Hybrid Methods for Large-Scale
Tomographic Reconstructions

Ditte Iben Marcussen

Kongens Lyngby 2012
IMM-M.Sc.-2012-16

Technical University of Denmark

DTU Informatics

Building 305, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-M.Sc.: ISSN XXXX-XXXX

Summary

The main focus of this master thesis is to solve an inverse problem using a
stochastic method. The inverse problem is based on a diffraction problem from
an experiment conducted in Grenoble, France. The goal is to understand the
mathematics behind the physical experimen,t and solve the problem using a
stochastic method. One of the important aspects of this thesis is to investigate,
whether a deterministic solution of the problem can be used to optimize the
solution found by a stochastic method.

To understand how the stochastic method deals with this physical problem a
simulation study is conducted. First a simulation study on a simple mathe-
matical model is performed and analyzed. The findings from this simple model
can then be applied, when dealing with the more complex mathematical model.
There are different aspects of the stochastic method, which we are able to ex-
ploit. In the simulation studies one of the main focus areas will be exploring
the performance of the method based on different starting guesses. Also the
type and amount of noise on data will be tested in accordance with the perfor-
mance of the method. When the model is fully understood, a complex problem
is solved and analyzed.

Throughout the thesis the results are presented in various ways to illustrate how
the method actually works.

Resumé

Dette speciales primeere fokus vil veere at lgse et inverst problem ved hjelp af
en stokastisk metode. Det inverse problem er baseret pa diffraktionsdata, der
stammer fra et fysisk eksperiment udfgrt i Grenoble, Frankring. Malet er at
forsta matematikken bag eksperimentet og formulere a priori viden til lgsningen
af problemet med en stokastisk metode. En af de vigtigste aspekter i denne
opgave er at undersgge, om en deterministisk lgsning af problemet kan bista til
at optimere lgsningen af problemet.

Et simuleringsstudium er udfgrt for at forsta, hvordan en stokastisk metode lgser
et problem af denne type. Forst er et studium udfgrt pa en forsimplet matem-
atisk model og derefter analyseret. Konklusionerne derfra bliver udnyttet, nar
endnu et studium bliver udfgrt med en mere kompleks matematisk model. Der
er flere forskellige aspekter af metoden, som vil blive undersggt og testet.

I simuleringsstudierne vil en af de gennemgaende temaer veere at undersgge
metodens afheengighed af forskellige startgeet. Desuden vil der ogsa blive fokuseret
pa maengden og typen af stgj pa data og hvilken rolle stgjen har pa lgsningen.
Nar endelig modellen og metoden er gennemgaet vil et komplekst problem blive
lgst og analyseret.

Gennem dette speciale vil resultaterne blive praesenteret pa forskellig vis for at
illustrere, hvordan metoden virker.

Preface

This master thesis was prepared atDTU Informatics, the Technical University
of Denmark. It represents the final 30 ETCS point to fulfill the master program
Mathematical Modelling and Computation. The work has been conducted dur-
ing the autumn/winter of 2011 and 2012, more precisely the 1st of September
2011 to the 29th of February 2012. During this period the thesis has been
processed under supervision of Professor Per Christian Hansen, DTU Informat-
ics, Professor Klaus Mosegaard, DTU Informatics, and Senior Scientist Sgren
Schmidt, DTU Risg.

Lyngby, February 29th 2012

Ditte Iben Marcussen

List of Symbols

The following table lists the commonly used symbols in the thesis.

Symbol Quantity Dimension

A system matrix mxXn

a; 7’th row of A m

b right-hand side m

pexact exact right-hand side m

b; j’th element of the vector b scalar

e noise vector m

€; j’th element of the vector e scalar

k normalization constant scalar

m,n matrix dimensions scalars

Ny no. of gridpoints of the detectors scalar

Ny no. of gridpoints of the source in 4D prob- scalar
lem

w no. of gridpoints of the source in 2D prob- scalar

lem

Ny no. of gridpoints of the radial grid in 4D scalar
problem

Ny no. of gridpoints of the angular grid scalar

¢ radial angle

P Poisson distribution

o; 1’th singular value scalar

D) matrix with singular values in the diagonal m xn

viii

u;

V;

a:exact

Z7wﬂy7t

B

W D W T MO » N S

matrix with all left singular vec-
tors

1’th left singular vector

matrix with all right singular
vectors

1’th right singular vector

angle of the ray

solution of Ax = b

exact solution

cartesian axes in the set-up of the
problem

prior probability density func-
tion

posterior probability density
function

Likelihood function

step length

rescaling constant

expected value

standard deviation related to
Gaussian distribution

misfit function

mean of location of

standard deviation of 6

m X m

nxn

scalar
scalar

scalar

scalar
scalar

Contents

Contents

Summary

Resumé

Preface

List of Symbols

1

2

Introduction

Model Problem
2.1 Underlying Physics o
2.2 Introducing the Fictitious Plane

Mathematical Model

3.1 Continuous Model
3.2 Discrete Model
3.3 NoiSe. o o e

Discrete Inverse Problem
4.1 Inverse Problems
4.2 Singular Value Decomposition

Sampling Methods

5.1 Monte Carlo Method
5.2 Propertieso
5.3 Our Method
5.4 Noise within the Method

iii

vii

11
13

15
15
16

xii CONTENTS
6 Two-dimensional Problem 29
6.1 Simplified Model 29
6.2 Test Problems 31
6.3 Reverse Ray Tracing 33
6.4 Results. 35
6.5 Forward Calculation 55
7 Four-dimensional Problem 61
7.1 Test Problems. 61
72 Results. 64
7.3 Complex Problem, 82
8 Conclusion 89
81 Future Work 90
A Introductory Investigations 91
B Results 4D 103

C Matlab Code

107

CHAPTER 1

Introduction

The physical experiment that underlies this entire thesis can in short terms
be described as X-rays, which are sent through a small sample, diffracted and
detected afterwards. The whole idea of conducting this experiment is to allocate
the orientation of grains inside the crystal lattice from the detections of the rays
penetrading the sample. The details of the experiment will be described in the
next chapter.

The physical experiment plays an important role as to the motivation of this
thesis. In [5] a slightly simpler problem than the one, we will deal with, is solved,
but it might be possible to make use of another method, when solving it. This
thesis will deal with a stochastic way of solving a more complex problem, and
an attempt to combine a stochastic and deterministic part to a hybrid method.

First of all it is necessary to get a thorough understanding of the physical set-
up to be able to deal with the mathematical model and also to translate the
knowledge into prior information for the stochastic method. The prior informa-
tion has to be in accordance with the actual experiment, the observations the
scientists have done and also the physical limitations of the experiment and the
results. Therefore the set-up of the stochastic method is based on cooperation
between the realistic set-up and the actual implementation.

The model will be constructed as a General Ray Tracing Problem. When work-

2 Introduction

ing with the model it reveals some weaknesses, which affects the performance of
the solution method. That is of course a downside, but in the process of gain-
ing an understanding on how the method works and the effect of combining a
stochastic method with a deterministic one, it does not make a great difference.

It is important to always keep in mind throughout this thesis, that after this
study of the method related to the physical experiment, we are not able to solve
the full realistic problem. Instead we have obtained knowledge about a part of
the problem, which can be utilized in later studies. The most essential knowledge
to obtain in this thesis is the investigation of the role of the deterministic part
in the stochastic solution method. After this thesis we shall be able to conclude,
whether or not it is a good idea to combine the two methods or if one of them
is sufficient in reaching a solution, which will satisfy the scientists.

In this thesis we will start off by describing the physical experiment in details
along with the mathematical model based on the experiments. Then we will go
through the relevant theory about discrete inverse problems and also stochastic
methods. When describing the solution method we will discuss the advantages
and disadvantages of using a stochastic method and verify the choices made in
our method. As described in the summary we will perform simulation studies
on a simplified problem and analyzing the results, before taking it a step further
and analyze the results of tests on the full problem. At last a discussion takes
the reader through all the important aspects of the results and method, and an
outlook, which deals with all the possible directions, where the thesis could be
extended if more time was available.

CHAPTER 2

Model Problem

As mentioned briefly in the introduction the overall idea with this thesis is to
try to reconstruct orientations of the lattice within a small crystal of material by
sending horizontal X-rays into the material and then detect the scattered rays
emitted from the crystal. To solve this problem it is necessary to get a thorough
understanding of the physical problem, both the precise set-up parameters and
also the actual trace of the rays used. We start by describing the physics in the
experiment and then make the necessary assumptions and modifications, so the
set-up can be translated into a mathematical form, we are be able to solve using
numerical calculations.

2.1 Underlying Physics

The experiments, which this thesis is based on, are done at a synchrotron fa-
cility in Genoble, France. The synchrotron facility ensures that it is possible to
conduct experiments with high energy X-rays. The aim of the experiments is
to investigate several properties including grain growth, grain orientation and
neighboring relationships in a sample of metal using a method called three-
dimensional X-ray diffraction (3DXRD) microscope - for details see [5]. The
set-up describes high energy rays, which are sent through a sample and then
the rays are scattered and collected in a charge-coupled device (CCD). The

4 Model Problem

beams are sent into a small layer in the sample at the time, and then the rays
are scattered in parallel directions, due to the structure of the grains. The grains
are what we call perfect grains, which means that the atoms or molecules are
arranged in a symmetric structure and that affects the direction the rays are
scattered in. Since the beams are scattered in parallel directions, one CCD is
enough to detect the beams.

The next step is to look at beams scattered in a crystal with deformed struc-
ture - a so-called non-perfect crystal. The beams will deviate from the parallel
directions with the perfect grains due to the structure wihin the crystal. Result
of this will be that one detector is not enough to locate the origin of each ray
in the sample. Therefore it is necessary to introduce more detector planes. The
scattered beams are always emitted in a straight lines, so we need at least two
detector planes to identify this line. In this modified set-up three detector planes
are introduced, where the third plane is used to describe the angle distribution
and also to verify the line described by the first two detectors. The detections
from these three CCD’s will represent the data used to reconstruct the structure
within the crystal. In Figure 2.1 the set-up is sketched with both the sample
and several detectors. In the figure the distances between the detectors do not
reflect the true distances. In the real experiment the two first CCD’s are placed
very close to the source, whereas the third detector is placed further away. The
first two detectors are therefore referred to as near-field detectors and the third
as far-field detector.

Since this set-up is very complex to describe in a mathematical model, we will
look at a subproblem of this, where we look at one of the pairs of detectors.
If we get a thorough understanding about this part of the problem we might
be able to extend our knowledge to the whole problem. This subproblem is
illustrated in Figure 2.1, where we see the three detectors and the source. The
plane just in front of the sample will be discussed in the next section.

2.2 Introducing the Fictitious Plane

Now we have introduced the underlying physics behind the general ray tracing
problem. The only thing is, that the general rays tracing problem cannot recon-
struct a three dimensional sample from the detections of three CCD’s. Therefore
the problem has to be simplified. The simplification consists of an imaginary
source plane located just in front of the sample. The idea is that the beams
emitting from the edge of the sample parallel to the source plane, we assume
emit directly from the source plane instead. Then we only have to reconstruct
a plane and not the whole crystal. The new set-up is seen in Figure 2.2. If we

2.2 Introducing the Fictitious Plane 5

Subproblem

Figure 2.1: The experimental set-up.

Near-field 1 ~ Near-field 2 Far-field

X-ray

:>V\/\/\'U A

Figure 2.2: The experimental set-up of the subproblem. Reprinted with per-
mission from [7]

6 Model Problem

Near-field 1 Neay-field 2 Far-fiel
Source plane Q

Figure 2.3: The simplified set-up with the imaginary source plane. Reprinted
with permission from [7]

are able to solve this problem the same procedure can be used to reconstruct
the whole sample based on measurements for different positions of the sample
as illustrated in Figure 2.1. In this thesis the aim will be to reconstruct the
intensity distribution at the source plane based on two spatial parameters de-
scribing the coordinates of the source plane, and two angular parameters which
will describe the angles, where the rays are emitted.

Each ray is emitted in a cone shape, therefore two angular parameters are nec-
essary. Reconstructing the source plane, based on the rays detected at the
three detectors, corresponds to a four-dimensional problem. So the General
Ray Tracing problem will produce four-dimensional projections, which can be
used to describe a six-dimensional problem. The six-dimensional problem arise
when the sample is rotated, so the projections can be used to reconstruct the
whole sample as shown in Figure 2.1.

The three CCD’s detect all the rays, which emit from the source plane and hit
the CCD’s. Each CCD is divided into a number of pixel, 2048 pixels in each
direction, and the rays are detected pixelwise. This means that the detections
by nature only have a discrete interpretation. The source plane contains a
continuous distribution of rays. To be able to solve the problem, the source
plane has to be discretized along with the angular coordinates. The number of
pixel, we divide the spatial and angular coordinates into is limited by memory
capacity, and therefore we have to choose a relative small amount of pixels.
The exact number will vary dependent on the specific experiment, and will be
mentioned in the sections dealing with the results of the reconstructions. What
will be fixed through the whole thesis is the distances between the source plane
and the detectors. The first CCD is placed 8 mm from the source, the second
CCD 18 mm and the third CCD will be placed 500 mm from the source. After
introducing this source plane just in front of the crystal we are now able to
describe and discretize the problem, so we are able to solve it using a sampling

2.2 Introducing the Fictitious Plane

method.

Model Problem

CHAPTER 3

Mathematical Model

To solve the problem numerically it is a necessity to discretize the problem. In
this section we will describe the continuous model along with the discretized
one and discuss the relevant aspects of noise in the problem setting.

3.1 Continuous Model

To formulate a mathematical model we have to make a detailed description on
how the rays are emitted and detected. Light is emitted from each point at
the source in a cone shape and then detected at several pixels at each detector
plane. The size of the radius in the circle at the end of the cone depends on
the distance between the source and the current detector plane. We assume the
detector planes are located, such that a straight line from orego of the source
with an angle equal to zero hits each detector plane in their orego as well. This
ensures the detector planes are not shifted. We also assume that the rays do
not loose intensity as they pass through the detectors. In this model we assume
that there is no blurring occurring at the CCD’s, when they detect the rays. In
Figure 3.1 the set-up behind the mathematical model is illustrated.

The intensity distribution function denoted f is dependent on four different
variables and lives at the source plane. The four variables are two spatial coor-

10 Mathematical Model

Source Near field 1 Near field 2 Far field

v2

t
(0
\ U3

Figure 3.1: Illustration of the problem set-up with two spatial coordinates.
Reprinted with permission from [7]

dinates (z,w), which describes the point where the light is emitted from and a
set of angles (¢, 0), where 6 describes the angle between the plane and the light
emitted, and ¢ the circle at the detectors. The variables are continuous and lie
within the intervals

w,z € [—0.5,0.5], ¢€0,2n], 0€][0,7/2]. (3.1)

To set up the model we look at one specific pixel on a specific detector k at a
certain time. The detection g corresponds to the rays coming from all points
on the source and detected at a specific pixel on a specific detector. This is
illustrated in Figure 3.2. The coordinates of the detectors are denoted (y*,t*).
Looking at just one ray emitted from one point at the source, and detected at
one pixel on detector k, the detection can be described by

02 o2
Agk(wi7zjayklvtkm) = / f(wiazj7¢)7 9)d¢d9 (32)
01 Jou
The parameters 61, 02, ¢1, ¢ correspond to the boundaries of integration for a
specific pixel on a detector plane. To find the total contribution of rays detected
on each pixel on detector k we add up all the rays emitted from each point on
the source.

w2 z2
gk(ykwtkm) = / / Agk(w7 zvykz’tkm)dZdw (33)
21

w1y

3.2 Discrete Model 11

The parameters w1, wa, 21, 22 correspond to the boundaries of integration for a
specific point on the source plane. This formulation of the continuous model will
be the basis of the derivation of the corresponding discrete model introduced in
next section.

