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Abstract

Pancreatic cancer is globally the 4th most common cause of cancer death and
the overall 5-year survival rate among patients is less than 5%. Often the pan-
creatic cancer is already at advance stages when discovered, so the difficulties of
an early diagnosis makes the life prognosis for these patients very dismal. Part
of the problem with detecting this type of cancer in time, is that there are no
typical symptoms. Incidence and prognosis prediction from high dimensional
gene expression data have been subject to much research during recent years.

This thesis examines the relationship between microRNA expression profiles
and their ability to predict correct diagnostics and expected survival from time
of operation. This research area can hopefully reform future courses of treat-
ment by providing patients with pancreatic cancer earlier diagnosis, and thus
improve their prognosis.

This thesis deals with the statistical modelling of microRNA measurements from
serum samples of both pancreatic patients and healthy controls. The analyses
are divided into two parts. The incidence part focuses on the logistic model for
predicting a binary outcome and the prognostic part considers Cox’s propor-
tional hazards model in order to handle censored survival times. However since
parsimonious models are of clinical relevance, these models are used in combi-
nation with coefficient shrinkage techniques, where the shrinkage methods used
here are univariate selection, backwards stepwise selection, Ridge regression,
Lasso regression and näıve elastic net regression. These shrinkage methods re-
quire estimation of penalty parameters for which cross-validation have served
as an excellent tool.
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Results based on five different normalization methods indicate that models with
only a few microRNAs are good predictors of cancer. The comparative study
of the incidence analyses show no significant difference in prediction ability be-
tween the various shrinkage methods considered. The analyses of prognosis
reveal no clear signal in the microRNAs in terms of predicting survival, which
could be a result of scarce data. All in all, microRNA expression profiles are
promising candidate biomarkers of pancreas cancer.

KEYWORDS: microRNA, pancreas cancer, normalization methods, incidence,
generalized linear models, logistic regression, prognosis, survival analysis, Cox
proportional hazards model, shrinkage methods.



Resumé

Kræft i bugspytkirtlen er globalt set den fjerde mest almindelige kræftrelateret
død og overlevelsesprocenten p̊a 5-̊ars plan for disse patienter er mindre end 5%.
Oftest er pancreaskræft allerede p̊a fremskredne stadier n̊ar den bliver opdaget,
s̊a grundet vanskeligheder forbundet med en tidlig diagnose, er livsprognosen for
disse patienter meget trist. En del af problemet med at opdage denne type af
kræft i tide, er at der ikke er nogen typiske symptomer. Forudsigelse af incidens
og prognose fra høj dimensionelle gen-profil data har været forsket i meget de
seneste par år.

Dette kandidatspeciale undersøger sammenhængen mellem mikroRNA-profiler
og deres evne til at forudsige den korrekte diagnose, samt den forventede over-
levelsestid fra operationsdato. Dette forskningsomr̊ade kan forh̊abentlig forbedre
fremtidige behandlingsforløb og give patienter med kræft i bugspytkirtlen en
tidligere diagnose, og dermed øge deres overlevelseschancer.

Dette kandidatspeciale omhandler statistisk modellering af mikroRNA-m̊alinger
fra serumprøver af b̊ade patienter med pancreaskræft og raske kontroller. Anal-
yserne er inddelt i to dele. Incidensdelen fokuserer p̊a den logistiske model,
brugt til at forudsige et binært udfald, mens den prognostiske del anvender
Coxs proportional hazards model der kan h̊andtere censurerede overlevelses-
tider. Men siden modeller med begrænset variable er kliniske relevante, er de
nævnte modeller brugt i kombination med teknikker der kan indskrumpe koeffi-
cienterne, hvor metoderne brugt her er univariat selektion, baglæns trinvist se-
lektion, Ridge regression, Lasso regression og naiv elastisk net regression. Disse
shrinkagemetoder indebærer estimering af strafparametre, hvor krydsvalidering
fungerede som et fremragende værktøj til dette form̊al.
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Resultaterne baseret p̊a fem forskellige normaliseringsmetoder, indikerer at mo-
deller med kun f̊a mikroRNA viser sig at være gode til at forudsige tilfælde med
kræft. Det komparative studie af incidensanalyserne viser at der ikke er nogen
signifikant forskel i evnen til at forudsige kræft, for de respektive shrinkageme-
toder. Analyserne af prognose detekterer ikke noget klart signal i mikroRNAerne
med hensyn til evnen til at forudsige overlevelse, hvilket kan være et resultat af
et begrænset antal prøver. Alt i alt, mikroRNA-profiler er lovende biomarkører
af kræft i bugspytkirtlen.

NØGLEORD: mikroRNA, kræft i bugspytkirtlen, normaliseringsmetoder,
incidens, generaliserede linære modeller, logistisk regression, prognose,
overlevelsesanalyse, Cox proportional hazards model, shrinkagemetoder.
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Nomenclature

α Tuning parameter in general / for näıve elastic net
β Effect parameters (coefficients)
δ Censorship
exp Exponential function
Λ̂(t) Nelson-Aalen estimator of the cumulative hazard
Ŝ(t) Kaplan-Meier estimator of the survival function
Λ(t) Cumulative hazard
λ0 Tuning parameter for univariate method
λ1 Tuning parameter for Lasso
λ2 Tuning parameter for Ridge
log Natural logarithm
E Expected value
`(·) Log-likelihood function
B Binomial distribution
H Hypothesis
L(·) Likelihood function
N Normal distribution
U Uniform distribution
C Internal control normalized matrix
Q Quantile normalized matrix
U Mean normalized matrix
U120 Mean-120 normalized matrix
ρ Spearman’s rank correlation coefficient
P Probability
AIC Akaike information criterion
AUC Area under curve
BIC Bayesian information criterion
Ct Cycling threshold



viii

CI Confidence interval
CP Chronic pancreatitis
CV Cross-validation
d Uncensored subjects (deaths)
DM Deviance measure
DOE Design of experiment
F (·) Cumulative distribution function
f(·) Probability distribution function
FN False negative
FP False positive
FPR False positive rate
GLM Generalized linear models
h(t) Hazard rate
HR Hazard ratio
HS Healthy subject
IM Informative missing
IQR Interquartile range
IRLS Iteratively reweighted least squares
L(·) Loss function
L1 L1-space
L2 L2-space
Lasso Least absolute shrinkage and selection operator
LM General linear models
MAR Missing at random
MCAR Missing completely at random
MLE Maximum likelihood estimation
MLR Multiple linear regression
n Number of samples
N/A Not available (missing)
OR Odds ratio
p Number of parameters / probability
PC Pancreatic cancer
PDAC Pancreatic ductal adenocarcinoma
PI Prognostic index
PM Performance measure
qrt–PCR Quantitative real time polymerase chain reaction
r Pearson’s product-moment correlation coefficient
r(t) Risk set
ROC Receiver operating characteristics
RSS Residual sum of squares
S(t) Survival function
T Survival time
t Time
TN True negative
TP True positive
TPR True positive rate
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Chapter 1

Introduction

Pancreas cancer is potentially a lethal disease that in most cases evolves very
rapidly. Usually at the time of diagnosis, patients already have locally advanced
or metastatic pancreatic cancer, where surgical procedure with curative intent
is only possible for a smaller proportion. Earlier diagnosis of these patients is
therefore crucial for their prognosis.

Prediction of pancreatic cancer patients and their expected survival based on
gene expression profiles is thus an important application of genome-wide ex-
pression data. This thesis deals with microRNA expression profiles and tries to
uncover the relationship between these profiles and both diagnostics, but also
the time from operation to death. It is the hope that these results can help and
be a part of a larger objective to archive more accurate incidence and prognoses
determination, hence improving the treatment strategies for these patients.

The thesis deals with statistical modelling of data from pancreatic cancer pa-
tients provided by Herlev Hospital and Rigshospitalet. The main objective is to
determine a subset of microRNAs which can be considered as good predictors
of the incidence of pancreatic cancer, as well as a subset that gives information
concerning the expected survival. At the time of writing there is no standard-
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ized way of analyzing microRNA data in relation to incidence and prognosis.
Substantial statistical challenges are connected with this topic, especially the
fact that the number of microRNA variables are considerably larger than the
samples available.

The main focus in this thesis consists of how data should be normalized and the
methods for which data should be analyzed, such that the final results derived
can be used in a clinical perspective. The latter involves methodology from
logistic regression, Cox proportional hazards model and the use of shrinkage
methods. The organization of the report can be described as follows.

Chapter 2: Clinical relevance. Provides a basic introduction to the bio-
logical concepts of microRNA and pancreas cancer which are the fun-
damental biological topics in this thesis.

Chapter 3: Data. Explains the underlying idea behind microRNA measure-
ments and gives a thorough description of the data set provided, which is
the foundation for all the analyses in this thesis.

Chapter 4: Methodology. Describes the theory behind the methods applied
in the analyses. Overall the analyses can be subdivided into an incidence
and prognosis part, with main focus on normalization methods, logistic
regression, Cox proportional hazards model and shrinkage methods.

Chapter 5: Simulation study. This is a small theoretical study that seeks
to understand how one certain normalization method cope with different
types of noise typically encountered in this type of application.

Chapter 6: Results. Presents the results from the various analyses. This
includes a comparative study and analysis using different normalization
methods, for both the incidence and prognostic part.

Chapter 7: Discussion. Here the obtained results are discussed and put into
a clinical perspective. Furthermore, the validity of the results is evaluated
and other analysis approaches are considered.

Chapter 8: Conclusion. Summarizes the most important results along with
a reflection on the work process and future research within this area.

Appendix. Consists of two supplemental parts to the thesis; some additional
results and bibliography.
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The analyses performed in this report was made using R version 2.14.1 and fur-
thermore Sweave was used as a tool to embed relevant R code in LATEX documents,
where tables were generated with the R package xtable by Dahl [2009]. This
ensured that the resulting output could be updated automatically if data or
analysis changed, which was very helpful. All the R programming is enclosed on
a CD.

All the actual microRNA names in the data have been coded due to confiden-
tiality reasons, instead aliases created from a algorithm was used throughout
the thesis.



4 Introduction



Chapter 2

Clinical relevance

The human genome is organized in the famous double helix structure with high
complexity. It is known that less than 2% of the total DNA, corresponding to
about 23-25.000 genes, encodes for the production of protein, which is important
for the body in relation to structure and reparation of bones, muscles, immune
system, connective tissue etc.

Up until recently it was of scientific perception that the rest of our about 98%
human genome, could be classified as so-called ”junk DNA”. More explicitly it
consists of noncoding DNA (ncDNA), noncoding RNA (ncRNA), introns and so
on. However this human material was considered waste, because there was no
knowledge of it having any biological function, and the general belief was that
it was just some immaterial leftovers from the human evolution over time. New
analysis methods the past five years, have made it possible to conclude that this
is not how the human biology works, far from it. This part of our DNA actually
contains a lot of information systems, that do not encode for protein, but serve
other biological purposes. Exactly how many distinct systems there exist is yet
to be discovered, but one system is shown to be of great importance concerning
cells regulation mechanisms; microRNA [Larsen 2011].
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It is already well documented that microRNA (miRNA) plays an important
role in cancer pathogenesis, apoptosis and cell growth, which is why this system
of regulators have received such massive interest the past decade. Ideally these
relatively new biomarkers, functioning as tumor suppressors or oncogenes, can
help the health sector in the long run by earlier detection of various cancer types
or other diseases, just by looking at an individual’s miRNA profile. It is a well
known fact that early diagnosis of cancer is crucial for the prognosis [Zhang
et al. 2009].

So a lot indicates that miRNA will have tremendous impact on future medi-
cal routines. In the next section the miRNA will be explained from a more
biotechnical perspective, defining more explicitly what a miRNA is.

2.1 MicroRNA

The first miRNA was actually discovered almost two decades ago, more specifi-
cally found by Lee et al. [1993] in the worm Caenorhabditis elegans. But it
was not until the early 2000s that it was recognized as a distinct class in the
bio community. In the last five years new miRNA discoveries have reached a
seemingly exponential growth, which is related to the previously mentioned ex-
ploding interest within this area. This is illustrated in Figure 2.1.

There are at the time of writing 1527 known human miRNA sequences and this
number is increasing (miRBase, last accessed November 2011), however there is
a large variation in the knowledge of each individual miRNA. Some have widely
known biological properties and are highly characterized, but a large part is still
new to science, and hence a good basis for further research.

Concurrently with the rising number of new miRNA discoveries, a rigid, uni-
form system for miRNA nomenclature was to a great extent needed. One of the
key problems was to distinguish miRNAs from e.g. siRNAs (small interfering
RNAs), which is a class of double-stranded RNA molecules similar in terms of
their functions and biological compound. Hence, the first thing done to en-
sure that only true miRNAs enter the miRBase Registry, was to demand that a
certain combination of expression and biogenesis criteria was satisfied [Ambros
et al. 2003].
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Figure 2.1: Hairpin precursor miRNA entries, data found at miRBase.

When novel entries fulfill the requirements that characterize them as miRNAs,
a consistent naming scheme is applied. The miRNAs are assigned by sequen-
tial numerical identifiers according to experimentally confirmed miRNAs, before
publication of their discovery. The number is connected with two prefixes, the
first one consists of an abbreviation of 3-4 letters used to designate the species,
e.g. hsa is used when the miRNA is found in a human gene (Homo SApiens)1.
Second prefix specifies if the miRNA is a mature sequence (labeled miR), or
precursor hairpins (labeled mir), related to the processing of miRNAs, these
terms will be elaborated later. An example of a miRNA could be hsa-miR-101,
which is most likely discovered before hsa-miR-136. Sequences whose mature
miRNAs differ only at one or two nucleotides are given lettered suffixes, e.g.
hsa-miR-10a and hsa-miR-10b, because they are very closely related. In a simi-
lar way, distinct hairpin loci that give rise to identical mature miRNAs, but
are located in different regions of the genome, are given numbered suffixes, e.g.
hsa-mir-219-1 and hsa-mir-219-2. Furthermore when two mature miRNAs origi-
nate from opposite arms of the same hairpin precursor, they are denoted with
a -3p or -5p suffix. These suffixes refers to the three, respectively five prime

1let-7 (LEThal-7 ) is one of the first discovered miRNAs and is special in the way that it
is evolutionarily conserved from fly to human. The let-7 family comprises of twelve human
genes encoding for nine distinct miRNAs (let-7a to let-7i).
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untranslated regions (usually denoted 3’UTR and 5’UTR), which are particular
coding regions of the messenger RNA (mRNA) [Griffiths-Jones et al. 2006].

MiRNA is a molecular group of short non-coding single-stranded RNAs with
an average of 22 nucleotides. These very small RNA molecules are first being
transcribed from the genome to primary miRNA (pri-miRNA) in the nucleus.
The pri-miRNA is a long RNA precursor that contains a stem-loop structure
of about 80 bases (also called hairpin structure because of its shape). The pri-
miRNA is then cleaved into precursor miRNA (pre-miRNA) by the RNase III
enzyme Drosha and Pasha protein. This pre-miRNA is likely to obtain the
same characteristic hairpin structure, which basically is the specific miRNA
sequence from the pri-miRNA. Next the pre-miRNA is transported from the
nucleus to the cell’s cytoplasm by a transport molecule called Exportin-5. Here
the Dicer enzym processes the pre-miRNA into its mature form, which binds to
a multiprotein complex, called RNA-Induced-Silencing-Complex (RISC). This
multiprotein complex regulates gene expression posttranscriptionally by binding
of a specific mRNA. The processing of miRNAs and their biological impact are
only roughly described here, in reality there is more detailed knowledge of the
process, however it was found beyond the scope of this thesis to describe this.
Figure 2.2 gives an illustration of the described procedure [AppliedBiosystems
2006, Schultz et al. 2011].

Figure 2.2: Processing pathway of miRNA, provided by AppliedBiosystems
[2006].
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So what used to be referred to as the biological equivalent of dark matter,
miRNAs are now identified as key regulators of development, cell prolifera-
tion, differentiation, and the cell cycle. They are also known to have highly
tissue-specific expression patterns, which makes them valuable biomarkers in
separation of healthy and malignant tissue. Thus substantiating their role in
transformation to malignant tissue and progression of malignant disease. This
thesis’ focus will be on miRNA profiling for pancreatic cancer patients, and this
type of cancer is introduced in Section 2.2.

2.2 Pancreatic cancer

The pancreas is an essential organ for the functioning of the human body. The
gland has dual functions in the human homeostasis. The exocrine part produce
digestion enzymes and secrete them to the duodenum. The exocrine islands
produce insulin and a hormone with the opposite functions called glucagon. It
produces about 1.5l digestion liquid a day and this fluid neutralizes the stom-
ach acid, along with splitting of proteins, fat and carbohydrates. The hormone
insulin regulates the carbohydrate and fat metabolism in the body, and secre-
tion of insulin is stimulated by consumption of meals. When the production
of insulin is either to little or nonexisting, the usual diagnosis is diabetes [Pa-
tienth̊andbogen 2008].

The pancreas typically weighs 100 to 150g and is between 12 and 15cm long. It
is located deep down in the abdominal cavity, behind the stomach, where it is al-
most completely wrapped by the duodenum. The pancreas can be sectioned into
three parts; the head (caput), body (corpus) and tail (cauda) [Patienth̊andbogen
2008].

Jemal et al. [2010] states that pancreatic cancer (PC) is the 4th most common
cause of cancer death in United States, and the same was predicted for Europe
in 2011 in the publication from Malvezzi et al. [2010]. Cancer in the pancreas
is a highly lethal condition with an intimidating low survival rate, it has been
reported that the overall 5-year survival rate among patients on a global plane,
is less than 5% [Hidalgo 2010, Jemal et al. 2010].

Alone in Denmark, the average incidence of new pancreatic cancer patients
per year from 2005-2009, were 445 men and 460 women. Getting the disease
before reaching 50 years of age is a rare event, but it happens, however it is
most likely to appear around the age of 65. The relative 1-year survival is 15%
for men and women, when diagnosed in the period 1999-2003, and when looking
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at the 5-year survival, the numbers are supporting the global percentage (3%
for men, respectively 4% for women) [NORDCAN 2011].

Often the pancreatic cancer is already at advance stages when discovered, so
the difficulties of an early diagnosis makes the life prognosis for these patients
very dismal. Part of the problem with detecting this type of cancer in time, is
that there is no typical symptoms, it includes e.g. weight loss, nausea, stomach
pain and diarrhoea, which are all common symptoms. When patients present
with jaundice, they often have advanced disease.

So far the only curable treatment is to surgically remove all cancer, however
this is a complex procedure due to the fact that the tumor is not easily acces-
sible, since it is placed behind other vital organs. The most common surgical
treatment (Whippel procedure) for cancers involving the head of the pancreas,
is to remove the pancreatic head, the duodenum and part of the common bile
duct together (pancreato-duodenectomy). However it can only be performed
if the patient is likely to survive major surgery and if the cancer is localized
without invading local structures or metastasizing. Figure 2.3 is a simplified
illustration of the stomach region and how the organs are connected before an
eventual operation, and Figure 2.4 is after the surgical bypass is performed.

Figure 2.3: Pancreas before operation,
provided by Nicolai Schultz.

Figure 2.4: Pancreas after operation,
provided by Nicolai Schultz.

Pancreatic cancer can be classified into a number of different histological types,
but for all practical purposes this term refers to pancreatic ductal adenocarci-
noma (PDAC), which is the most frequent and accounts for over 90%. About
two-thirds of these tumors are located in the caput pancreatis, the rest can be
diffuse or allocated between corpus and cauda pancreatis. There also exists very
rare types, e.g. neuroendocrine tumors, that have a very different and atypical
course of disease.
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There is a certain clinical interest in malignant tumors located in the so-called
papillary area, usually referred to as periampullary tumors. Besides caput pan-
creatitis, this group of carcinomas consists of ampullary, duodenal and distal
common bile duct cancers. All of them resembles each other clinically and
when scanned, the tumor type is determined by the location. Often it takes a
histopathological examination to get the correct diagnosis. Figure 2.5 gives an
overview of the papillary area.

Figure 2.5: An sketch of the papillary area, with a carcinoma of the am-
pulla of Vater, provided by Nicolai Schultz.

Ampullary cancer is located in ampulla of Vater, which is an area formed by
the union of the pancreatic duct and the common bile duct. It looks a lot like
the common pancreatic cancer and is often noted as that, but has a better prog-
nosis, mostly because of the critical localization which makes jaundice an early
symptom. Duodenal cancer, as the name suggest, is placed in the duodenum,
while common bile duct cancers are close to the gall bladder. All of these peri-
ampullary cancers usually express themselves with jaundice, because the tumor
usually blocks the common bile duct, and hence accumulates gall matter. A fine
example of real tissue infected with malignant carcinoma can be seen in Figure
2.6.

Chronic pancreatitis (CP) is a long-standing chronic inflammation of the pan-
creas which cause fibrosis and alters its normal structure and functions. This
condition have no invasive potential, but the symptoms of pain, weight loss and
sometimes jaundice mimics pancreatic cancer and it often cause diagnostic trou-
bles. Not rarely are patients operated with a Whipple procedure for something
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Figure 2.6: Real life pancreatic (upper left and right) and ampullary (lower
left) cancer tissue, provided by Nicolai Schultz.

that turns out to be chronic pancreatitis. Persons with chronic pancreatitis
regardless of its aetiology, is proved to have a higher probability of developing
pancreatic cancer, however they are still two biologically different conditions.

In conclusion, people with pancreatic cancer are not in a very encouraging
state, in light of their poor prognosis. Early detection is crucial for the pos-
sibility of operation and in general the chances of survival. Furthermore, the
differentiation between various periampullary cancer types is troublesome due
to clinical, radiological and histological similarities. Chronic pancreatitis mim-
ics pancreatic cancer and is a daily clinical challenge for a pancreatic surgeon.
Ideally these miRNA tissue-specific expression patterns, can help separate the
pancreas cancer cases from those with chronic pancreatitis and healthy subjects
(HS). Additionally reveal which miRNAs are significant regulators in relation
to incidence and prognosis. This is the thesis’ main focus. In Chapter 3, the
descriptive and explorative analysis of the data set is presented.



Glossary

aetiology The cause of a disease.

apoptosis A process of programmed cell death by which cells undergo an or-
dered sequence of events which lead to death of the cell.

DNA Abbreviation for DeoxyriboNucleic Acid, which is an important sub-
stance responsible for the functioning of human bodies. DNA basically
has its function to store information about your body. DNA has a capa-
bility to replicate itself and it is also responsible for production of RNA.
Consists of two long chains of nucleotides twisted into a double helix and
joined by hydrogen bonds between the complementary bases adenine (A)
and thymine (T) or cytosine (C) and guanine (G). The sequence of nu-
cleotides determines individual hereditary characteristics.

exocrine Gland that secretes outwardly through ducts.

gene The basic biological unit of heredity, i.e. genetic transmission from parent
to child.

genome The total complement of genes in an organism or cell. For a human
it is encoded in DNA and is divided into discrete units called genes.

histological The microscopic structure of tissue.

homeostasis The ability or tendency of an organism or cell to maintain internal
equilibrium by adjusting its physiological processes.
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intron Any nucleotide sequence within a gene that is removed by RNA splicing
to generate the final mature RNA product of a gene.

junk DNA Noncoding regions of DNA that have no apparent biological func-
tion.

mRNA The messenger RNA contains a copy of the DNA strand, sort of chem-
ical ”blueprint”, used for the protein synthesis.

nucleotide Generally a nucleotide is composed of a nucleobase (nitrogenous
base), a five-carbon sugar (either ribose or 2’-deoxyribose), and one phos-
phate group. It is these molecules that, when joined together, make up the
structural units of RNA and DNA. In DNA the nucleotides are adenine
(A), thymine (T), cytosine (C) and guanine (G), but RNA uses uracil (U)
in place of thymine.

oncogene A gene that has the potential to cause cancer.

pathogenesis The origin of a disease and the chain of events leading to that
disease.

RNA Abbreviation for RiboNucleic Acid, which like DNA is also essential for
life. Has the same structure as DNA, but one big difference is that the
nucleotide thymine (T) is replaced by uracil (U). The sequence of nu-
cleotides allows RNA to encode genetic information. All cellular organ-
isms use messenger RNA (mRNA) to carry the genetic information that
directs the synthesis of proteins.

siRNA Abbreviation for small interfering RNA, which is a class of double-
stranded RNA molecules with 20-25 nucleotides in length.

tumor suppressor A tumor suppressor gene, or anti-oncogene, is a gene that
protects a cell from one step on the path to cancer.



Chapter 3

Data

This chapter deals with the data set used throughout the thesis. The data is
produced by a company named AROS Applied Biotechnology which special-
izes in miRNA extraction from most biological tissues and cells. It has been
made accessible by Nicolai Schultz, who works as a surgeon at the Department
of Surgical Gastroenterology and Transplantation Rigshospitalet, University of
Copenhagen. Nicolai has also provided the clinical data associated with the
patients involved.

The chapter consists of three sections. Section 3.1 deals with some background
information concerning the experiment, and clarifies what the measured values
for miRNA actually represent. Section 3.2 digs into the data, and looks at the
variables available and how they distribute themselves, the so-called descriptive
analysis. Section 3.3 digs even deeper and investigates the data further, in order
to get an overview of how data behaves and reveal potential problems.
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3.1 Background of miRNA measurements

The experimental process of miRNA extraction is not trivial, it includes a series
of steps on both laboratorial and microbiological level, and in this section it
will only be briefly described. Participants of this study have all submitted a
blood sample and from this gotten the serum extracted. Serum is a fluid in the
blood that is neither blood cells (white and red) or clotting factor (coagulation).

