
Technical University of Denmark.

Master Thesis

Cache for reducing power
consumption

of a hearing instrument

Author:
Claus Lopera Andersen

s942602

Supervisor DTU:
Alberto Nannarelli

Supervisor GNR:
Kai Harrekilde-Petersen

Kashif Virk

January 31, 2012

Technical University of Denmark
Department of Informatics and Mathematical Modeling
Building 321
DK-2800 Kongens Lyngby
Denmark
Phone +45 45253351
Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

i

Summary

Power consumption have and may all ways be a issue when designing hearing
aid. Today the functionality in a hearing aid is much more the a couple of
filter and an amplifier. And with the introduction of wireless communication
to and from a hearing aid the requirement for power keeps growing. There
by the need to save power where ever it is possible get more importen.

In a system with a processor a significant part of the power is used to fetch
instruction and data from memory. Fetching from a big memory cost more
power then fetching from a small memory. Do this mean that the processor
system is able to save power all over by adding a small cache to its memory
system?

This thesis will show how a software model of a processors memory sys-
tem. Along the model a file containing an address and data trace for same
processor system. These two combined can be used to predict the behaviour
of same system with different caches. By adding a cost function for cache
hit, miss ect. it is the hope the model can calculate which cache result the
lowest total power use.

First the software model is designed and build, for its result 3 caches is cho-
sen, for implementation in VHDL. From power simulation of the VHDL the
actual power use of these caches is found. The models result is the compared
to this numbers.

ii

Resume

Strøm forbruger har altid været en faktor i design af høreapparater. Kravene
for at spare strøm i et høreapparat stiger. Dette er p̊a grung af de funktioner
der er i et moderne høreapparat og introduktion af tr̊adløs kommunikation i
dem.

En stor del af strøm forbrug i et processor system, bliver brugt til at hente
instruktioner og jo større en memory er, desto større er strøm forbrug. Vil
introduktion af en cache i s̊adan et system kunne mindske det totale strøm
forbrug?

I denne afhandling vil en software model af et processor system blive præsen-
teret. Denne software model kan sammen med en fil der indholder et mønster
af memory adgange.
Ønsket er at modelen skal kunne beregne, hvilken cache der resulterer i det
mindst totale strøm forbrug. Dette gøres ved at have en funktion, der kan
beregne strøm forbruget ved et cache hit, et cache miss, osv.

Først vil en software model blive præsenteret, ud fra de resultater denne
model giver, vil 3 cache blive skrevet i VHDL. Disse 3 caches strøm forbrug
vil blive fundet ved hjælp af power simulering. Resultatet fra denne power
simulering vil s̊a blive sammenlignet med resultatet fra software modellen.

iii

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Tech-
nical University of Denmark in collaboration with GN Resound, to fulfil the
requirements for acquiring the Master degree in engineering.

This thesis deals with hearing aid, more specific the memory system of the
Digital signal processing in this hearing aid. Accessing a memory cost power
and the goal of this thesis is to design a software model, which from a address
and data trace from the system, can calculate the memory systems power
use for different caches.

Acknowledgements

I would like to thank my supervisor at Danmarks Tekniske Universitet, Prof.
Dr. Alberto Nannarelli for his help and inspiration, not just doing this thesis
but though the last 2 years.

I would also like to thank Kai Harrekilde-Petersen, Team Manager for DSP
Core Team at GN ReSound. Along Kai I like to thank the entire DSP Core
Team for the help they have given me in the day to day work. With out then
I would have been stocked.

Last but not least, I would like to thank my friends and family for their
help in proofreading and commenting this thesis.

Contents

1 Introduction 6

1.1 Project Description . 6

1.2 Structure of the rapport . 8

1.3 GN ReSound . 9

1.4 Tools used . 9

1.5 Hardware used . 10

2 Background on cache 12

2.1 Locality . 12

2.2 Miss . 13

2.3 Cache . 14

2.3.1 Cache groups . 14

2.3.2 Cache organization . 14

2.4 Design considerations . 16

2.5 Other cache architecture . 18

2.5.1 Filter cache . 18

2.5.2 Loop cache . 18

2.5.3 Cache Line Buffering 18

2.6 Other way to get low power in a memory/memory system . . 19

2.6.1 Memory partition . 19

2.6.2 Latching a block of word 19

3 Current system 22

3.1 System overview . 22

3.2 Memory map . 23

3.3 Timing . 25

3.4 Do loop instruction . 26

3.5 Design limitations do to IC design rule 26

3.6 Design choice of cache memory 27

2

CONTENTS 3

4 Input data 28

4.1 What is meant by input data? 28

4.2 Background . 28

4.3 Signal of interest . 30

4.4 Change in the VHDL and synthesis for FPGA 30

4.5 Setting up the board and generating a trace 31

4.6 Sub conclusion . 34

5 Model of the memory system 36

5.1 Overview and structure of the model 37

5.2 Statistics done on the input file 39

5.3 Model of the memory . 41

5.3.1 Model of the Ram and Rom 41

5.4 Model of the caches . 42

5.4.1 Model of a cache . 43

5.4.2 Model of a loop cache 46

5.5 Sub conclusion . 49

6 Power cost function in the model 52

6.0.1 Cost function . 52

6.0.2 Data from technology vendor 55

6.0.3 Cost function implemented in the code 57

6.1 Result from the cost function 57

7 VHDL caches 60

7.1 Design of cache . 60

7.1.1 Diagram . 61

7.1.2 Code . 63

7.2 Test-bench and verification . 65

7.3 Result and sub conclusion . 69

7.3.1 Relative comparison 69

7.3.2 Actually numbers . 72

8 Calibrating the model and the final result 74

8.1 Calibration of the model . 74

8.2 Result . 75

8.2.1 Stream vs. not stream 75

8.2.2 Presentation of the result 77

4 CONTENTS

9 Future work 82
9.1 Model . 82

9.1.1 Models structure . 82
9.1.2 Model with no cache power 82
9.1.3 Model with activity factor 83

9.2 Cache for GN ReSound . 83
9.2.1 Data memories . 83
9.2.2 Loop cache in vhdl . 83
9.2.3 Loop cache change of flow 83
9.2.4 Loop cache taking loop larger then its size 83
9.2.5 Loop cache and cache 84

10 Conclusion 86

11 References 90

A Appendix to chapter 4 92

B Appendix to chapter 5 94

C Appendix to chapter 6 98

CONTENTS 5

Chapter 1

Introduction

With the demand for more and more features in a hearing aid while still
maintaining a long battery time, the need for power saving grows.

1.1 Project Description

Reducing the use of power in a hearing aid is becoming increasingly important
and one place to to save power is in the processor and memory system.
A large part of the dynamic power is consumed by fetching data
from memory, a special instructions since this is done in near to
all cycles, but the same is the case for data fetching, although this
is done less frequent.
In a system with out any cache, like the one in this thesis, the fetching of
data (instruction or data) is done from main memory. More background
information on the system in chapter 3. The question is then, can a cache
help reduce the overall power used to fetch data?
A cache is normally associated with trying to achieve higher speed, by faster
memory access. But in this case the access time to main memory is one cycle,
witch leaves nothing to be gained in speed. But adding a cache may be able
to lower the collected power used by the memory system. If the power saved
in main memory access, by use of a cache is lower than the power used by
the cache, then there is a total power save, see formula 1.1.

PowerTotal = PowerMainmemory + PowerCache (1.1)

That is assuming that main memory is one memory, i.e. it use the same
power per access regardless where in the memory space the access is, this is

6

1.1. PROJECT DESCRIPTION 7

Figure 1.1: Power use in a system

not true for close to all systems, but it simplify the explication. Then the
power used by main memory, is inverse to the cache hit rate. Power used by
the cache is on the other hand not linear dependent with the cache hit rate,
as hit rate depend on cache type, size and the access patten of the addresses.

Figure 1.1 is an illustration of what it could look like and is only based
on the author’s feeling. But the figure illustrates what this thesis is about,
to figure out for which cache size and/or type the total power is at a mini-
mum. In this thought up example, the solution would be the cache giving a
50 percent hit rate. This is of cause simplified.

The above defines the problem, how to find out where PowerTotal is at its
minimum. This thesis presenter a possible solution to this problem. A soft-
ware model of the memory system as it is in the current design, on top of
this a software model of a cache will be added. As this thesis is about finding
the best cache for a specific DSP, the input data use by the model should of
course be from the same DSP.

A trace of addresses, showing the access patten. It will then for each of
the memory access find where the requested access hits - in the main mem-
ory or in the cache. This information is then used to calculate the power
used for the specific access, the total power is then given by summing up
power for all access. Having a setup in the model with out a cache, makes
for a comparisons.

The input data have to be as realistic as possible, as the patten of accesses
have a big influence on the efficiency of the cache. Background on why will
be explained in chapter 2. The power cost function is going to be based on

8 CHAPTER 1. INTRODUCTION

the author’s estimate of what each function will cost when implemented in
hardware. In order not just to take the author’s word for granted, a VHDL
implementation of some of the cache organization will be designed. These
will be used for a back annotated power analysis, based on the same input
as the model. The back annotated power number can then be compared to
the power number from the model and the model can be aligned.

1.2 Structure of the rapport

I chapter 1.1 the project including an idea for a solution was presented. In
order to make it easy for the reader a chronological order of the thesis is
given below, this includes a short description of the content in each.

• Background on cache: An introduction to cache, why and how they
work.

• Background on current design: The overview of the current pro-
cessors design is given, with the main focus on the memory system.

• Input data: What is the input data and how to come by it.

• The model: The actual software model is presented, on a block func-
tion level and the cost function for power is described.

• VHDL model: Here the VHDL caches and the power analysis of the
synthesised VHDL is presented.

• Calibration of the model: The power number from the VHDL is
used to see how accurate the model is and to calibrate. After calibration
the end result is presented.

• Conclusion: Did the model work as intender and is a cache feasible.

• Appendix: Here the reader will find diagram, code examples etc. The
entire source code developed for this thesis is not in here, but can be
found on the attached USB key, along trace files diagram etc.

With this the reader should have a good idea about the content and structure
of this thesis.

1.3. GN RESOUND 9

1.3 GN ReSound

GN ReSound develops, manufactures and sells hearing aids. To quote Re-
Sound from their own webpage.
Our company
ReSound provides excellent sound by offering innovative hearing aids that
combine original thinking and design with solid technology – all based on
deep audiological insight and understanding of users.
Our mission
To create innovative hearing solutions that constantly increase user satisfac-
tion and acceptance – making ReSound the natural choice for hearing care
professionals.
Our vision
Every day sounds are lost for millions of people with hearing challenges.
ReSound will continuously develop solutions to help these people rediscover
hearing, so they can live rich, active and fulfilling lives.

1.4 Tools used

TexMaker 3.1, MikTex 2.9 and Microsoft Visio

This report was made using LaTeX. MikTex was used to compile the .tex files.
TexMaker 3.1 was used to edit the .tex files. The design template (pre make)
is a changed version of one provided by the Department of Informatics and
Mathematical Modelling (IMM) under which this thesis is written. Flowchart
and diagram was make in Microsoft Visio.

Eclipse IDE for Java (Indigo) and Java SE 7 JDK

The first attempt at a model of the cache and memory system was written in
Java and run using Java SE 7 JDK. All Java code was written and edited in
Eclipse, which was used as debugging environment as well. Do to Java not
having unsigned 32 bit integer, the model was rewritten to C++.

Visual Studio 2010

The coding and debugging of all C++ code was done in Visual Studio 2010.

Perl

The trace from the Logic analyser was rewritten to a format more suitable
for the eye and for the model.

10 CHAPTER 1. INTRODUCTION

Emacs 21, NCsim and ModelSim

Emacs was used as VHDL editor under Linux while inside GN ReSounds
environment, here NCsim was used as simulator. Under On Windows and
for test in the start phase of designing the cache in VHDL ModelSim was
used as editor and simulator.

Synplify, Xilinx and FPGA editor

For synthesis Synplify in cooperation with Xilinx, was used via GN ReSounds
flow. Xilinx FPGA editor was used to debug the design after place and route.

ReSound software

A piece software used to setup the algorithm in a hearing aid. And to be
used at debugging by interacting with register and the processor.

1.5 Hardware used

FPGA board

An Xilinx board with a Virtex 4, connected to it an add on an board with
a chip having peripherals etc. And an other add on board with radio for
wireless communication.

ReSound UniteTMTV

This is a box taking in a sound signal and streaming it out wirelessly in a
format understood by a ReSound hearing aid.

Logic analyser

Agilent 1681AD 102-channel logic analyzer.

1.5. HARDWARE USED 11

Chapter 2

Background on cache

In this chapter the reader will find that some of the key parameters which
need to be considered when designing a cache are presented. Before going
into that, an explanation of the aspects of program code, which makes the
use of cache possible is presented. Chapters 2.1 to 2.4 are written with great
inspiration from [2][3][4]. At the end of this chapter other kinds of cache
architecture and ways to save power are presented.

2.1 Locality

Temporal Locality

Since the memory access of a program is not random, a piece of program code
it will contain loops. This is instructions which are used again and again and
the same goes for the data item, that being a constant read several times or
a variable read then updated then read over and over again. This is what
is called Temporal Locality and the main thing which makes a cache worth
implementing. The idea is that when the processor asks for an instruction
or a data word, it is likely that it will ask for it again, this is due to the fact
that nearly all (if not all) programs contain loop. When a piece or data or
an instructions is fetched from the backing store1 for the processor a copy is
kept in the cache, so next time the processor asks for that piece it can be
read from the cache and thereby saving time.

Spatial Locality

Programmers tend to cluster data, meaning that a sub part of a program
tend to address data items within a narrow address space. A list or an array

1The memory behind the cache

12

2.2. MISS 13

is a good example of this, item i+1 is in most cases processed after item i.
Instructions tent to come in sequence, for example in a loop instruction i is
follow by instructions i+1 until the loop is restarted and then the sequence
starts over. This is one reason for having cache block2 when one item in the
block is asked for, the rest of the block is fetched, exploiting Spatial Locality.

Algorithmic Locality

Algorithmic locality arises when a program repeatedly accesses data item
or program instruction, which are spread throughout the memory space. A
good example is an interrupt driven application. For example a program code
where the main program runs, while every 1/10 sec an interrupt function is
called which runs though a loop updating a screen. In the same code an
interrupt routine can be used to empty a communication buffer. These three
blocks of code are not necessarily placed close to each other, but they may
be accessed frequently. This is in fact three sets of code which each explore
temporal or spatial locality or both, with the issue that each can be located
far from the other.

2.2 Miss

Cache miss can be divided in three groups, which is what in the literature is
called The Three C’s.

• Compulsory: This kind of miss is inevitable, as it refers to a miss
caused by it being the first time that address is referenced. There will
always be such misses.

• Capacity: Occurs because the cache can not contain the whole pro-
gram. An infinite cache will not have any Capacity miss.