3.2 Discrete Model

To discretize the problem such that a system of linear equations of the form
Ax = b is reached, the continuous model above will be used. First of all we
have to introduce a set of sub-pixels p x ¢, which will represent each pixel at
each detector. The reason for this is that in each pixel on the detector, rays hit
with different values of 6 and ¢. To separate these values, the pixels have to be
divided into sub-pixels - for further details see [7].

The intensity distribution function will represent the @ in the system, and there-
fore we start by discretizing this. The domains of the four variables have to be
discretized. The spatial coordinates are assumed to have the same grid resolu-
tion, Vs, in both directions, and the angular variables will have Ny and Ny grid
points respectively. The vector @ will represent the intensity distribution func-
tion f(w;, i, dm,0n), where 4,5 =1,... ., N;, m=1,..., Ny, andn=1,..., Np.
Adding this up will result in a z with number of element equal to N2 - Ny - N.

The data b consist of all the detections on each detector plane k. Each detector
has Ng x Ny pixels, so the total number of detections for the three detectors
add up to a number of 3 - N 3. Hence the right-hand side b will consist of
3- N; elements stacked as a vector. In the end this means that the system
matrix A will have the dimensions 3- N7 x (N2- Ny - Ny). Letting F be a four-
dimensional matrix of dimensions N, X Ny x Ng X Ny representing the discrete

Source

Detector

Figure 3.2: Illustration of the light emitted from the source and detected at one
pixel on one detector.

12 Mathematical Model

intensity distribution at the source and letting G be a two-dimensional matrix
representing the discrete detections at the detectors. Then equation (3.2) in
discrete terms will be expressed as

q p

AGk(wi, Zjayk”tkm) = h¢ - ho Z Z F(wi, Zj, b, 93). (3.4)

r=1s=1

Here hy and hg represent the grid spacing in the domains of the 8 and ¢. As
in the continuous case the total detection at each pixel for each detector is
expressed as a sum of (3.4) for all pixels at the source

N. N,
Gr(Yhis th,) = D Y AGK(wi, 25, Yk) (3.5)
i=1 j=1
N. N, g p
=33 hs-ho > > F(wi, z, b, 05). (3.6)
i=1 j=1 r=1s=1

Now we stack the columns of the intensity function F', so
x = vec(F). (3.7)

In the same way the right-hand side is formed by all the detections G stacked
in a vector. Since the right-hand side consists of three detectors and therefore
three detection matrices G, these have to be stacked in terms

b, = vec(Gy). (3.8)

Then in the end the three vectors by will be stacked to result in one right-hand
side b of dimensions 3 - N7 x 1. The model matrix A is constructed by running
through all unit vectors and then the detections will become the columns of A.
So in the end we reach a system of linear equations Ax = b, which we are able
to solve using a sampling method.

One important aspect of the discretization is of course the errors that occur due
to discretization. These errors are related to grid spacing, the finer the grid
the smaller discretization errors. As mentioned earlier the dimensions of the
detectors are 2048 x 2048 in the physical set-up, but we do not need to work
with full scale dimensions to understand the problem. Working with the full
scale resolution would imply long computation times and large use of memory
- this will be illustrated in Section 6.5. This discrete model introduced contains
two spatial dimensions. Later in this thesis we will deal with a simplified model
with one spatial coordinat. The model related to the simpler problem will be
described in Chapter 6.

3.3 Noise 13

3.3 Noise

When working with simulated data it might be tempting to do the introductory
calculations with noise free data. But in this thesis where we want to solve the
inverse problem using a sampling method, working in a noise free environment
is not a good idea and not realistic. The details about why it is not a good idea
will be discussed further in Chapter 5. For all types of noise we can assume
that there exist an exact solution £®*#°*. Then there is a corresponding right-
hand side b%®t = Ax*at which will be noise free. Then the model for the
right-hand side will be

b= bexact + e, where bexact — Awexact’ (39)

where e € R™ will be a vector representing the noise in the data. We will work
with two types of noise in this thesis and they will now be introduced.

3.3.1 Gaussian Noise

Gaussian noise also referred to as Gaussian White Noise is based on the er-
ror term e described by a Gaussian distribution with zero mean and standard
deviation p. The expected value of the noise is defined as

E) =0, E(el3) = um. (3.10)

This only holds if the elements in e € R™ come from the same Gaussian distri-
bution with zero mean and standard deviation pu.

One important aspect of data containing noise is that if A is ill-conditioned
then the naive solution = A~1b is very sensitive to errors on data - see [1] for
further explanation.

3.3.2 Poisson Noise

When modelling real world problems, noise is an important aspect. Since the
data is based on a real physical experiment, there will always be noise on data.
With the physical set-up in mind a realistic type of noise on the simulations
could be Poisson noise. Poisson noise is often used, when a finite number of
particles carrying energy, in this case rays, are detected as intensity. Opposite
from Gaussian white noise, Poisson noise only depends on one parameter. If data

14 Mathematical Model

follows a Poisson distribution the i’th component of the data can be written as
bi ~ P2, i=1,...,m. (3.11)

The mean and variance will then be £(b;) = b5**°* and V(b;) = b**" respec-
tively. When the Poisson noise is represented as above, it is hard to control
the proportionality factor between data and noise. From the experiments it is
known that the relative noise level is approximately 10 %. The relative noise
level (RNL) is defined as the norm of the error divided by the norm of the exact
vector. Then the RNL for data will be expressed as

B Hb _ bexact||2

RNL = —post (3.12)

When we are specifying a certain level on Poisson noise, it is not as simple to
modify this level as in for instance Gaussian noise. The RNL is dependent on
the level of intensity in the exact solution. Therefore to change the RNL, it
is necessary to multiply the solution with a constant c. So rescaling the data
bexact — cpexact will be the first step in finding the RNL, which corresponds to
the RNL in the experiments. Looking at the norm, the same constant is used
|Bexact||, = ¢||bact||y. This result will help us later in finding the constant
c. We know that in this set-up the expected value of the error level can be
expressed as

E(llell3) = 167 (3.13)

See [7] for further details. We are now able to find the expected value for RNL
as

exac 12
E(lels) _ fooeety

E(RNL) = Sal . 3.14
() g(||bexact||2) ||bexact||2 ()
Likewise we can find the expected value for RNL
=~ E(lells) _ velpee
E(RNL) = > o) = E(RNL). (3.15)
E(||bexact|,) cl|bexact ||y Ve

Using this we can find the constant ¢, so the RNL will be approximately 10 %.
So for instance if we want to reduce RNL with a factor 2, we have to multiply
our data with 22.

CHAPTER 4

Discrete Inverse Problem

In this chapter the underlying theory used throughout this thesis will be de-
scribed. There will be a short introduction to the concept of inverse problems
and different tools used in relation to.

4.1 Inverse Problems

An inverse problem covers the set-up, where some external knowledge is known
- though often in a noisy version and the aim is to recover some internal or
”hidden” data. The phenomenon arises in different fields of science, to mention
a few - medical, geophysics and astronomy. A well-known example of an inverse
problem can be reconstructing a sharp image from a blurred version. This
problem is not trivial to solve, due the ill-posedness of the problem. This will
be described in further details in this section. Inverse problems can take both
a continuous and a discrete form. The continuous form can be expressed as a
Fredholm integral equation of first kind. Discrete inverse problem will be the
formulation we will be working with in this thesis. It is necessary to continue
with a discrete formulation of the problem, otherwise it is not possible to solve
using computer science. The discrete inverse problem is represented by the
linear system of equations Ax = b, where A € R™*" x € R™ and b € R™.
The vector b represents the right-hand side, which is the well-defined data often

16 Discrete Inverse Problem

containing noise. The matrix A is called the system matrix and it describes the
relationship between known data and the unknown factor. The unknown factor
is of course the vector x, which we wish to approximate. For convenience we
will often use the formulation, where A is square, so A € R"*"™ and «,b € R".
If m > n the system is overdetermined and the problem will be a least squares
problem defined as min || Az — b2, where A € R™*" ¢ € R™ and b € R™. If
m < n the system is underdetermined.

As mentioned above an inverse problem is categorized as an ill-posed problem.
This is concluded from the definition of well-posed linear problems stated by
Hadamard - see [1]. Hadamard’s definition says that a problem is well-posed if
the following three statements is fulfilled. Existence; the problem must have a
solution, uniqueness; there must be only one solution and stability; the solution
must depend continuously on the data. If one or more statements is violated,
the problem is ill-posed. If a problem is ill-posed, it is still solvable. The discrete
Picard condition defines, when the problem is solvable. This will be described
later in this chapter.

4.2 Singular Value Decomposition

One of the tools, which will be used to reconstruct test images using Monte
Carlo method is the Singular Value Decomposition - hereafter denoted SVD.
This tool can also be used to analyze the existence and the instability of the
solution. The SVD can be helpful for all finite-dimensional matrices and for a
matrix A € R™*™ with m > n it is defined as

n
A=USV" = wuov], (4.1)
i=1
where 3 € R™ ™ is a diagonal matrix with the singular values oy,...,0, in

the diagonal. These values is non-increasing, so o1 > 09 > ...0, > 0. The
matrix U € R™*" contains the left singular vectors as columns, so U =
(ug,us,...,uy), and similarly V' € R™*™ contains the right singular vectors as
columns, so V' = (v1,v2,...,v,). These matrices have orthonormal columns,
so the following holds

vlv=v'v =1 (4.2)

4.2 Singular Value Decomposition 17

Picard plot

10 T

G
0S¢ |u; bl |
% lublo
1o/
0 100 200 300 400 500 600

Figure 4.1: Picard plot representing the singular values and the SVD coefficients
of the matrix A.

4.2.1 Discrete Picard Condition

Now the SVD is introduced, but what can it be used for? It can be used to find
the solution of the inverse problem Ax = b. Looking at the formulation of the
naive solution for the case where A is square - derived in [1]

x=A'b= Z u(; V4, (4.3)
i=1 '

we notice two important aspects. One, that the right singular vectors v; seem to
have great impact on the solution. Two, that the fraction ulb is increasing due
to the descending singular values. So what happens when the singular values
level off due to rounding errors? The naive solution is dominated by noise, so
therefore the Discrete Picard Condition is introduced. If 7 is defined as the level,
where the singular values o; is leveled off due to rounding errors, the Discrete
Picard condition is satisfied as long as the coefficients |u] b| decay faster than
the singular values o; for the values larger than 7. This condition is often verified
by a so-called Picard plot, where the singular values are plotted along with the
SVD coefficients and the relationship between those two |ul b|/c;. If the values
of this fraction is starting to increase the Picard Condition is not satisfied any
more. A Picard plot is seen in Figure 4.1 and for further details see [1]. Often
the Picard plot is used to find the value 7, and then discard the rest of the SVD

18 Discrete Inverse Problem

coefficients after this value. Then the optimal solution is found in stead of the
naive solution. This is called the truncated SVD.

The theory behind the problem and some of its properties has now been dis-
cussed. SVD and the Discrete Picard Condition have mainly been described to
illustrate how the difficult solving an inverse problem is. The tools will not be
used in the analysis of the results in the thesis in Chapter 6 and 7, but they
are used in the introductory investigations in Appendix A. The introductory
investigations were conducted in order to get a basic understanding about the
problem and how the stochastic method behaved, when solving the problem.

CHAPTER 5

Sampling Methods

The main focus of this thesis will be on a stochastic method, which differs from
a deterministic method both in formulation and also the results are represented
in another way. The reason why the deterministic method is described is due to
the aim of using a hybrid of the two methods to solve an inverse problem. It will
be interesting to see if taking the best of the two worlds will result in a better
solution than using just one of them. Sampling methods is a method to statisti-
cally choose a subset of individuals (a sample) from a larger set (a population)
to describe characteristics of the whole population. The term sampling methods
cover many different methods, where the Simple Random Sampling is a simple
and widely used method. The idea is that each individual sample is chosen ran-
domly and has the same probability to be chosen through the whole sampling
process. Within this method we find the Monte Carlo method, which belong
to the class of sampling methods. In this chapter we will present a sampling
method in general terms and then describe how the method is implemented.

5.1 Monte Carlo Method

The reason why the Monte Carlo method belong to the class of sampling method
is that the method randomly generates solutions from a probability distribution

20 Sampling Methods

to simulate the process of sampling from an actual population. This probability
distribution has to be chosen wisely, since it has to correspond to the data we
have. This choice will be discussed later in this chapter and also in Chapter
6. The field of Monte Carlo methods covers different variations methods, to
mention a few: Simulated annealing, Genetic algorithms and Neighborhood
algorithm. In this section the mathematics behind the Monte Carlo method
will be described and the different variations of the method will be looked into.

We already introduced inverse problems in the deterministic form,
Ax =b, (5.1)

where b is the observed data and @ is the model parameters, which are not
observable. The inverse problem will be formulated in a stochastic form as the
relationship between model parameters and data and prior information. We will
work with a priori information in terms of a probability density function p, (x)
and an a posteriori information described as a probability density function p(x).
The relationship between these two densities is expressed as

p(x) = kps(x)L(x), (5.2)

where k is a normalization constant and L(z) is a likelihood function, which
describes the degree of fit between observed data b and predicted data using the
model . It is defined as

L(z) = pp(Ax). (5:3)

Here py is the prior probability density function describing the data. Alterna-
tively the misfit function S(x) can be used instead of the likelihood function.
Using the misfit function the problem becomes an optimization problem, and
then the exponential part of the likelihood function is avoided. The relationship
between these two functions is described as

L(z) = kexp(—S()). (5.4)

The baysian approach to this inverse problem is to describe the a posteriori
density, which contains all the information we have. The expression (5.2) refers
to the probability distribution that describes the solution to the inverse problem.

5.1.1 Probability Density

Now we know that the probability density describing the solution consists of the
prior probability function and the likelihood function. The likelihood function
often depends on the noise added to data, and therefore it is very problem

5.1 Monte Carlo Method 21

dependent. It will described later in this chapter, what likelihood function we
will use. The prior probability density describes the prior knowledge that we
have about the solution. It can be defined in two different ways. The first
is an explicit formula, which is often not available. The other method is by
defining a random process, whose output is different models all representing
pseudo random realization of the distribution p,(x). The latter will be explained
in further details later in this chapter. Sampling the a posteriori probability
density is more complex. One method of sampling the density is the extended
Metropolis algorithm:

Extended Metropolis Algorithm Given a random function V (), which sam-
ples the prior probability density p,(x) if applied iteratively:

) = v (z), (5.5)

and a random function U(0,1), which generates numbers in the interval
[0,1] and lastly a random function W, which iteratively generates the next
parameter vector (") from the current parameter vector (™ altogether
gives the algorithm:

. [LV(™)
x(™) otherwise
(5.6)

which asymptotically samples the posterior probability density ¢(x) =
kL(x)p(x), where k is a normalization constant.

