is presented to the system in the training stage, to learn to recognize speech in the presence of
other sources. Finally, to contrast transcription or joint decoding approaches to the methods
presented in the remainder of this section, we note that the former can principally be used
to resynthesize signals corresponding to each of the sources [69], yet this is not their primary
design goal; results are sometimes inferior to dedicated source separation approaches [19, 73].

Leading voice extraction and noise cancellation

For many MIR applications, the leading voice is of particular relevance, e. g., the voice of
the singer in a karaoke application. Similarly, in many speech-based human-human and
human-computer interaction scenarios, including automatic analysis of meetings, voice search
or mobile telephony, the extraction of the primary speech source, which delivers the relevant
content, is sufficient. This application requires modeling of the characteristics of the primary
source, and speech and music processing considerably differ in this respect; unifying the
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approaches will be an interesting question for future research. In music signal processing,
main melody extraction is often related to predominance: It is assumed that the singing
voice contributes the most to the signal energy1. Thus, extraction of the leading voice can be
achieved with little explicit knowledge, e. g., by fixing a basis of sung notes and estimating
the vocal tract impulse response in an extension of NMF to a source-filter model [14]. In
speech processing, one usually does not rely on the assumption that the wanted speech
is predominant in a recording, as signal-to-noise ratios can be negative in many realistic
scenarios [9]. Hence, one extends the previous approaches by rather precise modeling of
speech, often in a speaker-dependent scenario. Still, combining knowledge about the spectral
characteristics of the speech with unsupervised estimation of the noise signal, in analogy
to the unsupervised estimation of the accompaniment in [14], results in a semi-supervised
approach for speech extraction as, e. g., in [48]. In contrast, often a pre-defined model for
the background such as in [19,53,73] is used in a supervised source separation framework,
and this kind of background modeling can be applied to leading voice extraction as well:
Assuming the characteristics of the instrumental accompaniment of the singer are similar in
vocal and non-vocal parts, a model of the accompaniment can be built; this allows estimating
the contribution of the singing voice through semi-supervised NMF [21].

Instrument Separation and the Cocktail Party Problem

As laid out above, leading voice extraction or speech enhancement can be conceived as source
separation problems with two sources. A generalization of this problem to extraction of
multiple sources, or sources with large spectral similarity such as in instrument separation or
the ‘cocktail party’ scenario, from a monophonic recording generally requires more complex
source modeling. This can include temporal dependencies: In [45], NMF is extended to a
non-negative Hidden Markov Model for extraction of the individual speakers from a multi-
talker recording. Including temporal dependencies appears promising for music contexts as
well, e. g., for separation of (repetitive) percussive and (non-repetitive) harmonic sources;
furthermore, this approach is purely data-based and generalizes well to multiple sources.

In music signal processing, especially for classical music, higher-level knowledge can be
incorporated into signal separation by means of score information (score-informed source
separation) [15,24]. Not only does this allow to cope with large spectral similarity, but it also
enables separation by semantic aspects, which would be infeasible from an acoustic feature
representation, and/or allows for user guidance; for instance, the passages played by the left
and right hand in a piano recording can be retrieved [15]. Transferring this approach to
the speech domain, we argue that while in most speech-related applications availability of a
‘score’ (i. e., a ground truth speaker diarization including overlap and transcription) cannot
be assumed, score-informed separation techniques could be an inspiration to built iterative,
self-improving methods for cross-talk separation, speech enhancement and ASR, recognizing
what has been said by whom and exploiting that higher-level knowledge in the enhancement
algorithm.

2.2 Combined Acoustic and Language Modeling
Language modeling techniques are found in MIR, e. g., to model chord progressions [47,
58, 80] or playlists [36]. Conversely, the prevalent usage of language models in ASR is

1 Other common assumptions are that the singing voice is the highest voice among all instruments, or
that it is characterized by vibrato.
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Figure 2 Use of universal background models (UBM) in speech and music processing: A generic
speech/music model (UBM) is created from training audio. A speaker/piece model can be generated
directly from training audio (dashed-dotted curve) or from the UBM by MAP adaptation (dashed
lines). In the latter case, the parameters of the adapted model (e. g., the mean vector µ in case of
GM modeling) yield a fingerprint (supervector) of the speaker or the music piece.

to calculate combined acoustic-linguistic likelihoods for speech decoding: Informally, the
acoustic likelihood of a phoneme in an utterance is multiplied with a language model
likelihood of possible words containing the phoneme to integrate knowledge about word
usage frequencies (unigram probabilities) and temporal dependencies (n-grams) [82]. This
immediately translates to chord recognition: For instance, unigram probabilities can model
the fact that major and minor chords are most frequent in Western music, and there exist
typical chord progressions that can be modeled by n-grams [56]. Thus, accuracy of chord
recognition can be improved by combined acoustic and language modeling in analogy to
ASR [8, 29]. A different approach to combined acoustic and language modeling is taken
in [30] for genre classification: Music is encoded in a symbolic representation derived from
clustered acoustic features, which is then encoded in a language model for different genres.

2.3 Universal Background Models in Speech Analysis and Music
Retrieval

Recent developments in content-based music retrieval include methodologies that were
introduced for speaker recognition and verification. These include universal background
models (UBM)—trained from large amounts of data, and representing generic speech as
opposed to the speech characteristics of an individual—and Gaussian Mixture Model (GMM)
supervectors [4, 35,81]. GMM supervectors are equivalent to the parameters of a Gaussian
Mixture UBM adapted to the speech of a single speaker (usually only few utterances). Hence,
they allow for effective and efficient computation of a person’s speech ‘fingerprint’, i. e., its
representation in a concise feature space suitable for a discriminative classifier. The generic
approaches incorporating UBMs for speech and music classification are shown in Figure 2: A
basic speaker verification algorithm uses a UBM to represent the acoustic parameters of a
large set of speakers, while the speaker to be verified is modeled with a specialized GMM.
For an utterance to be verified, a likelihood ratio test is conducted to determine whether
the speaker model delivers sufficiently higher likelihood than the UBM. Translating this
paradigm to music retrieval, one can cope with out-of-set events—i. e., that the user may be
querying for a musical piece not contained in the database. Specific pieces in the database
are represented (‘fingerprinted’) by Gaussian mixture modeling of acoustic features, while the
UBM is a generic model of music. Then, the likelihoods of the query under the specialized
GMMs versus the UBM allow out-of-set classification [39].
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On the other hand, adapting the UBM to a specific music piece using maximum-a-
posteriori (MAP) adaptation yields an audio fingerprint in shape of the adapted model’s
mean (and possibly variance) vectors. These fingerprints can be classified by discriminative
models such as Support Vector Machines (SVMs), resulting in the GMM-SVM paradigm
which has become standard in speaker recognition in the last years. In [5], the GMM-
SVM approach was successfully applied to music tagging in the 2009 MIREX evaluation;
recent studies [6, 7] underline the suitability of the approach to analyze music similarity for
recommender systems.

2.4 Transfer from Paralinguistic Analysis
To elucidate a further opportunity for methodology transfer from the speech domain, we
consider the field of paralinguistic analysis (i. e., retrieving other information from speech
beyond the spoken text), which is believed to be important for natural human-machine
and computer mediated human-human communication. Particularly, we address synergies
between speech emotion recognition and music mood analysis: While relating to different
concepts of emotion (or mood), the overlap in the methodologies and the research challenges
are striking. At first, we would like to recall the subtle difference between those fields:
Speech emotion recognition aims to determine the emotion of the speaker, which is—for most
practical applications such as in dialog systems—the emotion perceived by the conversation
partner; conversely, music mood analysis does not primarily assess the (perceived) mood
of the singer, but rather the overall perceived mood in a musical piece—often, that is the
intended mood, i. e., the mood as intended by the composer (or songwriter). Despite these
differences, in the result, similar pattern recognition techniques have been proven useful in
practice.

For instance, in order to assess the emotion of a speaker, combining ‘what’ is said
with ‘how’ it is said, i. e., fusing acoustic with linguistic information, has been shown to
increase robustness [78]—and similar results have been obtained in music mood analysis when
considering lyrics and audio features [26,57]. Apart from low-level acoustic and linguistic
features, specific music features seem to contribute to music mood perception, and hence,
recognition performance, including the harmonic ‘language’ (chord progression) and rhythmic
structure [60], which necessitates efficient fusion methods as, e. g., for audio-visual emotion
recognition. Besides, similarly to emotion in speech [77], music mood classification is lately
often turned into a regression problem [60, 79] in target dimensions such as the arousal-
valence plane [55], in order to avoid ambiguities in categorical ‘tags’ and improve model
generalization.

Furthermore, when facing real-life applications, the issue of non-prototypical instances—
i. e., musical pieces that are not pre-selected by experts as being representative for a certain
mood—has to be addressed: It can be argued that a recommender system based on music
mood should retrieve instances associated with high degrees of, e. g., happiness or relaxation
from a large music archive. Here, music mood recognition can profit from the speech domain
as this task bears some similarity to applications of speech emotion recognition such as
anger detection, where emotional utterances have to be discriminated from a vast amount
of neutral speech [66]. Relatedly, whenever instances to be annotated with the associated
mood are not pre-selected by experts according to their prototypicality, the establishment
of a robust ground truth, i. e., consistent assessment of the music mood by multiple human
annotators, becomes non-trivial [27]. This might foster the development of quality control
and ‘noise cancellation’ methods for subjective music mood ratings [60], as developed for
speech emotion [20], in the future.
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Finally, in the future, we might see a shift towards recognizing the affective state of singers
themselves: First attempts have been made to estimate the ‘enthusiasm’ of the singer [10],
which is arguably positively correlated with both arousal and valence; hence, the task is
somewhat similar to recognition of level of interest from speech as in [78]. Another promising
research direction might be to investigate long-term singer traits instead of short-term states
such as emotion: Such traits include age, gender [59], body shape and race, all of which are
known to be correlated with acoustic parameters, and can be useful in category-based music
retrieval or identifying artists from a meta-database [74]. In a similar vein, the analysis of
voice quality and ‘likability’ [72] could be a valuable source of inspiration for research on
synthesis of singing voices.

3 From Music IR to Speech IR: An Example

Starting from the general overview above, we now discuss a particular example on how
technologies from both domains of music and speech IR interact with each other. In
particular, we start with the well known MFCC (Mel Frequency Cepstral Coefficients)
features from the speech domain which are used to analyze signals based on an auditory
filterbank. This results in representing a speech signal by a temporal feature sequence
correlating with certain properties of the speech signal. We then review corresponding
music features and their properties, with a particular interest on representing the harmonic
progression of a piece of music using chroma-type features. This, in turn, inspires a class of
speech features correlating with the phonetic progression of speech.

Concerning possible applications, chroma-type features can be used to identify fragments
of audio as being part of a musical work regardless of the particular interpretation. Having
sketched a suitable matching technique, we subsequently show how similar techniques can be
applied in the speech domain for the task of keyphrase spotting.

Whereas the latter matching techniques focus on local temporal regions of audio, more
global properties can be analyzed using self-similarity matrices. In music, such matrices
can be used to derive the general repetitive structure (related to the musical form) of an
audio recording. When dealing with two different interpretations of a piece of music, such
matrices can be used to derive a temporal alignment between the two versions. We discuss
possible analogies in speech processing and sketch an alternative approach to text-to-speech
alignment.

3.1 Feature Extraction
Many audio features are based on analyzing the spectral contents of subsequent short
temporal segments of a target signal by using either a Fourier transform or a filter-bank.
The resulting sequence of vectors is then further processed depending on the application. As
an example, the popular MFCC features which have been successfully applied in automatic
speech recognition (ASR) are obtained by applying an auditory filterbank based on log-scale
center frequencies, followed by converting subband energies to a dB- (log-) scale, and applying
a discrete cosine transform [51]. The logarithmic compression in both frequency and signal
power serves to weight the importance of events in both domains in a way a human perceives
them. Because of their ability to describe a short-time spectral envelope of an audio signal
in a compact form, MFCCs have been successfully applied to various speech processing
problems apart from ASR, such as keyword spotting and speaker recognition [54]. Also
in Music IR, MFCCs have been widely used, e. g., for representing the timbre of musical
instruments or speech-music discrimination [34].