• Conflict: These are collision misses and occur in direct or set associa-
tive cache when blocks are mapped to the same place in the cache. In
a full associative cache there are no Conflict misses.

2Having one or more word in each cache location

14 CHAPTER 2. BACKGROUND ON CACHE

2.3 Cache

2.3.1 Cache groups

This section will start by defining two main groups of Caches. In table 2.1

Cache Type Addressing Scheme Management Scheme
Transparent cache Transparent Cache
Software-managed cache Transparent Application
Self-managed scratch-pad Non-transparent Cache
Scratch pad Non-transparent Application

Table 2.1: Main cache groups

there are two types of cache - a transparent cache and a scratch pad. A
scratch pad in a small memory, having its own address space. The idea with
a scratch pad is that it is small and close to the processor, which means fast
access. That is has its own address space means that the application needs
to know it is there, i.e. the programmer needs to think about using it during
the development of the application.

A Transparent cache on the other hand is a copy of a part of the backing
store. And as such the application needs not be aware that there is any cache.

In both cases above the cache and its contents can be managed by either
the application or the cache itself. Both have its advantages and disadvan-
tages.

2.3.2 Cache organization

Since a cache is a sub part of the backing store, it can not be addressed
directly using the address, what is done is that the address is divided into
fields as shown in table 2.2. The fields in the cache address in relations to
the memory space is shown in figure 2.1.

The cache tag points to a block, and this block has the size (number of
cache lines) 2n where n is the number of bit in the index field. The field
index points to the line within the cache, this can be one or more word, in
table 2.2 it is 2 bit equal to four words. In figure 2.2 a block diagram of
a 2-way associative cache, with a block size of 4 is shown. The list below

2.3. CACHE 15

32 bit address:

28 bit 2 bit

Block ID block

28-n bit n-bit 2 bit

Cache tag Index block

Table 2.2: Address division in a cache

Memory space

Block

Cache Tag

Index

Cache line

Figure 2.1: Cache fields with in the memory space

gives a description of each part and how it is connected to what was shown
in figure 2.1

• Tag: As the cache does not contain the entire memory, a part of the
address needs to be saved. As shown in figure 2.1 Tag point to a block
of the size 2index.

• Valid: This is a bit telling is the data in this block can be used, i.e.
the data in the cache are the same as in the backing store.

• Index: This is one of the parameters which define the size of the cache.
The index explores temporal locality.

• Block: This is what is refereed to as a cache block and can be one or
more word. Here it is Spatial Locality which is explored.

• Associative: In section 2.1 the issue or Algorithmic Locality was pre-
sented, associativity solves this, by giving more small block with same
index but the tag map the block to a different location.

• Hit: This bit shows if the address requested is in the cache and if the
data is valid.

16 CHAPTER 2. BACKGROUND ON CACHE

Data Data DataDataTag

Tag Index Block

=

V

Mux

Data Data DataDataTag

=

V

Mux

Mux

L

R

U

Hit

Hit

0

1

2

.

.

.

.

Cache lines

Figure 2.2: Block diagram of a 2-way associative cache, with a 4 word block

• Set: One set contains 0-Cache line tags and the same amount of cache
blocks, there can be one or more sets in a cache. Each set can point to
a different block, see figure 2.1.

• LRU: Least Recently Used, when having more than one set, the cache
needs to have a way to choose, which set to overwrite when having to
fetch new data.

Taking the cache shown in figure 2.2 and put some numbers on. The block
is 2 bit, the index 4 bit and the tag 10 bit. This gives a address of 16 bit
and an address space of 64k. The cache is a 2-way set associative, there are
2 block each having its own tag and data. The index on 4 bit gives 16 cache
lines and the cache block size of 2 bit gives 4 word in each cache line. In total
this cache will hold cacheline∗ block ∗set = word in this case 16∗2∗4 = 256

2.4 Design considerations

When having to design a cache there are several parameter to consider, some
of them are the ones presented in section 2.3.1. Lets go through the most
important.

• Where can a block be placed?

– One place (direct mapped), this means one set.

2.4. DESIGN CONSIDERATIONS 17

– A few places (set associative), in the case presented in figure 2.2
a block can be placed two places.

– Any place (fully associative), in this case there are no index as
there are only one cache line but many set in fact Cachesize

blocksize
.

• How to find a block?

– Indexing (direct mapped), here there is only one set, so index
point directly to the block.

– Indexing + Limited search (set associative), each set is checked to
see if it holds the tag address requested, if one set do then index
with in that set point to the requested block.

– Full search (fully associative), here there is no index so all set is
check to see if one of them holds the address requested.

• What to replaced on a miss?

– Only one place is possible (direct mapped), in case of a direct map
cache index point to one place, so there is no choice.

– LRU (Least recently used), here the set which haven’t been ac-
cessed for the longest time is replaced.

– Random, randomly select a set and replaced the given block in
that set.

– And much more.

• What to do on a write?

– Write-through, here the data is written to the cache and to the
backing store.

– Write-back, data is only written to the cache, then at the point
where the cache block is needed for other data the data is written
to the backing store.

– And other variants of this.

All these considerations have their pro and cons, both depending on the
application, the performance wanted, the power allowed, price and more.
To give an example, if a cache size of 64 block is needed why make it a
direct mapped cache. A fully associative have to much better as all block
can be placed anywhere. The down side is that for each block in the cache
there will be an overhead of the tag plus some compare logic and it needs to

18 CHAPTER 2. BACKGROUND ON CACHE

do 64 compare each time. This costs area and power, which is money and
heat/battery time.
Another example is Write-back, if that is chosen, an application can write
to a word and read it again without the cache having to fetch it from the
backing store. But if the cache needs to save a new item at the place it
has been written to. Then it needs to write it to the backing store first,
which will take time and a delay is introduced (which may let to stalling the
processor). In some cases this may not be a problem but in other it may be
an impossible thing to ask.

2.5 Other cache architecture

In section 2.3 the standard cache with all its parameters was presented, in
this section some other ways of designing a cache are introduced.

2.5.1 Filter cache

A filter cache is in fact a direct mapped cache, which is small in comparison
to the other caches in the system, this is a cache architecture used to reduce
power at the expense of performance. The architecture introduces a level 0
cache on the instructions cache, this cache use relative less power than the
L1 cache sitting behind it, this idea was presented in [9].

2.5.2 Loop cache

In [12] an instruction cache where only loops are cache is presented. This
is a small tag less direct mapped cache. It works by looking at the op-
code for instructions which fall within the category short backward branch
instructions. When one of those instructions are taking a small jump back-
ward is done. At this point the cache starts caching instructions, when the
same short backward branch instructions is taken again the loop cache take
over and instructions are fetched from the cache. When the short backward
branch instructions or any other instructions changes the instructions flow,
instructions are fetch from memory again. Figure 2.3 shows a block diagram
of the loop cache architecture.

2.5.3 Cache Line Buffering

As many caches use SRAM as memory, the idea of caching a line of the cache
in register was found in [11]. Figure 2.4 shows a block diagram of a direct

2.6. OTHERWAYTOGET LOWPOWER IN AMEMORY/MEMORY SYSTEM19

Figure 2.3: Loop cache architecture

mapped cache with two cache line buffers. The idea is that if index matches
the index of one of the cache line buffers then the access to the SRAM is
aborted. This has the possibility of lowering power without any performance
penalty.

2.6 Other way to get low power in a memo-

ry/memory system

2.6.1 Memory partition

One well-known and well used technique to save power is to divide the mem-
ory into smaller partition called banks. And then only actives the addressed
bank. The reason this reduces power is that the amount of bit cell and ca-
pacitance of the wordline reduced. The memory can be split recusived, but
at some point the power overhead do to the sense amplifier, control logic
etc. will become the dominating part of the power and it will no longer be
desirable.

2.6.2 Latching a block of word

This can be thought of as a resented used cache within the memory and
work by keeping the last used wordline in a latch. The memory needs a bit
more control logic for checking if the line address matches the last used line
address, the gain is performance and power in the cases where they match.

20 CHAPTER 2. BACKGROUND ON CACHE

Figure 2.4: Cache with line buffer

This chapter have given the reader a background knowledges, which will make
it easier to understand what is presented in this thesis. And to understand
why the choice taken.

2.6. OTHERWAYTOGET LOWPOWER IN AMEMORY/MEMORY SYSTEM21

Chapter 3

Current system

In this chapter the reader will find background information regarding the
DSP1 part of GN ReSound’s current hearing aids. Later in this chapter
some limitations regarding IC design within GN ReSound will be mentioned,
as this has influence on some of the design choices presented in this thesis.

3.1 System overview

The DSP, which is designed by GN ReSound, is a Harvard architectures.
As shown in figure 3.1 this architecture has separate memory for instruction

Figure 3.1: DSP Harvard architectures

and data, each with its own address and data bus. On top of that, this DSP
has two data memory - a Xmem2 and a Ymem3, the two data memory have
separated address and data bus. Even though this may sound complex, it
makes the task of adding cache to the memory system simpler, because each
memory can have a cache added with no regard to the other memory. The
DSP with the three memory and its pipeline state is shown in figure 3.2. As

1Digital signal processors
2X memory, one of the data memory
3Y memory, one of the data memory

22

3.2. MEMORY MAP 23

Decoder

AGU

AGU

AGU

Datapath
Program

Memory

Fetch Decode Execute

F
e
tc
h

X
Y
/A
BIN
M

XMEM

YMEM

Figure 3.2: DSP block diagram

shown in figure 3.2, each memory can be considered a separate stand alone
memory, in the context of memory accesses and adding cache to it. The only
difference is an addition in delay since data from Xmem and Ymem have to
pass through a mux.

3.2 Memory map

The memory space is divided into two halves, lower half for RAM and upper
half for ROM, as shown in figure 3.3.

The handling of accessing the right memory is handled by the DSP and the
cache will look at the memory space as one big memory. In the lower address
space some addresses are reserved. Table 3.1 shows the address space and
what the address is reserved for.

24 CHAPTER 3. CURRENT SYSTEM

ROM

RAM

0x0000

0x7FFF

0x8000

0xFFFF

Figure 3.3: Memory space

Address start Address end Name
0x0015 0x0000 CORE
0x001f 0x001a IRQ CTRL
0x0043 0x0040 SENSE PORTS
0x0051 0x0050 CLK CTRL
0x0052 CHIP REV
0x006f 0x0060 IIC HOST
0x0073 0x0070 SYS SURV
0x0087 0x0080 BATMON
0x00b0 0x00a0 IIS HOST
0x00cf 0x00c0 IIC MASTER
0x00df 0x00d0 AUDIO OUTPUT
0x00ff 0x00e0 WL
0x0149 0x0100 SPI MASTER
0x018f 0x0180 CLK GEN
0x0196 0x0190 LIMITREG
0x0198 ADR
0x0199 AUX
0x01df 0x01c0 IIS MASTER
0x0203 0x0200 COM
0x0300 TEST
0x04ff 0x0400 BIQUAD
0xf0ff 0xf000 FPGA

Table 3.1: Peripherial memory space

The model is not going to take this into account, although this will result in
caching where caching may not be necessary, and there by may add to cache

3.3. TIMING 25

miss by overwriting a value which could be used later.

3.3 Timing

As mentioned in 3.1, each memory (Pmem4, Xmem and Ymem) can be
considered a separate memory and in context of accessing them they act
in the same way. Taking the Program Memory part from figure 3.2 and
unfolding it, will result in figure 3.4.

AGU
Program

Memory F
e
tc
h

P
C

Time to fetch dataTag lookupAddr gen

PC Fe

Figure 3.4: DSP memory pipeline state

As shown in figure 3.4, there are two states in the pipeline in which there is
room for the cache. The author has chosen to call the first state PC5, this
state is where the address is generated. The other state is the fetch state
Fe6. The remaining time in the PC state, after the AGU7 have generated the
address, can be used to do the tag lookup tag lookup and control logic. The
result from the tag lookup are necessary in order to decide where to fetch
data from.

Miss Hit
Read Fetch the data from PM,

save Tag and data in cache
Fetch data from cache

Write Write data to PM Write data to PM. Depend-
ing on writing policies write
tag and data to cache, or in-
valided

Table 3.2: Actions to be done in RW state on memory access

4Program memory
5Program Counter
6Fetch
7Address generation unit

26 CHAPTER 3. CURRENT SYSTEM

Table 3.2 shows the four different states a cache can be in, here cache refers
to the type in 2.3. The same timing is required for Xmem and Ymem and in
the Fe state they have a tighter timing requirement as there is a mux in the
part, as shown in figure 3.2.

3.4 Do loop instruction

Even though this is just an overview there are one instruction which need a
explanation, as it is going to be use later. This is the Do loop instruction.
This instruction indicate that a loop followers, the syntax is [do count, label]
where do is the 8 bit opcode, followed by count. Count can be a 8 bit value
holding the numbers of time to stay in the loop, or it can be a register holding
the same information. It is worth noticing that it is not allowed to have jmp
as the last instruction in a do loop, but it is allowed else where in the loop.

3.5 Design limitations do to IC design rule

As the thesis is done at and for GN ReSound the design have to follow GN
ReSound’s rules.

• Clocking: All clocking has to be on the rising edge of the clock, this
does not include the memory, as shown in 3.2 the memory is clocked
on falling edge.

• Timing: Has to follow what was shown in section 3.3 and stalling the
DSP due to memory read/write, is not permitted.

• Cache size: Due to chip size and the fact that the main memory space
is only 16k words, the cache has to be small. Here small is below 32
words or in that range.

• Memory cell: Normal the memory in a cache is a SRAM, but since
there are no commercial SRAM in that size. Even if there was, the
power used in such small memories, is dominated by the sense ampli-
fiers, see 10. This leads to a flip-flop as memory cell.

• Tri state bus: With flip-flops as memory a register file would be a
choice, except GN ReSound does not use tri-state buses, which lead to
use of mux.

3.6. DESIGN CHOICE OF CACHE MEMORY 27

3.6 Design choice of cache memory

These requirement lead to a memory array design similar to what is shown
in figure 3.5. Different things can be done to save power in this design, like
only changing mux depending on index. This thesis is not going to that into
account. The reason being that it will make the power cost function in the

Figure 3.5: Memory array in flip-flop

model a lot more complex and that most approaches to lower power, gives
better result as the number of cache lines goes up, i.e. will not result in much
power saving in this design.

This should give the reader enough background knowledge to be able to
follow the rest of this thesis, should the reader like to get a better insight to
the design and architecture of the DSP please take a look at [13].

Chapter 4

Input data

In this chapter the reader can find information about the input data needed
by the model. The reader will find information on what data is needed and
how the author produced the given data.

4.1 What is meant by input data?

The model has to act as the memory system and in doing that it needs input.
For a read it needs an address and some control signals and for write some
data as well. Here some pattens of address access could be generated along
with random generated data. The author used this approach when testing
the function of the model, for example to check the function of an n-way
cache, with n > 1.

The model has to find the best solution for the DSP running like it would
in a real life situation. Then the best input to the model, will be an access
patten from the real DPS, i.e. a trace from the DSP while running like a
hearing aid.

