

Web based booking system for NETS Test Center

Benjamin Bennike Aagren

Kongens Lyngby 2012
IMM-B.Eng-2012-<2>

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

http://www.imm.dtu.dk/

i

Preface

This report describes the creation of a web application for the company NETS. The project was conducted

from 2th of January – 10th of April 2012.

Foremost I would like to thank my supervisors Senior Scientist Finn Gustafsson and Test Engineer Kim

Westergaard for their help and guidance during my project.

I would also like to thank manager Tamim Ghaussy for providing me with this project assignment, as well as

the employees of NETS for their involvement in the project.

Finally I would like to thank my father Steen Bennike Mortensen his feedback and advice at the final writing

process and my wife Christina Spuur Nødvig for her love and support during the whole process.

Benjamin Bennike Aagren

10th of April 2012

ii

Summary

The Test Center in NETS handles all test systems, terminals, simulators and lines leading out of the building.

In this IT Diplom report there will be designed and developed a new web-based application for booking all

components in NETS Test Center. This will make it easier for the users as well as the administrators to gain

an overview of the use of these components, and simplify the booking process.

This new application will be based on data gathered from stakeholders in NETS, as well as an analysis of the

users’ needs and routines. Throughout the project several prototypes will be created, which will be tested

together with the users, to find the most optimal solution. The application will be developed in Java, HTML,

CSS, MySQL and using the Play Framework.

The end result of this project is meant to be used in NETS for the future bookings of components in the Test

Center.

iii

Resumé

Test Centeret i NETS står for alle test systemer, terminaler, simulatorer samt linjer ud af huset.

I denne IT Diplom rapport bliver der designet og udviklet en ny web-baseret applikation til booking af alle

komponenter i NETS Test Center. Dette skal gøre det lettere for brugerne samt administratorerne at få et

overblik over anvendelsen af disse komponenter, samt at forenkle processen for at booke komponenterne.

Denne nye applikation vil blive baseret på indsamlet data fra interessenter i NETS, samt en analyse af

brugernes behov og rutiner. Der vil undervejs blive lavet adskillige prototyper, der vil blive testet i

samarbejde med brugerne, for at finde den mest optimale løsning. Applikationen vil blive udviklet i Java,

HTML, CSS, MySQL samt ved hjælp af Play Framework.

Det endelige resultat udvikles med formålet at kunne anvendes i NETS til fremtidige bookinger hos Test

Centeret.

iv

Abbreviations

CSS: Cascading Style Sheets

DTU: Danmarks Tekniske Universitet

EER: Enhanced Entity-Relationship

HTML: Hypertext Markup Language

MVC: Model View Controller

MySQL: My Structured Query Language

WUI: Web User Interface

v

Lists of tables and figures

Table 1 the most important stakeholders ... 3

Table 2 Requirements priority one ... 5

Table 3 Requirements priority two ... 7

Table 4 Requirements priority three ... 7

Table 5 EER diagram elements ...17

Table 6 Database table overview ...19

Table 7 Black box testing the user functionality ..26

Table 8 Black box testing the admin functionality ...27

Figure 1 The first and not final time estimate for the project ... 8

Figure 2 The final time plan of how the project actually progressed ... 8

Figure 3 the final design for the bookable component list ...10

Figure 4 Use case diagram for the user ..12

Figure 5 Use case diagram for the admin ...13

Figure 6 Play Framework MVC. From: ..15

Figure 7 EER Diagram ...18

Figure 8 Current bookings Java function ..22

Figure 9 Current booking HTML view ...23

Figure 10 Current booking screen final presentation ...24

vi

Contents

Preface ... 1

Summary .. 2

Resumé .. 3

Abbreviations ... 4

Lists of tables and figures ... 5

Analysis .. 1

1.1 Introduction ... 2

1.2 Success Criteria .. 3

1.3 Stakeholders .. 3

1.4 Requirements .. 4

1.5 Estimation ... 7

Design... 9

2.1 Design .. 10

2.2 Booking process ... 11

2.3 Use case Diagram .. 12

Development ...14

3.1 Theory.. 15

3.2 Database (MySQL) ... 16

3.3 Web Development ... 19

3.4 Development Reflections ... 24

Test Methods ..25

4.1 Test strategy .. 26

4.2 Black-box test .. 26

4.3 Usability Test ... 29

4.4 Browser Test .. 30

vii CONTENTS

Conclusion ...32

5.1 Future Development .. 33

5.2 Conclusion ... 33

Appendix ...35

6.1 References ... 36

6.2 Installation manual ... 37

6.3 Test Results .. 38

6.4 Final Design ... 49

6.5 Location of Application Code ... 62

Chapter 1

Analysis

2 Analysis

1.1 Introduction

In NETS, the Test Center department provides different kinds of test solutions for both internal IT project

and for external clients, who use NETS services; credit cards and money transfers. These test solutions will

be referred to as components.

The purpose of this IT Diplom project is to develop a booking system for NETS’ Test Center. Currently, the

method for booking a component in the Test Center is handled manually through e-mails and Excel sheets.

This method is both time consuming and cumbersome to maintain for the two groups within NETS, who

have to do this task. The groups are the Kopi Team who administers the bookings, which they then report

to the Test Center Team, who administer the components in the Test Center. The wish for an improved way

of handling the bookings was motivated by these two groups. Replacing their former booking process with

a web application will increase the synergy between the groups, as the web application will automatically

provide the other group with necessary information, instead of continuously exchanging information

through email.

Furthermore, the process of implementing this new web application involves the users who book the

components in the Test Center. Adding these users to the web application will make it possible to simplify

the booking process, as well as automatically share relevant information among the users and the test

groups.

The new web application will also make it easier to maintain booking and component history, since such a

feature will be part of the functionality of the web application. The final result of this project will be a beta

version of the Test Center booking system. This report contains the details of the beta Test Center booking

system and its origin and the development hereof.

1.1.1 NETS history

In 2010 The Danish company PBS merged with the Norwegian company BBS, which resulted in the name

NETS for the whole company. PBS has focused on IT payment solutions for all of Denmark since 1968 and in

1983 PBS introduced Dankort into Denmark. BBS has worked with payment solutions since 1972 for all of

Norway. Both companies have during this time expanded their markets to the surrounding countries and

now in 2012 NETS handles the majority of the daily payments, remittances, and other types of transactions

in northern Europe.