Chapte r 11



202 Music Information Retrieval: Transfer from Related Disciplines

0

1

C
 

0

1

C
#

0

1

D
 

0

1

D
#

0

1

E
 

0

1

F
 

0

1

F
#

0

1
G

 

0

1

G
#

0

1

A
 

0

1

A
#

0 2 4 6 8 10 12 14 16 18 20
0

1

B
 

Figure 3 Chroma-based CENS features obtained from the first measures (20 seconds) of
Beethoven’s 5th Symphony in two interpretations by Bernstein (blue) and Sawallisch (red).

While MFCCs are mainly motivated by auditory perception, music analysis is frequently
performed based on features motivated by the process of sound generation. Chroma features
for example, which have received an increasing amount of attention during the last ten
years [2], rely on the fixed frequency (semitone) scale as used in Western music. To obtain a
chroma feature for a short segment of audio, a Fourier transform of that segment is performed.
Subsequently, the spectral coefficients corresponding to each of the twelve musical pitch
classes (the chroma) C, C], D,. . . , B are individually summed up to yield a 12-dimensional
chroma vector. In terms of a filterbank, this process can be seen as applying octave-spaced
comb-filters for each chroma.

From their construction, chroma features do well-represent the local harmonic content
of a segment of music. To describe the temporal harmonic progression of a piece of music,
it is beneficial to combine sequences of successive chroma features to form a new feature
type. CENS-features (chroma energy normalized statistics) [43] follow this approach and
involve calculating certain short-time statistics on the chroma features’ behaviour in time,
frequency, and energy. By adjusting the temporal size of the statistics window, CENS-feature
sequences of different temporal resolutions may be derived from an input signal. Figure 3
shows the resulting CENS feature sequences derived from two performances of Beethoven’s
5th Symphony.

In the speech domain, a possible analogy to the local harmonic progression of a piece of
music is the phonetic progression of a spoken sequence of words (a phrase). To model such
phonetic progressions, the concept of energy normalized statistics (ENS) has been transferred
to speech features [70]. This approach uses a modified version of MFCCs, called HFCCs
(human factor cepstral coefficients), where the widths of the mel-spaced filter bands are chosen
according to the bark scale of critical bands. After applying the above statistics computations,
the resuling features are called HFCC-ENS. Figure 6 (c) and (d) show sequences of HFCC-
ENS features for two spoken versions of the same phrase. Experiments show that due to
the process of calculating statistics, HFCC-ENS features are better adapted to the phonetic
progression in speech than MFCCs [70].
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3.2 Matching Techniques
In this section, we describe some matching techniques that use audio features in order to
automatically recognize audio signals. Current approaches to ASR or keyword spotting
employ suitable HMMs trained to individual words (or subword entities) to be recognized.
Usually, speaker-dependent training results in a significant improvement in recognition rates
and accuracy. Older approaches used dynamic time warping (DTW) which is simpler to
implement and bears the advantage of not requiring prior training. However, as the flexibility
of DTW in modeling speech properties is restricted, it is not as widely used in applications as
HMMs are [52]. In the context of music retrieval, DTW and variants thereof have, however,
regained considerable attention [40].

As particular example, we consider the task of audio matching: Given a short fragment
of a piece of audio, the goal is to identify the underlying musical work. A refined task
would be to additionally determine the position of the given fragment within the musical
work. This task can be cast into a database search: given a short audio fragment (the
query) and a collection of “known” pieces of music (the database), determine the piece in the
database the query is contained in (the match). Here a restricted task, widely known as audio
identification, only reports a match if the query and a match correspond to the same audio
recording [1, 71]. In general audio matching, however, a match is also reported if a query
and the database recording are different performances of the same piece of music. Whereas
audio identification can be very efficiently performed using low-level features describing the
physical waveform, audio matching has to use more abstract features in order to identify
different interpretations of the same musical work. In Western classical music, different
interpretations can exhibit significant differences, e. g., regarding tempo and instrumentation.
In popular music, different interpretations include cover songs that may exhibit changes in
musical style as well as mixing with other audio sources [62].

The introduced CENS features are particularly suitable to perform audio matching for
music that possess characteristic harmonic progressions. In a basic approach [43], the query
and database signals are converted to feature sequences q = (q1, . . . , qM ) and d = (d1, . . . , dN ),
where each of the qi and dj are 12-dimensional CENS vectors. Matching is then performed us-
ing a cross-correlation like approach, where a similarity function ∆(n) := 1

M

∑M
`=1〈q`, dn−1+`〉

gives the similarity of query and database at position n. Using normalized feature vectors,
values of ∆ in a range of [0, 1] can be enforced. Figure 4 (top) shows an example of a resulting
∆ when using the first 20 seconds of the Bernstein interpretation (see Figure 3) as a query
to a database containing, among other material, two different versions of Beethovens Fifth
by Bernstein and Sawallisch respectively. Positions corresponding to the seven best matches
are indicated in green. The first six matches correspond to the three occurrences of the
query (corresponding to the famous theme) within the two performances. Tolerance with
respect to different global tempi may be obtained in two ways: On the one hand, one may
calculate p time-scaled versions of the feature sequence q by simply changing the statistics
parameters (particularly window size and sampling rate) during extraction of the CENS
features. This process is then followed by p different evaluations of ∆. On the other hand,
the correlation-based approach to calculate a cost function may be replaced by a variant of
subsequence DTW. Experiments show that both variants perform comparably.

Coming back to the speech domain, the some audio matching approach can be applied to
detect short sequences of words or phrases within a speech recording. Compared to classical
keyword spotting [28,76], this kind of keyphrase spotting is particularly beneficial when the
target phrase consists of at least 3-4 words [70]. Advantages inherited from using the above
HFCC-ENS features for this task are speaker and also gender independence. More important,
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Figure 4 Top: Similarity function ∆ obtained in scenarios of audio matching for music. Bottom:
Similarity function ∆ obtained in keyphrase matching.

no prior training is required which makes this form of keyphrase spotting attractive for
scenarios with sparse resources. Figure 4 (bottom) shows an example where the German
phrase “Heute ist schönes Frühlingswetter” was used as a query to a database containing a
total of 40 phrases spoken by different speakers. Among those are four versions of the query
phrase each by a different speaker. All of them are identified as matches (indicated in green)
by applying a suitable peak picking strategy on the similarity function.

3.3 Similarity Matrices: Synchronization and Structure Extraction
To obtain the similarity of a query q and a particular position of a database document
d, a similarity function ∆ has been constructed by averaging M local comparisons 〈qi, dj〉
of features vectors qi and dj . In general, the similarity between two feature sequences
a = (a1, . . . , aK) and b = (b1, . . . , bL) can be characterized by calculating a similarity matrix
Sa,b := (〈ai, bj〉)1≤i≤K,1≤j≤L consisting of all pair-wise comparisons. Figure 5 (left) shows
an example of a similarity matrix. Color coding is chosen in a way such that dark regions
indicate a high local similarity and light regions correspond to a low local similarity. The
diagonal-like trajectory running from the lower left to the upper right thus expresses the
difference in the local tempo between the two underlying performances.

Based on such trajectories, similarity matrices can be used to temporally synchronize
musically corresponding positions of the two different interpretations [25,44]. Technically,
this amounts to finding a warping path p := (xi, yi)P

i=1 through the matrix, such that δ(p) :=∑P
i=1〈axi

, byi
〉 is minimized. Warping paths are restricted to start in the lower left corner,

(x1, y1) = (1, 1), end in the upper right, (xP , yP ) = (K,L), and obey certain step conditions,
(xi+1, yi+1) = (xi, yi) + σ. Two frequently used step conditions are σ ∈ {(0, 1), (1, 0), (1, 1)}
and σ ∈ {(2, 1), (1, 2), (1, 1)}. In Figure 5 (left) a calculated warping path is indicated in red
color.
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Figure 5 Left: Example of a similarity matrix with warping path indicated in red color. Right:
Self-similarity matrix for a version of Brahms Hungarian Dances no. 5. The extracted musical
structure A1A2B2CA3B3B4D is indicated. (Figures from [40].)

Besides synchronizing two audio recordings of the same piece, the latter methods can
be used to time-align musically corresponding events across different representations. As
a first example, consider a (symbolic) MIDI representations of the piece of music. In a
straightforward approach, an audio version of the MIDI can be created using a synthesizer.
Then, CENS features are obtained from the synthesized signal, thus allowing a subsequent
synchronization with another audio recording (in this context an audio recording obtained
from a real performance). Alternatively, CENS features may be generated directly from
the MIDI [25]. In a second example, scanned sheets of music (i. e., digital images) can
be synchronized to audio recordings, by first performing optical music recognition (OMR)
on the scanned images, producing a symbolic, MIDI-like, representation. In a second
step, the symbolic representation is then synchronized to the audio recording as described
before [16]. This process is illustrated in Figure 6 (left). Besides the illustrated task of audio
synchronization, the automatic alignment of audio and lyrics has also been studied [37],
suggesting the usability of synchronization techniques for human speech.

Transfered to the speech domain, such synchronization techniques can be used to time-
align speech signals with a corresponding textual transcript. Similarly to using a music
synthesizer on MIDI input to generate a music signal, a text-to-speech (TTS) system can be
used to create a speech signal. Subsequently, DTW-based synchronization can be performed
on HFCC-ENS feature sequences extracted from both speech signals [11], see Figure 6 (right).

Text-to-speech synchronization as decribed here may be applied for example to political
speeches or audio books. We note that a more classical way of performing this synchronization
consists of first performing ASR on the speech signal, resulting in an approximate textual
transcript. In a second step, both transcripts can then by synchronized by suitable text-based
DTW techniques [23].

ASR-based synchronization is advantageous in case of relatively good speech quality or
when a prior training to the speaker is possible. In this case, the textual transcript will be
of sufficiently high quality and a precise synchronization is possible. Due to the smoothing
process involved in the ENS calculation, TTS-based synchronization typically has a lower
temporal resolution which has an impact on the synchronization accuracy. However, in
scenarios with a high likelihood of ASR-errors, TTS-based synchronization can be beneficial.

Variants of the DTW-based music synchronization perform well if the musical structure
underlying a and b are the same. In case of structural differences, advanced synchronization
methods have to be used [41]. To analyze the structure of a music signal, the self-similarity
matrix Sa := Sa,a of the corresponding feature sequence a can be employed. As an example,
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Figure 6 Left: Score-Sheet to audio synchronization—(a) Score fragment, (b) Synthesized
Chroma features, (c) Chroma obtained from audio recording (d). Right: Text to audio
synchronization—(a) Text, (b) Synthesized speech, (c) HFCC-ENS features of synthesized speech,
(d) HFCC-ENS features of natural speech (e).

Figure 5 depicts the self-similarity matrix of an interpretation of Brahms Hungarian Dances
no. 5 by Ormandy. Darker trajectories on the side diagonals indicate repeating music passages.
Extraction of all such repetitions and systematic structuring can be used to deduce the
underlying musical form. In our example, the musical form A1A2B2CA3B3B4D is obtained
by following an approach to calculate a complete list of all repetitions [42].

Concluding, we discuss possible applications of structure analysis in the speech domain,
where one first has to ask for suitable analogies of structured speech. In contrast to music
analysis, where the target signal to be analyzed frequently corresponds to a complete piece
of music, in speech one frequently analyses unstructured speech fragments such as isolated
sequences of sentences or a dialog between two persons. Lower-level examples of speech
structure relevant for unstructured speech could be repeated words, phrases, or sentences.
More structure on a higher level could be expected from speech recorded in special contexts
such as TV shows, news, phone calls, or radio communication. An even closer analogy to
music analysis could be the analysis of recited poetry.

4 Evaluation: The Information Retrieval Legacy

We now move on to another field with considerable influences on MIR research: Information
Retrieval (IR). This field, after which the MIR field was named, deals with storing, extracting
and retrieving information from text documents. The information can be both syntactic and
semantic, and topics of interest cover a wide range, involving feature representations, full
database systems, and information-seeking behavior of users.

Evaluation in MIR work, especially in retrieval settings, has largely been influenced by
IR evaluation, with Precision, Recall and the F-measure as most stereotypical evaluation
criteria. However, already in the first years of the MIR community benchmark evaluation
endeavor, the Music Information Retrieval EXchange (MIREX), the need arose to find
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significance levels for system results. Earlier findings from the Text REtrieval Conference
(TREC) benchmarking efforts led to the adoption of Friedman’s ANOVA with Tukey-Kramer
“Honestly Significant Difference” post-hoc correction [13], which subsequently were widely
adopted in the presentation of MIREX results.