4.2 Background

GN ReSound has a flow which can generate a FPGA version of the DSP,
along with some other hardware. This results in a hearing instrument which
can run on a FPGA board, shown in 4.2. With use of a FPGA board and a
logic analyser generation of real live traces is possible.

The reason for using a FPGA board to generate a trace file is to achieve
the most accurate trace. It is possible to generate an address trace using a

28

4.2. BACKGROUND 29

Figure 4.1: ReSound UniteTMTV

software model of the DSP. While this is easy, it do not give a full picture
of the behaviour, due to the fact the model do not have the full hardware
or software support and it does not get interrupts, which pollute the access
patten.

Figure 4.2: FPGA board with logic analyser connected

The wireless part of the hearing aid needs an input, for this the ReSound
UniteTMTV shown in figure 4.1 is used.

30 CHAPTER 4. INPUT DATA

4.3 Signal of interest

Below is listed the signals required to check for memory access and which
kind of access it is. Along with the signal is a short explanation of why the
signal is needed.

• Program memory address bus: This is needed in order to see if
the same address is read several times

• Program memory data bus: The data is needed for two reasons,
to look for loop instruction and to generate switching activity for the
power calculation done in VHDL.

• Program memory enable signal: The enable signal tells whether a
memory access is actually needed.

• Program memory write/read signal: The cache has to act differ-
ently for a read compared to a write.

• DSP halt signal: This signal is needed to verify whether the DSP is
a sleep or not

• DSP clock: The DSP can take a shout interrupt without having to
wake up (halt signal change), for that reason this clock is needed to be
able to see memory access when the DSP is in halt.

• Clock: This clock is intended for sampling in the logic analyser.

4.4 Change in the VHDL and synthesis for

FPGA

The signals of interest can all be found in the entity cpuCore in the VHDL
code. Within this entity the signal of interest will be copyed to a register,
with the exception of the DSP clock as it is a gated version of the clock used
to clock the signal with.

Listing 4.1: VHDL code for gathering the signals

1 test_port_o <= test_port_s ;
2 test_port_s (64) <= reset_ni ;
3 test_port_s (65) <= clkDSPAclk_i ;
4 test_port_s (81) <= clkInt_i ;
5 proce s s (clkInt_i , reset_ni)
6 begin

4.5. SETTING UP THE BOARD AND GENERATING A TRACE 31

7 i f reset_ni = ’0 ’ then
8 test_port_s (95 downto 82) <= (othe r s => ’ 0 ’) ;
9 test_port_s (80 downto 68) <= (othe r s => ’ 0 ’) ;

10 test_port_s (63 downto 0) <= (othe r s => ’ 0 ’) ;
11 e l s i f rising_edge (clkInt_i) then
12 test_port_s (15 downto 0) <= tAddrP ;
13 test_port_s (47 downto 16) <= pmIn ;
14 test_port_s (48) <= PRamEn or PRomEn or

debugRomRamEn ;
15 test_port_s (49) <= PRamWr ;
16 test_port_s (66) <= cHalt ;
17 end i f ;
18 end proce s s ;

The output of the register plus the clocks are then led up through the hier-
archy to the top component.
In order to synthesise the design with the change made, GN Resounds flow
is needed. Before starting the synthesis, the port created in 4.1 needs to be
assigned to the right pin on the FPGA, which is done in the constraint file.
Synthesis is done using Synplify and Xilinx. Synplify controls the flow doing
the first place and route, parsing it to Xilinx and finalising the Synthesis
itself. In order to generate the bit file, Xilinx ISE is needed.

4.5 Setting up the board and generating a

trace

With the bitfile created in section 4.4 on the FPGA board the work is not
done. The board needs an OS1 and an algorithm pack. This algorithm pack
needs to be set up to run with a microphone and wireless as input. The
reason for this is to make a trace in which the DSP can fetch data from the
AD2 converter, this is done as interrupt. After fetching the data the DSP has
to process it. A streamer (see section 1.5) is set up to stream music, which
will generate interrupt where the OS has to handle the data coming in from
the wireless radio.

This setup is going to run like a fully functional hearing aid, and as such
it will generate a trace which will be similar to what happens in a hearing
aid, used in an every day situation.

1Operating System
2Analog-to-digital

32 CHAPTER 4. INPUT DATA

In order to create and save a trace the following steps are needed.

1. Connect the logic analyser to the FPGA board, see figure 4.2. A is the
data signal and B is the clock (clkInt i) which is used as sample clock
in the logic analyser.

2. Start the logic analyser.

3. Boot the FPGA board.

4. Set-up of the algorithm pack to process the data. This should only be
done the first time, or when new settings are wanted. For this a GN
ReSound program was used. The set-up is shown in appendix A.

5. Start streaming data via ReSound UniteTMTV.

6. Reset the FPGA board.

7. Pair the FPGA board with the ReSound UniteTMTV. Think of this a
pairing two blue-tooth devises.

8. Save a set of sample.

The set-up of the algorithm was chosen in cooperation with the Chief Sys-
tem Architect at GN ReSound. Four set of samples was make, two with
the algorithm running and wireless streaming and two with out the wireless
streaming.

An overview of a trace can be seen in figure 4.3, and as can be seen the
DSP is in halt (active high) for a significant part of the time. While the DSP

Figure 4.3: Trace showing halt

are in halt, there are time when it runs. This is doing short interrupts, like
fetching data from the AD converter, which is an one instruction interrupt.

4.5. SETTING UP THE BOARD AND GENERATING A TRACE 33

Figure 4.4: Trace showing one instruction interrupt

As shown in figure 4.4, the execution of this one instruction costs six memory
accesses, in order to fill the pipeline.

In order to make the model run faster, and because the model’s interface
was designed before the trace file was created. The trace file is cleaned for
data where there is not any memory access and data which ain’t necessary
for the model.

This is done in a Perl script, it could be done in the model. The reason
for cleaning it in advance is that reading in ascii text files into the model
takes time. This is only a issue under development, as the model was exe-
cuted more then ones.

Listing 4.2: Raw trace file

1 ”SampleNumber ” ,” addr ” ,” Time ” ,” pmIn ” ,” enable ” ,”wr ” ,” reset_n1 ” ,”
cHalt ” ,” clkDsp ” ,” clkInt_i”

2 −523437 ,1510 ,−32.714952 ms , 00004 FC0 , 1 , 0 , 1 , 1 , 1 , 0
3 −523436 ,0023 ,−32.714892 ms , 8 A0200D0 , 1 , 0 , 1 , 1 , 1 , 0
4 −523435 ,1510 ,−32.714828 ms , 00004 FC0 , 1 , 0 , 1 , 1 , 1 , 0
5 −523434 ,1510 ,−32.714768 ms , 00004 FC0 , 1 , 0 , 1 , 1 , 1 , 0
6 −523433 ,1510 ,−32.714704 ms , 00004 FC0 , 1 , 0 , 1 , 1 , 0 , 0
7 −523432 ,1510 ,−32.714640 ms , 00004 FC0 , 1 , 0 , 1 , 1 , 1 , 0
8 −523431 ,1510 ,−32.714580 ms , 00004 FC0 , 1 , 0 , 1 , 1 , 1 , 0
9 −523430 ,1510 ,−32.714516 ms , 00004 FC0 , 1 , 0 , 1 , 1 , 1 , 0

10 −523429 ,0024 ,−32.714452 ms , AA8200D4 , 1 , 0 , 1 , 1 , 1 , 0
11 −523428 ,1510 ,−32.714392 ms , 00004 FC0 , 1 , 0 , 1 , 1 , 1 , 0

Listing 4.2 shows the raw data from the logic analyser and listing 4.3 shows
the trace file after cleaning it. The cleaned file only contains data when there
is a memory access.

34 CHAPTER 4. INPUT DATA

Listing 4.3: Formatted trace file

1 address ; data ; wr ; en
2 00001510;00004 FC0 ; 0 ; 1
3 00000023;8 A0200D0 ; 0 ; 1
4 00001510;00004 FC0 ; 0 ; 1
5 00001510;00004 FC0 ; 0 ; 1
6 00001510;00004 FC0 ; 0 ; 1
7 00001510;00004 FC0 ; 0 ; 1
8 00001510;00004 FC0 ; 0 ; 1
9 00000024; AA8200D4 ; 0 ; 1

10 00001510;00004 FC0 ; 0 ; 1

4.6 Sub conclusion

When the author started this project, the expectation was not that this
part should result in major issues, but it turned out to be a confirmation
that Murphy’s law still is in existence, ”Anything that can go wrong will
go wrong”. The challenges have been countless including for example user
rights, tool problems and issues in the version of the DSP the author was
meant to use.

While this did set back the project, it gave the author a change to get fa-
miliar whit the design of the DSP, the tools used with in GN ReSound and
debugging.

Two different traces was saved, both with the same algorithm setting, one
where the hearing aid receives and processed wireless audio and one whit out
any wireless connection. Through out this thesis if nothing else is mentioned
it is the trace with a wireless connection which is used.

It was planed to create traces from the data memoirs. But do to the com-
plication in getting the FPGA flow to work, only traces from the program
memory was made.

4.6. SUB CONCLUSION 35

Chapter 5

Model of the memory system

In this chapter a model to calculate the power used in the memory system
will be presented. This model has been implemented in C++. It is possible
to measure, or rather count, the required access requests to both the main
memory and the cache which in return can be used to calculate the power of
the system. As input the model will take a trace file, of the format shown in
listing 4.3.

The model should act as the system cycle to cycle, or as the is not pipelined
it is going to act as the system, memory access to memory access.

Software model

AGU XMEM

AGU

F
e
tc
hProgram

memory

AGU

X
Y
/A
B

XMEM

AGU

A

B

C

Figure 5.1: Memory model used in the C++ model

The model the model can be used on both the program and data memories.
As mentioned in chapter 3.1, they are the same in context of memory ac-
cesses. Figure 5.1 A: Shows the program memory, B: The data memory and
C: The cache and memory system, from a software perspective.

36

5.1. OVERVIEW AND STRUCTURE OF THE MODEL 37

In this chapter result from the model showing the power used is presented, the
cost function for calculation the power used is not presented on till chapter
6.0.1.

5.1 Overview and structure of the model

On a top level the model is simple. A block diagram is shown in figure
5.2, main is block from where all action is initiated. Main will initialize a
cache controller, either with no cache, a cache or a loop cache. These cache
controller will then initialize the RAM, ROM and cache needed, which the
initialize what they need and ect.

Figure 5.2: Block diagram of the model

A class diagram for the cache is shown in the appendix figure B.2, as can be
seen the cache initialize a object of the class Ram, a object of the class Rom,
and a 2 dimensional array of object of the class CacheLine.

38 CHAPTER 5. MODEL OF THE MEMORY SYSTEM

A flow chart of mains functionality is shown in figure 5.3.

Start

Read file
Trace file

Cache

Get and

print

data

No cache

Get and

print

data

Statistics
print

data

Last cache No

Loopcache v1

Get and

print

data

Last cache No

Yes

Loopcache v2

Get and

print

data

Last cache No

Yes

End

Yes

Figure 5.3: Simple flow chart of the model

In order to explain what happens in main, a step by step explanation of a
part of the flow chart is given below.

1. Read in a trace file, this is saved in a array.

2. Analyse the trace, size most used address etc. The print out the result.

3. Initialize a memory system with out a cache and run the trace through
it, this is done as to have a reference.

4. Initialize a memory system with a cache of some configuration and run
the trace through it.

5. Format and print data from this run.

6. If there are more configuration of caches which need to be runned return
to 4.

7. 4,5,6 for both loop caches

8. End.

5.2. STATISTICS DONE ON THE INPUT FILE 39

The above explain the function of main and the flow through the model. In
the following sections, each sub part (like statistics) will be explained.

5.2 Statistics done on the input file

When the trace file is read in, the model pulls out some statistics. The num-
bers presented in this section are from a trace file collected when streaming
sound to the hearing aid.

• Trace file size: 715816. Number of memory accesses.

• Unik address: 6744. This is what in chapter 2.2 is referred to as
Compulsory miss.

• Read: 715730. Number of memory read.

• Write: 86. Number of memory writes.

• Do instructions: 7008. Number of instructions in the whole trace
file, which is a Do instruction, remember chapter 3.4.

• Individual Do instructions: 649. Number of different Do instruc-
tions.

• Do instructions count: 471979. Number of instructions in the Do
loop.

• Number of address under 0x400: 21466. These map to the pe-
ripheral, but the model handle them as all other RAM accesses.

• Number of address under 0x8000: 248067. Access to RAM.

Some of these numbers are more interesting then others. For example the
number of writes being so low should not come as a surprise, since the trace
file is from the program memory. That more than 65% of the instructions is
inside a loop is an information which is useful. This is in fact what in chapter
2.3 was called Spatial Locality.

40 CHAPTER 5. MODEL OF THE MEMORY SYSTEM

Figure 5.4 shows the most used addresses, what can be seen in the figure is
that the most used address is at address H’1510. The instructions at that
address is in fact a nop1, and it is the nop shown in figure 4.4.

4000

6000

8000

10000

12000

Most used addresses

0

2000

4000

Figure 5.4: Addresses most used

In figure 5.5 is shown the distribution of number of Do loop instructions over
the size of the loops. This is a dynamic distribution, as the same Do loop in-
structions may be repeated several times. As expected there are a major part
of the instructions, with a small size. These loops are for the major part filter.

1500

2000

2500

3000

Do inst size

0

500

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.5: Number of Do instructions with a given size

1A instructions not doing any thing

5.3. MODEL OF THE MEMORY 41

RAM

ROMROM

(a) RAM vs. ROM accesses

Loop

inst.

Other Other

inst.

(b) Inst. in a loop vs. not in a loop

Figure 5.6

Figure 5.6 (a) shows the division between RAM and ROM memory accesses.
The major part of the memory access is in the ROM and as this is a trace
from program memory this was expected. The figure 5.6 (b) shows the
division between instructions in a loop and those not in a loop, and here
it is interesting that more than 2

3
of all instructions fetched is in a loop.

5.3 Model of the memory

I order for the cost function, coming in chapter 6.0.1, to be realistic, the
memory access has to access the memory it was meant for. In chapter 3
figure 3.3 is shown that the memory space is divided into two, a RAM and
a ROM part. As these two memories are not identical in use of power they
have to be separate classes.

5.3.1 Model of the Ram and Rom

A RAM implemented in software is just an array, once the control signal is
removed. The class RAM has a function for reading and one for writing, the
control desiding if it is a read or write is in the cache controller.

The ROM is built in much the same way, with the exception of a latch,
see figure 5.2. This latch is used to save power, this is what was presented
in chapter 2.6.2.