This extended version only works if V' is irreducible and aperiodic. For furhter
details see [3]. The output of this method is then a probability density describing
the solution. Compared to a deterministic method where the solution is the
same no matter how many times you run the calculation, this method will end
up with slightly different densities, which all fits the observable data. Therefore
the analysis of the results will also differ from the deterministic one. Instead of
one solution the Monte Carlo method produce a finite large number of solutions.
How to visualize these solutions will be a main topic in Chapters 6 and 7. Now
the basic theory about the method is introduced, now it is time to get a closer
look at the different modules in the method.

5.1.2 Modules

The method can be divided into several boxes or modules. That helps to get an
overview over the method.

22 Sampling Methods

Starting Guess To start the method it needs a guess on the solution. This
starting guess has influence on how the method performs, and therefore is
this module essential. Using simulated data it is possible to use Texact as
starting guess. But of course this is not realistic, so alternatively a possible
sample from the prior distribution, or choosing a solution consisting of
zeros could be an option. Another idea is also to obtain a deterministic
solution to the problem and use that as starting guess.

Realization One of the most important modules is the module, where all the
realizations are made. A realization is a random generated guess on the
solution, which is sampled from the prior probability density. The real-
ization might be discarded, so it is not the same as a solution.

Misfit /Likelihood Function From each realization a value is calculated, ei-
ther using the misfit or the likelihood function. The value is calculated
based on the residual of the current model.

Accept Criteria Each realization is sent through the Accept Criteria mod-
ule. Here it is decided based partly on a random process partly on the
value calculated above, whether this realization is accepted to represent
the solution or it is rejected, meaning that it did not fit the a posteriori
probability density.

The implementation of the modules will be described in Section 5.3.1

5.2 Properties

Some of the properties of the Monte Carlo method have to be described into de-
tail to understand how to evaluate the method and the corresponding solutions.
As mentioned in the first module the starting guess has great impact on the be-
havior of the method. This can be verified by looking at a so-called misfit plot.
A misfit plot is all the values calculated in the misfit function corresponding to
accepted realizations shown as a function of the iteration numbers. In Figure
5.2 two misfit curves are shown representing the use of two different starting
guesses. We can conclude that when using the exact solution as starting guess
the misfit values level off after relative few iterations. Opposite, when using
a starting guess far from the exact solution the method needs many iterations
before the misfit values level off. The solutions corresponding to the iterations
before the values are leveled off should not be included when describing the
model, since these solutions is not on the right level yet. These iterations are
called the burn-in period - see [6]. This burn-in period tells us something about
how many iteration it takes to get to the solutions describing the model. What

5.2 Properties 23

Level of Misfit Functon o Level of Misfit Function

10t
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 2 4 6 8 10 12
tterations Hterations 10"

Figure 5.1: Two misfit plot corresponding to using @exact (left figure) and zeros
(right figure) as starting guess.

we also see from Figure 5.2 is that the value of the level, where the misfit values
stagnate, varies for different problems. This value is dependent on the num-
ber of solution variables and also on the number of degrees of freedom in the
problem.

5.2.1 Pros and Cons

In this section we will discuss some of the advantages and disadvantages by
using a sampling method to solve an inverse problem. It is an important dis-
cussion, since we want to construct a hybrid of the deterministic and stochastic
methods, and therefore it is important to take the best from the two worlds.
We want to focus on the advantages of using a stochastic method and one of
the most important ones is that the method is suitable for large-scale problems.
In a deterministic method it is impossible to avoid the use of the matrix A.
This matrix grows rapidly, when the problem dimensions increase. Therefore
deterministic solvers have a hard time dealing with large-scale problems. In a
stochastic method avoiding matrix multiplication is actually possible. In this
Monte Carlo method only a forward operation is necessary, and that can be
done without using the model matrix. This will be described in detail in 6.5.

One of the biggest differences between a deterministic and a stochastic method
is the way the solutions are processed and visualized. The stochastic method
find a huge number of possible solutions all fitting the observed data. These
solutions are not the optimal solution as the deterministic method finds. This
is illustrated in Figure 5.2. Using a deterministic solver the solution converges
toward the exact solution compared to using a sampling method, where many
solutions are computed and they converge to solutions close to the exact solution.
The solutions located in a cloud around the exact solution correspond to the

24 Sampling Methods

Figure 5.2: In the left figure some iterations are simulated corresponding to
for instance a CGLS solver and the right figure correspond to samplings of a
sampling method.

solutions after the burn-in period. The distance between these solutions and
the exact solution is dependent on the amount of noise on data. The more noise
in data the greater distance.

Another advantage of using a stochastic solver is the ability to utilize a priori
aspects. In physical experiment the scientists often have some prior knowledge
of some of the parameters and have an idea of how the solution might look like.
That kind of knowledge can be implemented in the method, so the realizations
fit the prior restrictions that you have specified. It is possible to implement
many types of restrictions.

You could see it as an disadvantage that the stochastic method does not converge
to the exact solution if data does not contain noise, but on the other hand you
have several solutions describing the errors within the solution. Again it is
important to mention that it does not make any sense to use noise free data
in this Monte Carlo solver. When a large amount of noise is added on data it
might be impossible to solve the inverse problem using a deterministic method
- see Chapter 4, and the method increases its performance as the level of noise
decreases. Using a stochastic method it works in the opposite way. The smaller
amount of noise the harder it is to find a density distribution describing the
solution. If more noise is added the distribution becomes smoother and easier to
find using the method. Of course putting too much noise on the data will imply
almost no restrictions on the solution and therefore the accepted realizations
can deviate a lot from the exact solution.

The ideal way to visualize the solutions is to show a video representing the
all solutions, but since this is not possible in a report, we must visualize in a
different way. One simple method is to find a mean solution of all the solutions

5.3 Our Method 25

after the burn-in period and show this as one solution. Then it is possible to
calculate relative errors and visualize the solution in a two-dimensional image.

5.3 Owur Method

Now the Monte Carlo method is described in general terms, but when it comes
to the actual implementation some choices have to be made. First of all, what
algorithm should handle the rejection. We have chosen to use the Extended
Metropolis algorithm, which is fairly simple.

Looking at the formulation of the likelihood function based on gaussian uncer-
tainties on the data described by a covariance matrix C

L(xz) = kexp —%(A:c -bTCc Az -b)|, (5.7)

where k is a normalization constant, we want to avoid working with the ex-
ponential function. We choose to calculate the degree of fit between data and
the realization by using the misfit function instead of the likelihood function to
avoid the exponential function. We assume that the uncertainties are indepen-
dent and identically distributed, therefore using equation (5.4) we get a misfit
function of form

_1]Az —b|?
) o2 '

S(x) (5.8)
Since the b is containing noise in the same magnitude as o, the value of the
misfit function will stay close to g, where f is the degrees of freedom.

When deciding what starting guess to use it gets a bit complex. Since we are
working with simulated data, it would be a good idea to start by using @cxact
as starting guess. That would give a good indication, whether the method
works or not. On the other hand with real world data you will never have
the exact solution, so it would not be an option. Therefore we choose to use
Texact aS starting guess to test the method and then afterwards use several other
starting guesses including a zero vector, the exact solution added noise and then
a deterministic solution to the problem. In this way we test the method and
also the robustness of it. The idea behind the latter is that the deterministic
solvers find a solution close to the exact within a few iterations and using that
it might decrease the burn-in period, resulting in fewer Monte Carlo iterations.

In the module where the realizations are produced the priori information decides
how they should be constructed. Therefore we actually make a choice how the a

26 Sampling Methods

priori information is represented. This is based on the knowledge we have on the
actual physical experiment. For instance we know that it is more likely that in
some of the angles 6 no rays are emitted. That can be taken into account, when
we model the a priori probability density function. The more restrictions we
have on our solutions the closer the realization will be at the exact solution. On
the other the hand Monte Carlo methods prefer as few restrictions as possible.

5.3.1 matlab Implemtentation

Starting with the most simple function, the misfit function. It is based on the
expression in equation (5.8) and in the code it is implemented as seen below

function S = misfit (b, x,A, sigma)
diff = Axx—Db;
S = 0.5%norm(diff) "2/sigma”2;

o represents the noise in data. The function where the realizations are made is
varying dependenting on the problem we look at. The most simple implemen-
tation is using a Gaussian prior, which perturbates the current solution. This
is implemented below

function x = realization (xcurr, s)
x = zeros (size(xcurr));

% Using simple Gaussian a priori
for ii = 1l:length(xcurr)

x(1ii) = xcurr(ii) + (2xrand—1)x*s;
end

Using the prior related to the restricted 6 values is more complex. Basically the
implementation is a detailed description of the prior information and based on
hard constrains.

Now we have the basic functions described and the algorithm itself needs to be
implemented. The Extended Metropolis Algorithm described in Section 5.1.1 is
implemented as below.

k = 0;
Scurr(l) = misfit (b,x0,A,sigma);
xcuur = x0;
for ii = 2:Nit
xtest = realization(xcurr,s);

Scurr(ii) = misfit (b, xcurr,A,sigma);

5.4 Noise within the Method 27

Stest = misfit (b, xtest,A,sigma);
% The next value is set to the previous value
Scurr(ii) = Scurr(ii—1);
% Acceptance
if Stest < Scurr(ii-—1)
xcurr = xtest;
Scurr (ii)=Stest;
else
Pa = exp(—(Stest—Scurr (ii—1)));
prob = rand;
if prob < Pa
xcurr = xtest;
Scurr (ii)=Stest;
end
end
X(:,11) = xcurr;
end

The implementation above is a simple version, where the a priori information is
not an input to the function realization. Here the prior information is chosen
to be the simple Gaussian prior. The more complex prior will be described,
while dealing with different test problems in Chapter 6 and 7.

5.4 Noise within the Method

The sampling method takes noisy data as input and use it to calculate the
residual for each realization constructed within the method. As we saw in the
function above, where the misfit value is calculated, a parameter representing
the noise level in data is used. So if the noise level in data is high, the misfit
value value decreases and the chance of accept increases. Therefore the sampling
method performs better this high levels of noise than the deterministic methods
do. When testing it is possible to give the method noise-free data, but it still
needs a parameter indicating how much noise there is on data. If the parameter
is set to zero, the algorithm will not function. Therefore it is possible to set the
parameter different from the actual noise on data. This will basicly means that
the method thinks there is noise in data even though the data might is noise-free.
The sampling method will not as discussed earlier find solutions satisfying the
noise-free data, but solutions with corresponding data lying a distance between
the exact data specified by the noise level parameter used in the misfit function.

Therefore we will always make sure that the parameter used in the misfit func-
tion correspond to the actual noise in data. In Chapter 6 and 7 test problems

28 Sampling Methods

are solved with different levels of noise, and we look at the consequences of the
noise levels.

CHAPTER 6

Two-dimensional Problem

Now all the theory behind the method and the discretization of the mathematical
model are described, and we can start solving the problem. Although it might
seem as the next step in the process, we will start by taking a step back and
focus on a simplified model. We simplify the mathematical model, so we only
work with one spatial coordinate and one angle instead of two. Based on the
aim of this thesis, which is to get a thorough understanding of the problem and
how it is solved used a sampling method, it makes sense to start simple. Then
we acquire some important knowledge, that can be used to solve the full four-
dimensional problem afterwards. This section will only deal with this simplified
model, and we start off by introducing it.

6.1 Simplified Model

The idea behind the simplified model is of course the same as in the full problem
and this idea is seen in Figure 6.1. One important aspect that we have to deal
with first is the range of the detectors and thereby the angle interval, which
covers the three different planes in the set-up. If a ray emitted from the source
is sent out with an angle, and it hits the edge of the first detector, it will not
hit the edges of the two other detectors. Therefore it is necessary to modify the
range of the detectors in order to obtain the maximum angle, the rays can have,

30 Two-dimensional Problem

Figure 6.1: Problem set-up with one spacial dimension.Reprinted with permis-
sion from [7].

when they emit from the source. The original values are seen in Table 6.1 along
with the modified ones, that will be used throughout this chapter and Chapter
7, when the simulation studies are performed.

Parameters for both laboratory and simulated set-up

dy do ds
Distance 8 mm 18 mm 500 mm
Laborator Range +1.54mm +4.61lmm +51.2mm
ADOTALOLY 4 e +0.25 +0.28 +0.10
Simulation Range Range +1.77mm +4.61lmm +141.39 mm
Omax +0.28 +0.28 +0.28

Table 6.1: Table of parameters for the laboratory set-up and the simulated
set-up.

After dealing with this issue we can now begin formulating the two-dimensional
model. Starting with the continuous case the intensity distribution function
is again denoted f and is dependent on the two variables w € [—0.5,0.5] and
0 €] — w/2,7/2[. For the specific spatial coordinate w rays are lead out in
different angles #. This rays are detected at detector k at the j’th pixel. The
total light intensity detected at this pixel is given by

Bena
o) =3 [sy, (6.1

found by the same principle as in Chapter 3. Again to reach to a problem of
system of linear equations Ax = b, we have to discretize the problem. The

6.2 Test Problems 31

spatial grid will be divided into N,, equidistant grid points and likewise the
angular grid will be divided into Ny equidistant grid points. Then F', the
discrete intensity function, will be of dimension N,, X Ny. The detections Gy
will be of dimension NZ," dependent on which detector k. This means that each
detector can have an individual number of grid points. As in the problem with
two spatial dimensions the final step is then to stack both F' and G in column
vectors & and b and construct the model matrix A by doing a forward operation
with unit vectors.

6.2 Test Problems

As described in Section 5.1.2 the Monte Carlo method is using a Gaussian
prior, which simply adds a perturbation based on a Gaussian distribution to
the previous solution. In Appendix A some basic tests are done using this prior
information. The idea is to experiment with the implementation to obtain basic
knowledge from this simple set-up. From the results we saw that finding the
solutions close to the exact solution might be hard or even impossible. Therefore
using all the information about the actual physical set-up might improve the
efficiency of the method. We aim to formulate the prior, so realizations will be
fairly close to the exact solution.

At first the prior knowledge is based on an assumption about §. This assumption
is of course consistent with what might be possible in the actual set-up. The
assumption is described by defining a fixed number of discrete 6 values, where
w is still uniform distributed. For each # there is an intensity along the w-axis.
In this first attempt only one € value is chosen. In practice this means that for
all pixels on the source the rays are only emitted in one direction.

When setting up the simulation we have to construct an exact solution corre-
sponding to one # value. When performing the experiments we choose to focus
on three types of variation in the intensity. We start simple with the intensity
being constant, then slowly varying it and then in the end a random intensity.
The latter is actually the most likely outcome of real data. Three different
exact solutions are seen in Figure 6.2, where the three intensity outcomes are
represented.