Not all of the IR practices were immediately transferable to MIR evaluation: many
MIREX tasks turned out to be specialized enough to a degree that they require task-specific
evaluation criteria. In addition, precision and recall have frequently been challenged for their
appropriateness. In cover song retrieval and audio matching settings, recall may be the most
appropriate, since the goal would be to retrieve as many matching items or fragments as
possible [61]. On the other hand, in web-scale environments, the amount of data will be so
huge that striving for recall will not make sense anymore. In addition, in multimedia settings
one can wonder if precision would be an appropriate measure at all, since user data suggests
that multimedia search is more of an entertaining browsing activity rather than a focused
information need with a concrete query and an establishable ground truth [63]. Exactly the
same will hold for music search.

Nonetheless, there still are existing IR evaluation findings that provide useful opportunities
for strengthening evaluation in MIR, an important area being that of meta-evaluation [67].
Through meta-evaluation, the experimental validity of (M)IR experiments can be assessed.
This validity can be assessed according to different subcategories, which are listed below
together with reflections on the way in which they are applicable to the MIR domain:

Construct validity

The extent to which the variables of an experiment correspond to the theoretical meaning of
the concept they are intended to measure. To give an example for MIR, it is tempting to try
to infer music ‘mood’ from features present in musical audio (e.g. presence of major/minor
chords and tonalities); however, the situation is often more complicated. Most importantly,
mood implies a human property, and is usually experienced due to a certain (multimodal)
context. Thus, in order to truly address mood, work related to music and mood should not
only look at audio features and take the user and this context into account.

Content validity

The extent to which the experimental units reflect and represent the elements of the domain
under study. For example, an experiment aimed at measuring ‘audio similarity’ between
songs cannot be (solely) based on item co-occurrences of these songs in a social network.

Convergent validity

The extent to which the results of an experiment agree with other results they should be
related with (both theoretical and experimental). As an example from the MIR domain, a
good tempo estimator should involve a good beat estimating component. Thus, this beat
estimating component would be expected to perform well on beat extraction tasks.

Criterion validity

The extent to which the results of an experiment are correlated with those of other experiments
already known to be valid. In the case of e.g. relevance assessments, if results from
crowdsourced ground truth turn out to correlate well with results from earlier expert-
established ground truth, the suitability of the corresponding crowdsourcing platform as a

Chapte r 11



208 Music Information Retrieval: Transfer from Related Disciplines

scalable and less time-consuming ground truthing platform is strenghtened. An investigation
like this has e.g. been done in [31] for the MIREX Audio Music Similarity and Retrieval task.

Internal validity

The extent to which the conclusions of an experiment can be rigorously drawn from the
experimental design followed, and not from other factors unaccounted for. An optimal
combination of musical attributes (e.g. good voice, catchy tune) will only partially explain
high sales numbers for an artist; next to this, contextual aspects (such as recent high-profile
appearances) will also play a role.

External validity

The extent to which the results of an experiment can be generalized to other populations
and experimental settings. Of all the validity types mentioned here, issues with external
validity may be the most concretely recognized in the MIR community at this moment. For
example, many mid-level feature representations and assumptions in the MIR field have
been modeled for Western popular music, but turn out not to be a good fit for other types
of music: e.g. many classical music pieces do not have a constant tempo or steady beat,
and an equal-tempered 12-tone chroma representation is not very well suited to capture the
traditional music of other cultures.

Conclusion validity

The extent to which the conclusions drawn from the results of an experiment are justified. A
notorious example is the claim that successful published work ‘closed or bridged the semantic
gap’ (which will be discussed in more detail in the following section) — while indeed, low-level
features often do not match high-level concepts, cases in which a better correspondence
between these two levels is found frequently deal with domain-specific cases, and do not
address any fundamental and generalized ‘understanding’ problems that a ‘semantic gap’
would imply. In addition, the whole metaphor of a semantic gap may not be appropriate;
this will be addressed in the following section as well.

As we showed, meta-evaluation principles can readily be applied to many realistic MIR
cases. By applying meta-evaluation principles, more insight can be gained into the scientific
solidness of evaluation results, and because of this, the true intricacies of proposed systems
will become clearer. This is very useful, since music data often is intangible data that is
difficult to be understood, as we will discuss in the following section.

5 Opportunities for MIR: Universal Open Challenges

So far, we discussed transfer opportunities for two domains that are closely connected to the
field of MIR. In this section, we will zoom out and take a higher-level perspective on open
issues in the MIR field, and demonstrate that these are very similar to open fundamental
issues as identified in the Content-Based Image Retrieval (CBIR) and Multimedia Information
Retrieval (MMIR) communities, suggesting bridging opportunities for these fields and MIR.
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5.1 The Nature of Music Data is Multifaceted and Intangible
Music is a peculiar data type. While it has communicative properties, it is not a natural
language with referential semantics that indicate physically tangible objects in the world.
One can argue that lyrics can contain such information, but these will not constitute music
when considered in isolation.

The typical main representation of music is usually assumed to be audio or symbolic
score notation. However, even such a representation in itself will not embody music as a
whole, but rather should be considered a ‘projection’ of a musical object [75]. The composer
Milton Babbitt proposed to categorize different music representations in three domains: 1)
the acoustic or physical domain, (2) the auditory or perceived domain, and (3) the graphemic
or notated domain. In [75], different transformations between these domains are mentioned:
for example, a transcription will transform a mental image of music in the auditory domain
to a notated representation in the graphemic domain, while a performance will transform
the same mental image into an acoustic domain representation. The interplay between the
three domains, in the presence of a human spectator, will establish experiences of the musical
object, but that musical object itself remains an intangible, abstract concept.

Due to the multifaceted nature of music, and the strong dependence of experiences of
music on largely black-boxed processes in the human auditory domain with strongly affective
reactions, it is a very hard data type to grasp from a fundamental point of view. In an
increasing amount of Music-IR tasks, we are typically not interested in precise (symbolic
or digital) music encoding, nor in its sound wave dispersion behavior, but exactly in this
difficult area of the effect music has on human beings, or the way humans interact with music.
This poses challenges to the evaluation of automated methods: a universal, uncompromising
and objective ground truth is often nonexistent, and if it is there, there still are no obvious
one-to-one mappings between signal aspects and perceived musical aspects. The best ground
truth one can get is literally grounded: established from empirical observations and somehow
agreed upon by multiple individuals.

Issues with nonexistent ground truth, multifaceted representations and subjective and
affective human responses are not new at all. In fact, they have been frequently mentioned
in the CBIR and MMIR communities — although no clear and satisfying solution to them
has been found yet.

5.2 Open Challenges are Shared Across Domains
In 2000 (incidentally, the year in which the first ISMIR conference was held), a seminal
review [65] on content-based image retrieval (CBIR) was published, touching upon the
state-of-the-art and outlining future directions. In this review, several trends and open issues
were mentioned by the authors. It is striking to see how natural the following phrases read if
transferred from the image to music processing domain, substituting ‘CBIR’ with ‘MIR’ and
‘computer vision’ with ‘signal processing’:

The wide availability of digital sensors, the Internet, and the falling price of storage
devices were considered as the driving forces for rapid developments in CBIR. However,
more precise foundations would be desired, indicating what problem exactly is to be
solved, and whether proposed methods would perform better than alternatives. A call was
made for classification of usage-types, aims and purposes for the man-machine interface,
domain knowledge, and database technology alike.
The heritage of computer vision, from which CBIR developed, was considered to be an
obstacle. CBIR is stronger about solving a general ‘image understanding’ problem and
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evaluating results in terms of a user-defined ground truth than about providing algorithms
with 100% segmentation accuracy according to a fully objective measure, which would
be more typical of fundamental computer vision. Thus, in certain cases, goals could not
exactly be taken over between these two related domains.
Different goals and requirements in CBIR actually had influence on computer vision and
(re)kindled interest in larger, dedicated datasets, weak segmentation and saliency, color
image processing, and attention for invariance.
It was argued that the notion of similarity should be considered from a human perspective.
In addition, learning would be necessary to extend knowledge from partially labeled data
to larger datasets.
Interaction was mentioned as a major difference between CBIR and computer vision.
Interaction and feedback mechanisms have been explored for a longer time in IR, but
there are some fundamental differences between the two retrieval areas, especially in terms
of query vs. result modalities. Visualization, so a move towards multimodal interfaces,
was suggested as an important means to deal with this.
Larger amounts of data increase the need for solid underlying database technology.
Database research and CBIR traditionally have been separate fields, but were suggested
to work together in this.
Evaluation is a major issue. Results can be biased towards dataset composition, and it is
hard to assess the ‘difficulty’ of a dataset. A call was made for reference standards such
as TREC in Text IR. Furthermore, it was suggested to borrow concepts from the fields of
psychological and social sciences.
This review became particularly famous for coining the term semantic gap to indicate
the mismatch between signal representations and analyses and the human assessments of
their success. The authors wrote about resolving the gap by including additional sources
of information. Here, insights from natural language processing and computer vision
could be beneficial.

Many of these points still have largely remained unsolved. Eight years later, a survey
in [12] still mentions user-focused (benchmark) evaluation as a future design goal, and
application-oriented, domain-specific solutions as necessary ways to go in order to serve
real-world needs.

With an increased interest in video data and multimodal approaches, part of the CBIR field
merged into the MMIR field, where once again similar fundamental questions are mentioned.
In [32], human-centered methods, multimedia-supported user-to-user collaboration, interactive
search and agent interfaces, neuroscience and new learning models and folksonomies are
pointed out as open future directions to study. The ‘Holy Grail of Multimedia Information
Retrieval’, getting the access to the content we like quickly and easily whenever we like it and
wherever we are [22], has not been found yet.

It is very striking to consider the open challenges mentioned above alongside the open
challenges as identified at the occasion of the 10th anniversary of the ISMIR conference:

Increased involvement of real end-users;
Deeper understanding of the music data and employment of musically motivated ap-
proaches;
Perspective broadening beyond 20th century Western popular music;
The investigation of musical information outside of the audio domain;
The creation of full-featured, multifaceted, robust and scalable Music-IR systems with
helpful user interfaces.



F.Weninger, B. Schuller, C. C. S. Liem, F. Kurth, and A.Hanjalic 211

In all cases, we identify a need for increased user involvement and interaction, understand-
ing of the data while avoiding dataset bias, and the inclusion of multiple available information
sources as main open challenges to pay attention to. Actually, even in the well-established
IR field, involving the user is no common practice yet [3].

In both MMIR and MIR, it already has been hypothesized [49,75] that a true semantic
gap that can be ‘crossed’ through rigid algorithmic approaches is an unrealistic metaphor, and
that human and cognitive approaches are necessary in any solution that is to be successful.
The intangible and abstract nature of music data has strong potential to urgently push
research into user-centered and multimodal approaches going towards this direction [33].
Thus, also in this area, we see opportunities, and even a potential flagship role, for MIR
work to become of inspirational value to work in neighboring domains.

6 Conclusions

In this chapter, we discussed several methodology transfer opportunities for MIR. We first
gave examples of MIR analogues to existing ASR tasks and discussed how MIR findings have
benefited ASR the other way around. Subsequently, we mentioned current and promising
influences from IR to MIR. Finally, we compared fundamental open challenges within MIR to
those that have been mentioned, but never satisfyingly solved yet, in the CBIR and MMIR
fields. Here, we argued that music data can be the key to finally address these challenges.