42 CHAPTER 5. MODEL OF THE MEMORY SYSTEM

Listing 5.1: C++ ROM latch code

1 unsigned i n t Rom : : Read (unsigned i n t Address) {
2 unsigned i n t data ;
3 i f ((Address & ˜ th i s−>AddressMask) == th i s−>CurrentLineAddress

) {
4 data = line [Address & th i s−>AddressMask] ;
5 } e l s e {
6 th i s−>CurrentLineAddress = Address & ˜ th i s−>AddressMask ;
7 f o r (i n t i=0; i<8; i++){
8 th i s−>line [i] = th i s−>array [th i s−>CurrentLineAddress + i] ;
9 }

10 }
11 re turn data ;
12 }

The implementation of the latch can be seen in listing 5.1. In the listing line
3 there is a check if the current address falls into the address space of the
latch. If not, a new line is fetch and saved in the latch.

59%

39%

2%

RAM

ROM
59%

ROM

REG

Figure 5.7: Power for RAM vs. ROM

Shown in figure 5.7 is the power used by a system without a cache. Reg
is the power used by the register PC and Fetch in figure 3.4. The thing to
notice is that even though the RAM only stands for 1

3
of the memory access,

it uses 2
3

of the power. The cost function for the power will be presented in
chapter 6.

5.4 Model of the caches

In the model there are 2 different cache types, each in different configuration.
There is a cache like the one presented in chapter 2.3, and two different loop
cache, designed with inspiration from chapter 2.5.2.

5.4. MODEL OF THE CACHES 43

5.4.1 Model of a cache

In order to test a variety of configurations, remember in chapter 2.3.2, the
cache memory need to be configurable in all the possible combinations. This
is done by having a class for the cache line, shown in figure 5.8 and listing
5.2.

Figure 5.8: Block diagram for Class CacheLine

Listing 5.2: Code for Class CacheLine

1 unsigned i n t Tag ;
2 unsigned i n t ∗ Data ;
3 bool Valid ;

Creating a two-dimensional array of an object, of the class CacheLine, results
in a cache with one dimension for the set, one dimension for the cache line
and in each cache line a tag, a valid bit and a block (array) of data word.
This is the data part of the cache.

The cache controller is implemented as the class Cache, for which a sim-
ple class diagram is shown in figure B.2.This class instanciered one object of
the class RAM, one of the class ROM and a two-dimensional array of class
CacheLine. The function of the class is described as a flow chart shown in
figure B.1 in the appendix.

Listing 5.3: C++ code for tag lookup

1 pair<bool , unsigned int> Cache : : TagLookup (unsigned i n t Index ,
unsigned i n t Tag) {

2 pair<bool , unsigned int> hit (f a l s e , 0 x0) ;
3 f o r (unsigned i n t i=0;i<th i s−>set ; i++){
4 i f ((array [i] [Index] . Valid) && (array [i] [Index] . Tag == Tag)

) {
5 hit . first = true ;
6 hit . second = i ;
7 th i s−>CacheHit++;
8 }
9 }

10 re turn hit ;
11 }

44 CHAPTER 5. MODEL OF THE MEMORY SYSTEM

The flow chart in figure B.1 has been implemented as a nest of if else state-
ment, with call to function like the one shown in listing 5.3.

40

50

60

70

60-70

50-60

40-50

1

2

4

8

0

10

20

30

40

1
2

4
8

16
32

S
e
t
s

H
it

Lines

30-40

20-30

10-20

0-10

Figure 5.9: Hit rate as function of cache lines and sets

In figure 5.9 is shown the hit rate in % as function of the number of cache
lines and the number of sets. One thing to observe here is that the gain from
going from a direct mapped cache to a full associative cache is not that big.

Think back to The Three C’s in chapter 2.2, the difference from the full
associative cache to the direct mapped cache is Conflict miss. The gain in

Cache Compulsory Capacity Conflict

Direct mapped 6744 443739 12458
Full associative 6744 443739 0

Table 5.1: The Three C’s in a 8 word cache

a Full associative being 12458
715816

= 1, 74% more hits, this do not seam high
enough, when compared to having to do 8 compare instead of 1 for each
memory access.

5.4. MODEL OF THE CACHES 45

Cache Write Policies

For the program memory this is not so important, as the amount of writes
are limited (86 out of 715816). The model should be able to take traces from
the data memory as well, and in that case it becomes important. From a
power saving point the best choice would be a Write-Back Cache, but it is not
possible in this system as a Write-Back Cache can end up stalling memory
accesses while writing back to main memory. A Write-Through Cache on the
other hand will not stall memory accesses, in this kind of cache the cache can
be updated or invalidated. In the model it is always updated, which makes
the valid bit the model have useless, as soon as the cache has been filled. The
author knows this but has chosen to leave the valid bit, just in case there
would be time to add a invaliding cache function at some point.

Cache replacement policy

When having more than 1 set in a cache leads to the question, what to replace
when writing new data to the cache. There are a lot of replacement policies,
what they all try to do is to predict what data is needed in the future.

• Random: As the name suggests, this policy chooses a set random.

• Least Recently Used: Here there is kept track of when an item is
used, leading to complex control logic as number of set goes up.

• Round-robin: Choose item i now and i+1 next time.

• Random Round-robin: As a Round-robin but is not updated when
used but at a random time.

These are the four cache replacement policies implemented in the model.

46 CHAPTER 5. MODEL OF THE MEMORY SYSTEM

33

34

35

36

37

38

39

%
 H

it

30

31

32

Least

Recently

Used

Random Round-robin Random

Round-robin

Figure 5.10: Hit as function of replacement policy in a 4 line 2 way cache

Figure 5.10 shows how the hit rate changes in a cache as a result of changing
the replacement policy. One thing to notice is that both Random Round-
robin and Random is better than the Least Recently Used, all though not
by much. This means that the access pattern of the used trace file, is not in
a way where throwing out old data is necessarily the best choice.

5.4.2 Model of a loop cache

In chapter 5.2 was shown that if the code is looked at dynamic is has a lot
of instructions which are in a loop. This should make a loop cache a good
solution. There are some aspects which need to be clarified before designing
a loop cache. Se chapter 2.5.2 or [12.

How to locate a loop?

The instruction set hold an instruction for a loop, see 3.4. By looking for
the opcode for this instruction in the data word the start of a loop can be
located. The instruction holds the last address of the loop as well, giving the
start, end and by subtraction the size.

5.4. MODEL OF THE CACHES 47

How to locate change in the instructions flow?

Cof2 is possible since jump, call ect. are allowed with in a loop, this mean that
some way to detect if the address coming from the AGU still is in the loop
is needed. There are several solutions for this. For example check all data
words for opcode equal to all instruction capable of jumping out of the loop.
In this case some link to the link register holding the return address is needed.
In this thesis the cof has been chosen as Startadr ≥ Currentadr ≥ Endadr,
meaning if this is true there is no change of control flow.

What to do in case of cof?

When leaving the loop, all data will be fetched from main memory, until
returning to the loop. If the cof resulting in leaving the loop is a interrupt
with a reasonable size and it includes loop, it may be preferable to discard
what is in the loop cache and start looking for a new loop.

• Counter: Here a counter is used, counting the number of instructions
fetched when outside the loop. If it reaches the chosen value, the loop
cache resets and starts looking for a Do loop.

• Do loop: When there is a cof and data is fetched from addresses
outside the loop, the loop cache looks for Do instructions in these data
words. If there is a Do instruction it discards what it has and starts
loading the loop cache again.

Loop size vs. loop cache size

If a loop can not fix with in the given size of the loop cache, two things can
be done.

First - only a part of the loop is saved and each time the part is accessed,
the data word is fetched from the loop cache. The rest of the time the data
word is fetched from the main memory. This means at least some part of all
loops is cased, but the cost is added control.

Second - As the start and end of the loop is available, the loop cache can just
discard loops too big to fit in the loop cache, this is the approach used in
this thesis. If the loop is bigger than the cache, it is posibel to have a part of
the loop in the cache, down side for this is more control logic. The approach

2Change of control flow

48 CHAPTER 5. MODEL OF THE MEMORY SYSTEM

of discard loop bigger than the cache was chosen, because the major part of
the loops are small, 8 words or less as seen in figure 5.5.

Version 1, Counter

This version of a loop cache uses a counter to reset which is shown in the
flow chart in figure B.3 which do to size is in the appendix. As the cache
presented in chapter 5.4.1 the flow chart has been implemented as nested if
else statements. The code for resetting the loop cache is shown in listing 5.4

Listing 5.4: Reset cache in counter version

1 i f (Address . address == th i s−>End | | th i s−>stop > 31) {
2 th i s−>CacheOn = f a l s e ;
3 th i s−>CacheLoad = f a l s e ;
4 }

In listing 5.5 is shown the code for finding a Do instruction, once a Do
instruction is found, the end address is extracted and the start address and
loop size is calculated.

Listing 5.5: Finding a Do instruction

1 data = Read (Address . address) ;
2 unsigned i n t inst = data & 0xC03E0000 ;
3 i f (inst == th i s−>DoLoopInst) {
4 th i s−>Last = data & 0x0000FFFF ;
5 th i s−>Start = Address . address + 1 ;
6 unsigned i n t size = th i s−>Last − th i s−>Start ;
7 i f (size <= th i s−>CacheSize+1){
8 th i s−>CacheLoad = true ;
9 }

10 }

The cache is only set in load state, in the case where the entire loop fits in
cache.

Version 2, Do instruction

Flow chart is in the appendix in figure B.4. Most of the functionality, and
thereby the code, is the same as for the version 1 loop cache. The place
where this differs is how the cache is reset. This is identical to listing 5.5
with the addition this− > CacheOn = false; in the case where a new loop
fitting in the cache is found.

5.5. SUB CONCLUSION 49

20

30

40

50

60

%
 H

it

5 bit counter

Do loop

0

10

2 4 8 16 32 64

Cache size

Do loop

Figure 5.11: Hit as function of size in loop caches

Shown in figure 5.11 is a comparison of the version of loop caches imple-
mented.

5.5 Sub conclusion

The result shown in table 5.2, leads to the conclusion that it is not necessarily
better to have more ways if the total cache size remains the same.

Lines Direct 2-way 4-way 8-way 16-way

1 2 16 26 38 43
2 11 26 38 46 52
4 21 38 47 55 59
8 36 47 59 63 65
16 45 60 66 68 69
32 60 67 69 70 71

Table 5.2: Hit rates for different configurations of a cache using Random
Round-robin replacement policy

In table 5.3 is shown the hit rates for the two loop caches. By comparing a
16 word direct mapped cache with a loop cache of same size (45% vs. 37%
or 35%), it is easy to see that a cache gets hits on data which are not in a
Do loop. This is for example the nops show in figure 4.4.

50 CHAPTER 5. MODEL OF THE MEMORY SYSTEM

Size Counter Do inst

2 16 14
4 20 18
8 32 31
16 37 35
32 46 47
64 56 57

Table 5.3: Hit rates for the two loop caches

Although a high hit rate is desirable, a higher hit rate will in most case lead
to a higher power use. In the next chapter the power cost function will be
presented and this will become obvious.

5.5. SUB CONCLUSION 51

Chapter 6

Power cost function in the
model

In this chapter the power cost function will be presented along the number
used in the model. At the end of the chapter results from the model including
the cost function will be presented.

6.0.1 Cost function

The cost function is divided into two part, one for the caches and one for
RAM and ROM.

Caches

The cost function only covers the dynamic power dissipation. The energy for
per operation is shown in equation 6.1.

Eop =

∫
top

vi dt [J] (6.1)

This is given from the technology vendor for each component in different
strengths, component meaning gate, flip flop, buffer, etc. This will be ex-
plained in chapter 6.0.2, for now it is enough to know that this data is
available.
These numbers are used to calculate power used in a memory access, equation
6.3 shows the fundamental idea.

Ema =
∑

E for all components used in this memory access (6.2)

ma is memory access, Ema is the energy per memory access. In the flow
chart for a cache shown in figure B.1 each decision or process is in hardware

52

53

done by use of some of the components. For example the sub part of the flow
chart, which is shown in figure 6.1. The way to deside if there is a cache hit
or not is by comparing the tag of the current address with the tag saved at
the index of the current address.

Figure 6.1: Tag compare in the flow chart

The address is 16 bit wide, and in a 4 line cache the index is 2 bit, leaving
14 bit to the tag. To do this compare 14 XOR and 14 OR is used, as shown
in figure 6.2.

New tag

Saved tag

Hit

………..………..

………..

Figure 6.2: Tag compare as gate

Ecompare = a ∗
∑

(14 ∗ EXOR + 14 ∗ EOR) (6.3)

Where a is an activity factor. This is of course only a small part of a memory
access. For example before doing the compare the saved tag has to be read
from the memory array, costing switching activity on the mux, think back to
how the memory array is designed, figure 3.5.

54 CHAPTER 6. POWER COST FUNCTION IN THE MODEL

In chapter 5 it was presented that the model takes one memory access at a
time and then the next memory access. How to calculate the energy for one
memory access was just presented, to get the entire energy, all the separate
memory accesses energy only needs to be sum op. This is shown in equation
6.4.

Etotal =
∑

i=0−>Trace size

Ema(i) (6.4)

Etotal is the energy used for running the entire trace file, Trace size is the
number of memory access in the chosen trace file and Ema is the energy for
the given memory access. This is the number the model has as output.

The tool used to do the power simulation on the VHDL caches return the
result as watt, the next part of this section will explain how to compare this
number. To get the average energy used per memory access Eav−ma, equation
6.5 is used.

Eav−ma =
Etotal

no.ofma
(6.5)

With the average energy per memory access and one memory access per
clock, equation 6.6 is used for that.

Pf = Eav−ma ∗ f [W] (6.6)

RAM and ROM

The cost function for the RAM and ROM are the same as for the caches.
The difference is that the RAM in just one component and the ROM is two,
one for hitting the latch and one when missing it, think of figure 5.2. The
total energy used for the RAM is expressed in equation 6.7, and for the ROM
in equation 6.8.

ERAM total = Eone RAM access ∗ no.of RAM access (6.7)

EROM total = [EROM latch ∗ no.of ROM latch hit]

+[EROM ∗ no.of ROM latch miss]
(6.8)

This equation is possible because the model, as explained in chapter 5 keeps
track of memory accesses.

55

6.0.2 Data from technology vendor

In chapter 6.0.1 the function for calculation of the energy cost for a single
memory access to the cost for a whole trace file was presented. These equa-
tions were based on, that the value from equation 6.1 was available.
In listing 6.1 is shown a part of the data sheet from the RAM compiler used
by GN ReSound.

Listing 6.1: From RAM compiler data sheet, 2048x32 CM=8 Bank=4

1 #===================+=============+=============+=============#
2 # Process condition | Worst | Typical | Best #
3 #−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−#
4 # Description | RD | WR | RD | WR | RD | WR #
5 #===================+=============+=============+=============#
6 # Power Dissipation | 2 . 6 5 2 | 2 . 7 0 1 | 3 . 4 6 4 | 3 . 4 9 8 | 4 . 4 4 4 | 4.467#
7 # (uW/MHz) | | | | | | #
8 #−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−#

The typical is the data used in the model, 3.464 µW
MHz

, this is Eop and what is
needed in the model is Epc or in the terminology of this thesis Ema. Using
equation 6.5 result in the energy use per memory access Eone RAM access.