What we wish to implement as our prior is the information about the discrete 8
value, which is represented in the realizations. The method does not know what
this one value of @ is, therefore we give as prior information what we think it is.
We choose to specify an interval of three pixels, where the value of is possible
to be located. So the 6; of the realization is produced with one of the values

32 Two-dimensional Problem

Intensity: const Intensity: vary Intensity: rand

5 10 15 20 5 10 15 20 5 10 15 20
0 0 0

Figure 6.2: Exact solution corresponding to three types of intensity and one
discrete 8 value.

0;_1,0;,0;11 with the same probability % This way the value of 6 cannot take
all possible values and thereby the solutions are restricted. We let the intensity
perturbate using the gaussian perturbation described in Section 5.3.1.

Since we started by choosing a simple exact solution we now increase the number
of columns e.g. the number of discrete # values, that are present in the exact
solution. We choose to look at four different 6 values and as above we choose
the prior to restrict each value to three possible values. The exact solutions are
seen in Figure 6.3. It is simply the same intensity in the spatial coordinate, but
now the rays are sent out in four different angles.

Intensity: const Intensity: vary Intensity: rand

5 10 15 20 5 10 15 20 5 10 15 20
6 0)

Figure 6.3: Exact solution corresponding to three types of intensity and four
discrete 6 values.

6.2.1 Strained lattice

In the previous test problems the assumption about the crystal lattice has been,
that the grains were perfect orientated within the lattice. To make the simula-
tions more like the real set-up, we now look at a strained lattice. We still assume,
that the rays are emitted more likely in a some angles than others, but instead
of a ray emitted in just one angle, we now consider that due to the strained

6.3 Reverse Ray Tracing 33

Intensity: const Intensity: vary Intensity: rand

5 10 15 20 5 10 15 20 5 10 15 20
0 0 0

Figure 6.4: Exact solution corresponding to three types of intensity and one
discrete 0 value.

lattice rays are spread out on a number of neighbor angles. In Figure 6.4 an
example of the above described is shown. We notice, that the intensity is the
same for all angles in the same neighborhood. This is of course a simplification,
but good enough to illustrate the problem.

Since the test problem is now described by one 6 value and a varying number
identical neighbor values, we have to modify our prior as well. We modify it,
so instead of perturbating the 6 value in a fixed interval, we now denote two
parameters, 6 and (3, which will be used to find the index of # and the number of
angles the ray is spread out on. The 6 value describes the mean value of the value
of 6. The second parameter describes the mean value of the number of neigbor
angles related to the same intensity. To avoid the values to be negative the two
parameters are both described by a lognormal distribution. The procedure is
to find the 6 value from a lognormal distribution In A/(#, 02) and the number of
angles, the ray is spread out on, also from a lognormal distribution In V'(3, o'2).
The standard deviation o is chosen to be identical to error on data used, when
finding the misfit value.

As in the procedure with the test problems with one value of 6 in the previous
section, we now modify the problem, so instead of working with one discrete 6,
we illustrate the problem with four values of 8. This is more realistic and also
a more complex problem. The test problems with different intensities are seen
in Figure 6.5. We use the same prior as when only one angle was used with the
lognormal distributed parameters.

6.3 Reverse Ray Tracing

When doing the forward calculation we exploit the geometry in the experiment.
The distances between the detectors and the source along with the maximum

34 Two-dimensional Problem

Intensity: const Intensity: vary Intensity: rand

5 10 15 20 5 10 15 20 5 10 15 20
0 0 0

Figure 6.5: Exact solution corresponding to three types of intensity and four
discrete 6 values.

angle of 6, the sizes of the detectors and sources, summarized in Table 6.1, are
used when doing the calculation. Based on the same procedure it is possible to
construct a reverse ray tracing algorithm, which given the detections eliminates
angle pairs and coordinates at the source, which cannot describe the data. The
way to construct the reverse ray tracing algorithm is to start at the far-field
detector. Choosing one detection on the detector and another detection at the
second near-field detector, a line can be drawn between them. Then the pair of
angles can be found based on the straight line through the two detections. Then
it is possible to check if this straight line hits the first detector in a detection
and if it does, whether it hits the source. So a straight line hitting detections
at all detectors and still end up in the source, can then describe a possible ray
emitted from the source. Repeating this test through all detections we find
a distribution in the source, which then describes which pixels at the source,
the cones most likely emit from. This information will be used both as prior
information and as starting guess. The reconstructions using this starting guess
to the inversion method will be shown in the next section and in Chapter 7 in
the section, where the results are discussed.

6.3.1 Revers Ray Tracing in Two Dimensions

Looking at the simple test problem with one value of w and one value of 6,
we try to use the reverse ray tracing function to determine which pixels on the
source, the light can be emitted from to generate the specific data. This result
is illustrated in Figure 6.6, where the exact distribution of w and 6 is seen along
with the one found by the reverse ray tracing algorithm. It shows that only
two values of 0 can be obtained to fulfill the detections. In the w-direction it
seems that several values of w fulfill the data. The exact data is seen in Figure
6.7 along with the data corresponding to the source distribution found by the
reverse ray tracing. The reconstructed data covers the pixels, where the exact
data is detected. The intensity is higher, but that is due to the higher number

6.4 Results 35

Exact Reverse Ray Tracing

Figure 6.6: Result of the reverse ray tracing algorithm along with the exact test
problem.

of active pixels on the source. Based on a source with more light emitted the
intensity detected will also be higher. Now we have both a possible starting
guess and a distribution of active source pixels, which can be used as prior
information.

In this chapter we will mainly use the reverse ray tracing algorithm in relation
to a possible starting guess, but in Chapter 7 it will play a more important role.

6.4 Results

In the previous section we described some test problems and their corresponding
prior that we want to use with our Monte Carlo simulation. In this section we
will analyze the results of the method along with the burn-in period as a function
of starting guess. We will mainly focus on using @eyxact and a deterministic
solution as starting guess. To compare the different solutions a relative error
is calculated, based on an average solution described later in this section. This
will along with the solution visualized, give a good indication, whether the
reconstruction is acceptable or not. Based on different levels of noise and step
lengths we will hopefully find some patterns in the errors on the reconstructions.

6.4.1 Single Ray in each Direction

To start simple we look at the case with one value of € being nonzero and
constant intensity along the w axis. We choose to look at different levels of

36 Two-dimensional Problem

Detector 1
20 T T T T
2 Exact data
2 101 Rec Data ||
g
0 | | | I | | | |
0 20 40 60 80 100 120 140 160 180 200
Pixel index
Detector 2
40 T T T T
> Exact data
2 ook Rec Data [/
g
0 . . . I |
0 20 40 60 80 100 120 140 160 180 200
Pixel index
Detector 3
40 T T T
2 Exact data
2 ooh Rec Data ||
o
0 . . . I |

20 40 60 8l 100 120 140 160 180 200
Pixel index

o

Figure 6.7: The corresponding data detected at the three detectors.

Noise level 0.1 001 [1-107¢ 1-1078
Rel. error | 0.1836 | 0.1495 | 0.0014 | 2.4586 - 10"
s 5.10% [3-.10° | 1-107 5.1013

Table 6.2: The relative errors on the solution, the corresponding noise level and
step length s using Teyact as starting guess.

Poisson noise. As described in Section 3.3, this is a realistic type of noise in
this problem. We want to see what influence the noise level in data has in the
reconstructions. When using @oyxact as starting guess, the reconstructions seen
in Figure 6.8 is obtained. We can conclude along with the values in Table 6.2
that for the data containing a high level of noise (0.1,0.01) the reconstructions
are further away from the exact solution, than when adding small amounts of
noise. When using data containing small amounts of noise, we can see from
the misfit plot in Figure 6.10, that the acceptance rate in the method is very
low. Actually it is around 1 percent. This is verified by the theory, which states
that when a small amount of noise is added, the distribution of the solution
narrows, making it very hard to find a distribution for the solution using the
Monte Carlo method. The method rejects almost all realizations, because the
residual becomes large. This verifies that the Monte Carlo method performs
best with a significant amount of noise on data. The reason for the low relative
error is that the exact solution is used at starting guess, so the realizations are
not accepted if they are too far away from the exact solution.

6.4 Results 37

Exact Solution 0.1 Poisson noise 0.01 Poisson noise

5 10 15 20 5 10 15 20 5 10 15 20

0.0001 Poisson noise 1e-08 Poisson noise

5 10 15 20 5 10 15 20

Figure 6.8: Exact solution along with four reconstructions with different levels
of Poisson noise on data, and using ®eyac; as starting guess.

Adding noise to data means that we add noise on each detector. This is illus-
trated in Figure 6.9 with 10 % Poisson noise added to data.

If we look at the misfit plots in Figure 6.10, we see that the level of the misfit
values is close to 10. If the level was smaller it would be problematic, since the
solutions should not be the exact solutions but a distance corresponding to o
away. We can also conclude that the burn-in period is very short with the first
three levels of noise. This is due to the use of @exact as starting guess.

We have now analyzed one test problem and seen that the method solved the
problem as expected. It would be interesting to see how the method behaves,
when another starting guess is used. We continue our experiments with the same
test problem, but just using a deterministic solution as starting guess instead.

We have chosen to look at the three deterministic methods Kazmarcz (ART),
Cimmino and Conjugate Gradient Least Squares (CGLS). In Figure 6.11 the
solutions from the three methods after 20 iterations are shown. We see that
especially the CGLS method seems to make a good reconstruction. The deter-
ministic methods perform well due to the constant intensity. The last figure
shows a weighted mean, which is used as a starting guess to the stochastic
method.

Using this starting guess we get the reconstructions visualized in Figure 6.12

38

Two-dimensional Problem

x 10* Detector 1
of T T T T .
= Exact data
2 —— Data with noise
o 1f g
=
0 L L o~ | TN . L .
0 20 40 60 80 100 120 140 160 180 200
Pixel index
x 10" Detector 2
o T T T T .
2 Exact data
2 Data with noise
g 1r]
= /\
0 . . . L
0 20 40 60 80 100 120 140 160 180 200
Pixel index
x 10* Detector 3
o T T T T .
2 Exact data
2 ——— Data with noise
c 1r 1
=
0
0 20 40 60 80 100 120 140 160 180 200
Pixel index

Figure 6.9: Data on the three detectors along with the noisy version, when 10

% noise is added.

10° T T T

Level of Misiit Function

Level of Misiit Function

5
Herations

Level of Misfit Function

5 6 7 8 o 10
terations.

Level of Misiit Function

Figure 6.10:

5
terations

5 ©
terations. Y10*

Misfit functions for different levels of noise on data and using the

exact solution as starting guess. Top left: 10 % Poisson noise, top right: 1 %
Poisson noise, bottom left: 1-1072 % Poisson noise and bottom right: 1-107°

% Poisson noise.

6.4 Results 39

Exact Cimmino

5 10 15 20 5 10 15 20

Mean

5 10 15 20 5 10 15 20

Figure 6.11: Three deterministic solutions and a weighted mean of those along
with the exact solution.

Noise level 0.1 001 [1-100%]1-10°8
Rel. error | 0.3716 | 0.2973 | 0.0091 | 0.0087
s 5.10% [3-.10° | 1-108 1-10%6

Table 6.3: The relative errors on the solution, the corresponding noise level and
step length s using a deterministic solution as starting guess.

and the relative errors in Table 6.3. We see that the relative errors increase
marginally, and from the burn-in periods in Figure 6.13 we can conclude that
with this test problem the difference in the results using different starting guesses
is small. This is due to the deterministic solution, which is very close to the
exact solution. We need to investigate the results, when using more complex
problems to make any conclusions. We also see that the level, where the misfit
values level out is approximately the same as using the exact solution as starting
guess.

Now we want to use the solution from the reverse ray tracing algorithm described
in 6.3 as starting guess. As above we use four different levels of Poisson noise
and the results are seen in Figure 6.14 and 6.15 and Table 6.4. We see that the
reconstructions are acceptable also with this starting guess.

What would be interesting to look at, is whether the burn-in period is dependent

40

Two-dimensional Problem

Exact Solution

0.0001 Poisson noise

0.1 Poisson noise 0.01 Poisson noise

5
10
15
20

5 10 15 20

1e-08 Poisson noise

5 10 15 20

5 10 15 20

Figure 6.12: Exact solution along with four reconstructions with different levels
of Poisson noise on data, and using a deterministic solution as starting guess.

Level of Misfit Function

Level of Misit Function

B
terations

Level of Misfit Function

8 B 10 o 1 2 3 4 5 6 7
Y10* terations, Y10"

Level of Misfit Function

10 T T T T T T T

NI

10° . . . L L .
@ 5 6

terations.

8 9 10 o 1 2 3 5
terations. Y10t

Figure 6.13: Misfit functions for different levels of noise on data and using a
deterministic solution as starting guess. Top left: 10 % Poisson noise, top right:
1 % Poisson noise, bottom left: 11072 % Poisson noise and bottom right:
1-107% % Poisson noise.

6.4 Results 41

Exact Solution 0.1 Poisson noise 0.01 Poisson noise

5 10 15 20 5 10 15 20 5 10 15 20

0.0001 Poisson noise 1e—-08 Poisson noise

5 5

10 10
15 15

20 20

5 10 15 20 5 10 15 20

Figure 6.14: Exact solution along with four reconstructions with different levels
of Poisson noise on data, and using a deterministic solution as starting guess.

Noise level 0.1 001 [1-107¢% 1-10°8
Rel. error | 0.6467 | 0.2410 | 0.0026 | 3.5535-10~ "
s 7-10%2 | 7-10° | 1-107 1-101

Table 6.4: The relative errors on the solution, the corresponding noise level and
step length s using a deterministic solution as starting guess.

42

Two-dimensional Problem

Level of Misfit Function

Level of Misfit Function

10 10
10°
10" 1
10°
”
10*
10° 1
10°
107 10"
o 1 2 3 5 10 0 5 7 8 9 10
terations «10' lterations «10'
R Level of Misfit Function . Level of Misfit Function
10 10
10’ 1 10"
10° 1 10%
10° 1 10°
10 1 10°
”
10° 1 10°
10° 1 10"
2 {"'W"WWWWWMWWW W
i] - W
107 107

5
lterations

B
terations x10*

Figure 6.15: Misfit functions for different levels of noise on data and using a
reverse ray tracing as starting guess. Top left: 10 % Poisson noise, top right: 1
% Poisson noise, bottom left: 1-10~2 % Poisson noise and bottom right: 1-1076

% Poisson noise.

6.4 Results 43

Exact Solution 0.1 Poisson noise 0.01 Poisson noise

5 10 15 20 5 10 15 20 5 10 15 20

0.0001 Poisson noise 1e-08 Poisson noise

5 10 15 20 5 10 15 20

Figure 6.16: Exact solution along with four reconstructions with different noise
levels on data, and using Texact as starting guess.