It is our intention that this chapter can serve as an inspirational guide, especially to
researchers that are situated on the interfaces between different domains. We hope that
increased bridge-building and knowledge exchanging between the domains will be capable of
pushing research within these domains beyond limits and boundaries encountered so far.
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Abstract
This paper discusses some grand challenges in which music information research will impact
our daily lives and our society in the future. Here, some fundamental questions are how to
provide the best music for each person, how to predict music trends, how to enrich human-music
relationships, how to evolve new music, and how to address environmental, energy issues by
using music technologies. Our goal is to increase both attractiveness and social impacts of music
information research in the future through such discussions and developments.
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1 Introduction

Music information research is gaining a lot of attention [15, 7, 11, 2]. It has a long history
as shown by attempts to use a computer to compose music from the time of the invention
of the computer, such as the “Illiac Suite for String Quartet” of 1957. Results from music
information research have spread widely throughout society, including synthesizers which
have become essential for the production of popular music, and music distribution services
over mobile phones. The field of music information research covers all aspects of music and
all aspects of people’s music activities, and is related to a variety of topics such as signal
processing, transcription, sound source segregation, identification, analysis, understanding,
retrieval, recommendation, classification, distribution, synchronization, conversion, processing,
summarization, composition, arrangement, songwriting, performance, accompaniment, score
recognition, sound synthesis, singing synthesis, generation, assistance, encoding, visualization,
interaction, user interfaces, databases, annotation, and social tags related to music. The
aims of music information research as an academic field are to study mechanisms for

listening to and understanding music,
creating and performing music,
distributing, retrieving, and recommending music,
communication between people through music, and
qualities intrinsic to music

from the viewpoints of science (revealing the truth) and engineering (making useful systems).
The importance of music information research was not recognized until the 1990s, however.

This was transformed dramatically after 2000 when the general public started listening to
music on computers in daily life. It is now widely known as an important research field, and
new researchers are continually joining the field worldwide. Although music information
research sometimes needed an argument to be recognized as serious research instead of
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research for fun more than a decade ago, such misconceptions become a thing of the past.
This change has been caused by the fact that the general public is aware that all music will
eventually be digitized, created, distributed, used, shared, etc. There will be further demand
for new music listening interfaces, retrieval, and recommendations. Academically, one of the
reasons many researchers are involved in this field is that the essential unresolved issue is the
understanding of complex musical audio signals that convey content by forming a temporal
structure while multiple sounds are interrelated [11, 3, 4, 15]. Additionally, there are still
appealing unresolved issues that have not been touched yet, and the field is a treasure trove
of research themes.

This paper discusses some grand challenges that could further increase both the attraction
and social impacts of music information research in the future. Please note that some
discussions in this paper are intentionally provocative to trigger controversial discussions
and stimulate new ideas.

2 Grand Challenges

How can music information research contribute to building a better world and making people
happy? How can it contribute to solving the global problems our worldwide society faces?
This paper discusses some grand challenges that could be tackled by music information
research and could also convince the general public that this research has social impacts for
a better, sustainable world and is really important for enriching their lives.

2.1 Can music information research provide music or music videos
optimized to the individual?

The goal here is to provide the best music for each person by generating or finding appropriate
context-aware music. Music preferences vary from person to person, and even the same
person may want to listen to different music (or watch music videos) depending on their
situation or mood. If it is technically possible to automatically generate (compose) optimal
songs or select such songs from a huge lineup of existing music according to such preferences,
situations, or moods, people could not stop using this technology that always provides super
happiness and joy. This would have a big impact on society, though such a technology would
be controversial if people are really addicted to it. In order to achieve this, technology that is
able to understand music and music videos in the same way people do is important. Current
technology is not able to do this in terms of

the ability of understanding people’s preferences and situations,
the quality of automatically generated music or music videos,
the accuracy of music selection (retrieval and recommendation), or
the depth of automatic music understanding.

However, there is room for discussion regarding whether a completely automated system is
the best. For example, an approach of making an interactive system that assists people’s
activities is also appealing [6].

Because it is difficult to automatically generate new music or music videos from scratch,
the music or video provided could be 2nd generation (secondary or derivative) content. In
the 2nd generation content, musical elements and ideas of existing music or video called 1st
generation (primary or original) content [16] are reused in the creation of new songs. Even
3rd, 4th, or N-th generation content can be considered by reusing the generated content
again and again as shown in Figure 1. Satoshi Hamano named this style of content creation
N-th order derivative creation. The reuse or customization of existing music might be a more
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Figure 1 Generation of mashup music videos (user-generated music video clips) by reusing
existing original content [16].

natural approach for the future. For example, “mash-ups” that ingeniously combine and
mix different songs, and “touch-ups” (customizations) that modify or customize elements
of existing songs (changing the timbre, phrase, and volume balance of singing voices and
musical instruments) [6] are important in the discussion of music creation. In fact, in recent
years, there have been increasing activities to intentionally provide songs and elements so
that other people can use them for the N -th order derivative creation [14, 8].

2.2 Can music trends be predicted?
The goal here is to predict music trends by predicting hit songs to cause or prevent a “music
pandemic”. Is it technically possible to predict hit songs? Alternatively, is it technically
possible to provide reasons why a song is not selling? There are actual studies on “hit song
science” [17], but technology that is able to predict global or local trends with a high level of
precision has not yet been achieved. Prediction of trends is difficult to derive from only the
content of music, and it is necessary to globally and exhaustively incorporate information on
the Web as social information in order to achieve results that could not be achieved using
only technology for analyzing and understanding audio signals [19].

Putting aside the pros and cons of the surveillance society aspect, such trend prediction
would become more feasible if it were possible to obtain a worldwide history of what kinds
of music everyone is listening to. That is, through the further spread of music distribution
technology, it will become possible to record the history of all music playback and sharing this
while maintaining anonymity. By making it possible to record the history of what individuals
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listen to using automatic song identification technology even in live performances [20, 12, 18],
it is likely that it will be possible to predict music trends with a high level of precision.
However, at the same time, it is interesting to speculate whether, once it becomes possible
to provide music optimized for individuals, diversification of music will accelerate and trends
will become less likely to occur (thus preventing a “music pandemic”), or people will want to
hear what others are listening to, resulting in huge trends (as if a “music pandemic” had
occurred).

2.3 Can the relationship between people and music be made richer?
The goal here is to enrich human-music relationships by reconsidering the concept of originality.
Digitizing all music from past to present will enable humankind to instantly access all music
for the first time ever. Moreover, music will continue to accumulate. The number of accessible
songs has monotonically increased, and the number of musical pieces registered on flat-rate
music distribution services such as Napster 2.0 has reached 15 million musical pieces. Access
will become even easier in the future with progress in music information retrieval and
recommendation technology. This itself is historically inevitable, and is desirable as it will
make people’s music lifestyles more convenient. However, music information research holds
the key to whether this will eventually enrich the relationship between people and music.

In the past, new artists needed to try to ensure that their songs were not buried among all
the other songs that were on the market, but in the future, it may become even more difficult
to get people to listen to music because it is buried among an enormous number of all songs
from the past to the present. Moreover, once it becomes possible to automatically compute
similarities with all past songs in terms of partial elements such as melody, lyrics, chord
progression and arrangement, it will become clear that all songs may have similar aspects
to other songs. This is because all creations are affected by other works on a subconscious
level. In some cases, it may be technically possible to point out past songs that are partially
similar to a song that has just been created. It will be interesting to see how this transforms
copyright concepts, and the concept of the originality of music may need to be reconsidered.

So does this mean that human will be unable to overcome the music of the past and
lose the will to create new music? Will new music no longer be needed? I don’t think so.
Essentially, the important things about music are not originality and copyright, but rather
how it inspires and makes people happy, and its overall appeal and quality as a work of art.
Furthermore, the joy of expression itself is another driving force behind music creation. We
may see the arrival of an era in which we go back to the origin of music in a time when it
could only be enjoyed in a live concert without the ability to record as more emphasis is
placed on using music to bring joy and pleasure to people “here and now.” Technological
advances could bring about a new music culture that is more centered on emotional, touching
experiences.

2.4 Will music information research bring about the evolution of music
itself?

The goal here is to push new music evolution forward by enabling new music representations
to emerge or enhancing human abilities of enjoying music. The emergence of new technology
has already created new musical expressions. This will inevitably continue to create new
musical expressions in the future. For example, automatic pitch-correction technology of
vocals is already being used on a routine basis in the production of commercial music (popular
music, in particular). It has become an absolute necessity for correcting pitch at points in a
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Figure 2 Singing synthesis software Hatsune Miku with a cute synthesized voice and an illustration
of a cartoon girl. (Courtesy of © CRYPTON FUTURE MEDIA, INC.)

song where the singer is less than skillful and for making corrections to achieve a desired effect.
Furthermore, since 2007, singing synthesis technology represented by Yamaha’s VOCALOID
[10] has gained much attention in Japan. Both amateur and professional musicians have
started to use singing synthesizers as their main vocals, and songs sung by computer singers
rather than human singers have become popular and are now being posted in large numbers
on video sharing services likes Nico Nico Douga (http://www.nicovideo.jp/video_top/) in
Japan and YouTube (http://www.youtube.com). Even compact discs featuring compilations
of songs created using singing-synthesis technology are often sold and appear on popular
music charts in Japan [9]. In particular, Hatsune Miku [14, 1] is the name of the most
popular software package based on VOCALOID and has a cute synthesized voice with an
illustration of a cartoon girl as shown in Figure 2. Although Hatsune Miku is a virtual singer,
she has already had live concerts with human musicians in Japan, USA, and Singapore
(Figure 3). As music synthesizers generating various instrumental sounds are already widely
used and have become indispensable to popular music production, it is historically inevitable
that singing synthesizers will become more widely used and likewise indispensable to music
production. Initially, synthesizers could easily be distinguished from the sound of natural
instruments, and this itself led to the creation of unique expressions, but now the quality is
high enough that they cannot be differentiated by the general public, and they are used in
the majority of popular music. There is no reason that the same will not happen for singing
synthesis. The only uncertainty is how soon this will happen.

I hypothesize that the complexity of music created by humankind as audio signals is
monotonically increasing. However, there is a limit to the complexity the general public
finds enjoyable, and increases in complexity using the approaches of contemporary music
have had difficulty in gaining popularity. I believe that the “mash-ups” mentioned earlier
hold one of the keys to the next evolution of music from this perspective. Mash-ups are
a music production technique in which multiple songs (or their components such as only
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Figure 3 Live concert by Hatsune Miku at MIKUNOPOLIS 2011 [13] in Los Angeles, USA on
July 2nd, 2011. (Courtesy of © CRYPTON FUTURE MEDIA, INC. and © MIKUNOPOLIS 2011)

the vocals or accompaniment) are used as material to be mixed together and combined
as if they were parts of the same song from the beginning. By referring to the musical
memory already in the mind of the listener, these mash-ups are able to raise the level of
complexity acceptable for enjoyment while retaining popularity. In the days when there were
no electronic instruments, it was only possible to create music based on units of single notes
(individual instrumental notes) on a musical score, but advances in technology have made
it possible to produce music using musical fragments of several bars (one phrase) as units
or loop material. Mash-ups are musical productions using whole songs as units or material,
making it easier to achieve complex audio signals that would be inconceivable when creating
a song from scratch. From the viewpoint of listeners, on the other hand, when the songs
used as material to be mixed together are already in the memory, they can enjoy songs that
would normally be too complex to enjoy.

Has the tempo of music also monotonically increased throughout the history of humankind?
If that is the case, the same song would be shorter in length if the tempo were increased,
and the number of songs that can be listened to per unit of time can be expected to increase.
This is convenient for the “era of access to an enormous number of songs” mentioned above.
If that is the case, how fast can songs be made to still be enjoyed by the human brain?
Furthermore, what kinds of technologies can be used to assist and train this? It is intriguing
whether the human hearing and capability of the brain are able to keep pace and improve
when the tempo is systematically increased by 5 BPM1 every year by (worldwide) laws. I
know this idea is especially provocative, but it is worth thinking about the evolution of music
in a think-outside-the-box way.

1 BPM (Beats Per Minute) is a unit indicating the tempo of a performance based on the number of beats
in a minute.
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Figure 4 SmartMusicKIOSK screen display. This ia a music listening station with a chorus-search
function. The lower window presents the playback operation buttons and the upper window provides
a visual representation of a song’s contents. A user can actively listen to various parts of a song
while moving back and forth as desired on the visualized song structure (the “music map” in the
upper window).

2.5 Can music information research contribute to addressing
environmental issues and energy issues?

The goal here is to contribute to solving the global problems our worldwide society faces.
Environmental issues can be addressed by contributing to a reduction in the use of resources
through efforts to increase online music that eliminates the need for physical media (tapes,
records, CDs and DVDs). Advances in technology have brought us to an era in which
“music” as packaged media can be seen as “information” not affected by physical media,
but physical media are still being distributed. Just as overwhelming convenience brought
about the transition from record distribution to CD distribution, overwhelming convenience
is required for the transition from distribution of physical media using many environmental
resources to the distribution of information. Music understanding technology is one means of
providing this convenience, and convenience is expected to be improved in various ways such
as in “Active Music-Listening Interfaces” [6]. For example, SmartMusicKIOSK [5], an Active
Music-Listening Interface with an automatic chorus-section detection technology enables
automatic visualization of song structure to listen to parts that are interesting (Figure 4).

