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Summary

This thesis deals with statistical methods and their applications for describing
diabetes-related morbidity and cause-specific mortality in the Nordic childhood
cancer survivors. The purpose in the study is to analyze these outcomes in the
survivors compared to the general population both separately and jointly by
using multi-state models.

The data is provided by a Nordic childhood cancer study, the Adult Life after
Childhood Cancer in Scandinavia (ALiCCS). It encompasses information about
24936 childhood cancer survivors who are diagnosed during 1943 to 2008 in
Denmark and Sweden and are matched with 124663 controls on gender and
date of birth.

In order to study statistical methods for analyzing the morbidity and mortality
outcomes, the performing process is divided into two parts. In the first part of
the analysis the standard two-state models are considered separately for each
outcome whereas in the second part of the analysis more advanced multi-state
models are constructed for describing the morbidity and mortality outcomes
jointly. Both analyses are based on the ordinary as well as extended Cox models.
The obtained results from the analyses are summarized and discussed.

Both the standard two-state models and multi-state models have shown some
similar results in the univariate analyses. These models have revealed that the
childhood cancer survivors are associated with higher risk of experiencing both
morbidity and mortality outcome when compared to the general population. In
addition to this, multi-state analysis has shown that the childhood cancer sur-
vivors were more likely to die if they have developed diabetes than the other way



ii

around. Furthermore, it is found that the occurrence of diabetes has increased
the risk of death in the study participants.



Resumé

Dette kandidatspeciale omhandler de statistiske metoder og deres anvendelser
i analysen af morbiditetsudfaldet diabetes og mortalitetsudfald hos nordiske
børnecancer-overlevere. Form̊alet med dette studie er at undersøge udfaldene
hos overlevere sammenlignet med den generelle population b̊ade separat ved
hjælp af ”two-state” modeller og fælles ved hjælp af ”multi-state” modeller.

Data er leveret af et nordisk børnecancer studie, the Adult Life after Childhood
Cancer in Scandinavia (ALiCCS). Dette omfatter information om 24936 over-
levere af børnecancer, som er diagnosisteret i løbet af 1943-2008 og er blevet
matchet med 124663 kontroller p̊a køn og alder.

For at studere de statistiske metoder i analysen af morbiditets- og mortalitet-
sudfald er arbejdsprocessen opdelt i to dele. I den første del af analysen er de
almindelige ”two-state” modeller opstillet separat for hvert udfald. Den anden
del af analysen omfatter mere avancerede multi-state modeller som er opbygget
for at beskrive morbiditets- og mortalitetsudfaldet fælles. Begge analyser er
baseret p̊a ordinære s̊avel som udvidede Cox modeller.

B̊ade ”two-state” og ”multi-state” modeller har vist nogenlunde de samme resul-
tater i de univariate analyser. Disse modeller har vist, at overlevere af børnecan-
cer er associeret med en højere risiko for morbiditet og mortalitet sammenlignet
med den generelle population. Derudover viste ”multi-state” modellerne, at
overlevere af børnecancer var mere tilbøjelige til at dø, hvis de havde udviklet
diabetes. Endvidere har det vist sig at forekomsten af diabetes har forøget
dødelighedsrisikoen hos studie populationen.
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Acronym Table

Acronym Term

ALiCCS the Adult Life after Childhood Cancer in Scandinavia
CCS Childhood cancer survivors
CCSS Childhood cancer survivor study
CNS Central nervous system
ALL Acute lymphoblastic leukemia
CPH Cox proportional hazards
HR Hazard ratio
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Chapter 1

Introduction

The development of effective treatments for childhood cancer has resulted in al-
most 80% affected children and adolescents to become long-term survivors [39].
Consequently, the improvement in the curative therapies has been accompanied
by a variety of long-term sequelae, such as impairment of growth and develop-
ment, reproductive difficulties, chronic late morbidity, second cancers, increased
mortality and psychosocial and familial problems [47].

Most side effects of cancer treatments occur during or just after treatment and
disappear a short time later, whereas long-term late effects do not become clin-
ically apparent until decades after completion of cancer treatment. Research
has shown that a high burden of morbidity among childhood cancer survivors is
contributed by late effects, with about two-thirds developing at least one chronic
health condition and at least one-third experiencing severe or life-threatening
complications during adulthood [70][19][39][26].

Most late effects are caused by cancer treatments such as chemotherapy, radia-
tion therapy and bone marrow/stem cell transplantation. The risk of developing
late effects depends on several factors as; the type and the location of cancer,
the area of the body treated, the type and dose of treatment, the child’s age
at diagnosis and treatment, the child’s gender, genetics and family history, and
whether other health problems existed before the cancer diagnosis [63]. The
underlying principle of cancer treatments is to destroy fast-growing cells, such
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as cancer cells. Drugs used in the chemotherapy interferes the process of cell
division by damaging proteins involved or DNA itself, causing the cancer cells
to die. In a child normal healthy cells in the body grow and divide quickly, too.
These cells can be attacked by drugs used in the therapy and can be damaged
drastically. Radiation therapy, on the other hand, uses high-energy rays to kill
fast-growing cells. As with chemotherapy, radiation therapy can damage normal
heathy cells along with the cancer cells and cause late effects [53].

Examples of late effects of childhood cancer treatment include cardiomyopathy,
diabetes, hemorrhage, hypertension as the most important. The main late effect
focused in this thesis is diabetes. It is reported that childhood cancer survivors
of Acute lymphoblastic leukemia (ALL) have an increased prevalence of obesity
and insulin resistance and therefore may be at risk for experiencing diabetes
[71][27]. The disease is considered as being a metabolic syndrome, which is
highly associated with a increased risk of cardiovascular events and mortality.
There exist little information about long-term cardiovascular outcomes in the
existing literature, however, an analysis of data from a Childhood Cancer Sur-
vivor Study has shown that the standardized mortality ratio for cardiac-related
deaths was 8.2 [95% CI, 6.4-10.4] among long-term survivors of childhood cancer
[31][2].

Although the need for long-term follow-up of childhood cancer survivors are
well recognized, the study of long-term morbidity is still relatively new. This
phenomenon is stated by a childhood cancer survivor as: ”We are kind of an
unknown element of society.” (Christy, 2009)[69]. It is of importance to ad-
vance knowledge about the morbidity that follows the treatment of childhood
cancer and its contribution to early mortality. This initiative is taken by a
Nordic childhood cancer study, the Adult Life after Childhood Cancer in Scan-
dinavia (ALiCCS) which utilizes resources including investigation of data from
population-based registries and large-scale cohort studies. The main purpose is
to compare the morbidity-specific incidence and cause specific mortality of the
childhood cancer cohort to age- and gender-matched general population cohort.
Due to its unique and high quality data ALiCCS will provide a better under-
standing of the occurrence and risks for late cancer treatment-related effects.

Survival analysis is the most appropriated statistical analysis technique used
for describing time to event data. The event is typically death, but the term
is also used for other events, like the occurrence of a disease. Traditionally, it
is assumed that only a single event occurs for each subject, however, multiple
events relax that assumption. In the illness-death process, often more than one
type of event is involved.

The standard approach to analyze late effects is to consider morbidity and mor-
tality outcomes separately by means of survival analysis and the Cox Propor-
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tional Hazards (CPH) model. One concern, however, is that the intermediate
event, occurrence of diabetes, may significantly change the risk of the event of
interest (death) to occur. Often, one is also interested in what happens after oc-
currence of the intermediate event. The main objective of this thesis is to study
statistical methods for describing the morbidity outcome, diabetes and cause
specific mortality jointly rather than separately, and investigate if this yields
different results and new insight when compared to the traditional analysis of
late effects. Based on the extended Cox model, the event history data analysis
is performed using multi-state models. The significance of the models are tested
in the statistical computing program R version 2.13.1 with the threshold for
statistical significance α = 5%. An estimate is said to be statistically significant
if the p -value of the estimate is less than 5%.

The thesis consists of seven chapters. The present chapter (Chapter 1) gives an
introduction to the issue. Chapter 2 describes the content of the data provided
by ALiCCS and introduces exclusion criteria that is applied to the data. Chapter
3 presents a descriptive analysis of subject characteristics of the cohort and
the crude estimates of the mortality and morbidity rates. Chapter 4 gives an
overview of the statistical theory applied in the analyses. An introduction to
the standard two-state survival analysis based on the Cox Proportional Hazards
model is presented followed by an overview of more complicated multi-state
analysis. The results from the two-state analysis obtained by applying presented
statistical methods are gathered in Chapter 5 and the results from the multi-
state analysis are given in Chapter 6. A conclusion and a discussion of the
obtained results are presented in Chapter 7. All relevant figures and codes are
appended in Appendix B and C, respectively.
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Chapter 2

Study cohort

In this chapter the content of the data provided by ALiCCS is described. An
introduction to the data followed by exclusion criteria that is applied to the
data is introduced and illustrated by figures. The content of the final data is
summarized in a table.

The study is based on the data obtained from a Nordic childhood cancer study,
the Adult Life after Childhood Cancer in Scandinavia (ALiCCS) which was
established at the end of 2009. The participating parties in the research project
consist of Danish Cancer Society Research Center, Aarhus Universitethospital,
Swedish Cancer Registry, Skaane Univesity Hospital, Cancer Registry of Norway,
Finish Cancer Registry, Turku University Hospital, Icelandic Cancer Registry
and Lund University [48].

For the research project, a complete, population-based series of children and
adolescents in the Nordic countries (Denmark and Sweden) in whom cancer
was diagnosed during the period 1943 to 2008 is established. Some clinical
case-control studies of childhood cancer survivors (CCS), nested in the cohort
is then set up in order to investigate late effects and its treatments in CCS.
The cohort study is conducted to compare the morbidity-specific incidence and
cause-specific mortality of the childhood cancer cohort to the general popula-
tion cohort. CCS are identified and followed-up individually in national register.
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Follow-up of CCS are achieved through the civil registration systems and infor-
mation on subsequent disease is obtained by using large-scale record linkage
techniques with national outcome registers. Registration of cancer diagnoses is
obtained from Cancer Registries, registration of vital status is obtained from
Civil Registries and registration of diagnosis types is obtained from National
Board of Health [47].

The data set used in this thesis consists of two sub data sets; one collected in
Sweden and the other in Denmark. It encompasses information about 149599
study participants from both countries. The cohort of childhood cancer cases
is established with a combined comparison cohort consisting of 124663 controls
taken at random from the general population of Denmark and Sweden. The
study comprises 24936 childhood cancer survivors, of whom 9859 are diagnosed
in Denmark during the period 1943 to 2008 and 15077 are diagnosed in Sweden
during the period 1958 to 2008.

In order to ensure that exposed and unexposed to cancer are similar in variables
that might confound a relationship that is being studied, each child exposed
to cancer is matched with 5 unexposed participants from the study cohort.
Unexposed were matched on characteristics as gender and date of birth (within
1 year). By means of matching it is ensured that the difference between exposed
and unexposed are not a result of differences in the matching variables. Thus,
comparison of exposed and unexposed can be done knowing that the effect of
these variables are automatically adjusted for.

2.1 Data description

The type of late effects initially selected for this cohort study is cardiovascular
and pulmonary diseases such as diabetes, cardiomyopathy, infarct, hypertension
and hemorrhage. However, due to time limitation the analysis is restricted
to investigate only the effect of occurrence of diabetes. The data set holds
information about a specific id number, gender, date of birth, date of diagnosis,
type of the diagnosis, status, last date of follow-up, date of different late effects
and country. The variable status describes the different person civil registration
status code given in Table 2.1 [65].

In order to perform a survival analysis a censoring variable must be defined by
an indicator; 1 for the subjects that experience the event of interest and 0 for
the subjects that are censored. A study participant is said to be censored if
the person is lost to follow-up during the observation period or the person has
still not experienced any event at the end of the study. The event of interest in
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Denmark Sweden Description
01 1 registered with residence in Danish/Swedish popula-

tion register.
60 - changed civil registration number by amendment of

date of birth and gender.
70 - disappeared
80 8 emigrated
90 9 dead (dead or dead as emigrated or disappeared)

Table 2.1: Person civil registration codes for Denmark and Sweden.

this study can be specified as experiencing diabetes and being dead with and
without experiencing diabetes, these are competing events. A status variable
for the event of interest death is formed by labeling the status codes 90 and 9

in Table 2.1 as 1 and others as 0 for censoring. For the other events of interest,
a status variable is similarly generated and added in the data set.

Different time scales such as duration, calendar time or age can be used for
survival analysis. However, age is chosen to be the time scale in this analysis.
Thus the patients are started observation at whatever age they are on the date
of diagnosis, i.e. enter the risk set. For each event of interest age at entry and
age at exit of the study is figured out by using the given dates in the data
set. For some exposed the diagnosis is registered before their date of birth and
thus negative age-entry values are recorded. In order to solve this problem,
the negative values are set to zeros. Since the unexposed cohort consists of
participants that are not diagnosed cancer at inclusion, their age at diagnosis
do not exist. In order to make an appropriate analysis, the age of the unexposed
at diagnosis is set to the average age of the exposed at diagnosis.

2.1.1 Exclusion Criteria

In this study some exclusion criteria are applied to the data. These criteria
provide requirements as to who may or may not participate in the study. It is
required that the event of interest occurs during the follow-up time or possibly
later and not before study start. Furthermore, the study is considered to be
progressive meaning that all events occur in consecutive order. The observation
period starts with diagnosing cancer and ends by occurrence of event of interest
(death), censoring or end of follow-up time. An illustration of some possible
event observations for the cohort from Denmark is depicted in Figure 2.1.

Each line in the figure runs from the entry to follow-up until either death or
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Figure 2.1: An illustration of follow-up experience of childhood cancer survivors.
The registration of diabetes in Denmark starts in 1977 which is highlighted with
a dashed line.

censoring. It may be clarified here that the registration of diabetes cases in
Denmark is started in January 1, 1977 and in Sweden started in January 1,
1984. This means that even if a subject has had diabetes before these dates, the
event, diabetes is first registered after it is really occurred. Consequently, age
at diagnosis for subjects diagnosed before start of diabetes registration cannot
be chosen as age at entry into the study, since the actual study starts in 1977
for subjects from Denmark and in 1984 for subjects from Sweden. As it is seen
in Figure 2.1, subjects that end the study before start of diabetes registration,
cannot be included in the study, here subject 3. If a participant experiences
diabetes before diagnosis registration which is the case for subject 6 in the
figure, the person is excluded from the study as well.

Figure 2.2 demonstrates how the study-entry of subjects that are diagnosed be-
fore start of diabetes registration in Denmark, is handled. Age of these subjects
are figured out for 1977 and considered as their age at entry into the study. For
subjects diagnosed after 1977, their age at diagnosis is considered to be their age
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Figure 2.2: A demonstration of how study-entry of subjects collected from Den-
mark is handled.

at entry. This procedure is also applied to subjects from Sweden with diabetes
registration started in 1984.

As cancer is detected and treated, some of the side treatment effects can occur
and disappear within 1 year after diagnosis [75]. These type of effects should be
excluded from the study so that late effects are the only risk factors left in the
analysis. For this purpose an additional year is added to the age at entry. This
is also illustrated in Figure 2.2.

The application of the exclusion criteria on the data set is shown in a flowchart
in Figure 2.3. The criteria given in figure outline who may be considered for
the study and who is excluded from consideration. As mentioned before, the
process is considered to be progressive so that the occurrence of diabetes can
only happen after cancer diagnosis. It appears in the figure that 40 childhood
cancer survivors have had diabetes before registration of cancer and therefore
they are excluded from the study. It is also seen that 5109 exposed that is
diagnosed before diabetes registration and has an exit date before 1977 or 1984
is excluded from the study. The final cohort consists of 142426 participants of
whom 19776 are exposed and 122650 are unexposed.

After these exclusions the final data set is constructed including only the relevant
variables for the analysis. An overview of the variables divided in 3 categories is
visualized in Figure 2.4. Gender, age at diagnosis, calendar year at diagnosis and
country are listed as the demographical variables. The category denoted cohort
includes groups consisting of exposed and unexposed and the final category,
event of interest includes the events and their corresponding variables status,
age at entry and age at exit.
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Figure 2.3: A flowchart showing the order and the number of exclusions applied
on the data set.
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Figure 2.4: An overview of all the relevant variables included in the final data
set.



Chapter 3

Descriptive Data Analysis

This chapter presents a descriptive analysis of subject characteristics of the
ALLiCS childhood cancer survivor cohort. The results of the analysis are il-
lustrated by tables and figures. Overall crude estimates of rates are given as a
measure of risk of mortality and morbidity outcome in the follow-up period. Fi-
nally, the crude estimates of cumulative incidence of outcomes in the childhood
cancer survivors are presented and compared to the general population.

The final data set used in the analysis consists of 142481 eligible subjects, whom
have been followed during the years January 1943 to January 2010. Table 3.1
provides subject characteristics of the 19781 exposed and 122700 unexposed to
childhood cancer included in the cohort study. As a result of the matching,
exposed and unexposed are similar with regard to gender and age at diagnosis.

As it appears in the table, 39% of exposed is collected from Denmark, whereas
61% is collected from Sweden. There is almost a similar distribution of unex-
posed regarding to the countries. Since the data from Sweden consists of a large
sample size, the cohort from Sweden represents a major part of the total. The
distribution of the gender is fairly equal in the cohort, but a slight overweight
of boys is distinct in both exposed and unexposed; 54% of exposed and 55% of
unexposed are boys. As it is mentioned in the previous chapter, age of unex-
posed at diagnosis is set to the average age of exposed at diagnosis. The average
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age of exposed at diagnosis is approximately 10 for both countries. Therefore,
the distribution of age at diagnosis is well divided among exposed, whereas the
contribution of age of unexposed at diagnosis is only given for one interval in
the total. Nearly 30% of exposed has an age in the interval [0-5] and 32% of
them has an age in the interval [15-20]. The distribution of exposed does not
seem to differ significantly regarding to age groups [5-10] and [10-15].

Exposed % Unexposed % Total (%)
Number 19781 13.88 122700 86.12 142481
Country
Denmark 7699 38.92 48000 39.12 55699 (39.09)
Sweden 12082 61.08 74700 60.88 86782 (60.91)
Gender
boy 10661 53.90 66998 54.60 77659 (54.51)
girl 9120 46.11 55702 45.40 64822 (54.60)
Age
0− 5 6006 30.36 - - 6006 (4.22)
5− 10 3532 17.86 - - 3532 (2.48)
10− 15 3934 19.89 - - 126634 (88.88)*

15− 20 6309 31.89 - - 6309 (4.43)
Calendar
1943− 1960 823 4.16 4252 3.47 5075 (3.56)
1960− 1974 2808 14.20 25930 21.13 28738 (20.17)
1974− 2010 16150 81.64 92518 75.40 108668 (76.27)
Mean (sd ) Exposed sd Unexposed sd Total (sd)
Age 10.22 (6.41) 10.12 (4.06) 10.14 (4.43)
Calendar 1988.18 (13.85) 1986.36 (13.83) 1986.61 (13.85)

* Note that unexposed are not diagnosed, but their age at diagnosis is set to
the average age of exposed at diagnosis which is approx. 10.

Table 3.1: Subject characteristics of the ALLiCS childhood cancer survivor co-
hort. The number of exposed and unexposed for a given characteristic is listed
together with the percentage contribution.

By looking at the distribution of the cohort with regard to calendar year, it is
observed that the major part (82%) of exposed is diagnosed in [1974-2010]. The
variables; age at diagnosis and calendar year are presented both as categorical
and numerical in the table. The reason for this is that the variables are con-
sidered being qualitative as well as quantitative in the analysis. It is due to
statistical considerations that will be presented in the following chapter.

Using the values given in the table, a χ2-test of statistical significance for bi-
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variate tabular analysis is performed. The p-value for the hypothesis of no
difference between exposed and unexposed according to calendar year at diag-
nosis is > 0.001 indicating that there is a strong evidence of a difference between
exposed and unexposed. With regard to other explanatory variables; country
and gender, the difference between exposed and unexposed does not seem to be
significantly high.

A plot of number of exposed and unexposed in Denmark and Sweden is displayed
in Figure 3.1. As it appears here, the number of exposed in both countries is
increasing during follow-up time. A significant difference between the distribu-
tion of exposed in Denmark and Sweden is ascertainable. As a result of the
matching, the number of unexposed is approx. 5 times the number of exposed.
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Figure 3.1: The number of exposed (top) and unexposed (bottom) in Denmark
and Sweden with regard to calendar year.