After a miRNA purification procedure that should ensure no proteins and other
irrelevant molecular fragments remains, the samples are ready for being pipette
onto so-called TaqMan R© array human microRNA A+B cards. These cards are
prefabricated from the company AppliedBiosystems

TM

and contain a total of
754 unique assays specific to human miRNAs. The A card focuses on the more
highly characterized miRNAs, while the B card contains many of the more
recently discovered miRNAs. These cards can be seen in Figure 3.1 [Applied-
Biosystems 2010].

Figure 3.1: TaqMan R© array human microRNA A+B cards where each
well contains individual miRNA reagent, provided by Applied-
Biosystems [2010].
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As Figure 3.1 shows there are 16 × 24 wells per card and with two cards this
gives a total of 768 wells. Now there were 754 different human miRNAs, so the
remaining 14 spaces (7 pr. plate) are used for what is called endogenous con-
trols. For every card of this particular kind, four candidate endogenous controls
are selected. They are also called housekeepers, whose average can be used to
normalize internal variation. One of these controls is quadrupled (sometimes
referred to as the calibrator or reference sample), since it is essential when cal-
culating the fold-change for relative expression analysis. The remaining three
controls are replicated twice (one on each card). These concepts which will be
elaborated in Section 4.1.3. Both A and B cards have been run for every single
person in the population.

In order to determine the quantity of a specific miRNA in a certain sample,
the previously mentioned TaqMan R© system has been used. When the plates
are put into the machine, a so-called quantitative real time polymerase chain
reaction (qrt-PCR) is initiated. This process is used to amplify and simultane-
ously quantify a targeted DNA molecule, but in the context of targeting miRNA
the qrt-PCR is combined with an initial reverse transcription. The real time
refers to the possibility of observing the amplified gene material as the reaction
progresses, i.e. for every cycle, opposed to the standard PCR, where the product
of the reaction is only detected at the end.

The reactions are performed in a temperature block and in order to robustly
detect gene expression from small amounts, such as miRNA, amplification of
the gene transcript is necessary. Theoretically the targeted miRNA is doubled
in each cycle, and to be able to measure this quantity, fluorescent light is added
to the PCR mix. This fluorescent reporter is also amplified along with the tran-
script, and this can be seen as an amplification plot. An example is shown in
Figure 3.2.

The amount of miRNA present in each well is determined by the number of
cycles it takes to reach some threshold2. This quantity is called cycle threshold
(Ct), and under the assumption of 100% amplification efficiency, the relation-
ship between Ct values and PCR can simply be described as follows

1 PCR cycle = 1 increase in Ct value = twofold (21) of miRNA material
2 PCR cycles = 2 increase in Ct value = fourfold (22) of miRNA material
3 PCR cycles = 3 increase in Ct value = eightfold (23) of miRNA material
and so on.

2Strongly recommended to be decided by the manufacturer in order to ensure optimal
threshold settings. This should (hopefully) result in 100% efficiency of amplification.
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Figure 3.2: Typical amplification plot for PCR, provided by QIAGEN.

From the small example seen in Figure 3.2, it can be seen that sample A only
needs about 22 cycles to reach its threshold, compared to the 31 sample B.
This means that the concentration in sample A is much higher than B, about
2(31− 22) = 512 times more, because lesser folds were needed before detection.
It is possible that a concentration can be so low that the miRNA never reaches
its threshold, which will usually express itself as ”undetermined”. Then the
miRNA measurement is set as being missing, normally using a cut-off point of
40 cycles.

Keep in mind that Ct values themselves are not actual concentration quan-
tities, but they are relative measurements. One makes the distinction between
relative quantification and absolute quantification, which both are methods used
to approximate the number of fold changes.

Absolute quantification gives the exact number of target molecules in a sam-
ple. Relative quantification compares the Ct values of ones target miRNA to
another internal reference (such as an untreated control sample - the calibrator)
or housekeeping genes from the same plate. This makes it possible to normal-
ize for variation between different plates, hence making the plates comparable.
A widely known comparative normalization procedure that tells you how many
fold changes of amplicon occur, between cycles of the calibrator and target gene,
can be calculated by the formula

fold change = 2−∆∆Ct (3.1)
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where

∆∆Ct = ∆Ct,target −∆Ct,calibrator

∆Ct,target = Ct,target − Ct,endogenous1

∆Ct,calibrator = Ct,calibrator − Ct,endogenous2.

It is important that the endogenous controls are picked, so they share similar
properties such as stability and size as the target gene and calibrator. This is a
good way of comparing Ct values of the cancer and control samples, however a
drawback could be that it assumes that the target and reference amplification
are equally efficient. This thesis will however not base the analyses on the fold
change number and these types of normalization procedures, but instead use
the raw Ct values as a starting point.

3.2 Description of clinical data

With the background of the clinical trial in place and a reasonable understand-
ing of how the miRNAs are measured, it seems natural to move on to the data.
The data consists of 226 persons whose serum was taken, and for every single
one there was run an A and B card, resulting in 754 individual miRNA mea-
surements (not including the endogenous controls). Furthermore a set of clinical
information for each patient have been registered, e.g. sex, age, diagnosis etc.
A summary of these variables is given in Table 3.1.

The cohort consists of patients treated at three medical departments; Rigshos-
pitalet, Herlev Hospital and University of Heidelberg. Originally the clinical
and miRNA data were found in two separate data sets, linked by the AROS
number as the unique key. This number is important when following a certain
subject, because it is given from the company’s side, hence new measurements
from the same person will also have this number. The patient number is more
relevant to use in the context of the respective departments.
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Variable name Variable type Variable explanation

AROS.A995.nr integer AROS number
Patient.nr factor Patient number
Age integer Age when included (yrs)
Sex factor Gender [1: male, 2: female]
Diagnosis factor Type of patient
Operation factor Operation
Cleansing.date date Date of purification
Operator factor Laboratory technician
Inclusion.date date Date of inclusion
Operation.date date Date of operation
Death.date date Date of death
Follow.up.date date Follow-up date
Date date Date of death (if occured), else follow-up date
Time integer Time from operation to event (days)
Status factor Event type [0: censored, 1: dead]
miR.uxc numeric miRNA1

.

.

.
.
.
.

.

.

.

miR.tae numeric miRNA754

Table 3.1: Description of the variables in the serum data set.

One of the most important clinical characteristic recorded, is the diagnosis of
each subject. From this variable it is possible to see how many of the patients
have an periampullary cancer and which are the healthy controls. The distri-
bution of this variable can be viewed in Table 3.2.

Diagnosis Name n % Analysis grouping

0 Unknown 2 0.88 Not relevant
1 Pancreatic cancer 137 60.62 Pancreatic cancer
2 Ampullary cancer 4 1.77 Not relevant
3 Duodenal cancer 2 0.88 Not relevant
4 Common bile duct cancer 4 1.77 Not relevant
5 Serious cystadenoma 4 1.77 Not relevant
6 Solid tumor w.o. invasion 3 1.33 Not relevant
7 Chronic pancreatitis 20 8.85 Chronic pancreatitis
8 Neuroendocrine 1 0.44 Not relevant
444 Healthy control 49 21.68 Healthy subject

Analysis total 206 91.15
Total 226 100.00

Table 3.2: Frequency table of the diagnosis variable. The types relevant for
this thesis have been marked with a gray row color.

Most of the samples in the cohort (n=137, 60.62%) have the most common
form of pancreatic cancer (PDAC). The healthy controls represent the second
largest group, however this group does not solely consists of the healthy sub-
jects, it also includes the CP patients, since chronic pancreatitis per definition
is not cancer. Together the CP+HS control group accounts for 30.53% of the
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cohort. The remaining 8.85% samples, are unclassified and other periampullary
cancer types, who are not relevant for the analysis in this thesis, so they are
left out from this point on. This means that the original cohort is reduced to a
total of 206 persons.

Besides the diagnosis variable, other useful information of the samples and their
miRNA measurements are provided, among these are the gender, age (when
included in the cohort) and operation status worth mentioning. The operator
variable indicates which laboratory technician has purified which samples. It
could be interesting in theory to see how variation between the different labo-
ratory technicians influence the results, but it is inadequate. Only two names
occur and a larger part of the samples have been purified by an unknown per-
son, so it does not give much insight. The date of purification variable contains
two unique dates, but it turns out that the cancer+chronic pancreatis patients
have been purified on one day, and the healthy on another. This is problematic
experimental planning, because it means that the effect of the purification is to-
tally confound with the diagnosis. This issue will be discussed in much further
detail in Section 3.3.1.

Pancreatic Chronic Healthy Total
cancer (n=137) pancreatitis (n=20) subjects (n=49) (n=206)

Gender n(%)
male 89 (65.0) 13 (65.0) 23 (46.9) 125 (60.7)
female 48 (35.0) 7 (35.0) 26 (53.1) 81 (39.3)
Age (yrs)
mean 63.43 57.80 59.00 61.83
median 63.0 56.5 61.0 62.0
sd 9.74 10.04 7.12 9.45
range 31-86 42-85 41-66 31-86
Operation n(%)
operated 96 (70.1) 0 (0.0) 0 (0.0) 96 (46.6)
inoperable 39 (28.5) 0 (0.0) 0 (0.0) 39 (18.9)
not relevant 2 (1.5) 20 (100.0) 49 (100.0) 71 (34.5)
Survival status n(%)
death 60 (43.8) 0 (0.0) 0 (0.0) 60 (29.1)
censored 32 (23.4) 1 (5.0) 0 (0.0) 33 (16.0)
N/As 45 (32.8) 19 (95.0) 49 (100.0) 113 (54.9)
Survival time (days)
mean 624.99
median 569.00
sd 419.35
range 6-1881

Table 3.3: Summary of the variables gender, age, operation, status and
time, divided into three analysis subgroups along with the total.

In Table 3.3, appropriate descriptive statistics for selected variables are pre-
sented, stratified between the three main groups (PC,CP,HS) along with a total.
Overall there are more men than women (≈ 60/40) in the cohort, only in the
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healthy subjects group there is a slight overweight of women, which represents
the general population fairly well. On average the patients are 61.83 years old,
but in the PC group the mean age is closer to 65, which is in agreement with
the literature. The patient’s age vary from 31 years to 86 years. The operation
status is only relevant for the patients with pancreatic cancer, since a surgical
procedure is not relevant for CP cases and of course healthy subjects. As Table
3.3 shows almost 70% have been operated, but still a relatively large part was
classified as inoperable, presumably because the tumor already was at an so
advanced stage.

The status and time variables are useful in relation to prognosis after opera-
tion, and are constructed from the three date variables; operation, death and
follow-up. The status indicates whether a patient has experienced an event, in
this case death (status=1), or the end of follow-up, i.e. is censored (status=0).
The censored patients will contribute equally to the analysis as the deceased
patients, until censoring. The time variable is the time in days from operation
to either death or end of follow-up. If the date of operation or both the death
and follow-up date are missing, then the time will be defined as N/A. This is
the case for about 32.8% of the 137 cancer patients, while 43.8% have died and
23.4% are censored. The mean survival time from operation is 624.99 days, or
equivalently 1.71 years.

The basis of the analysis lies is miRNA measurements, and since this is still
a new concept to science, there is no beforehand knowledge of how the statisti-
cal analysis should be performed. No one knows the truth to how the miRNA
are correlated with each other, or if they can be regarded as independent etc.
So it seems necessary to explore these miRNAs in greater depth to get a better
understanding of how they are distributed before beginning the analysis. This
is done in Section 3.3.

3.3 Description of miRNA data

The miRNAs are the center of this thesis, hence the key covariates. The hy-
pothesis is that some of them are shown to be statistically significant regulators
in relation to incidence and prognosis of pancreatic cancer. One of the prob-
lems, when working with miRNA data, is the classical challenge of having more
parameters than observations (p > n, here the case is even p >> n). The reason
is that the system of equations defining the regression model in classical regres-
sion analysis is underdetermined. Put in more mathematically terms, there will
be more unknowns than equations available, making it impossible to find an
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unique solution. So it is an obstacle that should be dealt with in some way, but
since problem with high dimensional data is not unfamiliar, methods designed
to cope with this problem exists.

For these miRNA data there seems to be many that have undetermined Ct
values (or N/As), and the cause could be technical or simply that the concen-
tration is just too low to detect. Hence, it could be interesting to look at how
the N/A percentage of each miRNA are distributed. This is done in Figure 3.3.
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Figure 3.3: Histogram showing the percentage of N/As for all miRNAs.

This plot is very promising, because it indicates that many of the miRNAs
have a high percentage missing, so they can most likely be discarded without
losing to much information, and hence reduce dimensionality significantly. The
question is however, where should the limit for exclusion be? No one knows the
correct answer to this, so the choice have been based on statistical intuition and
reasoning. Since almost 300 miRNAs have 100% missing measurements, it is
fairly obvious that these should be removed from the analyses. This leaves ≈ 450
covariates, which still are too many parameters, so the criteria of exclusion was
defined as miRNAs having more than 20 N/As, corresponding to around 10%
measurements missing. The missing measurements must occur when miRNAs
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have negligible presence, only a smaller proportion of the missing can be credited
small machine fluctuations. This is the motivation behind the choice of limit,
when a certain miRNA have more than 10% undetermined it seems reasonable
to think that the concentration is sufficiently low to not being an influential
covariate. For the serum data, 75 miRNAs satisfied this restriction, hence were
eligible as candidate covariates in the analyses.

The assumption is now that the true miRNA predictors, are to be found in
this subset, so the N/A limit is up for discussion. Even though this is a fairly
strong assumption, it is a nice and easy way to work around the high dimension
problem, and hopefully without losing to much valuable information. However,
instead of getting rid of information that could be potentially valuable, adding
information could be another way to address the N/A problem.

The concept of substituting missing values with some appropriate values, is
called imputation. Several strategies exists on how to develop an appropriate
imputation algorithm that fits the data, a large part lies in the assumption on
why the data elements are missing. In this case the missing values would be
classified as informative missing (IM) also called nonignorable nonresponse, be-
cause measurements are more likely to be missing when the concentration of
miRNA is lower. The missingness pattern is systematical and the most difficult
type of missing data to handle (see Section 4.1.2 for a wider definition of missing
assumptions). In many cases there is no fix for IM data, approaches like multiple
imputation3 or single conditional mean imputation, which uses mean, median
or another sensible value as a substitute of the missing values (”best guesses”).
Both uses assumptions not quite meet here, although the latter could be applied
with reasonable approximation, since the Ct scale for miRNA data is locked at
[0; 40]. It is known that missing values present themselves when a high number
of cycles still have not reached the threshold, so N/As could be replaced by some
value between e.g. 35-40. On the other hand, this could result in distributions
with heavy weight coming from high values, which is not desirable. Anyhow,
these types of imputation methods are not the focus of this thesis, but still
worth mentioning as an alternative approach [Harrell 2001, pp. 41-50].

In Figure 3.4 the average Ct level for every patient in the cohort is depicted.
This is the mean of all the miRNA measurements w.r.t. every person, where
the N/As have been excluded before calculation. Furthermore the patients have
been ordered by their runorder, i.e. patient number one’s plates have been run
first and so on. In general there can be run ≈ 6 plates per day, so this trial has
probably taken around a month to run.

3Uses random draws from the conditional distribution of the target variable given other
variables, e.g. bootstrapping - a general purpose technique for obtaining statistical estimates
by repeatedly simulating a sample of size n from some empirical distribution of the observed
data, and then assessing how the computed statistic behaves over a number of repetitions.
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Figure 3.4: Average Ct level for the 206 persons eligible for analyses, ar-
ranged by runorder.

The general belief is that Ct values above 35 are not trustworthy, because after
that many cycles it is most likely just some unspecific random fragments that
is being recorded instead. Usually these unreliable miRNAs are removed from
the analyses to strengthen the trust in results. The Ct grand average is 32.36,
which implies that the measurements are generally in the high end - close to the
cut-off point. This might not mean anything, but it is worth highlighting as an
uncertainty factor.

Besides having a very high Ct level in general, there also seems to be a problem
in the way the average is shifting. Theoretically the mean for all the patients
would be expected to lie on some general level, with minor fluctuations due
to measurement errors. But for these data there seems to exist several mean
”jumps”. The first about 75 patients clearly have a lower level than patients no.
≈ 76 − 100, who have very high miRNA averages in comparison, but then the
level drops again to a new low for the remaining patients. The reason for this
trend is unknown, because as explained earlier an A+B card was run for every
patient on different days, so the variation between plates, operator, runorder
etc. is confounded, and hence for these data not possible to quantify.
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Figure 3.5: Average Ct level divided into the three main groups; PC, CP
and HS, arranged by runorder.

To make matters even worse, in Figure 3.5 the miRNA average have been strat-
ified between the three main groups; patients with pancreatic cancer, chronic
pancreatitis and healthy subjects. This figure reveals that the PC patients gen-
erally are the ones having higher mean Ct compared to the healthy subjects. If
this difference was caused by a true difference, it would be possible to distinguish
between the two groups solely from this plot. This is however highly unlikely to
be true, given past experience have shown us that nature often works in a far
more complex way. Furthermore, if this were true, then chances that someone
else already have discovered this are large. So a lot indicates that many of the
irregularities present in the data are artificial variation, caused by e.g. techni-
cal errors. Unfortunately since this specific trial cannot be redone, the data
needs to normalized, such that different patients are comparable in the anal-
yses. However this is a statistical challenge for miRNA data and something still
under discussion, because at present time there is still no evident normalization
method that can be classified as the best and most robust. There are numer-
ous normalization methods available though and this thesis will look into the
theory behind some of them in Section 4.1, and how they perform individually
on the data set in Chapter 6. Before moving on to the methodology applied,
Section 3.3.1 goes into more detail with the issue of confounded factor sources,
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and proposes how a more balanced design of experiment (DOE) can optimize
these kind of data in the future.

3.3.1 Design of experiment

These types of miRNA trials have the potential to uncover some valuable knowl-
edge regarding incidence and prognosis of cancer. The expenses of each trial
however are very high and usually cost millions of kroner, making it crucial to
obtain maximum information possible. Statistical methods in the field of design
of experiments are therefore highly relevant. To get an idea of how to reach this
goal, it is important to first define the three basic principles of experimental
design; randomization, replication and blocking.

Randomization is according to Montgomery. [2008, pp. 12-13] the cornerstone
underlying the use of statistical methods in experimental design. Most statistical
methods use the assumption of errors being independently distributed random
variables, and randomization usually makes this valid. Randomization refers to
both the allocation of the experimental material and the randomly determined
order in which the individual trials are to be run. By doing the randomization
properly, unwanted extraneous effects present are averaged out, hence bias that
has not been accounted for in the experimental design will be reduced.

Replications are independent repetitions of a certain factor combination and
serve two important purposes. First, it allows the experimenter to obtain an
estimate of the experimental error. Secondly, it supplies the experimenter a
more precise estimate of some parameter which further strengthens the experi-
ment’s reliability and validity. Replicates are not to be confused with repeated
measurements, where observations has been made on the same factor more than
once, usually involving measurements taken at different time points.

Blocking is a design technique used to improve precision with which compar-
isons among factors of interest are made. The general idea is an arrangement of
experimental units into groups (blocks), consisting of units that are similar to
one another, reducing irrelevant sources of variation between units. This form
of variability affecting the results, which blocking can systematically eliminate,
is denoted nuisance factor. However, this requires that the nuisance source of
variability is known and controllable.

These three concepts are to be kept in mind when planning an experiment,
but it is no secret that for the data provided, they have been nowhere near
the considerations. Even though the data given is the only available working
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material it is still relevant, for future similar experiments to pinpoint certain
improvements. Unfortunately for this type of experiments replication is not an
existing dimension, because each subject will only get one A+B card on which
only some controls are replicated.

Description Levels Associated with

Case control status PC/CP/HS Response
Survival time for cases missing/below/above median Response
Age for cases and controls below/above median Response
Gender for cases and controls male/female Response
Plate 1 . . . n Reproducibility
Preparation/purification date 1 . . . d1 Reproducibility
Analysis/running date 1 . . . d2 Reproducibility

Table 3.4: Factors suspected of influencing results.

In Table 3.4 some of the factors assumed to be relevant for the experiment
are listed. The table provides factor description, assumed number of levels for
each factor as well as its role on the measurements. The case/control status,
survival time, age and gender are called fixed effects, because the levels of these
factors are of specific interest. Whereas the remaining factors are thought to
be random effects influencing the precision or reproducibility of the experiment.
Their factor levels are chosen at random from a larger population of possible
levels, but where the objective is to draw conclusions about the entire popula-
tion of levels [Montgomery. 2008, p. 505].

Reproducibility is defined as precision under conditions where test results are
obtained with the same method on identical test items by different operators
using different equipment. However since there are no replicates in this exper-
iment and presumably only one operator, machine and laboratory at disposal,
the variance components that reproducibility consists of cannot be estimated
[Dehlendorff and Andersen 2011].

Despite each miRNA only has one measurement per patient, this still leaves
randomization and blocking to be considered, in order to average nuisance fac-
tors out. The past experiment was done in a inappropriately manner, where the
biggest issue was the purification order and the order in which the samples were
analyzed. The major issue in general was that when they purified on the two
occasions, the samples from cancer and chronic pancreatitis patients were done
the first day and the healthy controls on another. Moreover the runorder was
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as imbalanced as possible, because the overall sample order was PC→CP→HS.
The result is clear from Figures 3.4 and 3.5, the sample mean Ct level for cases
and controls is considerable different, which is most likely caused by the purifi-
cation factor. However because of the poor designplan, this nuisance cannot be
extracted from the data, the diagnosis of patients is confounded with both the
purification and analysis date.

As mentioned before, blocking can aid in the prevention of nuisance factors
having an effect. Now, for an experiment with n samples, each sample be-
longs to some combination of the four identified fixed effects. The plates are
by construction totally confounded with patients and the plate-to-plate varia-
tion cannot be estimated free of patient-to-patient variation. This fact does not
change unless replicates are made. The general idea is to treat the purification
and analysis date variables as blocks and then distribute all samples out between
these blocks, in order to remove unwanted variation as much as possible. This
balancing out of the four factors could be performed in a two-staged blocking
procedure, by following four steps.

1. Divide the purification days into d1 blocks and assign each sample to a
block. Allocation should be done in a balanced manner of the four factors,
such that each block contains same proportion of each factor level, i.e.
equally many males/females, cases/controls etc.

2. Randomize order of sample purification within each day.

3. Divide the analysis days into d2 blocks and assign each sample to a block.
Once again, the allocation should be balanced, but now treat the assigned
purification day as one more factor to consider, beside the factors ac-
counted for in step one.

4. Randomize analysis order for each day.

The above described design makes sure that the blocking effect can be taken out
of the measurements. The importance of blocking cannot be stressed enough,
but an equally important part of the design plan is the randomization of samples
within each block. Both when treating purification as a blocking variable and
the order in which the samples should be analyzed.

In closing, it has been possible to put the principles of DOE to the test in
a new miRNA experiment. A similar A+B card experiment have been per-
formed according to the two-staged blocking procedure just described, and in
Figure 3.6 the results are visualized by stratifying on the diagnosis. The ”JJ”
refers to personal control samples taken from doctor Julia S. Johansen, who is
in charge of the experiment4.

4Unfortunately the data was delivered too close to the deadline of this thesis, so time did
not allow any form of analyses on these data. Christian Dehlendorff should be credited for
providing Figure 3.6.
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Figure 3.6: Average Ct level arranged by order of analysis, stratified by
diagnosis, for a new experiment using the described two-staged
blocking procedure. A color denotes the designated purification
date of a sample.

The difference from the serum data that is without any form of design plan, is
quite clear. The proper design plan ensures that the samples are analyzed in a
much more balanced way concerning diagnosis and purification date, which read-
ily can be derived from the width and color of the sample spectrum. First of all,
the average Ct measurements in general are down to a more acceptable region,
varying between 27 and 29 roughly (this is not a direct result of DOE though).
Furthermore, the average Ct level of the samples in the various groups, are all on
the same level, only with very few outliers (typically samples with many N/As).
Of course there is minor variability, but there is no sudden unexplainable jumps
in the mean, hence the samples are comparable. The results derived from this
new experiment, further strengthens the claim of mean Ct level differences in
Figure 3.5 between cancer and healthy subjects of the serum data, is artificially
caused. In Figure 3.6 there is certainly an improvement of the data quality and
if the miRNA measurements always looked like this, DOE would be redundant
and the importance of normalization would be lesser. However, since the serum
scenario is possible, the experiments should always strive to apply the principles
of randomization, replication and blocking in a reasonable way.



Chapter 4

Methodology

This chapter deals with the statistical methodology applied throughout the the-
sis. However before describing things from a mathematical perspective, Figure
4.1 gives an overview of the main parts of the statistical analyses, and how these
different parts are connected to each other.

Several important issues with the data was discovered in the previous chap-
ter and it was highlighted how crucial it is to make well planned experimental
designs. Since the reality for these data is something else, there exists a nor-
malization issue. No standardized way of normalizing miRNA data has yet
been establish, so five different methods have been used in this study. The five
different normalization methods are described initially in Section 4.1. For one
specific normalization method, called the rank method, a small simulation study
has been performed. This is to validate the hypothesis that ranking of data pro-
duces more reliable results, and is more robust concerning these miRNA mean
shifts, compared to working with the raw Ct values. The result of the simulation
study is described later in Chapter 5.
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Figure 4.1: Overview of this thesis’ area of analyses, in form of a flow
diagram.

The statistical model depends on the type of response variable. Incidence deals
with a binary response, i.e. whether a person is diagnosed with cancer or not.
This is typically analyzed by logistic regression. In the study of incidence,
the goal is to identify which miRNAs can be considered as predictors of can-
cer/healthy subjects, however a more formal introduction to incidence is pro-
vided in Section 4.2.