With regard to the energy issue, music can be considered a form of high-quality en-
tertainment that does not require much energy. The resources and energy required for
music production is less than for production of motion pictures, and will further decrease
significantly through the spread of digital music production environments. The N-th order
derivative creation and mash-ups that reuse (or “recycle”) existing songs are also positioned
as energy-efficient ways to produce music, and the development of technologies to assist such
production is vital. Furthermore, music can be listened to repeatedly, and it is possible to
listen to the same song many times. In fact, repeated listening essentially enables the listener
to notice a song’s appeal. Listening support such as the “Active Music-Listening Interfaces”
[6] mentioned above, which enable a deeper understanding of existing music, can contribute
to this. Furthermore, advances in music distribution technology will lower distribution costs,
and if it is possible to listen to only one’s preferred music thanks to advances in music
information retrieval and recommendation technology, energy spent on music one is not
interested can be reduced. This could be named as “energy-conscious” music production and
appreciation. “Music happiness per energy” can thus be increased.
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3 Conclusion

In the future, what will be necessary to further increase the appeal of music information
research in addition to addressing the above grand challenges?

First, we must develop technology that contributes to building a better world and making
people happy, and is essential for society. We hold the key to the creation of a mentally rich
future society, and it is vital that academia and industry are seriously engaged in interaction
and mutual development. We would need to further discuss what should be done to contribute
to the advancement of the music industry and the creation of new industries, and how a
contribution can be made to the future of music production and music appreciation.

Second, the importance of our research field must be emphasized as must the further
understanding that additional investment in research and development is required. To do
this, we must produce researchers who will generate a variety of appealing research results of
the highest quality, and also make an effort to talk about our dreams for the future. Such
activities will lead to large projects and a diversity of funding, and it would be good to
promote great advances in research with a variety of financial backing.

Third, we must promote the field of music information research much more, and make it
easy for anyone to feel comfortable participating in it. I would like to expand the research
field as a whole, to make possible exciting results from a more diverse range of research.

This paper was written with the aim of contributing the three points above, and I hope
that such discussions will continue to be active throughout the field as a whole. However,
this must not involve moving in the direction of creating the shell around “music information
research” and becoming stuck inside it. What is necessary is a range of activities that span
boundaries between fields and reorganize learning from a broader perspective. The field
of music information research is also expected to make great strides such as merging with
spoken language processing and image processing. I look forward to what the future holds in
ten years time.
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Abstract
The academic discipline focusing on the processing and organization of digital music information,
commonly known as Music Information Retrieval (MIR), has multidisciplinary roots and inter-
ests. Thus, MIR technologies have the potential to have impact across disciplinary boundaries
and to enhance the handling of music information in many different user communities. However,
in practice, many MIR research agenda items appear to have a hard time leaving the lab in order
to be widely adopted by their intended audiences. On one hand, this is because the MIR field
still is relatively young, and technologies therefore need to mature. On the other hand, there
may be deeper, more fundamental challenges with regard to the user audience. In this contribu-
tion, we discuss MIR technology adoption issues that were experienced with professional music
stakeholders in audio mixing, performance, musicology and sales industry. Many of these stake-
holders have mindsets and priorities that differ considerably from those of most MIR academics,
influencing their reception of new MIR technology. We mention the major observed differences
and their backgrounds, and argue that these are essential to be taken into account to allow for
truly successful cross-disciplinary collaboration and technology adoption in MIR.
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1 Introduction

In the current digital era, technology has become increasingly influential in society and
everyday life. This has led to considerable developments in techniques to process and organize
digital information in many modalities, including sound. For the field of music, advancements
have largely been geared towards two global goals: opening up new creative possibilities
for artistic expression, and increasing (or maintaining) the accessibility and retrievability
of music within potentially large data universes. Both of these goals additionally require
attention for interaction opportunities, and may involve more modalities than mere sound.
The academic field of research into these goals is typically characterized as Music Information
Retrieval (MIR). This name was derived from Information Retrieval: a subdiscipline of
computer science with applications in information (or library) sciences, employing established
statistical techniques as a core component of its discourse, and most strongly focusing on
textual data. Since a substantial amount of work in MIR actually does not actively deal
with retrieval, the field has alternatively been called Music Information Research, retaining
the same acronym.

The largest MIR success story so far may have been in audio fingerprinting (e.g. [27]), which
is widely adopted in today’s consumer devices1. Academic MIR research also unexpectedly
found its way to a large audience through the Vocaloid2 voice synthesis software, jointly
developed by Yahama Corporation and the Pompeu Fabra university in Barcelona. Not
long after the release of a voice package for a fictional character called ‘Hatsune Miku’, the
character unexpectedly went viral in Japan, and now is also well-known to the Western
audience because of her holographic concert performances, and her voicing of several Internet
memes. Finally, through its API, the Echo Nest3 powers multiple music-related applications
that are reaching a broad audience.

However, for the rest, many of the academic MIR research agenda items apparently have
a hard time leaving the lab to be successfully adopted in real systems used by real users. One
can wonder if this is because the research field is too young, or if other factors are playing a
role.

In business terminology, technological innovation can either be caused by technology push,
in which new technology is internally conceived and developed to subsequently be ‘pushed’
into the market (while the market may not have identified an explicit need for it), or market
pull, in which the research and development agenda is established because of an existing
market demand. Initially, it may seem that the MIR research agenda is strongly driven by
a pull: people need technology to keep overseeing the music information sources that they
have access to, thus calling for fundamental and applied research advancements on this topic.
But if this really would be the case, one would expect a much more eager adoption process,
and a higher involvement of users and other stakeholders throughout the research process
than encountered in daily practice.

When presenting envisioned new technology, and discussing their success potential with
our academic peers, we typically assume that some user already decided to adopt it. In such
a case, if user aspects are discussed (as e.g. is done in this Follow-Ups volume in [24]), they
will mainly concern strategies to optimize effective usage of the technology, giving the user a

1 It is not uncommon for an enthusiastic MIR researcher, trying to explain his research interests to a
novice audience, to at one point get the question ‘if he does something similar to Shazam’, followed by
a smartphone demonstration by the question-asker!

2 http://www.vocaloid.com, accessed March 11, 2012.
3 http://the.echonest.com, accessed March 11, 2012
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satisfying experience of it. The question why a user would want to adopt the technology in
the first place is much less addressed and discussed at academic venues on MIR and related
engineering disciplines; if it is, it is the realm of library science experts4, not of engineers.

Of course, not every MIR research project has the urgence to immediately culminate into
a monetized end-user system. Nonetheless, the MIR researcher will frequently have some
prototypical beneficiary in mind. In several cases, this prototypical beneficiary professionally
works with music (e.g. as a music sales person, producer, sound engineer, performing
musician or musicologist), and the researcher will consider his MIR technology to be a novel
and important enhancement to the daily practice of this music professional. However, it
should be stressed that these envisioned professional music adopters do not typically come
from the same backgrounds and mindsets as the academics who conceived the technology,
and may actually not at all share the expectations of the academics regarding their work.
Thus, involving this envisioned user, or even seeking fruitful academic collaboration with
representatives of these user audiences, can prove to be much harder than expected.

Many authors of this chapter have shared backgrounds in both music information tech-
nology and professional music communities, or have worked closely with the latter. In
this, it frequently was found that the successful embracement and adoption of new music
technology by these communities cannot be considered an obvious, natural phenomenon that
can immediately be taken for granted. In this contribution, we will share our experiences
with this.

We will start by giving two concrete examples of systems that were created with a
professional audience in mind, but received mixed responses. First of all, in Section 2, the
reception of an intelligent audio mixing system is described. Section 3 will subsequently
describe a case study on the Music Plus One musical accompaniment system, and discuss
prevalent lines of thought in classical musicianship.

The subsequent sections will deal with broader cross-disciplinary adoption and collabora-
tion issues. For quite some time, MIR researchers have looked with interest to musicologists
as a potential user audience. However, the amount of interest does not appear to be recipro-
cated, and Section 4 will elaborate on this, elucidating how current musicological interests
are different from the common assumptions in MIR. Finally, a very different, but important
category of professional users and collaboration partners is formed by stakeholders and
representatives in the music industry. Section 5 will discuss current thinking and priorities
for this audience, as voiced during the recent CHORUS+ Think-Tank on the Future of Music
Search, Access and Consumption.

Our contribution will be concluded with a discussion in Section 6, in which common
adoption issues will be summarized and recommendations are given to overcome them.

2 Audio Mixing

As a first example of how music technology was not received or adapted as expected by
professionals, and a strong illustration of how sensitive the intended user can be, we will
discuss the unexpected reception of an automated mixing system.

4 The library science field originally introduced the concept of information needs, a subject of study
intended to justify or enhance the service provided by information institutions to their users. It includes
topics such as information seeking behavior.
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2.1 “Is this a joke?”
In the automatic mixing work of Enrique Perez Gonzalez and Joshua D. Reiss [19, 20, 21],
intelligent systems were created that reproduce the mixing decisions of a skilled audio
engineer with minimal or no human interaction. When the work was described in New
Scientist, the response included outraged, vitriolic comments from professionals. Comments
from well-known, established record producers included statements such as “Tremendously
disappointed that you even thought this rubbish worth printing,” “Is this a joke? Do these
people know anything about handling sound,” and “Ridiculous Waste Of Time And Research
Budget5.”

This reaction was surprising, since leaders in the field had previously expressed a desire
and need for such research. For example, his editorial for the Sound on Sound magazine of
October 2008 [28], Paul White had stated that “there’s no reason why a band recording using
reasonably conventional instrumentation should not be EQed and balanced automatically
by advanced DAW software.” Similarly, James Moorer [18] introduced the concept of an
Intelligent Assistant, incorporating psychoacoustic models of loudness and audibility, to “take
over the mundane aspects of music production, leaving the creative side to the professionals,
where it belongs.”

2.2 Differing Reactions Between User Groups
The hostility from practicing sound engineers and record producers may be due to several
causes: a misunderstanding of the research, job insecurity due to fear of replacement by
software, or simply a rejection of (and sense of insult from) the idea that some of their
skills may be accomplished by intelligent systems. Of these causes, misunderstanding is
quite plausible, despite the fact that the original article pointed out that the automatic
mixing tools are “not intended to replace sound engineers. Instead, it should allow them to
concentrate on more creative tasks.” Other comments indeed revealed job insecurity: “I’m
terrified because eventually this will work almost as good as someone who is “OK” and the
cost savings will make it a necessity to most venue owners6.” However, rejection of the idea
that the technical skills of sound engineers and record producers might be automated is
ironic, since music production already relies on a large number of tools that automate or
simplify aspects of sound engineering, including acoustic feedback elimination, vocal riders
and autotune.

Most interestingly, this negative reaction was not shared by musicians and hobbyists.
One person’s comments summed up the debate that occurred on many discussion forums: “I
like this idea as a MUSICIAN, but not so much as a mixer. I’ve had so many shows I’ve
played ruined by really bad sound mixers and seen so many shows that were ruined by a bad
sound mix, that I welcome the idea7.” Thus, it seems that people are comfortable with the
idea of intelligent tools to address various aspects of music production and informatics, as
long as those tools do not impact directly on their own.

Yet this attitude may be changed by providing the practitioners with demonstrations
whereby they can experience first hand the effectiveness of new approaches. After a talk

5 This can for instance be seen on http://www.mpg.org.uk/members/114/blog_posts/190
and http://www.newscientist.com/article/dn18440-aural-perfection-without-the-sound-
engineer.html, accessed March 11, 2012.

6 http://thewombforums.com/showthread.php?t=14051, accessed March 11, 2012.
7 http://www.gearslutz.com/board/so-much-gear-so-little-time/475252-software-company-

begins-develop-program-replace-engineers-3.html, accessed March 11, 2012.
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where audio examples of the automatic mixing research was presented, one professional audio
engineer wrote “the power of automated mixing was effectively demonstrated – the result
was perfectly reasonable for a monitor mix and, as the algorithms are perfected, the results
will certainly improve further8.”