Figure 3.2 shows the number of diabetes events among exposed and unexposed
in both countries. The number of events in both childhood cancer and reference
population seems to be constant until 1995 and after that a positive shift in the
number of events is observable. This shift can be due to the delay in diabetes
registration especially in Sweden and also due to increase in incidence of diabetes
in the recent years. It appears in the figure that there is an overweight of diabetes
events in reference population in both countries and occurrence of diabetes in
Sweden is fairly high due to large sample size.

In order to visualize the follow-up trajectories of the cohort only for diabetes
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Figure 3.2: The number of diabetes events among exposed (top) and unexposed
(bottom) in Denmark and Sweden with regard to calendar year.

events a Lexis diagram is set up. Figure 3.3 shows a small segment of the follow-
up trajectories taken randomly from the data set. Each line in the Lexis diagram
represents the follow-up of a single participant from entry to exit on two time
scales; age and calendar time which are given in the same units (years). Exit
status is denoted by a filled circle for the participants who experience diabetes
and by an unfilled circle for the participants who are disease-free or censored.

In the previous chapter it is implied that diagnosis type for childhood cancer
survivors will not be included in the analysis in order to reduce the number
of variables that will be estimated. However, it of interest to see which type
of diagnosis the exposed were associated with when they have developed dia-
betes. A table of number of exposed who has experienced diabetes and their
corresponding diagnosis type is given in Table 3.2. It is obvious that most of
the exposed were diagnosed with Central Nervous System (CNS) tumors and
Leukemia when they have developed diabetes.
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Figure 3.3: Lexis diagram showing a small segment of the trajectories of exposed
(red) and unexposed (blue) in the study.

3.1 Crude estimates

Overall crude estimates of rates are recorded for measuring the risk of mortality
and morbidity outcome in the follow-up period. It should be mentioned that
when estimating the mortality rates, the participants that experience diabetes
is censored and the time in which they are under risk is included in the risk set.
Similarly, the estimation of diabetes rates is obtained by censoring those that do
not experience diabetes and the estimation of mortality rates after experiencing
diabetes is obtained by only considering subjects died after developing diabetes.

Incidence rates which are a measure of the mortality and morbidity occurrence
per unit time is given in Table 3.3. It is seen that the exposed contributes
289552.48 person-years in the estimation of mortality rates without experienc-
ing diabetes during the follow-up period. This is less than the total possible
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Diagnosis type experience diabetes
Carcinomas 40
CNS 94
Germ cell and other 26
Hepatic tumors 1
Leukemia 51
Lymphomas 40
Malignant bone tumors 10
Other and unspecified 3
Renal tumors 27
Retinoblastoma 9
Soft tissue sarcomas 18
Symp. NST 10

Table 3.2: Number of exposed with diabetes and their corresponding diagnosis
type.

person-time since people who are censored before the end of the follow-up pe-
riod stopped contributing person-time at the time of the event. The number of
events is 3503; thus, the incidence rate per 1000 person years for the exposed
is (3503/289552.48) · 1000 = 12.10 meaning that 12 mortality events would be
expected for 1000 persons observed for 1 year. Among 19781 survivors, 1.7%
have diabetes and among 122700 unexposed, 1.2% have diabetes. The risk of
experiencing diabetes among exposed is 1.14 per 1000 person-years which is
quite high compared to incidence rate of unexposed (IR: 0.68). The exposed are
1.14/0.68 = 1.68 times more likely to experience diabetes than unexposed. The
mortality rate after experiencing diabetes among exposed is 26.03 and among
unexposed is 12.29 per 1000 person-years indicating that the risk of dying with
diabetes as a childhood cancer is 2.1 times the risk of dying with diabetes as a
reference population.

In figure 3.4, crude estimates of cumulative incidence of mortality and morbidity
in childhood cancer survivors are presented and compared to the general pop-
ulation.The first plot (top-left) in the figure shows the expected proportion of
individuals that die without experiencing diabetes over the course of time. As
seen in the plot, the expected mortality among exposed is increasing very steep
in the first 5 years, but as time progresses, the slope of the increase remains
constant. The figure clearly demonstrates that the incidence of mortality in
childhood cancer survivors are higher compared to the general population.

The second plot (top-right) shows the cumulative incidence of diabetes in the
study cohort. As it appears here, the expected proportion of individuals that
develop diabetes is remarkable higher among exposed compared to the general
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Mortality rates without diabetes

Groups p-years n event rate per 1000 p-years
exposed 289552.48 19781 3503 12.10
unexposed 2245608.09 122700 2510 1.12

Diabetes rates

Groups p-years n event rate per 1000 p-years
exposed 289552.48 19781 329 1.14
unexposed 2245608.09 122700 1517 0.68

Mortality rates with diabetes

Groups p-years n event rate per 1000 p-years
exposed 2459.01 322 64 26.03
unexposed 12205.68 1465 150 12.29

Table 3.3: Incidence rates of mortality and morbidity outcomes per 1000 person
years.

population. The cumulative incidence of diabetes in the exposed is 2.5% at 25
years after diagnosis whereas it is 1.2% in the unexposed. The cumulative inci-
dence of mortality after experiencing diabetes in the cohort is illustrated in the
last plot. By considering the magnitude of the slope of the cumulative incidence
curves for both groups, one may note that both exposed and unexposed are
associated with an increasing cumulative incidence of mortality after experienc-
ing diabetes. Of particular interest is the comparison of the first and last plot
suggesting that the occurrence of diabetes is relatively increased the cumulative
incidence of mortality for both groups. In the first 5 year after diagnosis, the
cumulative incidence of mortality before and after experiencing diabetes among
exposed seems to be the same, but after 5 years the cumulative incidence of
mortality after experiencing diabetes is much more higher than the cumulative
incidence of mortality shown in the first plot. This difference is more visible for
the cumulative incidence of mortality for the general population. It might be
mentioned that the incidence rates shown in the figure are left truncated at 1
year after diagnosis, reflecting the eligibility entry criteria for the cohort.

Cumulative incidence function plotted in Figure 3.4 gives test statistics and p-
values for comparing the sub-distribution for mortality and morbidity across
groups. Test statistic for all three event of interest returns a p-value < 0.001
which verifies that the hypothesis of no difference between groups in each sub-
distribution are rejected [22].
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Figure 3.4: Cumulative incidence of mortality and morbidity in survivors of
childhood cancer compared to the general population.



Chapter 4

Methodology

The cohort formed in ALLICS allows for time to event analysis, and therefore
survival analysis is the most appreciated statistical analysis technique for this.
In this chapter a short theoretical introduction to survival analysis is given.
First, standard two-state analysis based on the Cox proportional Hazards model
followed by assessment of model assumptions and extension of the Cox model is
presented. Then, more advanced multi-state models that form an extension to
the standard survival analysis is introduced by extended Cox models, transition
probabilities and software packages that is developed for multi-state models.
Finally, model assumptions made for this study is summarized.

4.1 Survival analysis

By considering the analysis on time to event data with possibly censoring it is
assumed that each individual i has an event time ti and a censoring time ci.
Then the observed time is given as xi = min(ti, ci) along with δi = I(ti ≤ ci)
meaning that whether an event is observed (δi = 1) or not (δi = 0). In the
data set the event times and censoring times are considered as being a random
sample (X1, C1), ..., (Xn, Cn) drawn from a survival distribution Xi ∼ S, with
S(t) = Prob(T > t). For T denoting the survival time, the survival function,
S(t) is defined as the probability of survival to time t after entry time [23].
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For the model analysis it is assumed that the event time distribution and the
censoring distribution are independent conditioned on the covariates included
in the model. The distribution of the lifetime T can be stated by means of
the hazard function defined at any time point t as the probability of failure
(experiencing the event) within a short time interval, given that the individual
was alive at the beginning of the time interval. That is,

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

(4.1)

The definition of the hazard function implies that

λ(t) =
1

S(t)
lim

∆t→0

S(t)− S(t+ ∆t)

∆t
= −d logS(t)

d t
(4.2)

The cumulative hazard function is defined by

Λ(t) =

∫ t

0

λ(s) d s where 0 ≤ s ≤ t (4.3)

and the estimation of hazard rate is based on the cumulative hazard instead of
hazard function itself, since it is easier to estimate cumulative distribution func-
tion than probability density function [1]. The Nelson-Aalen estimator is most
commonly used non-parametric estimator of the cumulative hazard function,

Λ̂ (t) =
∑
ti≤t

N (ti)

Y (ti)
(4.4)

whereN(ti) is the number of events at time t for each subject i under observation
and Y (ti) is the number of subjects under observation and at risk at time ti [45].

The survival function can be represented in terms of the cumulative hazard as,

S(t) = exp(−Λ(t)) (4.5)

In fact, if S(t) is known, the corresponding hazard function can be derived, and
vice varsa [23].

Figure 4.1 illustrates a model block symbolizing time to event data. Survival
analysis offers several regression models for estimating the hazard rate λi(t) at
time t at which study participants experience the event of interest. It is of
interest to determine whether the hazard rate differs across groups, e.g. cohort
groups i, which can be examined using survival models by means of relative
risks.

Several methods are established for obtaining such estimate, anyway, one of
the well-recognized statistical technique for analyzing survival data is the Cox
Propotional Hazard model.
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      1. Alive and without event  

    

         2. Event of interest  

Figure 4.1: Model block representing a standard survival model. At inclusion the
individuals in the study are alive and free of the event of interest. As time passes
the individuals in each group i may experience the event of interest with the
hazard rate given by λi(t) e.g. a morbidity-specific or a cause-specific mortality
rate.

4.2 The Cox Proportional-Hazards Model

Cox regression is a method for investigating the effect of covariates on the time
of a specified event and deals with the censorings as well as delayed entry. The
regression assumes that the effects of the predictor variables upon survival are
constant over time and are additive in the log scale.

Under the proportional hazards model, the hazard function for the failure time
T associated with possibly covariates is

λi(t|Z) = λ0(t) exp(β1Zi1 + β2Zi2 + ...+ βpZip) (4.6)

where Z is the covariate vector, β1, β2, ..., βp are unknown regression parameters
and λ0(t) is an unspecified baseline hazard function, thus the model is termed
semi-parametric. Zi1 is the covariate value for covariate 1 for individual i, etc.
The model is called semi-parametric since the functional form of the baseline
hazard is not given. The hazard function is assumed to be proportional for
different values of Z, so that the regression coefficient βm is interpreted as the
change in the relative risk on a logarithmic scale when the covariate Zm is
increased by one unit, while all other covariates are kept fixed. The relative
risk is given as exp(βm), that is the ratio of hazards between e.g. two compared
subjects [25].

Assuming all event times are distinct, the regression parameters are found by
maximising the partial likelihood,

L(β) =

d∏
i=1

exp(βZi)∑
j∈R(ti)

exp(βZj)
(4.7)

where R(ti) is the risk set at death time ti
1. The partial likelihood function

1Note that βZ is used as a notation for
∑p

k=1 βk × Zk.
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is a product, over the event times, of a quotient that compares the hazard of
the individual with the event at ti to the hazard of all the individuals at risk at
ti. The function depends only on the order in which the events occur, not the
times at which they occur. Thus, the baseline hazard function is not required
[23].

The maximum partial likelihood estimator is found by solving the differentiated
partial log-likelihood equal zero [32].

4.2.1 Test statistics

The standard asymptotic likelihood tests are also available for Cox partial like-
lihood to test hypotheses about β. The statistical significance of covariates i.e.
the null hypothesis H0 : β = β0 can be tested by

• the patrial likelihood ratio test: 2(logL(β̂)− logL(β0))

• the Wald test: (β̂ − β0)′Î(β̂ − β0)

• the score test : U ′(β0)I(β0)−1U(β0)

where Î = I(β̂) is the matrix of
∂2

∂2β
logL(β0) and U(β0) =

∂

∂β
logL(β0) .

All three tests have χ2 distributions with p degrees of freedom [3][45].

4.2.2 Assessment of model assumptions

The accuracy of the Cox regression model may be effected by the violation of
model assumptions. Assessment of model adequacy can be obtained by consid-
ering: linear relation between covariates and logarithm of hazard, proportional
hazard assumption and possible need for time-varying covariates.

4.2.2.1 Functional form

For the Cox model it is assumed that the effect of a covariate on the hazard
has a log-linear functional form. It is important to test for nonlinear effects
since nonlinearity in the model can appear as nonproportional hazards. Diag-
nosing nonproportional hazards may suggest non-proportionality even though
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the problem is due to the incorrect functional form for a coviariate. Hence,
correct functional forms for covariates need to be determined and fitted before
testing for nonproportional hazards [29].

It is suggested to examine residual plots for the model in question in order to
detect a nonlinear patterns to effect for each continuous covariate. However,
these plots can be misleading. If the variables included in the model are cor-
related, the plot may show a linear relationship when the true relationship is
nonlinear [46][45].

Instead of analyzing residual plots, the functional form of the covariates can be
modeled directly by spline fits and be tested by Wald test in order to decide
whether the nonlinear effect should remain in the specification [29]. In this
project the nonlinear covariates are detected by the method of spline fits and
the non-linearity is avoided by categorizing these covariates.

4.2.2.2 Proportional hazard assumption

The proportional hazard assumption is violated when the effect of a given covari-
ate changes over time. An evaluation of the proportional hazards assumption
can be done by many numerical or graphical methods. The graphical diagnostics
may be based on plot of log-minus-log survival functions, a plot of cumulative
baseline hazards in different groups [6], a plot of the estimated cumulative hazard
versus the number of failures [7], a smoothed plot of scaled Schoenfeld residu-
als versus time [42] etc. The interpretation of the graphical diagnostics can be
arbitrary.

There are several numerical approaches for diagnosis of nonproportional hazards,
such as including a time dependent covariate in the model [15], a test based on
the scaled Schoenfeld residuals which is a difference between the observed and
expected value of the covariate at each time [45][8]. It is shown by Grambsch and
Therneau (1994)[21] that scaled Schoenfeld residuals can be utilized in assessing
the proportional hazards assumption and hence it will be used as a numerical
approach for detecting non-proportionality in the analyses.

The Schoenfeld residual expresses the difference between the covariate-value, xi,
for the individual i who died at time ti and the expected value of the covariate for
the risk set at ti. The test is based on testing for a non-zero slope in a generalized
linear regression model fitted for the scaled Schoenfeld residuals on functions
of time. A non-zero slope indicates that the proportional hazard assumption
is violated. In addition to performing the tests of non-zero slopes, the scaled
Schoenfeld residuals can be graphed against a time variable and possible patterns
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can be inspected [14].

Several methods can be used for dealing with violation of proportional hazard
assumption, one of them is to construct a stratified Cox regression model. By
stratification the baseline hazard is allowed to be different across categories
called strata based on the value of one or more covariates. The Cox regression
can be modified by the stratification of a covariate that does not satisfy the
proportional hazards assumption. The coefficients of the remaining covariates
are assumed to be constant across strata. Since it is not possible to examine the
effect of the stratifying variable, this approach is not employed for dealing with
non-proportionality of hazards, but stratification is used only for the covariates
that are not of direct interest [17].

Instead, the Cox regression model may be extended to include time-varying vari-
able by assuming that there may be a time dependency from a certain variable.
The extension can be obtained by several methods such as inclusion of interac-
tion time and the covariate that violate the proportional hazard assumption or
assuming piecewise constant hazards for this variable.

In this project the piecewise constant hazards assumption is applied for correc-
tions for nonproportional hazards. A piecewise constant time-varying hazards
model assumes that the hazard is constant not over the whole range of time,
but within certain specified intervals of time. An illustration of this approach
is depicted in Figure 4.2 where the time axis is split into K intervals.

Piecewise Constant Hazard Rate

Divide the time scale into K pieces and assuming piecewise constant

but different hazard rates in each of the intervals. This may provide a

sensible summary of many phenomena and is often used in

epidemiology.

✲λ1 λ2 λ3 · · ·
· · ·

λK

c0 = 0 c1 c2 c3 cK−1 cK Age

Thus

λ(t) = λk for t ∈ (ck−1, ck], k = 1, . . . , K

The intervals do not need to be of same length.

We only need to keep record of the total number of deaths and the

exposure time in each group.

33

Figure 4.2: An illustration of splitting time interval into K intervals by assuming
piecewise constant but different hazard rates in each of the intervals.

Thus the hazard rates are given as

λ (t) = λk for t ∈ (ck−1, ck] , k = 1, ...,K (4.8)

The Cox model is then expanded to have time-varying covariates,

λi(t|Z) = λ0h(t) exp (β1Zi1 + β2Zi2 + ...+ βp−1Zip−1 (t) + βpZip (t)) (4.9)

where λ0h for h = 1, ...,H is the baseline hazards in each of the H strata. The
Equation 4.9 includes both stratification of the covariates which are not of direct
interest and time-varying covariates which do not satisfy proportional hazard
assumption. This model will be considered as the final model in the prospective
analysis.
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4.3 Multi state models

In order to achieve a more detailed information of the late effects of childhood
cancer survivors, more sophisticated model than the model depicted in Figure
4.1 could be useful. Multi-state models form an extension to the survival model
by dealing with several and competing events. In a multi-state model the subject
may go through different disease states during study. The general well-known
multi-state model is called illness-death model (Figure 4.3) in which participants
start out in the initial state denoted state 1 as healthy, they may become ill and
move to state 2 and then they may die in state 3. In multi-state models there
are two type of states: absorbing state from which further transitions cannot
occur (state 3) and transient state from which further transitions are allowed
(state 1 and 2)[4].

                                                                                       

Tr  Transition 1 

 

  

 

 

                Transition 2 Transition 3 

    

        1. Diagnosis  

    

           2. Diabetes  

    

           3. Death  

Figure 4.3: Model block representing the illness-death model.

An example of a multi-state model is illustrated in Figure 4.3. In this case
the initial state is denoted diagnosis, as the state is entered at the moment of
diagnosis for cancer or controls. The so-called ’illness’ state is denoted diabetes
and finally the absorbing state is denoted death as it is the the event of interest in
the analysis. It is clear that some participants are censored before they reach an
absorbing state. In this study the analysis is restricted to uni-directional multi-
state models for which recurrent events are not possible and the transition times
are recorded exactly.

4.3.1 Cox regression for multi-state analysis

As in the standard survival analysis the most commonly used semi-parametric
model in multi-state survival analysis is the Cox regression model. By assuming
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proportional hazards for each transition the hazard rate for an individual i, with
time-fixed covariates Zi is modeled as

λihj (t|Zi) = λhj,0 (t) exp
(
βT
hjZi

)
(4.10)

where βhj is a p-vector of regression coefficients for transition h → j and λhj,0
is the baseline hazard function of transition h → j. Notation 4.10 specifies
different covariate effects for the different transitions, as well as separate baseline
transition hazards for each transition. The model is a natural extension of the
Cox proportional hazard model to multi-state models. Thus by not assuming
anything about the baseline hazards the model can be used for each of the
transition hazards separately [4][33].

The model in Equation 4.10 is considered as a full model and can be tested and
reduced to more parsimonious models in several ways:

1. The covariates have an identical effect for each transition and baseline
hazards are different. For different transitions Equation 4.10 now simplifies
to

λhj (t|Z) = λhj,0 (t) exp
(
βTZ

)
(4.11)

where the covariates are time-fixed.

2. The covariates have different effect for each transition. It is assumed that
some of the baseline hazards of model 4.10 are proportional, for instance
if transitions h→ j and k → l are proportional,

λhj,0 (t) = δ̃λkl,0 (t) (4.12)

For the last case it is often assumed that transitions going into the same state
are proportional. The assumption is based on two reasons: more efficient use
of the data and the fact that the hazard ratios of the covariates coding the
different transitions into the same state can be interpreted as the effect of the
occurrence of an intermediate event,e.g. illness [33]. This case can be modeled
by means of a time-dependent covariate Z̃(t) in the regression model 4.10. The
covariate is introduced in order to distinguish between different transitions into
the same state; Z̃(t) is 0 if the subject has not yet experienced an intermediate
event and 1 otherwise. The proportionality of transition rates is expressed by
the coefficient β̃ of Z̃(t): exp(β̃) = δ̃ [16].

