
Contention resistant non-blocking
priority queues

Lars Frydendal Bonnichsen

Kongens Lyngby 2012
IMM-MSC-2012-21

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

mailto:reception@imm.dtu.dk
http://www.imm.dtu.dk/

3

Table of contents
1 Abstract...4
2 Acknowledgments..5
3 Introduction..6

3.1 Contributions...6
3.2 Outline...7

4 Background...8
4.1 Terminology..8
4.2 Prior work...13
4.3 Summary...20

5 Concurrent building blocks..21
5.1 Introduction...21
5.2 Random number generation..21
5.3 Avoiding context switches..23
5.4 Interfacing to synchronization primitives...24
5.5 Truncated exponential backoff..41
5.6 MCS locks...46
5.7 Summary...50

6 Static search structure based priority queues..51
6.1 Introduction...51
6.2 A static tree structure for priority queues..51
6.3 Combining funnels..53
6.4 Stacks with elimination...59
6.5 Truncated exponential backoff with elimination..64
6.6 Conclusion..68

7 Investigation of wide search trees...69
7.1 Overview...69
7.2 Non-blocking k-ary search tree...69
7.3 B-trees...73
7.4 Lock-free B-tree derivative...75
7.5 Synchronization..78
7.6 Rebalancing...79
7.7 Memory reclamation...82
7.8 Implementation...86
7.9 Evaluation...92
7.10 Conclusion..95

8 Conclusions..96
9 Project planning..97

9.1 Risk analysis...97
9.2 Project process and time planning..101

10 Appendix...105
10.1 Read-modify-write update loops...105

1Abstract 4

1 Abstract
This thesis primarily deals with the design and implementation of concurrent data
structures, as well as related facilities. Any concurrent data structure may have strictly
limited scalability, unless care is taken in their access patterns.

This thesis seeks to investigate ways to reduce these issues, for the specific context of
priority queues used for picking tasks in operating systems.

The thesis makes improvements upon a state of the art locking mechanism, to provide
up 27 times faster locking, for small data structures. This is in part achieved, by
improving a leading backoff scheme, and applying it in a novel fashion. We have
designed and implemented a priority queue based on a balanced search tree. The new
data structure is based on a new lock-free data structure based on B-trees. To the best of
our knowledge, this is the first lock-free B-tree, that does not depend on the presence of
a garbage collector.

5 2Acknowledgments

2 Acknowledgments
First and foremost I would like to thank Anders Handler. You have been the best
possible sparring partner during the past couple of months, where we have discussed
theses on an almost daily basis.

I would also like to thank all the other guys down at the lab. I want to thank all of you
for the good atmosphere, and the helpful, and enlightening discussions we have had
during the writing of this thesis.

I would like to thank my long time study partners Thoai Lam Nguyen and Nawar Al-
Mubaraki, for helping me proof read.

I am also very grateful to my brother Jesper Frydendal Bonnichsen, for proof reading
the thesis, even though I came to you at the very last moment. I would also like to thank
the rest of my family, for being very supportive during the writing of this thesis.

I would like to thank my supervisor Sven Karlsson. I have really appreciated your
advice, interest and enthusiasm during this project. Finally I would also like to thank
Christian Probst, who has acted as my supervisor, and managed the project since Sven
fell ill.

3Introduction 6

3 Introduction
This thesis deals with data structures suitable for controlling the order in which tasks
run, on computers that can run tasks in parallel. Specifically the thesis deals with the
case where tasks are given priority levels, where tasks with the highest priority are run
first. The general data structure for solving this issue is called a priority
queue[CLRS09]. The priority queue is to be implemented into the AMD64 branch of
FenixOS, a research operating system developed at DTU.

Picking the task with the highest priority takes computation time. Most solutions tend to
significantly increase the computation time, when more tasks are picked concurrently,
due to contention of resources. As computer systems grow in complexity, they tend to
get more concurrent. With this change, it is increasingly important to be able to deal
with high contention efficiently.

3.1 Contributions

This thesis presents three primary contributions:

1. Refinement of ways to keep the computation time low at high contention.

2. Refinement of contention resistant stacks and counters.

3. Introduction of a new priority queue.

Managing contention

The improved ways of keeping computation time low at high contention, are focused on
ways of reducing the contention. We present three significant contributions:

1. We provide an efficient way of giving each task a unique access pattern.

2. We provide an improvement to truncated exponential backoff, which is a state of
the art backoff scheme, ie scheme for reducing contention.

On the tested setups the improved backoff scheme gets up to 15 % higher throughput, in
highly contended test cases. The new scheme does have the drawback, that it has a
slightly higher memory consumption.

3. We show how to apply the improved truncated exponential backoff scheme to
MCS locks. MCS locks is a state of the art locking mechanism, ie a mechanism
for ensuring exclusive access.

On the tested setups the improved locking scheme was able to provide a shared counter
up to 2700 % higher throughput. The scheme was also able to give a shared priority
queue 150 % higher throughput. In general the the improved locking mechanism
provides significantly better performance, when operating on contended data. The only
drawback is a slightly higher memory consumption.

7 3.1Contributions

New priority queue

The new priority queue has 4 attractive features:

1. Finding the highest priority task has a worst case amortized running time of
O(log n) , in the uncontended case.

2. It supports priorities in the range [1 ; 231
−1] .

3. The data structure is lock-free, ie as long as operations are being performed, at
least one operation is making progress.

4. The data structure is concurrently accessible, without requiring a traditional
garbage collector.

The new priority queue is built from a new dictionary data structure, with the same
attractive features. Dictionary data structures provide remove and add operations, for
key-value pairs. The underlying data structure is a balanced k-ary search tree, where
each node can have up to k children. For instance a binary tree has k=2. To the best of
our knowledge this is the first k-ary search tree that can reclaim unused resources
without the use of a traditional garbage collector, or reference counting.

Evaluation of contention resistant data structures

We have also designed, implemented and evaluated the performance of contention
resistant of counters and stacks. Such data structures can be used to implement priority
queues for more limited priority ranges. Some of the counters and stacks use our
improved backoff scheme. Some of the counters and stacks use mechanisms to reduce
the number of operations on the data structures, rather than just spacing out the
operations. Our evaluation show that the mechanisms to reduce the number of
operations, provide at most a 4 % speedup.

3.2 Outline

This section describes the structure of the remainder of the thesis.

Chapter 4 covers the terminology, theory, and prior work that our contributions build on.

Chapter 5 covers the design and implementation of the concurrent primitives used
through the rest of the thesis. The concurrent primitives include the improved backoff
scheme, and the improved locking mechanism.

Chapter 6 covers the design, implementation, and evaluation of contention resistant
stacks and counters, for use in bounded priority queues.

Chapter 7 covers the design, implementation, and evaluation of the new dictionary and
priority queue.

Chapter 8 concludes the thesis, by bringing the findings together, and suggesting future
research.

Chapter 9 contains the risk analysis, and time-line used for this project, and evaluates
how the project has progressed.

4Background 8

4 Background
This chapter describes the terminology and theoretical background for the thesis, and
prior work in the same area. The subjects covered are mainly related concurrency, non-
blocking data structures, priority queues, and the hardware support for synchronization.
The purpose of this chapter is to make the issues encountered in the following chapters
relatable, and show how similar issues have been addressed previously.

4.1 Terminology

The kind of system studied in this thesis, is called a cache coherent shared-memory
multiprocessor system.

To explicitly define what this means, we introduce the following 10 commonly used
terms. Be aware that the first 3 terms are often used with meanings that differ from the
ones used in this thesis:

1. Microprocessor, or processor, is a chip that is responsible for executing general
purpose code.

2. A thread is a running task, that may share some of its state with other threads.

3. CPU is the hardware unit in a processor that can execute a single thread. Every
thread is at most running on one CPU at any given time.

Consider a system with 4 Xeon E7-8870 processors. Each processor contains 10
“cores”, and each core is capable of simultaneously executing 2 threads, therefore the
system would be said to have 4⋅10⋅2=80 CPUs.

4. A shared multiprocessor is a system with multiple CPUs, that can access the
same shared-memory. On such a system, threads can run on any CPU.

5. Scheduling is the process of picking a thread for a given CPU to run.

6. A cache is a system for speeding up access to recently accessed memory
locations.

7. A cache line is a continuous fixed size memory location, that is stored in the
cache.

8. Cache coherency protocols are systems for keeping shared-memory coherent
across CPUs, often through cache line invalidation.

9. Cache line invalidation, is when a cache line is removed from the cache.

10. Serial bottlenecks, are when the performance of an algorithm, is limited by
access to a single resource. For instance several CPUs writing to the same
memory location, would typically be a serial bottleneck.

The following sections deal with the theoretical properties of tasks running on such
systems.

9 4.1.1Blocking data structures

4.1.1 Blocking data structures

When multiple threads access a data structure concurrently, it must be protected, in
order to maintain a correct state. Depending on the guarantees provided by the
operations, the data structure is either blocking, obstruction-free, lock-free, or wait-free.
The guarantees provided are summarized in in table 1. The table considers 5 guarantees
[Andrews00]:

1. Independence. Delaying or stopping threads performing operations on the data
structure, does not affect other threads.