Noise level 0.1 001 [1-1071 1-10°8
Rel. error | 0.1393 | 0.1397 | 0.0014 | 4.5585-10~7
s 5-107] 3.10° | 1-107 5-1013

Table 6.5: The relative errors on the solution, the corresponding noise level and
step length s using @exact as starting guess.

on the complexity of the test problem. We can modify our test problem with
both the intensity and the number of discrete 6. First we focus on the intensity.
Looking at the reconstructions of the problem with slowly varying intensity
in Figure 6.16, we see that the reconstructions are further away from the exact
solution. This is verified by the relative errors in Table 6.5. Only the error, where
the noise level is 10~8, seems to decrease. Though looking at the corresponding
misfit plot in Figure 6.17, we see that acceptance rate is very low compared to
the other misfit plots in the figure. This is due to the small amount of noise
in data. Since o is very small, the misfit values will often be extremely large,
and therefore the realizations will often not be accepted. But if a realization is
accepted, it is most likely because it is very close to the exact solution. Therefore
we have a small relative error. From the misfit plots in the figure, we can see
that the burn-in periods are relatively short.

Again we want to compare these results with the results using a different starting
guess. This time the deterministic solutions are not as close to the exact, so we

44

Two-dimensional Problem

Level of Misfit Function

Level of Misiit Funcion

0 F 4 10f 4
107 . . . L 107 L L . . . L
o 1 2 3 5 6 7 8 9 10 o 5 7 8 9 10
Herations Y10* terations. Yo'
, Level of Misfit Function ., Level of Misfit Function
10 10
10! 10 4
10° 4 10" 4
107 10"
o 1 2 3 B 7 s B 10 s 6 7 8 o 10
terations Y10* terations. Y10*

Figure 6.17: Misfit functions for different levels of noise on data and using the
exact solution as starting guess. Top left: 10 % Poisson noise, top right: 1 %
Poisson noise, bottom left: 1-1072 % Poisson noise and bottom right: 1-1076
% Poisson noise.

6.4 Results 45

Exact Cimmino

5 10 15 20 5 10 15 20

Mean

5 10 15 20 5 10 15 20

Figure 6.18: Deterministic solutions and the starting guess used.

Noise level 0.1 0.01 1-1074[1-10°8
Rel. error | 0.2402 | 0.2198 | 0.0224 | 0.0217
s 5.10% | 3-.10° | 5-10° 5-1014

Table 6.6: The relative errors on the solution, the corresponding noise level and
step length s using a deterministic solution as starting guess.

might expect different results - see Figure 6.18. The reconstructions, the errors
and the misfit plots are seen in Figure 6.19, Table 6.6 and Figure 6.20. As
expected the burn-in periods increased for the two cases with lowest amount of
noise present. It makes sense, that the burn-in period increases with complexity.

Continuing with analyzing the results, the next step is to increase the number
of discrete angels, 6, to four. We look at the problem with random intensity.
We have now seen that, how the method deals with different levels of noise.
When a small amount of noise is added, the relative error decrease. In these
simulations the solution methods are able to handle low amounts, but it is also
possibility that the realizations are not accepted at all. We will see examples
of that in the next chapter. Therefore we now look at the same noise level, 10
%, which we know is a realistic level, with two different type of noise, Gaussian
and Poisson noise The reconstructions are seen in Figure 6.21 and 6.22 using
the exact solution and a deterministic solution respectively. The corresponding

46

Two-dimensional Problem

Exact Solution 0.1 Poisson noise 0.01 Poisson noise

5 10 15 20

0.0001 Poisson noise 1e-08 Poisson noise

5 10

15 20 5 10 15 20

Figure 6.19: Exact solution along with four reconstructions with different noise
levels on data, and using a deterministic solution as starting guess.

Level of Misfit Function Level of Misit Function

7 8 B 10 o 1 2 3 4 5 6 7 8 o 10

B
terations Y10* terations, Y10"

Level of Misfit Function Level of Misfit Function

10 T T T T T T T

Figure 6.20: Misfit

terations. Y10t terations. Y10t

functions for different levels of noise on data and using a

deterministic solution as starting guess. Top left: 10 % Poisson noise, top right:

1 % Poisson noise,

bottom left: 1-1072 % Poisson noise and bottom right:

1-10=% % Poisson noise.

6.4 Results 47

Exact Solution 0.1Gaussian noise

0.1Poisson noise

Figure 6.21: Exact solution along with four reconstructions with different noise
levels on data, and using the exact solution as starting guess.

Noise type | Gaussian | Poisson

Noise level 0.1 0.01

Rel. error 0.4964 0.4581
s 5-10% 1-10°

Table 6.7: The relative errors on the solution, the corresponding noise level and
type, and step length s using Texact as starting guess.

errors are found in Table 6.7 and 6.8 and with the deterministic solution used
as starting guess in Figure 6.24. Omne important thing to notice about the
deterministic solutions is how bad the reconstructions are compared to the case
with constant intensity. This also affects the relative errors. The misfit plots
are found in Figure 6.23 and 6.25 using the exact solution and a deterministic
solution respectively. As the number of 0 increases, it is obvious that the relative
error increases and also that the relative errors using the deterministic solution
as starting guess are higher than when using ®exact- We see that the burn-in
period is still relatively short. The burn-in period is very dependent on the
choice of step length s. If s is small, the burn-in period becomes large, but if s
is too big, the method might find solutions too far away from the exact solution.

48 Two-dimensional Problem

Exact Solution 0.1Gaussian noise

5 10 15 20

0.1Poisson noise

5 10 15 20

Figure 6.22: Exact solution along with four reconstructions with different noise
levels on data, and using a deterministic solution as starting guess.

Level of Misfit Function Level of Misfit Function

10"
o 1 2 3 4 6 7 s B 10 o 1 2 3 4 6 7

5 s 8 o 10
terations Y10* terations.

x10'

Figure 6.23: Misfit functions for different types of noise. Left Gaussian noise
and right Poisson noise using the exact solution as starting guess.

Noise type | Gaussian | Poisson

Noise level 0.1 0.1

Rel. error 0.7408 0.5905
s 5-10* 1-10°

Table 6.8: The relative errors on the solution, the corresponding noise level and
type, and step length s using a deterministic solution as starting guess.

6.4 Results 49

Exact Cimmino

5 10 15 20 5 10 15 20

Mean

5 10 15 20 5 10 15 20

Figure 6.24: Deterministic solutions and the starting guess.

Level of Misfit Function) Level of Misft Function
10 T T T T T T T T T 10* T T T T T T T T T

@ 10'f

5 3 4 5 3
lerations Y10t Hterations Y10t

Figure 6.25: Misfit functions for different types of noise. Left Gaussian noise
and right Poisson noise using a deterministic solution as starting guess.

50 Two-dimensional Problem

Exact Solution 0.1Gaussian noise

5 10 15 20 5 10 15 20

0.1Poisson noise

5 10 15 20

Figure 6.26: Exact solution along with two reconstructions with different noise
on data, and using the exact solution as starting guess.

Noise level 0.1 0.1
Rel. error | 0.2116 | 0.2143
s 5.103 1-10%

Table 6.9: The relative errors on the solution, the corresponding noise level and
type, and step length s using the exact solution as starting guess.

6.4.2 Multiple Rays in each Direction

As described in Section 6.2.1, when the crystal lattice is compressed each ray
will be spread out on a number of neighbor angles. Using a test problem where
the rays are spread out on two values of # will now be analyzed. As in the section
above we start simple and then increase the complexity. Using constant intensity
for one ray and the exact solution as starting guess gives the reconstructions
seen in Figure 6.26. Again the stochastic method seems to be able to reconstruct
the exact solution. Looking at the errors in Table 6.9, we can conclude that the
relative errors increase compared to the problem where the ray is represented
by only one value of §. The misfit plots in Figure 6.27 with 10 % noise has a
short burn-in period, as we saw earlier.

6.4 Results 51

Level of Misfit Function Level of Misfit Function

Figure 6.27: Misfit functions for different types of noise. Left Gaussian noise
and right Poisson noise using the exact solution as starting guess.

Noise type | Gaussian | Poisson

Noise level 0.1 0.1

Rel. error 0.2225 0.2384
s 5-103 1-10*

Table 6.10: The relative errors on the solution, the corresponding noise level,
noise on the method and step length s using a deterministic solution as starting
guess.

Now we want to compare the results by using a deterministic solution as starting
guess. The reconstruction is seen in Figure 6.28. Along with the errors in Table
6.10 and the misfit plots in Figure 6.29 we see that the errors increase, but the
burn-in period still remains short.

Increasing the number of columns as in the previous section is the next step. By
doing that we expect a reconstruction further away from the exact solution, as
the problem gets more complex. Looking at Figure 6.30 and Table 6.11 we see
that the quality of the reconstruction using a deterministic solution as starting
guess decreases. Also using Teyact as starting guess results in increase relative
errors and reconstructions further away from the exact solution - see Figure 6.32
and Table 6.12. The burn-in periods in Figure 6.31 and 6.33 are still very short
with this high level of noise. The rest of the simulations are not included, since
the results did not vary much from the ones already shown. The results of the
reconstruction were similar with the ones in the previous section just marginally
worse, and the relative errors were slightly higher.

Summing up on the results we noticed some important aspects of the method.
First of all it seems that the method is sensitive towards the choice of starting
guess regarding the length of the burn-in period. General for using a Monte
Carlo simulation is that it can be hard to find the solutions lying close to the

52 Two-dimensional Problem

Exact Solution 0.1Gaussian noise

0.1Poisson noise

Figure 6.28: Exact solution along with two reconstructions with different noise
on data, and using a deterministic starting guess.

Figure 6.29: Misfit functions for different types of noise. Left Gaussian noise
and right Poisson noise using a deterministic solution as starting guess.

Noise type | Gaussian | Poisson

Noise level 0.1 0.1

Rel. error 0.5623 0.4710
S 1-10% 1-10%

Table 6.11: The relative errors on the solution, the corresponding noise level,
noise on the method and step length s using a deterministic solution as starting
guess.

6.4 Results

53

Exact Solution

0.1Gaussian noise

0.1Poisson noise

Figure 6.30: Exact solution along with five reconstructions with different noise
levels on data, and using a determistic solution as starting guess.

Level of Misfit Function

Level of Misit Function

25
terations

Figure 6.31: Misfit functions for different levels

25
lerations

of noise on data and using a

deterministic solution as starting guess. Top left: 10 % Poisson noise, top right:
1 % Poisson noise, bottom left: 11072 % Poisson noise and bottom right:

1-10-% % Poisson noise.

54 Two-dimensional Problem

Exact Solution 0.1Gaussian noise

0.1Poisson noise

Figure 6.32: Exact solution along with two reconstructions with different type
of noise on data, and using the exact solution as starting guess.

Noise type | Gaussian | Poisson

Noise level 0.1 0.1

Rel. error 0.3933 0.4878
s 5-103 1-10%

Table 6.12: The relative errors on the solution, the corresponding noise level,
type of noise and step length s using the exact solution as starting guess.

Level of Misit Function Level of Misiit Funcion

25 3 £ 4 a5 5 o 05 1 15 2 25
Hterations 10 terations. c10t

Figure 6.33: Misfit functions for different types of noise. Left Gaussian noise
and right Poisson noise using a deterministic solution as starting guess.

6.5 Forward Calculation 55

exact solution, what we call the solutions after burn-in period. Of course the
starting guess has a great influence on how easily we find these solutions. There-
fore it is very important to choose a starting guess with care. The amount of
noise we add on data also plays a huge role in the reconstructions. As we saw
in the first reconstruction, when the ray is only spread out on one 6 value the
burn-in period increased as the noise level decreased. This is due to the char-
acteristic of the Monte Carlo method. When a small amount of noise is added
the density distribution of the solution can be very hard to find.

Also it was clear that increasing the complexity, decreased the quality of the
solution. This is obvious of course, but still problematic, since the problems we
solve are fairly simple and using the real world data imply a much more complex
problem. One last thing to mention is the step length s. It contributes to length
of the burn-in period. If we choose a small step length the burn-in period will
be large, because it takes more iterations to reach realizations, which describes
the solution. The step length also indicates how many of the realizations, which
are accepted. The smaller the step length the more realizations accepted. Using
Monte Carlo simulation we always aim for a reasonable acceptance rate, often
between 30-60 % - see [2].

6.5 Forward Calculation

As mentioned in Section 5.2.1, one of the advantages of using a stochastic
method is the possibility of avoiding the multiplication with the matrix A.
Each time a misfit value is calculated, the residual || Az — b||5 is also calculated.
So a multiplication with model matrix A happens twice in every Monte Carlo
iteration. The size of A as described in Section 2, is based on the size of the
detectors and the discrete grid we divide the source plane into, so the size of
A is Ny x N, x 3N,. This means that N = Ny x N,, = 3Ny, when we want
to look at a square matrix of dimensions N x N. When the grid is refined,
the construction of the model matrix will be very time consuming. In Figure
6.34 the computation times are shown for both the matrix calculation and the
forward calculation without matrix. It is possible to calculate the detection
at each pixel at each detector, when the intensity distribution is known. The
realization containing some discrete values of 6 different from zero will then be
used to find the corresponding detections on the three detectors. In this way
the residual can be found without use of the matrix A.

A linear regression in a loglog scale is performed. It is important to notice, that
the computation times decrease, when calculating A continually, for the first
couple of N’s. This is due the behavior of built-in MATLAB functions. Similarly

56 Two-dimensional Problem

the same calculation is done for the capacity, each method requires in Figure
6.35. We see that when N grows, the computation time of constructing A
also increases with O(N?). This is verified by the MATLAB code in Appendix C,
where the matrix A is constructed. Running through all unit vectors and detec-
tor pixel we obtain Ny x N,, X 3Ny4. Inside this loop 30N,, flops are performed,
and it can be approximated as constant - N? flops.

When the matrix A is computed the multiplication Ax is not very time con-
suming. This is illustrated in Figure 6.36. We see that constructing the matrix
is very time consuming. Therefore it is important to consider if you need to
construct various A matrices or just a few. If you only need one A it might be
a good idea to construct it and then use the simple modification. But using the
matrix is only a possibility, when the problem is not large-scale.

6.5 Forward Calculation 57

Computation Times Computation Times

10000 10

———
P
8000
T - 10°
6000 E
=
g 4000 5 L
F 210
2000
o ‘ 107
0 5000 10000 15000 0 5000 10000 15000
N N
" Computation Times
10
2
fg 10 Arx
e Aon the Fly
8
10»2 2 3 4 5
10 10 10 10
log(N)
" Computation Times
10
10° | E
10° + E
5 = = = Function Comp=4.2122e-05N"962%
£ 101 [A*x
E . _ 1.0113
4 P Function Comp=3.3187e-05N
- A on the Fly
10° | 1
10" E
1075 — " 5
10 10 10 10
log(N)

Figure 6.34: Computation times. Top figure shows the data in a linear, loga-
rithmic and double logarithmic plot. The bottom figure shows the regression of
the data.

58 Two-dimensional Problem

x 10° Capacity o Capacity
4 10
3 I
R
(%] Q
£, s |
@ S 4
9 10
1
0 107
0 5000 10000 15000 0 5000 10000 15000
N N
s Capacity
10
6 _—
% 10 _— .
i X
o // A on the Fly
= 4
S 10
102 2 3 4 5
10 10 10 10
log(N)
; Capacity
10
10°} E
w
g 5
g 10°} E
=3
o
10°F = = = Function Cap=226.5413N"%%? |
A*x
Function Cap:lGN1
—— Aonthe Fly
103 1 1
10° 10° 10* 10°

log(N)

Figure 6.35: Capacity. Top figure shows the data in a linear, logarithmic and
double logarithmic plot. The bottom figure shows the regression of the data.