It is noticeable that not only the models described above, but also any combina-
tion of common or different covariate effects across transitions and of stratified
or proportional baseline hazards can be derived by Equation 4.10.
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4.3.2 The illness-death model

It is desirable to change the state structure of the illness death model to a
progressive model so that each state has only one possible transitions into it
and the initial state has none. In this way it is ensured that the current state
gives information about which states have been visited previously, and the order
in which they have been visited, but the information about the times of the
transitions are not given. The advantage of the progressive model is that the
differential equations describing the transition probabilities can be simplified to
integrals [25].

       

 

 

 

                                                                                                                              

    

      1. Alive and without event  

    

         2. Disease of interest  

    

     3. Death and without disease 

    

           4. Death and with disease 

Figure 4.4: Model block representing the progressive illness-death model.

The progressive version of the illness-death model is shown in Figure 4.4. The
model can be specified by the three transition intensities: the intensity of devel-
oping diabetes λi(t), the death intensity without diabetes βi(t) and the death
intensity with diabetes γi(t).

4.3.3 Transition probabilities

For a multi-state model it is possible to estimate transition probabilities and
make long-term predictions.

In order to formalize the notation of the multi state model, the states are denoted
with S = 1, ..., S and a random process X(t) taking values in S is chosen to
describe the course of the model. The transition intensity or hazard rate λhj
expressing the instantaneous risk of a transition from state h into state j at time
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t is given by

λhj(t) = lim
∆t→0

P (X(t+ ∆t) = j|X(t) = h)

∆t
(4.13)

The process given in 4.13 is Markovian, since it presents the assumption that
the future depends on the past only through the present, that is to say:

P (X(t+ ∆t) = j|X(t) = h, {X(s), s < t}) = P (X(t+ ∆t) = j|X(t) = h)

Hence the transition probability from state h to state g in the time interval (s, t]
is denoted by [16][4].

Phg(s, t) = P (X(t) = g|X(s) = h) (4.14)

The relationships between the rates and the probabilities are as follows. The
probability of remaining in the first state given in Figure 4.4 in the time interval
[0, t] is

P11{state 1 at t} = exp

(
−
∫ t

0

λ (s) + β (s) ds

)
(4.15)

that is, the contribution to the likelihood of a censoring at time t, i.e. survival
function. The probability of dying without developing a disease is,

P13{state 3 at t} =

∫ t

0

β (s) exp

(
−
∫ s

0

λ (u) + β (u) du

)
ds (4.16)

and the probability of developing a disease is,

P12{state 2 at t} =

∫ t

0

λ (s) exp

(
−
∫ s

0

λ (u) + β (u) du

)
(4.17)

× exp

(
−
∫ t

s

γ (u) du

)
ds (4.18)

Likewise, the probability of dying with the disease is,

P24{state 4 at t} =1− P11{state 1 at t} − P13{state 3 at t} (4.19)

− P12{state 2 at t} (4.20)

Given that the hazard rates are calculated, the transition probabilities can easily
be estimated by means of these formulaes in practice by summing up over small
intervals [11][9].

It might be mentioned that the Cox models described above are assumed to be
Markov models. When there is not a time-dependent covariate in the model,
the model is called homogeneous Markov model whereas if a time-dependent
covariate is present the model is called semi-Markov model [25].
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4.3.4 Multi-state models using R

In the recent years, multi-state models have gained popularity due to signifi-
cant improvements in information technology that make it possible to record
detailed information on clinical events on large numbers of patients. However,
theoretical study and their application has been rather limited. Two reasons
for this limitation are stated: the method is more advanced then standard sur-
vival analysis and a lack of good software for the analysis of multi-state models
[41][16].

However, in recent years a number of software packages have been developed
for the analysis of such models. In Table 4.1 a list of these packages and their
contribution to the multi-state models is gathered. It should be noted that all
of them is R packages, or objects within R packages.

Packages
timereg is devoted to competing risks models.
msm is based on parametric models.
p3state can be used for forward-going multi-state models with a single

starting and end state. Do not rely on Markov assumption.
etm estimates non-parametric general Markov multi-state models.
Epi studies data with multiple time-scales for Cox model and Poisson

model.
mstate deals with non- and semi-parametric Cox models.

Table 4.1: A list of available packages for analysis of multi-state models in R.

The softwares have their own advantages and disadvantages. The common prin-
ciple in these softwares is to make an appropriate data set that represent each
subject by several observations. Since the main interest in this study is to con-
struct semi-parametric models and time to event in data is observed exactly, the
most appreciated softwares that can be used for constructing multi-state models
are Epi and mstate. Both of the packages are tested for constructing multi-state
models. Since Epi is considered to be more user-friendly and flexible, the results
obtained from this package is presented in the thesis.

4.3.5 Model assumptions

The assumptions made for the multi-state model analysis are listed below.
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1. Since the distribution of the survival times in this study are unknown and
some prognostic covariates are available in the data set, semi-parametric
models that allow analyzing the effect of the covariates will be used.

2. Age is chosen to be the time scale in this study. Hence, in the data set
only right censoring and left truncation is allowed and all the event times
are observed exactly.

3. A certain number of the covariates that may effect hazard rates are given
in the data set. However, other covariates that may influence survival such
as life style, smoking, health status and genetic risk factors are unknown
and cannot be included in the analyses. These factors are ignored.

4. Since there is one process for each person, the given data set is a a longi-
tudinal data. Thus it can be assumed that there is independence between
different subjects and, possibly, dependence between the times to the event
for the same subject [25].
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Results two-state models

The aim of this chapter is to analyze mortality and morbidity outcomes sepa-
rately. This is investigated by means of two-state survival models specifically
using Cox proportional Hazards model presented in Chapter 4, where time to
event of interest is considered and all other events are censored. Furthermore,
extended models with time-varying covariates are examined. In the first section
the methods used for model verification and validation for the first analysis is
presented. The results of the remaining analyses are given in the following sec-
tion and the chapter is summarized with an overall conclusion.

The analysis conducted in this chapter is based on the standard survival analysis
in which time to event of interest i.e. a morbidity-specific and a cause-specific
mortality rate is investigated using survival models by means of relative risk.
Figure 5.1 illustrates a model block that represents the first two-state standard
survival model where there is a transition from the initial state; diagnosis to the
absorbing state; dead. Since the event of interest is death without diabetes in
this analysis, the participants that develop diabetes is censored, and the time
in which they are under risk is included in the risk set. When there are more
than one competing event in a data set and even though interest may focus on
a single event, the analysis may be performed by censoring individuals at the
time of the second event in order to obtain a valid inference [5].
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             1. Diagnosis 

    

                  2. Dead  

Figure 5.1: Model block representing two-state standard survival model.

When analysing mortality and morbidity outcomes separately, it is desirable
to assess the goodness of fit for the Cox model constructed in each analysis.
To clarify how the results of the models are examined for model verification
and validation, a general example of the model assessment is given only for the
first analysis. The assessment of model adequacy of the remaining analyses is
skipped, but the results of the analyses are presented and interpreted.

5.1 Analysis of mortality rate

It is of interest to examine the mortality rate in childhood cancer survivors
compared to the general population. A simple model is set up and then more
detailed models are presented.

An univariate estimate of the model with only Groups as explanatory variable is
performed at first. The general Cox proportional hazard model can be written
as:

λi (t|X) = λ0 (t) exp (β1xi1)

where xi1 is Groups with the levels [unexposed, exposed] and β1 is the effect
of the covariate. The result obtained from the model is given in Table 5.1.
The table includes information about the coefficient β1, the risk exp(β1), the
standard deviation of the coefficient and the lower and the upper limit of a 95%
confidence interval for the risk. It is obvious from the table that the exposed
has a significantly higher mortality rate which is 10.3 times [95% CI, 9.8-10.9]
higher compared to unexposed.

coef exp(coef) se(coef) lower 0.95 upper 0.95 p -value

Exposed 2.336 10.341 0.026 9.824 10.890 < 2e-16

Table 5.1: Results from the univariate Cox proportional hazards model with
Groups as covariate. The hazard ratio is given as exp(coef).
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In addition to Groups, other confounders are tested for significance by using
forward model selection approach proposed by Hosmer and Lemeshow [24]. The
confounders are then included in the model in order to explain the variation
in the mortality rate. Since the effect of the covariates Gender and Country is
not of direct interest, the model is stratified by these. The multivariate Cox
proportional model to apply to the data can be expressed as

λi (t|X) = λ0,k (t) exp
(
βTXi

)
(5.1)

where λ0,k for k = 1, ...,K is the baseline hazards in each of the K stratum.
The covariates Xi = [xi1, xi2, xi3] are described as follows:

xi1 = Groups =

{
0, if i unexposed;
1, if i exposed.

xi2 = Age

xi3 = Calendar

where Age is the age at diagnosis and Calendar is the calendar year at diagnosis,
both are quantitative variables. Since unexposed are not diagnosed, the age at
diagnosis for this group is set to the average age of exposed at diagnosis.

Although the Cox model is semi-parametric that is to say no assumptions are
made about the form of the baseline hazard, some of the important issues are
needed to be considered before the results of the model can be safely applied.

5.1.1 Verifying model assumptions

It is desirable to check if the relationship between the dependent variable and
the independent variables can be adequately described by the model. For this
purpose two kinds of diagnostics will be considered: the functional form and the
assumption of proportional hazards.

5.1.1.1 Functional form

One of the assumptions made for Cox proportional hazards model is that the
effects of covariates are linear on the log risk scale. When this assumption is
violated and the nonlinear effects in the Cox model is ignored, the results ob-
tained from the model will lead to erroneous statistical conclusions. Incorrect
functional form for a covariate can appear as nonproportional hazards. Hence,
the functional form for the covariates needs to be determined before the pro-
portional hazard assumption is examined. As mentioned in section 4.2.2.1, the
method of smoothing spline fits are used for diagnosing nonlinearity.
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Figure 5.2: Functional form of age at diagnosis (left) and calendar year at
diagnosis (right) on log hazard of death. In both plots the thick lines represent
the spline fit while the dashed lines represent 95% confidence bands for the fit.

A Cox model with smoothing spline fits are estimated for the quantitative co-
variates after controlling for other confounders. A plot of the nonlinear effects
of the covariates is displayed in Figure 5.2. Taking them one-by-one, it is seen
that age at diagnosis appears to have an increasing effect on the hazard until a
threshold, say age at diagnosis 9 is met. After this threshold is reached, the age
at diagnosis performs a downward sloping effect. For calendar year at diagnosis
a decreasing effect on the hazard is observable between 1940-1995. After 1995
the effect of calendar year appears to be strongly positive, but at the end it only
reaches HR = 1 though.

It is obvious that the plots reveal evidence of nonlinearity in the effects. The
correction of the nonlinear functional forms can be obtained by including splines
in the Cox model or categorizing the nonlinear covariates. The latter is preferred
to be applied in the model. Based on the plot given in Figure 5.2 age at diagnosis
is categorized into 4 intervals: [0 - 5], [5 - 10], [10 - 15] and [15 - 20], and calendar
year is categorized into 3 intervals: [1943 - 1960], [1960 - 1974] and [1974 - 2010].

5.1.1.2 Proportional hazard assumption

Before testing for nonproportional hazards for all covariates, the proportionality
assumption of the model including only the covariate Groups is examined. There
are a number of basic concepts to check if the explanatory variables analysed
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satisfy the proportional hazard assumption of the model. One of the graphical
diagnostics is based on plot of log minus log of the estimated survival. If the
proportionality assumption is satisfied, the log minus log of estimated survival
functions are supposed to be proportional curves.
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Figure 5.3: Graphical check of proportionality assumption for groups. Log minus
log plots for exposed and unexposed.

As it appears in Figure 5.3 the curves are far from being proportional and
thus the proportional hazards assumption for this covariate is violated. Several
methods for dealing with violation of the proportional hazards assumption are
presented in Chapter 4. However, one of the most appropriate methods is to
include time-dependent covariates in the model [28]. Since groups seems to be a
time-dependent covariate, the extended Cox model will be constructed for this.
In order to do that it is assumed that the hazard ratio for exposed compared to
unexposed is piecewise constant but different within some time intervals. The
time scale is here divided into 6 pieces and the hazard ratios in each interval is
calculated based on this assumption. The piecewise constant hazard model is
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set up as in Equation 5.1 where the covariate Groups is given as

Groups =



episode 0-5, if t ∈ (0; 5];
episode 5-10, if t ∈ (5; 10];
episode 10-15, if t ∈ (10; 15];
episode 15-20, if t ∈ (15; 20];
episode 20-25, if t ∈ (20; 25];
episode 25+, if t > 25;

unexposed,

(5.2)

The indicator functions that Cox model needs in order to estimate hazard ratios
for groups for ith subject are:

xi1 (t) = episode 0-5 =

{
1, if t ∈ (0, 5];
0, otherwise.

xi2 (t) = episode 5-10 =

{
1, if t ∈ (5, 10];
0, otherwise.

...

xi6 (t) = episode 25+ =

{
1, if t > 25;
0, otherwise.

By this method the Cox model is extended to have time-varying covariates and
thus the model becomes a piecewise constant hazard model. The hazard ratios
of exposed based on the extended Cox model is estimated and plotted in Figure
5.4. The figure shows the hazard ratios and the corresponding 95% confidence
intervals for Groups with unexposed as reference in each interval together with
a line for HR = 1. As it is expected, the mortality rate in exposed is strongly
high within the first 5 year after diagnosis compared to the unexposed and the
rate decreases nearly linearly with increasing time since diagnosis. None of the
hazard ratios fall under HR = 1.

The test for the proportional hazard assumption of the final model is performed
using the scaled Schoenfeld residuals. The test statistic is based on tests of the
proportional hazards assumption for each covariate, by correlating the corre-
sponding set of scaled Schoenfeld residuals with a transformation of time [17].
The test for each covariate using the ’correlation with time’ test is displayed
in Table 5.2 with a corresponding correlation coefficient and a two-sided p-
value. It appears that the correlation between residuals of all covariates and the
transformed survival time is quit low. The p-values indicate that there is no
evidence of non-proportional hazard for almost all covariates once the nonlinear
functional forms for covariates have been taken into account and time varying
effects are corrected. Furthermore, the piecewise constant hazard assumption
holds for all episodes except episode 25+. It may be due to too few observations
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Figure 5.4: Rate ratios and the corresponding 95% confidence intervals for
Groups with non-exposed as reference in each interval.

ρ χ2 p -value

Age [5-10] -0.014 1.343 0.246
Age [10-15] -0.012 0.894 0.344
Age [15-20] -0.016 1.595 0.207
Calendar [1960-1974] -0.005 0.124 0.725
Calendar [1974-2010] 0.004 0.085 0.770
episode [0-5] -0.015 1.218 0.270
episode [5-10] -0.012 0.781 0.377
episode [10-15] -0.010 0.601 0.438
episode [15-20] -0.006 0.220 0.639
episode [20-25] -0.008 0.333 0.564
episode 25+ -0.055 18.699 < 0.001

Table 5.2: Test results of proportional hazards assumption.

in the last interval and thus can be ignored. Overall, the final model fulfils the
various assumptions and the model results can safely be interpreted.
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coef exp(coef) se(coef) lower
0.95

upper
0.95

p-value

Age[5-10] 0.334 1.397 0.064 1.231 1.584 < 0.001
Age[10-15] 0.253 1.288 0.070 1.123 1.477 < 0.001
Age[15-20] 0.173 1.189 0.068 1.041 1.360 0.011
Cal[1960-1974] 0.001 1.000 0.056 0.896 1.117 0.995
Cal[1974-2010] -0.358 0.699 0.069 0.611 0.801 < 0.001
episode[0-5] 4.510 90.924 0.060 80.785 102.336 < 0.001
episode[5-10] 3.019 20.471 0.071 17.817 23.521 < 0.001
episode[10-15] 2.301 9.988 0.085 8.451 11.806 < 0.001
episode[15-20] 1.889 6.612 0.096 5.478 7.981 < 0.001
episode[20-25] 1.655 5.235 0.101 4.293 6.384 < 0.001
episode25+ 1.006 2.734 0.063 2.415 3.096 < 0.001

Table 5.3: Results from the extended multivariate Cox model constructed for
analysing mortality rate.

The result of the final extended multivariate Cox model is displayed in Table
5.3. In the model the reference variable for exposed is unexposed, the reference
for age at diagnosis is the age group [0-5] and the reference for calendar year is
the calendar year [1943-1960]. It appears that the effect of the age at diagnosis
in the intervals [5-10], [10-15] and [15-20] on the mortality rate is statistically
significant compared to the effect of age at diagnosis in the interval [0-5] after
adjustment for the other explanatory variables in the model. A participant
with an age at diagnosis [5-10] has 40% [95% CI, 23-58%] increased risk of
death compared to a participant with an age at diagnosis in the interval [0-5].
The risk of mortality is decreasing with increasing age at diagnosis, but it is
still significant. This is also reflected by the smoothing spline function shown
in Figure 5.2. The model indicates that there is no difference in the mortality
rate between the calendar years at diagnosis [1960-1974] and [1943-1960] which
is denoted by a nonsignificant p-value and also by confidence intervals including
hazard rate 1. A participant diagnosed in [1974-2010] has 30% [95% CI, 20-39%]
less risk of death than a person diagnosed in [1943-1960] after adjustment for
prognostic factors. As it is observed before, the risk of mortality in exposed is
extremely high in the first 10 years after diagnosis compared to the unexposed.
Although this risk decreases as time passes, it remains significant.

A childhood cancer survivor study conducted in 25 centers in the United States
and one in Canada has shown some similar results. The cohort includes five-year
survivors of childhood cancer diagnosed with cancer before age 21 years between
1970 and 1986. The study has shown that long-term survivors are at an 8.4-fold
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increased risk of premature death when compared with an age-matched and
gender-matched general population [70][38]. An other population-based study
in the five Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden)
has assessed the risk of death in five-year childhood cancer survivors who were
diagnosed with cancer before the age of 20 years between 1960 and 1989. It has
been clearly demonstrated that the overall late mortality is significantly lower
in survivors diagnosed from 1980 to 1989, compared with those diagnosed from
1960 to 1979 (hazard ratio, 0.61; [95% CI, 0.54 - 0.70])[36].

5.2 Results of the remaining analyses

In this section results of the other two analyses are given without a detailed
assessment of model verification and validation. As in the previous section some
simple models are set up based on the proportionality assumption and later on,
extended models are used in order to explain the variation in morbidity rate
and mortality rate after diabetes.

5.3 Analysis of morbidity rate

It is of interest to examine the diabetes-related morbidity in exposed and give an
interpretation of the results. The first approach is to determine the effect of the
exposed and unexposed to cancer on overall diabetes survival time. Since the
event of interest is the occurrence of diabetes in this analysis, all other events
(e.g. death) are censored. The results of the univariate proportional Cox model
with only Groups as covariate is presented in Table 5.4.

coef exp(coef) se(coef) lower 0.95 upper 0.95 p -value

Exposed 0.498 1.646 0.060 1.461 1.854 <0.001

Table 5.4: Results from the univariate Cox proportional hazards model con-
structed for analysing morbidity rate.

As it appears in the table the diabetes-related morbidity rate in childhood cancer
survivors is 65% [95%, CI 46-85%] higher compared to the general population.
To examine how this rate changes by adjusting for other confounders the multi-
variate analysis is performed. When investigating the additivity assumption, it
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is found that the functional form of the age at diagnosis and calendar year are
nonlinear and therefore categorization of these are necessary. A test for propor-
tional hazards assumption has shown that non of the variables have problems
with proportionality implied by a nonsignificant p-value. Cox regression of dia-
betes survival time is stratified by gender and country. The result of the final
model obtained is listed in Table 5.5.

coef exp(coef) se(coef) lower
0.95

upper
0.95

p-value

Exposed 0.742 2.101 0.113 1.683 2.623 < 0.001
Age [5-10] 0.097 1.102 0.178 0.778 1.562 0.584
Age [10-15] 0.129 1.138 0.162 0.828 1.565 0.426
Age [15-20] -0.359 0.698 0.154 0.516 0.945 0.020
Cal [1960-1974] 0.296 1.345 0.085 1.137 1.590 0.001
Cal [1974-2010] 0.394 1.483 0.104 1.209 1.820 < 0.001

Table 5.5: Estimated regression coefficients with hazard ratios and 95% con-
fidence intervals based on stratified proportional Cox model constructed for
analysing morbidity rate.