2. Fairness. Any operation is guaranteed to make progress.

3. Deadlock-free. The data structure is guaranteed to return to a usable state.

4. Livelock-free. At any time at least one operations is guaranteed to make
progress.

5. Avoiding priority inversion. High priority threads never yield indefinitely to
lower priority threads.

Independence Fairness Deadlock-
free

Livelock-
free

Avoids priority
inversion

Blocking No Maybe* Maybe** Maybe** Maybe*

Obstruction
-free

Yes No Yes No Yes

Lock-free Yes No Yes Yes Yes

Wait-free Yes Yes Yes Yes Yes

Table 1: The properties provided by different types of data structures
* depends on scheduling and synchronization
** depends on use

The most common solution to accessing a data structure concurrently, is to have threads
acquire exclusive access to the data structure before use. After use the thread has to
release the exclusive access. The thread can safely operate on the data structure, when it
holds exclusive access, because there is no concurrency. Data structures using such a
solution are called blocking data structures. Blocking data structures, do not provide
independence, making them unreliable in systems where threads are spuriously delayed
or killed. Blocking data structures can avoid priority inversion, if the synchronization is
handled in the scheduling, with schemes such as priority inheritance. If any thread may
acquiring exclusive access to multiple regions, then blocking data might not be livelock-
free or deadlock-free. This makes it difficult to compose blocking data structures, and
using them inside operating systems.

Obstruction-free, lock-free, and wait-free data structures avoid some of the issues of
blocking data structures. They do so, by never acquiring exclusive access in multi CPU
systems. In practice most wait-free data structures are fairly inefficient, because they
have to provide a strong fairness guarantee to all operations. Meanwhile lock-free data

4.1.1Blocking data structures 10

structures often provide performance that is competitive with lock based data structures.
As a result most work on practical non-blocking data structures has focused on creating
lock-free variants. Recently a scheme has been suggested, for creating wait-free data
structures with performance that resembles lock-free data structures[KP11].

4.1.2 Atomic primitives

In non-blocking algorithms, threads are not allowed to indefinitely prevent the progress
of other threads. In other words, such algorithms may not use any kind of exclusivity
guarantee such as a regular lock, mutex, semaphore, monitor, barrier or signal
primitives.

To provide safe concurrent updates, such algorithms instead use atomic operations, such
as read-modify-write operations. An example of such an operation is a fetchAndAdd
operation. fetchAndAdds behavior is shown in listing 1.

fetchAndAdd(*a, b) {
 c = *a;
 *a = c + b;
 return c;
}

Listing 1: Atomic behavior of fetchAndAdd operations

The atomicity basically provides the same functionality as acquiring a lock for a when
entering the function, and releasing it upon leaving. Read-modify-write instructions
basically provide locks at an instruction level. In concurrent settings read-modify-write
instructions are typically used to implement locks. The advantage of having the lock
inside an instruction, is that instructions are either executed or not. In other words they
first show an impact when they have been completed. Therefore the “lock” acquired
when performing the instruction, is guaranteed to eventually be released. If the lock had
been implemented in software, then the thread that acquired the lock could be
indefinitely delayed while holding the lock.

There are many different kinds of read-modify-write instructions, with different
strengths and weaknesses. The different read-modify-write instructions can be used to
implement non-blocking versions of different data structures. One of the more powerful
read-modify-write instructions is compareAndSwap (CAS). The behavior of CAS is
shown in listing 2:

compareAndSwap(*adr, oldVal, newVal) {
 if(*adr == oldVal) {
 *adr = newVal;
 return true;
 }
 return false;
}

Listing 2: Atomic behavior of compareAndSwap operations

11 4.1.2Atomic primitives

CAS can be used to implement any operation on any wait-free data structure, under
some mild conditions[Herlihy91]. Some other read-modify-write write instructions
cannot. The proof can be summarized in two parts as:

1. A solution to the consensus problem, can be used to implement any data
structure with wait-free guarantees.

The consensus problem, is basically the problem of getting n entities to agree on a
decision. Using a solution to the consensus problem to implement wait-free guarantees
is possible, but not necessarily efficient.

2. CAS can solve the consensus problem for any number of entities.

This step assumes that CAS can set enough data to identify the decision. On most
systems the decision could be identified by a memory location.

Some RISC architectures support loadLinked/storeConditional (LL/SC) instructions
instead of CAS operations. The LL instruction loads from a memory location, and SC
writes a value back to the location, if the data at the memory location has not changed.
LL/SC can be used to implement CAS. Unfortunately the use of LL/SC on modern
systems, may fail infinitely often. If LL/SC can fail infinitely often, then algorithms
using it cannot provide more than obstruction-free guarantees[PMS09].

4.1.3 The ABA problem

CAS operations are frequently used to write to fields in data structures, with invocations
on the form CAS(&field, oldValueOfField, newValueOfField). Such usage of the
CAS operation may suffer from the ABA problem, if the correct new value cannot be
described as a function of the old value. Listing 3 shows a simple stack that suffer from
the ABA problem.

The type stored in the stack is represented with T, and for the sake of simplicity the code
assumes that T contains a next pointer. The code suffers from the ABA problem. For
instance if the stack contains two elements A and B, two threads can perform the
following actions:

Illustration 1: The simple stack can fail in these 5 steps

If thread 2 reads oldVal as A and newVal as B, then thread 1 pops A and B, and pushes
A again, thread 2 can still succeed in its pop leading to a stack containing B. In the
correct case thread 2 should fail its pop, and the stack should be empty, and 2 should
have failed. The problem is basically that the operation depends on the contents of the
head element, and the element is not guaranteed to be constant when interleaving push
and pop operations.

Step Actions
1 AB 2 starts popping A, 1 pops A
2 A 1 pops B
3 1 pushes A
4 A
5 AB

Stack contents

 2 finishes popping A

4.1.3The ABA problem 12

class Stack {
 T* top = nullptr; // Head pointer of the stack

 void push(T* elem) {
 T* oldVal;
 do {
 oldVal = top;
 elem->next = oldVal;
 } while(!CAS(&top, oldVal, elem));
 }

 T* pop() {
 Element<T>* oldVal, *newVal;
 do {
 oldVal = top;
 newVal = oldVal->next;
 } while(!CAS(&top, oldVal, newVal));
 return oldVal;
 }
}

Listing 3: Link based stack that does not handle the ABA problem.
The basic loop structure of writing do - read/calculate - while(CAS), is fairly common,
especially for simple updates of data structures.

One way to alleviate the ABA problem is to include a tag in the field being updated
[IBM83]. The tag is typically implemented as a counter field in the head, that is
incremented whenever the head is updated. Listing 4 shows the code for such a stack:

class Stack {
 typedef struct {
 T* ptr;
 uintptr_t counter;
 } StackPointer;
 StackPointer head = {nullptr, 0}; // Head pointer of the stack

 void push(T* elem) {
 StackPointer oldVal, newVal;
 do {
 oldVal = head;
 elem->next = &oldVal;
 newVal = {elem, oldVal.counter + 1}
 } while(!CAS(&head, oldVal, newVal));
 }

 T* pop() {
 StackPointer oldVal, newVal;
 do {
 oldVal = head;
 newVal = {oldVal->ptr->next, oldVal.counter + 1}
 } while(!CAS(&head, oldVal, newVal));
 return oldVal;
 }
}

Listing 4: Link based stack using a counter tag to deal with the ABA problem

13 4.1.3The ABA problem

The purpose of the counter is to ensure that for any successful CAS operation, the head
has not changed since it was read. If the head has not changed, the operation will be
correct, since there will be no opportunity for an ABA problem. Using tags is
computationally cheap, but it has 2 disadvantages:

1. It requires being able to perform a CAS operation on a field that contains the
counter, as well as the original field.

In many cases, this can be accomplished by reducing the size of the field, or the counter.
For the head of link based stacks, one could store the next field as index instead of a
pointer, or use a smaller address space.

2. It is not a completely safe solution, since the counter can get the same value
twice through overflow.

This would lead to CAS operations that write an incorrect result. In practice it is quite
unlikely to happen when using large counters.

An alternative solution is to ensure that the data pointed, is constant while visible to any
other thread. This can for instance be achieved with garbage collectors, that is never
reusing objects.

4.2 Prior work

This section describes work relevant to the creation of concurrent priority queues, non-
blocking data structures, and ways of reducing contention. The descriptions focus on the
problems that have been solved, and the concepts used to solve them.

4.2.1 Dynamic non-blocking data structures

Concurrently readable, and non-blocking data structures face an interesting issue, when
dynamically deallocating elements. Their elements can be read by any thread, but it
unsafe to deallocate data that other threads may read from. If it sufficient to reuse
elements, then it is not necessary to explicitly deallocate them, avoiding the issue.
Deallocation of such elements can be handled by using a more or less reduced form of
garbage collection[Michael04] [MS98] [HMBW07] [GPST05] [KPS09] [Valois95].

In order for the data structure to be non-blocking, the utilities used for operations should
also be non-blocking, including the memory allocator. There are a number of fairly
efficient non-blocking memory allocators in litterature, most notably nbmalloc[GPT05]
and McRT-Malloc[HSAH06].