6.5 Forward Calculation 59

Computation Times

— Calculating A
A*x
A on the Fly

Time (sec)

10 10 10 10

Figure 6.36: Computation times in double logarithmic plot for both the the
function, which creates the matrix, the multiplication Ax and the forward cal-
culation without A.

60

Two-dimensional Problem

CHAPTER 7

Four-dimensional Problem

In the previous chapter we made a thorough analysis of a simplified problem of
the mathematical model described in Section 3.2. We acquired knowledge about
the importance of starting guesses, prior information, step length and noise level
on data. We now want to conduct a similar analysis on the four-dimensional
problem. Again we need to define some test problems based on simulated data,
so we can evaluate the performance of the method. As in previous chapter,
the procedure will be to investigate the problems of increasing complexity. In
the end a complex problem is considered, in order to explore the robustness of
the method and also see if the method can be used for more than just simple
test problems. The visualization will be different, since the solution will be a
four-dimensional matrix. Still we will use a mean of all solutions as a measure
of the quality of the method.

7.1 Test Problems

As in Chapter 6 with one spatial dimension we dealt with a couple of well-
defined test problems. In this larger problem we can use some of the aspects
we explored in the simplified problem, the burn-in period, the noise sensitivity
etc. Since each exact solution is represented by the four-dimensional array F',
it is not as simple to visualize as in the simpler case. If we imagine a simple

62 Four-dimensional Problem

Foxact from (9,6) Fexact from (z,w)

1
2
3
4
5
6
7
8
9

Figure 7.1: Test problem with one active pixel on source where one cone of light
is emitted with no variation in the ¢. Cross sectional plots corresponding to the
spatial coordinates (5,5) in the left figure and the pair of angles (5,10) at the
right figure.

First detector Second detector Far field detector

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 7.2: The corresponding data detected at the three detectors.

case, where one cone of light is emitted from one point on the source plane, it
can be visualized in different ways. One way is to make cross sectional figures
of different layers of this cone, this is illustrated in Figure 7.1. In the image to
the left we see a cross section in the (¢,) direction and it is clear that only one
value of € is nonzero and that there is no variation in ¢. This is verified by the
constant intensity along ¢. The image to the right represents a cross section of
the layer at the source, so there we see that light is only emitted from one pixel
on the source.

The corresponding data, which is detected at the three detectors is seen in
Figure 7.2.

This simple test problem gives rise to many other test problems. We can increase
the number of discrete 6 values, the number of active pixels on the source and
change the variation in ¢. Taking it from a realistic point of view, ¢ will most
likely not have a constant intensity along the cone. It will often consist of
different blobs of intensity along the circle on each detector. When ¢ is not

7.1 Test Problems 63

Fexact from (6,0) F from (z,w)

exact

Figure 7.3: The corresponding data detected at the three detectors.

constant it might look like what is illustrated in Figure 7.3. In this example the
variation in ¢ is identical for the two cones of light. This is not always the case.

To investigate the robustness of the method it is not enough to look at different
test problems. It is also necessary to adjust the modules related to the method.
From the previous chapter we discovered how much impact the starting guesses
have on the outcome of the stochastic method. Therefore it is essential to use
several starting guesses. The exact solution will be used to verify the that the
method actually works, and then afterwards we will not use the exact solution as
starting guess, since it will not be available, when dealing with real experimental
data. We want to show that the method can solve the inverse problem using
a starting guess consisting of zeros. But also using a deterministic solution, a
solution obtained with the reverse ray tracing calculation and a combination of
the last two as starting guess will be tested.

Another important aspect which arises from the knowledge of the scientists
conducting the experiments is the variation in ¢. Since the most realistic case is
that ¢ is varying, it is important that our method can handle this. Besides the
starting guess we want to investigate how the methods perform with different
choices of prior information. We can choose a wide prior distribution, where the
distribution of active source is unknown, but we can also utilize the knowledge,
we obtain using the reverse ray tracing algorithm about which pixels on the
source the rays are most likely emitted from. From the function we obtain a
possible distribution of active pixels on the source, which we can convert into
prior information.

We then have a supported guess on which pixels, we think, the rays are most
likely emitted from. In Figure 7.4 the distribution achieved by using the reverse

64 Four-dimensional Problem

Fexact from (z,w) F ay from (z,w)

T

Figure 7.4: Distribution of pixels at the source and the output from the reverse
ray tracing algorithm.

ray tracing is seen. This will be used as prior, when there is no variation along
¢. When we work with variation along ¢, it might not be enough to specify the
possible distribution of pixels at the source found by reverse ray tracing algo-
rithm. Later in this chapter we investigate the performance of the method if the
active pixels on the source are known and used as prior information. We build
our prior as hard constraints on the problem. As the simple prior in Chapter
6 we construct the prior so it perturbates on the intensity. In this chapter we
deal with four parameters that variate namely w, z, ¢, 8. So it randomly chooses
between the parameters and then updates on the current intensity.

Using the reverse ray tracing algorithm on the test problems, we obtain a start-
ing guess, where several angle pairs are possible, but since we know the dis-
tribution of discrete 6 values, some can be neglected. Therefore we implement
an extra prior information, when we use the starting guess obtained from the
reverse ray tracing algorithm. This prior indicates that all other 8 angles than
the discrete ones specified as prior knowledge should be set to zero.

7.2 Results

As in the previous chapter we discuss the results, when we show them. Again
we start simple and then advance in complexity. Starting with the simple test
problem shown in the previous section we use different starting guesses, which
it comprehensive. We start by using Zexact as starting guess to verify if the
method works. In Figure 7.5 a cross sectional plot is seen for the simple test
problem with 10 % Gaussian noise and using the prior information from the
reverse ray tracing to find a distribution of the active pixels on the source. The

7.2 Results 65

F from (¢,8) Fopt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
o U

Fexacl from (z,w) FOpl from (z,w)

Figure 7.5: Cross sectional plot from the point (5,5) and the angle pair (5,5)
USing Texact and 10 % Gaussian noise.

relative errors for this test case, with no variation in ¢, are summarized in Table
7.1.

The method seems to be able to solve the problem using the exact solution as
starting guess. We will now show its performance using other starting guesses,
starting with a deterministic solution. We have used the solution after 20 itera-
tions with an ART method as the starting guess. The reconstruction, which we
will use as starting guess is seen in Figure 7.6. We see that the method is able
to reconstruct the discrete 6, but the distribution at the source is more blurred.
The reconstruction are seen in Figure 7.7 and Figure 7.8 with 10 % and 1 %

Noise level 0.1 0.01
Rel. error on solution | 0.0896 | 0.0072
Rel. error on data 0.0866 | 0.0049
Step length 5-105 | 5.10°

Table 7.1: The relative errors on the solution and the corresponding data based
on a mean of all solutions, the corresponding step length s using the Teyact as
starting guess.

66 Four-dimensional Problem

F from (¢,6)

FDpt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
¢ ¢

F exact from (z,w) Fop‘ from (z,w)

Figure 7.6: Cross sectional plot from the point (5,5) and the angle pair (5,5)
showing the deterministic solution for both 10 % Gaussian noise.

Noise level 0.1 0.01
Rel. error on solution | 0.5585 | 0.5790
Rel. error on data 0.4020 | 0.3657
Step length 5-107 | 1-108

Table 7.2: The relative errors on the solution and the corresponding data based
on a mean of all solutions, the corresponding step length s using a solution
found by ART method as starting guess.

Gaussian noise respectively. The relative errors are summarized in Table 7.2.
Along with the reconstructed data seen in Figure 7.9 we can conclude that the
using this starting guess, the Monte Carlo solutions are not close as close to the
exact solution as when using ®exact as starting guess. But the reconstruction is
still better than using only the deterministic solution, described in [7]. Looking
at the misfit plot in Figure 7.10 we see that the burn-in period is very short
even though we look at the low level of noise on data..

The idea of the reverse ray tracing algorithm is to exploit another starting guess,
which is reasonable. Taking this simple test problem and using the reverse ray
tracing to find a starting guess, we use this to get the reconstructions seen in
Figure 7.11

So far we have used starting guesses, which are relatively close to the exact

7.2 Results 67

F from (¢,8) Fopt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
o U

Fexacl from (z,w) FOpl from (z,w)

Figure 7.7: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using an ART solution as starting guess and 10 % Gaussian noise.

solution. Using a starting guess far away from the solution will tell us more
about the robustness of the method. Therefore we choose to look at the case,
where the starting guess consists of zeros. The reconstructions using this starting
guess are illustrated in Figure 7.12 and 7.13. The relative errors in Table 7.3
show that using 1 % noise in data results in a smaller relative error. It is
important to notice, that using zeros as starting guess, we approach the exact
solution more than when using the deterministic solution to the problem as
starting guess. This might be due to the exact solution, which consists of only
a small number of nonzero elements. Looking at the misfit plots in Figure
7.14 we see that the burn-in period is significantly longer, than when using the

Noise level 0.1 0.01
Rel. error on solution | 0.5126 | 0.0820
Rel. error on data 0.4498 | 0.0340
Step length 1-10% [1-10°

Table 7.3: The relative errors on the solution and the corresponding data based
on a mean of all solutions, the corresponding step length s using a solution
found by ART method as starting guess.

68 Four-dimensional Problem

F from (¢,6) FOpt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
0 ¢

Fexact from (z,w) FOpt from (z,w)

Figure 7.8: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using an ART solution as starting guess and 1 % Gaussian noise.

deterministic solution as starting guess. It makes sense, that when the starting
guess is far away from the exact solution, the burn-in period is longer.

In Figure 7.15 a histogram of three parameters are seen. Each histogram corre-
spond to looking at the same index on all Monte Carlo solutions. This illustrates
the distribution of intensities. The corresponding three parameters from ZTeyact
are 3944019, 1578531 and 3944019. We see that each histogram are centered
around these three values. This also verify that looking at the mean value of all
solutions make sense.

Finally we try to combine the deterministic solution and the starting guess using
the reverse ray tracing algorithm. It might decrease the number of iterations in
the burn-in period, which is always an issue. The reconstructions are seen in
Figure 7.16 and 7.17.

All the experiments so far has been based on the prior information obtained
by the reverse ray tracing algorithm. Tests are also done with a wider prior
information. This time the distribution of active pixels on the source consists of
a equal probability of all pixels on the source. The results from the experiments
are seen in Appendix B. In general the relative errors increase a bit, and the

7.2 Results 69

First detector Second detector Far field detector

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

First detector Second detector Far field detector

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
First detector Second detector Far field detector

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

First detector Second detector Far field detector

25
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 7.9: Data when using an ART solution as starting guess. Left figure
correspond to 10 % Gaussian noise on data and right, 1 %.

70 Four-dimensional Problem

Level of Misfit Function
T T T

297 |

102%)]

10291]

10291

1025}

10297}

102 85|

283

10

.
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 7.10: Misfit plot from the Monte Carlo inversion using zeros as starting
guess and 10 % Gaussian noise in data.

F from (¢,6) FOpt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
0 ¢

Fexact from (z,w) FOpt from (z,w)

Figure 7.11: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using the output from the reverse ray tracing function as starting guess and 10
% Gaussian noise.

7.2 Results 71

F from (¢,8) Fopt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
o U

Fexacl from (z,w) FOpl from (z,w)

Figure 7.12: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using zerosas starting guess and 10 % Gaussian noise.

burn-in periods increase as well.

72 Four-dimensional Problem

F from (¢,6) FOpt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
¢ ¢

Fexact from (z,w) FOpt from (z,w)

Figure 7.13: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using zeros as starting guess and 1 % Gaussian noise.

Level of Misfit Function
4
10 T T T

10
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations

Figure 7.14: Misfit plot from the Monte Carlo inversion using zeros as starting
guess and 1 % Gaussian noise in data.

7.2 Results

73

27805th parameter

1000
500 I 1
0
15 2 25 3 35 4 4.5 5 55 6
Intensity x 10°
28115th parameter
400 T T T T
200
0
0 0.5 1 15 2 25 3
Intensity x 10°
48430th parameter
500 T T

1.5 2 25 3 35 4 4.5 5 55 6
Intensity x 10°

Figure 7.15: Histogram showing the distribution of three parameters of the
Monte Carlo solutions obtained, when using 10 % Gaussian noise and zeros as

starting guess.

F from (¢,8) FopI from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
¢ 0

Fexact from (z,w) FOpt from (z,w)

Figure 7.16: Cross sectional plot from the point (5,5) and the angle pair (5,5)

using an ART solution as starting guess and 10 % Gaussian noise.

74 Four-dimensional Problem

F from (¢,0) Fopl from (¢,0)

exact

5 10 15 20 25 5 10 15 20 25
¢ ¢

FemCt from (z,w) FOpt from (z,w)

Figure 7.17: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using an ART solution as starting guess and 1 % Gaussian noise.

7.2 Results 75

F from (¢,8) Fopt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
o U

Fexacl from (z,w) FOpl from (z,w)

Figure 7.18: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using zeros as starting guess and 10 % Gaussian noise.

7.2.1 Variation along ¢

So far we have used the prior knowledge, that there was no variation along ¢.
This is not a fully realistic assumption. It would be more reasonable to allow
variation along ¢. Most likely there will appear a kind of clustering of intensity
along ¢. First we will look at the same problem as in the previous section,
but now variation along ¢ is allowed. Starting with the results using zeros as
starting guess the reconstruction is seen in Figure 7.18. From a quick glance at
the reconstruction it is clear to see, that the inversion method does not obtain
a solution as close to the exact as in Figure 7.12. By decreasing the noise in
data, the reconstruction improves, but still the reconstruction is not acceptable
- see Figure 7.19.

In Appendix B it is obvious that using this prior, the method does not find
the solutions close to the exact one, no matter which starting guess we use. It
seems, that there are too many unknown parameters. Therefore we have to add
more prior knowledge to the method. Instead of using the distribution of active
source pixel obtained from the reverse ray tracing algorithm, we specify the
active pixels on the source as prior information. Looking at the reconstruction
in Figure 7.20, it improves significantly.

76 Four-dimensional Problem

F from (¢,6) FOpt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
0 ¢

Fexact from (z,w) FOpt from (z,w)

Figure 7.19: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using zeros as starting guess and 1 % Gaussian noise.

Using the other starting guesses the same results appear. But when using the
ART solution, it seems that the realizations are not accepted, when there is 1
% mnoise on data - see Appendix B. When the noise level is low, the error on
data, when finding the misfit value is low as well. This means that the chance
of acceptance decreases. Here the error on data is so low, that no realization
is accepted. As discussed earlier the Monte Carlo method performs best, when
the noise on data is high, and we see that in this case.

Now we want to add a pixel on the source, a # value and introduce variation
along ¢ in the test problem as described in Section 7.1. Since the results using
the deterministic solution as starting guess sometimes gives bad results we look
at the results using zeros as starting guess. The reconstructions are seen in
Figure 7.21 and 7.22. The reconstructions along with the errors in Table 7.4 tell
us, that the method performs well. It is still based on a very small prior, which
might not reflect the actual knowledge we have about the problem. Looking at
the data corresponding to the reconstruction with 1 % noise in data in Figure
7.23, we see that the solutions describe the data very well.