From the results it is seen that the estimated risk of experiencing diabetes in
childhood cancer survivors is 2.1 [95% CI, 1.7-2.6] times the general population,
holding other covariates constant. There is not a statistical significant difference
between the effect of age at diagnosis [0-5] and [5-10],[10-15] on experiencing dia-
betes. Participants with an age at diagnosis [15-20] have an estimated 30% [94%
CI, 10-49 %] decreased risk of developing diabetes compared to participants in
age group [0-5]. It is reported that most of the late effects in childhood cancer
survivors are caused by cancer treatments that damage quickly growing healthy
cells [71]. Thus the older a childhood cancer survivor is at diagnosis, the lower
risk of experiencing diabetes may be expected for the person in question. This
expectation is reflected in the results. It can be commended that calendar year
at diagnosis has a positive effect on the morbidity rate. The risk of developing
diabetes for a person diagnosed in [1960-1974] is 35% [95% CI, 14-59%] higher
and for a person diagnosed in [1974-2010] is 48% [95% CI, 21-82%] higher com-
pared to a person diagnosed in [1943-1960] holding other covariates constant.
The result can be due to late registration of diabetes events discussed in de-
scriptive analysis in Chapter 3 or due to an increase in the diabetes events in
the last 50 year. Researches has found an increasing prevalence of diabetes in
the Danish population over the last decades [20]. In a study the prevalence of
diabetes in 1995 - 2006 in Denmark is investigated and it is reported that the
prevalence increased by 6% per year [9].
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Parallels can be drawn between the recovered results and a childhood cancer
survivor study conducted for characterizing the risk of morbidity among North
American cohort of long-term survivors. Participants in the study were diag-
nosed before the age of 21 years from 1970 to 1986 and who were alive at least
5 years after their original diagnosis. It is found that survivors compared with
siblings were 1.6 times as likely to have diabetes mellitus [95% CI, 1.2-2.2; p
-value< .01] after adjustment for age at interview, sex, race/ethnicity, household
income, and health insurance. Survivors of childhood cancer diagnosed before
age 5 were 2.4 times more likely to report diabetes than those diagnosed in late
adolescence (from ages 15 to 20)[34].

5.4 Analysis of mortality rate after developing
diabetes

It is reported that cancer treatments such as radiation, chemotherapy, and bio-
logic agents increase the risk of cardiovascular disease in survivors of childhood
cancer; in fact, cardiovascular disease is the leading cause of non-cancer mortal-
ity in select cancers [71]. Researcher has found that childhood cancer survivors
are at increased risk for diabetes, high cholesterol and high blood pressure all
of which cause heart disease [70]. Consequently, it is of interest to examine the
mortality rate among childhood cancer survivors after experiencing diabetes.

As in the previous section an univariate analysis is conducted by considering
the effect of exposed alone. The fitted model is based on the proportionality
assumption of the hazards and the result is given in Table 5.6. It appears that
the exposed to cancer are 2.2 [95% CI, 1.6-2.9] times more likely to die after
experiencing diabetes compared to unexposed with the disease.

coef exp(coef) se(coef) lower 0.95 upper 0.95 p -value

Exposed 0.772 2.164 0.150 1.612 2.905 < 0.001

Table 5.6: Results from the univariate Cox proportional hazards model con-
structed for analysing mortality rate after experiencing diabetes.

To explore the relations between the variables while simultaneously adjusting
for all other variables that has influences on the outcome of interest mortality
an multivariate model analysis is performed. As before the model assumptions
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are checked in order to enhance the accuracy of the model. It is verified that
the model satisfies neither the linearity assumption nor the proportional hazards
assumption. The correction of non-linear functional forms of the covariates are
obtained by categorizing the nonlinear covariates; age at diagnosis and calendar
year and including these in the model. For assessing violations of the propor-
tional hazard assumption, it is assumed that the variable Groups is a piecewise
time-varying covariate and thus the hazard ratio is piecewise constant. In or-
der to apply this assumption the time axis is divided into 3 pieces given as
[0; 5], [5; 10] and [10; 15] and a piecewise constant Cox model is set up as in
Equation 5.1. The covariate Groups is given as in Equation 5.2, though only for
the introduced intervals. The results of the final extended Cox model stratified
by gender and country is listed in Table 5.7.

coef exp(coef) se(coef) lower
0.95

upper
0.95

p-value

Age[5-10] 0.308 1.360 0.556 0.458 4.043 0.580
Age[10-15] 1.130 3.095 0.454 1.270 7.543 0.013
Age[15-20] 1.085 2.960 0.459 1.204 7.277 0.018
Cal[1960-1974] -0.195 0.823 0.191 0.566 1.196 0.307
Cal[1974-2010] -0.249 0.780 0.298 0.434 1.399 0.404
episode[1-5] 2.869 17.627 0.283 10.116 30.714 < 0.001
episode[5-10] 2.535 12.619 0.338 6.500 24.496 < 0.001
episode[10-15] 1.773 5.887 0.618 1.753 19.771 0.004
episode15+ 2.474 11.869 0.501 4.447 31.682 < 0.001

Table 5.7: Results from the extended multivariate Cox model constructed for
analysing mortality rate after experiencing diabetes.

It is seen that the effect of all covariates on mortality rate is statistically signif-
icant except the effect of calendar year. Participants with an age at diagnosis
in the interval [10-15] and [15-20] are associated with an increased risk of mor-
tality after experiencing diabetes compared to the participants with an age at
diagnosis in the interval [0-5] after adjustment for prognostic factors. The risk
of mortality for a participant with an age at diagnosis in the interval [10-15]
and [15-20] is nearly 3 times the risk for a participant with an age at diagnosis
in the interval [0-5]. As in the analysis for mortality rate without developing
diabetes, the exposed is associated with a strongly significant risk of mortal-
ity compared to general population after controlling for possible confounding of
exposure effects.

Diabetes is considered as being a metabolic syndrome which is highly asso-
ciated with cardiovascular events and mortality in childhood cancer survivors
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[70]. Researchers have found that survivors are 8 times more likely to die from
cardiovascular-related disease than the general population [18][40]. In a study
the risk for disease- and treatment-associated late mortality of five-year sur-
vivors of childhood and adolescent cancer is investigated. Survival diagnosed
between 1970 and 1986 is matched with the age-and sex- comparable US pop-
ulation. It is reported that survivors has 8.4 times higher mortality compared
with the matched US population. Furthermore, it is found that deaths from
pulmonary, cardiac, and other causes are relatively low during the [5-15] year
interval, but increases are observed [15-30] years after diagnosis of the original
cancer [35]. This result is consistent with the cumulative incidence of mortality
after experiencing diabetes in Figure 3.4 presented in Chapter 3.

5.5 Conclusion

The mortality and morbidity outcomes in childhood cancer cohort compared to
the general population cohort is analysed separately by means of extended Cox
hazards model. The first analysis conducted for investigating mortality rates
without experiencing diabetes has shown that childhood cancer survivors have
an extreme high risk of death compared to the general population. The highest
risks are observed in the first 10 years after diagnosis. It is found that age
of participants at diagnosis has a significant effect on the mortality rate after
adjustment for the other explanatory variables in the model. A participant
diagnosed at the age in the interval [5-10], [10-15] and [15-20] has a higher risk
of mortality than a participant diagnosed at an age in the interval [0-5] when
holding other confounders constant. It is observed that diagnosing in calendar
year [1974-2010] has a negative effect on the mortality rate compared to the
calendar year [1943-1960].

The analysis of morbidity rate has shown that the estimated risk of developing
diabetes in childhood cancer survivors is 2.1 [95% CI, 1.7-2.6] times the general
population cohort after adjustment for prognostic factors. Comparison of the
effect of age at diagnosis on morbidity has revealed that participants with an age
at diagnosis [15-20] have an estimated 30% [95% CI, 10 -49%] decreased risk of
developing diabetes compared to participants in age group [0-5]. Furthermore,
it is found that calendar year at diagnosis has a positive effect on the morbidity
rate.

The analysis performed for investigating mortality rates after experiencing dia-
betes provides a strong evidence for strongly high risk of mortality at exposed
compared to unexposed. Calendar year at diagnosis does not seem to be a sig-
nificant confounder for explaining the variation in the mortality rate whereas



44 Results two-state models

age at diagnosis shows a significant effect on the mortality rate.



Chapter 6

Results multi-state models

Modeling survival time for each cause of mortality and each morbidity outcome
has been considered separately so far. In some cases, however, it may be rele-
vant to investigate outcomes jointly in order to give more biological insight into
the late effects of the cancer survivors. In the present chapter, the application
of multi-state models presented in Chapter 4 will therefore be assessed, first by
an univariate analysis and then by a multivariate analysis. In both analyses
several multi-state models will be constructed, and the statistical comparison of
the models will be obtained by an anova test. Finally, a prediction of the transi-
tion probabilities will be made by using cumulative risks for each cause of death.

In order to perform analyses based on multi-state models, it is required that the
allocation of follow-up time to states in the illness-death model, and timescales
are done properly. To facilitate these required manipulations of data for multi-
state models, a Lexis object is set up. The model structure is illustrated in a box
diagram shown in Figure 6.1. The transitions; Tr. 1, Tr. 2 and Tr. 3 between
states are denoted by arrows and the number of transitions are given on each
arrow.

A summary of the Lexis object is displayed in Table 6.1. The transitions between
entry state; diagnosis, intermediate state; diabetes and exit state; death with
and without diabetes are given along with the rates of the transitions per 10
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Figure 6.1: Illustration of the transitions between states; diagnosis, diabetes,
death with and without diabetes. The numbers on the arrows are the number of
transitions, and the number in the boxes are person-years.

Transitions:

To

From Dgs Dbts Dth Dth(Dbts) Records: Events: Risk time: Persons:

Dgs 134677 1787 6016 0 142480 7803 2533689.21 142480

Dbts 0 1573 0 214 1787 214 14664.69 1787

Sum 134677 3360 6016 214 144267 8017 2548353.90 142480

Rates:

To

From Dgs Dbts Dth Dth(Dbts) Total

Dgs 0 0.007 0.024 0 0.031

Dbts 0 0 0 0.146 0.146

Table 6.1: A summary of the Lexis object showing the transitions between entry
and exit states and the transition rates which are multiplied by 10.

person-years. It is observed that in this study 6016 out of 142480 participants
have died without experiencing diabetes and 1787 participants have experienced
diabetes of whom 214 are dead. Thus, among 142480 persons there are 1787
events, i.e. occurrence of diabetes during 2533689 person-years, corresponding to
a rate of 0.007 events per 10 person-years. Similarly, the mortality rate without
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experiencing diabetes is 2.4% per 10 person-years whereas the mortality rate
after experiencing diabetes is 14.6% per 10 person-years.

6.1 Univariate analysis

In the previous chapter a separate analysis for each outcome with only groups
as covariate was presented in order to achieve a basic understanding of the effect
of the covariate. Similarly, an univariate analysis will now be conducted jointly
for all transitions shown in Figure 6.1.

Each model analyzed in this chapter is based on the Cox proportional hazards
model. It should be mentioned that the non-proportional hazards is not modeled
by assuming piecewise constant hazards as in the previous chapter, instead a
global hazard ratio for the covariate is taken into consideration.

6.1.1 Model I

Expecting the covariate Groups to have a different effect on each transition, the
first model used for this analysis is given as,

λhj (t|Z) = λhj,0 (t) exp
(
βT
hjZ

)
(6.1)

where βhj is the vector regression coefficients corresponding to the transition
from state h into j. Equation 6.1 describes a stratified Cox model, in which
each stratum represents one transition. Thus, it is assumed that there are dif-
ferent covariate effects for the different transitions and separate baseline tran-
sition hazards for each transition. In this case, Z is called a transition specific
covariate. Considering just one basic covariate Z, the three transition-specific
covariate vectors Z1, Z2, Z3 are defined as Z1 = (Z, 0, 0)T , Z2 = (0, Z, 0)T ,
Z3 = (0, 0, Z)T and the regression vector β = (β1, β2, β3)T has length 3 [16].

Considering Figure 6.1, the Cox proportional hazards model for each transition
is given by

λ12 (t|Z) = λ12,0 (t) exp (β12Z) (6.2)

for the transition going from state diagnosis to state diabetes,

λ13 (t|Z) = λ13,0 (t) exp (β13Z) (6.3)
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for the transition going from state diagnosis to state death and

λ24 (t|Z) = λ24,0 (t) exp (β24Z) (6.4)

for the transition going from state diabetes to state death. Model I (Equation
6.1) can be reduced to more parsimonious models where some baseline hazards
are assumed to be proportional or where some covariates have the same effect
on several transition intensities [4].

Assuming that the two mortality rates; diagnosis→ death and diabetes→ death
are proportional, the model given in Equation 6.1 can be reduced to

λ12 (t|Z) = λ12,0 (t) exp (β12Z) (6.5)

λ24 (t|Z) = λ12,0 (t) exp (β24Z) (6.6)

Note that only transitions going into the death states are considered. In this case
there are different covariate effects for each transition with regression coefficients
(β12, β24), but the transitions share a common baseline hazard; λ12,0.

This model can additionally be reduced to a model where the effect of the
covariates are assumed to be common for both transitions, i.e.

λ12 (t|Z) = λ12,0 (t) exp (βZ) (6.7)

λ24 (t|Z) = λ12,0 (t) exp (βZ) (6.8)

where β is a single, common effect of the covariate Z.

In the following results obtained from model I will be presented. Subsequently,
the reduction of this model will further be explained in details and the results
of these will be given.

6.1.1.1 Results

The results from model I is gathered in Table 6.2. T1 denotes the transition
from state diagnosis to state diabetes, T2 denotes the transition from state
diagnosis to state death and T3 denotes the transition from state diabetes to
state death with diabetes. The effect of a covariate for a transition is given as
the interaction with the transition in question. It is worth noticing that the
results from the multi-state models are nearly similar to the results from the
Cox models conducted separately for each transition.

In the analysis in the previous chapter it is seen that the childhood cancer
survivors have 64.6% [95% CI, 46.1-85.4] increased risk of developing diabetes
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coef exp(coef) se(coef) lower
0.95

upper
0.95

p -value

T1:exposed 0.512 1.668 0.062 1.479 1.883 < 0.001
T2:exposed 2.335 10.334 0.026 9.817 10.879 < 0.001
T3:exposed 0.772 2.164 0.150 1.612 2.905 < 0.001

Table 6.2: Results from the univariate Cox proportional hazards multi-state
model assuming different covariate effects and different baseline hazards.

compared to the general population. In the joint model, however, this risk is
increased to 66.8% [95%, CI, 47.9-88.3]. A small deviation in the results from
the two approaches for mortality rates without developing diabetes (transition
2) is similarly observable. But comparison of the results for transition 3 i.e. the
mortality rate after developing diabetes shows an identical estimation of this
rate.

6.1.2 Model II

In order to reduce model I to a model which is more parsimonious it is assumed
that hazard rates going into the same state are proportional, e.g. in this case
the two transitions into the death state, cf. Figure 6.1. This is equivalent to
grouping the transition 2 and 3 and using the occurrence of the intermediate
event, diabetes as a time dependent covariate.

Considering only this two transitions, Equation 6.1 implies for the first transition
intensity,

λ2 (t|Z) = λ2,0 (t) exp (β2Z) (6.9)

and similarly for transition 3,

λ3 (t|Z) = λ2,0 (t) exp
(
β3Z + β̃

)
(6.10)

where β̃ is the coefficient of a time-dependent covariate Z̃(t) that is an indicator
of being in state, diabetes. The indicator is introduced in order to avoid a
model for which rates are assumed to be identical. Z̃(t) distinguishes between
different transitions into the same state: Z̃(t) is 0 if the participant has not yet
experienced diabetes and 1 afterwards. The coefficient, β̃ is also an expression
for the proportionality factor between the two baseline hazards.
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Note that the same baseline hazard λ2,0 for both transition 2 and 3 is used. The
covariate vector, Z2 is defined either as (Z, 0, 0)T for transition 2 or as (0, Z, 1)T

for transition 3, and the regression vector is given as β = (β2, β3, β̃)T . Hence,
Z2 is now a time-dependent covariate; if tds is time of occurrence of diabetes,
then Z2 = (Z, 0, 0)T for t ≤ tds, and Z2 = (0, Z, 1)T for t > tds [16].

6.1.2.1 Results

The results of the model, that only considers transition 2 and 3, and assumes
different covariate effects but common baseline hazards, are listed in Table 6.3
The assumption of proportional hazards of the two mortality rates does not seem

coef exp(coef) se(coef) lower
0.95

upper
0.95

p -value

T2:exposed 2.336 10.342 0.026 9.824 10.886 <0.001
T3:exposed 0.768 2.155 0.150 1.607 2.889 <0.001
”Dbts”TRUE 1.839 6.287 0.086 5.311 7.443 <0.001

Table 6.3: Results from the univariate Cox proportional hazards multi-state
model assuming different covariate effects but common baseline hazards.

to change the results obtained from model I. The variable ”Dbts”TRUE indicates
whether or not diabetes has already occurred. Thus, the hazard ratio given for
this variable expresses the ratio between participants that experience diabetes
and those that do not experience diabetes. If the proportional hazard assump-
tion is true, the mortality rate for the participants that experience diabetes is 6
times greater than the participants that do not experience diabetes.

6.1.3 Model III

Model III is based on the same model described above, but now it is assumed
that covariate effects are the same for both sets of mortality rates.

In this case, the covariate vector is given as Z2 = (Z, 0)T for t ≤ tds, and
Z2 = (Z, 1)T for t > tds with the corresponding regression vector β = (βc, β̃)T .

It is also of interest to compare mortality rates pre and post diabetes occurrence
among exposed and unexposed by assuming proportional transition rates. For
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this purpose two additional models are conducted and the corresponding results
are listed below.

6.1.3.1 Results

Table 6.4 represents the results obtained by assuming common, global covariate
effect for the two transitions. Again, the difference between the transitions are
described by an indicator of being in state diabetes. In general the exposed
seems to have 9.8 [95 % CI, 9.3-10.3] times higher risk of death with and with-
out developing diabetes compared to unexposed. The occurrence of diabetes
increases the risk of death with 3-fold.

coef exp(coef) se(coef) lower
0.95

upper
0.95

p -value

exposed 2.284 9.813 0.026 9.331 10.319 < 0.001
”Dbts”TRUE 1.085 2.960 0.072 2.571 3.409 < 0.001

Table 6.4: Results from the univariate Cox proportional hazards multi-state
model assuming common covariate effects and common baseline hazards.

The effect of occurrence of diabetes on mortality rate among exposed is shown
in Table 6.5. It appears that a childhood cancer survivor with diabetes has 2.6
[95 % CI, 2.1-3.4] times higher risk of death compared to a survivor without
diabetes.

coef exp(coef) se(coef) lower
0.95

upper
0.95

p -value

”Dbts”TRUE 0.972 2.644 0.129 2.050 3.410 <0.001

Table 6.5: Results from the univariate Cox proportional hazards multi-state
model assuming common baseline hazards for mortality rate among exposed.

The effect of occurrence of diabetes on mortality rate among unexposed is shown
in Table 6.6.

It is seen that an individual from the general population is 3.7 [95 % CI, 3.1-
4.3] times more likely to die with diabetes compared to an individual without
diabetes.
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coef exp(coef) se(coef) lower
0.95

upper
0.95

p -value

”Dbts”TRUE 1.298 3.660 0.087 3.089 4.338 <0.001

Table 6.6: Results from the univariate Cox proportional hazards multi-state
model assuming common baseline hazards for mortality rate among unexposed.

6.1.4 Comparison of the models

It is desirable to test whether the two mortality rates, transition 2 and 3 actually
are proportional or not, i.e. whether the dependency on time is the same pre
and post diabetes occurrence. The usual anova techniques cannot be used, since
the applied models are semi-parametric. For these models the likelihoods only
are concerned with the regression parameters and the baselines are profiled out.
So in order to make a formal likelihood ratio test, the presented models are es-
timated by Poisson models which are fully parametric. The non-proportionality
of rates in Poisson regression is formulated by assuming that the rates are con-
stant in small intervals, but that the magnitude of rates follow some smooth
function [13].

The non-proportionality assumption is expressed in a simple generalized Poisson
regression model for the number of events in each transition and the natural
logarithm of risk times as in the following;

log (µij) = α+ β · Trij + λj · (Groupsij , T rij) + γj · (ns (timeij) , T rij) (6.11)

for ith subject and jth transition. Here ns() denotes the natural spline of the
underlying time. A proportional model is similarly obtained by merely adjusting
for time x state interaction.