4.2.2 Garbage collection

As previously mentioned there are quite a few garbage collection schemes that can be
used for dynamic non-blocking data structures. This section covers reference counting,
QSBR, Hazard pointer, generic garbage collectors, and related schemes. The properties
of the different schemes are summarized in table 2.

4.2.2Garbage collection 14

Reclamation scheme Memory overhead Performance overhead General

Reference counting Ο(p+n) Very high No

QSBR Unbounded Low for read
Medium for updates

No

Hazard pointers Ο(s⋅k⋅p2
) Medium No

Beware&Cleanup Ο(s⋅(k +l)⋅p2
+n) Higher than hazard pointers Yes

Table 2: Properties of reclamation schemes.
The symbols correspond to the number of: p threads, n objects, k maximum active
reference from a thread, l references in an object. s is the average object size.

Reference counting

Reference counting can be the simplest form of garbage collection. It is typically
implemented by having a counter maintain the number of references to the
object[Valois95]. When the counter reaches 0, the object can be deallocated. Reference
counting has the advantage that inaccessible objects can be deallocated immediately. A
significant issue with reference counting, is finding a place to store the counter. For
instance, in a tree data structures it is possible to store the counter inside the globally
visible pointer. Another issue is that every time a thread accesses an object, it must first
write to the counter. Updating the counter can lead to contention, serial bottlenecks, and
cache invalidation.

QSBR

Quiscent-state-based reclamation (QSBR) is another relatively simple garbage
collection scheme. It is related to Epoch based reclamation[MS98], and the use of limbo
lists/delete lists[ML84]. To safely deallocate objects, they are put on a list. When no
threads are accessing the data structure, the elements on the list can be deallocated.
QSBR has a relatively low performance overhead [HMBW07]. The main issue with
QSBR is that nothing is deallocated, as long as one thread is accessing the data
structure. Since it is generally not possible to tell if a thread is currently active,
preempted threads may also prevent deallocation. QSBR is typically implemented in a
locking fashion, but it is possible to implement with lock-free guarantees. A
study[HMBW07] has found that the lock-free QSBR implementations tend to be slower
than the lock based versions.

Hazard pointers

Hazard pointers is a scheme where each thread publicly declares that it is going to
access objects before accessing it [Michael04]. If the object is still globally accessible
after the declaration, the thread can safely access the object, and otherwise the thread
should find another object to operate on. By globally accessible, we mean whether or
not the object is reachable from the data structures current state. Illustration 2 shows an
example of our definition.

To safely deallocate objects, the object is first made globally inaccessible, by removing
it from the data structure. The thread that makes the object inaccessible then adds the
object to a thread local list of objects that are pending deallocation. This process is
called retiring. Once the list of retired objects exceed a given size, the thread deallocates

15 4.2.2Garbage collection

any object in the list, that is not are currently used by other threads. The cost of
deallocation can be kept low, by allowing long lists. Specifically the amortized cost of
deallocation is constant, if the list is allowed to grow to a size s∝n , for n threads. Such
a case will also permit a memory overhead of O(n2

) .

Illustration 2: A linked list before and after culling the
elements after B. Afterwards C and D are not globally
visible, although some threads may have references to them

Hazard pointers require strict ordering on some operations. Specifically the public
declaration must happen strictly before accessing the object, leading to overhead on out-
of-order machines. The efficiency of hazard pointers also depends on how difficult it is
to tell whether or not objects are globally accessible. Using hazard pointers for
reclaiming elements in data structures, tends to be slower than using QSBR
[HMBW07]. Whether hazard pointers or QSBR has the lowest overhead, depends on
the ratio of reads and replacements of elements. If elements are rarely replaced, the
overhead for publicly declaring what is being read is significant.

As an alternative to testing for global accessibility, one can use the reclamation scheme
Beware&Cleanup. The scheme uses a combination of reference counting and hazard
pointers. By keeping reference counters, it is significantly simpler to test global
accessibility for arbitrary data structures [GPST05].

Generic garbage collectors

Most generic garbage collectors are lock based, including those used in runtime
environments. Popular examples include the garbage collectors of the java virtual
machine (JVM), and the common language runtime (CLR). Recently a lock-free generic
garbage collector has been proposed [KPS09]. Unfortunately implementing such a
garbage collector would seem like a significant effort. Additionally we could not find
any evaluation of its performance or memory overhead of the garbage collector.

4.2.2Garbage collection 16

Summary

There are several garbage collection schemes, and none of them are optimal for every
case. Generic lock-free garbage collectors may be coming, but they will likely require
significant implementation effort, and might not have comparable performance. QSBR
usually has the lowest performance overhead, but it provides no guarantees about its
memory overhead. Reference counting usually has the lowest memory overhead, but it
is not generally applicable, and it can cause significant contention. The memory
overhead of hazard pointers increases dramatically with the number of threads, and it
requires implementing an accessibility test. The test may be expensive, or even
impossible for arbitrary data structures. Beware&Cleanup trades the overhead of the
accessibility test of hazard implementation with occasional use of reference counting.

QSBR tends to be fastest. If it is possible to argue about how often all threads stay away
from the data structure, then QSBR is probably the best solution. Hazard pointers are
likely to have the second lowest performance overhead, if testing whether objects are
globally accessible is simple. If the test is expensive Beware&Cleanup is likely to have
the second best performance overhead. Reference counting can be extremely slow, and
it is not generally applicable. Reference counting does however tend have the lowest
possible number of unreclaimed objects.

4.2.3 Providing non-blocking algorithms

There are a few general strategies, that are typically used to implement non-blocking
data structures.

One strategy is to follow the following three steps:

1. Create a partial copy of the data structure.

2. Perform the operation on the copy.

3. Write the partial data structure back into global storage, unless the data
structure has changed.

In such a setup, any thread may start an operation at any time. If the operation fails, then
it must be because some other operation made progress.

Many non-blocking data structures have been implemented efficiently in ways that are
similar to this strategy. Specifically stacks [IBM83], skip-lists [Sundell04], queues
[Michael04] and counters have been implemented in similar fashions.

Another strategy, referred to as help locking works as follows:

1. Write the operations being performed directly into the data structure, to avoid
conflicting operations.

2. Perform the operations written into the data structure.

The name “help locking” derives from, the strategy avoiding conflicts in a manner
similar to locking, while avoiding blocking. It avoids blocking, by allowing other
threads to complete pending operations. A pseudo code version of the general strategy
can be seen in listing 5.

17 4.2.3Providing non-blocking algorithms

The operations is first written with CAS or a similar read-modify-write instruction. If
writing the operation fails, then help the operation preventing the write, and retry
writing. After successfully writing, perform the operation, and remove the description.

doOperation(op, dataStructure) {
 do {
 status = dataStructure.tryToAdd(op);
 if(status != SUCCEEDED) {
 status.helpPreventingOperation();
 }
 } while(status != SUCCEEDED);
 datastructure.do(op);
 datastructure.remove(op);
}

Listing 5: General form used in help locking

The actual operations execute in a very similar fashion to the other strategy. The
advantages of this strategy are that the operations can have multiple steps, there is less
need for local copies, and it may simplify checking for success. The main disadvantage
is the expense of making more writes to global memory. Some of the more complex
non-blocking data structures have been implemented in this way [Fomitchev03] [BH11]
[EFRB10].

There are also 3 ways to create non-blocking versions of data structures, that require
fewer changes:

1. Use of a lock-free software transactional memory (STM) scheme [Fraser04].

2. Use a solution to the consensus problem to orchestrate operations on objects
[Herlihy91].

3. Conversion of explicit locks to lock-free operations using the scheme from the
paper “Locking without blocking” [TSP92].

All three solutions are applications of the help locking strategy, applied in ways that
work for any data structure. These general solutions do however have significant
disadvantages. Using the consensus problem to implement wait-free data structures
tends to be extremely slow, and has a high memory overhead. The scheme from
“Locking without blocking”, was primarily a proof of concept, for there being other
general solutions with lower overhead. From what we can tell the details of the scheme
was never fully published, or used outside the paper. STM is a more realistic solution. It
depends on having a specialized framework, and/or compiler support. Data structures
based on STM tend to perform worse than data structures that have been adapted to be
lock-free by hand [Fraser04].

4.2.4Non-blocking priority queues 18

4.2.4 Non-blocking priority queues

There are several existing lock-free priority queues. They generally use some kind of
search structure to find a location to insert or extract elements from.

One overall strategy for implementing priority queues is only allowing a fixed range of
priorities and keeping a container for each priority level. This scheme is often called
static search structures or quantatized priority queues. Such schemes has the advantage
that it does not really require much in the way of maintenance, since there is a 1:1
mapping from priority level to container. The message passing system Tempo[BER07],
implements such a priority queue. That queue is based on the SimpleTree data structure
described in the paper “Scalable Concurrent Priority Queue Algorithms” [SZ99], only
using lock-free counters and stacks.

Alternatively one can use a dynamic structure, allowing for a wider range of priorities,
at the expense of additional maintenance. Prior work has been done on using non-
blocking heaps[IR93]. Unfortunately most lock-free heaps depend on exotic read-
modify-write instructions, that are not generally available. Some of the instructions can
be simulated on current hardware, either using STM or special algorithms, but it tends
to come at a significant cost. By comparison some lock based queues perform rather
well, especially under low contention [DB08].