If we for instance look at the results using the ART solution as starting guess,
we see that the method perform slightly worse, see Figure 7.24 and 7.25 and the

7.2 Results

77

F from (¢,0)

exact

5 10 15 20 25
¢

Fexact from (z,w)

5

FOm from (¢,6)

10 15 20 25
¢

FOpt from (z,w)

Figure 7.20: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using zeros as starting guess and 10 % Gaussian noise.

Noise level 0.1 0.01
Rel. error on solution | 0.5761 | 0.1482
Rel. error on data 0.7742 | 0.0872
Step length 1-107 | 710°

Table 7.4: The relative errors on the solution and the corresponding data based
on a mean of all solutions, the corresponding step length s using a solution

found by ART method as starting guess.

78 Four-dimensional Problem

F from (¢,6) FOpt from (¢,6)

exact

5 10 15 20 25 5 10 15 20 25
0 ¢

Fexact from (z,w) FOpt from (z,w)

Figure 7.21: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using zeros as starting guess and 10 % Gaussian noise.

data in 7.26.

From the rest of the results seen in Appendix B, we can conclude, that the re-
constructions with variation in ¢ are further away from the exact solutions, than
the ones without variation. That is due to the increased number of parameters
that the Monte Carlo method has to perturbate on. Even though the number
of Monte Carlo iterations increase significantly the solutions do not come any
closer to the exact solution.

7.2 Results 79

exact

F from (¢,0) FOm from (¢,0)

5 10 15 20 25 5 10 15 20 25
¢ ¢

Fexact from (z,w) FOpt from (z,w)

Figure 7.22: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using zeros as starting guess and 1 % Gaussian noise.

First detector Second detector Far field detector

25
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

First detector Second detector Far field detector

25
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 7.23: Top: exact data. Bottom: data based on the reconstruction from
using zeros as starting guess and 1 % Gaussian noise.

80 Four-dimensional Problem

F from (¢,0) Fopl from (¢,0)

exact

5 10 15 20 25 5 10 15 20 25
¢ ¢

FemCt from (z,w) FOpt from (z,w)

Figure 7.24: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using a deterministic solution as starting guess and 10 % Gaussian noise.

7.2 Results 81

exact

F from (¢,0) FOm from (¢,0)

5 10 15 20 25 5 10 15 20 25
¢ ¢

Fexact from (z,w) FOpt from (z,w)

Figure 7.25: Cross sectional plot from the point (5,5) and the angle pair (5,5)
using a deterministic solution as starting guess and 1 % Gaussian noise.

First detector Second detector Far field detector

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

First detector Second detector Far field detector

25
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 7.26: Top: exact data. Bottom: data based on the reconstruction from
using a deterministic solution as starting guess and 1 % Gaussian noise.

82 Four-dimensional Problem

Fexacl from (¢,0) F from (z,w)

exact

Figure 7.27: Complex problem with no variation in ¢. Cross sectional plot seen
from the point (5,5) and the angle pair (1,10)

7.3 Complex Problem

So far we have only focused on simple test problems, and now we want to
extend the experiment with a more complex test problem. The test problem
will describe many cones coming out from several pixels on the source. It will
also be described with many 6 values corresponding to several cones of light
emitted from each pixel. We again start off by dealing with a test problem
without variation in ¢ and it is illustrated in Figure 7.27.

To illustrate how the stochastic method deals with the more complex problem
we have chosen to look at the result using Toxact as starting guess. Looking at
the reconstruction in Figure 7.28 for 10 % noise and Figure 7.29 for 1 % noise.
In both figures, a video showing every 50’th Monte Carlo solution can be found.
These videos gives a clear idea about how the stochastic method works. Where
the solutions changes the most is also where the largest error is present in the
solution.

From this experiment it is obvious that dealing with this complex problem
adding 10 % noise on data gives the methods room to manoeuvre, meaning that
realizations are accepted even though they might be far away from the exact
solution. Looking at the data for both values of the noise level in Figure 7.30 and
7.31 we see that the solutions corresponding to the high level of noise does not
describe the data very well. Even though we use the exact solution as starting
guess, it has too few restrictions, so the Monte Carlo method allows solutions
far away from the exact solution.

Now we want to see how the method deals with another starting guess. Due

7.3 Complex Problem 83

F from (¢,0) FOpt from (¢,6)

exact

10

15

5 10 15 20 25 5 10 15 20 25
¢ o

Fexac[from (z,w) FOpt from (z,w)

Figure 7.28: Reconstruction with no variation in ¢ and using ®cxact as start-
ing guess. Cross sectional plot seen from the point (5,5) and the angle
pair (1,10) with 10 % Gaussian noise. Video showing some of the solutions:
http://www.youtube.com/watch?v=B0gN4VVUHAk&feature=youtu.be

http://www.youtube.com/watch?v=B0gN4VVUHAk&feature=youtu.be/

84

Four-dimensional Problem

F from (¢,0)

exact

10
15

20

]
o

25
5 10 15 20 25
¢

FexaCt from (z,w)

FOpt from (¢,0)

5 10 15 20 25
¢

Fopt from (z,w)

Figure 7.29: Reconstruction with no variation in ¢ and using @eyxact as start-
ing guess. Cross sectional plot seen from the point (5,5) and the angle
pair (1,10) with 1 % Gaussian noise. Video showing some of the solutions:
http://www.youtube.com/watch?v=5VHQtxDWjc&feature=youtu.be

http://www.youtube.com/watch?v=5VHfQtxDWjc&feature=youtu.be/

7.3 Complex Problem 85

First detector Second detector Far field detector

5

10

15

20

25
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
First detector Second detector Far field detector

5 25
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 7.30: Data with no variation in ¢ and 10 % Gaussian noise and using
Texact aS starting guess. Video showing some of the corresponding data solu-
tions: http://www.youtube.com/watch?v=4C7ZrtCBGTc&feature=youtu.be

First detector Second detector Far field detector

5

10

15

20

25
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
First detector Second detector Far field detector

10
15
20
25

10
15
20

L)
-

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 7.31: Data with no variation in ¢ and 1 % Gaussian noise and using Texact
as starting guess. Video showing some of the corresponding data solutions:
http://www.youtube.com/watch?v=ueu35HTdHsw&feature=youtu.be

http://www.youtube.com/watch?v=4C7ZrtCBGTc&feature=youtu.be/
http://www.youtube.com/watch?v=ueu35HTdHsw&feature=youtu.be/

86 Four-dimensional Problem

Fexact from (¢,6) FOpt from (¢,6)
5 5
10 10
D D
15 15
20 20
25 25
5 10 15 20 25 5 10 15 20 25
o o
FexaCt from (z,w) FOpt from (z,w)

Figure 7.32: Reconstruction with no variation in ¢, with 1 % Gaussian
noise and using zeros as starting guess. Cross sectional plot seen from the
point (5,5) and the angle pair (1,10). Video showing some of the solutions:
http://www.youtube.com/watch?v=SfMadGyPXCc&feature=youtu.be

to the results above, we will only focus on the case, where 1 % noise is added.
We will start off by choosing the starting guess consisting of zeros. The corre-
sponding reconstruction and data is seen in Figure 7.32 and 7.33 along with the
videos showing the solutions. From the relative errors in Table 7.5 we see, that
even though the error in the solution is large, they are still describing the data
almost equally as well, when using @eyact as starting guess. From the video, we
can see that the point (5,5) at the source in the reconstructions, is always of
high intensity. That pixel is affecting the corresponding data in a way, such that
the data does not differ much from the true data. So even though each solution
is far away from the exact solution, it still might results in a small residual in
the stochastic method.

Summing up on the results we have seen that the method seems to be able to
find reasonable solutions. The performance of the method has shown to be very
affected by the prior information given to the method. When more restrictions
were imposed on the method, the outcome were closer to the exact solution. In
this chapter we focused at two levels of noise in data. It did turn out, that with
1 % noise on data the Monte Carlo method did perform well. As mentioned in

http://www.youtube.com/watch?v=SfMa4GyPXCc&feature=youtu.be/

7.3 Complex Problem 87

First detector Second detector Far field detector
5
10
15
20
25 2!
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
First detector Second detector Far field detector
I'.- =
5 5
10 10
15 15
20 20
2510 25 25
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 7.33: Data with no variation in ¢, with 1 % Gaussian noise and using
zeros as starting guess. Video showing some of the corresponding data solutions:
http://www.youtube.com/watch?v=3TIqUKH30KA&feature=youtu.be

Noise level | Rel. error on solution | Rel. error on data | Step length
0.01 1.1629 0.2571 10°

Table 7.5: The relative errors on the solution and the corresponding data based
on a mean of all solutions, the corresponding step length s using a solution
found using zeros as starting guess.

http://www.youtube.com/watch?v=3TlqUKH3oKA&feature=youtu.be/

88 Four-dimensional Problem

Section 5 the sampling method prefers high level of noise.

We also saw that the method was able to solve even the more complex problems.
Especially when there were no variation along ¢, the method was able to locate
the pair of angles. When it comes to the spatial variation, the method allowed
more variation far from the exact solution. This is due to the properties about
the far-field detector - also described in [7].

CHAPTER 8

Conclusion

The aim of this thesis was to understand the mathematics behind a physical
experiment and use that knowledge to construct a problem, which was solved
using a stochastic method. Also experimenting with a hybrid of both a stochastic
and a deterministic method was an important aspect of the thesis. The hybrid
part was basically that a deterministic solution to the inverse problem was a
good starting point for the stochastic method.

We found that the stochastic method was able to solve the different simple
test problems dependent on noise level, starting guess and prior. The prior
information given to the model had a great influence on the performance of
the method. The Monte Carlo method thrives with few restrictions, but when
adding many restrictions it approaches the exact solution.

When a complex problem was considered it was easier to see, how the method
actually performed. From the videos it was shown, where the intensities varied
the most and where they seemed constant. When looking at the solutions the
angular variation was much better described than the spatial one. As mentioned
in the previous chapter, that is due to presence of the far-field detector. Basically
it does not relate to the actual stochastic method, but to the physical set-up.

The method implemented turned out to be quite robust, it was able to find
solutions describing the data from all kinds of starting guesses. Even though

90 Conclusion

zeros were used as starting guess it found solutions describing the data. The
burn-in period was affected by the choice of starting guess, the noise level and the
complexity of the problem. We saw that when using a deterministic solution to
the problem as starting guess the burn-in period was relatively short compared
to using zeros.

We have seen that the Monte Carlo method can be used to solve this inverse
problem based on a diffraction problem. We have analyzed the results and the
performance of the stochastic method. We have also shown that the determin-
istic solution can be used to decrease the burn-in period.

8.1 Future Work

Working in MATLAB we often experience limitations in capacity and computa-
tion availability, when working with large-scale. The test problems used in the
four dimensional problem were not full scale. The grid on the source could be
refined, which would increase the dimensions of problem. Then the computa-
tions would be impossible to perform in MATLAB due to lack of computation
capacity. One of the obvious steps to take after this thesis is to implement the
algorithm in another language. It is also a possibility of combining the actual
implemented MATLAB code with code implemented in C with using the mex-
compiler in C. This was also an issue in this thesis, but due to limitations of
time, it was skipped.

Focusing on the actual stochastic method many improvements could be con-
sidered. In the part concerning the prior information other aspects could be
considered. It might be possible to include more knowledge about the actual
experiment. Also it would might improve the method to play with other ac-
cept criteria. For instance the step length was fixed, but it might improve the
performance of the method if the step length was adaptable. It could also be a
possibility to use other stochastic methods. Investigations could reveal if they
are more suitable for this specific problem setting.

This physical problem has been treated as a general ray tracing problem, and
the model described in Chapter 3 was based on that. It has shown that this
model has some weaknesses, mainly that the spatial variation was hard to detect.
Therefore it might increase the efficiency of both a deterministic and a stochastic
solution if another model was chosen to describe the problem. A model that
was able to handle the spatial variation better.

APPENDIX A

Introductory Investigations

To acquire some understanding about how the Monte Carlo inversion deals with
a problem, which is based on materials science, some simple tests are done.
The experiments consist of several test images with blobs of varying sizes and
intensities. The aim is now to find the resolution limit for each test image,
that is to find for instance the maximal distance between blobs, where the
reconstruction is still possible. The tests are made with the following images,
see Figure A.1

To investigate if the distance between two blobs plays a role, when reconstructing

T

5 10 15 20 5 10 15 20 5 10 15 20

Figure A.1: 4 different test images used to find resolution limits.

92 Introductory Investigations

No No
Exact Solution noise Exact Solution noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Gaussian Poisson Gaussian Poisson
noise noise noise noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Figure A.2: First test image with two distances with 1 % Gaussian noise and
0.2 % Poisson.

we have looked at the image corresponding to the first image in Figure A.1 with
two equally sized blobs. In real tests we will not have the exact data, so therefore
we are test with data containing noise, that is Gaussian distributed noise and
Poisson noise. This test will also be able to give an indication about how robust
the method is. If it is very sensitive so small changes in the noise level the
method is not that robust.

The algorithm it self is based on the simple implementation of a Monte Carlo
method described in Section 5.3. It uses a SVD transformation to transform A
and b into the right domain, so the Monte Carlo method is able to solve the
problem. Therefore it is of course necessary to make a corresponding transform
to the output of the algorithm. Also since the system is underdetermined, it is
necessary to add a null space to the solution. The ensures that the solution is
in the right solution space.

Solving this problem using only a small noise level, that is 0.01 % for the Gaus-
sian noise and 0.002 % for the Poisson noise a reconstruction is generated in
Figure A.2. We see that the reconstructions are good, but again the noise level
is also very low. We therefore in Figure A.3 start with changing the level of
Poisson noise to 0.01 % and see that the noise is more present. Adding more
noise, we see that at the solutions start to be dominated by noise - see Figure A.4
and Figure A.5. It seems that the image with Gaussian distributed noise makes
better reconstructions. Thinking about how the method works, it makes sense
that it handles Gaussian noise better than Poisson noise. The perturbations in
the method actually is based on a Gaussian distribution.

Looking at the second test image with two blobs of different size, we see some
of the same results - in Figure A.5. From the figure we can conclude that

93

No No
Exact Solution noise Exact Solution noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Gaussian Poisson Gaussian Poisson
noise noise noise noise

15

20
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

N
S

Figure A.3: First test image with two distances with 1 % Gaussian and Poisson.

No No
Exact Solution noise Exact Solution noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Gaussian Poisson Gaussian Poisson
noise noise noise noise

L%
(=1

5 10 15 20 5 10 15 20 5 10 15 20

Figure A.4: First test image with two distanceswith 5% Gaussian and Poisson.

No No
Exact Solution noise Exact Solution noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Gaussian Poisson Gaussian Poisson
noise noise noise noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Figure A.5: First test image with two distances with 10% Gaussian and Poisson.

94 Introductory Investigations

Exact Solution noise Exact Solution noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Gaussian Poisson Gaussian Poisson
noise noise noise noise

=
5 10 15 20

Figure A.6: Second test image with two distances with 10% Gaussian and Pois-
son.