3 Analysis

1.2 Success Criteria

For the project to be a success, the following success criteria have to be met:

- The project has to meet the priority 1 requirements (specified in the 1.4 Requirement chapter)

- The project has to be completed together with this report, and handed in before the project

deadline, which is midnight the 10th of April 2012

- It is a requirement that a demonstration of the new application must be provided for:

o Finn Gustafsson (DTU supervisor)

o Kim Westergaard (NETS supervisor)

o Tamim Ghaussy (Manager of NETS testcenter)

o The department who has to administrate the application in the future

Before the project deadline

- The future administrators of the application and Tamim Ghaussy have to accept the application as

being able to perform its primary function, in the form of a usable booking system.

1.3 Stakeholders

The project stakeholders are anyone that are actively involved in the development of this new web

application, or whose interests may be affected as a result of the new application. In table 1 the most

important stakeholders are shown with an exposure value, which defines how involved the stakeholder will

be when working with the new application, and an importance value showing how important their

requirement requests are. More detailed descriptions of the values are contained in the following section,

which describes the interaction applicable for each stakeholder category.

Table 1 the most important stakeholders

Stakeholder Interaction with the new application Exposure Importance

Manager / Owner Gather data for a statistic overviews of the

actions made in the application

1 4

Kopi Team / Admin Administer bookings of components made by

users

4 3

Test Center / Admin Administer all components and update the status

for some of them, on a daily basis.

4 3

Tester / User Books the components they require for their

tests

2 2

Developer Could be asked for further maintenance or

updates of the application

1 1

4 Analysis

1.3.1 Manager / Owner

It is within the manager’s power to terminate the project at any time, or simply decide if the web

application shall not be implemented in the company. This means the manager has a high importance; even

with a minimal exposure to the application.

1.3.2 Kopi Team & Test Center / Admin

These two groups’ work assignments are the foundation which this project is mainly based on. Accordingly,

they have a high importance as the main source for high priority requirements. Therefore, their input can

impact the project positively and/or negatively. The new application will have a positive impact on both

groups’ work processes, as the process will be more efficient. Therefore the employees of the Kopi Team

and the Test Center should be co-operative.

1.3.3 Tester / User

When the application is implemented, the users will be forced to use it from then on. It is in the users’

interest to be involved in the requirement gathering phase, to influence the outcome of the application.

Their importance and exposure values have been estimated to a medium level, since any issues they might

have with the application will require them to take the time to organize, to express their concern as a group

to the manager, who will then decide the course of action so forth. Therefore, the testers’ requirements

must be taken into consideration.

1.3.4 Developer

The Developer is responsible for the planning and completion of the project. Practical experience and the

ability to carry out the plan is required, which if lacking could be a risk to the project. The developer does

however have a professional stake in the project in the form of career advancement.

1.4 Requirements

When introducing a new application into a company, it is advantageous that the stakeholders, who will

have to work with the application, see it as an improvement compared to the previous solution. This is why

they have been directly and iteratively involved in the requirement gathering process. This has been done

by asking the stakeholders to describe the previous solution and writing down all their desired

requirements for the new booking system, categorised by priority and criticality in a 1 to 10 scale. Priority is

defined by how much the stakeholder wishes this feature, and the criticality being how essential the

function is to have, for the application to perform its primary function. All requirements have been

analysed and prioritised by the developer, by considering the requirements cohesion with each other as

well as the highest critical and priority values. During the development progress additional prototype

5 Analysis

presentations were held for the stakeholders to verify that the specified requirements complied with their

expectations. These presentations resulted in confirming or redefining the already stated requirements.

New requirements were also added, after showing the stakeholders how the functions worked, displayed in

the prototypes. This is based on agile development (Highsmith and Cockburn 2001). The end result from

the requirement gathering is shown below in table 2, 3 and 4, listed by priority in these three tables where

the priority one table contains the most important requirements.

Table 2 Requirements priority one, critical must have functionality

Req. ID Summery Description

P1.1 Web Server The web application has to be installed on a web server

within the company. It is essential to ensure as good an up

time as possible for this web server, and ensure there is

the possibility for backups.

P1.2 Programming language It is necessary to choose a programming language which is

installed on the web server, so the users can start the

application from their browsers, not needing to install

anything additional.

P1.3 User role The user role is needed for the persons who need to book

components in the test center, so they can execute their

tests

P1.4 Information required for all

users

The persons who needs to book components in the test

center require a user in the application with the following

information:

 Mail

 Name

 Date of creation

P1.5 Information required for all

projects

To book a component, it is required that the user works for

a project, and the following information is required for all

projects:

 Project number

 Comment (Note field)

 Date of creation

P1.6 Information required for all

components

Information required for all components:

 Name

 Edb centre nr

 Status (up/down/unknown)

 Location (where in the world)

 Comment (Note field) (For transaction types and

card types which the component works with)

P1.7 Information required for all Information required for all bookings:

6 Analysis

bookings Booking receipt

 Project number

 Check in date

 Check out date

 Relevant component info

 Relevant user info

 Comment (Note field)

P1.8 Viewing and sorting data

for users

The following data has to be available for the users:

 All bookings owned by their projects

 All bookings owned by their user

 Status for all components

P1.9 User role actions The user role needs to be able to:

 Register them self as a user

 Register a project

 Book components

 Cancel any of their own future bookings

P1.10 Admin role actions The admin role is required to:

 Update components status

 Create new components

 The possibility to delete any booking

 Confirm and decline any bookings

P1.11 Admin views and data

sorting

The admin role requires the following overviews available:

 Status of all components

 Which components require daily status updates

 Calendar view of all booked components

 Overview of all bookings

P1.12 History It is necessary to store:

 All bookings made

 All component status changes

This can be used to give an overview of the general status

of the test center

P1.13 Report The report has to be written in English to respect the fact

that NETS is a company with many international employees

P1.14 Demonstrations before

deadline

NETS have requested that a demonstration of the end

product is provided for the manager and admins of the

application, before the project deadline

7 Analysis

Table 3 Requirements priority two, noncritical functionality

Req. ID Summery Description

P2.1 Display Interdependencies

between the components

Some components require the same resource to work.

Store these dependencies and display them in some way

P2.2 Automatic display of the

interdependencies

between the components

If a component using a resource is booked, it should be

displayed on all components using this resource, that

someone else have already booked the resource in this

period

P2.3 User booking update The users would like to have the possibility to update the

booking information for their existing bookings

P2.4 Admin booking update It would be nice for the admins to be able to update the

booking information for existing bookings

P2.5 Update additional bookings

at a time

To decrease the time spent on booking administration, it

would be preferred to be able to update the booking date

of multiple bookings at a time

P2.6 Date selected status

history

In the future it would be interesting to see a overview of all

the component updates that resulted in a bad status in a

selected time period

P2.7 User Help If there are any errors / problems / confusion it could be

relevant to have referrals to show how to report these the

correct way. Either by using the proper system within the

company, or notifying which email to report the issue to.