Priority queues based on lock-free and lock based skip-lists have also been brought
forth [ST05] [SL00]. Skip-lists normally supports add remove operations, of key-value
pairs. It is possible to adapt skip-lists to work as priority queues, with the limitation that
the elements in the queue must have unique keys. Providing unique keys can be
accomplished in a number of ways. For instance using key-values pairs as keys, having
redundancy bits in the keys, or by using references to containers as values. Storing a
container in each element, may require using more complicated lock-free objects, to
ensure that they can be composed properly. Recently non-blocking binary search
trees[EFRB10], and k-ary search trees[BH11] have been proposed. A k-ary search tree
is a search tree where each node can have up to k children. It might be possible to use
those data structures as priority queues, with similar schemes to those for skip-lists.

4.2.5 Backoff schemes

Backoff schemes are measures to keep contention low. One way of doing this is to make
threads wait before or after performing operations, or after failing to perform operations.
One of the more influential papers dealing with backoff schemes for concurrent data
structures is “The performance of spin lock alternatives for shared-money
multiprocessors” [Anderson90]. The paper presented a number of backoff schemes, and
applies them to a lock implementation. The more successful schemes are simulating
queuing, using constant individual spin times to each thread, and truncated exponential
backoff.

Simulating queuing works by having the processors get in a queue, and perform their
operation when its their turn. There have been proposed a number of different kinds of
queue based locks, such as CLH locks [Craig93] [MLH94]and MCS locks[MCS91],
providing different tradeoffs. The schemes can all dramatically reduce contention.

19 4.2.5Backoff schemes

Unfortunately they are not directly applicable for non-blocking data structures, since it
forces threads to wait for each other.

Giving each thread a constant individual spin time, can keep contention low, and
ensures that some processors can operate with fairly high throughput. Unfortunately
good results require highly tuned spin times. Poor choices for the individual spin times
can lead to redundant or insignificant spinning. This results in overhead from spinning
or contention. In short, the solution is not very flexible, and might give very poor results
if not properly tuned.

Truncated exponential backoff works by having the threads spin for a number of time
slots before attempting to perform operations. The number of slots to spin for is
sampled from a discrete uniform random distribution. The longest possible duration is
stored individually for each thread. If the threads detect significant contention when
performing an operation, they double the upper bound on the spin duration. If it detects
low contention it halves its spin duration. The longest possible spin duration has an
upper bound (truncation), proportional to the number of CPUs. The truncation reduces
the overhead for changing levels of contention. Additionally it ensures that exponential
backoff is always competitive to assigning each processor separate spin times. The
scheme assumes you can find some way of detecting contention. For CAS operations,
one hint would be failing operations. For other read-modify-write instructions that
provide the old value there are the following 4 possibilities:

1. Reading the value being updated, before changing it, and check if someone else
changed the value in between.

2. Remembering the fields last value, and assume contention, if it has changed.

3. The value might indirectly be a tell of whether or not there is significant
contention.

4. The level of contention on one object might be proportional to the contention of
another object.

4.2.6 Elimination and combination of operations

For some data structures, their operations can be eliminated and combined with one
another, to reduce contention. Doing so reduces the number of operations on the
contended data. Combination and elimination can be implemented through a
synchronization scheme called combining funnels [SZ00]. Combining funnels have
been applied to counters, bounded counter, and stacks by the authors of the original
paper. They used the bounded counters and stacks to implement a priority queues
[SZ99]. The priority queues showed significantly better performance than competing
priority queues, such as the queue by Hunt et al [HMPS96]. The priority queues were
compared under high contention, running on simulated hardware with hundreds of
processors. Combining funnels have not been extensively studied lately, but some of its
concepts have seen recent interest. For instance, elimination has been applied to the
lock-free stack by Treiber et al[IBM83] [HSY10]. The stack with elimination is still
lock-free, because elimination of two opposing operations is fairly simple to implement
in a lock-free fashion. They were able to show a significant performance improvement
over a regular stack, on a specific hardware setup.

4.3Summary 20

4.3 Summary

This chapter introduced the theoretical background for rest of the thesis, and prior work
in the same area. The theoretical background covered features of concurrent data
structures, and the concepts necessary to argue about them. The prior work included
concurrent data structures, and high level ways of ensuring properties of concurrent data
structures. The remainder of this thesis is primarily about concurrent priority queues,
and concurrent primitives. Therefore the atomic primitives, concurrent priority queues,
and backoff schemes were covered in greater detail.

21 5Concurrent building blocks

5 Concurrent building blocks

5.1 Introduction

This chapter describes basic building blocks used to for the data structures presented in
the remainder of this thesis. The chapter covers methods for accessing hardware
synchronization primitives, reducing context switches, and reducing the impact of
contention.

Reducing the impact of contention includes ways to randomize access patterns, and
ways to implement backoff schemes. We will also apply those concepts to lock
implementations, so we can perform fair performance evaluation, when comparing lock
based and lock-free data structures.

5.2 Random number generation

Generating a uniformly distributed pseudo random number is a fairly standard feature in
many standard libraries and toolkits. Pseudo random numbers are typically generated by
initializing a pseudo random number generator (PRNG) to a certain state, and picking
new numbers by evolving that state. The evolution is deterministic, unlike true random
number generators.

On SMP machines the PRNGs internal state is usually protected with locks. Locking in
order to get a random number may by quite expensive, and it completely ruins the
advantages of non-blocking data structures. To avoid such issues we have each thread
store a PRNG, and ensure that threads only access their own PRNG.

There are many different PRNGs for uniform distributions, and picking a suitable
PRNG depends on what it is used for. The typical performance metrics of an RNG are
its period length, internal state size, the time it takes to evolve its state, how closely the
output follows a uniform distribution, and how random the output is. There are a
number tests to determine how random the output of a PRNG is, but the criteria they
measure are beyond the scope of this thesis. The length of the period is how many
numbers it can generate before reaching a previously reached internal state.

We primarily use PRNGs to randomize access patterns to contended resources. For
instance randomizing the amount of time a thread back off before accessing contended
fields, or picking a random order to access fields in. The primary reason for using
PRNGs in randomized access patterns, is to reduce the chance of resources being
contested. We opt to use a linear congruential generator (LCG). An LCG has very small
state, and fast evolutions, at the expense of poor randomness and period length. Poorer
randomness, and a shorter period are not significant issues for our uses, as described in
the following section.

5.2.1LCGs for randomizing access patterns 22

5.2.1 LCGs for randomizing access patterns

An LCG that generates m-bit integers stores an m-bit internal state x. LCGs evolve their
state as x i+ 1=(x i⋅a+ c)mod m , where m is typically 216 , 232 or 264 . Listing 6 shows
what such a RNG might look like:

template<class IntType, IntType a, IntType c>
class LCG {
 IntType x;
 IntType rand() {
 x = x * a + c;
 return x;
 }
}

Listing 6:A templated LCG, where a, c, and the type of integer generated is passed as
template parameters

The quality of the random numbers depend highly on the values used for a, c, and m. If
an LCG can achieve all internal states possible, it is said to have a full period. LCGs
have full periods if the following conditions are met [Knuth97]:

1. c and m are relatively prime

2. a-1 is divisible by all prime factors of m

3. a-1 is a multiple of 4, if m is a multiple of 4

When m=2n , n∈ℕ , the conditions translate to (c mod 2)=1∧((a−1)mod 4)=0 , since
the only prime factor of such m is 2.

LCGs with full periods do not necessarily produce good representations of random
numbers. However an LCG without a full period produce a poor representation of
uniformly distributed numbers, because it cannot generally produce all numbers. Our
LCG has a=2531011 , c=2531011+ 2⋅tid , where t id is the threads id. Using a
different c value for each thread ensures that the each thread evolves the internal state of
in a unique pattern, assuming t id< 2m

−1 .

LCGs are often considered to be poor PRNGs, because they have relatively short
periods, and the numbers produced from a single LCG tends to be highly correlated. In
other words it is easy to predict the next value generated based on a few outputs, even if
a and c are unknown. LCGs do however have some redeeming qualities. If you sample
2k random numbers from an LCG with m=2n , n∈ℕ∧n≥k then there will be no
numbers with the same k least significant bits. This property is very attractive when
randomizing access patterns, if the number of elements to chose from is a power of two,
and each LCG evolves its state in a unique fashion. The property can also be used
generate 2k different values relatively quickly, without having to resort to shuffling.

23 5.2.1LCGs for randomizing access patterns

Proof:

1. The result of updating the k lowest bits of x only depends on a, c and the
previous k lowest bits of x. This is true because the update of x can be written as

a series of additions x i+ 1=((∑j=1

a

x i)+ c)mod m , and the k lowest bits of the

additions only depend on the k lowest bits of x.

2. The k lowest bits of the samples from the LCG correspond to the entire result of
an LCG B. B has the parameters a B=a , cB=c , mB=2k , and an initial state that
corresponds to the k lowest bits of the original LCGs initial state.

3. Since the LCG B uses the same variables uses the same a and c parameters, it
also satisfies the constraint (c mod 2)=1∧((a−1)mod 4)=0 . Therefore B has a
full period.