Eone RAM access =
Eop

no.ofma
(6.9)

Here it is important to notice that the data for the RAM is given at the same
volts as the hearing aid is runned at.

Et =

∫ t

0

vi dt =
1

2
CLV

2
DD (6.10)

The components used in the caches, flip flop gate, ect. has like the RAM its
power dissipation given in µW

MHz
, a example is shown in figure 6.1. While the

RAM data was given for 0,72 volt, this data is for 1,2 volts, which means
they have to be adjusted. In equation 6.11 is shown that the energy scale is
quadratic with the voltage.

56 CHAPTER 6. POWER COST FUNCTION IN THE MODEL

Process Technology AND2
TSMC CL013G-FSG(HVT)

AC power µW
MHz

Pin X1 X2 X4 X6 X8 X12
A 0,0059 0,0082 0,0136 0,0192 0,0245 0,0365
B 0,0068 0,0094 0,0162 0,1221 0,0281 0,0431

Table 6.1: Data sheet for AND2

Eat 0,72 =
0, 722

1, 22
∗ Eat 1,2 = 0, 36 ∗ Eat 1,2 (6.11)

All components are chosen at strength X1 as very few of them have more
then 1 or 2 input to drive, only the AND gate used in the model for local
clock gating is bigger, strength X4, as they have to drive a local clock.

The ROM is a hand built ROM and there are no data sheets, GN ReSound
informed me that it uses 100 mA for reading a new line and 10 mA when
reading from the latch. Both at 0,72 volt and 16MHz.

All the constants for energy per clock or access is in listing 6.2.

Listing 6.2: Power constants in the model

1 RomReadPower = 100 .0∗0 .72/(16∗1 e6) ;
2 RomLineReadPower = 10.0 ∗0 .72/(16∗1 e6) ;
3 RamReadPower = 3.460/1 e6 ;
4 RamWritePower = 3.460/1 e6 ;
5 DFFx1Power [] = {0 .0084∗0 .36/1 e6 , 0 .0178∗0 .36/1 e6 , 0 .0101∗0 .36/1

e6 } ;
6 MX2x1Power [] = {0 .0116∗0 .36/1 e6 , 0 .0101∗0 .36/1 e6 , 0 .0110∗0 .36/1

e6 } ;
7 XOR2x1Power [] = {0 .0066∗0 .36/1 e6 , 0 .0128∗0 .36/1 e6 } ;
8 OR2x1Power [] = {0 .007∗0 .36/1 e6 , 0 .0077∗0 .36/1 e6 } ;
9 AND2x1Power [] = {0 .0059∗0 .36/1 e6 , 0 .0068∗0 .36/1 e6 } ;

10 AND2x4Power [] = {0 .0136∗0 .36/1 e6 , 0 .0162∗0 .36/1 e6 } ;

There is one more constant which is used in the cost function and that is the
activity factor. This is a statistical number which tells how often en signal
changes. GN ReSound has a number from the DSP, this number will be used
until the power simulation of the VHDL. Activityfactor = 5%

6.1. RESULT FROM THE COST FUNCTION 57

6.0.3 Cost function implemented in the code

In chapter 6.0.1 an example of what a tag compare would look like was shown.
The same example is shown in listing 6.3 as it is implemented in the code.

Each place some is done...

Listing 6.3: Power in the code for a tag lookup

1 pair<bool , unsigned int> Cache : : TagLookup (unsigned i n t Index ,
unsigned i n t Tag) {

2 pair<bool , unsigned int> hit (f a l s e , 0 x0) ;
3 f o r (unsigned i n t i=0;i<th i s−>set ; i++){
4 i f ((array [i] [Index] . Valid) && (array [i] [Index] . Tag == Tag)

) {
5 hit . first = true ;
6 hit . second = i ;
7 th i s−>CacheHit++;
8 }
9 }

10 //Power f o r compare
11 double power = 0 ;
12 //So on a l l mux
13 power += th i s−>TagAddressSize∗MX2x1Power [0] ∗ (th i s−>lines−1) ;
14 //Data r i p p l e out
15 power += MX2x1Power [1] ∗ (th i s−>lines−1) ;
16 //Compare
17 power += th i s−>TagAddressSize ∗(XOR2x1Power [0]+ XOR2x1Power [1])+

(th i s−>TagAddressSize ∗(OR2x1Power [0]+ OR2x1Power [1])) ;
18 // a l l s e t
19 power += power∗ th i s−>set ;
20 th i s−>Power += power∗ActivityFactor ;
21 re turn hit ;
22 }

The code include the part where the saved tag is read.

6.1 Result from the cost function

In this section the result will be presented, this result is based on the energy
number before calabriting in regard to the data from the power simulation
of the VHDL. Which is done in chapter 7.

58 CHAPTER 6. POWER COST FUNCTION IN THE MODEL

Lines Direct 2-way 4-way 8-way 16-way

1 101 96 90 92 120
2 97 88 83 94 147
4 88 80 83 106 211
8 80 78 87 139 336
16 79 81 108 209 575
32 83 99 155 344 1020

Table 6.2: System energy for different configuration of a cache

Table 6.2 shows the energy of a system with different cache configuration,
normalized to a system with no cache, being 100. A part of this is shown in
figure 6.3.

105

107,5

110

107,5-110

105-107,5

92,5

95

97,5

100

102,5

105 105-107,5

102,5-105

100-102,5

97,5-100

4

77,5

80

82,5

85

87,5

90

92,5
95-97,5

92,5-95

90-92,5

87,5-90

2

75

77,5

80

1

2

87,5-90

85-87,5

82,5-85

80-82,5

4

8

80-82,5

77,5-80

75-77,5

1

16

Figure 6.3: Energy as function of cache configuration

As shown, the best solution, given the data for energy before the power
simulation of the VHDL, is some where around a cache with 8 or 16 words
as a direct mapped or 2-way associative.

6.1. RESULT FROM THE COST FUNCTION 59

90

95

100

105

110

115

Counter

Do loop

75

80

85

90

2 4 8 16 32 64 128

Do loop

Figure 6.4: Loop cache energy relative to no cache

For a loop cache the best solution is a 16 word in any of the two versions.
As they are to a great extent identical, both in design and hit rate, this does
not come as a surprise.

Chapter 7

VHDL caches

The model presented in chapter 5 returns a number for the power use of a
specific cache. But the author wants to make an examination on the preci-
sion of the model and at the same time calibrate it. For this reason a number
of caches following the timing requirement of the GN ReSound system has
be developed.

The configuration of these caches have been chosen based on what the model
returns as a good choice. These caches will then be synthesized and a back
annotation power analysis will be made.

7.1 Design of cache

Running the model with different traces, have made the author choose three
caches, there are no loop caches among the chosen. The reason being that
the author has a better feeling in regard to, how the function for the three
chosen cache will be implemented as hardware. And thereby giving a better
picture of the precision of the model.

• 4 line direct mapped.

• 8 line direct mapped.

• 4 line 2 way associativity.

Other caches could be used and result in just as good a result. The important
thing is to choose caches in the area where the best precision is desired, i.e.
around the area with the expected cache, returning the lowest power number.
The power is not going to be proportional with the size of the cache, for
several reasons, some of them are listed below.

60

7.1. DESIGN OF CACHE 61

1. The number of transistors in the cache will not double when size double.
Control logic pipeline register etc. will not doubles.

2. In a direct mapped cache there are only one tag compare, independent
of the number of cache lines.

3. Hit rate, this change with cache size, the rate of change depend on the
trace files pattern.

4. Activity is going to change from cache to cache, it is hard to predict as
it depends on the pattern of the input. Higher hit rate leads to more
activity in the part of the cache where data is read, on the other hand
lower hit rate leads to more activity in the part saving new data.

7.1.1 Diagram

The three caches selected above have to be implemented in VHDL, before
doing that a diagram has been made from the flow chart shown in chapter
5. Diagram of the caches can be divided in two groups, direct mapped and
2-way associativity.

Direct mapped

The diagram shown in figure C.1 in the appendix is based on the flow chart
in appendix figure B.1. As the flow chart is sequential and the diagram is
parallel pipeline states, it is not directly translatable. The diagram follows
the overall structure shown in figure 3.4.

Figure 7.1: Tag compare in diagram

Figure 7.1 shows the tag compare (check for cache hit) in the diagram. In
the flow chart in figure B.1 the tag compare is show as a chose named ”Cache
hit”.

62 CHAPTER 7. VHDL CACHES

(a) From diagram

Memory request

Write though

Access

type

Cache hit Cache hit

Load new line

to latch

Write data

into cache

Return data

Write data to

memory

Write

data to

cache

Done

Read Write

No
No

Yes

Rom latch

hit
Yes

No

Rom space

Yes

No

Read

data

from ram Read data

from romlatch

Return data

Yes

Read cache

(b) From flowchart

Figure 7.2: Timing diagram vs. flow chart

Figure 7.2 illustrate how the flow chart fit into the timing diagram from
chapter 3.3. Dividing the flow chart into state.

• PC: From memory request to Cache hit, both included.

• Fe: Below cache hit down to return data.

• The Fetch register: Return data.

This is a good illustration of how the sequential flow chart and the parallel
start divided diagram fit together.

2-way associativity

The flow chart is the same as for a direct mapped cache, as shown in appendix
figure B.1. This is not the case for the diagram which can be found in
appendix figure C.2, although the overall structure is the same, there are
two tag memories and two data memories. This makes for a more complex

7.1. DESIGN OF CACHE 63

control system. For example a hit in tag 0 should lead to a read from data 0
and the mux has to be aligned accordingly. The VHDL codes are not going
to be explained in detail. Part of the control is shown in figure 7.3, the mux is

Figure 7.3: Controlling which data array to read from in a 2 way cache

used to choose between data 0 and data 1. the signals Hit 0 pc and Hit 1 pc
is use to lower power by not changing control signals on the mux in the data
array not used, think back to figure 3.5.

Figure 7.4: Replacement police for 2-way cache

At a miss a decision has to be made, in regard to which way to overwrite.
Here the semi random round robin used in the model has been implemented,
the function and use of this replacement policy is shown in figure 7.4. When
ever there is a hit in any of the ways the value of random is inverted The
reason for choosing this replacement police is that is gives a good result and
that it is easy to implement in VHDL.

7.1.2 Code

The VHDL code was developed with reference to diagram seen in chapter
7.1.1. In this section the 4 line direct mapped cache will be described on a
block level. The naming should be some what self explaining, as an example

64 CHAPTER 7. VHDL CACHES

the signal addr mem fe o in the top 4l dm is the address output from the
cache to the memory in the Fe state.

Figure 7.5: VHDL top module

Figure 7.5 shows the top module of the cache, with its input and output. Hit
is only to be used by the test-bench, in order to keep track of hits. All the
renaming output but data de o is input to the memory. The top component
instantiate a tag component and a data component. The code for this module
is shown in listing C.1

Figure 7.6: VHDL data module

The data component shown in figure 7.6 is a 4x32 bit version of the memory
array presented in chapter 3.5. The code can be found in listing C.2.

Figure 7.7: VHDL tag module

Beside the fact the size is 4x14 bit instead of 4x32 bit the tag component
is the same with the addition of a valid bit for which the code is shown in

7.2. TEST-BENCH AND VERIFICATION 65

listing C.3. Whether the valid bit is necessary can be discussed. It is only
used from reset until the cache has been filled the first time.

7.2 Test-bench and verification

In order to test the VHDL code and to make an activity file for the back-
annotated power analysis, a test-bench has been designed. As the VHDL
is developed to analyse and calibrate the precision of model, then the test-
bench needs to take the same input, the trace presented in chapter 4. The
format of this is shown in listing 7.1.

Listing 7.1: Input format

1 address ; data ; wr ; en
2 00001510;00004 FC0 ; 0 ; 1

A blockdiagram of the test-bench including the cache is in figure 7.8. The
test-bench will read one line at a time, from the file. Each line holds what is
needed to decide if it is a read or write memory access, see listing 7.1 line 2.

Figure 7.8: VHDL testbench block diagram

This test-bench does not instantiate any memory, since the data needed in all
cycles is in the line from the input file, the author chose to let the test-bench
act as memory. The numbered arrow is the input and output to and from
the cache, the unnumbered is from the input file.

• Arrow 1: This is the input needed for a memory access, an address,
a write signal, a enable and in the case the memory access is a write
a data word. With out having the exact time for when the address
generation unit is done, the author and a couple of GN ReSounds IC
designer agreed that half a clock cycle, is more then enough.

66 CHAPTER 7. VHDL CACHES

• Arrow 2: If the cache has a miss on a read, it needs to access the
memory. The memory address, write signal and enable signal is then
used by the test-bench to control if the memory access is correct. In
case of a write, the data is forwarded as well.

• Arrow 3: Here the data is returned in case of a successful memory
read.

• Arrow 4: If the memory access at arrow 1 was a read then the data is
returned here, either from memory or cache depending on hit or miss.

The memory access handled in the test-bench can be seen in listing 7.2, as
shown the process keeps track of number of memory read and write.

Listing 7.2: Memory access in test-bench

1 mem_access : p ro c e s s (clk)
2 v a r i a b l e read_cnt : integer := 0 ;
3 v a r i a b l e write_cnt : integer := 0 ;
4 begin
5 i f (falling_edge (clk)) then
6 i f addr_fe = addr_mem_fe and en_mem_fe = ’1 ’ and start =

’1 ’ then
7 i f we_mem_fe = ’0 ’ then
8 read_cnt := read_cnt + 1 ;
9 mem_read_cnt <= read_cnt ;

10 data_mem_fe_o <= data_fe ;
11 e l s i f we_mem_fe = ’1 ’ then
12 write_cnt := write_cnt + 1 ;
13 mem_write_cnt <= write_cnt ;
14 end i f ;
15 end i f ;
16 end i f ;
17 end proce s s ;

Whit a trace file on 500.000 or more lines. And a system where the end state
of the device under test (here the cache), does not tell anything about the
correctness of the system, there is a need for the test-bench to keep track of
this. For this the author has chosen some of the parameters which the model
also keeps track of.

• Trace size: Number of inputs.

• Cache hit: Number of hit in the cache, the signal hit coming from the
cache is used here.

7.2. TEST-BENCH AND VERIFICATION 67

• Mem read: Number of memory read.

• Mem write: Number of memory write.

• Wrong data: Number of times the cache have returned a wrong word.

This makes for an easy comparison between the model and the VHDL. By
it self it is useful, as this Tracesize = Cachehit + Memread + Memwrite
should be true. And of course there should not be any wrong data.

During development much simpler trace files was used, with patterns for
which the author easily could predict the behaviour. These will not be pre-
sented in this thesis.

Verifying that the code works like intended

During development small predictable input patterns were used, this was as
to make debugging of the VHDL easy, the debugging was done in modelsim.