P2.8 Add the project leader to a

project

It would ease things if it was possible to see who the

project leader was for the projects using the application

P2.9 Create additional bookings

at a time

It could save time, if additional components could be

selected to be booked at a time.

Table 4 Requirements priority three, nonessential extra functionality

Req. ID Summery Description

P3.1 Mail system There are situations where it would save time for the

administrators if the web application could send a mail.

P3.2 Export data If the need to create statistics based on the data in the

booking system arises, it could save time to have an export

function.

1.5 Estimation

The project plan has been roughly approximated in the start of the project. This was done to identify and

place deadlines for all crucial tasks of the project. This is done to ensure that no tasks were forgotten or to

minimise the risk that the work required for its completion were not underestimated. As the project

8 Analysis

progressed however it was necessary to revise the time plan, especially since the requirement gathering

process was done gradually, making the projects size dynamic. Figure 1 is the first time plan created at the

start of the project, where figure 2 is the final time plan of how the project actually progressed.

Figure 1 The first and not final time estimate for the project

Figure 2 The final time plan of how the project actually progressed

The final time plan roughly resembles the estimated time plan. The main difference between the plans was

that the requirement gathering and testing ended up taking a lot longer than estimated. Some of the

reasons being that these tasks where dependent on involving busy stakeholders, and no time could be

taken from the development because of the need to fulfil the success criteria. This resulted in all the other

tasks getting pushed forward in the time plan, cutting time from the last task which was the report.

9 Design

Chapter 2

Design

10 Design

2.1 Design

The application design has been made in collaboration with the stakeholders, in the form of a mock-up

drawing, which was created in the requirement gathering phase. Then later at the prototype presentations,

the stakeholders could influence the design, which led to changes several times throughout the

development phase. This was done to ensure that the end product would meet the stakeholders’

expectations.

The final Web User Interface (WUI) was constructed with a login screen as start page, which was necessary

to differentiate between the admins and users. The rest of the WUI consists mostly of screens containing

informative tables providing the users and admins with their necessary views, as well as actions related to

the views information. Figure 3 shows the final design for the bookable component list, which is accessible

for the users of the application.

Figure 3 the final design for the bookable component list, which is accessible for the users of the application.

11 Design

The design shown in figure 3 is only one screen of many in the booking application. It does however display

the outcome of several major design decisions. These decisions are the red number markings.

1. In the upper left corner the booking applications name is shown. It is shown on all screens

throughout the whole application.

2. In the upper right corner the user information is displayed. If a user is logged in, the user mail and

project number is shown. If an admin is logged in, only his admin mail will be shown. If no one is

logged in, nothing is shown.

3. Just under the site header, the menu bar will be shown on all screens throughout the application,

as long as a user or admin is logged in. The user and admins menu bars are different, since they

have different tasks to fulfil.

4. This section contains the information and actions the users and admins require. The information is

mostly contained in tables, and the actions usually encapsulated in a square. How section 4 is

designed for the different screens variants, based on the function the screen must supply.

5. At the bottom right corner the department name, which the developer works in is displayed. This

footer is shown on all screens throughout the whole application.

The rest of the booking applications screens can be found in appendix 6.4

2.2 Booking process

There are four types of users who will interact with the web application, as defined in the stakeholder

chapter 1.3. This section will illustrate the booking process from start to end, by listing all the user actions

the users will be using in the new booking application.

1. A project has finally reached the point in its development process where testers can test their new

features on one of the company’s test environments. Therefore the responsible tester books the

components required for the tests through the booking application.

2. The Kopi Team notice the new booking and checks if anything should prevent this booking from

being a success. When this is done, the booking can be accepted or denied.

3. On a daily basis a list of components is generated by the booking system. This list includes all

components that are booked for the actual day, together with the components that are required

always to work. It is the Test Center Teams job to ensure all components on this list are up and

running all day. When a member of the Test Center Team have checked if a component is working,

it should be updated in the booking application, which both the tester and Kopi Team will be able

to see.

4. The Manager can at any time enter the booking system to see an overview of all booking and

component status updates made.

12 Design

2.3 Use case Diagram

The following two use case diagrams are meant to visualize all possible views and actions the user groups

have in the application, as stated in the requirement P1.8, P.1.9, P.1.10 and P.1.11. There is only shown the

primary functions of the application without any details.

Figure 4 Use case diagram for the user, showing all their possible actions in the web application, as stated
in the requirement P1.8 and P1.9

13 Design

Figure 5 Use case diagram for the admin, showing all their possible actions in the web
application, as stated in the requirement P1.10 and P.1.11

14 Development

Chapter 3

Development

15 Development

3.1 Theory

3.1.1 Choice of Development Framework

The available web server at NETS has Java and MySQL installed. This means that we have to code the web

application with the use of these programming languages, for users to access the application directly

through a browser, without having to install anything additionally. As stated in requirement P1.2.

Knowing that the application has to be developed in Java, a framework was searched for, focusing on the

need for creating prototypes early in the development phase. The research showed that a framework called

Play Framework seemed like a good candidate for not only making it possible to create prototypes at a

early point in the development, but it also seemed qualified for creating a robust web application.

By choosing the Play Framework for the development of the web application, it follows that the following

programming languages, Java, HTML, CSS and MySQL would be used.

3.1.2 Play Framework

Creating a web application with the Play Framework requires the model-view-controller (MVC)

architectural pattern, which means these three layers are the cornerstones of the application. The model

(MySQL) handles the usage of all raw data throughout the application. The view (CSS, HTML) represents the

user interface, which the user will use for all

interactions with the application. The Controller

(Java) processes all events triggered in the

application, which could be anything from a

HTTP request to an action calling or changing

some specific data in the database. Figure 6

shows how the MVC patterns are linked together

for the play framework, and in this example an

event is triggered that updates some data and

returns a new view.

Figure 6 Play Framework MVC. From:
http://www.playframework.org/documentation/1.0/main

16 Development

3.2 Database (MySQL)

The Test Center booking application stores all data in a MySQL database. This data is the basis for the

application, since it consists of all the necessary information required for the application to function, such

as bookable components, bookings, users and so forth. Therefore it is essential to create a well structured

database to give the application an optimal performance, which should be achieved by creating the

database in the Third Normal Form. The data which is to be stored in the database was identified in

collaboration with the stakeholders in the requirement gathering phase. This section of the report will

describe the thoughts and efforts that have gone into designing and creating this database.