When dealing with prognosis another type of outcome is of interest; survival
time. In this context survival time refers to the time from operation to death or
end of follow-up. One of the analytical problems of survival analysis, is called
censoring. This is essentially when we have some information about an indi-
vidual’s survival time, but do not know the exact survival time. A range of
methods can be used to analyze survival data, but this thesis is restricted to
only deal with the Cox proportional hazards model. It is probably the most used
model within survival analysis. The fundamental concepts will be introduced in
Section 4.3.

Furthermore, this thesis will also make use of the so-called shrinkage methods,
methods that penalizes on the coefficients in various ways depending on the
method used. These methods are very useful in p > n situations, because they
have the ability to shrink regressors with negligible influence (and sometimes
eliminate, depending on the penalty term). Moreover, shrinkage methods also
deals with multicollinearity among the regressors, which from a biological point
of view makes sense to expect from miRNA data. These different modeling ap-
proaches have laid the ground for the comparative study, which tries to examine
if either one have a better predictive performance. Moreover, it is very inter-
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esting to see which miRNAs are identified by each method as good significant
predictors, and which method - if possible - can be classified as most useful in a
practical sense. The shrinkage methods can be applied regardless of the type of
outcome variable, meaning that they can be used in relation to both incidence
and prognosis. An introduction of the shrinkage methods considered in this
thesis can be found in Section 4.4.

The methodology chapter ends with an introduction to cross-validation in Sec-
tion 4.5, a useful method for finding optimal tuning parameters of the shrinkage
methods.

4.1 Normalization methods

Normalization can be defined as the process of isolating statistical error in re-
peated measured data, sometimes based on a property. For the data available,
the natural variation between patients is confounded with other sources of vari-
ation, such as the plates, machine, purification etc. So isolating and extracting
the natural statistical noise solely, is simply not possible in this case. Normal-
ization can however still be used to somehow even out the differences in mean
Ct level for each patient, and by that making the patients more comparable in
the analyses. The five different normalization methods considered are ranking
of data, quantile normalization, use of an internal control, mean normalization
and mean of the 120 most expressed miRNAs.

4.1.1 Rank normalization

The principle of rank normalization is to replace the actual Ct values with their
ranks. This way, instead of working with the actual measurements, the ranks
are used. Within each patient the Ct values for each miRNA are ordered as-
cendingly, and thus the first element is given rank 1, the second element rank 2
and so forth. This means that the miRNA with rank 1 is the most expressed,
because it has the lowest cycling threshold or equivalently the highest concen-
tration of miRNA material.

The method is fairly simple, but this is not the whole story, because there
is also a need for handling ties. Ct measurement ties between two miRNA mea-
surements is not a frequent event, but of course that does not change the fact
that the situation needs to be addressed. When multiple measurements obtain
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the same value, the median of the ranks involved is assigned to all of them. In
the case of an even number of elements being alike, the mean of the two middle
values is used. This is best illustrated with a small example, which is given in
Table 4.1.

miRNA miR1 miR2 miR3 miR4 miR5 miR6 miR7 miR8 miR9

Ct 21 N/A 32 34 N/A 23 N/A 25 32
Rank 1 8 4.5 6 8 2 8 3 4.5

Table 4.1: Ranking example.

In the example miR3 and miR9 both have Ct = 32, and since they are ranked
4 and 5, rank 4+5

2 = 4.5 is given to both. What also can be seen from this toy
example, is how missing values are ranked. All miRNAs without Ct value are
put at the end of the ordered list, and treated as having the same value. Three
miRNAs are missing here (miR2, miR5, miR7), with the order number 7, 8 and
9, hence the median is 8 and assigned as the rank for all of them.

Missing values are an inevitable fact that needs to be handled for many types
of data, miRNA data is no exception. There are several ways to get around
the problem, each with its own pros and cons. The ranking algorithm imple-
mented in this thesis, places all the N/A observations at the end and gives them
a shared rank, just as the small example illustrates. However when a patient
have an overweight of missing values, the disadvantage of this procedure reveals
itself. The ranks will distribute themselves as an incrementing diagonal when
measurements are present, but all the missing values in the end will lie in a
single point. This clot will have some distance from the actual measurements,
because the method chooses the median rank of all the N/As. So there is a lot of
weight ascribed to a single rank, which could potentially influence the results.
But since all miRNA with a high N/A percentage have been sorted out, the
impact should be minimal here.

There is another disadvantage that can be added to the rank method. When
the actual measurements are substituted with ranks, the effects are not easily
interpreted, because now it is a pattern being analyzed instead of the true val-
ues. One increase in Ct value is not the same as one increase in rank, the latter
is harder to explain the meaning of. However, using ranked miRNA data, each
patient becomes its own control. This is the main motivation behind using this
form of normalization, because the general Ct level for each patient is ignored.
A simulation study in Chapter 5 will go more into detail concerning the benefits
of using ranks compared to raw values.
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4.1.2 Quantile normalization

The goal of quantile normalization is described by Bolstad et al. [2003] as making
the distribution of probe intensities for each array, in a set of arrays, the same.
Probe intensities in this context would be the miRNA Ct values, and the array
refers to a sample/patient. The general idea comes from the quantile–quantile
plot, which can be used for comparing the distribution of two data vectors. The
plot will be a straight diagonal line if the distributions are the same. This con-
cept have been extended to n dimensions, so that if all n data vectors have the
same distribution, then plotting the quantiles in n dimensions gives a straight

line along the line given by the unit vector
(

1√
n
, · · · , 1√

n

)
. The method is de-

scribed in more detail in the following.

Consider that the Ct values are contained in the matrix X given as

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xp1 xp2 · · · xpn

 (4.1)

where p is the number of miRNAs and n is the number of samples. The original
ordering of each column is given in the matrix O. First step is then to sort
each column such that x̃1i ≤ x̃2i ≤ · · · ≤ x̃pi, where x̃ji is the jth value in the

sorted version of column i. Combining the n sorted columns gives X̃ and the
new index order within each column is given by matrix D. Second step is to

replace each row with its arithmetic mean, forming the matrix ¯̃X. Finally the

quantile normalized matrix Q is found by arranging ¯̃X back according to O.

The quantile normalization algorithm can probably best be illustrated with a
small example, consider a matrix with arbitrary Ct values

X =

28 35 22
27 32 28
30 31 21

 . (4.2)

First step is to sort within each column to obtain matrix X̃ and D

X̃ =

27 31 21
28 32 22
30 35 28

 and D =

2 3 3
1 2 1
3 1 2

 . (4.3)



36 Methodology

Secondly the mean is taken over each row of X̃

¯̃X =

79/3 79/3 79/3
82/3 82/3 82/3
93/3 93/3 93/3

 . (4.4)

And finally by rearranging back within each column to the original order, the
quantile normalized matrix is obtained

Q =

82/3 93/3 82/3
79/3 82/3 93/3
93/3 79/3 79/3

 . (4.5)

This procedure ensures that all the data vectors will lie on a straight diag-
onal line in an n dimensional quantile–quantile plot, i.e. the Ct distribution
of all the miRNAs are made the same and by that comparability is archived.
The method have been implemented in the R package preprocessCore from
Bioconducter by Bolstad [2010], where the normalization can be done using
the normalize.quantiles command. The algorithm ensures that tied values
in a given column are also tied after normalization. So if a column contains
some tied measurements, then for these ties an average of their values in the Q
matrix are returned instead. This is similar to the rank method.

Probably the largest drawback of using this quantile normalization implementa-
tion, is the handling of missing values. From the documentation it can be seen
that the function handle N/As using the assumption that the values are missing
at random (MAR). Data are said to be MAR if the probability of the observed
missingness pattern, does not depend on unobserved data.

To quote Diggle et al. [2002, p. 283], who explains this concept more gener-
ally.

Let a complete set Y ∗ be partitioned into Y ∗ = (Y (o),Y (m)), where
Y (o) is a set containing the measurements actually obtained and
Y (m) the set of measurements which would have been available, had
they not been missing. R denotes a set of indicator random variables,
indexing which elements fall into Y (o) and Y (m), respectively. Now,
a probability model for the missing value mechanism defines the
probability distribution of R conditional on Y ∗ = (Y (o),Y (m)).
The missing value mechanism is usually classified into

• completely random (MCAR) if R is independent of both Y (o)

and Y (m)

• random (MAR) if R is independent of Y (m)

• informative (IM) if R is dependent on Y (m).
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The key point here is that a missing observation only depends on the observed
data, which is a strong assumption. Unfortunately this does not quite hold for
the data of interest, because theoretically a Ct value is missing if the concentra-
tion of miRNA is imperceptible small or absent (not detected after > 40 cycles).
It would probably be more appropriate to assume the data being informative,
so this is something that needs to be stressed in the analyses when applying the
preprocessCore implementation of the quantile normalization algorithm.

To explain how the missing values are handled practically, a minor example
is needed. Once again, assume we have a matrix of arbitrary Ct values, this
time with a missing measurement

X =


28 35
27 32
30 31
25 N/A
29 30

 . (4.6)

Now what the function does when ordering the columns, it places the N/A
observation first. The sorted matrix evaluates to

X̃ =


25 N/A
27 30
28 31
29 32
30 35

 and D =


4 4
2 5
1 3
5 2
3 1

 . (4.7)

The deviation from the regular procedure is that the mean for the first row
cannot be calculated because of the missing value, but for the remaining rows
the operation can be performed without problems. The second column (con-
taining the missing value) can arrange the mean values according to the original
order, but the first column is instead replaced with the quantiles of the mean
distribution. The distribution is in this example (28.5,29.5,30.5,32.5) and since
there are four elements, the five quantiles becomes (Q0, Q25, Q50, Q75, Q100) =

(28.50, 29.25, 30.00, 31.00, 32.50). In conclusion the matrices ¯̃X and Q becomes

¯̃X =


28.50 N/A
29.25 28.50
30.00 29.50
31.00 30.50
32.50 32.50

 and Q =


30.00 32.50
29.25 30.50
32.50 29.50
28.50 N/A
31.00 28.50

 . (4.8)

Opposed to the rank method, the quantile normalization places the N/As first,
which for miRNA data is not reasonable. Then the most expressed miRNAs
will loose its leverage, which of course is bad. One way to manipulate the
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implementation a little and get around this problem, is to negate all the Ct
values before making the quantile normalization (and negate back afterwards).
This trick results in a lack of means for the high Ct values instead, which is
much more plausible from a practical perspective.

4.1.3 Internal control normalization

On miRNA A+B cards there are placed different endogenous controls, and the
method of normalizing w.r.t. internal controls is straight forward. All patient
samples have had the same controls measured, so the idea is to subtract some
average of the controls from all the human miRNA measurements. Let X denote
the matrix with Ct measurements unique p human miRNAs

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

 (4.9)

and let a column vector containing row-wise averages of some internal controls
be denoted c, given as

c =


c̄1·,ctrl
c̄2·,ctrl

...
c̄n·,ctrl

 . (4.10)

If there are some missing values present when these means are calculated, they
will simply be removed from the calculations. The internal control normalization
is found by

C·j = X·j − c, where j = 1, 2, . . . , p. (4.11)

The C is the internal control normalized matrix and the mathematics behind
obtaining this result is fairly trivial. It can be an advantage to use this normal-
ization, because the idea is that the plate variation is removed, assuming the
internal controls are stabile. It is an essentials part of this method, to choose
the internal controls correctly. Remember that all in all 14 of the 768 Ct mea-
surements are from endogenous controls, and how they are divided onto the A
and B cards can be seen in Table 4.2.
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Endogenous control Alias Rep

Card A
MammU6-4395470 calibrator/reference 4
RNU44-4373384 1
RNU48-4373383 1
ath-miR159a-4373390 spike-in 1

Card B
U6-snRNA-001973 calibrator/reference 4
RNU44-001094 1
RNU48-001006 1
ath-miR159a-000338 spike-in 1

Table 4.2: Shows how the endogenous controls are divided out among the
A+B card and the number of replicates.

Under further examination of the various controls in the data, it seemed like a
natural choice to base the mean vector c upon the U6 small non-coding RNA.
There were several reasons for this

1. four replicates on each plate gives more reliable values

2. each replicate of RNU44 and RNU48 had an N/A percentage > 70%

3. spike-in samples are traditionally not used for normalization.

Furthermore, no distinction between a control coming from an either A or B
card is made when calculating the row-wise average, because they should be
somewhat similar. A major downside of this method is the risk of the control
measurements being contaminated in some way, i.e. unstable, because these are
the foundation of the whole normalization. Either by not having comparable
biological properties or simply some mistake during the qrt-PCR process that
result in missing/erroneous values. The idea behind this method is to remove
the plate variation on the basis of the same control placed on each plate, because
the control measurement should be the same across plates. Unfortunately this
internal control cannot tell anything about the variation coming from the purifi-
cation process, which was previously identified as a nuisance factor. Thus, if the
variation coming from the purification is significant, this becomes a problem.

4.1.4 Mean normalization

The fourth normalization method resembles the previous method, the difference
is that instead of some internal controls, the mean of all miRNAs is used to
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align the samples around zero. Again, consider the matrix containing the Ct
measurements X defined as in Equation (4.9). Now define a vector with the
means w.r.t. rows of X as

ū =


ū1·
ū2·
...
ūn·

 . (4.12)

The mean normalized matrix U is then found by

U·j = X·j − ū, where j = 1, 2, . . . , p. (4.13)

The mean normalization is often a first choice, because it is a well-known way to
make the samples comparable easily, and by that get an idea of the true effects
in the data. It is assumed that all the variation removed is coming from the
plates, operator, purification etc. which cannot be separated from each other,
and they influence all miRNAs for the same person in the same way. The most
important assumption, is that the variation is not coming from the type of
sample (cancer/healthy).

4.1.5 Mean-120 normalization

The last method resembles the mean normalization a lot, only difference is in
the way the ū vector is calculated. Instead of using all p miRNAs, only the
120 most expressed will be considered here. Remember that lower Ct value,
corresponds to higher concentration and hence higher miRNA expression. Once
again the matrix with the Ct measurements is defined according to Equation
(4.9). First calculate the average Ct value for each miRNA (column means) and
pick the 120 lowest. These miRNA will form the basis of the row-wise mean
vector, such that

ū120 =


ū1·,120

ū2·,120

...
ūn·,120

 . (4.14)

These values are then subtracted from the Ct values in the following way

U·j,120 = X·j − ū120, where j = 1, 2, . . . , p. (4.15)

Motivated by the hypothesis that it is only a handful of miRNA which are of
significant importance, the mean-120 method does not consider all the variation
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of the miRNAs, as opposed to the mean normalization. Since the truth is un-
known, there is no telling of which method should be preferred. It could be that
the 121th miRNA had some effect of importance, but commonly these miRNA
with high Ct values are regarded to be dominated by randomness, so it makes
sense to exclude them from the normalization process.

This concludes the description of the various normalization methods used, and
as the reader maybe have noticed there are individual pros and cons. The rank
and quantile method are to a certain degree comparable, where the same goes
for the internal control, mean and mean-120 method. The latter share the prop-
erty that they all subtract some term from the Ct matrix, a term specific to each
method. In order to get an overview, Table 4.3 gives a boiled down version of
the motivation behind the methods, along with the assumptions associated with
them.

Method Idea/Purpose Assumptions

Rank Uses patterns instead of actual Ct values. Estimates based on ranking
Each patient becomes its own control. pattern.

Quantile Distribution of each miRNA the same. Assumes miRNAs have same
quantiles.
Assumes MAR.
The way of weighing N/As is
unreasonable in miRNA context.

Internal Subtract variation from each patient’s Assumes all miRNAs on same
control Ct values based on some property. plate are affected in the same
+ way, i.e. by a constant shift.
Mean
+
Mean-120

Table 4.3: Sums up the five normalization methods and highlight their idea
and general purpose plus assumptions.

The general advantage for all the methods is that they handle missing values,
each in its own way. Though from miRNA perspective, the handling of miss-
ing values from the quantile implementation is criticizable, because it is not in
accordance with the meaning of an undetermined measurement. Moreover, the
assumption of measurements being missing at random is not met, so the use of
quantile normalization is questionable in this situation. For the internal control,
mean and mean-120 some variation is subtracted from each patient, under the
assumption that all miRNAs are affected in the same way. With the internal
control only the plate variation is removed, while the variation coming from the
purification is not addressed. The idea with the mean normalization is that all
variation is being accounted for, likewise for the mean-120, only difference is the
number of miRNA considered. To conclude whether or not the assumption for
these methods hold is difficult.
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4.2 Incidence

It is a central area of this thesis to uncover miRNAs that are predictors of inci-
dence of pancreatic cancer, where incidence in this context will be the measure
of a person’s probability of having pancreatic cancer versus being a healthy
subject. The hypothesis is that some miRNAs indicate cancer by having ei-
ther a high or low Ct expression, and it is this pattern that could be beneficial
to identify concerning earlier detection and correct diagnosis. A closer look at
the different statistical approaches available is needed, and in light of the tasks
nature, the generalized linear models (GLM) is a good starting point.

4.2.1 Generalized linear models

Generalized linear models is best explained by first looking at its predecessor,
the classical general linear model theory. The classical approach dates back
about a century ago, and is the principle of fitting some dependent variable
(usually called the response variable) on the basis of multiple independent, pre-
dictor variables (also referred to as the covariates).

The word multiple linear regression (MLR) is sometimes used interchangeable.
It can also be described as formulating a linear model on the basis of multiple
observed quantities, in order to predict the expected value of some outcome.
The term ”linear” does not refer to how the independent variables enter the
model, but how the predictor is computed. The general linear model (LM) can
be defined as

yi = β0 + β1xi1 + β2xi2 + · · ·+ βp−1xi(p−1) + εi, i = 1, 2, . . . , n(4.16)

where yi is the response and εi are called residuals, the errors associated with
the fitted model. In this classic general linear model these quantities are often
assumed to be independently normally distributed with constant variance. The
β’s represents the p parameters to be estimated. Usually the matrix form is
more preferable

y = Xβ + ε (4.17)

which corresponds to
y1

y2

...
yn


n×1

=


1 x11 x12 · · · x1(p−1)

1 x21 x22 · · · x2(p−1)

...
...

...
. . .

...
1 xn1 xn2 · · · xn(p−1)


n×p


β0

β1

...
βp−1


p×1

+


ε1
ε2
...
εn


n×1

(4.18)
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where ε ∼ N (0, σ2I). The general LM is very useful for data analysis, but
limited in many ways. Probably the largest motivation behind the birth of the
generalized linear model, is the assumption of the response variable y being
quantitative and normally distributed. Many other type of response variables
are met in practice, e.g. binary, count, categorical etc. to name a few of the
most common. GLM provides a unified approach to model all types of responses
by applying a so-called link function. To mathematically define this function,
consider the general LM from Equation (4.17) and denote η = Xβ as the linear
predictor part of the data. Instead of modeling µ = E[y] directly as a function
of the linear predictor, now model some function g(µ) of µ, such that

g(µ) = η = Xβ. (4.19)

The result of using this link function g(·), makes it possible to relax the assump-
tion of y being independently normally distributed, and permit the distribution
to be any that belongs to the exponential family of distributions. This general
class includes well-known probability distributions such as Normal, Poisson,
gamma and binomial, which all can be written on the form

f(y|θ, φ) = exp

[
(yθ − b(θ))

a(φ)
+ c(y, φ)

]
(4.20)

where a(·), b(·) and c(·) are some functions and θ is called the canonical para-
meter. Since the response variable of interest is binary (cancer/healthy), only
the binomial distribution will be explained in further detail. This is also known
as the logistic regression model [Olsson 2002, pp. 2-3, 36-37].

4.2.1.1 Logistic regression

The binomial distribution is the foundation of the logistic regression model,
because it is used to predict the probability p of an event5, here being a person’s
probability of having cancer, i.e. p = P[y = cancer] = E[y]. It is a special case of

the exponential family distributions with θ = log
(

p
1−p

)
, b(θ) = n log[1+exp(θ)],

c(y, φ) = log
(
n
y

)
and a(φ) = 1. By inserting this into Equation (4.20), the

probability distribution function becomes

f(y|p) = exp

[
yθ + n log

(
1

1 + exp(θ)

)
+ log

(
n

y

)]
(4.21)

= exp

[
y log

(
p

1− p

)
+ n log(1− p) + log

(
n

y

)]
(4.22)

=

(
n

y

)
py(1− p)n−y. (4.23)

5Not to be confused with the earlier used denotation as number of parameters.
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The canonical parameter g(µ) = θ = log
(

p
1−p

)
defines the logit link function,

or logit transformation. This is a canonical link for the binomial distribution,
because it naturally transforms the mean to a canonical location parameter of
this distribution. The ratio p

1−p is known as the odds in favor of the event and
comparing whether the probability of a certain event is the same for two groups,

can be computed as the odds ratio OR = p1/(1−p1)
p2/(1−p2) . The inverse of the logit link

function is p = exp[g(µ)]
1+exp[g(µ)] restricting the mean of the response on a [0; 1] scale

and by combining this with Equation (4.19) the probabilities can be expressed
by the logistic function (hence the word logistic regression)

pi =
exp(xiβ)

1 + exp(xiβ)
=

1

1 + exp[−(xiβ)]
(4.24)

where xi corresponds to the ith row of X from Equation (4.18). The parameters
β are usually found by maximum likelihood estimation (MLE), explained in
Section 4.2.1.2 [Olsson 2002, pp. 37-42, 98].

4.2.1.2 Maximum likelihood

Pawitan [2001, p. 22, def. 2.1] defines the likelihood principle as assuming a
statistical model parameterized by a fixed and unknown θ, the likelihood L(θ) is
the probability of the observed data y considered as a function of θ. Today the
principle of likelihood plays a central role in statistical modelling and inference,
because the likelihood function captures all information in the data about a cer-
tain parameter, including the uncertainty. For the binomial case of interest the
likelihood function of a single experiment is given in Equation (4.23). Remem-
ber that the GLM models an n-vector of independent response variables, where
each element is distributed binomially. The distribution fθi(yi) with the canon-
ical parameter θi is determined by µi, and ultimately xiβ, seen from Equation
(4.19). The likelihood function is thus the joint probability density for the actual
observations considered as a function of β

L(β) =

n∏
i=1

fθi(yi). (4.25)

However, there is a tradition to focus on the log-likelihood function instead, be-
cause it is computationally more convenient. One advantage of the log-likelihood
is that the terms are additive, which is easier. Taking the logarithm of Equation
(4.25) yields

`(β) =

n∑
i=1

log[fθi(yi)]. (4.26)
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The MLE is found by partially differentiating ` w.r.t. each element of β, setting
the resulting expressions to zero and solving for β. In practice, numerical me-
thods are designed to solve these equations, the in-built R function glm uses by
default the iteratively reweighted least squares (IRLS) algorithm, where the ob-
jective is a quadratic approximation to the log-likelihood [Wood 2006, pp. 63-66].

This concludes the description of GLM with focus on the binary response, which
is a central subject of this thesis. The number of explanatory variables have
already been narrowed down to a much smaller proportion compared to the
original set, but still the hypothesis is that only a handful miRNAs are of im-
portance. A logistic regression performed on the raw values with 75 miRNA
covariates, would result in a phenomenon known as complete separation of vari-
ables. It happens when the outcome variable separates a combination of pre-
dictor variables completely - perfect prediction. Mathematically it means that
the log-likelihood function does not reach a maximum as the effects increases,
making them infinitely large. This is due the level differences between cancer
patients and healthy controls present in the data. So besides the normalization
procedure, there is a need of methods that can penalize β such that infinitely
large effects are avoided. These types of shrinkage methods are explained in
Section 4.4, but first an introduction to basic survival analysis.

4.3 Prognosis

The focus is now being shifted towards the prognostic part of the thesis, where
methods to analyze time to a single event are discussed. This collection of
analyzing techniques all fall under the category survival analysis, because the
most typical event is death, however the derived application of survival analysis
is much broader today. In biomedical studies, analyses of independent variables
influencing patients life prognosis have always been of great interest. In this
context, it is relevant to examine if some miRNAs are significant indicators of
a better or worse life duration from the time of operation. First, the basic
concepts of survival analysis need to be introduced.

4.3.1 Basic notation and terminology

Survival analysis deals with survival time as the response, which essentially is
a quantitative variable with a distinctive feature; it contains incomplete data.
This lack of information is a result of only knowing an event has not occurred
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in a given time period and not knowing if or when the event will happen af-
terwards, a key analytical challenge known as censoring. In other words, the
survival time is not known exactly for some individuals, but should still be tak-
ing into account in the overall analysis. Censoring is generally caused by three
reasons, either a person has not experienced an event before the study ends,
lost to follow-up during the study period or withdraws from the study for some
reason [Kleinbaum and Klein 2005, pp. 5-6].
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Figure 4.2: Showing the survival times for a small segment of the data,
where crosses indicate patients that have died and no crosses
are censored patients.

Figure 4.2 shows a small example of how survival data looks for a collection
of subjects. The example is a small segment of the data used in this thesis.
Each subject is represented by a line denoting the survival time in days, sub-
jects with crosses as endpoints have experienced an event, i.e. died. In terms of
notation, the random variable δ is used to denote censorship, such that δ = 0
indicates a censored subject and δ = 1 is a subject having experienced an event.

The key notation of a person’s survival time is T , and any specific value of
interest for the random nonnegative variable is denoted by t. The probability
of an individual having an event of interest in the interval [t, t+ ∆t[ is given by

P[t ≤ T < t+ ∆t] = f(t)∆t (4.27)
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where f(t) is the probability density function of a continuous random variable,
describing the relative likelihood for this random variable to occur at a given
point in the observation space. This is an approximation to the case where the
difference in time is infinitely small, i.e. ∆t → 0. The cumulative distribution
function is defined as

F (t) = P [T ≤ t] =

∫ t

0

f(s)ds. (4.28)

With the basic notation in place, it is now possible to define three fundamental
concepts of survival analysis; the survival function, the hazard rate and the
cumulative hazard.