No No

Exact Solution noise Exact Solution noise
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Gaussian Poisson Gaussian Poisson

noise noise noise noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Figure A.7: Third test image with two different angles with 1% Gaussian and
Poisson.

the smaller the distance the worse the reconstruction or you can say the more
affected by noise is the reconstruction. This is quite intuitive, but what happens
when the two blobs are connected? The experiments with the third image can
say something about that.

In Figure A.7 we see the perfect reconstruction of two slim blobs intersecting.
But again if more noise is added first the reconstruction based on data with
Poisson noise is influenced by noise and then the other reconstruction is affected,
that is when the noise level is 10 % - see Figure A.8 and A.9.

So far we have looked at more or less Gaussian bells, but it could be interesting
to see how the method works with a totally different shape. Therefore some tests
with a figure shaped like a triangle is carried out. The triangle has the same

95

No No
Exact Solution noise Exact Solution noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Gaussian Poisson Gaussian Poisson
noise noise noise noise

Figure A.8: Third test image with two different angles with 5% Gaussian and
Poisson.

No No
Exact Solution noise Exact Solution noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Gaussian Poisson Gaussian Poisson
noise noise noise noise

5 10 15 20

Figure A.9: Third test image with two different angles with 10% Gaussian and
Poisson.

96 Introductory Investigations

No No
Exact Solution noise Exact Solution noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
Gaussian Poisson Gaussian Poisson
noise noise noise noise

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

Figure A.10: Testing with a trianglular shape with 1% Gaussian and Poisson
and right with 5 %.

Exact Solution

5 10 15 20

Gaussian
noise

5 10 15 20

Poisson
noise

5 10 15 20

Figure A.11: Testing with a triangular shape with 10% Gaussian and Poisson.

intensity as the previous test examples. We would just like to know, whether
this method only is able so solve problem based on Gaussian shapes. As above
we start off by using a small noise level, 1 % noise, and the reconstructions are
shown in Figure A.10 and Figure A.11. Now this figure shows that actually the
reconstructions with the data containing Poisson noise performs best. This is a
contradiction from what we saw with the other shapes. But on the other hand,
this is not formed as a Gaussian bell, and therefore containing Gaussian noise
might be a problem. But again the reconstruction without noise should not
perform worse than with Poisson noise. It is probably due to the constant we
use for normalization, when we construct the right noise level for the Poisson
noise, described in Section 3.3.

From the experiments above we found that the method seems very sensitive to

97

10715 L . G i
o lub]
* |ui bl/ o
10720 L 1 1 1 1
0 100 200 300 400 600

Figure A.12: Picard plot representing the singular values and the SVD coeffi-
cients of the matrix A.

the level of noise on the data, and also type of noise. One of the problems with
the simple implementation is that the problem is underdetermined, so therefore
we have to take into consideration that our solution is not in the right space and
therefore has to be converted. For simplicity we now introduce a new system of
linear equation Az = b, which is a quadratic problem, so A € R"*" b € R"
and x € R™. in this way we can still perform the SVD transformation, but then
the transformed output will be in the correct solution space. We will perform
some of the same experiments as described in the appendix and then afterwards
we will look different types of a priori. The SVD transform is trivial, since the
problem is quadratic. We start off by making a so-called Picard plot, which
tells us, where the Discrete Picard condition is satisfied, e.q. where the problem
is solvable. Looking at the Picard plot in Figure A we see that the singular
values as expected is a descending sequence. The SVD coefficients |ulb| are
faster decaying than the singular values until some index 7. After this point
the fraction |ul'b|/o; starts to increase and the singular values drop to the
machine precision. This means that the solution will be dominated by larger
SVD coefficients corresponding to smaller singular values and this will lead to
a solution that is dominated by noise and will tend to the naive solution.

We now conclude that we should not include SVD coefficients, which correspond
to an index larger than ¢ = 420. The investigation will deal with determing the

98 Introductory Investigations

k=100

Exact Solution

k=20

5 5

10 10

15 15

20 20
5101520 5101520 5101520
k =200 k =300 k =400
\ P
5101520 5101520 5101520
k=415 k =420 k =430

5101520 5101520 5 101520

Figure A.13: Picard plot representing the singular values and the SVD coeffi-
cients of the matrix A.

k 20 100 200 300 400 415 420 430
Error | 0.861 | 0.772 | 0.722 | 0.659 | 0.583 | 0.613 | 0.687 | 3.013 -10°

Table A.1: The relative errors on the solution and their corresponding index k.

optimal index k, which represent the index, where all SVD components should be
included until, to obtain the best reconstruction. We now solve the problem with
different values of k to investigate, which &k should be the optimal. In Figure A.13
the reconstructions are seen, which is a mean of all the possible solution after
the burn-in period, and in Table A.1 the relative errors are computed. We see
that if k is too small the reconstruction is very dependent on the right singular
vectors, which also makes sense. The larger k gets, the better reconstruction,
but as k£ tend to around 400 it seems that the reconstructions are not that
smooth, but more grainy.

It is also important to notice that when k > 420 the reconstruction is totally
dominated by noise. From the reconstructions in the figure it can be hard to
tell, which reconstruction is best, therefore we focus on the relative error of the
solution. It seems that the optimal k is k¥ = 400. In this experiment we used
data without noise, which is not realistic at all. Therefore we now do the same
experiments with data containing 5 % Gaussian distributed noise. We still use

99

Picard plot

o
lu;bl
o lublic

T

!

!

100

200

300

400

500 600

Figure A.14: Picard plot representing the singular values and the SVD coeffi-
cients including 5 % Gaussian noise.

k

20

100

200

300

400

415

420

430

Error

0.861

0.774

0.736

0.747

1.450

1.834

3.864

2.329 -10°

Table A.2: The relative errors on the solution and their corresponding index k.

the exact solution as starting guess. In Figure

We know that a realistic type of noise is Poisson distributed noise, so therefore
it is evident to test the method with Poisson distributed noise. We start by
choosing a small noise level, e = 0.01 and zeros as starting guess. Looking at
the reconstructions in Figure A.17 we conclude that even though the noise level
is very low, the reconstructions are dominated by noise even though only a few
number of the SVD coefficients are included.

This is also verified by the Picard plot in Figure A.16, where the fraction
|ulb|/o; starts increasing around index 200. From the Misfit values in Fig-
ure A.18 we see that, when we use zeros as starting guess the burn-in period is
much longer than when we use Texact, and therefore when we found the mean
of all solutions, we cannot include the first 9000 solutions.

100

Introductory Investigations

Exact Solution

5
10
15
20
5101520
k =200

k=415

k=20 k =100
5
10
15
20
5 101520 5 101520
k =300 k =400
-

10
15
20

.
5101520
k =430

5101520
k =420

5101520

5101520

Figure A.15: The exact solution plotted along with several reconstructions using
data containing 5 % Gaussian noise.

Picard plot

! ! ! !

10"
107
c
w0 |u; bl
+ lublic
1072 ;
0 100

200 300 400 500 600

Figure A.16: Picard plot representing the singular values and the SVD coeffi-
cients including 1 % Poisson noise.

101

Exact Solution k=20 k =100

5
10
15
20

5 101520 5 10 1520 5 101520
k =200 k =250

5 101520 5 10 1520 5 101520
k =300 k =350

5101520

5101520

Figure A.17: The exact solution plotted along with several reconstructions using
data containing 1 % Poisson noise.

Level of Misfit Function
6
10 T T T

101 1 1 1 1 1
0 2 4 6 8 10 12

Iterations x10*

Figure A.18: The Misfit function corresponding to data containing 1 % Poisson
noise.

102 Introductory Investigations

k 20 100 200 300 400 415 420 430
Error | 0.861 | 0.772 | 0.736 | 0.724 | 0.718 | 0.673 | 0.698 | 0.8491

Table A.3: The relative errors on the solution and their corresponding index k.

APPENDIX B

Results 4D

104

Results 4D

Starting Guess

Test Problem 1, No variation in ¢

Ray Prior Wide Prior
10 % noise | 1 % noise | 10 % noise | 1 % noise

s 5-10° 5-10° 5.106 5-10°

" rel. error on solution 0.0896 0.0072 0.2842 0.0023

exact rel. error on data 0.0866 0.0049 0.2679 0.0060
acceptance rate in % 54 50 52 50

s 5-107 1-106 5-107 1-108

rel. error on solution 0.5585 0.5790 0.6042 0.6724

TART rel. error on data 0.4020 0.3657 0.4108 0.3697
acceptance rate in % 51 50 52 50

s 3-10° 1-10° 3-10° 1-10°

- rel. error on solution 0.3387 0.2843 0.3661 0.1783

ray rel. error on data 0.2808 0.0811 0.2656 0.0594
acceptance rate in % 54 48 55 48

s 1-10° 1-10° 1-10° 1-10°

- rel. error on solution 0.5126 0.0820 0.7994 0.1737

zero rel. error on data 0.4498 0.0340 0.5412 0.0651
acceptance rate in % 58 o0 58 49

s 3-10° 1-10° 3-10° 1-10°

. _ rel. error on solution 0.2956 0.2746 0.3879 0.3367

combi rel. error on data 0.2938 0.0796 0.2896 0.0947
acceptance rate in % 54 46 55 48

105

Starting Guess

Test Problem 1, variation in ¢

Ray Prior Small Prior
10 % noise | 1 % noise | 10 % noise | 1 % noise

s 3-10° 3-10° 3-10° 1-10°

rel. error on solution 0.0216 0.0008 0.0288 0.0013

Lexact rel. error on data 0.0704 0.0019 0.0844 0.0024
acceptance rate in % 50 49 50 50

s 5-10° 1-10° 1-107 1-10°
rel. error on solution 1.1058 0.9365 0.5743 0
TART rel. error on data 1.1595 0.3713 0.4924 0
acceptance rate in % 59 55 66 0

s 5-10° 1-10° 5-10° 7107

" rel. error on solution 01.4835 0.9738 0.1907 0.1954

ray rel. error on data 1.6812 0.6007 0.4494 0.1309
acceptance rate in % 61 53 73 78

s 5-10° 1-10° 5-10° 7-10%

. rel. error on solution 1.4741 1.0244 0.1800 0.0970

zero rel. error on data 1.7986 0.2653 0.4507 0.0935
acceptance rate in % 60 58 71 76

s 1-107 1-10° 1-107 1-10°

rel. error on solution 1.5052 0.9753 0.4142 0.4004

Leombi rel. error on data 1.3654 0.5467 0.5078 0.2248
acceptance rate in % 57 55 64 40

Starting Guess Test Problem 2, variation in ¢
Small Prior
10 % noise 1 % noise

s 5-10° 5-10°

@ ART rel. error on solution 0.9270 1.0039

rel. error on data 0.5559 0.3766
acceptance rate in % 56 54

s 5-10° 5-10°

" rel. error on solution 0.8021 0.5119

ray rel. error on data 0.7301 0.3827
acceptance rate in % 56 42

s 5106 5-10°

rel. error on solution 0.6091 0.0828

Lzero rel. error on data 0.6742 0.0850
acceptance rate in % 56 42

s 5-10° 5-10°

" . rel. error on solution 0.5355 0.2858

combi rel. error on data 0.6484 0.1987
acceptance rate in % 56 42

106

Results 4D

Starting Guess

Complex Problem

No Variation in ¢

10 % noise | 1 % noise
s 1-107 1-10°
" rel. error on solution 3.6300 0.4668
exact rel. error on data 2.3877 0.1648
acceptance rate in % 86 89
1 % noise | 0.1 % noise
s 5-107 5-107
rel. error on solution 7.0681 5.9828
LART rel. error on data 0.6767 0.0718
acceptance rate in % 67 o7
1 % noise | 0.1 % noise
s 1-10° 8107
" rel. error on solution 1.1629 6.1143
zero rel. error on data 0.2571 0.3207
acceptance rate in % 86 65

APPENDIX C

Matlab Code

108 Matlab Code
for k = 1l:length(Nd);
d-tmp = d(k); h_-tmp = hy(k); y-tmp = a(k):h_tmp:b(k);
[Y, W] = meshgrid(y-tmp, w);
theta-int = atan ((Y—W)/d-tmp);
theta_.ind = ceil ((theta_int+theta_max)/ (2*theta_max) *Ntheta) ;
Ind = 0;
for p = 1l:Ntheta
for g = 1:Nw
F = zeros (Nw, Ntheta);
F(g,p) = 1; Ind = Ind +1;
for j = 1:Nd (k)
s = 0;
for 1 = 1:Nw
thetal = theta_-ind (i, j); theta2 = theta_ind(i, j+1);
t = ones((theta2—thetal)+1,1);
if length(t) > 1
t(l)=(theta_pixels (thetal+l) ...
—theta_int (i, j)) /htheta;
t (end) = (theta-int (i, j+1)—
theta_-pixels (theta2)) /htheta;
else
t = abs(theta_int (i, j+1)—theta_int (i, j)) /htheta;
end
I = hthetax(F(i,thetal:theta2)xt);
s = s + I;
end
G(3, k) = s;
end
Asmall (l:1length(G),Ind, k) = G(:,k);
end
end

end

Bibliography

(1]

P. C. Hansen. Discrete Inverse Problems - Insight and Algorithms. SIAM,
2010.

K. Hastings, W. Monte carlo sampling methods using markov chain and
their applications. Biometrika, (57):97-109, 1970.

Klaus Mosegaard and Albert Tarantola. Monte carlo sampling of solutions
to inverse problems. Geophysical Research, 100(B7):12,431-12,447, 1995.

D.P. O’leary P. C. Hansen, J.G. Nagy. Deblurring Images - Matrices, Spectra
and Filtering. STAM, 2008.

H.F. Poulsen H.O. Sgrensen E.M. Lauridsen L. Margulies C. Mauricec
Sgren Schmidt, U.L. Olsen and D. Juul Jensena. Direct observation of 3-D
grain growth in al-0.1% mn. Scripta Materiala, 59(5):491-494, 2008.

M. Sambridge T. Bodin and K. Gallagher. A self-parametrizing parti-
tion model approach to tomographic inverse problems. Inverse Problems,
25(5):055009, 2009.

Camilla H. Trinderup. Ray tracing problems for tomographic reconstruction
in materials science. Master’s thesis, Technical University of Denmark, 2011.

	Summary
	Resumé
	Preface
	List of Symbols
	1 Introduction
	2 Model Problem
	2.1 Underlying Physics
	2.2 Introducing the Fictitious Plane

	3 Mathematical Model
	3.1 Continuous Model
	3.2 Discrete Model
	3.3 Noise

	4 Discrete Inverse Problem
	4.1 Inverse Problems
	4.2 Singular Value Decomposition

	5 Sampling Methods
	5.1 Monte Carlo Method
	5.2 Properties
	5.3 Our Method
	5.4 Noise within the Method

	6 Two-dimensional Problem
	6.1 Simplified Model
	6.2 Test Problems
	6.3 Reverse Ray Tracing
	6.4 Results
	6.5 Forward Calculation

	7 Four-dimensional Problem
	7.1 Test Problems
	7.2 Results
	7.3 Complex Problem

	8 Conclusion
	8.1 Future Work

	A Introductory Investigations
	B Results 4D
	C Matlab Code