3 Performing Musicianship

While the automated mixing system in the previous section was received well by musicians,
a system that more closely approached music practice in a classical music setting has
received varied responses by the intended user audience. In this section, experiences with the
Music Plus One musical accompaniment system are described, with additional background
information on classical music aesthetics that may (partially) explain the encountered
reactions.

3.1 Experiments with the Music Plus One System
For the last seven years, regular experiments have been performed with the Music Plus One
musical accompaniment system, (a.k.a. the Informatics Philharmonic) [22, 23], with students
and faculty in the Jacobs School of Music at Indiana University. The program accompanies
a musical soloist in a classical music setting with a flexible orchestral accompaniment that
follows the live player and learns to do so better with practice. On the website of the system9,
the program can be seen in action. However, these videos only provide an ‘external’ view of
the experience. The most important view of the experience is the soloist’s: only the program’s
‘driver’ will know how it responds, and how it manages to achieve the most high-level goal of
allowing the soloist to become immersed in music making.

At this point, the author of the Music Plus One system has worked with over a hundred
different soloists, including elementary school children, high school students, college players
at all levels, as well as faculty. Most of the players are instrumentalists, with an emphasis on
the strings, but also including wind and brass players. This group is not a cross-section of the
classical music world, but rather represents an unusually dedicated and talented lot. For the
most part, it is easy to convince young players to try out the computer as a musical partner.
Most college level musicians also find the initial description of the experience appealing and
are easily persuaded to bring their instruments to a rehearsal with the program. Before
starting the experiments, it is first explained how the computer differs from a human musical
partner — the program’s desire to follow the soloist might almost seem compulsive to a
human musican, while it lacks a well-defined musical agenda of its own. Thus, the musicians
are encouraged to be assertive and lead the performance; otherwise no one will.

Within a minute of playing it is usually possible to see how a musician will relate
to the system. Some musicians never seem to take charge of the performance, mostly
following the ensemble without asserting a strong musical agenda. However, most players
immediately get the idea of leading the performance and are able to control the program
simply by demonstrating their desired interpretation. While this inclination to lead is
certainly correlated with the player’s age, it has been interesting to observe how weak this
association is. It is common both to have a talented 12-year old immediately getting the
idea, while an occasional college player may never really catch on.

8 http://www.aes-uk.org/past-meeting-reports/intelligent-audio-editing-technologies/, ac-
cessed March 11, 2012.

9 http://musicplusplus.net/info_phil_2011, accessed March 11, 2012.
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3.2 Verbal and Non-Verbal Reception Feedback
What do musicians think of this program? While no formal or statistical approaches are
adopted to measure their response, the sessions usually conclude with a brief discussion in
which players share their thoughts. Most musicians that offer opinions are highly positive
about the experience10. Many musicians say that it ‘feels’ like playing with a real orchestra
and claim to find considerable enjoyment in the experience. In addition, many emphasize
the value in preparing for ‘real’ performance.

However, the responses are not all positive. The most overtly negative reaction came
from a composer on the faculty who had written an operatic scene for two voices and
piano. Having heard about a public demonstration, he specificially requested a chance to
try out the program. The situation was a particularly difficult one for the system, involving
continually shifting tempo and mood, as is common in opera, along with the added difficulty
of recognizing the voices. The composer criticized the program’s lack of any internal musical
agenda, placing (or misplacing) the desire to follow above all other musical considerations. In
particular, he identified cases in which the timing of running notes in the piano was distorted
for no apparent purpose, failing to create any natural sense of phrasing. This is a legitimate
criticism, but it remains an open problem to even model the agenda of the accompanist,
balancing an internal musical agenda with a desire to follow another musician.

Since actions speak louder than words, one might hope to gain a deeper understanding of
players’ attitudes toward the system by watching what they do, in addition to listening to
what they say. In some ways, these actions have echoed the positive responses offered during
the regular meetings. Several students have asked to use the program in their recitals, while
the main faculty collaborator, professor of violin Mimi Zweig, has the program setup in her
studio for use with her many students as an integral part of teaching. Judging from these
examples, a certain degree of acceptance of this technology is observed.

On the other hand, it was routinely offered to students to give them the program, so
that they can use it at home on their own computers. In spite of these many offers, only
a few students have ever taken advantage of this offer. One particular graduate student
comes to mind as typifying a common theme of response the program has received in the
Jacobs School. She came to observe a prodigious young violinist practice with the system.
The young violinist was considering the purchase of an expensive violin and had expressed
interest in using Music Plus One to see how the instrument would project over an orchestra.
The graduate student supervising this exchange was overwhelmed with excitement about the
program’s potential to make a lasting contribution to the classical musician. “This is going
to change everything,” she said.

Following this, numerous offers were made to the graduate student to rehearse with the
orchestra or set the program up on her computer, though none ever materialized into any
action on her part. Only indirectly it became clear that, while she saw the value the program
had in an abstract sense, she did not want to incorporate it into her musical world.

3.3 Classical Music versus Technology: Conflicting Opposites?
For a long time in Western history, music and mathematics were treated as close fields. In
the ancient Greek era, philosophical writings described musical tuning systems together
with their underlying mathematical ratios. In Mediaeval times, universities taught seven

10Of course, it would be reasonable to expect that those who do not like the program may be more
inclined to remain quiet.
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‘liberal arts’: first the trivium consisting of grammar, logic and rhetoric, and afterwards the
quadrivium consisting of geometry, arithmetic, astronomy — and music [14].

However, this is not the image that many people would nowadays have of music. Instead,
music is typically seen as a means of affective, personal expression, breaking through
established formalisms and immersing the listener and player into a transcedent dream-like
‘spirit’ world, governed by emotion (and being far from the harsh, daily reality): a perspective
that holds for classical music and popular music alike.

This perspective on music has its origins in the Romantic era. The notion of music being
connected to emotional force had been acknowledged before: for example, the Baroque period
strongly made use of musical formulae to express affects, a broad scala of human emotions.
However, while the musical performer expressed the affects through his music, this mainly
was a matter of rhetorical discourse, and he did not have to feel them himself, nor lead the
listener into the affective states he was expressing.

The Romantic era brought new ideals, focusing on strong emotions, solitude, longing, and
unreachable faraway realms. Ludwig van Beethoven lived and worked in the beginning of the
Romantic era, and through his deafness, his seeming unwillingness to fit into society, and his
(for that time) visionary and radical new music, many Romantic critics and writers considered
him the prototypical Romantic Hero. This image of Beethoven as a suffering genius would
dominate musical thinking for at least a century, and set an example for later generations.
Performing musicians would mainly serve as servants to these composing geniuses, and each
music listener attending a performance would experience the performance by getting lost in
his own inner emotional world [7].

Such a Romantic aestethics perspective still is strongly represented in musical performance
practice, at least for classical musicians. This may explain while for many generations, the
classical music world has been rather resistant to new technology entering music practice
(with the metronome, tuner, notation software as exceptions). Many musicians claim to
greatly enjoy the experience of rehearsing with the computer, yet do not want (yet?) to
integrate a system like Music Plus One into their daily practice and teaching.

Informal discussions at another conservatoire gave similar outcomes regarding digital
score material. While many musicians frequently consult the Petrucci Music Library11 to
check scores of potential repertoire, their attitude towards the possibility of digital music
stands appears is ambivalent. While acknowledging the power of digital scores, several
practitioners were opposed against using such a stand in a real concert performance, fearing
that technology would let them down at a professionally critical moment.

Similar perspectives governed musicological thinking for a long time as well. However,
present-day musicology has moved into more postmodern directions, and thus shows other
adoption issues regarding MIR. These will be discussed in the following section.

4 Musicology

Within the scientific MIR community, there is a strong but relatively informal agenda of
advocacy to the musicological community of the tools and techniques being developed, often
predicated on strengthening the case for developing the tools and on widening the areas
of application in which they can prove their worth. It is not uncommon for keynotes at
the ISMIR conference to raise the question of what MIR has to offer musicology, or how to
attract musicologists to the field (e.g. [8, 11, 12]), and a musicologist at an MIR event can

11 http://imslp.org/wiki, accessed March 11, 2012.
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expect to be collared by any number of enthusiastic developers and asked “What would you
like us to build?”

However, this advocacy seems often to fall on deaf ears; on the whole, musicologists do not
seem to be adopting MIR techniques in their scholarship. The major journals of musicology
rarely ever carry articles in which scholars have made use of computational techniques. For
example, the Journal of the American Musicological Society (JAMS), which has seen 64
volumes up to the year 2011, includes just eleven articles which make oblique reference to
computational subjects in its history12. In addition, very few undergraduate or graduate
courses in music include teaching on computational methods: a non-exhaustive survey of
course information from the USA, UK, Ireland, and Germany, published on the Web, reveals
just six courses with explicit non-composition related computational components.

From a musicologists’ point of view, it is easy to speculate on why computational
MIR methods might not be eagerly adopted, beginning with the assumption that there
are significant disciplinary, methodological, and scholarly discrepancies between (music)
information retrieval and musicology. However, very little research has been carried out really
attempting to give foundation to such speculation. This section focuses on the literature
available on this topic, discussing discrepancies between the humanities and the sciences,
mentioning practically encountered mismatches, and giving an outlook on how academic
work in MIR and musicology can truly get closer to each other.

4.1 Musicology in Computational Contexts: Thought and Practice
Amongst the existing literature, a small number of studies have addressed questions regarding
the information needs of musicologists, musicologists’ use of recordings, and scholarly listening
carried out in conjunction with a visualization. Brown [4] attempts to define the research
process of musicologists using a variety of sociological research methods including semi-
structured interviews and surveys. She found that, out of the stages of the research process
she identified, the activity which musicologists value most highly is “keeping current” and
also that they prefer journal browsing and face-to-face contact over digital communication to
achieve this.

Although Cunningham’s work [10] addressed more recreational information seeking, some
of her conclusions are nevertheless relevant to scholars, particularly that advanced MIR
techniques are not often developed beyond proof-of-concept into practical, usable tools.

Barthet and Dixon [2] conducted studies of musicologists examining performances using
Sonic Visualiser13. They found that scholars were ambivalent towards the use of visualizations
of sound. They appreciated that some timbral details were considerably more obvious in a
visualization, but felt that timing and pitch details were much easier to hear than to see,
and also that the visualization could distract listening in these cases.

While these studies may address some of the practical implications of doing musicology
in a computational context, they do not address the discrepancies between the kinds of
research carried out by the MIR and musicology research communities. For that, we may
begin by turning to the inheritors of Charles Percy Snow, who postulated a fundamental
divide in mindset between the arts (now more commonly referred to as the humanities) and
the sciences in his now famous 1959 Rede Lecture, The Two Cultures [25], as well as the
current of criticism in the digital humanities.

12 It should be noted that at least eighteen review articles in JAMS also mention computational subjects.
13 Sonic Visualiser is a tool for interactive sound analysis providing a variety of visualizations, annotation,

and plugin analytical procedures.



C. C. S. Liem et al. 235

For example, Unsworth [26] highlights the perceived tension between scholarship, the often
solitary, thought- and writing-directed process common in the humanities, and research, the
often collaborative, problem-solving, question-answering, and hypothesis disproving process
common in the sciences. For a musically specific example, Knopke and Jürgensen [15] claim
as a benefit of computational music analysis that it is consistent and repeatable: features
of research. However, the idea of reproducibility simply does not feature in contemporary
music analysis. Musicologists do not see musical works as ‘problems’ requiring an analytical
‘solution’ which should be repeatable by other musicologists.

To give another example, Heinrich Schenker’s theories on the workings of eighteenth and
nineteenth-century Viennese music have a long tradition of being taken out of their context
and codified as a universal method for uncovering fundamental structure in tonal music.
However, Schenkerian analysis is not meant to yield one absolute truth, and should produce
a subjective analysis unique to the analyst.

Unsworth also addresses the related concept of systematization, citing Northrop Frye
who, in 1951, argued that “criticism”14 ought to be systematic to distinguish it from other,
less scholarly forms of cultural engagement. However, the idea of systematization is now
treated with deep scepticism across the humanities, particularly in mainstream musicology.
In general, since the second half of the 1980s, musicology has shifted into critical, postmodern
directions [7], emphasizing subjectivity and cultural context, and refuting objective, universal,
‘scientific’ views on music.