3.2.1 Database Design

When designing a database, several decisions have to be made. This section will reflect on some of these

decisions.

All the database tables require at least one unique value per row in a selected column. This or these

columns are known as the primary key of the table, which are used to uniquely identify specific rows of

data. To relieve the users from constantly needing to remember all former unique values, for when they

manually add new data into the database, it was decided to use auto increment. Auto increment means

adding an extra column containing a number starting from one, which rises by one for each row of data

added into the table. It was selected that the maximum value for the auto increment should be a bigint

(264-1), which ensure a maximum unrealistic to reach. It was decided that to increase the database’s

performance it should be created in the third normal form, which is described in the next section; 3.2.2

Database Normalization.

3.2.2 Database Normalization

The whole purpose of normalization is to eliminate redundancy and anomalies in the database. By creating

the database in the third normal form the most serious of anomalies and redundancy will be handled.

First normalization is achieved simply by each column in our database tables only containing a single value,

and each row having at least one unique primary key column.

Second normalization is achieved by creating separate tables for each set of values that apply to multiple

records, and relate the proper tables with foreign keys.

Third normalization is achieved by removing all columns not dependant on the key, and separating tables

to avoid redundant data which can be altered to illogical contexts, like a component with two addresses.

17 Development

3.2.3 Enhanced Entity-Relationship diagram (EER)

The database design has been illustrated with an Enhanced Entity-Relationship model (EER), which is a

fusion of an entity-relationship diagram and a database model. This section will describe how to

understand the EER diagram together with the actual diagram.

The graphical elements used in the EER diagram are described in table 5.

Table 5 EER diagram elements

A one to one relation

A many to one relation

A many to many relation

A zero to many relation

Primary key

Foreign key

Attribute

Unique attribute

18 Development

Figure 7 EER Diagram

3.2.4 Database Overview

This section will provide an overview of all the purposes of the database tables, meant to give a better

understanding of figure 7. The overview is shown in table 6.

19 Development

Table 6 Database table overview

Database table name Purpose

Component The Test Center at NETS has a multitude of components, which are all

stored in this database table, with their individual notes and data.

Location The database location table contains the world location of a Test Center,

where no Test Center can be located in the same country.

morgencheck The morgencheck is the name given by the Test Center team in NETS, for

updating components status. This database table is used to log all status

updates made for any component.

Booking All bookings are stored in this database table.

User All users data is stored in this database table

Project All project data is stored in this database table

Userprojects This database table is used to store the linkage between users and their

respective projects.

Admin All admin data is stored in this database table.

3.2.5 Database Reflections

There was successfully created a MySQL database corresponding to the desired specifications. Third normal

form was achieved on all tables in our database, since all data in the tables are depended on the primary

key, which means that there is basically no redundant data or anomalies. The only situation where the

same data is being stored in two tables at once is whenever a component status update occurs, since the

last update is stored in both the actual component in the component table, and in the morgencheck table,

which is meant to store the history of all status updates. The thoughts behind this design, was to provide a

tiny performance increase by avoiding the join between the component table and the morgencheck table

every time a status overview is required, since the morgencheck table is going to grow rapidly each day.

3.3 Web Development

The purpose of this section is to describe the functions of the Test Center booking applications and how

they were developed.

3.3.1 Usability

Since all interaction with the application is through the WUI, and a multitude of people will be using it when

it is has been completed, it is very critical to achieve a high degree of user friendliness. This is because the

20 Development

applications primary function has to be a better solution than the previous, which will not be achieved if it

is more complicated and takes longer to use. How the usability was achieved is described in chapter 2.1,

3.3.2 and 4.3

3.3.2 Heuristic Evaluation

 This section will evaluate if the applications final design is usable based on Jacob Nielsen’s ten

usability heuristic’s. (Nielsen, J. (1994). 10 usability heuristics).

 Visibility of system status

All screens throughout the application contain an informative title just under the menu bar, which

shows what the actual page is all about.

 Match between system and the real world

The language used in the application has been worked out with and by the stakeholders to ensure

that it is understandable by the people who have to use the application. This is also the reason for

the name ‘Morgen Check’ for the daily status update on the admin site, since that was the name

requested. There have also been used describing image metaphors to illustrate the status for a

component.

 User control and freedom

There is never more than one screen layer to navigate to, from a top menu screen. From this

additional layer screen there will always be a return button to the original screen, as well as the

possibility to use the top menu to navigate back.

 Consistency and standards

It has been decided to encapsulate the actions that require a confirmation in a smooth edges

square to create consistency for the users. Additionally the same colours and font have been used

throughout the application.

 Error prevention

The stakeholders preferred, that there was no extra confirmation box after clicking confirm once

anywhere in the application. The same is the case for the delete button, but to prevent accidental

deletions it has been positioned to the far right of the screen, while all other buttons are located to

the left.

 Recognition rather than recall

The top menu has white and underlined links for navigation, while all other links are blue and

underlined to distinct them from normal text. The most relevant information is displayed in the

tables of data, however additional information can be found by clicking the right side of the table.

21 Development

This is only the case for the tables that cannot contain all the data. Based on the stakeholders’

feedback, it was deemed unnecessary with extra explanatory information on any screen.

 Flexibility and efficiency of use

Since the application is primarily a booking system, the focus has been on making the process more

effective compared to the former solution. This has been done by creating a search function for the

component list and providing the users with as much information as possible, such as when the

components they wish to book are available in the future, and the working status of all

components.

 Aesthetic and minimalist design

By involving the stakeholders in the design process, it was possible to create the application based

on their wishes, with only the necessary information shown in the respective screens throughout

the application.

 Help users recognize, diagnose and recover from errors

The most common user caused error in the application is invalid typed data for creation or updates

into the database. When these appear, an informative red error is either shown just under the

menu bar, or at the actual field containing the problem, or both.

 Help and documentation

There has not been implemented any user guide or help function for the application, but it has

been considered, which has lead to requirement P2.7 which is a possible future feature.

3.3.3 General Functionality

This section will describe in detail the overall technical aspects of the web application.

 CSS / Style sheets

Using CSS enabled an easy way to control the presentation of elements in the application. This was

done by creating a master style sheet to specify the presentation of all elements, creating a

consistent element design throughout all the screens in the application. By using a style sheet

instead of designing the web screens individually, it has also become much easier to maintain and

update the overall design in the future.