4.3.1.1 Survival function

Also known as the survivor function, the survival function is a fundamental
quantity that gives the probability of a person survives longer than some spec-
ified t. In other words, S(t) is the probability that the random variable T
taking values in [0;∞[ exceeds the specified time t, which mathematically can
be written as

S(t) = P [T > t] =

∫ ∞
t

f(s)ds = 1− F (t). (4.29)

This quantity has some theoretical quantities, which is readily seen from the
hypothetical survival curve in Figure 4.3. Since it is a probability function it
ranges between 0 ≤ S(t) ≤ 1. The survival function evaluated at the starting
point S(0) = 1, is the equivalent of being alive at the beginning of the study.
Another extreme case is the theoretical S(∞) = 0, which corresponds to increas-
ing the study period without any limit, nobody would survive and the survival
function must eventually fall to zero. This apply when the event considered is
death, but there are however exceptions to this property, depending on the event
of interest. An example could be studies where time to disease is measured for a
group of patients, some patients will never get the disease and thus the survival
function will not tend to 0 as t→∞, but instead towards some kind of positive
value. The survival function is always a decreasing function though, since as
time progresses more and more persons will eventually experience an event.

Notice the hypothetical survival function in Figure 4.3 is a smooth curve. Unless
some known distribution is assumed for the survival time, this is certainly not
the case in practice when working with real data. When estimating the survival
function a step function is obtained instead. A popular choice is called the
Kaplan-Meier estimator which is also referred to as the product limit method,
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Figure 4.3: Hypothetical survival curve.

it estimates the survival function directly from the continuous survival times.
Venables and Ripley [2002, p. 355] explain the Kaplan-Meier estimator in the
following way.

Define the r(t) to be the number of cases at risk just before time t, i.e. those
that are in the trial and not yet dead (the risk set). Now, consider a set of
intervals Ii = [ti; ti+1[ covering [0;∞[, then the probability of surviving interval

Ii can be estimated as r(ti)−di
r(ti)

, where di is the number of deaths in interval Ii.

Probability terms in the product will only appear for intervals in which a death
occurs, so the limit becomes

Ŝ(t) =
∏
ti≤t

r(ti)− di
r(ti)

(4.30)

where the product is over time points at which deaths occur before t. The plot
of a Kaplan-Meier estimator for the survival function, is a decreasing, piecewise
constant function with jumps corresponding to the observed death times.

4.3.1.2 Hazard rate

Another fundamental term in survival analysis is the hazard rate. This is the
instantaneous potential per unit time for the event to occur, given that the
individual has survived up to time t. The hazard rate is defined by means of a
conditional probability as

h(t) = lim
∆t→0

P[t ≤ T < t+ ∆t|T ≥ t]
∆t

. (4.31)
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Note that, the hazard rate and survival function are giving opposite information.
While the survival function focuses on not experiencing an event, i.e. surviving,
the hazard rate focuses on occurrence of event. Since the hazard is defined as
a rate with a probability in the numerator, it is always nonnegative and has in
principle no upper bound. There is a clear relationship between the survival
function and hazard rate, given as

h(t) =
f(t)

S(t)
(4.32)

that is useful for obtaining both functions knowing only one.

4.3.1.3 Cumulative hazard

The cumulative hazard is another way to represent the hazard rate, it can be
described in words as an accumulation of the hazard over time, hence it is
derived from integrating the hazard rate

Λ(t) =

∫ t

0

h(s)ds = − log[S(t)]. (4.33)

It can also be seen that by isolating in Equation (4.33), the survival function can
be expressed in terms of the cumulative hazard by S(t) = exp[−Λ(t)]. As for the
survival function, the cumulative hazard also have non-parametric estimators,
where the most common used is known as the Nelson-Aalen estimator. This
estimator can be defined by applying similar reasoning as with the Kaplan-
Meier, the hazard for each interval Ii is given by di

r(ti)
, so taking the sum of

all times of death before t provides the Nelson-Aalen estimator [Venables and
Ripley 2002, p. 356]

Λ̂(t) =
∑
ti≤t

di
r(ti)

. (4.34)

This concludes basic survival analysis and equipped with this theory it seems
natural to move on to the subject of how survival data is analyzed. In Section
4.3.2 a popular mathematical model for this purpose is introduced, the Cox
proportional hazards model.

4.3.2 Cox proportional hazards model

It is a common objective in medical research to determine whether or not certain
independent variables are correlated with the survival, i.e. if some covariates are



50 Methodology

significant prognostic indicators. One way to satisfy this demand, is by apply-
ing one of the most popular methods for analyzing survival data today; the Cox
proportional hazards model [Cox 1972].

First, let the matrix of covariates X and vector of coefficients β be defined
as

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xn1 xn2 · · · xnp

 and β =


β1

β2

...
βp

 . (4.35)

Then the model consists of two parts, an underlying hazard function h0(t) which
is the baseline hazard, i.e. the hazard for the respective individual when all inde-
pendent variable values are set to zero. The second part is the effect parameters,
the exponential to a linear sum of all the p explanatory (time-independent) vari-
ables. The Cox proportional hazards model for modeling the time it takes for
an event to occur, is defined using the hazard rate for the ith subject in the
following way [Venables and Ripley 2002, p. 366]

hi(t) = h0(t) exp(xiβ) (4.36)

where xi corresponds to the ith row in X from Equation (4.35). It is seen that
the covariates influence the hazard directly through a (log-)linear combination,
so the simple interpretation of the effects is an attractive property. To illustrate
this, consider some βj being the effect of xij when corrected for the other co-
variates, it can be interpreted in terms of the hazard ratio (HR) when the xij
is increased by one unit

HR =
h0(t) exp[xi1β1 + · · ·+ (xij + 1)βj + · · ·+ xipβp]

h0(t) exp[xi1β1 + · · ·+ xijβj + · · ·+ xipβp]
= exp(βj) (4.37)

from which it can be derived that when xij increases, the hazard increases when
βj > 0, and decreases when βj < 0.

Equation (6.7) is called a semi-parametric model, because it consists of the
baseline hazard which is non-parametric, and the parametric relative risk func-
tion. In contrast, a purely parametric model is one whose functional form is
completely specified, except for the values of the unknown parameters, i.e. the
survival time is assumed to follow a known distribution e.g. Weibull. The non-
parametric element h0(t) is the main reason why the Cox proportional hazards
model is such a popular choice, because it makes the model flexible since no
specific distribution is assumed for the baseline group. This is very useful from
a practical perspective, where the distribution is almost never known. Another
way of saying this is that under the proportional hazards assumption the Cox
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model is robust, in that the results from using the model will closely approxi-
mate the results from using the correct parametric model [Kleinbaum and Klein
2005, pp. 95-97].

The limitation of Cox proportional hazards model is the key assumption of
the hazard rates for all subjects are proportional. Meaning that for any two
subjects i and k with hazard rates hi(t) and hk(t), respectively, the relation

hi(t)

hk(t)
=
h0(t) exp(xiβ)

h0(t) exp(xkβ)
=

exp(xiβ)

exp(xkβ)
= exp[(xi − xk)β] (4.38)

is constant over time. The proportionality assumption is for example violated if
the hazard rates cross, but even if this is not the case the proportional hazard
assumption may still not be met [Kleinbaum and Klein 2005, p. 135]. There are
several ways of verifying the use of Cox proportional hazards model, however this
thesis is restricted to only consider scaled Schoenfeld residuals. The idea is to
test for time trends in these residuals on the basis of a weighted mean [Venables
and Ripley 2002, p. 371]. In R there exists a package named survival written
by Therneau and Lumley [2011] that contains the function cox.zph, used for
testing the assumption. In Section 4.3.2.1 the parameter estimation in the Cox
proportional hazards model is introduced.

4.3.2.1 Maximum partial likelihood

Obtaining the maximum likelihood estimates of the parameters in the Cox pro-
portional hazards model, is not as straight forward as in the GLM case, because
the key feature of this model is the assumption of the outcome variable not
following any specific distribution. Hence, in contrast to a parametric model a
full likelihood based on the outcome distribution cannot be formulated. Thus,
the likelihood function of the Cox proportional hazards model is based on the
observed order of events rather than the joint distribution of events, a non-
parametric method known as the partial likelihood [Kleinbaum and Klein 2005,
p. 111].

Cox [1972] defined the partial likelihood function, and it can be explained by
once again considering r(ti) as being the risk set containing the number of cases
at risk of experiencing an event at time ti. Let i = 1, 2, . . . , d denote the ordered
uncensored subjects and i = d+ 1, d+ 2, . . . , n the censored subjects, then the
partial likelihood function can be found by taking the product of conditional
probabilities

L(β) =

d∏
i=1

exp(xiβ)∑
j∈r(ti) exp(xjβ)

(4.39)
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with corresponding partial log-likelihood function

`(β) =

d∑
i=1

xiβ − log

 ∑
j∈r(ti)

exp(xjβ)

 . (4.40)

Notice that no assumptions about the shape of the baseline hazard are needed.
To get the parameter estimates that maximizes the partial likelihood, Equation
(4.40) is differentiated w.r.t. to each element of β and set to zero. This system of
equations is called score equations and it is solved computationally by iterative
methods, most often using the Newton-Raphson algorithm. The survival pack-
age contains the function coxph used for fitting the Cox proportional hazards
model to the data in this thesis.

4.4 Shrinkage methods

The main motivation behind these shrinkage methods is according to Zou and
Hastie [2005] typically based on two aspects; accuracy of prediction and inter-
pretation of the model. Especially the last one, scientist often prefers a simpler
model because it puts more light on the relationship between the response and
covariates. Parsimonious models are desirable when dealing with a large number
of predictors, such as miRNAs. Three penalization techniques will be introduced
here along with the univariate method, which is another general method to re-
duce the number of parameters, explained next in Section 4.4.1. The shrinkage
methods will in general be introduced from a logistic point of view, but the
methods apply in both the binomial and survival case.

4.4.1 Univariate method

The univariate method can be characterized as a selection method. It is a
simple way to reduce dimensionality of parameters to a smaller subset, by uni-
variate modelling. In this case, by performing j = 1, 2, . . . , p univariate logistic
regression, i.e. for the jth miRNA of interest the model becomes

g(µij) = β0j + β1jxij , i = 1, 2, . . . , n (4.41)

where the hypothesis tested

H0 : β1j = 0 (4.42)

H1 : β1j 6= 0. (4.43)
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The test of the jth parameter is called a Wald test. If the large-sample conditions

are valid, this test becomes z = β̂−β0

σ̂β̂
, where β̂ is the MLE and β0 the proposed

value (here β0 = 0) with the assumption that the difference between the two
will be approximately normal [Olsson 2002, p. 47]. In the prognostic case, the
univariate Cox proportional hazards model would be hij(t) = h0j(t) exp(xijβ1j),
testing for the same hypothesis as in the logistic case.

The tests will generate j p-values, which are arranged in increasing order and
the top ranked miRNAs are picked. Here λ0 is a tuning parameter represent-
ing the p-value tolerance, so the miRNAs included in the model are the ones
with a univariate p-value lower than this cutoff. There is no answer to what
this value should be, it depends on the individual data and situation. However,
cross-validation is a useful tool to get a statistical based indication, a method
explained in Section 4.5. Even though univariate selection is a reasonable way
to reduce variables considerably, it does not take correlation between covariates
into account, which could be a problem in many situations. Despite this, the
method was found applicable to determine which miRNAs to include in the
starting model for the backwards elimination procedure.

4.4.2 Backwards elimination procedure

Backward stepwise selection is a strategy that starts with the large model and
then sequentially deletes predictions under some criterion. It can only be used
when n > p, but in combination with the univariate method, it constitutes a
strong way to choose a parsimonious prediction model when p > n. Multiple
criteria are available today, where the most popular are the F–ratio, Akaike
information criterion (AIC) and Bayesian information criterion (BIC). The
last two are closely related and applicable in settings where fitting is carried out
by maximization of log-likelihood. Their generic forms are defined as

AIC = −2`+ 2p (4.44)

BIC = −2`+ log(n)p (4.45)

where ` is the log-likelihood function, p represents the number of parameters
in the fitted model and n the number of observations. The idea behind these
criteria is a tradeoff between the deviance and number of parameters. This is
important, because the deviance will decrease as the number of parameters in a
model increases, so the parameter term compensates for this effect by favoring
models with a smaller number of parameters. Lower values of the AIC/BIC
index indicate the preferred model, that is the one with the fewest parameters
that still provides an adequate fit to the data.



54 Methodology

It can be seen that the BIC is proportional to AIC with the factor 2 replaced
by log(n). Under the assumption n > e2 ≈ 7.4, BIC tends to penalize complex
models more heavily, giving preference to simpler models in selection. Further-
more, BIC is asymptotically consistent as a selection criterion, i.e. given a family
of models including the true model, the probability that BIC will select the cor-
rect one approaches one as the sample size becomes large. Because of this, the
BIC has been preferred in this thesis [Hastie et al. 2001, pp. 56, 204-206].

4.4.3 Ridge

The curse of classic multiple linear regression is collinearity among the regres-
sors, and it is from this not uncommon situation that Ridge regression orig-
inated from and was proposed as a method to circumvent the problem. The
general idea is to shrink the regression coefficients, constraining β, by impos-
ing a penalty factor on their size. Ridge regression penalizes on the squared
L2–norm and when the response variable is continuous, the Ridge coefficients
minimize a penalized residual sum of squares (RSS)6 in the following way

β̂
ridge

= argmin
β


n∑
i=1

yi − β0 −
p−1∑
j=1

xijβj

2

+ λ2

p−1∑
j=1

β2
j

 (4.46)

where λ2 ≥ 0 is a tuning parameter that controls the amount of shrinkage.
The larger the value of λ2, the greater shrinkage [Hastie et al. 2001, p. 59].
Cross-validation can be used to obtain an estimate of the optimal parameter.
An alternative and more general definition of Equation (4.46) can be written in
terms of maximizing the log-likelihood function with the Ridge penalty term,
which applies for GLM [Goeman 2010]

β̂
ridge

= argmax
β

{
`(β)− λ2‖β‖22

}
(4.47)

where ‖ · ‖2 is the classic Euclidean norm. This can easily be expanded to apply
for survival data, by replacing the log-likelihood with the partial log-likelihood.
Ridge regression is good at dealing with high correlation between predictors,
i.e. revealing grouping information, but one of the drawbacks is that it cannot
produce a parsimonious model, because it keeps even small effects in the model
due to the nature of the Ridge penalty. Another disadvantage of this method is
that it does not handle the problem with missing values - an inherent problem

6Measure of the discrepancy between the data and an estimation model.
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from the LM model, only complete cases can be considered, i.e. samples with all
Ct measurements of the relevant miRNA present. The search of a regularization
method that simultaneously performs variable selection and shrinkage, resulted
in the Lasso method.

4.4.4 Lasso

This shrinkage method’s name is an acronym for least absolute shrinkage and
selection operator, which highlights the subtle but important differences from
Ridge. Least absolute shrinkage refers to the L1-penalty term now imposed on
the regression coefficients, where the nature of this constraint will cause some of
the coefficients to be exactly zero, hence selecting only a subset for the prediction
model. The Lasso estimate is defined as [Hastie et al. 2001, p. 64]

β̂
lasso

= argmin
β


n∑
i=1

yi − β0 −
p−1∑
j=1

xijβj

2

+ λ1

p−1∑
j=1

|βj |

 (4.48)

where the penalty factor λ1 ≥ 0 should be chosen to minimize an estimate of
the expected prediction error. As mentioned in the Ridge case, this can be done
by cross-validation. Equation (4.48) can also be written in terms of penalized
log-likelihood optimization as

β̂
lasso

= argmax
β

{`(β)− λ1‖β‖1} (4.49)

where ‖ · ‖1 is sometimes referred to as the Manhattan norm. Once again,
Equation (4.49) can also be applied when using Cox regression by using the
partial log-likelihood instead. The Lasso quickly became an appealing shrink-
age method after its emerging, because of its sparse representation and the fact
that it does both continuous shrinkage and automatic variable selection simul-
taneously. Despite showing success in many situations, Zou and Hastie [2005]
have pointed out some limitations of the Lasso. In the p > n case, the Lasso
selects at most n variables of p candidates before it saturates, which is caused
by the nature of the convex optimization problem. Moreover, if there is a group
of variables among which the pairwise correlations are very high, then the Lasso
has a tendency to select only one variable from the group, disregarding which
one. In light of these problems, the Lasso is probably not an ideal method when
working with miRNA data, but since many of the miRNAs with high N/A per-
centage have been discarded it can still give a decent result. However, just like
the Ridge method, Lasso also have to remove cases with missing values. The
last method applied is called a näıve elastic net, for which the ulterior motive
was to combine the strengths of Ridge and Lasso.
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4.4.5 Näıve elastic net

The thought of an even stronger regularization method lead to the idea of näıve
elastic net7, defined in the paper by Zou and Hastie [2005], describing it as
a stretchable fishing net that retains ”all the big fish”. This elastic net does
automatic variable selection and continuous shrinkage simultaneously, and it
can select groups of correlated variables. The basic principle is to exploit the
advantages of Ridge regression and Lasso in some optimal combination. The
penalized MLE using elastic net is found by

β̂
elastic

= argmax
β

{
`(β)− λ1‖β‖1 − λ2‖β‖22

}
. (4.50)

Thus the elastic net combines the Ridge and Lasso penalties. However, the
combination is more apparent when Equation (4.50) is written on a optimization
problem form, thus let α = λ2

λ1+λ2
, then

β̂
elastic

= argmin
β

n∑
i=1

yi − β0 −
p−1∑
j=1

xijβj

2

(4.51)

subject to (1− α)

p−1∑
j=1

|βj |+ α

p−1∑
j=1

β2
j ≤ t, for some t. (4.52)

The convex combination (1−α)‖β‖1 +α‖β‖22 is denoted the elastic net penalty.
It is readily seen that the case α = 0 corresponds to the Lasso, while α = 1
is the Ridge regression. Furthermore, for all 0 < α < 1 the elastic net penalty
function is strictly convex, thus having the characteristics of both Ridge and
Lasso. Figure 4.4 (left) illustrates this argument, by showing the contour plot
(first level) for the shrinkage methods when there are two parameters. The
geometry of Ridge is a unit circle (β2

1 + β2
2 ≤ t) while the Lasso is a diamond

(|β1|+|β2| ≤ t), and it is clear how varying α affects the constraint region for the
elastic net. The RSS have elliptical contours centered at the full least squares
estimate, and the methods find the first point where the elliptical contours hit
the constraint region [Hastie et al. 2001, pp. 71-72].

The behavior of the discussed methods (Ridge, Lasso and elastic net) have
been illustrated with a small example. Consider a simple linear regression
model with the true parameters β0 = 2, β1 = 3 and β2 = 0.5, the intercept
is not important, but notice that β1 is large and β2 small. Figure 4.4 (right)

7Empirical evidence have shown that the näıve elastic net does not perform satisfactorily
unless it is very close to either Ridge or Lasso, hence the word näıve. Improvements of the
elastic net have been implemented, but they are beyond the scope of this thesis.
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Figure 4.4: (Left) Two-dimensional contour plot of the Lasso, Ridge and
elastic net penalty with α = 0.5, taken from Zou and Hastie
[2005]. (Right) A small self-constructed example showing the
effects’ shrinkage path for the three methods, respectively.

shows how the two coefficients are shrunk as the penalty factor is increased
({λ1, λ2} ∈ {1, 2, . . . , 200}), for the Lasso, Ridge and elastic net with α = 0.5.
The Lasso is fairly quick to set the small β2 = 0 and the method retain a
close estimate of the true β1, even after λ1 = 200. The näıve elastic net have
a tendency to overshrink in regression problems, and this phenomenon is also
observed here. β2 is set to zero as expected, but the elastic net shrinks β1

much more than Lasso. The Ridge regression shrinks the parameters more si-
multaneously and does not set any of them equal zero, however if λ2 → ∞
the coefficients will tend to zero. In summary, all the regularization techniques
performs as expected. Normalizing data to the same scale (i.e. same units) is
important and should be stressed when applying these methods, otherwise the
penalize factor works differently across the covariates.

In the above example the shrinkage methods was self-implemented, but when ap-
plied on the miRNA data, the penalized package written by Goeman [2011] was
used. This R package has some useful properties, especially the fact that it sup-
ports both logistic regression and Cox proportional hazards model. Moreover,
it allows optimization of the tuning parameters (λ1 and λ2) by cross-validation
routines, a concept explained in Section 4.5.
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4.5 Cross-validation

Hastie et al. [2001, p. 214] describes cross-validation as one of the most simple
and widely used methods for estimating prediction error. It directly estimates
the extra-sample error, defined as Err = E[L(Y, f̂(X))], which is a generalization

error when the method f̂(X) is applied to an independent test sample from the
joint distribution of X and Y . This method is a useful tool when evaluating the
model assessment for scarce data, which in real life usually is the case. Ideally,
if enough data was present, a substantial part could be set aside to validate the
model, but again this favorable situation almost never occurs.

The cross-validation algorithm is as follows, first the data is split into K roughly
equally sized parts, called folds. For the kth fold (test set), a model is fitted on
the other K−1 folds (training set), and the prediction error for fold k using this
fitted model is calculated. This is done for all K folds and gives an estimate of
the prediction error.

Explained in more mathematical detail, let κ : {1, . . . , n} 7→ {1, . . . ,K} be

an indexing function that indicates the partition of the data. Denote by f̂−k(x)
the fitted function computed with the kth fold left out, then the cross-validation
estimate of the prediction error is given by

CV =
1

n

n∑
i=1

L(yi, f̂
−κ(i)(xi)). (4.53)

When having a set of models f(x, α) indexed by some tuning parameter α, let

f̂−k(x, α) denote the αth model fit with the kth fold of data left out. Then the
cross-validation function is defined as

CV (α) =
1

n

n∑
i=1

L(yi, f̂
−κ(i)(xi, α)) (4.54)

which provides an estimate of the test error curve, where the tuning parameter α̂
that minimizes it, is the one of interest. The choice of K is not straight forward,
as it depends on the data and objective. It can be classified as a tradeoff question
between having low bias/high variance, or high bias/low variance. Consider one
extreme case K = n (also known as leave-one-out cross-validation), here the
CV function is approximately unbiased for the true prediction error, but can
have high variance because the n training sets are so similar to one another.
Furthermore, the computational burden is often too immense to carry out in
practice. On the other hand, in the case of e.g. K = 5, CV has a lower variance,
but here bias could be a potential problem depending on how the performance of
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the method varies with the size of the training set. As a general rule of thumb,
five- and tenfold cross-validation are recommended as good compromises Hastie
et al. [2001, pp. 215-216].

4.5.1 Receiver operating characteristics

Receiver operating characteristics (ROC) is a commonly used summary for as-
sessing the tradeoff between sensitivity and specificity. This is appropriate for
binary classifier systems where the discrimination thresholds are varied. Sen-
sitivity is the probability of predicting disease given the true state is disease,
while specificity is the probability of predicting non-disease given true state is
non-disease. One of the objectives of this thesis is to identify the miRNAs mak-
ing up the best model for predicting cancer vs. healthy, i.e. minimizing false
positives and negatives as much as possible.

Actual value
Positive Negative

Predicted
Positive True Positive (TP) False Positive (FP)

outcome Negative False Negative (FN) True Negative (TN)

Total P N

Table 4.4: Binary classification table.

Consider the four outcomes of this binary classification experiment in a 2 × 2
confusion matrix in Table 4.4. The false positive outcome corresponds to a
person being healthy, but predicted as having cancer. Sometimes referred to as
a false alarm or in statistical terms a type I error, meaning that the test rejects
a true null hypothesis8. A false negative is the equivalent of making a type II
error, i.e. failing to reject a false null hypothesis. This is the case where a person
has cancer, but is classified as healthy. The latter is generally considered to be
a far more serious mistake, but overall the better model gives smaller prediction
errors.

The ROC curve is a way of illustrating the predictive performance of a given
model, using the sensitivity (true positive rate, TPR) and 1-specificity (false
positive rate, FPR) as axes. It depicts the relative tradeoffs between true pos-
itive (benefits) and false positive (costs). Using the denotation from Table 4.4,

8

H0: person is healthy
H1: person has cancer.
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the definition of the axes are

sensitivity = TPR =
TP

P
=

TP

TP + FN
(4.55)

1-specificity = FPR =
FP

N
=

FP

FP + TN
. (4.56)

Figure 4.5: Graphical representation of the ROC space, taken from
Wikipedia.

Figure 4.5 shows the ROC space and how TPR and FPR are used for the diag-
nostic test performance. The diagonal red line represents the completely random
guess (like flipping a coin), models should lie above this line otherwise they are
useless. Models with perfect classification lies in the upper left corner, represent-
ing 100% sensitivity (no false negatives) and 100% specificity (no false positives).