4. The LCG B would therefore produce 2k different variables, meaning the lowest
k-bits of the original LCGs samples are different from each other.

The property is also one of LCGs primary weaknesses. The lowest k bits of the samples
produced by the LCG have a period of 2k . This implies that the lowest bit has a period
of 2, the two lowest bits have a period of 4, and so on. This property puts an upper
bound on the periods of the individual bits of the samples. The bound primarily affects
the lowest bits. For this reason one should generally avoid depending on the randomness
of the lower bits in LCGs. This also means that when generating samples from the
Bernoulli distribution based on a sample from an LCG, one should generally use code
that looks like: lcgSample < successCriteria.

A similar property exists for some forms of XOR shift PRNGs. We chose to use LCGs
because the space of useable XOR shift PRNGs is smaller, and they tend to be slower
than LCGs on AMD64 hardware. By comparison, using a “better” PRNGs, such as
Mersenne Twisters, or multiply-with-carry PRNGs, may produce more random output,
but they do not have the property.

5.3 Avoiding context switches

Using threads to implement task states requires storing the state of the thread, whenever
it is preempted and restored. In some cases it may be possible to avoid restoring the
entire state of the thread. For instance when restoring a thread that previously ran,
registers that the operating system does not touch do not need to be restored. Even with
such optimizations switching threads inside and outside of the kernel can still be
expensive.

Instead of using threads, one can describe tasks with continuations. Continuations are
typically identified as a function, and the parameters to the function. Continuations are
frequently used inside functional programming languages. Uses include lazy evaluation
of variables, where the evaluation is postponed, by storing a continuation to the
computation of the variable, rather than the actual variable. For scheduling purposes, the
advantage of continuations is that they may be run within the context of any thread, with
the same privileges, avoiding the need for context switches. To replace the use of

5.3Avoiding context switches 24

threads with continuations, the task should never block, but instead create a continuation
that finishes the task after blocking.

Continuations have been used to avoid using threads inside the L4::Pistachio kernel
[Warton05], by instead using continuations whenever code blocks inside the kernel. By
avoiding the use of kernel threads, each processor only needs to have one stack for use
inside the kernel. The L4::Pistachio already applied other tricks to avoid most full
context switches, but continuations seemed to improve performance, due to better cache
locality when keeping the same stack. Prior to L4::Pistachio the Mach kernel also used
continuations to reduce the need for threads inside the kernel [Draves94] [DBRD91]. In
addition the Mach 3.0 kernel used what they referred to as continuation recognition, to
implement fast paths for certain types of operations. For instance continuation
recognition was used for the send/receive operations in inter processes communication.
If a message is sent to a thread that is waiting for a message, then the kernel can in some
cases process the message inside the sender kernel context. Doing so avoids running the
continuation for the receiving thread.

Describing tasks as continuations has also been used in various user level threading
libraries, including the C-Threads library for Mach 3.0 [Dean93]. The library used the
same basic framework as the Mach kernel to implement continuations, and also
supported continuation recognition.

More recently C++11 lambda expressions with capture, can also model continuations.
Listing 7 shows how to create a continuation c in C++11. The continuation can be
called at a later time to evaluate calculation(0, 1).

int a = 0, b = 1;
std::function<int()> c = [=]() {
 return calculation(a, b);
};

Listing 7:Creates a continuation to calculation(a,b).
[=] defines how to store the parameters a and b.

One significant problem with the use of continuations for describing tasks, is that the
code must be split into functions whenever a blocking call is executed, in order to
describe the remainder of the operation. This requires splitting code blocks that are
logically connected, leading to a more fragmented view of the operations, and it may
require significant amounts of refactoring. Parallel Patterns Library is a library by
Microsoft that can wrap C++11 lambda expressions into “tasks”, in attempts to reduce
the issue. They do so by having “tasks” store a field that can contain the continuation to
call after performing blocking calls. This means that they can define the continuations in
a way that resembles a normal structured flow[PPL11].

5.4 Interfacing to synchronization primitives

Synchronization primitives, such as read-modify-write instructions, are used to provide
guarantees, to the executing threads. In order to use the read-modify-write instructions
of a given platform, in a non-assembly language, it is necessary to interface to them in
some way. This section investigates the performance and code impact of various
interfaces to such instructions. The purpose of this comparison is to find interfaces to

25 5.4Interfacing to synchronization primitives

the atomic instructions of the AMD64 instruction set, that leads GCC to produce the
best results. Whether or not the results are good, is determined based on the throughput,
and the quality of the assembly code generated for selected test cases. The comparison
primarily focuses on the CMPXCHG instruction, corresponding to CAS. We chose to focus
on that instruction, because it is one of the more difficult instructions to interface to, and
because it is frequently used in non-blocking data structures.

This section starts out describing the guarantees provided by the compiler and
processor, used tested interfaces, and it ends with a discussion of the results.

5.4.1 Analysis

This section covers the theoretical background for implementing and using interfaces to
read-modify-write instructions. It covers memory ordering guarantees provided by the
GCC, and AMD64, the read-modify-write instructions of AMD64, and ways to interface
to them.

5.4.1.1 Memory ordering

Strict ordering of memory accesses is required for the correctness of some algorithms,
such as Dekkers algorithm, Petersons algorithm, and the Hazard Pointers. One typically
use abstractions referred to as memory barriers. Memory barriers ensure that all the
CPUs memory accesses made before the barrier are completed before leaving the
barrier. Implementing memory barriers requires interacting with both the compiler and
underlying CPU architecture.

At a compiler level, the volatile qualifier can be applied to variables in C++, to ensure
that the compiler does not break the memory ordering. Specifically access to volatile
variables guarantees that the compiler will not reorder any accesses to the variable. It
does not work as a memory barrier, since accesses to non-volatile variables can be
reordered across volatile accesses. In addition the compiler can still remove code that
accesses volatile variables, if it can guarantee that the code is never reached. The
volatile qualifier does not guarantee anything about how the processor will execute the
code, it only makes guarantees about the produced assembly code. In other words
whether or not the memory ordering is satisfied, depends on the processor that it is
running on.

The AMD64 instruction set provides the following guarantees[AMD10]:

• The weakening of the ordering is never visible to a single CPU system.

• Stores to regular memory (write-back memory) is executed in order

• If n CPUs write to a memory location, and m other CPUs observe the memory
location, then the m CPUs will see the writes in the same order.

• Loads cannot be executed out of order, with respect to loads and stores to the
same memory location.

5.4.1.1Memory ordering 26

To implement memory barriers, one can use one of the following instructions, ordered
by how fast they tend to be:

• SFENCE guarantees that all the CPUs stores to memory locations are terminated
before the next store to a memory location.

• LFENCE guarantees that all the CPUs loads from memory locations are
terminated before the next load from a memory location.

• MFENCE guarantees that all the CPUs access to memory locations are terminated
before the next access to a memory location.

• Instructions with the LOCK prefix also serve as mfences.

In general the instructions that provide the weakest guarantees are the fastest. When
accessing regular write-back memory in AMD64, the stores are already in order, so
sfence is only necessary when using other types of memory.

5.4.1.2 Available primitives

The AMD64 instruction set supports a number of commonly used read-modify write
operations[AMD09], that return the read value in a register, as summarized in table 3.
The AMD64 instruction set supports additional read-modify-write instructions, that only
indirectly refer to the read value through condition codes as summarized in table 4.
Condition codes are flags that are set after the execution of instructions. They can be
used to branch, and make predicated assignments. The condition codes can also be read
explicitly.

All of the instructions can be performed on 8, 16, 32, and 64 bit memory locations, and
CAS can additionally be performed on 128 bit memory locations. Any memory location
being written to must be aligned on its own base, for instance 32 bit memory locations
must be aligned on 32 bits. The instructions must be prefixed with LOCK, when used in
contexts with multiple CPUs, except for XCHG which is “always locked”.

Instruction (mnemonic) Description

extended CAS (CMPXCHG) Like regular CAS but it returns both whether it succeeded
or not, and the previous value.

fetchAndAdd (XADD) Regular fetchAndAdd

fetchAndStore (XCHG) Swaps a value in memory with a register value

Table 3:The conventional read-modify-write instructions of the AMD64 instruction set

27 5.4.1.2Available primitives

Instruction mnemonic Description

INC, DEC Increment and decrement

ADD, SUB, ADC, SBB Add and subtract, with and without a carry or borrow bit

OR, AND, XOR, NOT Bitwise operations

NEG Subtracts the value of an integer from 0

BTC, BTR, BTS testAndComplement, testAndClear, testAndSet

Table 4:Atomic instructions that only provide output through the condition codes

5.4.1.3 Interfacing to read-modify-write instructions

There are a number of different ways to interface to the read-modify-write instructions
of any given platform. FenixOS is targeted towards GCC, so the most obvious solutions
is using the compiler builtins, using GCC inline assembly syntax, or the atomic
primitives introduced in C++11 described in proposal N2427[BC07].

Unfortunately using the C++11 features is not an option, since the primitives depend on
library functions. Such functions are not available inside FenixOS, unless we implement
them ourselves. A feature in the proposal is that it allows programmers to describe the
minimum memory ordering that should be enforced for each atomic operation. Doing so
can affect the overhead of the code produced by the compiler.