 Login

When a user logs into the application the user’s mail and project will be stored in a session, in the

user’s cookies, located on his computer. As long as this session exists the user is allowed to roam

the user section of the application, and use its functionalities. A session is cleared by logging out or

clearing the local cookies, which will result in the user being directed to the login screen when

22 Development

trying to move around in the application. The same is also the case for the admin, where the

session is based only on the admins mail. The security of a session is handled by an unencrypted

security key, which grants a medium sense of security. However, since the key is not encrypted, it

was decided not to store critical data in the sessions, such as the admin password.

(http://scala.playframework.org/documentation/1.2/security)

 Moving from screen to screen

When moving from one screen to another in the application, a series of events are triggered. First

the session is checked for whether any user is logged on, and if no users are stored in the session

the next screens content will be the login screen. Secondly the actual content of the screen is

loaded, which consists of a Java function and its related database calls. Thirdly the master

main.html is loaded, which contains the general design for all screens such as top menu and footer

as shown in figure 3 Page 10. Finally the screen’s content design is loaded, and ready to be

displayed in the user’s browser.

 Screens

Each screen consists of a Java function, used to process the data used in the selected screen. To

illustrate this, the function behind the Current Bookings screen has been selected.

public static void Current_Bookings() {
 Date actualDate = new Date();
 actualDate.setHours(00);
 actualDate.setMinutes(00);
 actualDate.setSeconds(00);

 List<Booking> bookings = Booking.find("SELECT b FROM Booking b WHERE
b.checkoutDate >= ? AND b.user = ? ORDER BY b.checkinDate, b.checkoutDate", actualDate,
userconnected()).fetch();

 render(bookings);
 }

Figure 8 Current bookings Java function

In the function shown in figure 8, the actual date is found and set to midnight. Thereafter a SQL

query is sent to the database to find all current bookings for the connected user, which will be

preserved as a list of objects. Next the HTML view is called together with the list of booked objects.

#{extends 'main.html' /}
#{set title:'Current_Bookings' /}

<h1>Current Bookings</h1>

#{ifnot bookings}
 <p>
 No Bookings Found
 </p>
#{/ifnot}

http://scala.playframework.org/documentation/1.2/security

23 Development

#{else}
 <table>
 <thead>
 <tr>
 <th width="30%">Component name</th>
 <th width="11%">Check in</th>
 <th width="11%">Check out</th>
 <th width="8%">Receipt</th>
 <th width="13%">Project nr.</th>
 <th width="12%">Confirmation</th>
 <th width="10%">Action</th>
 </tr>
 </thead>
 <tbody>
 #{list bookings, as:'booking'}
 <tr>
 <td>${booking.component.comp_name}</td>
 <td>${booking.checkinDate.format('yyyy-MM-dd')}</td>
 <td>${booking.checkoutDate.format('yyyy-MM-dd')}</td>
 <td>${booking.id}</td>
 <td>${booking.project.project_number}</td>
 <td>
 #{if booking.book_confirmation == 0}
 Pending
 #{/if}
 #{else}
 Confirmed
 #{/else}
 </td>
 <td>
 Info
 </td>
 </tr>
 #{/list}
 </tbody>
 </table>
#{/else}

Figure 9 Current booking HTML view

In figure 9 it is shown how the content of the screen Current Bookings has been designed by using

HTML, Java script and the CSS style sheet. This code receives the list of booked objects which if

empty writes “No Bookings Found”. If the list is not empty a table containing all the objects is

created, which could look like figure 10.

24 Development

Figure 10 Current booking screen final presentation

The processes used as an example has been replicated with more and less advanced functions for

the creation of the Test Center booking application.

3.4 Development Reflections

A challenging task for the booking application was the calendar function located in the admin section. After

a long study of Java’s way of working with dates and time, it was discovered how to specify the date

needed into a calendar object, which then was used to create a date object. The date was required to be a

date object to be used by the Play Framework database query, which then could find the information

needed for the specific date.

All the code can be found on the CD delivered together with the report, where appendix 6.5 describes the

location of the code files. Additionally appendix 6.2 provides an installation manual for creating a local

instance of the application.

There has successfully been created a complete web application by using HTML, CSS, Java and MySQL. The

communication between the module view controller layers were efficiently created and maintained by

using the Play Framework, which enabled a fast upstart for the development work in the layers.

25 Test Methods

Chapter 4

Test Methods

26 Test Methods

4.1 Test strategy

Since the end product is to be used throughout the company, it is important to test it during the

development phase. Tests will grant information about the applications quality, which can then be shown

to the stakeholders to increase their interest and insight in the project. There exists a wide variety of

software tests, which all grant different results. Therefore a selection of which tests were the most relevant

ones for our application was done, which resulted in the following types of tests:

 Black box test

 Usability test

 Browser test

4.2 Black-box test

The black-box test has been completed by executing functionalities throughout the application, to ensure

that they work as intended. The tests are aimed for the users and admins main functionalities, which have

been carried out throughout the development phase, where table 7 and 8 shows the latest executed tests.

Table 7 Black box testing the user functionality

Nr. Test Scenario Expected result Actual result Ok? Appendix

1.1 Create a new user and
project followed by a
login

The user and project is
successfully created,
as well as used to login
immediately.

The user and project
was successfully
created, and could be
used to login
immediately.

Yes
6.3.3

Page 41

1.2 Use the component
list search function to
find a component with
“London” in its name

Only the components
with London in their
name is shown in the
table

Only the components
with London in their
name was shown in
the table

Yes
6.3.4

Page 42

1.3 Select a component to
book and enter a date
in the past, and
confirm the booking

An informative error
message will appear.

An informative error
message appeared.