2648 2644 2645 2646 2647 2648

0 1 2 3 0

0992 0991 0992

0992 0991 0992

2648 2644 2645 2646 2647 2648

3 1 2 3

0

101300 ns 101350 ns 101400 ns 101450 ns 101500 ns 101550 ns

clk

addr_pc_i 2648 2644 2645 2646 2647 2648

index_pc_s 0 1 2 3 0

tag_pc_s 0992 0991 0992

tag_c_pc_s 0992 0991 0992

tag_cmp_pc_s

tag_valid_pc_s

hit_pc_s

addr_fe_s 2648 2644 2645 2646 2647 2648

hit_fe_s

index_hit_fe_s 3 1 2 3

index_miss_fe_s 0

Entity:new_system_tb Architecture:testbench Date: Mon Feb 06 09:09:15 Rom, normaltid 2012 Row: 1 Page: 1

Figure 7.9: Waveform of a miss and a hit

Figure 7.9 shows cache miss followed by a cache hit. Just before time 101310
ns at the falling edge of clk the address is ready. Here the address comes from
the test-bench, if it was in the real system it would come from the address
generation unit. Address H’2644 has a tag of H’0991 and an index of H’00,
at address H’00 in the cache is stored H’0992 which means that this is a
cache miss and the index is clocked to index miss fe s. At time 101375 ns

68 CHAPTER 7. VHDL CACHES

the address is H’2645, which is a tag of H’0991 and an index of 1, address 1
in the cache store H’0991 so this is a hit.

As mentioned in last section, the size of the trace file and that verifying
though wave is a lengthy task. The test-bench keeps track on some of the
key parameters. Listing 7.3 shows a selected part of the output from the
model.

Listing 7.3: Selected output from model

1 Trace file size : 715816. Unik address : 6744
2 Read : 715730 Write : 86
3

4 4 : 1 : 1 155857

The read in this output relates to the trace file, i.e. without taking into
account the cache hit, the number of memory read for a 4 line direct mapped
cache is shown in equation 7.1.

715730− 155857 = 559873 (7.1)

Listing 7.4: Output from testbench using a 4 line direct mapped cache

1 # Reading file

2 # Trace size : 715816
3 # Cache hit : 155857
4 # Mem read : 559873
5 # Mem write : 86
6 # Wrong data : 0

The result from a 4 line direct mapped cache when simulated in Modelsim
is shown in listing 7.4.

Modelsim Model
Trace file 715816 715816
Cache hit 155857 155857
Memory read 559873 559873
Memory write 86 86

Table 7.1: Comparison between model and Modelsim

In table 7.1 the comparison between the simulation of the VHDL in Mod-
elsim and the result from the model is presented. As seen the numbers are

7.3. RESULT AND SUB CONCLUSION 69

identical, which shows that the VHDL and the model behaves in the same
way.

The VHDL was developed in order to analyse the precision of the power
estimates from the model. The power numbers for the VHDL was done
through power simulation at gate level. As the synthesise flow is integrated
in the GN flow, the author got some help.

The VHDL was passed to GN ReSound’s back end engineer during the syn-
thesise. After the synthesise the netlist along the sdf1 file is simulated. In
order to compare the number to the ones from the model the same trace file
has to be used. From this simulation a VCD2 dumpfile is created. This file
hold the information for each cell in the netlist, which transition it performs
at which time.

7.3 Result and sub conclusion

In order to have a starting point to compare the result to, equation 7.2 show
the power if only using a RAM and equation 7.3 show what a system with
out a cache uses according to the model.

PRAM = Ema ∗ f = 3, 464 ∗ 16 = 55, 4µW (7.2)

The numbers in equation 7.2 and 7.3 are from chapter 6.0.2.

PSystem =

(
ERAM + EROM
Trace size

)
∗ f = 31.83µW (7.3)

P4LDM =

(
E4LDM

Trace size

)
∗ f = 2.92µW (7.4)

7.3.1 Relative comparison

Listing 7.5 show the result from the power simulation. A 4 line direct mapped
cache uses 57µW and equation 7.2 shows that a memory system only con-
sisting of RAM uses 55, 4µW . This will be considered in the next section, in
this section the number will only be used relative to each other.

1Synopsys delay format file
2Value Change Dump

70 CHAPTER 7. VHDL CACHES

Listing 7.5: Numbers from power simulation

1 model leakage internal swcap total

2 −−−−−−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−− −−−−−−−−−
3 (H) top_4l_2w 1 .2 uW 54 .5 uW 19 .8 uW 75 .6 uW

4 (H) top_4l_dm 700 .8 nW 43 .7 uW 12 .6 uW 57 .0 uW

5 (H) top_8l_dm 969 .8 nW 38 .9 uW 14 .1 uW 54 .0 uW

In listing 7.5 it can be seen that the static part is a small part of the total
power uses, this means the choice not to include it in the model was right.
The ratio between the total power use is shown in table 7.10, normalized to
the power used by a 4 line direct mapped cache. This is compared to the
same number from the model.

Power
simulation

Model

4L DM 1 1
8L DM 0,947 1,37
4L 2W 1,33 1,4

1 0,947

1,33

1

1,37 1,4

Power simulation Model

4L_DM 8L_DM 4L_2W

Figure 7.10: Comparison between power simulation and model

As can been seen in the table and graph in figure 7.10, the model and the
power simulation does not follow the same trend. In the model an 8 line
direct mapped cache uses more power than a 4 line direct, this is shown in
figure 7.11.

0,60

0,70

0,80

0,90

0,10

0,20

0,30

0,40

0,50

P
o

w
e

r
 u

s
e

direct

2-way

0,00

1 2 4 8 16 32

Figure 7.11: Trend for power uses in model

With the limited data from the power simulation, it is hard to conclude
anything with certainty. But the data which is available does not follow the
same trend, as shown in figure 7.10.

7.3. RESULT AND SUB CONCLUSION 71

The model use the same activity factor for all caches, this may explain the
behavior. In table 7.2 the activity factors from the netlist simulation are
shown. Adjusting the power numbers to an activity factor of 5% may help

Activity factor
4L DM 0,1181707
8L DM 0,07682422
4L 2W 0,09580368

Table 7.2: Activity factor from VHDL caches

in explaining what causes the difference to occur.

8L DM

4L DM
=

54
0,1182

∗ 0, 05
57

0,1182
∗ 0, 05

= 1, 45 (7.5)

4L 2W

4L DM
=

75
0,096
∗ 0, 05

57
0,1182

∗ 0, 05
= 1.62 (7.6)

Equation 7.5 and 7.6 show that with same activity factor the power simula-
tion behave the same.

1,4

1,5

1,6

1,7

0,8

0,9

1

1,1

1,2

1,3

1,4

4L_DM 8L_DM 4L_2W

Power simulation

Power simulation at 5%

Model

4L_DM 8L_DM 4L_2W

Figure 7.12: Trend for power

Figure 7.12 shows the power from power simulation both with the real activ-
ity factor and when converted to a 5% activity factor. The converted graph
is a lot closer to the model, which indicates that the activity factor may be
what is causing the difference in behaver.

On a side note please note that the difference between an 8 line direct mapped
and a 4 line 2-way cache is not the same for the 5% power simulation graph

72 CHAPTER 7. VHDL CACHES

and the model. This indicates that the cost for having more ways in a cache
is too low in the model. Based on the authors feeling, this is because the
activity factor in the compare block is higher than in the rest of the cache.
The model uses the same activity factor all over, which could lead to the
behaviour seen in figure 7.12.

7.3.2 Actually numbers

Shown in table 7.13 are the numbers from the power simulation and from
the model/equation.

top 4l dm 57,0 uW
top 8l dm 54,0 uW
top 4l 2w 75,6 uW

RAM 55,4 uW
System 31,84 uW
4L DM 2,92 uW

Figure 7.13: Comparison between power simulation and model/equation

In the power simulation a 4 line direct mapped cache used more power then
a RAM did, according to the RAMs data and a simple calculation. And it
uses much more then the models 4 line direct mapped cache, nearly 20 times
more. In order to clarify why this may be so, it will help to look at the netlist
and what components the tool has used. A part of this list is in figure 7.14.
A full list for all three caches can be seen in appendix figure C.3 to C.5.

Marked with red is some of the components which in a small design like this
are questionable.

• Register: Thinking of figure C.1 there are very few register, which
need to drive more then 1 or 2 input. There are some, like the index hit fe
and index miss fe. This design have 26 X8 and 52 X4

• CLK-buffers: Using X40, X24 and X20 clock buffer seam a bit ex-
treme for this design.

• Latches: The latches is used for local clock gating, so ones again using
8 X20 seam bit extreme.

In figure 6.1 the data for an AND2 was shown, the different from a X1 to a
X12 is 0,0431

0,0068
= 6, 34. A factor 6+ when moving from a X1 to a X12, and the

synthesis tools choosing components with a high X may explain the extrema
power used by these small caches.

7.3. RESULT AND SUB CONCLUSION 73

M
o
d
u
le

a
fc
e
ll
s

R
e
g
is
te
rs

B
u
ff
e
rs

C
LK
-b
u
ff
e
rs

S
im

p
le

C
o
m
p
le
x

C
LK
-g
a
te
s

La
tc
h
e
s

top_4l_dm 1019 274 465 9 47 165 33 16

'L' 0 14 0 27 122 0 0

'1' 195 302 0 6 38 0 0

'2' 1 125 0 6 4 33 0

'3' 0 5 0 3 0 0 2

'4' 52 7 1 2 1 0 2

'5' 0 4 0 0 0 0 0

'6' 0 2 0 0 0 0 1

'8' 26 0 0 3 0 0 1

'10' 0 4 0 0 0 0 0

'12' 0 0 0 0 0 0 2

'14' 0 0 0 0 0 0 0

'16' 0 1 0 0 0 0 0

'18' 0 0 0 0 0 0 0

'20' 0 1 4 0 0 0 8

'24' 0 0 3 0 0 0 0

'32' 0 0 0 0 0 0 0

'40' 0 0 1 0 0 0 0

Figure 7.14: Components in a 4 line direct mapped cache

At the moment of writing this, the guy how helped with the power simulation
have a open support case with the EDA3 tool vendor. He has not be able to
get the tool to stop using what seam like oversized components.

3Electronic design automation

Chapter 8

Calibrating the model and the
final result

In this chapter the result from the model build in 5 and the result from the
power simulation of the VHDL from chapter 7, was supposed to be used to
calibrate the model making it more precise. After the calibration the end
result from the model would be presented.

As shown and explained in chapter 7 the result from the power simulation is
for now not useable.

8.1 Calibration of the model

As the result from the power simulation was useless there real are nothing to
calibrate with. The only thing which can be calibrate is the cost for doing a
tag compare, as it turned out it is not high enough. This seam reasonable,
an activity factor of 5% is to low.

In figure 8.1 is shown the gate used to do a compare, the input will change
each clock cycle. But new tag arrives before saved tag, meaning that the
XOR gate can change output as a function of new tag and the saved tag
from last clock cycle. When the saved tag from this clock cycle then arrives
the output may change again. This behaver will ripple though the OR gates.
With a tag of 12 bit and tag being two sequential addresses, it will still result
in two toggle on 6 output port.

The result from the power simulation show that the activity factor for the
caches varies enough to make the result from a model using a fixed activity
factor to inaccurate. There for no calibrating of the model will be done.

74

8.2. RESULT 75

New tag

Saved tag

Hit

………..………..

………..

Figure 8.1: Gate to do a compare

8.2 Result

There are still result worth showing. All result presented is from a model
which have not been calibrated. This mean that they will show a trend, but
that the absolute number probably are not correct.

8.2.1 Stream vs. not stream

In chapter 4 was stated that two different trace file was created, one where
the hearing aid received wireless stream audio and one where it did not. The
non streaming trace file have not bee used until now.

In loop

66%

Not in loop

34%

(a) Streaming

In loop

68%

Not in loop

32%

(b) Not streaming

Figure 8.2: Instruction divided into loop and not loop

Figure 8.2 show the division of instruction in those in loop and those not in

76CHAPTER 8. CALIBRATING THEMODEL AND THE FINAL RESULT

loop. As can be seen, there are a bit more instruction in loops, in the not
streaming trace file. This make sense since the streaming trace file have a
lot big interrupts, fetching data from the wireless interface.

Stream

No stream

Figure 8.3: Relative amount of loops in different sizes, with and with out
streaming

Figure 8.3 show the same trend as figure 8.2. That when the hearing aid
handle wireless communication, the relative amount of loops is lower.

50

60

70

no-stream

10

20

30

40

no-stream

stream

2-way, no-stream

2-way, stream

4-way, no-stream

4-way, stream

0

10

1 2 4 8 16 32

Figure 8.4: Hit rate as function of cache size and streaming being on or off

In figure 8.4 can be seen two thing, first - that the hit rate do not vary much
as function a numbers of ways, long as the total cache remain the same.
Second - the non streaming trace file result in higher hit rate all over. As

8.2. RESULT 77

the non streaming trace file contain relative more loops, it is only logic that
it should give a higher hit rate.

8.2.2 Presentation of the result

In this section all data is from the streaming trace file.

1

1,2

1,4

40

50

60

70

P
o

w
e

r
u

se
d

 i
n

 m
e

m
o

ry
s

H
it

 r
a

te 1-way

0,4

0,6

0,8

1

0

10

20

30

40

1 2 4 8 16 32

P
o

w
e

r
u

se
d

 i
n

 m
e

m
o

ry
s

H
it

 r
a

te 1-way

2-way

Count loop

No cache

1 2 4 8 16 32

Cache lines

Figure 8.5: Hit rate (rising graphs) and power saved (falling graphs) as func-
tion of cache size

Figure 8.5 show both hit rate and the power saved as function of cache size.
As in figure 8.4 it is shown that hit rate do not change much as function of
ways. Neither do the the power, but the model have not be calibrated, and
in chapter 7 was stated the the power cost for doing a compare is to low in
the model. This mean that the falling blue line (power used in memory with
a 2-way cache) should be higher all over.

Looking at the Counter loop graph, it can be seen that both the hit rate
and the power is less steep, as the loop caches only caches loop.

78CHAPTER 8. CALIBRATING THEMODEL AND THE FINAL RESULT

0,5

0,6

0,7

0,8

0,9

Ram DM

Rom DM

0

0,1

0,2

0,3

0,4

0,5

1 2 4 8 16 32

Rom DM

Ram 2-way

Rom 2-way

Ram Cnt loop

Rom Cnt loop

1 2 4 8 16 32

Cache size

Figure 8.6: RAM and ROM power saved as function of cache size

The main thing to see in figure 8.6 is that the power saved for a loop cache
in RAM access is less steep, then the rest as cache sizes grow. This lead to
that the the main part of all loops are in ROM.

Figure 8.7, 8.8 and 8.9 show how the power of a system change as the activity
factor change.