The asymptotic likelihood ratio test has shown that there is a statistical signifi-
cant difference between the constructed models with a p-value < 0.001. Hence,
the assumption of proportional baseline hazards model does not hold i.e. the
dependency on time is not the same pre and post diabetes occurrence. To vi-
sualize the shapes of the baseline hazards the mortality rates with and without
diabetes is estimated from the Poisson model.

Figure 6.2 shows a plot of rates per 1000 person-years along with the estimated
empirical rates. It is observable that the spline functions fit the empirical rates
very well, but some uncertainty is obvious for empirical mortality rates with
diabetes. The figure indicates that neither proportional hazards assumption
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Figure 6.2: Age-specific mortalities for each cause of death. Blue is exposed and
red is unexposed.

within groups nor between transitions are satisfied. Although the proportion-
ality assumption is not fulfilled, the obtained results can be considered to be
interpretable in the global plan.

6.1.5 Discussion

The mortality and morbidity outcomes in childhood cancer survivors are in-
vestigated jointly by means of univariate multi-state models so far. It is seen
that the results from these outcomes obtained separately and jointly are nearly
similar with deviations. As an advantage of multi-state models, the first model
is reduced by assuming proportional mortality rates in participants with and
without diabetes. This assumption has made it possible to estimate the effect
of occurrence of diabetes in the cohort. Although the proportionality assump-
tion is not satisfied, the results are considered to be acceptable as an average
effect on the mortality rates. Hence, it is turned out that the occurrence of
diabetes increases the risk of death with 3-fold.
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6.2 Multivariate analysis

As in the previous chapter, other confounders in addition to Groups are included
in the model given in Equation 6.1. The nonlinear form of the covariates age
at diagnosis and calendar year are handled by categorizing. The models are
stratified by Gender and Country.

6.2.1 Model I - results

The first model is fitted by assuming different baseline hazards with different
covariates effects as in the previous section. The results obtained from the fit is
listed in Table 6.7. In the model the reference variable for exposed is unexposed,
the reference for age at diagnosis is the age group [0-5] and the reference for
calendar year is the calendar year [1943-1960].

Comparison of the results obtained by separate and joint model is not possible
for transition 2 and 3, since the assumption of piecewise constant hazard for
the covariate Groups is not applied to the joint model. But the effect of the
covariates on morbidity rates obtained separately cf. Table 5.5 are comparable
to the results obtained jointly for transition 1. Some deviations between the
results are observable. For instance, in the analysis conducted separately for
morbidity rate it is found that a participant diagnosed in [1960-1974] has 35%
[95% CI, 14-59 %] increased risk of developing diabetes compared to a partic-
ipant diagnosed in [1943-1960]. The result from the multi-state model, on the
other hand, has shown that the participant is 25% [95% CI, 6-49%] more likely
to develop diabetes compared to a participant diagnosed in the reference year,
holding other covariates constant.

Similar to the results found in univariate analysis, the childhood cancer survivor
in this model has the highest risk of experiencing each transition compared to
the general population. They are 12.8 [95 % CI, 11.8-13.9] times more likely to
die without experiencing diabetes, and 2.1 [95% CI, 1.7-2.7] times more likely
to experience diabetes and 2.4 [95% CI, 1.5-3.7] times more likely to die with
diabetes compared to unexposed, holding other covariates constant. The effect
of the age groups at diagnosis [5-10] and [10-15] is positive for each transition
rate, but is only significant for transition 2 compared to the reference age at
diagnosis. Age at diagnosis [15-20], on the other hand, has a negative significant
effect on the morbidity rate, a significant positive effect on mortality rate without
diabetes and an insignificant positive effect on mortality rate with diabetes,
compared to the reference age at diagnosis. A participant with an age in the
interval [5-10] has 9% [95% CI, -23-54 %] higher risk of developing diabetes
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compared to a participant with an age at diagnosis [0-5]. But the risk does
not appear to be significant. The same person has 65% higher risk of death
without developing diabetes and 55% higher insignificant risk of death with
developing diabetes compared to a reference participant after adjustment for
other confounders. The effect of calendar years at diagnosis on transition rates
is statistically significant relative to reference interval [1943-1960] except for
transition 3. The effect is observed to be positive for transition 1 and 2. Hence,
a participant diagnosed in [1974-2010] has 30% [95% CI, 6-60%] increased risk
of developing diabetes compared to a participant diagnosed in the reference
year,holding other covariates constant.

coef exp(coef) se(coef) lower
0.95

upper
0.95

p -value

T1:exposed 0.752 2.122 0.115 1.695 2.656 < 0.001
T2:exposed 2.550 12.810 0.043 11.773 13.938 < 0.001
T3:exposed 0.856 2.354 0.234 1.489 3.721 < 0.001
T1:Age [5-10] 0.084 1.088 0.178 0.767 1.542 0.637
T2:Age [5-10] 0.500 1.648 0.054 1.483 1.833 < 0.001
T3:Age [5-10] 0.439 1.551 0.543 0.535 4.494 0.419
T1:Age [10-15] 0.121 1.129 0.163 0.820 1.554 0.457
T2:Age [10-15] 0.536 1.710 0.055 1.536 1.902 < 0.001
T3:Age [10-15] 0.677 1.969 0.448 0.818 4.739 0.131
T1:Age [15-20] -0.371 0.690 0.155 0.510 0.935 0.017
T2:Age [15-20] 0.471 1.602 0.052 1.448 1.773 < 0.001
T3:Age [15-20] 0.783 2.189 0.449 0.908 5.279 0.081
T1:Cal [1960-1974] 0.226 1.254 0.086 1.059 1.485 0.009
T2:Cal [1960-1974] 0.132 1.141 0.056 1.022 1.274 0.019
T3:Cal [1960-1974] -0.138 0.871 0.217 0.570 1.332 0.524
T1:Cal [1974-2010] 0.265 1.303 0.105 1.060 1.602 0.012
T2:Cal [1974-2010] 0.072 1.074 0.066 0.943 1.224 0.282
T3:Cal [1974-2010] -0.064 0.938 0.329 0.492 1.788 0.846

Table 6.7: Results from the multivariate Cox proportional hazards multi-state
model assuming different covariate effects and different baseline hazards.

6.2.2 Model II - results

Model II is set up as before by assuming that transition rates going into death
states are proportional. Furthermore, it is assumed that there are different
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covariate effects on each transition. The model is constructed as in Equation
6.9 and 6.10 by considering only transition 2 and 3 and including all prognostic
factors. Table 6.8 shows the results of Cox proportional hazards multi-state
model. By comparing results from model I and model II with regard to transition
2 and 3, it is observed that the significant effects of almost all covariates from
the two models differ with a small deviation. In model I the effect of calendar
year is insignificant in transition 3, whereas it becomes slightly significant in
model II. Note that occurrence of diabetes is also included in the model and
here the hazard ratio represents the effect of experiencing diabetes on the rate
of occurrence of the endpoint death. A participants developing diabetes has 5.3
times [95% CI, 2.1-13.3] increased risk of death compared to a participant that
does not develop diabetes.

coef exp(coef) se(coef) lower
0.95

upper
0.95

p -value

T2:exposed 2.547 12.771 0.043 11.738 13.895 <0.001
T3:exposed 0.884 2.422 0.230 1.544 3.798 <0.001
T2:Age [5-10] 0.499 1.647 0.054 1.481 1.831 <0.001
T3:Age [5-10] 0.429 1.535 0.535 0.538 4.380 0.423
T2:Age [10-15] 0.535 1.707 0.054 1.534 1.899 <0.001
T3:Age [10-15] 0.508 1.662 0.436 0.707 3.907 0.244
T2:Age [15-20] 0.476 1.610 0.052 1.455 1.781 <0.001
T3:Age [15-20] 0.460 1.585 0.427 0.687 3.657 0.281
T2:Cal [1960-1974] 0.104 1.110 0.055 0.996 1.237 0.060
T3:Cal [1960-1974] 0.333 1.395 0.166 1.007 1.932 0.046
T2:Cal [1974-2010] 0.042 1.043 0.065 0.918 1.185 0.520
T3:Cal [1974-2010] 0.587 1.799 0.193 1.233 2.623 0.002
”Dbts”TRUE 1.673 5.329 0.468 2.129 13.336 <0.001

Table 6.8: Results from the multivariate Cox proportional hazards multi-state
model assuming different covariate effects but common baseline hazards.

6.2.3 Model III - results

After combining baseline hazards of different transitions it may be relevant to
joint parameters between transitions. Based on model II it is now assumed that
a single effect estimate of the covariates is common for both sets of mortality
rates. The results from the model is given in Table 6.9. Using global covariate
itself, it is observed that childhood cancer survivors compared to the general
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population are associated with increased risk of death. They are 11.6 [95%,
CI, 10.6-12.6] times more likely to die, holding other covariates constant. The
overall effect of age groups [5-10], [10-15] and [15-20] at diagnosis compared
to age group [0-5] on mortality rates is significantly positive meaning that the
risk of death for a participant with an age at diagnosis [5-10] is 1.7 times the
risk for a participant with an age at diagnosis [0-5] and so forth. Calendar
year at diagnosis, on the other hand, appears to have a negative effect on the
mortality rates. A participant diagnosed in [1974-2010] has 14% [95%, CI, 3-
24%] decreased risk of death compared to a participant diagnosed in [1943-1960]
after adjustment of other prognostic factors. The effect of calendar year [1960-
1974] on the mortality rate does not differ from the effect of calendar year
[1943-1960]. The overall effect of the occurrence of diabetes on mortality rate
is 2.9 times higher than if diabetes does not occur, holding all other covariates
constant.

coef exp(coef) se(coef) lower
0.95

upper
0.95

p -value

exposed 2.447 11.555 0.042 10.636 12.553 < 0.001
Age [5-10] 0.506 1.658 0.054 1.493 1.842 < 0.001
Age [10-15] 0.494 1.638 0.054 1.474 1.821 < 0.001
Age [15-20] 0.443 1.558 0.051 1.410 1.722 < 0.001
Cal [1960-1974] -0.059 0.943 0.051 0.853 1.043 0.255
Cal [1974-2010] -0.149 0.862 0.063 0.762 0.974 0.017
”Dbts”TRUE 1.090 2.973 0.072 2.580 3.426 < 0.001

Table 6.9: Results from the multivariate Cox proportional hazards multi-state
model assuming common covariate effects and common baseline hazards.

6.2.4 Comparison of the models

As before in order to test whether the two mortality rates, transition 2 and 3
actually are proportional, Poisson regressions using generalized linear models are
fitted. The fit is based on the equation given in 6.11 in which age at diagnosis and
calendar year is included. The models are tested by an anova test as previously.
Comparison of the models fitted with and without a time x state interaction has
shown a significant difference (p-value < 0.001) between the models meaning
that the assumption of proportional mortality rates are violated. Although the
transitions are time-dependent, the recovered results from model II and model
III reflect an averaged effect of covariates on the mortality rates.
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6.2.5 Discussion

A multi-state model including all confounders of interest is set up. It is realized
that a comparison of morbidity outcome analyzed separately and jointly is pos-
sible. The results from the two methods has shown some small deviations. The
reduction of multi-state models has made it possible to investigate the effect
of occurrence of diabetes on mortality rates. Even though the proportionality
assumption made under model reduction process is not satisfied, the results ob-
tained from these models give some general idea about the effect of the covariates
and the occurrence of diabetes on mortality rates. It appears from the multi-
variate Cox proportional hazards multi-state model assuming common covariate
effects and common baseline hazards (Table 6.9) that the risk of mortality af-
ter occurrence of diabetes is 3 [95% CI,2.6-3.4] times risk of mortality without
occurrence of diabetes. This recovered result is also reflected by cumulative
incidence plots presented in Chapter 3.

In the same chapter number of exposed that have developed diabetes and their
corresponding diagnosis type were also given. It was observed that most of
the exposed with diabetes were associated with Central Nervous System (CNS)
tumors and Leukemia. This founding is also supported by research which is
reported that diabetes may be caused by CNS-involved leukemia [43] and a
significant proportion of children with central nervous system (CNS) germ cell
tumors (GCTs) was present with diabetes [68][37].

6.3 Prediction of transition probabilities

One of the advantages of multi-state models is the possibility to estimate tran-
sition probabilities by means of cumulative risks for each cause of death. The
first approach is to determine the age-specific mortality rates and survival func-
tion, and then compute the cumulative probabilities of being dead from each
of the causes before a given age. The mortality rates are modeled by Poisson
regressions including natural splines.

Figure 6.3 shows the different rates along with the corresponding 95% confi-
dence bands in the same frame relative to each other separately for exposed
and unexposed. Since none of the participants in their younger age has died
after developing diabetes, the confidence bands of mortality rate estimates with
diabetes are not estimated well in this interval. It is apparent from the fig-
ure that the exposed has a quite higher mortality rates both with and without
diabetes compared to unexposed. For both exposed and unexposed the mor-
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Figure 6.3: Age-specific mortalities for each cause of death.

tality rate with diabetes seems to be higher than the mortality rate without
diabetes. The mortality rates without diabetes for unexposed is comparable to
the mortality rates obtained from the Danish cause of death data analyzed by
Bendix Carstensen [12]. The comparison of the rates has shown a strong simi-
larity, which implies that the estimated rates can easily be used to compute the
cumulative probabilities.

The cumulative risks or rather the probabilities that a participant ends up dead
before or after developing diabetes is estimated by means of the mortality rates.
The calculations are based on the theory presented in Chapter 4 for prediction
of transition probabilities. The estimated transition probabilities are displayed
in Figure 6.4. Note that the probabilities are conditioned on the number of
participants that have died in the study. The upper panel in the figure illustrates
cumulative risks for each cause for exposed and unexposed, whereas the lower
panel shows predictions conditional on survival till age 20. Conditional survival
is computed by using mortalities from age 20. It is estimated in order to show
that the predicted cause of death patterns are calculated relevantly assuming
that they apply throughout life. In all plots the lowest curve represents the
survival function for the group in question.

The upper panel reflects that the fraction exposed dead with diabetes is higher
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than the fraction exposed died without developing diabetes. A childhood cancer
survivor with an age 40 in this study has approx. 55% probability of dying with
diabetes and 30% probability of dying without diabetes. A nearly proportional
distribution of mortality with and without diabetes is observable. Survivors
aged from 0 to 20 has an decreasing survival reflected by a steep decrease in
the survival function. The unexposed, on the other hand, shows sensemaking
survival. Similar to exposed the fraction unexposed dead with diabetes is higher
than the fraction died without diabetes. A 60 years old unexposed in this study is
expected to live with 58% probability and die with 35% probability if the person
is developed diabetes and the person is expected to die with 7% probability if
the person is not developed diabetes.

By studying the lower panel, it is observed that conditional on survival to age
20 a childhood cancer survivor with an age 40 has approx. 58% probability of
being alive, 34% probability of dying with diabetes and 8% probability of dying
without diabetes.
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Figure 6.4: Cumulative risk functions for exposed (blue) and unexposed (red).
The lower panel shows predictions conditional on survival till age 20.
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6.4 Conclusion

In order to investigate the morbidity and mortality outcome jointly in childhood
cancer cohort compared to the general population an univariate and a multi-
variate analysis are conducted respectively. In both analyses a Cox proportional
hazards multi-state model is set up and reduced to some sub-models.

The univariate analysis has demonstrated some similar results compared to the
results from outcomes obtained separately. From the univariate Cox propor-
tional hazard multi-state model assuming different covariate effects and differ-
ent baseline hazards, it is found that the childhood cancer survivor is 1.7 [95%
CI, 1.5-1.8] times more likely to develop diabetes, 10.3 [95% CI, 9.8-10.9] times
more likely to die without developing diabetes and 2.2 [95% CI, 1.6-2.9] times
more likely to die with developing diabetes compared to the general population.
The reduction of the multi-state model has made it possible to investigate the
global effect of occurrence of diabetes by assuming that mortality rates in the
participants with and without diabetes are proportional. It is turned out that
a childhood cancer survivor is 2.6 [95 % CI, 2.1-3.4] times more likely to die if
the survivor is developed diabetes than the other way around.

The multivariate analysis of multi-state models has shown that the risk of mor-
bidity and mortality in childhood cancer survivors compared to the general
population is quite similar to the results obtained from the univariate analysis.
Furthermore, from the multivariate Cox proportional hazard multi-state model
assuming different covariate effects and different baseline hazards, it is found
that the age groups at diagnosis has a positive effect on each transition rate
compared to age at diagnosis [0-5] except the age group [15-20] which has a neg-
ative effect on experiencing diabetes relative to age at diagnosis [0-5], holding
other covariates constant. The effect of age groups at diagnosis compared to the
reference group is statistically significant in explaining the transition rates for
all transition except transition 3. In the same way, the effect of calendar year at
diagnosis is observed to be positive and statistically significant compared to the
reference year for all transition except for transition 3. After reducing the full
model it is found from the multivariate Cox proportional hazards multi-state
model assuming common covariate effects and common baseline hazards that
the risk of mortality after occurrence of diabetes is 2.9 [95% CI,2.6-3.4] times
the risk of mortality without occurrence of diabetes. It is, though, a global effect
on the mortality rate.

The estimation of the transition probabilities is computed conditional on the
number of participants that have died in the study. It is observed that both
fraction exposed and unexposed dead with diabetes is higher than the fraction
died without developing diabetes. For both groups a nearly proportional distri-
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bution of cause of death is apparent.
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Chapter 7

Conclusion and Discussion

7.1 Conclusion

The morbidity and mortality outcomes in the nordic childhood cancer cohort
compared to the general population cohort is analyzed using two-state survival
models as well as more advanced and sophisticated multi-state models. Both
analyses are based on Cox Proportional hazards model.

The results from the univariate multi-state model with the aim to investigate
the effect of the groups on different transition rates are similar to the results
from the statistical standard analyses conducted separately, with small devi-
ations. Both analyses have revealed that the childhood cancer survivors are
associated with higher risk of experiencing both mortality and morbidity out-
come when compared to the general population. The risk of mortality without
developing diabetes, however, was highest among other outcome. The univariate
Cox proportional hazards multi-state model assuming common baseline hazards
for mortality rate among exposed has shown that a childhood cancer survivor
with diabetes was 2.6 [95% CI, 2.1-3.4] times more likely to die compared to a
survivor without diabetes.

The multivariate analysis conducted separately and jointly was only comparable
with regard to the morbidity outcome. The comparison of the two approaches



66 Conclusion and Discussion

has demonstrated similar results with small deviations. As in the univariate
analysis, it is found that the risk of mortality and morbidity in childhood can-
cer cohort is notably higher compared to the general population cohort, after
adjustment for other confounders. It is appeared that a participant that was
diagnosed in his/her older age, i.e. in the interval [15-20] had 30% [95 % CI,
10-49%] decreased risk of developing diabetes compared to a participant with
an age at diagnosis [0-5], holding other covariates constant. Apart from that,
age at diagnosis seemed to have a positive statistically significant effect on mor-
bidity rate and on mortality rate without developing diabetes compared to the
reference age group. Furthermore, it is observed that neither age at diagnosis
nor calendar year at diagnosis had a statistical significant effect on the risk of
mortality after developing diabetes. It has become apparent that the effect of
calendar year at diagnosis was positive on experiencing diabetes and on mortal-
ity rates without developing diabetes when compared to the reference calendar
year.

By constructing multi-state models it has been possible to investigate the effect
of occurrence of diabetes on mortality rates assuming proportional rates pre and
post diabetes. Although the assumption was not satisfied, it is concluded that
the results might be acceptable in explaining the average effect on the mortality
rates. Hence, it is found from the multivariate Cox proportional hazards multi-
state model assuming common covariate effects and common baseline hazards
that the effect of the occurrence of diabetes was 3 [95% CI, 2.6-3.4] times the
effect of non-occurrence of diabetes on the mortality rates, holding other co-
variates constant. This result is supported partly by the cumulative incidence
functions presented in Chapter 3 and partly by the prediction of the transition
probabilities depicted in Figure 6.4.

Overall it can be concluded that the analysis of morbidity and mortality out-
comes conducted jointly yields both similar and additional results when com-
pared to the traditional analysis.
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7.2 Discussion

It is an important public health issue to be able to quantify the elevated risk of
late effects due to its treatment. Several statistical techniques can be utilized
for this purpose. In this thesis the morbidity and mortality outcomes in child-
hood cancer survivors are analyzed both separately and jointly using multi-state
models.