Yes
6.3.5

Page 42

1.4 Use the expandable
calendar in the date
field to fill out a
proper date and
confirm the booking

The booking should be
accepted and a
message displaying
the receipt number
should be shown at
the top of the screen

The booking was
accepted and a
message displaying
the receipt number
was shown

Yes
6.3.6

Page 43

1.5 Move to the current
bookings screen by
using the top menu,
and click the info link
at the new booking

The information for
the booking should be
displayed

The information for
the booking was
displayed Yes

6.3.7
Page 43

27 Test Methods

just created

1.6 Delete the booking,
and check that it has
been removed from
the current bookings
list

The booking should be
deleted and removed
from the current
bookings list

The booking was
deleted and did not
exist in the current
booking list anymore

Yes
6.3.8

Page 43

1.7 Move to the settings
screen by using the
top menu and connect
project to “U_1337”,
then move to the
project bookings
screen

Both the settings and
project bookings
screens should be
shown successfully
and the connection to
the other project
happened

Both the settings and
project bookings
screens were loaded
successfully, and the
connection to another
project was successful

Yes
6.3.9

Page 44

1.8 Click the status
overview link in top
menu, followed by
clicking logout

The status overview
should be loaded,
followed by a logout
to the login screen

The status overview
screen was loaded
without issues, and
the logout function
worked as well

Yes -

Table 8 Black box testing the admin functionality

Nr. Test Scenario Expected result Actual result Ok? Appendix

2.1 Enter the admin
login and login using
user
“Black@adm.eu”
and password
“Black123”

Access to the admin
site should be granted
and the Morgen Check
screen shown

The admin site was
successfully accessed
and the Morgen Check
screen shown

Yes
6.3.10

Page 44

2.2 Select the update
link for the first
component in the
checked daily table,
and complete the
update with a new
status and update
note

The update link should
show the screen
required for updating
the component, and
the status should be
updated based on the
values typed.

The component was
successfully updated

Yes
6.3.11

Page 44

2.3 Move to the Status
all screen by using
the top menu. From
here click the modify
link for the first
component in the list

The Status all and
modify component
screens should be
loaded successfully

The Status all and
modify component
screens were loaded
successfully

Yes
6.3.12

Page 45

2.4 Modify the
component by
inserting “#” into the
fields

The component
should show an error
in the location field,
which can only contain
a number

The application
triggered a significant
Runtime exception,
which filled the whole
screen. It was
necessary to click back

No
6.3.13

Page 45

28 Test Methods

to previous page on
the browser to get
back to the modify
component screen

2.5 Remove the “#” from
the fields and change
the note to “Black
box tested”

The modification of
the component should
have happened
successfully

The component was
modified successfully
and the status all
screen was shown

Yes
6.3.14

Page 45

2.6 Move to the status
calendar screen by
using the top menu,
and move through
the weeks until a
week without
bookings have been
found

The status calendar
screen should be
shown and the
movement through
the weeks should be
working properly

The status calendar
screen was shown and
the movement
through the weeks
worked properly

Yes
6.3.15

Page 46

2.7 Move to the
booking calendar
screen by using the
top menu, and move
two month through
the weeks or until a
pending booking has
been found

The booking calendar
screen should be
shown and the
movement through
the weeks should be
working properly

The booking calendar
screen was shown and
the movement
through the weeks
worked properly

Yes
6.3.16

Page 46

2.8 Move to the user
bookings screen by
using the top menu,
and click the first
booking in the list’s
info link

The user bookings
screen should be
shown and the info
link working properly

The user bookings
screen was shown and
the info link worked
properly

Yes
6.3.17

Page 47

2.9 Click the
confirmation to
change it

The confirmation
status should change,
and a message should
be displayed in the top
of the screen

The confirmation
changed, and the top
message appeared Yes

6.3.18
Page 48

2.10 Click the settings link
in top menu,
followed by clicking
logout

The settings should be
loaded, followed by a
logout to the login
screen

The settings screen
was loaded without
issues, and the logout
function worked as
well

Yes -

4.2.1 Black box Test Reflections

The black box test shows a satisfying result, which is that the application works, except for one significant

error in test nr. 2.4, that has to be handled in the future development, which will be discussed in the

conclusion chapter 5.2

29 Test Methods

4.3 Usability Test

In order to best ensure that the application is intuitive for users, two usability tests were conducted on two

types of stakeholders; a person from the Kopi Team (admin) and a Tester (user), which have all been

described in chapter 1.3. Prototypes of the Test Center booking application were created for the

completion of the usability tests described in this section. This was done to give the users a visual and

interactive experience of the application. The usability test is based in the process described in (Molich, R.

(2007)). These tests were executed late in the development phase, where almost all the main

functionalities had already been implemented.

4.3.1 Usability goals

It was decided to focus on the following aspects for the application:

 Useful: The users must be able to use all the respective functionalities, without getting irritated.

 Feature rich: The application has to be seen as an improvement over the former solution, and

provide the users with the feeling of getting additional useful features to work with.

 Formal: The overall theme of the applications design has been aimed to be formal, meaning that

the users should find the applications design efficient and direct without getting confused where

the information is located on the screen.

4.3.2 User Experience Goals

When a user is working with the application, the aspirations are that all the user’s needs have been met, as

well as the functions being usable. If a function is not intuitive, the user should be able to find helpful

information on the actual page to get them through whatever obstacle they might encounter. The intention

is that the users find the application a professional tool to handle their booking needs in the future.

Generally users must be in favour of the content of the applications

4.3.3 Usability Test – Environment

The location for the usability tests was a meeting room, sized for four people, where the laptop in which

the test performed, was plugged into a TV. The TV screen could be seen by the person testing and the

person monitoring the test, who was sitting on the other side of the table taking notes, and asking if a list of

actions are indeed possible to perform in the application. The person testing was asked to speak aloud any

thoughts concerning the application.

30 Test Methods

4.3.4 Usability Test

Two usability tests were performed. The first was performed by a member of the Test Center Team

(admin), while the other was by a tester (user). Both persons had not seen any of the prototypes for the

application before helping with the usability tests. The persons are both considered to have a high technical

understanding for computer systems and applications. The outcome of the usability sessions can be found

in appendix 6.3.1 page 38-39.

4.3.5 Usability Test Reflections

None of the persons participating in the usability tests mentioned the general design, but it was easy to see

that they knew where to focus when entering each screen. They both seemed content with the

functionality provided by the application, but saw room for time saving improvements several places, which

were noted as nice to have requirements.

They both had the same characteristics in the sense of a high understanding for computer systems and

applications, which resulted in them taking the usability test as a challenge that needed completion fast, to

show their worth. Additionally it meant that they were armed with the knowing of what is possible to

create in an application, which they shared freely after analysing the screens throughout the application. In

general it would have been preferred to do the usability tests on at least two to three more users with

more varieties in their characteristics. However this was not possible since all the stakeholders in NETS

have a high understanding for computers.

Overall the usability tests have been a success, since the user experience goals where fulfilled and usable

feedback was gathered, which can be used to improve the application.

4.4 Browser Test

The standard browser in NETS is Microsoft internet explorer, but it is permitted for the employees to install

the following four browsers on their computers. Therefore the application was tried out on Microsoft

internet explorer, Firefox, Google Chrome and Safari.