4.2 A Disciplinary Divide
Another feature of this tension between humanities and computing is the status of technical
contributions to humanities research. Many argue that interdisciplinary collaboration is
the key to effective and credible technology adoption in humanities disciplines. However,
Bradley [3] argues that such collaborations are rarely considered as genuine equal scholarly
partnerships. Rather, the technology is normally considered to be in the service of the
scholarship and the partner from the humanities discipline is considered to be the “visionary”,
while “the technical person simply has the job of implementing the academic’s vision.” In this
regard, the study of music represents a unique problem, since a technology-lead discipline
focusing on music (MIR) exists independently of the humanities discipline (musicology).

Many scholars in the humanities generally focus on text as their source material, and
are usually aware of the relative merits of computational approaches to working with text,
such as the success of text search and the relative primitiveness of computational linguistics.
By contrast, for music, the possibilities and limitations of dealing with the object of study
(the music) tend to be less well understood or — to use an engineering term — harder. The
complexity regarding the object of study (as e.g. outlined in [31]) has attracted scientists
and technologists to cohere into a largely musicology-independent discipline, in which it is
currently very common to see ‘content-based’ strategies being employed to approach music
‘data’.

The indepency of MIR and musicology leads to a situation in which a lot of work that MIR
researchers enthuse over is meaningless to musicologists. Frequently, the MIR technologists
tend to focus on what seem, from a musicologist’s perspective, to be more low-level ‘problems’
rather than higher level ‘questions’.

14Frye’s use of the term “criticism” is taken from his background in literary studies. It is, in fact, the
academic culture of literary criticism which really inspired much of the contemporary humanities,
including musicology’s re-invention as a critical discipline in the mid-1980s.
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A good example of this is the problem of classification which involves computational
methods of determining properties such as ‘genre’ and ‘mood’ of examples of music from
signal data. This is a challenging technical problem involving appropriate feature extraction
and selection and testing of the statistical significance of results. But there is no equivalent
question in musicology.

To make matters even more complicated, musicologists would often seek to problematize
the kinds of genres which are routinely applied in MIR research. The meaning of ‘genre’ would
already be questioned. In most musicological discourse, the term would mean something along
the lines of the structural or compositional category of a musical work, such as ‘symphony’,
‘string quartet’, or ‘song’, while the kinds of labels which MIR researchers apply as genre
(‘country’, ‘soul’, ‘funk’, ‘house’, ‘classical’) would more likely be called something like ‘style’.
Musicologists would note the large number of styles missing from these lists (‘renaissance
vocal’, ‘lieder’, ‘acousmatic’, ‘serial’, ‘Inuit throat singing’, etc.) — if accepting such lists
at all, since the critical revolution in musicology has seen a rejection of the very idea of
categorising music into genres or styles at all.

Similarly, problems such as detecting the key or harmonic progressions in an audio signal
require sophisticated computational approaches, but are the subject of undergraduate (or
school-level) training in musicology, and would be taken for granted, or even not applied at
all, at the level of professional scholarship. In fact, in British university music departments,
technical competence in harmony and counterpoint and in aural analysis skills increasingly is
diminishing in perceived importance15. In addition, automated analysis techniques of these
types are not perfect yet and thus will make errors. This is very strange to a skilled expert,
who may have to deal with ambiguities when making a manual analysis, but will never make
such errors himself. If an automated technique will fail on very basic cases, its utility to the
expert will thus be greatly reduced.

These examples begin to give an idea of the extent of the disconnect between these two
approaches to music, and reasons why academics from one discipline who did not already
have interest in the other discipline have not been eager to embrace work of this other
discipline yet. The meeting point between mainstream thinking in these two disciplines is a
great distance from each, and traversing that distance will require a considerable investment.

4.3 Outlook for Musicology
Since it seems that present-day musicology fundamentally has other interests than MIR
researchers would initially assume, where does all this leave the advocates of MIR to
musicology? One approach which is being taken is to introduce more musically sophisticated
topics of research into the MIR agenda. Particularly, Wiering is encouraging investigation
into the broad topic of musical meaning using MIR techniques [29] and has, together with
Volk, also been responsible for encouraging those working in MIR to find out more about
contemporary musicology [30], arguing that it is a “founding discipline” of MIR.

Looking the other way around, are there any aspects of the contemporary musicological
research agenda which would suit computational techniques? One feature of the changes in
musicology has been a shift of emphasis away from musical works as autonomous objects. A
consequence of this is the study of musical practice and its contexts, including the study of
performances and performers.

15This situation may be better for conservatoires, where these subjects are essential parts of the under-
graduate (and sometimes even graduate) curricula in performing music disciplines. However, graduates
of these disciplines are musicians, not musicologists.
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The study of musical performance provides a point of entry for audio-based computational
techniques, i.e. a recording ‘depicts’ a performance (or possibly an edited amalgamation
of several performances) and therefore provides a handle on that performance as an object
of study. Amongst others, the Centre for the History and Analysis of Recorded Music16
has been responsible for championing computational approaches to performance analysis in
musicological contexts.

As an example, [9] uses a technique which analyses the differences and similarities in
performance tempo and dynamics to infer genealogies of performer influence over a database
of numerous performances of the same few Chopin Mazurkas over a period of around 70
years. An important difference between this study and a hypothetical identical study which
would not make use of computers for the analysis is the relative objectivity. Here, the idea
of consistency introduced above does becomes important, since in a study such as this,
consistency of categorization of performance traits is vital for the credibility of the results.
Perhaps the most fundamental difference, though, is that the hypothetical non-computational
study is unlikely ever to have been conceived, let alone carried out: computational techniques
afford scholarly investigations on a large-scale in a way which has never really been possible in
the past, except by devoting a whole career to a project. The automated analysis of recorded
performances also is being taken up in the MIR community already, e.g. in [1, 13, 17].

At a more global level, the interest of contemporary musicology in contexts around musical
practice resonates very well with the current interest in MIR for multimodal and user-aware
approaches — but this bridging opportunity has hardly been addressed or recognized yet.
In addition, the situation that musicologists tend to problematize common assumptions,
methods and vocabulary in MIR does not necessarily have to be a disadvantage. It can also
open up new perspectives on situations that thus far were taken ‘for granted’ in MIR, but
actually have not been fully solved yet.

5 Music Industry: Findings from the CHORUS+ Think-Tank

If the goal of an MIR researcher is to have his technology deployed and broadly adapted,
stakeholders from music industry will often have to be involved. However, also for this
category of collaboration partners, priorities and views on technology will differ.

In January 2011, MIDEM 2011, the world’s largest music industry trade fair, was held
in Cannes, France. At MIDEM, a Think-Tank on the Future of Music Search, Access and
Consumption was organized by CHORUS+, a European Coordination Action on Audio-Visual
Search17. Participation was by invitation only, limited to a small group of selected key
players from the music and technology domains: highly qualified market and technology
experts representing content holders, music services, mobile systems and researchers. In the
months prior to the Think-Tank, an online survey about the future of the music business,
music consumption, and the role of new technologies was held among opinion-leading decision
makers and stakeholders across the music industry. Following the findings of this survey, the
Think-Tank aimed at discussing current and future challenges of the music industry, and at
assessing the role and impact of music search and recommendation technologies and services,
including the latest developments from MIR research.

In this section, the findings of both the survey and Think-Tank roundtable discussions
relevant to the topic of this contribution will be presented. The full report on the Think-Tank,

16CHARM, originally based at Royal Holloway, now at King’s College London.
17 http://avmediasearch.eu, accessed January 28, 2012.
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as well as a full list of its participants, is available online [16]. The participants who will
feature in this section are Gerd Leonhard (CEO, The Futures Agency, MediaFuturist.com),
Oscar Celma (Senior Research Engineer, Gracenote; formerly Chief Innovation Officer,
BMAT), Rhett Ryder (COO, TheFilter.com), Stefan Baumschlager (Head Label Liaison,
last.fm), Stephen Davies (Director Audio and Music, BBC), Holger Großmann (Head of
Department Metadata, Fraunhofer IDMT), Gunnar Deutschmann (Sales Manager Media
Network, arvato digital services), Laurence Le Ny (Music VP, Orange), Steffen Holly (CTO,
AUPEO!), and Thomas Lidy (Founder and CEO, Spectralmind).

5.1 Trends and Wishes According to Stakeholders
Gerd Leonhard was invited to give the keynote talk at the Think-Tank. In his presentation,
he stressed the key changes in the music industry in the coming 3 to 5 years, all centered
around one key word: Disruption. While participants of the survey agreed that the digital
changeover had positive effects and that the digital music market has place for a wide range
of diversified services, the digital changeover has been highly disruptive to the music business.

Consistent with other recent analyses, the survey named YouTube (which is actually not
a music service!) as the number one music service. This popularity can a.o. be explained by
the free access to the service, the presence of a broad and diverse collection18), the tendency
of people not to change habits (i.e. platforms or services) frequently, and the added value of
video.

The three main criteria for the choice of a music service were availability of music,
simplicity and ‘ease of use’, and recommendation. The emergence of streaming services seems
prevalent, especially in the domain of music experts. Interestingly, this caused the more
‘traditional’ music service iTunes to be ranked in the survey after personalized streaming
services such as last.fm, Pandora or Spotify and “other music streaming services / online
radios”, which were explicitly named by the participants.

According to the survey, the top five key enabling technologies for 2011–2020 will be
personalized recommendation, social recommendation, cloud services, audio-visual search and
content-based recommendation. In a follow-up free-form question, the following major trends
for the future of music consumption were mentioned:

instant availability and accessibility of music;
automatic adaption of music to the (personal) environment, context;
many ways of consuming music interactively;
intuitive search, implicit search;
personalization, unobtrusive recommendation;
diversity, long-tail;
interoperability across services, global music profiles.

As a final question regarding technology directions, the survey participants were asked:
“If a fairy granted you a wish for a technology (service, device ...) that would form the basis
for a perfect product, what would you pick?”. This led to the following wishes:

“A (seamless and personalized) service that understands my current tastes, environment,
mood and feelings, and can create for me a perfect stream of new music on the fly,
wherever I am.”

18While the collection is volatile and still subject to copyright claims!
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“Play music for my current mood, play music to get me into a certain mood.”
“A music analysis system that analyzes the music not in objective terms but in terms of
what a particular user will perceive.”
“An unlimited music streaming service with (cloud) locker capabilities, solid recommen-
dations including long-tail coverage, social features to share music with friends and see
what’s trending with your friends; it should include additional artist info to explore
biographies, pictures, recent news, tour info; it should have apps for all important smart
phones.”

The directions and wishes expressed above seem promising for MIR research, since they
largely overlap with current academic research interests in MIR. However, it should be
pointed out that many of the survey responders are expert opinion leaders with professional
backgrounds in music technology. Thus, they form an ‘early adopter’ audience that may be
stronger inclined towards new technological advances than ‘the general public’.

5.2 Personalization and the Long Tail
While contextual search, implicit search and multimodal forms of search were mentioned in
the survey, personalized and social strategies were mentioned as the leading key enabling
technologies for the future. Moreover, survey respondents stated that diversification and
(recommendation of) non-mainstream content will be important to leverage music sales.
At the same time, survey reponses showed that people mostly search for basic, specific
and ‘known’ criteria, such as artist, composer, song title, album or genre. Apart from
metadata-based search, other technology-enabled search possibilities such as search by taste,
mood or similarity appear less prevalent. Discussions started about why this is the case:
Because of no awareness that this is possible? Because the quality is not good enough yet?
Or simply because there is no need?

The answer was two-fold: Oscar Celma suggested that the technologies are just not
really in place yet. On the other hand, it was discussed under which circumstances such
extended forms of search are really needed. Stephen Davies said consumers are quite simple
in requirements: “Currently we put services that we think work. We need to better know
what the users want.” So is MIR research perhaps going in too complex directions regarding
this?

Following the questions posted above, the role of the so-called long tail was discussed [5].
As Gerd Leonhard indicated, in the near future not music acquisition (or delivery) but
consumption will be important. In a world where millions of available music titles are available
via streaming services, the main problem will be choice. Because of this, recommendation is
important. However, in practice, only a tiny subset of the available content is seeing extreme
usage, while the long tail beyond the popular artists is hardly consumed.