In the search of an single quantity that measures a model’s overall ability to
discriminate between those individuals with disease and those without, the area
under curve (AUC) was proposed. The curve is obtained by varying the prob-
ability cutoff point representing a particular decision threshold, deciding which
persons to be classified as having the disease and being healthy. Fawcett [2006]
highlights in his introduction to ROC analysis paper, an important statisti-
cal property of the AUC. It is equivalent to the probability that the classifier
will rank a randomly chosen positive instance higher than a randomly chosen
negative instance. An area of 0.5 indicates random predictions (no relevant
classifier has an AUC lower than 0.5), while a value of 1 is perfect prediction. A
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model having AUC greater than roughly 0.8 has some relevance predicting the
responses of individual subjects, as rule of thumb. The AUC quantity in com-
bination with cross-validation can serve as a measure for deriving some optimal
tuning parameter, which gives the best possible prediction performance. The
R package ROCR written by Sing et al. [2009], is used for calculating the AUC
when needed.
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Chapter 5

Simulation study

5.1 Objective

This theoretical chapter contains a preliminary performance analysis of the rank
normalization method contra the raw Ct values. The hypothesis is that by rank
normalizing data, more robust and reliable results are obtained, in the case
of miRNA data with large mean Ct jumps. Since there is yet no statistical
ground, a small simulation study have been created as way to validate this
claim. The overall idea is to create a matrix of covariates that resembles true Ct
measurements, i.e. share similar properties, and from a known linear predictor
construct the response variable. This means that the truth is known, so the
models fitted by using either the raw values or ranks can be evaluated under
various noise conditions and compared according to some criterium. This is
just the general outline of the study, a more comprehensive analysis plan will
be given in Section 5.2.
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5.2 Design of study

The matrix X containing the Ct values is simulated for each testcase from a
normal distribution with µ = 25 and σ2 = 12, i.e. X ∼ N (25, 12), and has the
dimension 250 × 768, the equivalent of having n = 250 patients and p = 768
miRNAs. This gives a covariate matrix that theoretically resembles noise-free
miRNA data, and where the linear predictor used to define the response variable
is arbitrarily chosen to be

η = 0.5x3 − 1.1x19 − 0.3x119 + 1.1x219 + x300. (5.1)

The response variable is created by sampling from a binomial distribution with
the probability of having cancer calculated from the logistic link function of the

linear predictor, i.e. y ∼ B
(
n, 1

1+exp[−(η+ν)]

)
, where ν is a scaling factor ensur-

ing that there is a small overweight of cancer cases. For this study, appropriate
proportions was obtained with setting ν = ση − µη.

With the constructed data set in place and knowledge about the true response,
the purpose of the test is now to see how well the model is being fitted under
various noise conditions, with and without rank normalization. These type of
different noises have been identified from problems in the real data set and have
been divided into four categories, i.e. four test dimensions that can be regulated
which is explained next.

Sample frequency, ω Inspired by the mean Ct jumps that occur in the real
data set, the sample frequency is a parameter that controls the per sample
number where a new noise term should be added to the X matrix. In other
words, it is the frequency for which samples should experience an alteration
in the mean and standard deviation. In this study ω = 10, 30, 50, 75 were
tested, and when ω is high, fewer mean Ct jumps occur.

Sample mean, µε For each set of samples determined by the frequency num-
ber, a small error term is added to the covariates with the distribution
N (µε, σ

2
ε ). The sample mean is defined as the product of some varied

”loopingfactor” ρ and a random value between [−1; 1], meaning that the
average sample level can go up and down depending on the sign. The
values tested are ρ = 0, 0.1, 0.2, . . . , 2, 3, 4, 5.

Sample std. error, σε The size of the standard deviation in the error term
added for each sample frequency group, where σε = 0, 0.1, 0.2, . . . , 2, 3, 4, 5.

No. of test cases, k This is the number of iterations to be run for each com-
bination of noise conditions. Since there is a lot of possible combinations
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k = 10 was chosen, so that the computation time would be kept on an
acceptable level, but still provide a reasonable estimate of the truth.

Consider these as four levers controlling how often the mean Ct should jump,
how high the jump should be, how big a variation should be associated with
the jump and finally, how many times should it be replicated. Since each pa-
rameter had a number of levels it took quite some time to run the experiment.
To be more specific, the total number of test runs can be calculated as the
product of the number of different values each parameter assumes, resulting in
4 · 24 · 24 · 10 = 23040 test runs. One test run took approximately 30 seconds,
so the whole simulation study took roughly 30·23040

60·60·24 = 8 days to run.

The analysis of the noisy data consisted of a preliminary univariate selection
and the backwards elimination procedure, performed on both the raw values
and on the basis of ranking. The tuning parameter λ0 for the univariate selec-
tion was in this study originally fixed after the principle of Bonferroni correction,
because determining λ0 on the basis of cross-validation in each test run would
simply prolong the computational time too heavily. The Bonferroni correction
can be applied when testing p dependent or independent hypotheses on a set of
data, performed simultaneously. Each individual hypothesis is then tested at a
statistical significance level of 1/p times what it would be if only one hypothesis
were tested. Usually a significance level of 0.05 is used, but unfortunately a
Bonferroni correction of 0.05/768 was shown to be too low, because non of the
miRNAs tested was significant enough to be included in the starting model of
the backwards step procedure, under this tolerance. After some try-and-error,
the value as high as λ0 = 15.1/768 ≈ 0.02 gave reasonable result in the sense
that separation issues with the covariates chosen in the model did not occur,
which was the main priority. It might seem a little arbitrary to choose this value,
but the same tolerance is used with and without rank normalization, hence the
value of λ0 is not expected to influence the comparability of the two, which is
the only purpose in this context.

When the step procedure have obtained the final model based on raw values
and ranks, respectively, then some kind of measure is needed to draw conclu-
sions concerning the goodness-of-fit for each model. In this study, the final
model deviance is used as the degree of fit measure, expressed as the percentage
deviance ”explained” by the model compared to the null model (model with
intercept only). This quantity will be denoted deviance measure (DM) and
defined as

DM =
ε0 − εm
ε0

· 100%. (5.2)

It is clear from Equation (5.2) that a low residual deviance εm implies a high
DM, meaning that the model with the highest DM is the better model. Each
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test run will result in two deviance measures, one for the analysis on the raw
values and one for the ranks, however it is more practical with a single measure
that easily can compare the two. Therefore let the substraction of the DM for
each model be denoted performance measure (PM), defined as

PM = DMraw −DMrank. (5.3)

This gives a basic measure of how well the two analysis procedures performs
under various noise conditions. If PM < 0, then rank normalization is the best
choice because it results in the best fitted model. Of course, PM > 0 then
indicates that it is better to work with the raw values.

The results from the described simulation study are introduced in Section 5.3,
but it is important to stress that this study could have been done in countless
other ways and the results derived from it are not to be considered the sole
truth. It is only meant to provide some idea of the best way to handle these
troublesome miRNA data.

5.3 Results

Here some of the most important results of the study are presented graphically,
but since it is hard to visualize more than three dimensions, multiple plots
are created instead. Figure 5.1 only considers the behavior of the performance
measure while varying the loopingfactor and sample frequency, disregarding the
value of noise standard error. As a plotting tool box plot was chosen, since it is
a nice way to depict multiple test cases under some condition, in order to get a
clear overview.

It seems like the general trend is independent of how often a new noise term
is added to the samples. Figure 5.1 shows that by increasing the size of the
mean shift the PM becomes more negative, indicating that rank normalization
of data provides the best fitted model under these conditions. However, in the
beginning when the size of the mean jump is only moderate, there is very little
difference between working with ranks and raw values (the latter would probably
be preferred in this case). To conclude on the first scenario, when experiencing
large mean Ct jumps between groups of samples, rank normalization could sug-
gest more robust results. Next, Figure 5.2 now disregard the loopingfactor and
concentrates solely on varying the amount of standard error of the noise term
added.
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Figure 5.1: The PM shown under different quantities of the loopingfactor,
stratified by the sample frequency.
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Figure 5.2: The PM shown under different quantities of the noise standard
error, stratified by sample frequency.
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It seems apparent that varying the size of the noise standard error, does not
influence the performance of the two analysis methods significantly. There is
slight evidence that the rank method provides best fit with smaller values of
noise variation, but of course as the noising of data becomes large enough the
prediction ability of both methods performs equally bad. Since the frequency of
adding a new noise term only show signs of little effect, it is natural to keep this
dimension fixed and see how the results distribute themselves when varying the
loopingfactor and standard error at the same time. Figure 5.3 shows the results
for ω = 30.

ρ

P
M

−60

−40

−20

0

20

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7
1.

8
1.

9 2 3 4 5

●●●
●●●●●●●●●●●

●●●
●●

●●

●
●●

●

0

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7
1.

8
1.

9 2 3 4 5

●●●●●●●
●
●
●●

●●●●●●●●
●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

0.2

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1
1.

1
1.

2
1.

3
1.

4
1.

5
1.

6
1.

7
1.

8
1.

9 2 3 4 5

●●●●●
●●●●●●●

●●●●
●

●●●
●

●
●
●

●

●
●

●

0.5

●●●●●●●
●●

●
●
●●

●

●

●
●
●●

●
●●●

●

●

●●

●

●

●

●

●

●

1

●●●●●●
●●●●●●●

●●
●●

●●●●
●
●●

●

●

●

●

●●

●

●

1.5

−60

−40

−20

0

20

●●●●
●●●●●

●●●●●●●●●●●●

●●●

●

●● ●

2

−60

−40

−20

0

20

●●●●●●●
●
●
●●●●●●●●●●●●

●
●●

●
●

●

●

●●

● ●
●

●
●

●

3

●
●
●●●●●●

●●●●
●●●●●●

●●●
●
●●

●

●
●

●

4

●
●●●●

●
●●●●●●●

●●
●
●●●●

●
●●

●

●
●

●

●

●

5

Figure 5.3: The PM shown under different quantities of the loopingfactor
for sample frequency ω = 30, stratified by chosen values of the
standard error.

Beginning with one of the extreme cases where the loopingfactor is incrementally
increased as the standard error is set to zero (lower left box plot in Figure 5.3),
the same trend as in Figure 5.1 is observed. With a noise term close to being
zero the raw values performs best which is also expected, but as the loopingfac-
tor increases the rank normalization stands out as the most robust method to
cope with these noise additions. As the standard error is also incrementally in-
creased simultaneously the difference between the two methods smoothens out.
Especially in the other extreme case where σε = 5 (top right box plot in Figure
5.3), the noise addition is so large and have become dominant, hence choosing to
rank normalize data or not becomes insignificant. The same scenario have been
tried with a higher sample frequency, i.e. ω = 75 in Figure 5.4. This frequency
implies only a couple of mean Ct shifts for a population of 250 patients, which
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resembles the serum data even more.
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Figure 5.4: The PM shown under different quantities of the loopingfactor
for sample frequency ω = 75, stratified by chosen values of the
standard error.

Not much changes when fewer jumps are simulated, the overall behavior of
the results remains the same, leading to a conclusion of the simulation study.
Rank normalizing data is a good idea in the presence of large mean differences
between groups of samples, however in the case of very little noise the raw values
are the better choice. Since the serum data provided for this thesis experience
these large mean jumps, especially between PC patients and controls, the sim-
ulation study suggests rank normalized data will provide more reliable results.

It should however be kept in mind that there are many limitations to this simula-
tion study and the results are to be taken with a ”grain of salt”. One limitation
concerns the simulated covariate matrix X in which no missing values are gen-
erated. This is known not to be in agreement with real miRNA measurements,
hence it is something to consider in order to improve the simulation study. An-
other limitation worth mentioning is the previous discussed tuning parameter
λ0 for the univariate selection method, here an overall value was fixed for both
methods after the Bonferroni principle (to a certain degree). Strictly speaking,
results closer to the truth would be obtained by applying cross-validation on the
data for the respectively method, in each test run. Furthermore, if time allowed
it all the normalization methods should tested and not just with the logistic
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regression, but expanded to the prognostic case with Cox regression as well.
However, despite these limitations, this small theoretical study still provides
informative insight to the effect of normalizing miRNA data with properties as
in the serum data. The different analyses on serum data in relation to incidence
and prognosis, are found in Chapter 6.



Chapter 6

Results

This chapter presents the results from the analyses performed, by applying the
methodology introduced in Chapter 4 on the data introduced in Chapter 3.
The results have been divided into an incidence and a prognostic part. Sec-
tion 6.1 includes the analyses based on logistic regression with the five different
normalization methods, where the purpose is to identify a subset of promising
miRNAs that function as indicators of pancreatic cancer. An additional com-
parative study is included here, where the shrinkage methods are evaluated in
their ability to predict cancer/healthy subjects correctly. Section 6.2 includes
the analyses based on Cox proportional hazards model with the five different
normalization methods. The objective is here to identify the most significant
miRNAs providing information of expected survival time from operation for
PC patients. A similar comparative study is trying to highlight the ability of
miRNAs to predict expected survival after operation.
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6.1 Incidence

A number of analyses have been performed using logistic regression on the serum
data, separated by small differences such as choice of normalization method and
the number of folds used in cross-validation. Despite this, a general outline of
the analysis procedure for incidence can still be given, which is described in the
following.

As was mentioned in Section 3.2 there were 206 patients eligible for analyses,
consisting of three groups; PC, CP and HS. Generally the CP patients will be
regarded as healthy subjects, so the number of cases together with the controls
is 69, while there were 137 cancer cases. Furthermore, there were 754 indepen-
dent miRNAs from the beginning and those having > 20 N/As were excluded,
leaving only 75 miRNAs that satisfied this criterion. This reduced data set
can be characterized as the foundation for all the analyses regarding incidence,
which can be summarized in a step-by-step procedure.

Step 1 Data is normalized by the chosen normalization method.

Step 2 The univariate selection method is applied to the normalized data set
in order to find a subset of miRNAs for further analysis. The p-value
tolerance λ0 controls the number of miRNAs in this set, and is obtained
by 20-fold cross-validation. The self-made cross-validation function used
AUC as an evaluation measure to optimize after, hence the λ0 chosen
provides the best logistic model.

Step 3 The selected miRNAs are standardized by their interquartile range
(IQR), i.e. divided by the distance between the 75th percentile and the
25th percentile. This provides more robust estimates of the coefficients,
since outlier measurements are disregarded.

Step 4 Logistic regression is performed on the complete cases in a backwards
elimination procedure, where the BIC is used as a model evaluator.

Step 5 Moreover, Lasso regression is performed with the miRNAs selected by
the univariate method, as the starting model. The reason why only this
subset of miRNAs is considered, and not the initial 75 miRNAs, is due to
missing values. The generic problem inherited from the GLM restricts the
shrinkage methods to only work with complete cases, and simply to many
cases would be removed if all the 75 miRNAs were considered. The penalty
parameter λ1 is determined by 20-fold log-likelihood cross-validation, from
the built-in function optL1 of the penalized package.

Step 6 Furthermore, logistic regression with elastic net penalty is performed
with the univariate selected miRNAs. The tuning parameters λ1 and λ2
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are once again determined by 20-fold log-likelihood cross-validation, using
the cvl function from the penalized package.

This is the general outline when data was analyzed with a binary outcome.
There were minor discrepancies though, between normalizing with ranks and
other methods. One thing is that ranking assigns a value to the missing values,
meaning that all the 206 cases were maintained in the starting model for the
backwards step procedure, Lasso and elastic net. Also, a re-ranking was needed
after the univariate selection, otherwise the ranks corresponded to the old data
set.

Ridge regression was left out as a candidate method for selecting significant
predictors, since it does not create a parsimonious model, hence does not serve
the purpose of selecting only a few candidate biomarkers. However, this cer-
tainly does not rule out Ridge regression as a useful method in other analyses
situations, which is why it is included in the comparative study described in
Section 6.1.1, where the prediction ability of each method is tested on the basis
of AUC.

6.1.1 Comparative study

The main objective of this study is to compare the four different shrinkage me-
thods’ ability to fit a useful model in predicting cancer/no cancer. The shrinkage
methods are not surprisingly the univariate method in combination with back-
wards stepwise selection, Ridge, Lasso and the näıve elastic net. The idea of a
comparative study is derived from the paper by Bøvelstad et al. [2007], where
seven methods were compared on their predicting survival from microarray data.
The basic idea is to split the data set into a 2:1 training/test set, where each
training/test set keep the same cancer-control ratio as the original data set, and
then use the model fitted to the training set to predict the cases in the test
set. To measure how well each method is predicting the test set, the AUC was
used. The study is restricted to rank normalized data only, in order to avoid the
trouble with missing values. As Bøvelstad et al. [2007] mentions in their article,
a single split is not enough to establish a reliable evaluation of the prediction
performance, therefore 50 iterations were run and relevant information were
collected each time. The optimal tuning parameters are determined for each
training/test set split by 10-fold log-likelihood cross-validation, except for λ0

in the univariate selection; here AUC cross-validation was applied. The choice
of 10-fold is considered to be a good tradeoff between computational time and
reasonable estimates of the true optimal tuning parameters. This is also the
number of folds Bøvelstad et al. [2007] used. A summary of the results can be
seen in Table 6.1, where data from each test run can be seen in Appendix A.1.1.
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k λ0 λ1,l λ2,r λ1,e λ2,e AUCu AUCl AUCr AUCe

mean 5.649e-04 36.3188 1410.6050 36.1953 1410.6097 0.89314 0.93795 0.91987 0.92897
sd 6.429e-04 11.6041 568.3776 11.5109 568.3767 0.04189 0.02506 0.02873 0.02745
min 1.720e-05 8.3979 419.8538 8.4604 419.8541 0.79206 0.87814 0.84139 0.85783
max 2.688e-03 58.9925 3433.9514 57.9870 3433.9516 0.97164 0.98960 0.96503 0.98299

Table 6.1: Comparison of the prediction performance for the four shrinkage
methods, on the basis of AUC.

Apparantly there is not much difference in the optimal penalty parameter found
for the Lasso and Ridge, respectively, and the optimal parameters used in the
elastic net penalty term. In terms of overall prediction ability, the univari-
ate+backwards method seems to perform poorest of the four while Lasso in
average performs best, i.e. have the highest AUC with the lowest deviance.
Since Lasso is a shrinkage method that also functions as a screening tool, that is
from its penalization nature also does subset variable selection by setting small
coefficients to zero, it is reassuring to know that it seemingly also is the best
method in terms of correct classification.

In general all the methods predict at an acceptable level (AUC > 0.89) which
is a very encouraging result, because it indicates that the miRNAs can serve as
reliable predictors of patients with cancer and healthy subjects. However, the
high average AUC could also have something to do with the presence of seper-
ation of variables in the original data, due to bad experimental planning. Even
though rank normalization tries to overcome this problem, there might still be
some artificial seperation between PC and HS left, leading to better prediction
results than actually true.

Since this comparative study is only based on ranks, there is no telling about
how the shrinkage methods will perform using other normalization methods, so
the conclusions drawn from this study are limited. The choice of using AUC as
a model evaluation measure is only one way to go, other measures could also
have been tested if time allowed it.

6.1.2 Rank

The clinical objective is to find a subset of miRNA predictors in relation to
pancreatic cancer, hence this section provides the results derived from incidence
analysis of the serum data, based on rank normalization. The analysis plan was
given in Section 6.1. After rank normalizing data, the second step consisted of
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finding the optimal p-tolerance from CV, which here was λ0 = 0.0001039 result-
ing in 20 miRNAs constituting the starting model of the backwards elimination
procedure.

The univariate method showed some inconsistency in the number of miRNAs
selected, a small change in λ0 could alter the miRNAs present in the resulting
model to a certain degree. Further examination discovered that a large part of
the p-values obtained were very small and close to each other. To determine
whether the cumulative distribution function of these p-values Fp(x) is uniform
or systematically higher, i.e. the p-values are systematically lower, a one-sided
and one-sample Kolmogorov-Smirnov test can be performed. The hypotheses
tested are

H0 : Fp(x) = FU(0,1)(x) (6.1)

H1 : Fp(x) > FU(0,1)(x). (6.2)

The test statistic for the Kolmogorov-Smirnov test is defined as the largest
vertical difference between the sample and theoretical cumulative distribution
functions9. Here the statistic evaluates to D+

n = 0.625 with a p-value < 0.00001,
so the null hypothesis is rejected suggesting that the p-values are systematically
low. This result could also be derived visually from Figure 6.1, showing the
empirical cumulative distribution function of the p-values.
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Figure 6.1: One-sample Kolmogorov-Smirnov test of the univariate p-
values for rank normalization.

9Dn = sup
x
|Fn(x)− F (x)|.
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The cumulative distribution of p-values is very steep in the beginning showing
that there is many small values, so there is strong evidence of signal in the
p-values. In Table 6.2 relevant information about the final model of the step
procedure is provided.

miRNA OR CI0.95,low CI0.95,high p-value

miR.ecd 13.840 4.390 50.420 <0.001
miR.odd 0.190 0.060 0.530 0.002
miR.myc 5.410 1.950 18.730 0.003
miR.cgd 0.250 0.110 0.530 <0.001

Table 6.2: The odds ratio, 95% confidence limits and p-values of the sig-
nificant miRNAs, derived from the backwards step procedure for
rank normalized data.

In the end four miRNAs showed to be significant predictors of pancreatic cancer
with rank normalized data. Starting with miR-ecd that has an odds ratio of
13.84, i.e. one IQR unit increase in ranks of this miRNA results in the odds
of having pancreatic cancer increases by a factor 13.84. Clinically speaking an
increase in rank means an increase in Ct and ultimately a decrease in miRNA
material, from which it can be concluded that a decrease in the miR-ecd ex-
pansion indicates a patient having cancer. This fairly large odds ratio can be
partly explained by the IQR standardization, where the ranks of each miRNA
are divided by their range between Q25 and Q75. A large range will result in
smaller rank values and ultimately larger increase in odds ratio per unit rank
increase. Furthermore, as explained in Section 4.1.1 the interpretation of a unit
rank increase is not quite clear, as opposed to a unit Ct increase. Besides miR-
ecd, miR-myc also seems to be a predictor of cancer with an odds ratio of 5.41,
while an increase in miR-odd and miR-cgd strengthens the conclusion that a
patient is healthy. The OR of the latter is probably easier interpreted with the
inverse odds ratio. For miR-odd the OR−1 = 1/0.19 = 5.26, which can be in-
terpreted as the odds of having cancer decreases by 5.26 for one unit IQR rank
increase in miR-odd. For miR-cgd, the equivalent is true with an inverse odds
ratio of 4.

It is hard to say how trustworthy these results are since the univariate method
for these miRNA data is highly sensitive, which can also be seen from the wide
range of the CIs. Therefore a comparison with miRNAs found by the Lasso and
elastic net shrinkage method, respectively, is necessary in order to select the
relevant miRNAs with more certainty. Table 6.3 provides a ranked list of the
significant miRNAs found by the three methods, where Lasso used the penalty
λ1 = 3.6 and the elastic net (λ1, λ2) = (3.6, 5.94).
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miRNA Found by Uni+step Lasso Elastic

1 miR.ecd Uni+step, Lasso, Elastic 13.8385 2.8717 1.6669
2 miR.myc Uni+step, Lasso, Elastic 5.4094 1.3659 1.2845
3 miR.cgd Uni+step, Lasso, Elastic 0.2460 0.3693 0.5491
4 miR.odd Uni+step, Lasso, Elastic 0.1911 0.4356 0.5852
5 miR.omd Lasso, Elastic 1.5290 1.5590
6 miR.tyc Lasso, Elastic 1.3722 1.2551
7 miR.wzc Lasso, Elastic 0.9645 0.9416
8 miR.eud Lasso, Elastic 0.8875 0.8751
9 miR.lld Lasso, Elastic 0.7690 0.7493
10 miR.kmd Lasso, Elastic 0.6081 0.6325
11 miR.pjd Elastic 1.1204
12 miR.kyc Elastic 1.1010
13 miR.gyc Elastic 1.0435
14 miR.vyc Elastic 1.0209
15 miR.zbd Elastic 0.9706

Table 6.3: Significant miRNAs found by the various methods on the basis of
ranks, first ordered by number of times the given miRNA occurs
for each method, and second by the magnitude of OR.

The methods all find miR-ecd, miR-odd, miR-myc and miR-cgd to be significant
(i.e. included in the final model), hence the conclusion is that these are the most
prominent miRNAs for separating pancreas cancer patients from the controls.
The OR of e.g. miR-ecd in the Lasso and elastic net method is much smaller
than the OR obtained in the regular logistic fit, because of the penalty terms
imposed. Lasso and elastic net also finds additional miRNAs not found by the
backwards step which also have the potential of being biomarkers in relation to
incidence, e.g. miR-lld and miR-eud which have an OR higher than 1 in both
methods. In conclusion, there exists small differences in the number and type of
miRNAs found by the various shrinkage methods, which was expected. Despite
this, the ORs of miRNAs found by multiple methods are in agreement with each
other, they ”point in the same direction” which is important. It is interesting to
see if the same applies across different normalization methods, which is analyzed
in the forthcoming pages.

These were the results of analysis based on ranks which is regarded as a ro-
bust normalization method, i.e. a method that hopefully could remove nuisance
factors such as day of purification and plate variation, but still maintain the true
effects. Figure 6.2 shows the distribution of raw values and ranks for the four
significant miRNAs in the logistic model. Generally speaking the distribution
between the three groups PC, CP and HS is unchanged by the rank normal-
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ization, however it makes separation between the cancer and healthy group for
miR-odd even more apparent. This indicates that the rank method does have
some positive influence on data, but everything comes with a price and in this
case ranking of data complicates the interpretation of the odds ratios.
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Figure 6.2: Boxplot of miR-ecd, miR-odd, miR-myc and miR-cgd. (Left)
Raw Ct values. (Right) Ranks, after the univariate selection.
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6.1.3 Quantile

The result of quantile normalization in terms of mean Ct level for each sample,
can be seen in Figure 6.3. Each sample is now totally aligned disregarding ig-
norable discrepancies, making them more comparable for analysis.
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Figure 6.3: Average Ct level for the 206 persons eligible for analyses after
quantile normalization.

Cross-validation with 20 folds determined the p-tolerance of the univariate
method to be λ0 = 0.0011359, and the one-side Kolmogorov-Smirnov test statis-
tic D+

n = 0.551 has a p-value < 0.00001, rejecting the null hypothesis. Figure
6.4 shows that the empirical cumulative distribution of the p-values are signifi-
cantly above the uniform.
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Figure 6.4: One-sample Kolmogorov-Smirnov test of the univariate p-
values for quantile normalization.
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The p-tolerance ensured that 20 miRNAs was included in the starting model
of the backwards step procedure. The ending model is summarized in Table
6.4, where the first thing noticed is that miR-ecd and miR-cgd are once again
present.

miRNA OR CI0.95,low CI0.95,high p-value

miR.ecd 18.990 6.600 65.700 <0.001
miR.pdd 9.250 3.450 27.990 <0.001
miR.tyc 3.710 1.370 11.540 0.014
miR.cgd 0.240 0.100 0.460 <0.001

Table 6.4: The odds ratio, 95% confidence limits and p-values of the sig-
nificant miRNAs, derived from the backwards step procedure for
quantile normalized data.