In the first part of the analysis two-state Cox proportional hazards models are
constructed for morbidity and mortality outcomes separately in order to see
how prognostic factors influence different phases of the illness/death process.
Before applying the results of the models some of the important issues such
as the assessment of the underlying model assumptions i.e. the functional form
of the covariates and the assumption of proportional hazards are considered.
The violation of linear functional form of the covariates and proportional haz-
ards assumption are handled by categorizing non-linear covariates and assuming
piecewise hazards, respectively. It might be noticed that since incorrect func-
tional forms can appear as non-proportional hazards, the functional forms of
the covariates are corrected before non-proportional hazards are diagnosed.

There are various approaches to deal with the violation of these assumptions.
The non-linear form of a covariate could be incorporated into a Cox model by
spline fits and be tested by Wald test in order to find out if the non-linear effect
could remain in the specification [29]. To deal with violation of proportional
hazards assumption one could choose to stratify the covariate that does not
satisfy the proportional hazards assumption. But since it is not possible to
examine the effect of the stratified covariate, stratification would not be a good
option for the covariates that are of interest to be analyzed. An other approach
could be to include log-time interaction with the covariate that violates the
proportional hazards assumption.

In the second part of the analysis the multi-state models are set up based on
the correction of nonlinear functional forms of the covariates diagnosed in the
first part. These models are constructed in order to analyze different covariate
effects on several transitions simultaneously and investigate if there is common
covariate effect between transitions and if hazard rates going into same state
(death) can assumed to be proportional. These models are also used for cal-
culating transition probabilities and for investigating if the occurrence of a late
effect changes the risk of the event of interest death to occur.

Both part of the analysis has shown some similar results. Both approaches have
verified that the childhood cancer survivors were associated with increased risk
of developing diabetes and dying with this late effect when compared to the
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general population. In addition to the standard analyses, multi-state models
have revealed that the occurrence of diabetes increased the risk of mortality.
It is shown that the proportionality assumption of the mortality rates is not
met, but the results are accepted to be interpretable as being a global effect on
the mortality rates. The multi-state models based on the assumption of propor-
tional baseline hazards is presented in order to demonstrate two advantages: one
hazard can be estimated instead of two and the risk of occurrence of diabetes
on mortality rate can be determined. The disadvantage of this approach is that
it is still an assumption, and it does not always hold.

Given that the proportionality assumption is not made, one could still combine
the covariate effects across transitions and estimate a global effect of the co-
variate. At this point it is up to the researcher if he/she will make use of the
estimated global effect or the estimated transition-specific effects. This decision,
however, depends partly on how many direct transitions and paths are between
states and how many covariate effects are desired to be estimated. Modeling
the effect of covariates for each transition separately leads to a large number of
regression coefficients to be estimated and this can cause over-fitting, especially
when transitions with few events are present. The problem can be solved by
assuming equal covariate effects transitions or assuming zero-covariate effect for
the event-poor transition [33]. In addition to that, in order to deal with the
abundance of regression parameter to be estimated, the use of the reduced-rank
techniques introduced in the paper [33] can be applied.

Multi-state models can be constructed by means of Cox proportional hazards
models or Poisson regressions. There is not a difference between these two ap-
proaches. Poisson models enable smoothing of the effects of time-scales using
standard regression tools and enable modeling of the interactions between time-
scales and other covariates. Cox proportional hazards models, on the other
hand, are useful for clinical follow-up studies in which there is only one relevant
timescale and the focus is on the effect of covariates than time. The primary
interest in these studies is the survival function rather than the baseline haz-
ard [10]. Cox models can be more desirable for multi-state models since the
semi-parametric model specification allows flexible covariate structures such as
frailties, time-dependent and transition-specific covariates.

Multi-state models can be useful tools in understanding and describing the dis-
ease progression and for prediction purposes. They allow for simultaneous anal-
yses of several transitions and in this way a relative interpretation of hazards.
They are flexible in varying, restricting covariate effects across transitions and
combining baseline hazards of different transitions. Not only models analysed
in Chapter 6, but also any combination of common and transition-specific co-
variates in stratified or proportional baseline hazards can be modeled. If one
is interested in the effect of the duration in a state on hazard, this can merely
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be included in the model. It is also possible to leave out covariates for one
transition and include them for another transition [16]. But these possibilities
make multi-state models complicated to deal with and the analysis of all possible
combinations of model constructions is time-consuming.

Although an increasing interest in multi-state models is considered in the recent
years, theoretical study and application of multi-state models has been limited to
statistical journals. The reason for this limitation has been due to the complexity
of the models and lack of good software [41]. However, a number of software
packages have been developed in R for the analysis of multi-state models in the
recent years. The principle in these softwares is to make an appropriate data
set representing each individual by several observations. The softwares have all
some limitations in practice as listed in Chapter 4. Since this study is dealt with
a data set in which the event times are measured exactly i.e. all transitions are
observed, and the main interest is to construct semi-parametric models, the most
appreciated packages for analysis purposes are Epi and mstate. In this study
both of the packages are used for constructing multi-state models for which
similar results are obtained. But only results from Epi package is presented,
since the package is considered as being user-friendly and more flexible. For the
data that are interval censored, the package msm is recommended [23].

Multi-state models have many extensions. The standards are two-state models,
competing risks, disability, bivariate and recurrent events models. These are
used to model multivariate and multiple survival data. Furthermore, multi-
state models consider all data as being longitudinal and therefore they are less
useful for repeated observations [25].



70 Conclusion and Discussion

7.3 Future work

In this thesis multi-state models including only one late effect in childhood
cancer survivors are constructed. A broad range of other outcome information
is available in the data obtained from ALiCCS study. Analysing these outcomes
separately can lead to lost of information, since late effects are often correlated.
It would be of interest to study the different late effects jointly by means of
multi-state models. In this way it would be possible to quantify bias of effect
estimates of covariates for childhood cancer when using traditional statistical
methods and describe how late effects of treatment for childhood cancer are
interrelated. An illustration of this approach is depicted in Figure 7.1.
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  Hemorrhage 

  Hypertension 

  Dead 

  Diabetes   Dead 

  Dead 

  Dead 

 

 Cardiomyopathy 

     Diagnosis       Diabetes 

         Dead          Dead           Dead 

Figure 7.1: Model blocks representing competing risk and multi-state models
respectively.

The first block demonstrates a competing risk model where the participants can
experience different late effects independently and may die with or without a
late effect. The second block, on the other hand, illustrates a multi-state model
in which a participant can die with more than one late effect.
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The analysis conducted in this thesis is restricted to uni-directional multi-state
models for which recurrent events are not possible. However, in an illness/death
model the reversibility, the transition back into the same state is possible. In
this case disregarding recurrent events may yield to biases results in explaining
the variety event rate of late effects, especially since late effects are correlated.
A further work in analysing late effects could be to allow recurrent events in
multi-state models so that the effect of first and recurrent morbidity could be
estimated. A simple example of this is shown in Figure 7.2.

                                                                                                    Rehospitalization 

 

 

 

 

 

 

 

 

  

 Cardiomyopathy 

     Diagnosis       Diabetes 

         Dead          Dead           Dead 

Figure 7.2: Model block representing an illness-death model with recurrent
events.

An additional information given in the data set is the type of diagnosis for each
childhood cancer survivor. It would be of interest to investigate the effect of
different treatments for childhood cancer on late effects. Some other factors
that may influence the occurrence of late effects, for example life style, health
status, occupation, smoking and genetic risk factors is not taken into account in
this study. It could be interesting to assess if these have an influence on the risk
estimates of late effects and to quantify the precision of risk estimates of these.
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Appendix A

Definitions

C
Cardiomyopathy: which means ”heart muscle disease”, is the deterioration of
the function of the myocardium (i.e., the actual heart muscle) for any reason
[51].

Cardiovascular and pulmonary diseases: are defined as any disorder that
affects the heart or lungs’ ability to function normally. There are a variety
of different diseases and conditions which fit this description including endo-
carditis, heart attack, heart failure, chronic obstructive pulmonary disease and
pulmonary stenosis [61].

Case-control studies: A case-control study is an analytical study which com-
pares individuals who have a specific disease (”cases”) with a group of individuals
without the disease (”controls”). The proportion of each group having a history
of a particular exposure or characteristic of interest is then compared. An asso-
ciation between the hypothesized exposure and the disease being studied will be
reflected in a greater proportion of the cases being exposed. It is advantageous
for the controls to come from the same population from which the cases were
derived, to reduce the chance that some other difference between the groups is
accounting for the difference in the exposure that is under investigation [52].
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Censoring: occurs when some lifetimes are known to have have occurred only
within certain intervals [30].

Competing events: refers to a situation where an individual is exposed to
two or more causes of failure, and its eventual failure can be attributed exactly
to only one [44].

Confounding:In statistics, a confounding variable (also confounding factor,
hidden variable, lurking variable, a confound, or confounder) is an extraneous
variable in a statistical model that correlates (positively or negatively) with both
the dependent variable and the independent variable [55].

Cohort: In statistics and demography, a cohort is a group of subjects who have
shared a particular time together during a particular time span. Cohorts may
be tracked over extended periods in a cohort study [54].

Cox regression: Cox regression (or proportional hazards regression) is method
for investigating the effect of several variables upon the time a specified event
takes to happen. In the context of an outcome such as death this is known as
Cox regression for survival analysis [56].

D
delayed entry (left truncation): occurs when subjects enter a study at
a particular age (not necessarily the origin for the event of interest) and are
followed from this delayed entry time until the event occurs or until the subject
is censored [30].

Diabetes: is a group of metabolic diseases in which a person has high blood
sugar, either because the body does not produce enough insulin, or because cells
do not respond to the insulin that is produced [57].

E
Epidemiology: is the study of the distribution and determinants of health-
related states or events (including disease), and the application of this study to
the control of diseases and other health problems [58].

G
Goodness-of-fit: The goodness of fit of a statistical model describes how well
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it fits a set of observations. Measures of goodness of fit typically summarize the
discrepancy between observed values and the values expected under the model
in question [59].

H
Hazard function: is a measure of the tendency to fail; the greater the value
of the hazard function, the greater the probability of impending failure [60].

Hemorrhage: is the loss of blood or blood escape from the circulatory system
[50].

Hypertension: Hypertension (HTN) or high blood pressure, sometimes arte-
rial hypertension, is a chronic medical condition in which the blood pressure in
the arteries is elevated [62].

L
Left censoring: the event of interest has already occurred for the individual
before that person is observed in the study at the left censoring time [30].

Lexis diagram: is a two dimensional diagram that is used to represent events
(such as births or deaths) that occur to individuals belonging to different cohorts
[72].

Likelihood ratio test: In statistics, a likelihood ratio test is a statistical test
used to compare the fit of two models, one of which (the null model) is a special
case of the other (the alternative model) [64].

M
Metabolic syndrome: is a combination of medical disorders that, when occur-
ring together, increase the risk of developing cardiovascular disease and diabetes
[73].

R
Relative risk: In statistics and mathematical epidemiology, relative risk (RR)
is the risk of an event (or of developing a disease) relative to exposure. Relative
risk is a ratio of the probability of the event occurring in the exposed group
versus a non-exposed group [66].
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Right censoring: an event is observed only if it occurs prior to some prespec-
ified time [30].

S
Semi-parametric model: in statistics a semiparametric model is a model that
has parametric and nonparametric components [66].

Standardized mortality ratio: in epidemiology is the ratio of observed deaths
to expected deaths, where expected deaths are calculated for a typical area with
the same age and gender mix by looking at the death rates for different ages
and genders in the larger population [74].

Survival analysis: Survival analysis is just another name for time to event
analysis. The term survival analysis is used predominately in biomedical sciences
where the interest is in observing time to death either of patients or of laboratory
animals [49].

Survival function: is a property of any random variable that maps a set of
events, usually associated with mortality or failure of some system, onto time.
It captures the probability that the system will survive beyond a specified time
[67].



Appendix B

Supplementary figures and
tests

B.1 Cumulative incidence

In this appendix some supplementary figures and tests are presented. The crude
estimates of cumulative incidence of mortality and morbidity with regard to
country and gender is displayed in Figure B.1 and B.2, respectively.
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Figure B.1: Cumulative incidence of mortality and morbidity with regard to
country.

B.2 Tests for two-state models

B.2.1 Morbidity rate

The functional form of the age at diagnosis and calendar year for morbidity rate
analysis is diagnosed by using the method of smoothing. Figure B.3 shows the
nonlinear effect of the covariates.
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Figure B.2: Cumulative incidence of mortality and morbidity with regard to
gender.

A test for the proportional hazards assumption of the final model for morbidity
rate is gathered in Table B.1.

B.2.2 Mortality rate with diabetes

The nonlinear functional form of the covariates: age at diagnosis and calendar
in the final two-state analysis is diagnosed and fitted by spline functions as seen
in Figure B.4.
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Figure B.3: Functional form of age at diagnosis (left) and calendar year at di-
agnosis (right) on log hazard of morbidity. In both plots the thick lines represent
the spline fit while the dashed lines represent 95% confidence bands for the fit.

ρ χ2 p -value

exposed -0.02526 1.17575 0.2782
Age [5-10] -0.02057 0.78898 0.3744
Age [10-15] -0.02910 1.62180 0.2028
Age [15-20] -0.04472 3.81239 0.0509
Calendar [1960-1974] 0.00131 0.00329 0.9543
Calendar [1974-2010] 0.01063 0.22025 0.6389

Table B.1: Test results of proportional hazards assumptions.

To assess violations of the proportional hazard assumption of the model ana-
lyzing mortality rate with diabates, it is assumed that the variable Groups is
a piecewise time-varying covariate. The hazard ratios of exposed based on the
extended Cox model is estimated and is shown in Figure B.5.

The test result of the proportional hazards assumption of the final model is
displayed in Table B.2.



B.2 Tests for two-state models 81

Age at diagnosis

lo
g 

R
el

at
iv

e 
H

az
ar

d

0 5 10 15 20

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Calendar

lo
g 

R
el

at
iv

e 
H

az
ar

d
1940 1950 1960 1970 1980 1990 2000 2010

−
2

0
2

4

Figure B.4: Functional form of age at diagnosis (left) and calendar year at
diagnosis (right) on log hazard of death with diabetes.
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ρ χ2 p -value

Age [5-10] 0.0360 0.2569 0.6123
Age [10-15] -0.0248 0.1292 0.7193
Age [15-20] 0.0112 0.0286 0.8658
Calendar [1960-1974] -0.0126 0.0350 0.8515
Calendar [1974-2010] -0.0576 0.6808 0.4093
episode [1-5] -0.1497 4.7882 0.0287
episode [5-10] -0.0745 1.1577 0.2819
episode [10-15] -0.0708 0.9360 0.3333
episode 15+ -0.0606 0.7865 0.3752

Table B.2: Test results of proportional hazards assumption.
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R programming

C.1 Preparation of data

# Data from Denmark

data<-read.csv("//filserv.cancer.dk/EPI/EPI-Brugere/kadriye/Thesis/R/

Datasets/data.csv", header=TRUE,sep = ";")

Groups<- rep(0,length(I))

Groups<- replace(data$kontrol_nr, data$kontrol_nr == 0, "exposed")

for(i in 1:5 ){

Groups<- replace(Groups, data$kontrol_nr == i, "unexposed")

}

data$Groups<-Groups

### Defining sex

data$sex<-replace(data$sex, data$sex==1, "boy")

data$sex<-replace(data$sex, data$sex==2, "girl")

### Defining status for event of interest: death

data$status<-replace(data$status, data$status!=90, 0)

data$status<-replace(data$status, data$status==90, 1)

### Defining the relevant dates
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# first insert the missing values in the given dates

# for birth date

data$fsdato<-ifelse(nchar(data$fsdato)==7,

paste(0,data$fsdato, sep=""),

data$fsdato )

# for diagnosis date

data$diagdato<-ifelse(nchar(data$diagdato)==7,

paste(0,data$diagdato, sep=""),

data$diagdato )

# for status date

data$statdato<-ifelse(nchar(data$statdato)==7,

paste(0,data$statdato, sep=""),

data$statdato )

# define date of diabetes registration

# note that a subject has a diabetes date if the person experiences

# diabetes, otherwise the date of diabetes registration is set to

# date of status.

data$diadato<-data$statdato

data$diadato[!is.na(data$dmA)]<-data$dmA[!is.na(data$dmA)]

data$diadato<-ifelse(nchar(data$diadato)==7,

paste(0,data$diadato, sep=""),data$diadato )

data$BirthDate<-as.Date(as.date(data$fsdato, order= "dmy"))

data$DiagDate<-as.Date(as.date(data$diagdato, order= "dmy"))

data$DiaDate<-as.Date(as.date(data$diadato, order= "dmy"))

data$ExitDate<-as.Date(as.date(data$statdato, order= "dmy"))

# Entry date

data$EntryDate<-c(rep(0,nrow(data)))

# Entry into the study happens one year after diagnosis.

data$EntryDate<-as.Date(cal.yr(data$DiagDate) +1)

# Entry date of the subjects that have a diagnosis date before 1977

cohortstart<-as.Date("01Jan1977", "%d%b%Y")

Agebefore<-which(data$EntryDate < cohortstart)

data$EntryDate[Agebefore]<-cohortstart

### Defining status variable for event: diabetes

data$EventDia<-rep(0,length(data$dmA))

data$EventDia[data$dmA!= "NA"]<-1

### Defining the relevant ages

data$AgeDiagnosis<-cal.yr(data$DiagDate)-cal.yr(data$BirthDate)

# set negative age values to zero.

data$AgeDiagnosis[which(data$AgeDiagnosis<0)]<-0
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data$AgeExit<-cal.yr(data$ExitDate)-cal.yr(data$BirthDate)

agebline<- cal.yr(cohortstart)-cal.yr(data$BirthDate[Agebefore])

# Entry into the study happens one year after diagnosis.

data$AgeEntry<-data$AgeDiagnosis+1

data$AgeEntry[Agebefore]<-agebline

# age when experiencing diabetes

data$Dia.Age<- cal.yr(data$DiaDate)-cal.yr(data$BirthDate)

### time until experiencing diabetes

data$Dia.time<-data$Dia.Age-data$AgeEntry

### duration of the study

data$Dur<-data$AgeExit-data$AgeEntry

### Calendar year at diagnosis

data$Calendar<-substr(data$diagdato,5,8)

### Country

data$country<-rep("Denmark", nrow(data))

#### Exclusion ####

which(data$BirthDate>data$DiagDate)

# 196 subjects are diagnosed before they are born.

# Do not remove them. Set AgeEntry to 0.

which(data$BirthDate>data$DiaDate)

which(data$BirthDate>data$ExitDate)

rm1<-which(data$DiagDate>data$DiaDate)

data<-data[-rm1,]

which(data$DiagDate>data$ExitDate)

rm2<-which(data$EntryDate >data$ExitDate)

data<-data[-rm2,]

rm3<-which(data$EntryDate >data$DiaDate)

data<-data[-rm3,]

which(data$AgeDiagnosis<0)

which(data$AgeExit<0)

which(data$AgeEntry<0)

which(data$Dia.Age<0)

rm5<-which(data$Dur<0)

data<-data[-rm5,]

which(data$Dia.time<0)

# Find the average age of exposed at diagnosis

# and define it as age of unexposed at diagnosis.

avgAge<-mean(data$AgeDiagnosis[data$Groups == "exposed"],na.rm=T)

data$AgeDiagnosis[data$Groups == "unexposed"]<-avgAge

# year at diabetes registration
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data$CalD<-substr(data$diadato,5,8)

### New Data Frame ###

Data<-data.frame(Id =data$pnr, Groups=data$Groups, Gender = data$sex,

AgeDiagnosis = data$AgeDiagnosis, AgeEntry = data$AgeEntry,

Age.Dbts = data$Dia.Age,AgeExit= data$AgeExit,Ca.time = data$Dur,

D.Event = data$status, Dbts.time=data$Dia.time, Dbts.Event =

data$EventDia,Calendar = data$Calendar, Country = data$country,

Diagnosis = data$iccc, CalDia=data$CalD)

head(Data)

which(is.na(Data))

# no missing values

# Define Diagnosis types for controls as control.

Data$Diagnosis<-ifelse(Data$Groups ==’unexposed’,NA,Data$Diagnosis)

Data$Diagnosis <- as.factor(Data$Diagnosis)

levels(Data$Diagnosis)<-c("Leukemia","Lymphomas","CNS","Symp. NST",

"Retinoblastoma","Renal tumors", "Hepatic tumors","Malignant bone

tumors", "Soft tissue sarcomas", "Germ cell and other","Carcinomas",

"Other and unspecified")