8.2. RESULT 79

120

130

140

150

80

90

100

110

120

DM 5%

DM 10%

DM 15%

70

1 2 4 8 16 32

Figure 8.7: Direct mapped cache power as function of size and activity factor,
power is in % of system with out cache

120

130

140

150

70

80

90

100

110

1 2 4 8 16 32

2-way 5%

2-way 10%

2-way 15%

1 2 4 8 16 32

Lines

Figure 8.8: 2-way cache power as function of size and activity factor, power
is in % of system with out cache

120

130

140

150

80

90

100

110

120
Cnt loop 5%

Cnt loop 10%

Cnt loop15%

70

2 4 8 16 32 64 128

Figure 8.9: Loop cache, with counter reset, power as function of size and
activity factor, power is in % of system with out cache

80CHAPTER 8. CALIBRATING THEMODEL AND THE FINAL RESULT

1

1,2

1,4

1,6

0,2

0,4

0,6

0,8

1
Cache

Rom

Ram

0

04:01 08:01 04:02 No cache Loop 16

Figure 8.10: Division of power, result from model

In figure 8.10 the power for the three caches chosen for the VHDL imple-
mentation and a loop cache is shown. The power is from the model with an
activity factor of 5% and no calibration. The green is the caches power and
as it can been seen it can more then double before reaching same level as the
system with out a cache.

8.2. RESULT 81

Chapter 9

Future work

This chapter will presented some of the idea the author have, but do not
have time to explore. Some of the wisdom in regard to thing which may
have worked better if done differently and which way to go if any one wish
to continue this work.

The chapter is diveded into two part, one for the model and one for the
cache most suitable for GN ReSound. Both part is based on that the power
simulation ends up giver a better result.

9.1 Model

9.1.1 Models structure

The model is build taking one memory access at a time. It would have make
the task of designing the power cost function less challenging, if the model
was designed taking two step. Step referring to the pipeline state and the
registers. Down side to this is that the complexity of the model will grow.

9.1.2 Model with no cache power

Taking into account that the activity factor change a lot from cache to cache.
It may be a better solution to build a model, which only show what will be
saved in power by using a specific cache. A long with this some statistic
about the trace file. A designer can use that to make a qualified guess on
the cache, the test a few caches vis power simulation.

82

9.2. CACHE FOR GN RESOUND 83

9.1.3 Model with activity factor

The author started doing this, but the complexity of the model exploded.
Then again a model doing activity factor power calculation ect. is more or
less the EDA tools used for power simulation. All though only for one design

9.2 Cache for GN ReSound

9.2.1 Data memories

If trace files was created for the data memories, these could be used in the
model, just like the ones from the program memory. There by it would be
possible to get an idea, regarding power saving using caches on the data
memories.

9.2.2 Loop cache in vhdl

More the half the instruction fetch is in a loop, this make it interesting. As
the only referents to its power use is the model, it could be good to see what
a power simulation would return for a loop cache.

9.2.3 Loop cache change of flow

The version in this thesis uses a address compare scream to validate if there
are a change of flow. This being costly in regard to power a better way may
be to use information from the AGU. The author have not looked in the
code, so the following is a guess. The AGU much know is the address it is
generating is a +1 or a jump. Forwarding this knowledge to the loop cache
and there is a signal slowing change of flow. When returning the AGU will
fetch the return address from the return register, where is was saved when
jumping. Signalling to the cache when the AGU is fetching from this register
will tell that the cache is on again.

9.2.4 Loop cache taking loop larger then its size

The design chosen in this thesis, discard all loop greater then its size, resulting
in missing potential cache hit. It would be interesting to try a design caching
only part of a loop, when it is to big to fix inside the cache, and then fetching
the rest of the loop from main memory. The upside from this approach is
that even with a 8 word cache, there will be cache hit from a 12 word loop.

84 CHAPTER 9. FUTURE WORK

Down side is the extra logic need to check if the address from the AGU is in
the cache or part of what did not fix in the cache.

9.2.5 Loop cache and cache

This part is based on the authors feel, a loop cache like the one suggested
in the section above. This cache will be off when the DSP is in halt, at this
time a small cache is used. This cache need not be big, a one or two word
cache should be sufficient. It is only mend to cache the nops surrounding the
one instruction interrupt, example of this was mentioned in chapter 4.

9.2. CACHE FOR GN RESOUND 85

Chapter 10

Conclusion

During the course of this thesis, a software model, for finding which cache
(type and size) in a processor memory results in the lowest total use of power,
has been presented.

In today’s hearing aid, there is a requirement for advanced algorithm, for
example perceptual noise reduction and automatic gain control. Along these
algorithms, alot of today’s hearings aids have a wireless connections and at
GN ReSound all algorithms and the wireless control is handled by the pro-
cessor. This puts pressure on the processor and the memory system.

A background on different caches and other ways of saving power in a mem-
ory system has been presented. Following this, an introduction to the current
processor and memory system in a GN ReSound hearing aid has been given.
At the same time, some of the design rules at GN resound has been stated,
as these have influence on the choices made.

There are many studies made in regard to caches. The majority concerns
getting as high hit rate as possible at the expense of complexity and power.
A minor part of these studies concern power saving in caches, making the
cache use less power by using clever ways of reading the RAM used as mem-
ory in the cache. An even smaller part of these studies concerns using caches
to lower system power and these all use RAM as memories.

Building a software model would not make sense unless an input resembling

86

87

the behaviour of the processor systems memory accesses would be available.
As this was not the case this thesis work included making such an input.

The majority of work gone into this thesis has, been put in to designing
and implementing the model, with the time split nearly equally between the
functional part and the power cost function. First - the functional part of the
model was presented, and it was shown how the memory system behaviour
when having a cache added. The model handles difference cache size and
type and the most important discovery made was presented. Second - the
idea and implementation of the power cost function was presented and the
result from this shown.

In order to determine the precision of the model and to calibrate it, a number
of caches were described in VHDL. These cache were chosen based on the
results from the model. After synthesization, power simulation was used to
find the power these caches use. The same input as the model uses was used
here. Due to issues with the tools the actual power numbers from this power
simulation was not usable. This was caused by what seemed like a bug in the
tool and was reported to the tool vendor. The issue being that the tool for
some part of the design used components way too big, causing the power to
be higher than what it in reality should be. Doing this, however, resulted in a
disturbing discovery, that the activity factor varies a lot more than experted
from cache to cache.

The power cost function in the model builds on a common activity factor
for all caches, and with the before mentioned observation leaves the cache
power part of the model inaccurate. If the power simulation could have re-
sulted in some more accurate numbers, the model could be calibrated and
then even with a constant activity factor it would be useable. In this case,
the results would not be fully accurate but they would show a trend and with
the statistics from the input this would help a designer choose the right cache.

Even with the issue in regard to power simulation, the work done in this
thesis can be used. With the result from this thesis and a bit more work,
suggestions in chapter 9, it will be possible to determine if a cache can lower
the total power consumption. This, however, requires that the synthesis and
power simulation works properly.

In this thesis no work has been done with regard to the data memories,

88 CHAPTER 10. CONCLUSION

again suggestions in chapter 9.

After spending several months working on this thesis, looking at trace files,
running and debugging the model with different settings numerous times,
the author feels he can come with a qualified guess, as to the cache giving
the lowest power consumption. This is a loop cache like the one suggested in
chapter 9.2. This cache is using the signals from the address generation unit
to look for change in the flow and it can cache part of a loop bigger than its
size. Next to it, a small direct mapped cache should be placed, placed which
would only be on when the processor is in halt.

89

Chapter 11

References

1. The webpage http : //www.gnresound.com

2. Bruce Jacob, Spencer W. Ng, David T. Wang, Memory Systems Cache,
DRAM, Disk. 2008 Morgan Kaufmann. ISBN: 978-0-12-379751-3

3. John L. Hennessy, David A. Patterson, Computer Architecture A Quan-
titative Approach 1-4ed. 2007 Morgan Kaufmann. ISBN 978-0-12-
370490-0

4. John L. Hennessy, David A. Patterson, Computer Organization and
Design: The Hardware/Software Interface 3-4ed. 2007 Morgan Kauf-
mann. ISBN 978-0-12-374493-7

5. Peter J. Ashenden, The Designers Guide to VHDL 3ed, 2008 Morgan
Kaufmann. ISBN 978-0-12-088785-9

6. Jens Sparsø, 2004. Digtal Design and Computer Organization, Techni-
cal University of Denmark [online via DTU internal webpage]

7. Alberto Nannarelli, Advanced Digital Design Techniques, Technical
University of Denmark [online via DTU internal webpage]

8. Alberto Nannarelli, Flemming Stassen, Design of IC’s, Technical Uni-
versity of Denmark [online via DTU internal webpage]

9. The Filter Cache: An Energy Efficient Memory Structure. Johnson
Kin, Munish Gupta and William H. Mangione-Smith. The Department
of Electrical Engineering, UCLA Electrical Engineering. 1997

90

91

10. Tiny Instruction Caches For Low Power Embedded Systems. ANN
GORDON-ROSS, SUSAN COTTERELL AND FRANK VAHID. De-
partment of Computer Science and Engineering University of Califor-
nia, Riverside. 2002.

11. Low-Cost Embedded Program Loop Caching - Revisited. Lea Hwang
Lee , Bill Moyer*, John Arends*. Advanced Computer Architecture
Lab, Department of Electrical Engineering and Computer Science, Uni-
versity of Michigan. 1999.

12. L. H. Lee, B. Moyer, J. Arends, Instruction Fetch Energy Reduction Us-
ing Loop Caches For Embedded Applications with Small Tight Loops,
Proc. Int’l. Symp. on Low Power Electronics and Design, 1999.

13. Algorithm and architecture of a 1V low power hearing instrument DSP.
Finn Møller Nikolai Bisgaard, John Melanson. 1999 international sym-
posium on Low power electronics and design. ISBN:1-58113-133-X

92

93

A. Appendix to chapter 4

Figure A.1: Set-up of algorithm

B. Appendix to chapter 5

Memory request

Write though

Access

type

Cache hit Cache hit

Load new line

to latch

Write data

into cache

Return data

Write data to

memory

Write

data to

cache

Done

Read Write

No
No

Yes

Rom latch

hit
Yes

No

Rom space

Yes

No

Read

data

from ram Read data

from romlatch

Return data

Yes

Read cache

Figure B.1: Flow chart for a write though cache

94

95

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version EA 9.2 Unregistered Trial Version

Cache

+ array :CacheLine**

+ Pram :Ram*

+ Prom :Rom*

+ MemoryAccess(TraceFormat) :unsigned int

- ReadCacheOnHit(unsigned int, unsigned int, unsigned) :unsigned int

- ReadMem(unsigned int) :unsigned int

- TagLookup(unsigned int, unsigned int) :pair<bool,unsigned int>

- WriteCache(unsigned int, unsigned int, unsigned int, unsigned, unsigned int) :void

- WriteCacheOnMiss(unsigned int, unsigned int, unsigned, unsigned int) :void

- WriteMem(unsigned int, unsigned int) :void

CacheLine

+ Data :unsigned int*

+ Tag :unsigned int

+ Valid :bool

Ram

- array :unsigned int*

+ Read(unsigned int) :unsigned int

+ Write(unsigned int, unsigned int) :void

Rom

- array :unsigned int*

- CurrentLineAddress :unsigned int

- line :unsigned int*

+ Read(unsigned int) :unsigned int

+ Write(unsigned int, unsigned int) :void

+array+Pram

+Prom

Figure B.2: Simplified class diagram for the class Cache

96 APPENDIX B. APPENDIX TO CHAPTER 5

Figure B.3: Flow chart for a loop cache with a count reset

97

Figure B.4: Flow chart for a loop cache with a instruction dependent reset

C. Appendix to chapter 6
D
e
c
o
d
e

P
C

D
a

ta
_

m
e

m
_

F
e

D
a

ta
_

c_
fe

A
d

d
r_

P
C

D
a

ta
_

d
e

F
e
tc
h

D
a

ta
_

p
c

D
a

ta

C
a

ch
e

”r
e

a
d

”

In
d

e
x
_

P
C

In
d

e
x_

h
it

_
fe

H
it

_
fe

In
d

e
x
_

m
is

s_
fe

H
it

_
F
e

1 Mux 0

H
it

_
P

C

P
ro

g
ra

m

M
e

m
o

ry

In
d

e
x
_

P
C

D
a

ta
_

F
e

1 Mux 0

D
a

ta
_

F
e

_
c_

w

W
e

_
fe

D
a

ta
_

F
e

_
o

A
G

U
 +

W
e

 +
 E

n

T
a

g

C
a

ch
e

”r
e

a
d

”

=

T
a

g

v
a

li
d

”r
e

a
d

”

In
d

e
x
_

P
C

T
a

g
_

P
C

T
a

g
 w

ri
te

d
a

ta
+

v
a

li
d

W
e

_
P

C

D
a

ta
 C

a
ch

e

w
ri

te

Figure C.1: Block diagram of a direct mapped cache

98

99

W
e

_
P

C

D
e
c
o
d
e

P
C

D
a

ta
_

m
e

m
_

F
e

D
a

ta
_

c

A
d

d
r_

P
C

D
a

ta
_

d
e

F
e
t
c
h

D
a

ta
_

p
c

In
d

e
x_

P
C

In
d

e
x_

0
_

m
is

s_
fe

H
it

_
F

e

1 Mux 0

P
ro

g
ra

m

M
e

m
o

ry

In
d

e
x
_

P
C

D
a

ta
_

F
e

1 Mux 0

D
a

ta
_

F
e

_
c_

w

W
e

_
F
e

D
a

ta
_

F
e

_
o

A
G

U
 +

C
o

n
tr

o
l

si
g

n
a

l

T
a

g
 0

C
a

ch
e

”r
e

a
d

”

=

T
a

g
 0

v
a

li
d

”r
e

a
d

”

In
d

e
x
_

P
C

T
a

g
_

P
C

T
a

g
 1

C
a

ch
e

”r
e

a
d

”

=

T
a

g
 1

v
a

li
d

”r
e

a
d

”

D
a

ta
 0

C
a

ch
e

”r
e

a
d

”
In

d
e

x
_

h
it

0
_

fe

D
a

ta
 1

C
a

ch
e

”r
e

a
d

”

In
d

e
x
_

h
it

1
_

fe

1 Mux 0

H
it

_
1

_
fe

D
a

ta
 0

C
a

ch
e

w
ri

te

D
a

ta
 1

C
a

ch
e

w
ri

te

In
d

e
x
_

1
_

m
is

s_
fe

R
a

n
d

o
m

_
p

c

R
a

n
d

o
m

_
fe

T
a

g
 1

 w
ri

te

d
a

ta
+

v
a

li
d

T
a

g
 0

 w
ri

te

d
a

ta
+

v
a

li
d

If
 H

it
_

fe
 =

 1

ra
n

d
o

m
 =

 n
o

t
ra

n
d

o
m

Figure C.2: Block diagram of a 2 way associative cache

100 APPENDIX C. APPENDIX TO CHAPTER 6

Listing C.1: VHDL code for top component in a 4 line direct mapped cache

1 component tag_4l_dm

2 g e n e r i c (width : integer := 13) ;
3 port (reset : in std_logic ;
4 clk : in std_logic ;
5 we : in std_logic ;
6 input : in std_logic_vector (width downto 0) ;
7 valid_out : out std_logic ;
8 output : out std_logic_vector (width downto 0) ;
9 index : in std_logic_vector (1 downto 0)