GCC inline assembly syntax allows the programmer to run assembly code in other
programming languages. The read-modify-write instructions can be performed in
assembly code, wrapped in functions or macros, to provide a simple API. By
comparison GCC's atomic builtins are wrapper functions to atomic operations, that the
compiler creates read-modify-write instructions from. The atomic builtins supported by
GCC are basically the same as ICC's atomic builtins [GNU11]. The ICC builtins are in
turn inspired by the Itanium processor architecture.

5.4.2 Implementation

5.4.2.1 The interfaces

GCC provides the builtins __sync_bool_compare_and_swap and __sync_val-
_compare_and_swap, as an interface CAS operations. The builtins return whether or not
the operation succeeded and the previous value at the memory location respectively.
Additionally GCC provides the builtins __sync_fetch_and_add and __sync_test-
_and_set, to interface to the fetchAndAdd and fetchAndStore operations, respectively.

Most of the calls to the atomic builtins work as memory barriers for both hardware and
the compiler. This means that that all loads and stores before the call are completed
before the call, and no loads or stores are moved from after the call to before the call.

5.4.2.1The interfaces 28

GCC inline assembly syntax allows the programmer to specify constraints for
placement of variables. This may give the compiler more freedom regarding register
windowing, leading to less overhead from using inline assembly. Each assembly block
contains a list of outputs, inputs, and a clobber list. Each element in the input and output
lists specify constraints on where they are placed. The clobber list specifies the variables
or memory locations that are invalidated.

template <class T>
T casVal(volatile T * const adr, T oldVal, T newVal) {
 asm volatile("LOCK CMPXCHG %2, %0" // assembly code
 : "=m"(*adr), "=a" (oldVal) // output
 : "r"(newVal), "1"(oldVal)); // input
 return oldVal;
}

Listing 8:casVal, a templated interface to CAS that returns the previous value.

Listing 8 shows the interface casVal that returns the value previously stored at adr.
The function loads oldVal into the a register, and the newVal into any register. Then it
performs a LOCK CMPXCHG instruction, and returns the value stored in the a register.

The interface casBool is presented in listing 9. casBool also returns a boolean value
that specifies whether or not the operation succeeded, by returning the zero bit of the
condition codes.

template <class T>
bool casBool(volatile T * const adr, T* oldVal, T newVal) {
 uint8_t success;
 asm volatile(" LOCK CMPXCHG %3, %0; setz %2"
 : "=m"(*adr), "+a"(*oldVal), "=r"(success)
 : "r"(newVal));
 return success;
}

Listing 9:casBool, a templated interface to CAS that returns whether the operation
succeeded, in addition to the previous value through oldVal

In most cases the purpose of getting a boolean success value, is to branch based on
whether or not the operation succeeds. Doing so based on the previous interface might
be inefficient, since the compiler generally cannot optimize the assembly blocks, or
interpret the condition codes after an assembly block. One way to reduce this problem is
to use assembly goto blocks. Asm goto blocks are supported by GCC 4.5 and newer.
Such blocks allows the assembly code to jump to regular code, through the use of
labels, but such blocks cannot currently specify outputs.

The interface casGoto in listing 10 avoids this problem by performing the operation in
an assembly block, and branch in a separate assembly goto block. It branches based on
the zf condition code, similar to how casBool returns zf. Although the compiler
cannot optimize the assembly code, it can optimize the code that the assembly block
jumps into, by inlining the function.

29 5.4.2.1The interfaces

template <class T>
bool casGoto(volatile T* adr, T* oldVal, T newVal) {
 T o = *oldVal;
 asm volatile(" LOCK CMPXCHG %2,%0"
 : "+m"(*adr), "+a"(o)
 : "r"(newVal));
 asm volatile goto("JNZ %l[failed]"::::failed);
 *oldVal = o;
 return true;
failed:
 *oldVal = o;
 return false;
}

Listing 10:casGoto, a templated interface to CAS that returns the previous value
through oldVal, and branches based on whether or not the operation succeeded

All of the inline assembly blocks allow the compiler to keep temporary copies of
variables, as long as they do not overlap with adr. On the other hand the hardware is not
allowed to speculate any loads or stores across the LOCK CMPXCHG instruction, because
of the semantics of the lock prefix. In some cases it might be desirable to ensure rereads
the variables after a read-modify-write instruction. In such cases one can add assembly
blocks after the atomic operation, that specify that the memory may have changed,
forcing the compiler discard any temporary copies.

For other atomic instructions, one can use inline assembly similar to the casVal to
interface to the registers returned, and blocks similar to casBool or casGoto, to
interface to the condition codes returned. To use the 128 bit CAS operations, we use
code that is very similar to the previous interfaces, but it stores the value of oldVal, and
newVal in two 64 bit values. For instance the casGoto code for 128 bit values is:

bool casGoto(volatile uint128_t* adr, uint128_t* oldVal, uint128_t
newVal) {
 uint64_t o1 = *oldVal, o2 = (*oldVal) >> 64;
 asm volatile("LOCK CMPXCHG 16B %0"
 : "+m"(*adr), "+a"(o1), "+d"(o2)
 : "b"((uint64_t)(newVal)), "c"((uint64_t)((newVal)>>64)));
 asm volatile goto("JNZ %l[failed]"::::failed);
 *oldVal = (((uint128_t)o2) << 64) | o1;
 return true;
failed:
 *oldVal = (((uint128_t)o2) << 64) | o1;
 return false;
}

Listing 11:The 128 bit version of casGoto. The primary difference is that all parameters
are stored in specific registers

5.4.3Evaluation 30

5.4.3 Evaluation

This section describes how the interfaces were applied, how the interfaces performed,
and describe the characteristics of the generated code. The results are abbreviated to the
most relevalt pieces.

5.4.3.1 Setup

To evaluate the performance we have used the different interfaces to implement
increment, xor, and swap operations, using CAS. We also implemented interfaces to the
read-modify-write instructions add, inc, swap, and xor, to compare their respective
performance. The interface based on inc does not have the same functionality as the
other adding interfaces, and instead it always adds 1. All the instructions, aside from
CAS, only support up to 64 bit fields. We also implemented a 128 bit add operation
using locked add and adc instructions, and a 128 bit xor with two locked xor
operations. Performing the operation with two read-modify-write instructions means
that the value stored in the memory location might not be valid at all times, but the end
result will be correct, because add and xor operations are associative. The operations are
implemented in slightly different fashions for the various interfaces, as shown in the
following listings 12 through 14.

T add(T* field, T increment) {
 T old;
 do {
 old = *field;
 } while(!CAS(field, old, old + increment));
 return old;
}

T swap(T* field, T newVal) {
 T old;
 do {
 old = *field;
 } while(!CAS(field, old, newVal));
 return old;
}

T xor(T* field, T bits) {
 T old;
 do {
 old = *field;
 } while(!CAS(field, old, old ^ bits));
 return old;
}

Listing 12:The operations implementation, when using
__sync_bool_compare_and_swap

31 5.4.3.1Setup

T inc(T* field, T increment) {
 T old = *field, tmp;
 while(old != (tmp = CAS(field, old, old + increment))) {
 old = tmp;
 }
 return old;
}

T swap(T* field, T newVal) {
 T old = *field, tmp;
 while(old != (tmp = CAS(field, old, newVal))) {
 old = tmp;
 }
 return old;
}

T xor(T* field, T bits) {
 T old = *field, tmp;
 while(old != (tmp = CAS(field, old, old ^ bits))) {
 old = tmp;
 }
 return old;
}

Listing 13:The operations implementation when using __sync_val_compare_and_swap
or casVal

T inc(T* field, T increment) {
 T old = *field;
 while(old != CAS(field, &old, old + increment));
 return old;
}

T swap(T* field, T newVal) {
 T old = *field;
 while(old != CAS(field, &old, newVal));
 return old;
}

T xor(T* field, T bits) {
 T old = *field;
 while(old != CAS(field, &old, old ^ bits));
 return old;
}

Listing 14:The operations implementation, when using casBool or casGoto

5.4.3.2Evaluated performance 32

5.4.3.2 Evaluated performance

This section evaluates the performance of the interfaces to the atomic operations. The
tests were performed by doing the 300,000 operations on a shared field, as seen in
listing 15. The tests were performed using up to 16 threads, where each was bound to a
specific CPU. The tests started all the threads simultaneously, and each thread measured
the wall-clock time when they start and finished their tests. Each of the presented results
are based on 160 measurements. To get 160 measurements, when testing with p threads,
the tests is run 160 / p times.

field

opTest() {
 … measure start time
 for(i = 0 .. 300000) {
 useInterface(&field, id)
 }
 … measure completion time
}

Listing 15:The test run to evaluate performance of the interfaces

Based on the measurements when run on the system described in table 5, we present the
graph 1 through 3.

Graph 1 shows the throughput of the interfaces in the single threaded case, as a function
of the size of the operations. Graph 2 shows the thread total throughput of the interfaces,
averaged over 8, 16, 32 and 64 bit operations, as a function of the number of threads.
Graph 3 shows the thread total throughput of the interfaces as a function of the number
of threads.