Data$Diagnosis <- ifelse(is.na(Data$Diagnosis),"unexposed",

as.character(Data$Diagnosis))

Data$Diagnosis <- as.factor(Data$Diagnosis)

Data$Diagnosis <- relevel(Data$Diagnosis,ref="unexposed")

# Saving data set from Denmark

write.table(Data, "//filserv.cancer.dk/EPI/EPI-Brugere/kadriye/Thesis/R

/Datasets/Denmark.csv", sep = ";",dec=",",row.names=FALSE )

########################################################################

# Data from Sweden is prepared in the same way and the final data set

# is merged.

C.2 Descriptive analysis

library(mstate);library(Epi);library(survival); library(xtable);

library(cmprsk)

#Categorizing age at diagnosis and calendar

Ndata$AgeDiag <- cut(Ndata$AgeDiagnosis,c(0,5,10,15,21),

c("0-5","5-10","10-15","15-20"))

Ndata$Cal <- cut(Ndata$Calendar,c(0,1960,1975,2012),

c("1943-1960","1960-1974","1974-2010"))

# distribution according groups

gr<-table(Ndata$Groups)
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prop.table(gr)*100

# distribution according country

country<-table(Ndata$Country,Ndata$Groups)

prop.table(country,2)*100

prop.table(table(Ndata$Country))*100

chisq.test(country)

# p-value = 0.6007

# distribution according to gender

gen<-table(Ndata$Gender,Ndata$Groups)

prop.table(gen,2)*100

prop.table(table(Ndata$Gender))*100

chisq.test(gen)

# p-value = 0.06463

# distribution according to age at diagnosis

age<-table(Ndata$AgeDiag, Ndata$Groups)

prop.table(age,2)*100

prop.table(table(Ndata$AgeDiag))*100

chisq.test(age[,1])

# p-value < 2.2e-16

# as continuous variable:

agec<-table(Ndata$Groups, Ndata$AgeDiagnosis)

exp<-Ndata[Ndata$Groups=="exposed",]

mean(exp$AgeDiagnosis);sd(exp$AgeDiagnosis);

unexp<-Ndata[Ndata$Groups=="unexposed",]

mean(unexp$AgeDiagnosis);sd(unexp$AgeDiagnosis);

mean(Ndata$AgeDiagnosis);sd(Ndata$AgeDiagnosis);

# distribution according to calendar year

cal<-table(Ndata$Cal, Ndata$Groups)

prop.table(cal,2)*100

prop.table(table(Ndata$Cal))*100

chisq.test(cal)

# p-value < 2.2e-16

# as continuous variable:

mean(exp$Calendar);sd(exp$Calendar);

mean(unexp$Calendar);sd(unexp$Calendar);

mean(Ndata$Calendar);sd(Ndata$Calendar);

## additional plots

# number of exposed/unexposed in both countries

Dk<-Ndata[Ndata$Country=="Denmark",]

ca<-table(Dk$Calendar,Dk$Groups)

Se<-Ndata[Ndata$Country=="Sweden",]
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caS<-table(Se$Calendar,Se$Groups)

x<-seq(1943,2008,1)

xx<-seq(1958,2008,1)

par(mfrow=c(2,1))

par(mar=c(4,4,1,3)+0.1)

plot(x,ca[,1],type="l",lty=5,col=2,lwd=2,ylim=c(0,380),xlab="Calendar",

ylab = "number of exposed")

lines(xx,caS[,1],lty = 6,lwd=2, col = 4)

legend("topleft",c("Denmark", "Sweden"), lty = c(5,6),lwd=2,

col = c(2,4))

par(mar=c(4,4,1,3)+0.1)

plot(x,ca[,2],type="l",lty=5,lwd=2,col=2,ylim=c(0,1980),xlab="Calendar",

ylab = "number of unexposed")

lines(xx,caS[,2],lty = 6,lwd=2, col = 4)

legend("topleft",c("Denmark", "Sweden"), lty = c(5,6),lwd=2,

col = c(2,4))

# number of event of interest: diabetes in both countries

# DK

new<-Ndata[Ndata$Dbts.Event=="1",]

dk<-new[new$Country=="Denmark",]

se<-new[new$Country=="Sweden",]

dbdk<-table(dk$CalD,dk$Groups)

dbse<-table(se$CalD,se$Groups)

x<-seq(1977,2010,1)

xx<-seq(1984,2009,1)

par(mfrow=c(2,1))

par(mar=c(4,4,1,3)+0.1)

plot(x,dbdk[,1],type="l",lty=5,col=2,ylim=c(0,25),lwd=2,xlab="Calendar",

ylab = "events among exposed")

lines(xx,dbse[,1],lty = 6,lwd=2, col = 4)

legend("topleft",c("Denmark", "Sweden"), lty = c(5,6), lwd=2,

col = c(2,4))

par(mar=c(4,4,1,3)+0.1)

plot(x,dbdk[,2],type="l",lty=5,col=2,lwd=2,ylim=c(0,83),xlab="Calendar",

ylab = "events among unexposed")

lines(xx,dbse[,2],lty = 6,lwd=2, col = 4)

legend("topleft",c("Denmark", "Sweden"), lty = c(5,6),lwd=2,

col = c(2,4))

######################## Transition 1 #################################

# Mortality without diabetes

Ndata$Can.Event<-Ndata$D.Event

Ndata$Can.Event[which(Ndata$Dbts.Event==1)]<-0

######### Crude Estimates ##############

p1<-pyears(formula = Surv(AgeEntry,Age.Dbts,Can.Event)~Groups,

data = Ndata, data.frame= TRUE,scale=1)$data
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p1$rate<-1000*p1$event/p1$pyears

########## Cumulative Incidence function ###########

ci<-cuminc(Ndata$Dbts.time, Ndata$Can.Event, Ndata$Groups, rho=0,

cencode=0)

par(las=1)

plot(ci,ylim=c(0,0.3),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),

curvlab=c(’exposed’,’unexposed’),xaxt="n")

axis(1,c(0,4,9,14,19,24,29,34),c("1","5","10","15","20","25","30","35"))

title("Mortality w.o. diabetes")

## Cumulative incidence curves regarding to country

ci1<-cuminc(Ndata$Dbts.time, Ndata$Can.Event, Ndata$Country, rho=0,

cencode=0)

par(las=1)

plot(ci1,ylim=c(0,0.13),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),curvlab=c(’Denmark’,

’Sweden’),xaxt="n")

axis(1,c(0,4,9,14,19,24,29,34),c("1","5","10","15","20","25","30","35"))

title("Country")

## Cumulative incidence curves regarding to Gender

ci3<-cuminc(Ndata$Dbts.time, Ndata$Can.Event, Ndata$Gender, rho=0,

cencode=0)

par(las=1)

plot(ci3,ylim=c(0,0.09),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),curvlab=c(’boys’,

’girls’),xaxt="n")

axis(1,c(0,4,9,14,19,24,29,34),c("1","5","10","15","20","25","30","35"))

title("Gender")

######################## Transition 2 #################################

% Morbidity outcome

######### Crude Estimate ##############

p1T2<-pyears(formula = Surv(AgeEntry,Age.Dbts,Dbts.Event)~Groups,

data = Ndata,

data.frame= TRUE,scale=1)$data

p1T2$rate<-1000*p1T2$event/p1T2$pyears

########## Cumulative Incidence function ###########

ciT2<-cuminc(Ndata$Dbts.time, Ndata$Dbts.Event, Ndata$Groups, rho=0,

cencode=0)

par(las=1)

plot(ciT2,ylim=c(0,0.05),xlim=c(0,30),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),

curvlab=c(’exposed’,’unexposed’),xaxt="n")

axis(1,c(0,4,9,14,19,24,29,34),c("1","5","10","15","20","25","30","35"))

title("Diabetes")
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## Cumulative incidence curves regarding to country

ci1T2<-cuminc(Ndata$Dbts.time, Ndata$Dbts.Event, Ndata$Country, rho=0,

cencode=0)

par(las=1)

plot(ci1T2,ylim=c(0,0.026),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),curvlab=c(’Denmark’,

’Sweden’),xaxt="n")

axis(1,c(0,4,9,14,19,24,29,34),c("1","5","10","15","20","25","30","35"))

title("Country")

## Cumulative incidence curves regarding to Gender

ci3T2<-cuminc(Ndata$Dbts.time, Ndata$Dbts.Event, Ndata$Gender, rho=0,

cencode=0)

par(las=1)

plot(ci3T2,ylim=c(0,0.031),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),curvlab=

c(’boys’,’girls’),xaxt="n")

axis(1,c(0,4,9,14,19,24,29,34),c("1","5","10","15","20","25","30","35"))

title("Gender")

######################## Transition 3 #################################

#Mortality with diabetes

new<-Ndata[Ndata$Dbts.Event=="1",]

######### Crude Estimate ##############

p1T3<-pyears(formula = Surv(Age.Dbts,AgeExit,D.Event)~Groups,

data = new,

data.frame= TRUE,scale=1)$data

p1T3$rate<-1000*p1T3$event/p1T3$pyears

########## Cumulative Incidence function ###########

ciT3<-cuminc((new$Ca.time-new$Dbts.time), new$D.Event, new$Groups,

rho=0, cencode=0)

par(las=1)

plot(ciT3,ylim=c(0,0.36),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),

curvlab=c(’Childhood cancer’,’Reference population’),xaxt="n")

axis(1,c(0,4,9,14,19,24,29),c("1","5","10","15","20","25","30"))

title("Mortality w. diabetes")

## Cumulative incidence curves regarding to country

ci1T3<-cuminc((new$Ca.time-new$Dbts.time), new$D.Event, new$Country,

rho=0, cencode=0)

par(las=1)

plot(ci1T3,ylim=c(0,0.45),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),curvlab=c(’Denmark’,

’Sweden’),xaxt="n")
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axis(1,c(0,4,9,14,19,24,29,34),c("1","5","10","15","20","25","30","35"))

title("Country")

## Cumulative incidence curves regarding to Gender

ci3T3<-cuminc((new$Ca.time-new$Dbts.time), new$D.Event, new$Gender,

rho=0, cencode=0)

par(las=1)

plot(ci3T3,ylim=c(0,0.40),lwd=2,

xlab=’Years since diagnosis’,col=c(’blue’,’red’),curvlab=c(’boys’,

’girls’),xaxt="n")

axis(1,c(0,4,9,14,19,24,29,34),c("1","5","10","15","20","25","30","35"))

title("Gender")

############ Lexis diagram ##############

library(Epi)

temp1<-Ndata[Ndata$Groups=="exposed",]

temp2<-Ndata[Ndata$Groups!="exposed",]

new<-merge(temp1[runif(nrow(temp1))<0.001,],temp2[runif(nrow(temp2))

<0.0002,],all=T )

LL<-Lexis.diagram( age=c(0,70), date=c(1976,2012),

entry.age=AgeEntry, exit.age=Age.Dbts, birth.date=cal.yr(BirthDate),

col.life=c("red","blue")[Groups],fail=

(Dbts.Event %in% 1), lwd.life=1, cex.fail=0.8, col.fail=

c("red","blue")[Groups],pch.fail=c(1,16),data=new )

box()

C.3 Two state analysis

C.3.1 Transition 1- Analysis of morbidity rate

library(relsurv); library(survival);

library(xtable);library(Epi); library(Design);

## Univariate estimate

model1<- coxph(Surv(AgeEntry,Age.Dbts,Dbts.Event)~ Groups,

data=Ndata)

## Multivariate estimate

model2<- coxph(Surv(AgeEntry,Age.Dbts,Dbts.Event)~

Groups+AgeDiagnosis, data=Ndata)

model3<- coxph(Surv(AgeEntry,Age.Dbts,Dbts.Event)~

Groups+AgeDiagnosis+Calendar, data=Ndata)

model4<- coxph(Surv(AgeEntry,Age.Dbts,Dbts.Event)~

Groups+AgeDiagnosis+Calendar+ Gender, data=Ndata)
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model5<- coxph(Surv(AgeEntry,Age.Dbts,Dbts.Event)~

Groups+AgeDiagnosis+Calendar+ Gender+Country, data=Ndata)

model6<- coxph(Surv(AgeEntry,Age.Dbts,Dbts.Event)~

Groups+AgeDiagnosis+Calendar+ strata(Gender,Country),

data=Ndata)

## check functional form

d <- datadist(Ndata)

options(datadist="d")

m1<-cph(Surv(AgeEntry,Age.Dbts,Dbts.Event)~Groups +

rcs(AgeDiagnosis)+rcs(Calendar), data=Ndata)

plot(m1,AgeDiagnosis=NA,xlab="Age at diagnosis",

adj.subtitle=FALSE)

# NA: use default range for predictor

plot(m1,Calendar=NA,adj.subtitle=FALSE)

# correct functional form by categorizing calender and

# agediagnosis

Ndata$AgeDiag <- cut(Ndata$AgeDiagnosis,c(0,5,10,15,20

),c("0-5","5-10","10-15","15-20"))

Ndata$Cal <- cut(Ndata$Calendar,c(0,1960,1975,2012)

,c("1943-1960","1960-1974","1974-2010"))

model9<- coxph(Surv(AgeEntry,Age.Dbts,Dbts.Event)~

Groups + AgeDiag + Cal+ strata(Gender,Country), data=Ndata)

summary(model9)

## check proportionality

cox.zph(model9)

par(mfrow=c(2,2))

plot(cox.zph(model6))

C.3.2 Transition 2- Analysis of mortality rate

# censoring diabetes events

Ndata$Can.Event<-Ndata$D.Event

Ndata$Can.Event[which(Ndata$Dbts.Event==1)]<-0

## Univariate estimate

model1<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~ Groups,

data=Ndata)

model2<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~

AgeDiagnosis, data=Ndata)

model3<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~

Calendar, data=Ndata)

summary(model1)
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## Multivariate estimate

model4<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~

Groups+AgeDiagnosis, data=Ndata)

model5<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~

Groups+AgeDiagnosis+Calendar, data=Ndata)

model6<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~

Groups+AgeDiagnosis+Calender+ Gender, data=Ndata)

model7<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~

Groups+AgeDiagnosis+Calender+ Gender+Country, data=Ndata)

model8<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~

Groups+AgeDiagnosis+Calendar+ strata(Gender,Country), data=Ndata)

summary(model8)

## check functional form

d <- datadist(Ndata)

options(datadist="d")

m1<-cph(Surv(AgeEntry,Age.Dbts,Can.Event)~Groups +

rcs(AgeDiagnosis)+rcs(Calendar), data=Ndata)

plot(m1,AgeDiagnosis=NA,xlab="Age at diagnosis",

adj.subtitle=FALSE)

# NA: use default range for predictor

plot(m1,Calendar=NA,adj.subtitle=FALSE)

# including splines in the model

model9<- coxph(Surv(AgeEntry,Age.Dbts5,Can.Event)~

Groups +rcs(AgeDiagnosis) +rcs(Calendar)

+ strata(Gender,Country), data=Ndata)

summary(model9)

cox.zph(model9)

# spline method does not correct for proportionality..

# correct functional form by categorizing calendar

# and age at diagnosis

Ndata$AgeDiag <- cut(Ndata$AgeDiagnosis,c(0,5,10,15,20),

c("0-5","5-10","10-15","15-20"))

Ndata$Cal <- cut(Ndata$Calendar,c(0,1960,1975,2012),

c("1943-1960","1960-1974","1974-2010"))

model9<- coxph(Surv(AgeEntry,Age.Dbts,Can.Event)~

Groups + AgeDiag + Cal+ strata(Gender,Country),

data=Ndata)

summary(model9)

cox.zph(model9)

### check proportionality by log minus log plot
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cfit<-survfit(Surv(AgeEntry,Age.Dbts,Can.Event)~

Groups,data =Ndata)

plot(cfit,mark.time =F,fun="cloglog",col=c(4,2),lwd=2,

xlab="Age", ylab="Log(-Log(Survival))")

legend ("bottomright",c("exposed", " unexposed "),

col =c(2 ,4) ,lty =1)

#### extend cox model by including time-varying covariates

temp1 <- subset(Ndata, Groups=="exposed")

temp2 <- subset(Ndata, Groups!="exposed")

temp1$time1 <- (temp1$AgeEntry-temp1$AgeDiagnosis)

temp1$time2 <-(temp1$Dbts.time+temp1$AgeEntry-temp1$AgeDiagnosis)

temp1 <- survsplit(temp1,cut=c(5,10,15,20,25),start="time1",

end="time2", event="Can.Event",episode="episode")

temp1$AgeEntry <- temp1$AgeDiagnosis + temp1$time1

temp1$Ca.time <- temp1$time2 - temp1$time1

temp1 <- temp1[,-c(19,20)]

temp2$episode <- "unexposed"

nydatlat <- rbind(temp1,temp2)

nydatlat$episode <- as.factor(nydatlat$episode)

levels(nydatlat$episode)

levels(nydatlat$episode)[1:6]<-c("0-5","5-10",

"10-15","15-20","20-25","25+")

nydatlat$episode <- relevel(nydatlat$episode, ref="unexposed")

model10 <- coxph(Surv(AgeEntry,(AgeEntry+Ca.time),Can.Event==1)~

AgeDiag + Cal + episode + strata(Country,Gender), data=nydatlat)

rr.Dgs<- ci.lin(model10,subset=c("episode"),Exp=TRUE)[,5:7]

matplot( 1:nrow(rr.Dgs), rr.Dgs[,1],pch=20,log = "y",ylim=c(0.9,100),

las=1,ylab="Rate ratio",xlab="Time since diagnosis",frame.plot=T,

xaxt="n")

for(j in 1:nrow(rr.Dgs)){

lines(c(j,j),rr.Dgs[j,2:3],lwd=2)

}

abline(h=1,lwd=2)

axis(1,c(1,2,3,4,5,6),c("0-5","5-10","10-15","15-20","20-25","25+"))

## check proportionality

z<-cox.zph(model10)
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C.3.3 Transition 3- Analysis of mortality rate with dia-
betes

new<-Ndata[Ndata$Dbts.Event==1,]

# An univariate analysis

model1 <- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Groups, data=new)

model2 <- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ AgeDiagnosis,

data=new)

model3 <- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Calendar,

data=new)

summary(model1)

# Multivariate analysis

model4<- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Groups+AgeDiagnosis,

data=new)

summary(model4)

model5<- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Groups+

AgeDiagnosis+Calendar, data=new)

model6<- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Groups+

AgeDiagnosis+Calendar+ Gender, data=new)

model7<- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Groups

+AgeDiagnosis+Calendar+ Gender+Country, data=new)

model8<- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Groups+

AgeDiagnosis+Calendar+ strata(Gender,Country), data=new)

model9<- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Groups+

strata(Gender,Country), data=new)

## check functional form

d <- datadist(Ndata)

options(datadist="d")

m1<-cph(Surv(AgeEntry,AgeExit,D.Event)~Groups +

rcs(AgeDiagnosis)+rcs(Calendar), data=new)

plot(m1,AgeDiagnosis=NA,xlab="Age at diagnosis",

adj.subtitle=FALSE)

# NA: use default range for predictor

plot(m1,Calendar=NA,adj.subtitle=FALSE)

# correct functional form by catogirazing calender and

# agediagnosis

new$AgeDiag <- cut(new$AgeDiagnosis,c(0,5,10,15,20),

c("0-5","5-10","10-15","15-20"))

new$Cal <- cut(new$Calendar,c(0,1960,1975,2012),

c("1943-1960","1960-1974","1974-2010"))

model9<- coxph(Surv(Age.Dbts,AgeExit,D.Event==1)~ Groups

+ AgeDiag + Cal+ strata(Gender,Country), data=new)

summary(model9)
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cox.zph(model9)

## check proportionality

cox.zph(model8)

par(mfrow=c(2,2))

plot(cox.zph(model6))

####### extend cox model by including time-varying covariates

temp1 <- subset(new, Groups=="exposed")

temp2 <- subset(new, Groups!="exposed")

temp1$time1 <-0

temp1$time2 <- temp1$Ca.time-temp1$Dbts.time

temp1 <- survsplit(temp1,cut=c(5,10,15),start="time1",end="time2",

event="D.Event",episode="episode")

temp1$Age.Dbts <- temp1$Age.Dbts + temp1$time1

temp1$Ca.time <- temp1$time2 - temp1$time1

temp1 <- temp1[,-c(18,19)]

temp2$episode <- "unexposed"

nydatlat <- rbind(temp1,temp2)

nydatlat$episode <- as.factor(nydatlat$episode)

levels(nydatlat$episode)

levels(nydatlat$episode)[1:4]<-c("1-5","5-10","10-15","15+")