The ORs obtained on the basis of quantile normalization, is slightly more sen-
sible in terms of interpretation, as opposed to those obtained from the rank
normalization. This is because it is not a pattern being analyzed now, but in-
stead the actual Ct values. The odds ratio of miR-ecd is 18.99 which is actually
higher than in the ranking case. Apparantly one IQR Ct unit increase makes
a large difference concerning the odds of having cancer. The OR of miR-cgd is
almost the same as in the ranking case, where an increase in IQR Ct for this
miRNA reduces the odds of having cancer by 4.17. Both miR-pdd and miR-tyc
seems to raise the odds in favor of having cancer, when their miRNA expansion
is reduced. The estimated ORs however, does not seem very reliable judging
from their confidence intervals, which could be caused by the relatively small
number of samples.

In the end the Lasso and elastic net regression were also run on quantile nor-
malized data, this time with penalty term λ1 = 1.52 for Lasso and (λ1, λ2) =
(0.829, 2.41) for the elastic net. The results are collected in Table 6.5, which
gives an overview of which miRNAs the respective methods find along with their
OR.
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miRNA Found by Uni+step Lasso Elastic

1 miR.ecd Uni+step, Lasso, Elastic 18.9901 4.7506 2.5015
2 miR.pdd Uni+step, Lasso, Elastic 9.2526 2.6063 1.9468
3 miR.tyc Uni+step, Lasso, Elastic 3.7139 2.1279 1.7254
4 miR.cgd Uni+step, Lasso, Elastic 0.2363 0.3074 0.3955
5 miR.egd Lasso, Elastic 1.9763 1.8882
6 miR.wyc Lasso, Elastic 1.3167 1.3089
7 miR.ged Lasso, Elastic 0.8190 0.7467
8 miR.odd Lasso, Elastic 0.5716 0.5238
9 miR.lld Lasso, Elastic 0.5478 0.5741
10 miR.omd Elastic 1.1788
11 miR.myc Elastic 1.1715
12 miR.kyc Elastic 1.0803
13 miR.gyc Elastic 1.0802
14 miR.czc Elastic 1.0557
15 miR.kmd Elastic 0.9926
16 miR.vzc Elastic 0.9349

Table 6.5: Significant miRNAs found by the various methods on the basis
of quantile normalization, first ordered by number of times the
given miRNA occurs for each method, and second by the mag-
nitude of OR.

6.1.4 Internal control

The third analysis is based on normalization of data by the use of an internal
control. As described in Section 4.1.3, U6 small non-coding RNA was chosen
as the endogenous control, where it was possible to take the average of 8 mea-
surements for each individual samples and subtract this value from the sample
mean. The mean Ct level of the samples, after this normalization step was
performed, can be seen in Figure 6.5. This normalization procedure does not
seem to help in making the samples more comparable, since it does not solve
the problem with these sample-to-sample mean shifts in Ct at all. This is only
an attractive method when the choice of internal control is appropriate, which
might not be the case here. This is probably why this is not a widely used
normalization method.

The test of the empirical cumulative distribution of the univariate p-values fol-
lowing a uniform distribution, results in the test statistic D+

n = 0.363. The
statistic is lower than those of the previous two analyses, however the null hy-
pothesis is still rejected with a p-value < 0.00001.
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Figure 6.5: Average Ct level for the 206 persons eligible for analyses after
internal control normalization.
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Figure 6.6: One-sample Kolmogorov-Smirnov test of the univariate p-
values for internal control normalization.

It is clear from Figure 6.6 that the p-values are not within the 95% confidence
band of the uniform distribution, visually verifying the result of the Kolmogorov-
Smirnov test. The p-value cutoff was set to be λ0 = 0.0009134, where 9 miRNAs
had a p-value below this criteria. The resulting three miRNAs the step proce-
dure decides to keep in the final model based upon lowest BIC, are summarized
in Table 6.6. As seen before, miR-ecd and miR-cgd appears as significant pre-
dictors for a patient’s probability of having cancer. The OR for miR-ecd is an
extreme 44.72 which of course is a suspicious value, but apparently a raise in
one IQR Ct unit of this miRNA raises the odds of having pancreatic cancer
substantially. On the other hand, raising the miR-cgd by a single IQR unit
decreases the odds of having cancer by 4.35, and for miR-lld the inverse odds
ratio are even as high as 12.5.
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miRNA OR CI0.95,low CI0.95,high p-value

miR.lld 0.080 0.020 0.220 <0.001
miR.ecd 44.720 13.850 197.480 <0.001
miR.cgd 0.230 0.060 0.740 0.019

Table 6.6: The odds ratio, 95% confidence limits and p-values of the sig-
nificant miRNAs, derived from the backwards step procedure for
internal control normalized data.

These results derived from the internal control normalized data should be taken
with a grain of salt, because as Figure 6.5 indicated there were still large mean
differences between samples present. This makes the results even more sensitive,
hence more unreliable. Table 6.7 gives an overview of the miRNAs found by
all the shrinkage methods using λ1 = 1.3 for Lasso and (λ1, λ2) = (1.31, 0.838).
Not many miRNAs are found here compared to previous results, but notice that
the ORs for miR-ecd in all the methods are unrealistically high.

miRNA Found by Uni+step Lasso Elastic

1 miR.ecd Uni+step, Lasso, Elastic 44.71500 21.5447 11.7827
2 miR.cgd Uni+step, Lasso, Elastic 0.23436 0.4028 0.5202
3 miR.lld Uni+step, Lasso, Elastic 0.08143 0.1381 0.1952
4 miR.ged Lasso, Elastic 0.6752 0.6655
5 miR.eud Elastic 0.9434

Table 6.7: Significant miRNAs found by the various methods on the basis of
internal control normalization, first ordered by number of times
the given miRNA occurs for each method, and second by the
magnitude of OR.

6.1.5 Mean

The fourth incidence analysis is based on mean normalization. The basic idea is
to subtract the mean from each individual sample, which forces the mean Ct for
all samples to be aligned at zero. Figure 6.7 verifies that all the Ct averages is
practically zero for each sample (the fluctuations should not confuse the reader,
notice the magnitude of the y-scale).
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Figure 6.7: Average Ct level for the 206 persons eligible for analyses after
mean normalization.

The next thing examined is if the p-values obtained from the univariate method
are uniformly distributed, i.e. no signal is present in the covariates. Figure
6.8 depicts the empirical cumulative distribution of the p-values along with
the cumulative uniform distribution and its 95% confidence bands. The one-
sample Kolmogorov-Smirnov test statistic evaluates to D+

n = 0.605 with a p-
value < 0.00001, so there is strong statistical evidence that the null hypothesis
can be rejected.
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Figure 6.8: One-sample Kolmogorov-Smirnov test of the univariate p-
values for mean normalization.

20-fold AUC cross-validation found the tuning parameter for the univariate se-
lection to be λ0 = 0.0000088 and 19 miRNAs passed this criterion. An IQR
standardization was performed on these selected miRNAs, such that only the
middle fifty is considered. The relevant miRNAs after the backwards step elim-
ination of the logistic regression is completed, can be seen in Table 6.8.
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miRNA OR CI0.95,low CI0.95,high p-value

miR.lld 0.220 0.090 0.470 <0.001
miR.tyc 5.970 2.680 14.530 <0.001
miR.egd 7.280 3.000 20.230 <0.001

Table 6.8: The odds ratio, 95% confidence limits and p-values of the sig-
nificant miRNAs, derived from the backwards step procedure for
mean normalized data.

The table shows that miR-lld reduces the odds of having cancer on one unit
IQR Ct increase by 1/0.22 = 4.55, where the miRNA also showed the same
tendency with internal normalization. The miR-tyc was found by the quantile
normalization before, but miR-egd have not previously been included in the final
model after the step procedure. Here they both raise the odds of having cancer
on a unit increase. All this indicates yet again that the univariate method is
very sensitive, and that the normalization method have great influence on which
miRNAs that are considered significant candidates in the final model.

The mean normalized data was also analyzed by the Lasso and elastic net
regression. Lasso used a penalty parameter of λ1 = 1.96 and the elastic net
determined the optimal tuning parameters to be (λ1, λ2) = (1.72, 2.95).

miRNA Found by Uni+step Lasso Elastic

1 miR.egd Uni+step, Lasso, Elastic 7.2846 3.5511 1.8489
2 miR.tyc Uni+step, Lasso, Elastic 5.9710 2.7206 1.7213
3 miR.lld Uni+step, Lasso, Elastic 0.2159 0.4166 0.5206
4 miR.gyc Lasso, Elastic 2.2403 1.5239
5 miR.pdd Lasso, Elastic 1.5111 1.6064
6 miR.czc Lasso, Elastic 1.1238 1.2732
7 miR.ecd Lasso, Elastic 1.0425 1.4277
8 miR.wyc Lasso, Elastic 1.0036 1.0744
9 miR.ged Lasso, Elastic 0.9054 0.8130
10 miR.omd Elastic 1.2516
11 miR.wfd Elastic 1.0736
12 miR.lyc Elastic 1.0439
13 miR.xad Elastic 1.0303

Table 6.9: Significant miRNAs found by the various methods on the basis of
mean normalization, first ordered by number of times the given
miRNA occurs for each method, and second by the magnitude
of OR.
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The top three miRNAs in Table 6.9 are found by all the shrinkage methods,
raising the trust in them being the most prominent miRNAs for predicting can-
cer (for mean normalization). One curious observation is that miR-ecd, which
showed to be extremely significant in other normalization methods, here has
an OR barely over 1. This stresses the sensibility of these analyses performed,
where one of the reasons is the low number of samples available.

6.1.6 Mean-120

The final normalization method resembles somewhat the previous; the mean-
120 normalization. Only the mean of 120 most expressed miRNAs are now
considered, i.e. the 120 miRNAs with the lowest average Ct value. The result
of this normalization can be seen in Figure 6.9.
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Figure 6.9: Average Ct level for the 206 persons eligible for analyses after
mean-120 normalization.

It seems like the mean Ct of the samples have leveled out more compared to
the original data, however there is still traces of differences present. This is not
necessarily bad since the true picture of how things are supposed to look remains
unknown, so it can not be concluded whether this normalization method have
worsened the chances of finding the true effects of the miRNAs for these data or
not. The cumulative distribution of the p-values from the univariate selection
is provided in Figure 6.10.
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Figure 6.10: One-sample Kolmogorov-Smirnov test of the univariate p-
values for mean-120 normalization.

Of course the Kolmogorov-Smirnov test statistic have been calculated as in the
similar analyses, D+

n = 0.603 which concludes that the p-values are significantly
not following a uniform distribution. The number of miRNAs used for further
analysis was 12, based on the p-tolerance of λ0 = 0.0000046. The results can be
seen in table 6.10.

miRNA OR CI0.95,low CI0.95,high p-value

miR.ecd 10.530 2.760 47.210 0.001
miR.omd 3.830 1.250 13.330 0.025
miR.pjd 0.210 0.060 0.710 0.016
miR.gyc 6.330 2.410 19.960 <0.001
miR.tyc 4.830 1.780 13.970 0.002
miR.pdd 2.290 1.150 4.750 0.021

Table 6.10: The odds ratio, 95% confidence limits and p-values of the sig-
nificant miRNAs, derived from the backwards step procedure
for mean-120 normalized data.

The final logistic model that the backwards step procedure chose, contains a
total of six important miRNAs. Worth noticing is the miR-ecd that has an OR
of 10.53, this miRNA have been shown to have a high OR estimate before, by
different normalization methods. Moreover, five of the six miRNAs have an OR
above 1, so they all raise the odds of having pancreas cancer when one unit IQR
Ct value is increased for the respective miRNAs.

Table 6.11 gives a summery of the miRNAs found by all shrinkage methods,
on the basis of mean-120 normalization.
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miRNA Found by Uni+step Lasso Elastic

1 miR.ecd Uni+step, Lasso, Elastic 10.5317 3.5681 3.1417
2 miR.gyc Uni+step, Lasso, Elastic 6.3271 2.0220 1.9988
3 miR.tyc Uni+step, Lasso, Elastic 4.8331 1.9011 1.9694
4 miR.omd Uni+step, Lasso, Elastic 3.8277 1.4193 1.5294
5 miR.pdd Uni+step, Lasso, Elastic 2.2885 1.5967 1.6204
6 miR.czc Lasso, Elastic 1.5357 1.5364
7 miR.eud Lasso, Elastic 0.9381 0.9091
8 miR.lld Lasso, Elastic 0.6004 0.6034
9 miR.pjd Uni+step 0.2139
10 miR.vyc Elastic 1.0211

Table 6.11: Significant miRNAs found by the various methods on the basis
of mean-120 normalization, first ordered by number of times
the given miRNA occurs for each method, and second by the
magnitude of OR.

The penalization used for Lasso was λ1 = 2.44, while elastic net applied (λ1, λ2) =
(1.71, 0.899) as the optimal amount of shrinkage determined by log-likelihood
cross-validation. At this point it can be difficult to see the big picture concern-
ing what miRNAs that should be flagged as good predictors, due to the fact
that they have been selected on the basis of multiple normalization methods.
Therefore, Section 6.1.7 provides a collection of all the results derived from the
incidence analyses in tabular form, making the conclusion easier.

6.1.7 Conclusion

This section is dedicated to summarize on the results regarding incidence. Over-
all the comparative study revealed that the models derived from the four shrink-
age methods, could classify a novel sample into cancer/healthy group with ac-
ceptable accuracy. The study was however only conducted for the rank nor-
malization, thus lacking the power to conclude the same for all normalization
methods. If this result is simply representing the truth in the miRNA data or if
the separation between the cancer/control group is caused by artificial factors,
remains unknown. In order to approach an answer, validation studies on other
data needs to be performed.

The five normalization methods gave five different results, of course with some
similarities, but it could be nice to get a measure of how different they actually
perform. One attempt is to look at the p-values calculated from the different
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univariate methods, and see how correlated they are across the different normal-
ization methods. Two correlation coefficients seemed relevant in this context;
Pearson’s product-moment correlation coefficient and Spearman’s rank correla-
tion coefficient. The Pearson coefficient is a measure of the linear dependence of
two variables x1 and x2 in the interval [−1; 1], where a coefficient of 0 indicates
no dependence at all. Mathematically, the Pearson coefficient is calculated from
a sample with n observations as

r =

∑n
i=1(x1,i − x̄1)(x2,i − x̄2)√∑n

i=1(x1,i − x̄1)2
√∑n

i=1(x2,i − x̄2)2
. (6.3)

The Spearman coefficient is another measure of statistical dependence between
two variables, somewhat similar to Pearson but based on ranking the variables
instead, hence non-parametric. By doing this, the coefficient measures how
well the relationship between two variables can be described using a monotonic
function. If the two variables x1 and x2 are converted to ranked variables u1

and u2, the coefficient is defined as

ρ =

∑
i(u1,i − ū1)(u2,i − ū2)√∑

i(u1,i − ū1)2
∑
i(u2,i − ū2)2

. (6.4)

The upper triangle in Figure 6.11 gives the Pearson and Spearman coefficient be-
tween the univariate p-values derived from the five normalization methods. The
internal control normalization is definitely the method with the least correlation
to the others, the highest Pearson and Spearman coefficient is reached between
the ranking method. The lowest Spearman coefficient of 0.08 between internal
control and quantile shows that there is almost no monotonic relationship at
all. The linear relationship with mean normalization is a low 0.13, indicating
almost no linear dependence present. All this shows that the internal control
normalization seemingly is the least favorable choice of the five, regarding inci-
dence analysis. After looking at Figure 6.5 again this conclusion makes sense,
since this normalization clearly does not make the samples more comparable.
Besides the internal control normalization, the methods have an acceptable re-
lationship between their univariate p-values, with an exception of the mean and
rank coefficients.

The lower triangle in Figure 6.11 is another way to visualize the results. Con-
sidering one of the small plots, the x- and y-axis are the p-values plotted on
the logit scale for two methods, respectively. The red dotted lines separating
into four quadrants represents a p-value of 0.001, i.e. logit(0.001)=-6.906755. A
point in the 1st and 3rd quadrant means that the methods agree on the p-value
being higher than 0.001 or lower, respectively. In the 2nd quadrant the method
”on top” evaluates the p-value > 0.001 while the method ”on the right” says
< 0.001, and vice versa in the 4th quadrant. If all the p-values laid on the green
line there would be perfect linear dependence between the methods, and the
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Pearson coefficient would evaluate to 1. The solid red line is a monotonic fit,
visualizing the Spearman coefficient.
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Figure 6.11: Pairs plot of the p-values obtained from the univariate logistic
regression, for the different normalization methods.

Table 6.12 provides a summary of all the tuning parameters that has been used
to obtain the final models. Generally the penalty parameters are higher for the
rank method compared to others.

The most interesting thing is to find the subset of miRNAs that can be de-
scribed as the most significant predictors. Since there are many candidate vari-
ables and not that many samples, the sensibility of the analyses is high (lack of
power) and each normalization method proposes their individual set of relevant
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Method λ0 λ1,l λ1,e λ2,e

Rank 0.000104 3.596720 3.601383 5.936490
Quantile 0.001136 1.520203 0.829052 2.405713
Intctrl 0.000913 1.298118 1.308134 0.837915
Mean 0.000009 1.959673 1.723428 2.949099
Mean-120 0.000005 2.435876 1.708871 0.899139

Table 6.12: Optimal tuning parameters used in the shrinkage methods for
various normalization.

miRNAs. The natural thing to do in this case is to trust the miRNAs chosen by
most methods. Table 6.13 is motivated by this reasoning, it gives an overview
of all the miRNAs selected by the backwards elimination procedure for each
normalization method, where the miRNAs have been ordered by the number
of methods that have them in common. The miRNAs miR-ecd, miR-tyc, miR-
cgd, miR-pdd and miR-lld have all been found by two or more methods, where
miR-ecd, miR-tyc and miR-pdd increases the odds of having pancreatic cancer
on an IQR unit increase, while miR-cgd and miR-lld decreases the odds. Once
again, it should be stressed that the ORs should be taken lightly, because they
have been determined on the basis of relatively few observations which is also
expressed by the large CIs.

Similar overview are provided for the Lasso regression in Table 6.14 and for
the näıve elastic net in Table 6.15. These shrinkage methods are considering
even more miRNAs in the final model, so only those having three or more in
common are found interesting. The top-5 ranked miRNAs from the step pro-
cedure are all found in the top of the Lasso and elastic net as well, leading to
the conclusion that these are in fact the most important miRNAs in relation to
incidence. Other miRNAs such as miR-ged, miR-omd, miR-eud and miR-czc,
show signs of being significant predictors, especially in the elastic net regres-
sion, however the incidence analyses top-5 miRNAs remain; miR-ecd, miR-tyc,
miR-cgd, miR-pdd and miR-lld.
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miRNA ORrank ORquan ORendo ORmean OR120 no

miR.lld 0.77 0.55 0.14 0.42 0.60 5
miR.ecd 2.87 4.75 21.54 1.04 3.57 5
miR.tyc 1.37 2.13 2.72 1.90 4
miR.pdd 2.61 1.51 1.60 3
miR.ged 0.82 0.68 0.91 3
miR.cgd 0.37 0.31 0.40 3
miR.wyc 1.32 1.00 2
miR.omd 1.53 1.42 2
miR.odd 0.44 0.57 2
miR.gyc 2.24 2.02 2
miR.eud 0.89 0.94 2
miR.egd 1.98 3.55 2
miR.czc 1.12 1.54 2
miR.wzc 0.96 1
miR.myc 1.37 1
miR.kmd 0.61 1

Table 6.14: Overview of the significant miRNAs found by the univariate
selection + Lasso for different normalization methods, ordered
by the number in common.

miRNA ORrank ORquan ORendo ORmean OR120 no

miR.lld 0.75 0.57 0.20 0.52 0.60 5
miR.ecd 1.67 2.50 11.78 1.43 3.14 5
miR.tyc 1.26 1.73 1.72 1.97 4
miR.omd 1.56 1.18 1.25 1.53 4
miR.gyc 1.04 1.08 1.52 2.00 4
miR.pdd 1.95 1.61 1.62 3
miR.ged 0.75 0.67 0.81 3
miR.eud 0.88 0.94 0.91 3
miR.czc 1.06 1.27 1.54 3
miR.cgd 0.55 0.40 0.52 3
miR.wyc 1.31 1.07 2
miR.vyc 1.02 1.02 2
miR.odd 0.59 0.52 2
miR.myc 1.28 1.17 2
miR.kyc 1.10 1.08 2
miR.kmd 0.63 0.99 2
miR.egd 1.89 1.85 2
miR.zbd 0.97 1
miR.xad 1.03 1
miR.wzc 0.94 1
miR.wfd 1.07 1
miR.vzc 0.93 1
miR.pjd 1.12 1
miR.lyc 1.04 1

Table 6.15: Overview of the significant miRNAs found by the univariate
selection + elastic net for different normalization methods, or-
dered by the number in common.
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6.2 Prognosis

The equivalent of the incidence analyses are now performed on survival data,
where time from operation to death is the outcome of interest. This means that
the number of samples available is reduced substantially, because only pancreatic
cancer patients have experienced an operation (plus one patient with CP) as seen
in Table 3.3. Unfortunately about one third of these cases additionally have to be
removed from the analyses, which is a consequence of missing information about
their death or follow-up date. Ultimately this gives a population of 93 patients
with survival data, under half of what was available in the incidence analyses.
The step-by-step analysis procedure for the prognosis part is summarized in the
following.

Step 1 Data is normalized by the chosen normalization method.

Step 2 The univariate selection method for the Cox proportional hazards model
is applied to the normalized data set in order to find a subset of miRNAs
for further analysis. The p-value tolerance λ0 controls the number of
miRNAs in this set, and is obtained by K-fold partial log-likelihood cross-
validation. The CV measure is calculated as in the Bøvelstad et al. [2007]
paper, which is given by

CV (λ0) =

K∑
i=1

`[β(−i)(λ0)]− `(−i)[β(−i)(λ0)]. (6.5)

The parameter λ0 chosen is the one maximizing CV (λ0).

Step 3 The selected miRNAs are standardized by their interquartile range
(IQR), i.e. divided by the distance between the 75th percentile and the
25th percentile. This provides more robust estimates of the coefficients,
since outlier measurements are disregarded.

Step 4 Cox proportional hazards regression is performed on the complete cases
in a backwards elimination procedure, where the BIC is used as a model
evaluator. The proportional hazards assumption is tested for each of the
miRNAs included in the final model, and the model as a whole.

Step 5 Moreover, Lasso regression is performed with the miRNAs selected by
the univariate method, as the starting model. The penalty parameter λ1

is determined by 20-fold partial log-likelihood cross-validation, from the
built-in function optL1 of the penalized package.

Step 6 Furthermore, Cox proportional hazards regression with elastic net penalty
is performed with the univariate selected miRNAs. The tuning parame-
ters λ1 and λ2 are once again determined by 20-fold partial log-likelihood
cross-validation, using the cvl function from the penalized package.
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6.2.1 Explorative analysis

It is always a good idea to explore the data properly before moving on to the
analyses, in order to get an idea of how data behave and maybe discover irregular
trends. In the context of survival analysis, one appropriate possibility is to look
at the survival as a function of time. Figure 6.12 shows the Kaplan-Meier
estimator of the overall survival for the whole population (n = 93), i.e. without
adjusting for effects of age, sex, other cancers etc. The crosses indicate patients
who have been censored.
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Figure 6.12: Kaplan-Meier estimator of the survival function along with a
95% confidence band, for the serum data.

After two years, more than half of the population have died or left the study,
stressing the fact that pancreatic cancer is a lethal disease. The literature reports
that the overall survival after 5 years is less than 5%, which seems to be in good
agreement with this small sample population. It is hard to say precisely though,
because of the sparse number of observations, which the wider spread of the
95% confidence band in the end supports. Besides survival probability, it is also
interesting to look at the evolvement of the cumulative hazard over time, thus
the Nelson-Aalen estimator is plotted in Figure 6.13.
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Figure 6.13: Nelson-Aalen estimator of the cumulative hazard function
along with a 95% confidence band, for the serum data.

Here it seems like the hazard is close to being constant over time, since the
shape of the cumulative function is neither concave (mortality rate decreases
over time) or convex (mortality rate increases over time). Of course there is
large uncertainty after approximately 4 years, due to the low number of samples.
Next in Section 6.2.2, the comparative study for survival data is performed.

6.2.2 Comparative study

Analogously to the incidence case, a small comparative studies examines the
shrinkage methods’ ability to predict based on miRNAs, where prediction in
this context is a cancer patient’s survival. The same four shrinkage methods are
being tested, this time by applying the Cox proportional hazards model. The
paper from Bøvelstad et al. [2007] has once again laid the ground for inspiration
of the comparative study design. The training/test set split was 2:1 for the
incidence case, but because there is much fewer observations available for the
prognostic analyses a 3:1 split was used instead, otherwise the lack of power in
the analyses would become a problem. Bøvelstad et al. [2007] proposes three
model evaluation criteria and the one chosen here is based on the prognostic
index (PI). This is defined as the linear predictor for the patients in the test set
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based on the coefficients estimated for the training set

η̂ = Xβ̂train. (6.6)

This PI is then used as a single continuous covariate in a Cox regression on the
test set, i.e. the fitted model becomes

hi(t) = h0(t) exp(η̂iα) (6.7)

where i is an index over the patients in the test set. To get an idea of the
method’s performance, the following hypothesis is tested

H0 : α = 0 (6.8)

H1 : α 6= 0 (6.9)

using likelihood ratio test, and the p-value obtained serves as a performance
measure. Hopefully the p-value is as low as possible rejecting the null hypoth-
esis, meaning that the linear predictor is significant for predicting expected
survival. The optimal tuning parameters are determined for each training/test
set split by 10-fold partial log-likelihood cross-validation. To get reliable results
50 iterations were run where a summary of these results are provided in Table
6.16.

k λ0 λ1,l λ2,r λ1,e λ2,e PIu PIl PIr PIe

mean 0.0683674 29.4919 2826.9206 29.4705 2826.9224 0.49830 0.54278 0.39070 0.499781
sd 0.0516630 23.5411 3181.7506 23.6368 3181.7385 0.31876 0.34399 0.30225 0.350106
min 0.0008356 3.5667 9.4786 3.8830 9.8719 0.03981 0.03094 0.00650 0.009887
max 0.2471353 130.0868 10724.8107 131.0886 10724.8108 1.00000 1.00000 0.99275 1.000000

Table 6.16: Comparison of the prediction performance for the four shrink-
age methods, on the basis of likelihood ratio test.