There were no graphical differences, except for different lighting in the selected text fields. However there

was a functionality difference. Firefox was the only browser that could show a dropdown list of objects

from a text field, in all the other browsers the text field was just an ordinary text field. This can be seen in

appendix 6.3.2 page 39 – 41.

31 Test Methods

4.4.1 Validation

The Firefox add-in “Developer” was installed and used to validate the Test Center booking applications

HTML5 and CSS. The outcome resulted in few accepted HTML5 screens and several screens with minor

errors in the form of obsolete code that the validation wanted created completely with CSS instead of in

HTML. The CSS validation resulted in minor errors as well, in the form of colour selection for the design.

Since these tests were carried out late in the development phase, they were noted to be debugged in the

future development.

32 Conclusion

Chapter 5

Conclusion

33 Conclusion

5.1 Future Development

The managers have come to the agreement, that I will continue working for the company, and finish the

Test Center booking application completely. Additionally after the last prototype presentation provided for

the admins and managers, it was decided that a beta of the application should be installed on NETS web

server. The purpose of this being that all stakeholders can try the application from their workstations and

send feedback, which will be evaluated and presented to the managers, who will decide on the last changes

to the application, before the final release date of the application. Of course only if the application receives

positive feedback from both admins and users in its beta phase.

New possibilities will be available for the future development, since a company computer will be provided

granting access to all internal development programs. This will allow the use of Extreme programming

(Graham, D. et al. 2007) test method, which states that all possible test cases should be thought out and

automated. After a new feature has been added to the application, the automated regression test should

be executed to ensure that no former functionality has been lost due to the new feature. The program

provided by NETS to create this automated regression test is called Quicktest Professional.

5.2 Conclusion

The purpose of the project was to develop a booking system for NETS’ Test Center in order to replace the

existing manually driven e-mail and excel based process with a web based solution.

After gathering the first requirements and analysing them, priorities were listed from 1 to 3. One being the

most important which were the most needed functionalities required to create the application successfully.

Two were non-critical functionalities and three were non-essential extra functionalities.

Throughout the development process additional prototypes of the application were created and shown to

the stakeholders. This resulted in new requirements as well as the confirmation or redefining of already

stated requirements, to ensure that the stakeholders needs for the application where fulfilled.

The Play Framework was a good help for the application development, providing efficient tools as well as

connections between the model view controller layers. Additionally the frameworks ability to display code

changes directly in a local instance of the web application was a great help for prototype presentations.

As the development progressed, it was clear that the iterative process helped specify the requirements as

well as involve the stakeholders, which has lead to the creation of a web based booking system that the

stakeholders acknowledge being able to perform its primary functions, and would like to try. The end

34 Conclusion

product of this project has therefore become a beta version of the Test Center booking system, which is

expected to replace the former manual booking procedure.

The application has been tested by a Black-box test which showed that all the functionalities worked,

except when modifying an already existing components location with an invalid value, which results in an

error message without meaning, with no impact on the program. This should be solved before a final

implementation of the application.

The application has also been subjected to usability testing, which showed that the general design and

functionality were usable, but with room for improvement, which are all included in the priority two

requirements.

All priority one requirements have successfully been implemented in the application, which means that the

main functionalities are working. For the successful deployment of the application into NETS, it would be

preferred to have most of priority two requirements also implemented, to fulfil the stakeholder’s

expectations.

The project can be deemed successful based on the success criteria, which has all been met.

35 Appendix

Chapter 6

Appendix

36 Appendix

6.1 References

The following books and web pages have been used for the completion of this project.

 Rolf Molich (2007). Usable Web Design. Chapter 11. Think Aloud testing. Nyt Teknisk Forlag 2007.

 Dorothy Graham, Erik Van Veenendaal, Isabel Evans, Rex Black (2008). Foundations of Software
Testing. Chapter 2, page 40. Course Technology.

 Jim Highsmith and Alistair Cockburn. (2001) Agile Software Development: The Business of
Innovation. Computer page 120 to 122.
http://ieeexplore.ieee.org.globalproxy.cvt.dk/stamp/stamp.jsp?tp=&arnumber=947100&tag=1
Found: 01-04-2012

 Jacob Nielsen (1994). 10 usability heuristics
http://www.useit.com/papers/heuristic/heuristic_list.html
Found: 01-04-2012

 The following link is for the Play Frameworks home page

http://www.playframework.org/

 Figure 6 was found on page http://www.playframework.org/documentation/1.0/main

 The following link describes the security in the Play Framework Sessions

http://scala.playframework.org/documentation/1.2/security

 The following link contains all the programs used for the creation of the database

http://dev.mysql.com/

 The following link contains the “developer” add-in for Firefox, which was used for the browser test

https://addons.mozilla.org/da/firefox/addon/web-developer/

 The following link is a Java library, used for the development of the application

http://docs.oracle.com/javase/1.4.2/docs/api/

http://ieeexplore.ieee.org.globalproxy.cvt.dk/stamp/stamp.jsp?tp=&arnumber=947100&tag=1
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.playframework.org/
http://www.playframework.org/documentation/1.0/main
http://scala.playframework.org/documentation/1.2/security
http://dev.mysql.com/
https://addons.mozilla.org/da/firefox/addon/web-developer/
http://docs.oracle.com/javase/1.4.2/docs/api/

37 Appendix

6.2 Installation manual

The Test Center booking application has been designed for installation on a web server with its associated

database. It is however possible to create a local instance of the application as well as database, which this

installation manual will focus upon.

1. Make sure that there is a working Java 5 or later installation on the computer.

2. Now install the database which is done by installing MySQL server version 5.5.20 or better. On the

CD delivered with the report there is a file called “mysql Server-5.5.20-win32.msi”. Executing this

file will install the database server.

Be sure to create the server on localhost:3306 with password “Fisk”

3. The database schema has to be created manually before the Play Framework can work with it,

therefore it is necessary to install MySQL workbench version 5.2.37 or better. On the CD delivered

with the report there is a installation file for this called “mysql-workbench-glp-5.2.37-win32.msi”

4. When the MySQL workbench has been installed, it should be possible to connect to the local

database server on port 3306 with password Fisk. Thereafter a list of schemas will be presented to

the left of the workbench. Here a schema called “test_center_booking” should be created.

5. Now Play can be installed, which is done by finding the folder Play on the CD delivered with the

report, and moving it to the local C drive.