#c("1-10","10-20","20-30","30+")

nydatlat$episode <- relevel(nydatlat$episode, ref="unexposed")

model4a <- coxph(Surv(Age.Dbts,(Age.Dbts+Ca.time),D.Event==1)~

AgeDiag+ Cal + episode + strata(Country,Gender), data=nydatlat)

cox.zph(model4a)

model4 <- coxph(Surv(Age.Dbts,(Age.Dbts+Ca.time),D.Event==1)~ episode +

strata(Country,Gender), data=nydatlat)

rr.DD<- ci.lin(model4a,subset=c("episode"),Exp=TRUE)[,5:7]

plot(rr.DD[,1],pch=20,ylim=c(0,31), ylab="Rate ratio",

xlab="Time since diagnosis",xaxt="n")

for(j in 1:nrow(rr.DD)){

lines(c(j,j),rr.DD[j,2:3],lwd=2)

}

abline(h=1,lwd=2)

axis(1,c(1,2,3,4),c("0-5","5-10","10-15","15+"))

axis(2,c(0,1,5,10,15),c(0,1,5,10,15))
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C.4 Multi state analysis

C.4.1 Univariate estimates

library(Epi); library(survival);library(xtable);library(mstate);

dat <-Lexis(exit=list(tft=(AgeExit-AgeEntry)), exit.status=

factor(D.Event,labels=c("Dgs","Death")),data=Ndata)

datr <-cutLexis(dat, cut = (dat$Age.Dbts-dat$AgeEntry), precursor.states

= "Dgs",new.state="Dbts", new.scale="tfDbts", split.states=T)

summary(datr)

dats <- stack(datr)

# boxes

boxes.Lexis(datr, boxpos = list(x = c(20, 80, 20, 80),

y = c(80, 80, 20, 20)), cex = 1.5, wmult = 1.5, hmult = 2.25,

eq.wd = TRUE, eq.ht = TRUE, show.Y = TRUE, scale.Y = 1, digits.Y = 1,

show.D = TRUE, scale.D = FALSE, digits.D = 0)

text(c(5,50,65),c(54,95,54),labels=c("Tr. 2","Tr. 1","Tr. 3"), lwd=1,

cex=1.5)

text(c(14,73,12.8,66.8),c(82.5,82.5,20,20.5),

labels=c("1.","2.","3.","4."), lwd=3,lty=3, cex=1.5)

## different covariates, different baseline hazards

c1<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~

lex.Tr:Groups + strata(lex.Tr), data =dats, method = "breslow")

m1<- model.matrix(~lex.Tr:(Groups) , data = dats)

head(m1)

rm1<-grep(":Groupsunexposed", colnames(m1))

m1<-m1[,-c(1,rm1)]

c1<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~ m1 +

strata(lex.Tr), data =cbind(dats,m1), method = "breslow")

summary(c1)

xtable(data.frame(summary(c1)$coef[,1:3],summary(c1)$conf.int[,3:4],

p.value=summary(c1)$coef[,5]),digits=3,caption="")

## different covariates but common baseline hazards

## assume proportional hazards for hazard rates going into the

## same state

dats1 <- dats[grep("->Death", dats$lex.Tr),]

dats1$lex.Tr<-factor(dats1$lex.Tr)

mm1<- model.matrix(~lex.Tr:(Groups) , data = dats1)

rm1<-grep(":Groupsunexposed", colnames(mm1))
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mm1<-mm1[,-c(1,rm1)]

c2<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~ mm1+

I(lex.Cst == "Dbts"), data =cbind(dats1,mm1), method = "breslow")

summary(c2)

xtable(data.frame(summary(c2)$coef[,1:3],summary(c2)$conf.int[,3:4],

p.value=summary(c2)$coef[,5]),digits=3,caption="common covariates and

common baseline hazards

")

## common covariates and common baseline hazards

c3<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~ Groups

+I(lex.Cst == "Dbts"), data =cbind(dats1), method = "breslow")

summary(c3)

xtable(data.frame(summary(c3)$coef[,1:3],summary(c3)$conf.int[,3:4],

p.value=summary(c3)$coef[,5]),digits=3,

caption="different covariates but common baseline hazards")

#The effect of occurrence of diabetes on mortality rate among exposed

c4<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~

I(lex.Cst == "Dbts"), data =subset(dats1,Groups=="exposed") ,

method = "breslow")

summary(c4)

cox.zph(c4)

#The effect of occurrence of diabetes on mortality rate among unexposed

c5<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~

I(lex.Cst == "Dbts"), data =subset(dats1,Groups=="unexposed") ,

method = "breslow")

summary(c5)

########## checking proportionality of rates by Poisson modeling

datx <- splitLexis(datr, time.scale = "lex.dur", breaks =

c(0,1,2,3,4,seq(5,30,5)))

datxs <- stack(datx)

datxs <- datxs[grep("->Death", datxs$lex.Tr),]

datxs$lex.Tr <- factor(datxs$lex.Tr)

i.kn <- c(0.2, 0.5, 1, 1.5, 2, 8, 10,30)

b.kn <- c(0,32)

te<- ns(datxs$tft,knots=i.kn, Bo=b.kn)

mi <- glm(as.numeric(lex.Fail) ~ lex.Tr + lex.Tr:ns(tft,knots=i.kn,

Bo=b.kn) + lex.Tr:Groups, family=poisson, offset=log(lex.dur)

,data=datxs)

ms <- glm(as.numeric(lex.Fail) ~ lex.Tr + lex.Tr:ns(tft,knots=i.kn,

Bo=b.kn) + Groups, family=poisson, offset=log(lex.dur)
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,data=datxs)

mp <- glm(as.numeric(lex.Fail) ~ lex.Tr + ns(tft,knots=i.kn, Bo=b.kn)

+ Groups, family=poisson, offset=log(lex.dur),data=datxs)

#memory.limit(size=2000)

anova(mi,ms,mp,mi,test="Chisq")

# significant difference, transitions are not proportional

C.4.2 Multivariate estimates

dat <-Lexis(exit=list(tft=(AgeExit-AgeEntry)), exit.status=

factor(D.Event,labels=c("Dgs","Death")),data=Ndata)

datr <-cutLexis(dat, cut = (dat$Age.Dbts-dat$AgeEntry),

precursor.states = "Dgs",new.state="Dbts", new.scale="tfDbts",

split.states=T)

dats <- stack(datr)

## different covariates, different baseline hazards

c1<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~

lex.Tr:Groups + strata(lex.Tr), data =dats, method = "breslow")

dats$lex.Tr<-factor(dats$lex.Tr)

m1<- model.matrix(~lex.Tr:(Groups+AgeDiagnosis+Calendar) ,

data = dats)

rm1<-grep(":Groupsunexposed", colnames(m1))

m1<-m1[,-c(1,rm1)]

c1<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~ m1

+ strata(lex.Tr,Country,Gender), data =cbind(dats,m1),

method = "breslow")

summary(c1)

## use result from separate analysis for linear form

m2<- model.matrix(~lex.Tr:(Groups +AgeDiag+Cal) , data = dats)

rm2<-grep(":Groupsunexposed", colnames(m2))

m2<-m2[,-c(1,rm2)]

c2<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~m2 +

strata(lex.Tr,Country,Gender),data =cbind(dats,m2),

method = "breslow")

summary(c2)

## different covariates but common baseline hazards

## assume proportional hazards for hazard rates going into the

## same state..
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dats1 <- dats[grep("->Death", dats$lex.Tr),]

dats1$lex.Tr<-factor(dats1$lex.Tr)

mm1<- model.matrix(~lex.Tr:(Groups+AgeDiag+Cal) , data = dats1)

rm1<-grep(":Groupsunexposed", colnames(mm1))

mm1<-mm1[,-c(1,rm1)]

c4<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~ mm1

+I(lex.Cst == "Dbts")+strata(Country,Gender),data =cbind(dats1,mm1),

method = "breslow")

summary(c4)

## common covariates and common baseline hazards

c5<-coxph(Surv(tft+AgeEntry,tft+AgeEntry+lex.dur, lex.Fail) ~ Groups+

AgeDiag+Cal+I(lex.Cst == "Dbts"), data =cbind(dats1),

method = "breslow")

summary(c5)

########## checking proportionality of rates by Poisson modeling

datx <- splitLexis(datr, time.scale = "lex.dur", breaks =

c(0,1,2,3,4,seq(5,30,5)))

datxs <- stack(datx)

datxs <- datxs[grep("->Death", datxs$lex.Tr),]

datxs$lex.Tr <- factor(datxs$lex.Tr)

i.kn <- c(0.2, 0.5, 1, 1.5, 2, 8, 10,30)

b.kn <- c(0,32)

te<- ns(datxs$tft,knots=i.kn, Bo=b.kn)

mi <- glm(as.numeric(lex.Fail) ~ lex.Tr + lex.Tr:ns(tft,knots=i.kn,

Bo=b.kn) + lex.Tr:(Groups+AgeDiag+Cal)

, family=poisson, offset=log(lex.dur),data=datxs)

ms <- glm(as.numeric(lex.Fail) ~ lex.Tr + lex.Tr:ns(tft,knots=i.kn,

Bo=b.kn) +Groups+AgeDiag+Cal, family=poisson, offset=log(lex.dur)

,data=datxs)

mp <- glm(as.numeric(lex.Fail) ~ lex.Tr + ns(tft,knots=i.kn, Bo=b.kn)

+ Groups+AgeDiag+Cal, family=poisson, offset=log(lex.dur),data=datxs)

#memory.limit(size=2000)

anova(mi,ms,mp,mi,test="Chisq")

# significant difference, transitions are not proportional

C.4.3 Predictions

library(mstate);library(Epi)

Ndata$Can.Event<-Ndata$D.Event



C.4 Multi state analysis 101

Ndata$Can.Event[which(Ndata$Dbts.Event==1)]<-0

## Empirical rates

# mortality without diabetes

stepsize <- 2

maxage <- 80

minage <- 0

tempyr <- tcut(Ndata$AgeEntry,seq(minage,maxage,stepsize),

labels=as.character(seq(minage,maxage-stepsize,stepsize)))

datcan <- pyears(Surv(Dbts.time,Can.Event==1)~tempyr+Groups,dat=Ndata,

data.frame=T,scale=1)$data

datcan$tempyr<-as.numeric(as.character(datcan$tempyr))

datcan$rate <- 1000*datcan$event/datcan$pyears

# Mortality with diabetes

new<-Ndata[Ndata$Dbts.Event==1,]

rmm<-which((new$Ca.time-new$Dbts.time)<=0)

new<-new[-rmm,]

tempyr2 <- tcut(new$Age.Dbts,seq(minage,maxage,stepsize),

labels=as.character(seq(minage,maxage-stepsize,stepsize)))

datdbts <- pyears(Surv((Ca.time-Dbts.time),D.Event==1)~tempyr2+Groups,

dat=new,data.frame=T,scale=1)$data

datdbts$tempyr2<-as.numeric(as.character(datdbts$tempyr2))

datdbts$rate <- 1000*datdbts$event/datdbts$pyears

#a number of prespecied points for prediction

a.Bo <- c(0,78) # boundary knots for age

a.kn <- c(13,25,37,49,62) # internal knots for age

a.int <- 1/20 # interval length for prediction of mortality by age

a.pr <- seq(1,80,a.int) # prediction point for age-specific mortality

CA <- ns( a.pr, knots=a.kn, Bo=a.Bo, intercept=TRUE )

e.can <- glm( event ~ ns(tempyr,knots=a.kn,Bo=a.Bo,i=T) - 1,

offset=log(pyears),family=poisson,data = subset(datcan,Groups==

"exposed") )

summary(e.can)

e.dbts <- glm( event ~ ns(tempyr2,knots=a.kn,Bo=a.Bo,i=T) - 1,

offset=log(pyears),family=poisson,data = subset(datdbts,Groups==

"exposed"))

summary(e.dbts)

u.can <- glm( event ~ ns(tempyr,knots=a.kn,Bo=a.Bo,i=T) - 1,

offset=log(pyears),family=poisson,data = subset(datcan,Groups==
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"unexposed") )

summary(u.can)

u.dbts <- glm(event ~ ns(tempyr2,knots=a.kn,Bo=a.Bo,i=T) - 1,

offset=log(pyears),family=poisson,data = subset(datdbts,

Groups=="unexposed"))

summary(u.dbts)

# compute rates for the prespecified points from Poisson models

er.can <- ci.lin( e.can, ctr.mat=cbind(CA), E=T )[,5:7]

er.dbts <- ci.lin( e.dbts, ctr.mat=cbind(CA), E=T )[,5:7]

ur.can <- ci.lin( u.can, ctr.mat=cbind(CA), E=T )[,5:7]

ur.dbts <- ci.lin( u.dbts, ctr.mat=cbind(CA), E=T )[,5:7]

## Plot of Mortality rate per 1000 person-years

yl <- c(0.1,500)

yt <- as.vector( outer( c(1,2,5), 10^(-2:2), "*" ) )

yg <- as.vector( outer( 1:9, 10^(-2:2), "*" ) )

par( mfrow=c(1,2), mar=c(0,0,0,0), mgp=c(3,1,0)/1.6, las=1,

oma=c(4,4,1,1) )

plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,82) )

axis( side=2, at=yt, labels=formatC(yt) )

abline( v=seq(0,82,10), h=yg, col=gray(0.8) )

matlines( a.pr, cbind(er.can[,1],ur.can[,1])*1000,

type="l", lty=1, lwd=c(3,3),

col=rep(c("blue","red"),each=1) )

lines(datcan$tempyr[datcan$Groups=="exposed"],datcan$rate[datcan$Groups

=="exposed"],type="b",col="blue",lwd=1)

lines(datcan$tempyr[datcan$Groups!="exposed"],datcan$rate[datcan$Groups

!="exposed"],type="b",col="red",lwd=1)

box()

text( 0, 500, "Without diabetes", adj=0 )

plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,82) )

abline( v=seq(0,82,10), h=yg, col=gray(0.8) )

matlines( a.pr, cbind(er.dbts[,1],ur.dbts[,1])*1000,

type="l", lty=1, lwd=c(3,3),

col=rep(c("blue","red"),each=1) )

lines(datdbts$tempyr[datdbts$Groups=="exposed"],

datdbts$rate[datdbts$Groups=="exposed"],type="b",col="blue")

lines(datdbts$tempyr[datdbts$Groups!="exposed"],

datdbts$rate[datdbts$Groups!="exposed"],type="b",col="red")

text( 0, 500, "With diabetes", adj=0 )

mtext( side=1, line=2.5, "Age (years)", outer=T )

mtext( side=2, line=2.5, "Mortality rate (per 1000 PY)", outer=T,

las=0 )
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box()

x11()

# New plot: plot the different rates in the same frame to show them

# relative to each other separately for each group.

# tick marks on the y-axis

yt <- as.vector( outer( c(1,2,5), 10^(-2:2), "*" ) )

# horizontal grid lines

yg <- as.vector( outer( 1:9, 10^(-2:2), "*" ) )

par( mfrow=c(1,2), mar=c(0,0,0,0), mgp=c(3,1,0)/1.6, las=1,

oma=c(4,4,1,1) )

plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,82) )

axis( side=2, at=yt, labels=formatC(yt) )

abline( v=seq(0,82,10), h=yg, col=gray(0.8) )

matlines( a.pr, cbind(er.can,er.dbts)*1000,

type="l", lty=1, lwd=c(3,1,1),

col=rep(topo.colors(3),each=3) )

box()

text( 60, 500, "Exposed", adj=0 )

plot( 1, 1, type="n", log="y", ylim=yl, yaxt="n", xlim=c(0,82) )

abline( v=seq(0,82,10), h=yg, col=gray(0.8) )

matlines( a.pr, cbind(ur.can,ur.dbts)*1000,

type="l", lty=1, lwd=c(3,1,1),

col=rep(topo.colors(3),each=3) )

box()

text( 58, 500, "Unexposed", adj=0 )

text( 80, c(0.2,0.15), c("Without diabetes","With diabetes"),

col=topo.colors(3), adj=1, font=2 )

mtext( side=1, line=2.5, "Age (years)", outer=T )

mtext( side=2, line=2.5, "Mortality rate (per 100 PY)", outer=T,

las=0 )

################Prediction:Cumulative risks #################

# survival functions for exposed and unexposed

e.surv <- exp( -cumsum( (er.can[,1]+er.dbts[,1])*a.int ) )

u.surv <- exp( -cumsum( (ur.can[,1]+ur.dbts[,1])*a.int ) )

matplot( a.pr, cbind(e.surv,u.surv), type = "l", ylim=c(0,1),

col=c("blue","red"), lwd=3, lty=1 )

#cumulative probabilities

e.pd.can <- cumsum( er.can[,1]*e.surv*a.int )

e.pd.dbts <- cumsum( er.dbts[,1]*e.surv*a.int )

u.pd.can <- cumsum( ur.can[,1]*u.surv*a.int )

u.pd.dbts <- cumsum( ur.dbts[,1]*u.surv*a.int )
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par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

# exposed

matplot( a.pr, cbind(e.surv,

e.surv+e.pd.dbts,

e.surv+e.pd.dbts+e.pd.can),

type="l", lty=1, lwd=3,

ylim=c(0,1), col="blue",

xlab = "Age", ylab="Fraction exposed dead" )

ll <- min( which(a.pr>70) )

text( 80, (e.surv+e.pd.dbts/2)[ll], "Death with diabetes", adj=1 )

text( 80, (e.surv+e.pd.dbts+e.pd.can/2)[ll], "Death without diabetes",

adj=1 )

# unexposed

matplot( a.pr, cbind(u.surv,

u.surv+u.pd.dbts,

u.surv+u.pd.dbts+u.pd.can),

type="l", lty=1, lwd=3,

ylim=c(0,1), col="red",

xlab = "Age", ylab="Fraction unexposed dead" )

ll <- min( which(a.pr>70) )

text( 80, (u.surv+u.pd.dbts/2)[ll], "1", adj=1 )

text( 80, (u.surv+u.pd.dbts+u.pd.can/2)[ll], "2", adj=1 )

text( 40,0.15 , "1: Death with diabetes", adj=1 )

text( 45,0.1 , "2: Death without diabetes", adj=1 )

# conditional survival

incl <- (a.pr>19.9)

e.surv <- exp( -cumsum( (er.can[,1]+er.dbts[,1])*a.int*incl ) )

u.surv <- exp( -cumsum( (ur.can[,1]+ur.dbts[,1])*a.int*incl ) )

e.pd.can <- cumsum( er.can[,1]*e.surv*a.int*incl )

e.pd.dbts <- cumsum( er.dbts[,1]*e.surv*a.int*incl )

u.pd.can <- cumsum( ur.can[,1]*u.surv*a.int*incl )

u.pd.dbts <- cumsum( ur.dbts[,1]*u.surv*a.int*incl )

x11()

par( mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(3,1,0)/1.6 )

# exposed

matplot( a.pr, cbind(e.surv,

e.surv+e.pd.dbts,

e.surv+e.pd.dbts+e.pd.can),

type="l", lty=1, lwd=3,

ylim=c(0,1), col="blue",

xlab = "Age", ylab="Fraction exposed dead" )
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ll <- min( which(a.pr>70) )

text( 80, (e.surv+e.pd.dbts/2)[ll], "1", adj=1 )

text( 80, (e.surv+e.pd.dbts+e.pd.can/2)[ll], "2", adj=1 )

text( 40,0.15 , "1: Death with diabetes", adj=1 )

text( 45,0.1 , "2: Death without diabetes", adj=1 )

# unexposed

matplot( a.pr, cbind(u.surv,

u.surv+u.pd.dbts,

u.surv+u.pd.dbts+u.pd.can),

type="l", lty=1, lwd=3,

ylim=c(0,1), col="red",

xlab = "Age", ylab="Fraction unexposed dead" )

ll <- min( which(a.pr>70) )

text( 80, (u.surv+u.pd.dbts/2)[ll], "1", adj=1 )

text( 80, (u.surv+u.pd.dbts+u.pd.can/2)[ll], "2", adj=1 )

text( 40,0.15 , "1: Death with diabetes", adj=1 )

text( 45,0.1 , "2: Death without diabetes", adj=1 )
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