The results are very discouraging. The mean p-values for each method is close
to 0.5, Ridge lying a bit under, all ranging from close to zero to one. This
means that there is not enough statistical evidence to reject the null hypothesis
on average. Either this is the result of miRNAs not saying anything about the
expected survival for pancreatic cancer patients, or maybe there is simply to
few samples to make any reasonable conclusion. To get an idea of the first pre-
sumption a simulation study should have been done to see if the true effects can
be detected by miRNAs. Unfortunately there were not enough time to examine
this further. The method that performs best is Ridge regression where the same
conclusion was reached in Bøvelstad et al. [2007] as well, however in terms of
prognostic prediction all methods fail for these data which should be kept in
mind when performing the Cox regression analyses.
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6.2.3 Rank

Even though the comparative study showed no sign of the miRNAs being capable
of predicting survival after operation, the prognostic analyses still seemed rele-
vant. First thing is to test for signal in the p-values derived from the univariate
Cox model. Here the Kolmogorov-Smirnov test statistic becomes D+

n = 0.577
which rejects the null hypothesis with a p-value < 0.00001. Figure 6.14 verifies
this results since the cumulative distribution for the p-values is higher than the
one of the uniform distribution.
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Figure 6.14: One-sample Kolmogorov-Smirnov test of the univariate p-
values for rank normalization.

The p-value tolerance was obtained by partial log-likelihood CV and for the rank
normalized data λ0 = 0.0431140. There were 22 miRNAs selected as potential
candidates and the result after running the backwards elimination procedure
can be seen in Table 6.17.

miRNA HR CI0.95,low CI0.95,high p-value

miR.mmd 0.660 0.470 0.940 0.020
miR.wyc 1.840 1.200 2.810 0.005

Table 6.17: The hazard ratio, 95% confidence limits and p-values of the
significant miRNAs, derived from the backwards step procedure
for rank normalized data.

Only two miRNAs are found significant enough to stay in the final model. The
miRNA miR-mmd has an hazard ratio of 0.66 indicating that on an IQR rank
unit increase of this miRNA, the hazard of dying is decreased. For miR-wyz the
hazard of dying is increased by a factor 1.84 on a unit increase, i.e. the expected
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survival is worsened. The validity of the proportional hazards assumption for
this final Cox model has been tested in Table 6.18.

ρ χ2 p-value

miR.mmd -0.038 0.113 0.737
miR.wyc -0.108 0.767 0.381
GLOBAL 1.120 0.571

Table 6.18: Test of the proportional hazards assumption for each significant
miRNA in the model fit for rank normalization, along with a
global test.

First column is a correlation coefficient between the transformed survival time
and scaled Schoenfeld residuals, second the χ2 test statistic of the slope being
zero and third the p-value of the test. Both the miRNAs have a low negative
correlation and the p-value suggest that there is no statistical evidence of reject-
ing the null hypothesis, i.e. the proportional hazards assumption is not violated
for any of the miRNAs. Furthermore, the global test of the model as a whole
also comes to the conclusion that the proportional hazards assumption is satis-
fied. The more graphical approach to obtain these model diagnostics plots the
scaled Schoenfeld residuals, this is done in Figure 6.15.
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Figure 6.15: Plot of the scaled Schoenfeld residuals against transformed
time for each miRNA in the model fit for rank normalization,
along with a four degree fitted natural spline (solid line) and
its ±2 standard error confidence band (dashed lines).
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If violation of the proportional hazards assumption is to be perfectly rejected,
then the smoothing function would be linear on the horizontal line of the
log(HR). The lines would be at -0.416 for miR-mmd and 0.61 for miR-wyz,
respectively. Despite minor fluctuations of the spline from these values there is
clearly no danger of the assumption being violated.

Equivalently to the incidence case, Lasso regression and elastic net regression
were also applied in the prognostic case. For rank normalized data the penalty
factor λ1 = 3.15 was the optimal choice found by 20-fold partial log-likelihood
cross-validation. In the elastic net regression the two parameters were found to
be (λ1, λ2) = (3.21, 155), and the miRNAs found by all the regression analyses
are summarized in Table 6.19 ordered by the miRNAs in common and the size
of the HRs.

miRNA Found by Uni+step Lasso Elastic

1 miR.wyc Uni+step, Lasso, Elastic 1.8392 1.3992 1.0365
2 miR.mmd Uni+step, Lasso, Elastic 0.6628 0.7845 0.9585
3 miR.dbd Lasso, Elastic 1.0480 1.0364
4 miR.bkd Lasso, Elastic 0.9107 0.9747
5 miR.fed Lasso, Elastic 0.8940 0.9708
6 miR.tdd Elastic 1.0221
7 miR.lyc Elastic 1.0193
8 miR.wad Elastic 1.0173
9 miR.dzc Elastic 1.0130
10 miR.qzc Elastic 1.0117
11 miR.uyc Elastic 1.0091
12 miR.lzc Elastic 1.0086
13 miR.kzc Elastic 1.0030
14 miR.hyc Elastic 1.0026
15 miR.zmd Elastic 0.9929
16 miR.zvd Elastic 0.9921
17 miR.nwd Elastic 0.9873
18 miR.cae Elastic 0.9827
19 miR.wtd Elastic 0.9806
20 miR.vod Elastic 0.9799

Table 6.19: Significant miRNAs found by the various methods on the basis
of ranks, first ordered by number of times the given miRNA
occurs for each method, and second by the magnitude of HR.
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6.2.4 Quantile

This section deals with the results of quantile normalized data analyzed on
the basis of Cox proportional hazards model. The test of p-values from the
initial univariate selection method with λ0 = 0.0500952 is D+

n = 0.492. The
Kolmogorov-Smirnov test can be interpreted as the p-values derived are not
drawn at random from a uniform distribution, which is also illustrated in Fig-
ure 6.16.
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Figure 6.16: One-sample Kolmogorov-Smirnov test of the univariate p-
values for quantile normalization.

There were 24 miRNAs selected for further analysis for which IQR standard-
ization was performed, however only miR-qzc was included in the final model
as seen in Table 6.20. When miR-qzc is increased one IQR Ct unit the risk of
dying is 1.52. times greater.

miRNA HR CI0.95,low CI0.95,high p-value

miR.qzc 1.520 1.090 2.110 0.013

Table 6.20: The hazard ratio, 95% confidence limits and p-values of the
significant miRNAs, derived from the backwards step procedure
for quantile normalized data.

The assumption of the Cox model is also tested with the results provided in
Table 6.21. The test indicate with statistical significance that the assumption
of the hazards being proportional is not violated.
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ρ χ2 p-value

miR.qzc -0.144 0.834 0.361

Table 6.21: Test of the proportional hazards assumption for each significant
miRNA in the model fit for quantile normalization, along with
a global test.

The Lasso regression was performed with λ1 = 6.74, while the elastic net regres-
sion used (λ1, λ2) = (6.62, 140). Not many miRNAs are found by the backwards
elimination or the Lasso, it is clearly the elastic net that finds the majority. It
should be noticed though that the HRs estimated by elastic net regression are
fairly close to 1.

miRNA Found by Uni+step Lasso Elastic

1 miR.qzc Uni+step, Lasso, Elastic 1.521 1.2035 1.0599
2 miR.mmd Lasso, Elastic 0.7917 0.9552
3 miR.wad Elastic 1.0193
4 miR.kzc Elastic 1.0114
5 miR.lyc Elastic 1.0106
6 miR.dbd Elastic 1.0091
7 miR.tdd Elastic 1.0028
8 miR.fed Elastic 0.9928

Table 6.22: Significant miRNAs found by the various methods on the ba-
sis of quantile normalization, first ordered by number of times
the given miRNA occurs for each method, and second by the
magnitude of HR.

6.2.5 Internal control

The third analysis is based on an internal control and it was this normalization
method that showed most signs of being the odd one out in the incidence anal-
yses. The result of the Kolmogorov-Smirnov test for this normalization method
is seen in Figure 6.17, the null hypothesis is rejected with a p-value < 0.00001
derived from the test statistic D+

n = 0.536.
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Figure 6.17: One-sample Kolmogorov-Smirnov test of the univariate p-
values for internal control normalization.

Under the p-tolerance criteria λ0 = 0.0362152 there were 25 miRNAs included
in the starting model of the step procedure. The three miRNAs of the final
model are summarized in Table 6.23.

miRNA HR CI0.95,low CI0.95,high p-value

miR.wad 8.450 1.550 46.080 0.014
miR.dzc 35.750 2.230 572.970 0.012
miR.vzc 0.010 0.000 0.350 0.010

Table 6.23: The hazard ratio, 95% confidence limits and p-values of the
significant miRNAs, derived from the backwards step procedure
for internal control normalized data.

Apparantly very extreme HRs are estimated, especially for miR-dzc and miR-
vzc. If these results were to be trusted then one increase in miR-dzc would
increase the hazard of dying by an 35.75 fold. On the other hand, by one unit
IQR Ct raise in miR-vzc the hazard of dying decreases by 1/0.01 = 100. From a
practical perspective this seems unreasonable and the wide confidence intervals
of these estimate stresses the large uncertainty connected with these results. The
propotional hazards test of the model in Table 6.24 shows no sign of violation,
either for the miRNAs individually or for the model as a whole. Table 6.25 lists
all miRNAs found in the backwards regression procedure, Lasso regression with
λ1 = 7.58 and regression with the elastic net penalty (λ1, λ2) = (6.57, 184), all
based on internal control normalization.
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ρ χ2 p-value

miR.wad 0.098 0.319 0.572
miR.dzc -0.124 0.692 0.405
miR.vzc 0.076 0.242 0.623
GLOBAL 2.145 0.543

Table 6.24: Test of the proportional hazards assumption for each signifi-
cant miRNA in the model fit for internal control normalization,
along with a global test.

miRNA Found by Uni+step Lasso Elastic

1 miR.dzc Uni+step, Elastic 35.74530 1.003
2 miR.wad Uni+step, Elastic 8.45097 1.006
3 miR.vzc Uni+step, Elastic 0.01318 1.001
4 miR.pjd Lasso, Elastic 1.146 1.017
5 miR.wed Lasso, Elastic 1.056 1.013
6 miR.lyc Elastic 1.012
7 miR.kyc Elastic 1.011
8 miR.uyc Elastic 1.009
9 miR.lmd Elastic 1.008
10 miR.tdd Elastic 1.007
11 miR.ddd Elastic 1.006
12 miR.kbd Elastic 1.006
13 miR.dad Elastic 1.005
14 miR.eed Elastic 1.005
15 miR.dbd Elastic 1.004
16 miR.gcd Elastic 1.003
17 miR.gyc Elastic 1.003
18 miR.hed Elastic 1.003
19 miR.kzc Elastic 1.003
20 miR.myc Elastic 1.002
21 miR.fud Elastic 1.001
22 miR.hyc Elastic 1.001
23 miR.vyc Elastic 1.000

Table 6.25: Significant miRNAs found by the various methods on the basis
of internal control normalization, first ordered by number of
times the given miRNA occurs for each method, and second by
the magnitude of HR.
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6.2.6 Mean

The analysis is repeated for the next normalization method which is the mean
normalization and as always the p-values are tested with a one-sided one-sample
Kolmogorov-Smirnov test. Here D+

n = 0.469 and the null hypothesis that the
cumulative distribution of the p-values is uniform is rejected with p-value <
0.00001.
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Figure 6.18: One-sample Kolmogorov-Smirnov test of the univariate p-
values for mean normalization.

25 miRNAs passed a tolerance of λ0 = 0.0586029, where the significant miRNAs
in the final model is found in Table 6.26. As opposed to the previous prognostic
analyses with other normalization methods, the number of miRNAs in the final
Cox proportional hazards model is noticable larger. The miR-vhd increases the
hazard of dying the most on one unit IQR Ct increase, i.e reduced expansion,
but also miR-ddd and miR-lmd raises the hazard, strangely enough with the
precise same quantity. The remaining miR-mmd, miR-myc and miR-zvd all
contribute to a decrease in the hazard of dying when their amount of miRNA
material is decreased. Actually miR-mmd was also chosen by the analysis based
on ranks.
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miRNA HR CI0.95,low CI0.95,high p-value

miR.mmd 0.280 0.120 0.650 0.003
miR.myc 0.180 0.050 0.620 0.007
miR.ddd 2.300 1.100 4.820 0.027
miR.zvd 0.240 0.080 0.700 0.009
miR.lmd 2.300 1.210 4.370 0.011
miR.vhd 11.260 2.790 45.390 <0.001

Table 6.26: The hazard ratio, 95% confidence limits and p-values of the
significant miRNAs, derived from the backwards step procedure
for mean normalized data.

The important test of proportional hazards assumption for the model is sum-
marized in Table 6.27. Generally speaking everything looks fine because the
global test rejects the alternative hypothesis, but miR-mmd is on a significance
level of 5% violating the proportional hazards assumption.

ρ χ2 p-value

miR.mmd -0.259 4.766 0.029
miR.myc -0.136 1.076 0.300
miR.ddd 0.131 0.788 0.375
miR.zvd -0.011 0.006 0.936
miR.lmd 0.068 0.311 0.577
miR.vhd 0.126 0.926 0.336
GLOBAL 5.012 0.542

Table 6.27: Test of the proportional hazards assumption for each significant
miRNA in the model fit for mean normalization, along with a
global test.

The analysis ends with an overview in Table 6.28 of the miRNAs found by the
various Cox regression techniques. The Lasso method penalized with λ1 = 6.04
and the elastic net with (λ1, λ2) = (5.79, 202).
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miRNA Found by Uni+step Lasso Elastic

1 miR.ddd Uni+step, Lasso, Elastic 2.3008 1.0067 1.0141
2 miR.lmd Uni+step, Lasso, Elastic 2.2998 1.0590 1.0168
3 miR.mmd Uni+step, Lasso, Elastic 0.2824 0.6954 0.9623
4 miR.zvd Uni+step, Lasso, Elastic 0.2406 0.9997 0.9748
5 miR.lyc Lasso, Elastic 1.0386 1.0192
6 miR.dzc Lasso, Elastic 1.0015 1.0105
7 miR.vhd Uni+step 11.2624
8 miR.myc Uni+step 0.1813
9 miR.wad Elastic 1.0166
10 miR.fud Elastic 1.0102
11 miR.kzc Elastic 1.0074
12 miR.tdd Elastic 1.0073
13 miR.dbd Elastic 1.0052
14 miR.uyc Elastic 1.0029
15 miR.fed Elastic 0.9971
16 miR.lld Elastic 0.9939
17 miR.nwd Elastic 0.9898
18 miR.wtd Elastic 0.9891
19 miR.vjd Elastic 0.9850

Table 6.28: Significant miRNAs found by the various methods on the ba-
sis of mean normalization, first ordered by number of times
the given miRNA occurs for each method, and second by the
magnitude of HR.

6.2.7 Mean-120

The mean-120 is the fifth and last normalization method performed on the
serum data regarding survival analysis of time from operation to death/end of
follow-up. So far none of the p-values derived from the univariate selection with
different normalization methods showed signs of being drawn at random from
a uniform distribution. This is neither the case for mean-120 as seen in Figure
6.19, the statistic D+

n = 0.518 is with statistical certainty rejecting the null
hypothesis with p-value < 0.00001 in a one-sample Kolmogorov-Smirnov test.
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Figure 6.19: One-sample Kolmogorov-Smirnov test of the univariate p-
values for mean-120 normalization.

IQR standardization was performed on the 15 eligible candidate miRNAs for
the starting model in the backwards elimination procedure. These were chosen
from having a p-value below the criteria λ0 = 0.0261484. The resulting model
from the backwards stepwise selection consisted of a single miRNA; miR-mmd
which was found in previous analyses as well. Table 6.29 gives the HR, 95%
confidence bands and the p-value for miR-mmd.

miRNA HR CI0.95,low CI0.95,high p-value

miR.mmd 0.580 0.410 0.820 0.002

Table 6.29: The hazard ratio, 95% confidence limits and p-values of the
significant miRNAs, derived from the backwards step procedure
for mean-120 normalized data.

The model indicates that if the IQR Ct level goes up one unit for this miRNA,
i.e. the miRNA expansion decreases, then the hazard of dying is decreased by a
1/0.58 = 1.72 fold. Furthermore, the assumption of proportional hazards seem
to hold for this model, which can be seen from Table 6.30.

ρ χ2 p-value

miR.mmd -0.037 0.048 0.826

Table 6.30: Test of the proportional hazards assumption for each significant
miRNA in the model fit for mean-120 normalization, along
with a global test.
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Finally the miRNAs found by Lasso regression with the penalyty factor λ1 =
9.33 and the elastic net regression with (λ1, λ2) = (8.4, 82.5) are provided in
Table 6.31. Here the list of significant miRNAs for predicting survival is quite
short compared to those of other normalization methods.

miRNA Found by Uni+step Lasso Elastic

1 miR.mmd Uni+step, Lasso, Elastic 0.5831 0.7655 0.9212
2 miR.lyc Elastic 1.0327
3 miR.tdd Elastic 1.0241
4 miR.wad Elastic 1.0123
5 miR.dzc Elastic 1.0033

Table 6.31: Significant miRNAs found by the various methods on the basis
of mean-120 normalization, first ordered by number of times
the given miRNA occurs for each method, and second by the
magnitude of HR.

This concludes the presentation of results derived from five different normaliza-
tion methods. However, Section 6.2.8 provides a recapitulation of all the results
in a more comparative manner, such that the greater overview is achieved.

6.2.8 Conclusion

This section is dedicated to summarize on the results regarding prognosis. The
analyses clearly suffered under the scarce number of samples available and sep-
aration of variables still being an issue for some of the normalization methods.
In the comparative study it was discouraging to see that all the shrinkage me-
thods fail to predict survival. Whether the reason for this is due to miRNAs
simply not being useful prognostic predictors or something else, is hard to say
for certain. To get an idea of this, simulation studies and similar analyses on
other data should be performed. The result of the comparative study did not
prevent analyses of serum data though, because there could still be some effects
in the miRNAs.

The pairs plot of the p-values derived from the univariate Cox model regres-
sion is seen in Figure 6.20. The internal normalization is clearly the method
with the least correlation to the others, both in terms of Pearson and Spear-
man coefficients. Worst case being between internal control and rank, where
the Pearson coefficient is practically zero. Between the four other normalization
methods, correlation seems fine which is reassuring.
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In the small plots, the x- and y-axis are once again the p-values plotted on
the logit scale for two methods, respectively. The red dotted lines separating
into four quadrants represents a p-value of 0.05, i.e. logit(0.05)=-2.944439. A
point in the 1st and 3rd quadrant means that the methods agree on the p-value
being higher than 0.05 or lower, respectively. In the 2nd quadrant the method
”on top” evaluates the p-value > 0.05 while the method ”on the right” says
< 0.05, and vice versa in the 4th quadrant.
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Figure 6.20: Pairs plot of the p-values obtained from the univariate Cox
model, for the different normalization methods.
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Method λ0 λ1,l λ1,e λ2,e

Rank 0.043114 3.146331 3.208828 154.634503
Quantile 0.050095 6.740118 6.615210 139.665515
Intctrl 0.036215 7.581442 6.574792 183.606733
Mean 0.058603 6.040598 5.789969 201.522153
Mean-120 0.026148 9.326694 8.400988 82.536880

Table 6.32: Optimal tuning parameters used in the shrinkage methods for
various normalization.

All the tuning parameters used for the various analyses are collected in Table
6.32. Overall the results derived from the five analyses of prognosis seemed
somewhat unstable, which was also the conclusion of the comparative study,
there is not much statistical evidence of miRNAs being able to predict the ex-
pected survival from pancreas operation. Even though the usefulness of miRNA
predictors are questionable, the most significant subset can still be pointed out.
Motivated by this, Table 6.33 have collected all the miRNAs found in the back-
wards elimination procedure based on the respective normalization methods.
Only miR-mmd is worth mentioning because it was found three times, which
seemingly on an IQR unit increase in Ct level reduces the hazard of dying. All
other miRNAs are only found in one analysis which is to unreliable, this could
be purely coincidence. The exact same conclusion is derived from the Lasso
regression results, collected in Table 6.34, only miR-mmd shows repeatedly sig-
nificance. Table 6.35 contains the miRNAs derived from using the elastic net
penalty in Cox regression, here the list is longer and the number of miRNAs
in common between different normalization methods are higher. The top-3 are
miR-wad, miR-tdd and miR-lyc which are found by all five analyses, but in gen-
eral not much weight is put on these because the HR estimates are very close
to 1, i.e. the effects are close to nothing.
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miRNA HRrank HRquan HRendo HRmean HR120 no

miR.mmd 0.78 0.79 0.70 0.77 4
miR.zvd 1.00 1
miR.wyc 1.40 1
miR.wed 1.06 1
miR.qzc 1.20 1
miR.pjd 1.15 1
miR.lyc 1.04 1
miR.lmd 1.06 1
miR.fed 0.89 1
miR.dzc 1.00 1
miR.ddd 1.01 1
miR.dbd 1.05 1
miR.bkd 0.91 1

Table 6.34: Overview of the significant miRNAs found by the univariate
selection + Lasso for different normalization methods, ordered
by the number in common.
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miRNA HRrank HRquan HRendo HRmean HR120 no

miR.wad 1.02 1.02 1.01 1.02 1.01 5
miR.tdd 1.02 1.00 1.01 1.01 1.02 5
miR.lyc 1.02 1.01 1.01 1.02 1.03 5
miR.mmd 0.96 0.96 0.96 0.92 4
miR.kzc 1.00 1.01 1.00 1.01 4
miR.dzc 1.01 1.00 1.01 1.00 4
miR.dbd 1.04 1.01 1.00 1.01 4
miR.uyc 1.01 1.01 1.00 3
miR.fed 0.97 0.99 1.00 3
miR.zvd 0.99 0.97 2
miR.wtd 0.98 0.99 2
miR.qzc 1.01 1.06 2
miR.nwd 0.99 0.99 2
miR.lmd 1.01 1.02 2
miR.hyc 1.00 1.00 2
miR.fud 1.00 1.01 2
miR.ddd 1.01 1.01 2
miR.zmd 0.99 1
miR.wyc 1.04 1
miR.wed 1.01 1
miR.vzc 1.00 1
miR.vyc 1.00 1
miR.vod 0.98 1
miR.vjd 0.98 1
miR.pjd 1.02 1
miR.myc 1.00 1
miR.lzc 1.01 1
miR.lld 0.99 1
miR.kyc 1.01 1
miR.kbd 1.01 1
miR.hed 1.00 1
miR.gyc 1.00 1
miR.gcd 1.00 1
miR.eed 1.00 1
miR.dad 1.00 1
miR.cae 0.98 1
miR.bkd 0.97 1

Table 6.35: Overview of the significant miRNAs found by the univariate
selection + elastic net for different normalization methods, or-
dered by the number in common.



Chapter 7

Discussion

7.1 Summary of the results

The initial explorative analysis of the serum data discovered distinct average
Ct levels between the pancreas cancer and healthy control samples, leading to
artificial separation between these groups due to confounding. This was a result
of poor DOE and remedies for avoiding confounding in miRNA experiments in
the future were provided. The main principles to keep in mind when designing
experiments are blocking, replication and randomization when reliable results
are to be obtained. If the data at hand does not come from a well planned and
executed experiment and nuisance factors tend to dominate the results, then
normalization showed to play a crucial role. The conducted simulation study
indicated that analysis based on ranks gave overall better prediction models
compared to those based on the raw Ct values, where the measure for compar-
ison was the deviance of the final model. However the study was limited in
many ways, e.g. considering only a binary outcome (cancer/healthy) and one
normalization method (out of five).
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The main objective in this thesis was to find two sets of miRNA containing
only a few miRNAs out the total 754. The first set consists of predictors of
incidence i.e. those miRNAs constituting model that can discriminate samples
into either the cancer or healthy group, with the number of misclassifications
being as low as possible. The second set is the predictors relating to survival
after pancreatic cancer operation, i.e. from looking at the increase or decrease
of these miRNA expansions, information about a patient’s hazard of dying is
provided. The objective is motivated by the difficulties existing today with early
and correct diagnostics of pancreatic cancer patients, and the lack of knowledge
concerning the probabilistic life duration. The ideal situation where the true
subset of miRNAs is found will hopefully lead to improves prognosis by for ex-
ample earlier diagnosis and treatment.

The incidence analyses are based on the logistic regression which is a mem-
ber of the GLM family, however due to fewer samples than covariates and the
clinical objective in mind, shrinkage methods were applied to reduce dimension-
ality. The initial comparative study based on ranks examined the performance
of the four shrinkage methods considered in this thesis; the univariate selection
in combination with backwards stepwise regression, Lasso regression, Ridge re-
gression and the näıve combination of the two called elastic net regression. The
results showed that all these methods are able to separate the cancer and healthy
patients from each other with high accuracy. Even though all regression tech-
niques are performing at an acceptable level, Ridge regression was omitted in
further analyses since it was not found relevant in this context because it does
not reduce the number of miRNAs, which from a clinical perspective is needed.