10) ;
11 end component ;
12 component data_4l_dm

13 g e n e r i c (width : integer := 31) ;
14 port (reset : in std_logic ;
15 clk : in std_logic ;
16 we : in std_logic ;
17 input : in std_logic_vector (width downto 0) ;
18 output : out std_logic_vector (width downto 0) ;
19 index_r : in std_logic_vector (1 downto 0) ;
20 index_w : in std_logic_vector (1 downto 0)
21) ;
22 end component ;
23 begin
24 tag_cache_4l_dm : tag_4l_dm g e n e r i c map (width => 13)
25 port map (
26 reset => reset ,
27 clk => clk ,
28 we => hit_pc_s ,
29 input => tag_pc_s ,
30 valid_out => tag_valid_pc_s ,
31 output => tag_c_pc_s ,
32 index => index_pc_s

33) ;
34 data_cache_4l_dm : data_4l_dm g e n e r i c map (width => 31)
35 port map (
36 reset => reset ,
37 clk => clk ,
38 we => hit_fe_s ,
39 input => data_c_w_fe_s ,
40 output => data_c_fe_s ,
41 index_r => index_hit_fe_s ,
42 index_w => index_miss_fe_s

43) ;
44 −−
45 −−PC s t a t e
46 −−
47 index_pc_s <= addr_pc_i (1 downto 0) ;

101

48 tag_pc_s <= addr_pc_i (15 downto 2) ;
49 data_pc_s <= data_pc_i ;
50 tag_cmp_pc_s <= ’1 ’ when tag_pc_s = tag_c_pc_s e l s e ’ 0 ’ ;
51 hit_pc_s <= tag_cmp_pc_s and tag_valid_pc_s and not

we_pc_i ;
52 miss_pc_s <= not hit_pc_s ;
53 −−
54 −−Fetch s t a t e
55 −−
56 pc_fe_reg : p ro c e s s (clk , reset)
57 begin
58 i f reset = ’0 ’ then
59 data_fe_s <= (othe r s => ’ 0 ’) ;
60 addr_fe_s <= (othe r s => ’ 0 ’) ;
61 index_hit_fe_s <= (othe r s => ’ 0 ’) ;
62 index_miss_fe_s <= (othe r s => ’ 0 ’) ;
63 we_fe_s <= ’ 0 ’ ;
64 hit_fe_s <= ’ 0 ’ ;
65 e l s i f rising_edge (clk) then
66 addr_fe_s <= addr_pc_i ;
67 we_fe_s <= we_pc_i ;
68 i f we_pc_i = ’1 ’ then
69 data_fe_s <= data_pc_s ;
70 end i f ;
71 hit_fe_s <= hit_pc_s ;
72 i f hit_pc_s = ’1 ’ then
73 index_hit_fe_s <= index_pc_s ;
74 end i f ;
75 i f hit_pc_s = ’0 ’ then
76 index_miss_fe_s <= index_pc_s ;
77 end i f ;
78 end i f ;
79 end proce s s ;
80 addr_mem_fe_o <= addr_fe_s ;
81 data_mem_fe_o <= data_fe_s ;
82 en_mem_fe_o <= not hit_fe_s ;
83 we_mem_fe_o <= we_fe_s ;
84 data_fe_o_s <= data_mem_fe_i when hit_fe_s = ’0 ’ e l s e

data_c_fe_s ;
85 data_c_w_fe_s <= data_mem_fe_i when we_fe_s = ’0 ’ e l s e

data_fe_s ;
86 hit <= hit_fe_s ;
87 −−
88 −−de s t a t e
89 −−
90 fe_de_reg : p ro c e s s (clk , reset)
91 begin
92 i f reset = ’0 ’ then
93 data_de_o <= (othe r s => ’ 0 ’) ;

102 APPENDIX C. APPENDIX TO CHAPTER 6

94 e l s i f rising_edge (clk) then
95 i f we_fe_s = ’0 ’ then
96 data_de_o <= data_fe_o_s ;
97 end i f ;
98 end i f ;
99 end proce s s ;

100 end a r c h i t e c t u r e RTL ;

Listing C.2: VHDL code for data array

1 e n t i t y data_4l_dm i s
2 g e n e r i c (width : integer := 31) ;
3 port (reset : in std_logic ;
4 clk : in std_logic ;
5 we : in std_logic ;
6 input : in std_logic_vector (width downto 0) ;
7 output : out std_logic_vector (width downto 0) ;
8 index_read : in std_logic_vector (1 downto 0) ;
9 index_write : in std_logic_vector (1 downto 0)

10) ;
11 end data_4l_dm ;
12 a r c h i t e c t u r e RTL o f data_4l_dm i s
13 type mem i s array (0 to 3) o f std_logic_vector (31 downto 0) ;
14 s i g n a l ff : mem ;
15 s i g n a l en_ff : std_logic_vector (3 downto 0) ;
16 begin
17 en_ff (0) <= not index_write (1) and not index_write (0) and

not we ;
18 en_ff (1) <= not index_write (1) and index_write (0) and

not we ;
19 en_ff (2) <= index_write (1) and not index_write (0) and

not we ;
20 en_ff (3) <= index_write (1) and index_write (0) and

not we ;
21 proce s s (clk , reset , index_w)
22 begin
23 i f reset = ’0 ’ then
24 ff <= (othe r s => (o the r s => ’ 0 ’)) ;
25 e l s i f rising_edge (clk) then
26 i f en_ff (to_integer (unsigned (index_write))) = ’1 ’ then
27 ff (to_integer (unsigned (index_write))) <= input ;
28 end i f ;
29 end i f ;
30 end proce s s ;
31 output <= ff (to_integer (unsigned (index_read))) ;
32 end a r c h i t e c t u r e RTL ;

Listing C.3: VHDL code for valid bit in Tag

103

1 ff_valid : p ro c e s s (clk , reset)
2 begin
3 i f reset = ’0 ’ then
4 valid_reg <= (othe r s => ’ 0 ’) ;
5 e l s i f (rising_edge (clk)) then
6 i f we = ’0 ’ and en = ’1 ’ then
7 valid_reg (to_integer (unsigned (index))) <= ’ 1 ’ ;
8 end i f ;
9 end i f ;

10 end proce s s ;
11 output <= valid_reg (to_integer (unsigned (index))) ;

104 APPENDIX C. APPENDIX TO CHAPTER 6

M
o

d
u

le
S

u
b

m
o

d
u

le
s

Le
a

fc
e

ll
s

R
e

g
is

te
rs

B
u

ff
e

rs
C

LK
-b

u
ff

e
rs

S
im

p
le

C
o

m
p

le
x

A
d

d
e

rs
C

LK
-g

a
te

s
La

tc
h

e
s

P
h

y
si

ca
ls

P
a

d
s

M
a

cr
o

s

to
p

_
4

l_
d

m
0

1
0

1
9

2
7

4
4

6
5

9
4

7
1

6
5

0
3

3
1

6
1

0
0

0

D
ri

v
e

:
'L

'
0

1
4

0
2

7
1

2
2

0
0

0
0

0
0

D
ri

v
e

:
'1

'
1

9
5

3
0

2
0

6
3

8
0

0
0

0
0

0

D
ri

v
e

:
'2

'
1

1
2

5
0

6
4

0
3

3
0

0
0

0

D
ri

v
e

:
'3

'
0

5
0

3
0

0
0

2
0

0
0

D
ri

v
e

:
'4

'
5

2
7

1
2

1
0

0
2

0
0

0

D
ri

v
e

:
'5

'
0

4
0

0
0

0
0

0
0

0
0

D
ri

v
e

:
'6

'
0

2
0

0
0

0
0

1
0

0
0

D
ri

v
e

:
'8

'
2

6
0

0
3

0
0

0
1

0
0

0

D
ri

v
e

:
'1

0
'

0
4

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'1

2
'

0
0

0
0

0
0

0
2

0
0

0

D
ri

v
e

:
'1

4
'

0
0

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'1

6
'

0
1

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'1

8
'

0
0

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'2

0
'

0
1

4
0

0
0

0
8

0
0

0

D
ri

v
e

:
'2

4
'

0
0

3
0

0
0

0
0

0
0

0

D
ri

v
e

:
'3

2
'

0
0

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'4

0
'

0
0

1
0

0
0

0
0

0
0

0

Figure C.3: Components used for a 4 line direct mapped cache

105

M
o

d
u

le
S

u
b

m
o

d
u

le
s

Le
a

fc
e

ll
s

R
e

g
is

te
rs

B
u

ff
e

rs
C

LK
-b

u
ff

e
rs

S
im

p
le

C
o

m
p

le
x

A
d

d
e

rs
C

LK
-g

a
te

s
La

tc
h

e
s

P
h

y
si

ca
ls

P
a

d
s

M
a

cr
o

s

to
p

_
8

l_
d

m
0

1
2

0
1

4
5

6
3

7
3

1
3

1
0

4
1

9
1

0
3

2
2

3
9

0
0

D
ri

v
e

:
'L

'
0

1
6

0
7

3
1

7
3

0
0

0
0

0
0

D
ri

v
e

:
'1

'
3

7
5

1
9

3
0

1
5

1
1

0
0

0
0

0
0

D
ri

v
e

:
'2

'
4

1
3

6
0

6
6

0
3

2
1

0
0

0

D
ri

v
e

:
'3

'
0

4
0

1
0

0
0

0
0

0
0

D
ri

v
e

:
'4

'
4

7
5

0
1

1
0

0
0

0
0

0

D
ri

v
e

:
'5

'
0

5
0

0
0

0
0

0
0

0
0

D
ri

v
e

:
'6

'
0

0
0

4
0

0
0

2
0

0
0

D
ri

v
e

:
'8

'
3

0
1

1
4

0
0

0
6

0
0

0

D
ri

v
e

:
'1

0
'

0
9

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'1

2
'

0
0

1
0

0
0

0
6

0
0

0

D
ri

v
e

:
'1

4
'

0
4

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'1

6
'

0
0

0
0

0
0

0
2

0
0

0

D
ri

v
e

:
'1

8
'

0
0

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'2

0
'

0
0

1
0

0
0

0
6

0
0

0

D
ri

v
e

:
'2

4
'

0
0

3
0

0
0

0
0

0
0

0

D
ri

v
e

:
'3

2
'

0
0

5
0

0
0

0
0

0
0

0

D
ri

v
e

:
'4

0
'

0
0

2
0

0
0

0
0

0
0

0

Figure C.4: Components used for a 8 line direct mapped cache

106 APPENDIX C. APPENDIX TO CHAPTER 6

M
o

d
u

le
S

u
b

m
o

d
u

le
s

Le
a

fc
e

ll
s

R
e

g
is

te
rs

B
u

ff
e

rs
C

LK
-b

u
ff

e
rs

S
im

p
le

C
o

m
p

le
x

A
d

d
e

rs
C

LK
-g

a
te

s
La

tc
h

e
s

P
h

y
si

ca
ls

P
a

d
s

M
a

cr
o

s

to
p

_
4

l_
2

w
0

1
5

3
2

4
7

0
5

4
8

1
4

1
4

1
2

6
9

0
3

3
3

8
1

9
0

0

D
ri

v
e

:
'L

'
0

2
4

0
1

0
2

1
9

8
0

0
0

0
0

0

D
ri

v
e

:
'1

'
4

2
2

2
3

5
0

1
0

3
7

0
0

0
0

0
0

D
ri

v
e

:
'2

'
4

5
2

5
3

0
1

8
1

0
0

3
3

1
0

0
0

D
ri

v
e

:
'3

'
0

7
0

0
0

0
0

2
0

0
0

D
ri

v
e

:
'4

'
3

9
0

2
2

4
0

0
3

0
0

0

D
ri

v
e

:
'5

'
0

0
0

0
0

0
0

0
0

0
0

D
ri

v
e

:
'6

'
0

1
1

1
0

0
0

1
0

0
0

D
ri

v
e

:
'8

'
0

4
0

2
0

0
0

3
0

0
0

D
ri

v
e

:
'1

0
'

0
1

2
0

0
0

0
0

0
0

0
0

D
ri

v
e

:
'1

2
'

0
0

1
6

0
0

0
5

0
0

0

D
ri

v
e

:
'1

4
'

0
0

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'1

6
'

0
0

0
0

0
0

0
2

0
0

0

D
ri

v
e

:
'1

8
'

0
0

0
0

0
0

0
0

0
0

0

D
ri

v
e

:
'2

0
'

0
3

4
0

0
0

0
2

1
0

0
0

D
ri

v
e

:
'2

4
'

0
0

4
0

0
0

0
0

0
0

0

D
ri

v
e

:
'3

2
'

0
0

3
0

0
0

0
0

0
0

0

D
ri

v
e

:
'4

0
'

0
0

1
0

0
0

0
0

0
0

0

Figure C.5: Components used for a 4 line 2-way cache

Technical University of Denmark
Department of Informatics and Mathematical Modeling
Building 321
DK-2800 Kongens Lyngby
Denmark
Phone +45 45253351
Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

	Introduction
	Project Description
	Structure of the rapport
	GN ReSound
	Tools used
	Hardware used

	Background on cache
	Locality
	Miss
	Cache
	Cache groups
	Cache organization

	Design considerations
	Other cache architecture
	Filter cache
	Loop cache
	Cache Line Buffering

	Other way to get low power in a memory/memory system
	Memory partition
	Latching a block of word

	Current system
	System overview
	Memory map
	Timing
	Do loop instruction
	Design limitations do to IC design rule
	Design choice of cache memory

	Input data
	What is meant by input data?
	Background
	Signal of interest
	Change in the VHDL and synthesis for FPGA
	Setting up the board and generating a trace
	Sub conclusion

	Model of the memory system
	Overview and structure of the model
	Statistics done on the input file
	Model of the memory
	Model of the Ram and Rom

	Model of the caches
	Model of a cache
	Model of a loop cache

	Sub conclusion

	Power cost function in the model
	Cost function
	Data from technology vendor
	Cost function implemented in the code

	Result from the cost function

	VHDL caches
	Design of cache
	Diagram
	Code

	Test-bench and verification
	Result and sub conclusion
	Relative comparison
	Actually numbers

	Calibrating the model and the final result
	Calibration of the model
	Result
	Stream vs. not stream
	Presentation of the result

	Future work
	Model
	Models structure
	Model with no cache power
	Model with activity factor

	Cache for GN ReSound
	Data memories
	Loop cache in vhdl
	Loop cache change of flow
	Loop cache taking loop larger then its size
	Loop cache and cache

	Conclusion
	References
	Appendix to chapter 4
	Appendix to chapter 5
	Appendix to chapter 6