The graphs name the individual tests as the concatenation of the operation and interface
of the test. The naming scheme used for the interfaces is given in table 6.

By thread total throughput, we refer to the sum of the threads throughput. The term is
different from system throughput. The difference between the two terms, is that the
thread total throughput calculates each threads throughput over the based on the threads
start and completion time. The system throughput and thread total throughput are only
the same, if all of the threads completed the tests in the same time. Typically the system
throughput can be no more than constant, when increasing the number of threads
running the operations on highly contended data. In the same setting the thread total
throughput can double, if the threads completion times are uniformly distributed.

33 5.4.3.2Evaluated performance

System name HP ProLiant SL165z G7 server

Ram 64 gb

OS Scientific Linux 6.1

Processors 2 x AMD Opteron 6168 (24 CPUs)

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG
-fopenmp -Ofast -fwhole-program
-static -flto -fno-align-functions
-fno-align-labels -fno-align-loops
-fno-align-jumps -s

Table 5:A description of the platform for running the tests

Ending Interface

BVal __sync_val_compare_and_swap

Val casVal

BBool __sync_bool_compare_and_swap

Bool casBool

Goto casGoto

A Inline assembly to read-modify-write version of operation

B Builtin to __sync_fetch_and_ version of operation

Table 6:Shorthand names for atomic instruction interface

5.4.3.2Evaluated performance 34

Graph 1: Throughput for the various interfaces in the single threaded case

8 bit 16 bit 32 bit 64 bit 128 bit
00E-1

20E+6

40E+6

60E+6

80E+6

10E+7

12E+7

Throughput at no contention for add

addBBool

addBVal

addBool

addVal

addGoto

addB

add

addX

incO
p

e
ra

tio
n

s
 p

e
r

s
e

co
n

d

8 bit 16 bit 32 bit 64 bit 128 bit
00E-1

20E+6

40E+6

60E+6

80E+6

10E+7

12E+7

Throughput at no contention for swap

swapBBool

swapBVal

swapBool

swapVal

swapGoto

swapB

swap

O
p

e
ra

tio
n

s
 p

e
r

s
e

co
n

d

8 bit 16 bit 32 bit 64 bit 128 bit
00E-1

20E+6

40E+6

60E+6

80E+6

10E+7

12E+7

Throughput at no contention for xor

xorBVal

xorBBool

xorVal

xorBool

xorGoto

xorA

xorB

O
p

e
ra

tio
n

s
 p

e
r

s
e

co
n

d

35 5.4.3.2Evaluated performance

Graph 2: Thread total throughput for the various interfaces

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

10E+6

20E+6

30E+6

40E+6

50E+6

60E+6

70E+6

80E+6

90E+6

10E+7

Thread total throughput for add averaged over 8, 16, 32, and 64 bit

addBBool

addBVal

addBool

addVal

addGoto

addB

add

addX

inc

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

20E+6

40E+6

60E+6

80E+6

10E+7

12E+7

Thread total throughput for swap averaged over 8, 16, 32, and 64 bit

swapBBool

swapBVal

swapBool

swapVal

swapGoto

swapB

swap

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

10E+6

20E+6

30E+6

40E+6

50E+6

60E+6

70E+6

80E+6

90E+6

10E+7

Thread total throughput for xor averaged over 8, 16, 32, and 64 bit

xorBVal

xorBBool

xorVal

xorBool

xorGoto

xorA

xorB

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

5.4.3.2Evaluated performance 36

Graph 3: Thread total throughput for the interfaces to 128 bit operations

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

10E+6

20E+6

30E+6

40E+6

50E+6

60E+6

70E+6

Thread total throughput add@128 bit

addBool

addVal

addGoto

add

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

10E+6

20E+6

30E+6

40E+6

50E+6

60E+6

70E+6

80E+6

Thread total throughput swap@128 bit

swapBool

swapVal

swapGoto

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

10E+6

20E+6

30E+6

40E+6

50E+6

60E+6

70E+6

Thread total throughput xor@128 bit

xorVal

xorBool

xorGoto

xorA

xorB

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

37 5.4.3.2Evaluated performance

The following 6 observations are immediately obvious from the graphs:

1. In graph 2 and 3 we see that the thread total throughput drops, when increasing
the number of threads. The throughput of a system with 16 threads, is less than
half that of a single thread in all cases

2. In graph 2 the direct read-modify-write versions of the operations are faster than
the CAS based operations.

3. In graph 3 the CAS based operations are faster than the direct read-modify-write
operations, in the single threaded case, and slower at high contention.

4. In graph 1 and 2 the locked xchg, xor, xadd, add, and inc instructions have
very similar throughput, when under the same level of contention.

5. In graph 1 and 2 the various interfaces to CAS have very similar performance.

6. In graph 3 the casGoto interface consistently outperforms the other interfaces in
the single threaded case. There is no significant difference in the other cases.

The first observation basically shows that there is significant overhead to contention for
the test cases. The observation is in no way surprising, and it illustrates why backoff
schemes are useful for contended resources

The second and third observations show characteristics about the locked instructions.
CAS based updates tend to be slower than more direct instructions, because CAS is
more complex, and it because the updates can fail. In graph 3 the updates can be
performed by a single CAS instruction, while it takes two of the direct instructions,
explaining why CAS is faster in the single threaded case. At higher contention levels of
graph 3 the direct interfaces are faster, because their updates always succeeds, unlike the
CAS instruction.

The forth and fifth observations indicate that ensuring atomicity of the operations, is
more expensive then actually performing them, for these tests.

5.4.3.3 Generated code

This section reviews the quality of the assembly code generated for the update loops, of
the different CAS based operations, when using the different interfaces.

The full update loops can be seen in appendix 10.1Read-modify-write update loops. We
evaluate the quality of the code based on:

• Min instructions: The number of instructions executed per update, if the
operation succeeds.

• Retry instructions: The number of instructions executed each time an update
fails.

• Total size: The total size of the code in bytes.

The quality is evaluated individually for 8, 16, 32, 64, and 128 bit operations.

Table 7 through 9 show the characteristics of the generated code, for the different
implemented operations.

5.4.3.3Generated code 38

Interface Min instructions Retry instructions Total size

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Val 8 7 7 7 12 5 5 5 5 9 25 25 21 25 44

BVal 7 7 7 7 5 5 5 5 29 31 26 31

Bool 7 6 6 6 12 4 4 4 4 8 23 23 20 21 40

BBool 6 6 5 5 4 4 3 3 19 20 14 17

Goto 5 4 4 4 8 2 2 2 2 7 16 18 13 14 35

Table 7:Performance metrics of CAS based swap operations

Interface Min instructions Retry instructions Total size

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Val 9 8 8 8 19 6 6 6 6 16 28 28 24 29 66

BVal 10 10 10 10 7 7 7 7 36 38 29 35

Bool 8 7 7 7 18 5 5 5 5 14 24 24 21 23 56

BBool 8 8 6 6 6 6 4 4 24 25 17 21

Goto 6 5 5 5 14 3 3 3 3 13* 19 19 16 18 53

Table 8:Performance metrics of CAS based add operations

Interface Min instructions Retry instructions Total size

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Val 11 9 9 9 17 8 7 7 7 14 31 29 25 31 59

BVal 11 11 11 11 8 8 8 8 37 39 30 37

Bool 9 8 8 8 16 6 6 6 6 12 25 25 22 25 50

BBool 8 7 7 7 6 5 5 5 24 25 18 23

Goto 7 6 6 6 12 4 4 4 4 11* 20 20 17 20 48

Table 9:Performance metrics of CAS based xor operations

The code generated by all of the interfaces in all of the test cases, except the 128 bit
versions of casGoto, store the update loops in one continuous block. The 128 bit
versions of casGoto store some of the retry instructions slightly after the update loop.

The 32 bit operations appear to be very space conserving. In fact all interfaces produced
the smallest update loops for all of the test cases, when they used 32 bit operands. The
update loops for the 128 bit operations are by far the largest. This is because the 128 bit
values require two registers, and it generated code for the update loops with a lot of
redundant mov instructions. The problem is most pronounced for the add operations. For
instance the 128 bit add update loop using casGoto, has 6 redundant mov instructions.
By comparison the 128 bit xchg loop for casGoto only has 2 redundant mov
instructions. The poor results indicate that GCC is less efficient at optimizing the 128 bit
types. This is most likely because the extensions see far less use than the primitive types

39 5.4.3.3Generated code

of C++, so optimizing operations on such variables is not a high priority. Additionally
GCC might not be able to satisfy the assembly constraints for 128 bit values as
efficiently.

The casGoto interface produces the best results in all the test cases, in the sense that it
uses the fewest and smallest instructions. None of the interfaces introduce any
expensive instructions, aside from the locked instructions.

Table 10 shows the characteristics of the interfaces to atomic instructions, that directly
implement their operation.