6. When this is done, open a command prompt and write:

Cd\

Cd play

play run TCB

7. By opening a browser (Firefox, Microsoft Internet Explorer, Safari or Google Chrome) this

application can be accessed by writing the URL: http://localhost:9000

8. When the application has been started once the database will have been created, which by

refreshing the MySQL workbench should appear.

To gain access to the admin site of the application, an admin has first to exist. This can be done by

writing the following into the database from the MySQL workbench:

INSERT INTO `test_center_booking`.`admin` (`id`, `adminmail`, `name`, `password`,

`admin_created`) VALUES (1, 'Adm@adm.eu', 'Admin', 'Admin', '2012-04-10 12:00:00');

This will make the admin email: Adm@adm.eu and password: Admin

9. It is now possible to add components as an admin in the application, or directly into the database.

Which will provide data required to work with the main functionality of the application

10. Now the Test Center booking application has been installed and all the possible functions unlocked.

38 Appendix

6.3 Test Results

6.3.1 Usability Test

Test Center Team

At first the admin was asked which expectations were held for the application, where the response was

that it was a not fully completed application, in which areas could be lacking data, since this test would

provide information required to improve the application.

The test started from the user login screen, where the admin spent around 30 seconds to study the

applications design before clicking the admin login link. Have been given the admin mail and password in

advance, the admin login screen was bypassed within 10 seconds. Now met with the Morgen Check screen

the admin tried to click the status metaphors to change the component status. After around 30 seconds the

table was fully understood and a component update had been done successfully. It was here mentioned by

the admin that it would be preferred to have the status changes directly in the tables instead of selecting

them individually. Next the admin was asked to find if a status update was necessary on specific dates,

which lead to the admin clicking the status calendar. Here the first thing the admin mentioned was a

compliment, that there actually existed a calendar, but also a concern that the actual screen could be very

bothersome and overwhelming to use if there where to many components that require a status update a

single week. Next the admin was asked if it was possible to update a component, which first got the admin

to move to the settings where the screen was studied from top to bottom in around 25 seconds, before

selecting the status all link in the top menu. Here modify was quickly selected and a component updated.

Usability Test (Tester)

At first the user was asked which expectations where held for the application, where the response was that

it would be an improved way of handling bookings in the future.

The test started from the user login screen, where the user had to create a new user and project, which

took a little under one minute. After entering the application, several seconds were used to click through

the component list. Here the task was to book a specific component, which the user found by expanding

the component list fully and using the browsers search function to locate it. On the booking screen the user

noticed the bottom table showing all other bookings of this specific component, and tried deliberately to

create an overlapping booking, which was accepted by the system, which made the user comment that

some kind of warning was expected, additionally it was commented that it sometimes could be beneficial if

the booking system had a shopping cart function, to book additional components at once. The whole

39 Appendix

booking process for the first booking took around 30 seconds. Next the user moved to the current bookings

screen where the user quickly found the new booking that was just created, and clicked the info link for it.

This resulted in the comment that there had to be some kind of update functionality, again as a shopping

cart, because additional booked tests could require to be postponed due to a multitude of situations in

their development project. The task was to find out if it was possible to change the booking date, which the

user answered no. The last task was to see if it was possible to change project to one provided for the test.

This resulted in the user logging out and entering again using the user mail created in the start of the test

and the new project number. It was only after the tasks were completed and the user was allowed to freely

roam the application, that the functionality to change projects while still logged on, was discovered in the

settings, which made the user comment that it was not bothersome to log out and in, and that having the

functionality in the settings is a bonus.

6.3.2 Browser Test
Microsoft Internet Explorer

40 Appendix

Firefox

Google Chrome

41 Appendix

Safari

6.3.3 Black box result 1.1

42 Appendix

6.3.4 Black box result 1.2

6.3.5 Black box result 1.3

43 Appendix

6.3.6 Black box result 1.4

6.3.7 Black box result 1.5

6.3.8 Black box result 1.6

44 Appendix

6.3.9 Black box result 1.7

6.3.10 Black box result 2.1

6.3.11 Black box result 2.2

45 Appendix

6.3.12 Black box result 2.3

6.3.13 Black box result 2.4

6.3.14 Black box result 2.5

46 Appendix

6.3.15 Black box result 2.6

6.3.16 Black box result 2.7

47 Appendix

6.3.17 Black box result 2.8

48 Appendix

6.3.18 Black box result 2.9

49 Appendix

6.4 Final Design

The following pictures show the finalised design of the Test Center booking application.

6.4.1 User Login

6.4.2 Create New User

50 Appendix

6.4.3 Create New Project

6.4.4 Component List (User site)

51 Appendix

6.4.5 Book Component (User site)

6.4.6 Current Bookings (User site)

52 Appendix

6.4.7 Booking Information (User site)

6.4.8 Project Bookings (User site)

53 Appendix

6.4.9 Status Overview (User site)

6.4.10 Settings (User site)

54 Appendix

6.4.11 Admin Login

6.4.12 Morgen Check (Admin site)

55 Appendix

6.4.13 Status Update (Admin site)

6.4.14 Status All (Admin site)

56 Appendix

6.4.15 Modify Component (Admin site)

6.4.16 Status Calendar (Admin site)

57 Appendix

6.4.17 Booking Calendar (Admin site)

6.4.18 User Bookings (Admin site)

58 Appendix

6.4.19 Booking Information (Admin site)

59 Appendix

6.4.20 Settings part 1 (Admin site)

6.4.21 Settings part 2 (Admin site)

60 Appendix

6.4.22 Component Location List (Admin site)

6.4.23 Booking Statistics (Admin site)

61 Appendix

6.4.24 Status Statistics (Admin site)

62 Appendix

6.5 Location of Application Code

On the CD delivered with the report there is a folder called Play which contains the Play framework and the

applications code. The code can be found in the folder TCB.

 The CSS Style sheet can be found in the following folder: TCB -> public -> stylesheets -> main.css

 The HTML views can be found in the following folder: TCB -> app -> views

Here the main.html contains the general design of the screens, described in chapter 2.1

 The folders located at this path contain:

Application contains the design of the login screens

Adminsite contains the design of the admin site screens

Components contains the design of the user site screens

 The Java functions can be found in the following folder: TCB -> app -> controllers

Here the functions are divided among the three java files:

Application contain the functions used on the long in screens of the application

Adminsite contain the functions used on the admin site of the application

Components contain the functions used on the user site of the application

 The setup of database tables used by the Play Framework can be found in the following folder:

TCB -> app -> models