MIR technologies have a large potential to leverage the content in the long tail and make
it (more) accessible. However, Gerd Leonhard stated that the problem is that most people
will buy only what they know. Oscar Celma added, that 90 % of people are not very selective
on music. Only a small percentage of enthusiasts really want content from the long tail;
popular music is governing the choice of music.

Rhett Ryder reported that they inserted less known content from the long tail into the
playlists at their service TheFilter.com and the acceptance was very high. This was confirmed
by Stefan Baumschlager: Users desire new content — however, if it is too much, they will
not like the service anymore. Thus, the right balance must be found between familiar and
new content.
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In Gerd Leonhard’s opinion the long tail will not work unless the access is unlocked.
Holger Großmann stated that most of the music portals do not offer mood-based or similarity-
based search features yet. These technologies would give a different picture. Oscar Celma
argued that for many services the clients are not the main goal, but making profits from the
top artists. If only the top artists would matter, that would make the exploitation of the
long tail through advanced MIR techniques no priority for industry.

Gunnar Deutschmann pointed out that exploiting the long tail will give an opportunity
for small and independent artists. However, an open problem is how to get the music to
the people. Music is frequently recommended personally by people, so it is unclear how to
channelize the music to the audience.

As the survey participants already indicated, personalization will be important here. A
successful music service should include recommendation based on user profiling, user feedback
and deeper knowledge of the content, and usability and simplicity will be key factors for its
success. These seem like very good arguments for the developments in MIR research. Yet, in
order for them to be used by a large number of people, there still are issues to overcome, as
will be discussed in the following subsection.

5.3 Technological or Business Model Issues?
In some cases, research and development (R&D) in MIR technology has not matured enough
yet to yield industry-ready tools. For example, Steffen Holly pointed out that the mixture
and interaction of various technologies is not yet fully explored and that recommendation
engines which combine various different criteria are key. Much more research on capturing
and combining context information is needed (e.g. capturing the weather, combined with
locations, and music playing in the car). Rhett Ryder added that all those factors and many
more are important and need to be balanced correctly. Ideally, a device should be capable to
capture and combine the sources of context independently of platform or service — although
this will be a challenge on both the technological and business side.

In addition, there still are open research directions regarding trust. Stephen Davies
mentioned that, since real personalization cannot be omitted, recommendation needs to be
based on trustable information (well-known DJs, etc.). This was also confirmed by Oscar
Celma: recommendations from black-box machines give the user no trust, while friends’
recommendations obtain much more trust. Recommendation engines need to give reasons
for what they recommend.

However, for cases in which the necessary technologies are already there, the Think-Tank
concluded that the main obstacles are missing integration, unclear business models and legal
issues.

The basic technological ‘bricks’ for providing sophisticated music services do already
exist: We have seen a tremendous growth of new music services around download, net radios,
flat-rate based music streaming (‘all access models’), new recommendation services, new
technologies based on music analysis, music context and/or user profiling, personal radio
based on collaborative filtering, etcetera. What is missing is integration: According to
Laurence Le Ny the technological ‘bricks’ need to be integrated in a good way into a (global)
music/entertainment universe and built on the right business model with easier access to
rights and exhaustive offerings. However, the business models are currently unclear19. There
is concern about the wide availability of music (‘why own something you can access for free

19 In fact, the highest disagreement in the survey was on the statement “Companies have clear strategies
for revenue generation with digital music”.
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on the Web?’) and many startup companies struggle with rights issues around music licensing
for the new consumption models. On the other hand, it should be easy to track music access
and build business models and/or collection royalties on anonymized, proportional usage. In
addition, Laurence Le Ny said the ‘right’ business model is not necessarily based on music
alone but on a multi-screen personalised experience. She points towards a new simple and
integrated music experience with different entry points and cross-media recommendation to
cover consumers’ needs and proposes bundling of services and offering subscription based
models. However, she also points to difficulties in discussing these models with the majors
in the music industry. Such business models take long to set up and require important
negotiations with rights holders.

Finally, the question was raised if current business models leave margin for desirable
MIR technologies at all. Steffen Holly said this is a big issue for recommendation technology
providers. Content companies have to pay already a lot to collecting companies, licensing
royalties, etcetera, making it very difficult to monetize a recommendation engine. Oscar
Celma confirmed that it proves very difficult to sell a recommendation technology, even if it
were the best in the world. Moreover, it is very difficult to communicate the added value
around recommendations from the long tail. Holger Großmann agreed that there is no margin
for these technologies in online stores. In the current business models new technologies
cannot be paid, even if they are there and working already. A shift in monetization and
royalty distribution is needed, but it is very difficult to achieve.

The Think-Tank participants agreed that the majors in music industry have a strong
position but need to change in order to allow innovation. They also debated on the role of
collection societies and the need for a shift from copyrights towards a public, open, stan-
dardized, non-discriminatory, collective, multi-lateral system of usage rights. The question
is how to put all the stakeholders together in a common new business model. It is likely
that changes in law and royalty distribution are needed. This is in line with the answers
received from the survey on the major challenges to the (digital) music business, considering
the number one challenge to be of legal/regulatory nature.

5.4 Outlook for Industry
Current business models and legal issues seem to consider existing MIR technology to be
sufficient for monetization purposes, and thus make it very hard for new and innovative MIR
technology to get adopted. Does this mean that current MIR efforts are in vain?

Holger Großmann pointed to the need to distinguish between recommendation (main
goal: selling) and discovery services. He believes that there is quite some space for R&D in
the latter area. He mentions specific discovery scenarios: special content, searching sections
within music, special business-to-business (B2B) use cases, etcetera. He also explains that as
technology development is expensive, the rights holders must be prepared to share and to
remunerate the technologist by some means or another. Oscar Celma said there is quite a
market for search and discovery for professional users. There are also a number of specialized
B2B markets, with specific use cases, such as production, sync, or the classical music market.
This is confirmed by Thomas Lidy who experienced increasing awareness and interest in MIR
technologies from production and broadcast areas in recent years.

As a conclusion, the discussions from the Think-Tank can be summarized as follows:
many main technologies are there, but there is still room for research; R&D directions have
been pointed out in the area of discovery. New services using more of the existing MIR
technologies are expected to emerge, but business models still remain rather unclear.
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A particular problem in this context are the adoption cycles of industry: Given that
MIR technologies were not a priority of the industry for a long time, the take-up has been
happening rather slow. Academic research meanwhile heads to new directions, not necessarily
in line with the current needs of industry. Yet, the paradox is that the industry desires short
innovation cycles and demands results to specific problems in short time.

A lot of research sees adoption only decades after its inception20. On the other hand, the
market in the music domain is very fast-paced, and thus many times very simple solutions
with no or little theoretical foundations are sufficient to appear on the market and have
huge impact. These two different timelines — the fast-paced need for adopting solutions to
stay ahead in the market versus the long time needed to obtain research results and elevate
them to a mass-deployable solution — pose a significant challenge for the cooperation in
research and development in this domain. This is complemented by an equally challenging
legal situation that inhibits both research, by impeding the exchange of music data for
collaboration and evaluation purposes, as well as deployment, with industry for a long time
having been hesitant to adopt any solutions easing electronic access to music.

As a good demonstrator of the potential impact and success of MIR research, there is a
huge number of spin-offs created from PhD research in the field, many of which survive on
the market, even gain huge value and are bought up by larger companies. However, we are
faced with an environment for research and industry collaboration that offers a huge potential
for R&D and real innovation, while at the same time posing rather severe constraints on its
evolution.

6 Discussion

In this contribution, multiple difficulties were pointed out regarding the adoption of MIR
technologies by professional music stakeholders, and collaboration opportunities with these
stakeholders towards the creation of such technologies. The main difficulties are summarized
below.

Fear of replacing the human
Users will not be inclined to adopt a technology if they feel threatened by it. In case of
MIR technology, the technology may appear to threaten to replace the human in two ways.
First of all, there is a perceived economical threat, in which the envisioned audience gets the
impression that the presented technology will one day take over their daytime jobs. Secondly,
there also can be a fundamental fear that technology takes over properties that were thought
to be the unique domain of human souls: in this case, human musical creativity.

In both the audio mixing and music performing cases, it already explicitly was mentioned
that it never has been the intention of the makers to ‘replace’ human beings with their
technologies, but rather to provide ways to support and enhance sound producing and
performing musicianship. This is a message that should remain to be emphasized.

From our case studies, it became clear that a ‘not in my back yard’ stance is realistic;
while people recognize the use and benefit of new technology, they do not wish to have it
entering their own professional and artistic worlds. It remains an open challenge on how to

20Think of how long it took the vector space model and the concept of ranking in classical text IR to gain
grounds on Boolean search, which still is a dominant search paradigm in many domains; or think of the
time it took relational databases to catch foot in the mass market: long after the third normal form was
invented.
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solve this problem; successful demonstrations by authorative early adopters appear still to
be the best way, although a lot of patience will be necessary for this.

Differing measures of success
There may be mismatches regarding the notion of a successful system. While MIR inherited
numeric success measures from the Information Retrieval field, measures such as Precision
and Recall are often not convincing outside of these engineering communities.

In music performance applications, ease of use and a sense of naturalness in interaction
will be a much more important factor. This did not just become clear for the Music Plus
One system: in [6], describing the creative use of real-time score following systems, similar
notions are made. For the task of real-time score following in an artistic context, speed will
be more critical than note-level accuracy. In addition, in a musical creative context, the
concept of time goes beyond discrete short-time low-level event detection: models are needed
for higher-level temporal features such as tempo and event duration, and besides discrete
events (e.g. pitch onsets), continuous events (e.g. glissandi) in time exist too.

Care should be taken to identify the main goals of an intended user, since the user will
be highly demanding regarding the capability of a new technology in reaching those goals.
If expectations are not met, a system with new technology will be deemed immature and
thus useless. For music performing and the creation of new music, as mentioned above, the
rendering of an artistically convincing reaction to the user will be critical. In musicology,
the concept of labeled ‘truth’ will be challenged. Even in industry, technology with high
academic performance scores may not be useful if it does not fit the business model and does
not allow for rapid monetization.

Need for considerable time investments
Another important reason why MIR technology can face hesitance to be adopted has to do
with the time required to achieve adoption. As was mentioned in the industry section, there
is a strong mismatch between the deployment cycle timeline in industrial settings and the
slower-paced academic research timeline, which has only become more delicate because of
the late attention shift from industry towards digital music.

In addition, even cross-disciplinary collaboration needs considerable time investment to
allow for serious and mutually equal cooperation between domains. Going back to the section
on musicology, it takes time for musicologists to become familiar enough with tools and
scholarly valid modes of discourse in information science and engineering – as it will take
time for MIR scientists to become familiar with the scholarly valid modes of discourse and
methodologies the other way around.

Wrong audiences?
In some cases, there might be unexpected other audiences for envisioned MIR tools. While
the music industry stakeholders purely focusing on sales may not be interested in novel
MIR technologies (or due to legal issues, not be able to consider them), stakeholders that
rather focus on discovery aspects do allow for innovative R&D. While mid-level content-based
analysis and classification systems hardly are of interest to the practice of musicologists, they
can prove to be useful for performing musicians who prepare to study a piece. Finally, the
postmodern interests of present-day musicology, with increased interest in subjectivity and
contextual aspects, open up perspectives for multi- and cross-modal MIR research directions
and linked data.
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A striking feature of the MIR community is that many of its researchers do not just show
affinity with research and the development of techniques to process their data, but that they
are strongly engaged with the actual content of the data too. Both in- and outside their
research, many MIR researchers are passionate about music and music-making21. For anyone
working on new technology, but especially for people in this situation, it is important to be
aware of realistic potential obstacles for the practical adoption of conceived technology.

Our contribution was meant to increase awareness on this topic and to give a warning to
the enthusiastic MIR researcher. As we demonstrated, several reception and adoption issues
are of fundamental nature and may be very difficult to overcome.

On the other hand, our contribution was certainly not meant as a discouragement. There
are many promising (and possibly unexpected) MIR opportunities to be found, that can
lead to successful and enhanced handling of music information. However, in order to achieve
this, careful consideration of the suitable presentation and mindset given the intended user
audience, as well as investment in understanding the involved communities, will be essential.
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