The five normalization methods dealt with in this thesis are; ranks, quantile,
internal control, mean and mean-120. There was strong evidence of the internal
control normalization being different than the other four since the correlation
with the other methods was fairly low. Analyses with different normalization
methods resulted in different suggestions to the miRNA set of interest. There
existed some overlaps and the miRNAs found in multiple analyses must be con-
sidered as those with the strongest signal value. Five miRNAs seemed to stand
out and the subset of incidence predictors was found to be miR-ecd, miR-tyc,
miR-cgd, miR-pdd and miR-lld.

Similar analyses were performed in the prognostic case, where the semi-parametric
Cox proportional hazards model was used. The comparative study of the shrink-
age methods did not present results as encouraging as the incidence case. The
linear predictor in the Cox model was on average shown to be insignificant for
all the shrinkage methods, leading to the conclusion that miRNAs are not good
predictors of survival in these data. In the prognostic analyses with five dif-
ferent normalization methods, only miR-mmd seemed to be found more than
once. It should be stressed that even though the signals in the miRNAs for these
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data were not that strong, it does not mean that the idea of miRNA expression
profiles functioning as prognostic indicators should be abandoned. Several lim-
itations and assumptions concerning the data and methods are definitely to be
taken into account, which is something that will be discussed in Section 7.2.

7.2 Validity of the results

It lies in the nature of a master thesis that certain restrictions must be made
due to the fixed time span, and of course this thesis is no exception. One lim-
itation is that the simulation and comparative studies are all based on rank
normalization, thus the results derived may not apply to the other normaliza-
tion methods. The ideal situation would be to see if all normalization methods
provide better prediction models compared to working with the raw values and
in the comparative studies to see if they are equally good/bad at predicting in-
cidence and prognosis. In the light of the results obtained from the comparative
study regarding prognosis, it would have been very informative with a small
simulation study were the truth is known to see if the methods possesses the
ability to predict survival from a subset of miRNAs.

The are two main reasons behind why the rank normalization was the method
to be examined in greater depth. When the large differences in the mean Ct
between the cancer and healthy samples was discovered, the idea of analyzing
the pattern instead was a very attractive alternative. This way each patient
becomes its own control and the general mean differences becomes less impor-
tant to the results. Another advantage of this normalization method was the
handling of missing values. The generic problem with missing values in GLM
is easily overcome by converting the missing values to ranks, hence there is no
need to exclude a proportion of the samples from an already scarce data set.
The backside of doing this is that the missing values will lie as a clot in the tail
of the rank distribution, which could have some influence on the results.

Other limitations are those given by the data and statistical methods. One
large issue is the few observations available which definitely had an impact on
the analyses and made the results in this thesis unstable. The miRNAs found
in each analysis could be quite different and by changing some of the tuning
parameters just a little showed how sensible the results were. This was also ex-
pressed by the width of the confidence intervals of the odds ratios and hazards
ratios, where the majority had a wide range. Although, the latter is probably
not only caused by the low number of samples, but also the artificial separation
in mean Ct that existed between the cancer/control groups, which easied the



118 Discussion

prediction of incidence. The normalization were supposed to prevent this from
having an effect, but the results revealed that especially internal normalization
did not level out all the mean Ct differences.

One of the main restrictions used throughout the thesis was the N/A fraction
allowed for each miRNA. Here it was fixed at about 10% which seemed rea-
sonable, but in principle this could be too low or high. It was however natural
to exclude the miRNAs with near 100% or 100% missing because here there is
strong evidence that the miRNA material is not present in the samples. The
choice of excluding many miRNAs based on this criteria was also motivated
by the p >> n problem, the multivariate model alone can not handle more
parameters than observations hence the dimensionality had to be reduced in
some way and this seemed logical to do in miRNA context. However, the fact
remains that even though only 10% missing measurements for the individual
miRNA was allowed, some missing values still remained in the data. This was
a problem in the analyses (except when using ranks) because GLM and Cox
proportional hazards model can not handle missing values, hence only complete
cases could be considered.

One way to handle missing values could have been to use imputation in the
form of replacing the N/As with appropriate values. Many possible imputation
strategies could be applied and since missing values are result of too high Ct
values, a simple approach could be to replace missing values with a random
number from some distribution e.g. the uniform between 35 and 40. By doing
this the number of samples is maintained for all normalization methods, thus
decreases the likelihood of overlooking important miRNAs. This is just a hy-
pothesis, the effect of imputing miRNA data is not known since this have not
been an area of examination. One other way to handle missing values is the
use of indicator variables, i.e. including a binary variable for each miRNA that
indicates presence/absence. This way it is possible to keep all the samples in
the analyses and to both estimate the effect of miRNAs can be measured and
the effect of one unit increase in Ct. To test whether the miRNA is significant
regarding the response and what kind of effect that is significant, can then be
seen from the p-values of the two mentioned effects.

The assumption of proportional hazards in the Cox model is important to the
prognosis. Here the cox.zph function of the survival package served as a tool
for testing this assumption using scaled Schoenfeld residuals. No signs of vio-
lation was detected in any of the prognostic analyses except for one case. To
further strengthen these results, other procedures for testing the proportional
hazards assumption could be performed. E.g. by generating time dependent co-
variates by creating interactions of the predictors and a function of survival time
and then include these interactions in the model. If any of the time dependent
covariates are significant then those predictors are not proportional.
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From a biological point of view, correlation between the miRNAs should be
expected and ideally models should account for this. The univariate selection
method plays a central role of this thesis since it works as a bottleneck, i.e.
is part of determining the set of miRNAs used in the other regression models.
This method does not consider correlation between miRNAs and the extent of
this problem is still unknown. Consider e.g. that one miRNA is strongly asso-
ciated with the outcome and other miRNAs are strongly correlated with this
specific miRNA. Then the univariate analysis might include some variables for
further analysis that should have been excluded, because they would not have
been showed significant had there been corrected for the strong miRNA variable.
So it should be kept in mind that some miRNAs left out for other correlated
miRNAs, potentially are strong predictors of incidence and prognosis.

Disregarding some of the mentioned limitations and taking into account the
initial challenges connected with the original data, the results derived seem
satisfying. It is very hard to say if the miRNA subsets obtained makes sense bi-
ologically or not and since this is still a relatively new research area the existing
literature is sparse, making it difficult to check if the results are in accordance.
One of the things uncovered by research though, is that serum samples are
more unstable compared to e.g. tissue or whole blood samples in terms of stor-
age, preparation and qrt-PCR, indicating that the basis for these results could
be improved. One of most valuable lessons learned from this thesis is how to
analyze these types of data, no one knows the best way to reach the objective
so it has in many ways been a pioneer assignment.

To validate the results, studies should be performed where the most signifi-
cant miRNAs found are measured on an independent sample. The validation
would be cheaper because only a small number of miRNAs are considered and
replicates can potentially be done to improve precision. If miRNAs are valid,
it implies that the statistical evidence is very strong and miRNA expression
profiles are one step closer to be accepted biomarkers applicable in the everyday
clinical routines for pancreas cancer. Section 7.3 suggests alternative methods
that could be applied in the analysis of miRNA data.

7.3 Alternative analyses approaches

The logistic regression model, Cox proportional hazards model and the four
shrinkage methods applied in this thesis, are only a small part of the possibil-
ities for analyzing high dimensional data. This section is dedicated to look at
some of the alternative models, which could be considered in future research in
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this area. Since the additional methods discussed here has not been examined
in depth, they will only be briefly described.

Cluster analysis is the task of assigning a set of samples into groups that share
similar properties, thus making it a candidate method in relation to incidence.
There exists many different clustering algorithms based on distances, distribu-
tions etc. and they could be applied to the the task of separating cancer cases
from the healthy subjects (maybe also looking at chronic pancreatitis cases as
an individual group). However, ways to handle the missing values best for this
analysis method should be considered [Wikipedia].

Another alternative method for dealing with high dimensional data, i.e. p >> n
situations, is called sparse discriminant analysis. It is a method which per-
forms linear discriminant analysis with a sparseness criterion imposed such that
classification, variable selection and dimension reduction is performed simulta-
neously. The fact that this method originates from the demand of a method
providing easy interpretation of covariates and dimension reduction of biological
and medical data, makes it an attractive alternative. As with the clustering,
missing values should be handled somehow [Clemmensen et al. 2011].

Other existing companion shrinkage methods are e.g. principal component anal-
ysis which performs rotation of the coordinate axes. The orthogonal transfor-
mation is done such that the first principal component (corresponding to the
first eigenvector) has the largest possible variance, that is accounts for as much
of the variability in the data as possible, and the second principle component
accounts for the second largest possible variance and so forth. Here the eigen-
values each represents a portion of the total variance and dimensionality of data
can be reduced by only considering the largest eigenvalues. Another advantage
is that the transformed variables becomes uncorrelated due to orthogonality, but
the price is that the variables have to be scaled before transformation and the
interpretation of the principle components is fuzzy. In some cases the first prin-
cipal component is just the mean of all covariates, which is not very insightful.
The largest drawback of using this approach is that it does not perform variable
selection as such, i.e. does not give a set of miRNAs but a set of components
instead, which is not clinically relevant.

An idea could be to perform regression on the principle components, this is
known as principal components regression - a technique considered in the pa-
per by Bøvelstad et al. [2007] with satisfying results in relation to survival.
Bøvelstad et al. [2007] however mentions that a drawback of this method is that
the first eigenvalues selected that accounts for as much variation in the gene
expressions as possible, might not be associated with patient survival. An ex-
tension to overcome this problem is in the article denoted supervised principal
components regression and it combines the univariate selection with principal
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components regression, which results in a bivariate tuning parameter.

While the logistic regression model seemed like an obvious choice of under-
lying model for predicting incidence, the Cox proportional hazards model is not
necessarily the best choice for the purpose of predicting survival of pancreatic
cancer patient on the basis of miRNA expression profiles. The attraction of
using the semi-parametric Cox model is that it does not assume any distribu-
tion for the underlying hazard, and keeping in mind that this biostatistical area
of research is relatively new, the ordinary Cox model is an excellent starting
point. However, had time allowed it, it could have been interesting to consider
some parametric survival model, e.g. the exponential model, Weibull model or
a log-logistic model. When an appropriate distribution have been specified, the
idea is then to let the parameters of that distribution depend on then covariates.
Whether this approach would have resulted in more interpretive results or not
remains unknown for now. Also the additive Aalen model could be a possibility,
where the coefficients influence the hazard additively instead of multiplicative.
The Aalen model could potentially fit these kind of data better than the Cox
model.
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Chapter 8

Conclusion

In conclusion this thesis contains analysis of real data coming from pancreatic
cancer patients and healthy controls, provided by Herlev Hospital. Subsets of
those miRNAs showing significant prediction association with incidence and
survival after operation respectively have been determined on the basis of five
different normalization methods and application of four shrinkage methods.

Results showed that normalizing miRNA data was of great importance. All
shrinkage methods could classify samples as cancer/healthy with few prediction
errors. Prediction of survival from miRNA expression profiles for these data re-
veal no clear signal, where too few samples available could be one of the reasons.
Section 8.1 gives short recommendations to persons working with and analyzing
miRNA data in the future.
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8.1 Recommendations

• If it is in any way possible to influence, then make sure that the com-
pany performing the sample analysis follow a comprehensive experimental
design plan that accounts for as much nuisance as possible. One option
could be to apply the two-staged blocking procedure suggested in Section
3.3.1, in order to avoid confounding.

• Normalize data to make samples more comparable in the analyses. Here
the internal normalization is not an advisable method since it has displayed
distinctive tendencies compared to other normalization methods.

• Base the relevant subset of miRNA predictors found in multiple normal-
ization methods, i.e. choose only those found in more than one analysis.

• Look at the fraction of missing values in each miRNA and exclude those
with nearly 100% or 100% (at least). This is a quick way to get rid of use-
less variables and reduce dimensionality, however the criteria for exclusion
is not evidential so the fraction allowed is up for discussion. However, the
use of imputation or indicator variables are alternatives worth mentioning.

• Use the univariate selection, Lasso or näıve elastic net method as initial
screening methods to narrow down to a few relevant miRNAs. When
suitable, supplement with the backwards stepwise elimination procedure.

• Estimate various tuning parameters by log-likelihood cross-validation.

• Validate on independent sample data set.

8.2 Future research

This concludes the work of this thesis and as already pointed out in the dis-
cussion, there are numerous ways to extent the analyses. The next logical step
though must be to perform validation studies with a focus on those miRNAs
derived on the basis of these analyses from incidence and prognosis, along with
others selected from the literature. The experiments should be conducted in a
reasonable manner such that the Ct measurements are not confounded with e.g.
diagnose. The purpose would then be to analyze these selected miRNAs and
see if some of the same effects are observed, which would indicate that there
truly is a predictive signal in the given miRNAs.
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More simulation studies could be performed to examine miRNA data in even
greater depth, such that the understanding of normalization is further improved.
Since missing values and lack of power seems to be a consistent problem in these
kind of data, imputation seems like an important research topic to explore fur-
ther.
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A.1 Comparative study

A.1.1 Incidence (Section 6.1.1)

k λ0 λ1,l λ2,r λ1,e λ2,e AUCu AUCl AUCr AUCe

1 8.774e-04 53.5514 1642.3982 53.5827 1642.3936 0.8680 0.9545 0.9429 0.9342
2 2.755e-04 40.9662 654.1647 40.7199 654.1218 0.8549 0.9130 0.8946 0.9120
3 5.918e-05 38.0194 1820.0552 37.5188 1820.0538 0.8866 0.9688 0.9499 0.9679
4 1.720e-05 25.1196 1849.7227 25.2451 1849.7410 0.8781 0.9518 0.9083 0.9272
5 3.377e-05 50.7226 1425.1280 50.5976 1425.1261 0.8100 0.8781 0.8414 0.8578
6 3.275e-05 36.4051 1901.4472 36.3765 1901.4549 0.8592 0.9518 0.9367 0.9234
7 7.338e-05 23.2032 620.7596 23.2655 620.7544 0.9220 0.9631 0.9490 0.9641
8 6.103e-04 25.7415 1386.1711 25.7415 1386.1711 0.9008 0.9414 0.9017 0.9244
9 2.963e-04 24.1053 692.6669 24.1053 692.6668 0.9036 0.9064 0.9130 0.9187
10 3.600e-04 22.7110 1049.0769 21.7111 1049.0648 0.8771 0.9159 0.9026 0.9121
11 2.950e-04 40.3712 2160.9045 40.4054 2160.8991 0.9480 0.9631 0.9594 0.9490
12 1.028e-03 41.5700 1267.9067 40.5600 1267.8443 0.9716 0.9735 0.9527 0.9698
13 4.601e-04 43.1945 1270.5923 42.1670 1270.6798 0.9062 0.9188 0.9072 0.9110
14 4.291e-04 33.5807 1625.3417 33.5729 1625.3413 0.9623 0.9642 0.9487 0.9594
15 2.253e-03 22.7765 1937.6023 23.2896 1937.5829 0.9357 0.9102 0.9140 0.9149
16 3.039e-04 37.6742 1260.1835 36.6742 1260.1817 0.8980 0.9304 0.9246 0.9304
17 1.280e-04 41.0392 819.3059 40.9145 819.2967 0.8715 0.8904 0.8979 0.9026
18 2.991e-05 18.0378 1114.2971 17.9128 1114.2967 0.8521 0.9301 0.9263 0.9206
19 4.667e-04 45.9801 1219.3419 46.0425 1219.3445 0.8733 0.9139 0.9226 0.9323
20 1.645e-04 37.0367 815.2621 36.7868 815.2688 0.9083 0.8913 0.8516 0.8705
21 2.926e-04 37.0643 739.3318 37.3156 739.3237 0.8980 0.9159 0.9130 0.9333
22 3.933e-05 19.9186 1387.2900 19.9342 1387.2901 0.7921 0.9282 0.9045 0.9216
23 3.740e-05 25.4120 890.6915 25.1620 890.6892 0.8109 0.9400 0.8907 0.9081
24 2.997e-05 11.2751 1972.7970 11.2751 1972.7970 0.8641 0.9294 0.8859 0.8907
25 3.260e-05 58.9925 1722.8333 57.9870 1722.8243 0.8280 0.9159 0.8781 0.9017
26 2.880e-04 41.1541 969.2919 41.1541 969.2919 0.8965 0.9348 0.9026 0.9253
27 2.374e-05 49.4670 2213.1188 49.9671 2213.1214 0.8646 0.9188 0.8897 0.8772
28 2.959e-04 37.4956 3433.9514 37.5269 3433.9516 0.9509 0.9527 0.9461 0.9442
29 9.805e-04 27.5024 1805.2122 26.9936 1805.2363 0.9140 0.9716 0.9556 0.9546
30 3.138e-05 53.7316 1140.2854 53.9817 1140.3143 0.8182 0.9449 0.9101 0.9294
31 5.936e-04 34.0179 1342.9172 34.0179 1342.9172 0.8994 0.9371 0.9294 0.9294
32 2.688e-03 37.2116 2305.4401 37.3366 2305.4421 0.8979 0.9546 0.9461 0.9357
33 9.746e-05 31.3283 1522.6258 31.0787 1522.5970 0.8710 0.9036 0.8573 0.8677
34 2.257e-04 38.5652 1420.6371 37.5655 1420.6125 0.8956 0.9263 0.9197 0.9197
35 1.212e-03 29.2162 1318.4135 29.5934 1318.7363 0.9206 0.9263 0.9216 0.9253
36 1.834e-03 8.3979 419.8538 8.4604 419.8541 0.8690 0.9110 0.9081 0.9207
37 1.253e-04 35.4584 760.1849 35.9537 760.1167 0.9304 0.9565 0.9188 0.9574
38 6.686e-04 45.5329 1625.3881 45.4069 1625.3704 0.9518 0.9641 0.9471 0.9471
39 2.699e-04 49.3303 687.4877 48.8304 687.4789 0.8790 0.9253 0.9168 0.9301
40 1.415e-03 38.0217 1884.1752 37.4914 1884.1122 0.9521 0.9574 0.9439 0.9391
41 6.757e-04 27.6849 985.3906 28.6846 985.4140 0.9357 0.9272 0.9017 0.9225
42 2.124e-03 55.9660 969.6496 54.9780 969.7248 0.9386 0.9896 0.9556 0.9830
43 2.724e-04 31.8524 1003.6313 31.8524 1003.6313 0.8998 0.9575 0.9187 0.9527
44 1.165e-03 48.7040 2073.0089 48.7001 2073.0089 0.9691 0.9807 0.9642 0.9758
45 1.171e-03 48.9879 1460.1066 49.2375 1460.1212 0.8809 0.9499 0.9291 0.9527
46 1.741e-04 57.4852 2236.3928 57.4227 2236.3918 0.8738 0.9622 0.9650 0.9575
47 3.532e-04 31.8487 1140.7327 31.8331 1140.7324 0.9112 0.9698 0.9603 0.9641
48 1.500e-03 37.5002 971.7556 37.5588 971.7773 0.8526 0.9253 0.9036 0.9045
49 1.139e-03 26.7586 1840.4409 27.0086 1840.4369 0.9178 0.9487 0.9352 0.9429
50 2.968e-04 38.2522 1754.8856 38.2679 1754.8858 0.8866 0.9414 0.9301 0.9319

Table A.1: Information about the prediction performance for the four
shrinkage methods, on the basis of AUC, for each iterative step.
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A.1.2 Prognosis (Section 6.2.2)

k λ0 λ1,l λ2,r λ1,e λ2,e PIu PIl PIr PIe

1 0.1286527 46.2511 10724.8107 46.2667 10724.8108 0.10333 0.11417 0.05068 0.087978
2 0.0833751 36.4178 3315.1176 36.2928 3315.1156 0.11526 0.11526 0.08885 0.105675
3 0.0611998 19.0303 8958.4754 18.0328 8958.3434 0.17811 0.10616 0.18235 0.173852
4 0.0921277 40.7142 1085.8926 40.6356 1085.8890 0.13572 0.34708 0.09530 0.347080
5 0.0698212 22.3364 1139.6223 22.0864 1139.6225 0.19091 0.43785 0.29037 0.320605
6 0.0452531 9.7688 818.8688 10.0187 818.8720 0.80653 0.63117 0.64888 0.634079
7 0.0324278 34.8309 2037.7888 35.3308 2037.7495 0.70996 0.92204 0.71423 0.903323
8 0.0362801 57.4236 7053.1278 57.6731 7053.0961 0.99021 0.66153 0.73275 0.661585
9 0.0541010 52.0258 98.3074 51.2408 97.6880 0.94595 1.00000 0.86456 1.000000
10 0.0403136 65.3131 5618.2196 65.8131 5618.2225 0.76146 0.58323 0.65794 0.886059
11 0.2140383 18.1995 853.9827 18.2151 853.9820 0.43520 0.55981 0.32337 0.149237
12 0.0768926 20.6095 4815.1456 20.8595 4815.1455 0.08730 0.41970 0.19761 0.195799
13 0.0411608 24.2508 1027.6267 24.2518 1027.6269 0.26537 0.29264 0.20940 0.225576
14 0.0819694 8.7142 847.7342 8.7454 847.7343 0.82824 0.91199 0.55181 0.583458
15 0.0096785 30.5610 530.5955 30.5688 530.5958 0.33546 0.07260 0.23784 0.089732
16 0.2471353 43.7350 10722.4002 43.6721 10722.3986 0.03981 0.08832 0.02328 0.067574
17 0.0729057 45.9730 8026.8754 45.7230 8026.8714 0.94207 0.94207 0.57884 0.618771
18 0.0008356 6.8788 63.2922 6.3851 63.3754 0.07518 0.09244 0.08731 0.092608
19 0.0093521 10.5353 2665.4744 10.5392 2665.4744 0.17888 0.12028 0.33220 0.341426
20 0.0193671 39.1050 865.8369 39.0425 865.8362 0.49133 0.75182 0.82511 0.815383
21 0.0556403 19.8991 104.6872 20.3987 104.6523 0.09167 1.00000 0.07353 1.000000
22 0.0580279 130.0868 8633.1012 131.0886 8633.1020 0.65041 1.00000 0.46336 1.000000
23 0.1379370 16.1542 3782.7775 16.1230 3782.7775 0.72047 0.72517 0.19982 0.180486
24 0.0486893 3.5667 9.4786 3.8830 9.8719 0.17568 0.17568 0.12198 0.139544
25 0.0430564 26.2513 1981.7145 26.3139 1981.7175 0.54584 0.76831 0.81018 0.705083
26 0.1074816 29.1224 7174.2840 29.6236 7174.2786 0.22961 0.54993 0.28186 0.220277
27 0.0787455 11.8242 448.2454 11.9492 448.2453 0.09258 0.03094 0.00650 0.009887
28 0.1013464 11.9084 335.9648 11.4073 335.9875 0.79463 0.79463 0.74899 0.920940
29 0.0425903 69.5083 1134.9101 69.5078 1134.9101 0.60552 1.00000 0.22484 1.000000
30 0.0881069 84.5844 4056.7054 84.6158 4056.7011 0.55861 1.00000 0.21261 1.000000
31 0.0751003 3.8268 37.8012 4.7654 38.1463 0.09058 0.10526 0.09165 0.104306
32 0.0238931 36.8177 2754.7916 36.9427 2754.7921 0.52544 0.89481 0.92993 0.928850
33 0.0320529 24.3265 184.6120 24.2664 184.6290 0.26683 0.45422 0.64203 0.393819
34 0.0282670 40.5684 1244.0578 39.5681 1243.9675 0.83991 0.89476 0.84224 0.846681
35 0.0388792 18.0435 256.5800 18.0747 256.5813 0.50089 0.50928 0.45830 0.495259
36 0.1283426 10.2376 96.3112 10.2981 96.3270 0.50443 0.77965 0.75728 0.726351
37 0.0932731 47.0167 4446.7400 47.1417 4446.7423 0.36413 0.19310 0.26990 0.224076
38 0.1313764 28.1610 10171.3871 28.0360 10171.3868 0.43902 0.08817 0.02636 0.014090
39 0.0157107 10.8859 470.4892 10.7609 470.4870 1.00000 1.00000 0.06392 1.000000
40 0.0561885 6.5597 258.0332 5.5627 258.1101 0.05694 0.05694 0.04414 0.039938
41 0.1796949 19.8159 255.0765 19.7211 255.1579 1.00000 1.00000 0.04314 1.000000
42 0.0290591 22.8143 3560.7551 22.7513 3560.7546 0.88498 0.97752 0.84234 0.830515
43 0.0642597 29.0997 1476.4374 28.0994 1476.4277 0.61177 0.56502 0.11716 0.348633
44 0.1012761 12.0760 4337.1762 12.0760 4337.1762 0.89897 0.92785 0.57032 0.546598
45 0.0206395 4.9463 439.1741 4.9307 439.1741 0.22941 0.42349 0.70895 0.702836
46 0.0443901 30.5258 2601.7212 30.5572 2601.7202 0.89342 0.39226 0.25507 0.283833
47 0.1161644 47.1324 6419.3298 47.3822 6419.3420 0.33883 0.06138 0.04523 0.020006
48 0.0376087 4.3258 88.9790 4.3258 88.9790 0.99527 0.26099 0.42395 0.495591
49 0.0087852 6.1625 72.2103 6.4117 72.2299 0.72960 0.70838 0.99275 0.921635
50 0.0149016 35.6738 3243.3028 35.5489 3243.2972 0.66325 0.63121 0.57420 0.589994

Table A.2: Information about the prediction performance for the four
shrinkage methods, on the basis of likelihood ratio test, for each
iterative step.
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