Interface Instructions Total size

8 16 32 64 128 8 16 32 64 128

xorB 3 3 3 3 5 12 12 11 11 19

xorA 3 2 2 2 5 10 9 7 8 22

addA 3 2 2 2 5 10 9 7 8 22

xaddB 3 3 3 3 12 14 11 11

xaddA 3 2 2 2 12 10 8 9

incA 2 1 1 1 6 4 3 4

swapA 3 2 2 2 11 9 7 8

swapB 3 3 3 3 11 12 10 10

Table 10:Performance metrics of operations implemented without loops

In general the inline assembly blocks tend to produce better code than the compiler
builtins. The builtins do however have some significant advantages, that are not visible
from the above table. For one the compiler may be able to use the condition codes
stored after the locked instruction. Another advantage is that the compiler may chose to
pick simpler instructions, if they provide the same functionality. For instance the
__sync_fetch_and_add compiled to a LOCK ADD instruction, instead of a LOCK XADD
instruction, because the test case does not use the output from the builtin. Both
advantages make it easier to write efficient code using the builtins, but it seems that
better results can be achieved with inline assembly. Another thing worth noticing is that
the incA code is smaller than the addA code. Furthermore addA in turn is smaller than
the xaddA code.

5.4.4Summary 40

5.4.4 Summary

This section described issues related to ordering constraints, and low level
synchronization primitives. It also empirically tested the performance and code quality
of a number of interfaces to read-modify-write instructions. The findings from the tests
can be summed up as:

• The the systems throughput decreases, when increasing the number of threads
actively modifying a field.

• CAS is generally the slowest read-modify-write instruction, especially at high
contention.

• There is no significant performance difference between fetchAndAdd, ADD and
INC instructions. However INC instructions are shorter than ADD, and ADD are
shorter than fetchAndAdd.

• The performance of all the read-modify-write instructions, is practically
independent of whether they operate on 8, 16, 32, and 64 bit integers. The size
of the instructions tend to be lowest for the 32 bit operations.

• 128 bit CAS operations are slower than their 64 bit counterparts, but faster than
two 64 bit operations at low contention levels.

• The most efficient interface to the read-modify-write instructions can be derived
with gcc's extended asm blocks, or asm goto blocks, but compiler builtins may
similar results.

From a performance view the best practice is:

• Try to reduce contention.

• Use GCCs extended asm blocks or asm goto blocks to interface to the
instructions.

• Prefer to use any other operation over CAS, whenever possible without
introducing new overhead.

• Prefer DEC/INC over ADD/SUB, and ADD/SUB over fetchAndAdd, whenever
possible without introducing new overhead.

Based on the results, we have decided to use an interface based on asm goto blocks
when the code branches based on whether or not CAS operations succeed. For all other
uses of CAS, we used an interface based on inline assembly. The interfaces for the
implementations in the rest of the thesis are similar to casGoto and casVal, as
described in section 5.4.2.1 The interfaces.

41 5.5Truncated exponential backoff

5.5 Truncated exponential backoff

The basic design of truncated exponential backoff is covered in section 4.2.5 Backoff
schemes on page 18. Unfortunately truncated exponential backoff has several often
overlooked implementation details. The following sections describe those details, the
variations of exponential backoff that have been implemented, and ends with an
evaluation of those variations.

5.5.1 Implementing truncated exponential backoff

Exponential backoff can be applied in different ways, by changing when threads
backoff, and the conditions for when the delay duration may increase or decrease.
Listing 16 shows how we represent these actions in code form, and listing 17 shows an
example of applying truncated exponential backoff:

class Backoff {
 mask;

 void spin() {
 if(mask != 0) {
 spinTime = (rand() & mask) * slotSize;
 delayFor(spinTime);
 }
 }

 void success() {
 mask = mask / 2;
 }

 void failure() {
 mask = (mask * 2 + 1) & largestMask;
 }
};

Listing 16:Basic interface used to apply truncated exponential backoff

while(1) {
 b.spin();
 if(tryOperation()) {
 b.success();
 return;
 }
 b.failure();
}

Listing 17:A possible application of truncated exponential backoff, to an operation that
can fail. The backoff scheme is used through a Backoff object b,

In listing 16 mask is a variable that defines the upper bound for the number of slots that
the current thread can delay for. largestMask is an upper bound for mask, that must
satisfy largestMask=2n –1, n∈ℕ ,largestMask ∝ p , where p is the number of CPUs.

5.5.1Implementing truncated exponential backoff 42

In order to back off for an appropriate amount of time, each thread should store a
Backoff object, for each object with a different level of contention.

A problem with truncated exponential backoff, is that it requires tuning slotSize and
largestMask, in order to get good results. Unfortunately different systems may require
different settings to get good performance. slotSize needs to be tuned such that the
smallest backoff period is sufficient to provide some impact on the level of contention,
without backing off too much. largestMask needs to be large enough to handle the
highest levels of contention, but not so high that changing levels of contention, or
overestimates of contention, harm the throughput. Another problem with truncated
exponential backoff is that just adding the code for backing off, might harm
performance, especially if the operation being attempted is fairly simple. This issue can
however be reduced by ensuring that the compiler optimizes the code for the case where
no backoff is necessary.

The following paragraphs describe ways meet the requirements of largestMask, and
implement ways to implement the delayFor spin loop.

The constraints for largestMask can be satisfied by setting:

largestMask=2round (k + log2 p)
−1 , or largestMask=nearestPowerOfTwo (k⋅p) –1

Where p is the number of CPUs, and k is a constant for tuning the variable.

Calculating ⌊ log2⌋ of positive integers is equivalent to finding the most significant set
bit. This is in turn equivalent to counting the number of leading zeros in the integer, and
subtracting it from the bit length of the integer. Rounding to the nearest power of two,
and counting the number of leading zeros, can be implemented fairly efficiently with
regular code [Anderson09]. Such functions are also available as builtins for some
compilers. The implementations covered in this section use the GCC compiler builtins
for counting the number of leading zeroes. Using the builtin function has certain
advantages. The result can be calculated at compile-time for constants, and for variables
it ends up compiling to a single AMD64's bitScanReverse (BSR) instruction. BSR returns
the most significant bit set in a register, and sets the zero flag, if the register is 0.

Delaying for a number of slots can be implemented with a simple spinning loop using a
counter, assuming the loop is not optimized away. Using a simple spinning loop is fairly
easy, and it is possible to have loops that delay for very short periods of time. A
disadvantage of such a loop is that it might produce wildly different spinning times,
because the spinning thread may be preempted while spinning, causing extra delay.
Instead of delaying with a regular counter, one can use architecture specific
performance counters, to tell how long the thread has waited for, and spin until the loop
has waited for sufficiently long time. AMD64 has such a time-stamp counter, that can be
read with the RDTSC instruction.

While a thread is delaying, it could also execute the PAUSE instruction. The PAUSE
instruction, was introduced to reduce power consumption of threads in spin loops, by
having the CPU wait for number of cycles. While the CPU waits it may reduce power
consumption, and possibly free resources for CPUs that are physically close to it.

43 5.5.2Modifications to truncated exponential backoff

5.5.2 Modifications to truncated exponential backoff

Truncated exponential backoff is fairly simple, and tends to provide decent protection
from contention. However at very high levels of contention, even the best truncated
exponential backoff schemes tend to degrade in performance. The following sections
look at various modifications that might improve the performance at high contention
levels.

One of causes of the performance degradation at high contention levels, is that threads
might have a fairly high success ratio, even at high contention levels. As long as threads
have a success ratio of 50 % or less, they will not increase their backoff duration.

For some data structures, one can load the variable, that is about to be changed, before
the backoff duration. This is basically applying backoff in a way that gives a more
pessimistic view of the level of contention. In addition, such a scheme would give the
threads with longer backoff periods a lower probability of succeeding. Therefore it
would favor keeping the backoff period short for threads that already have short backoff
periods. Doing so will lead to fever cache line invalidations, due to less false sharing,
and it might also lead to less time spent where all threads are backing off.

Another possibility is to use an aging variable to decide whether or not to decrease the
mask variable when succeeding, as shown in listing 18. Using an aging variable, evens
out fluctuations of contention, and makes it easier to bias towards more or less
pessimistic views of the contention.

class Backoff {
 mask, failureRate;

 void spin() {
 if(mask != 0) {
 spinTime = (rand() & mask) * slotSize;
 delayFor(spinTime);
 }
 }

 void success() {
 failureRate = failureRate * 0.75;
 if(failureRate < 0.28) {
 mask = mask / 2;
 }
 }

 void failure() {
 failureRate = failureRate * 0.75 + 0.25;
 mask = (mask * 2 + 1) & largestMask;
 }
};

Listing 18:The modified Backoff data structure, that uses an aging variable

The aging of the variable failureRate can, and should, be implemented with integer
operations.

5.5.3Evaluation of truncated exponential backoff 44

5.5.3 Evaluation of truncated exponential backoff

This section evaluates the performance of the traditional and our modified truncated
exponential backoff implementations, when applied to a shared CAS based counter. All
of the backoff schemes use k = 6 and a slot size of 256 cycles. We applied each of the
backoff schemes in two ways, as seen in listing 19. The first application loads the
counter before backing off. The second application backs off before loading the counter.
As a blind test we also tested the performance of a CAS based counter without any
backoff scheme. CAS based counters were chosen as the basic test case, because the
operations are fast, leading to high contention. The test case gives the backoff schemes
optimal conditions to make an impact on performance.

counter

backoffSR() {
 while(1) {
 b.spin()
 old = counter
 if(CAS(&counter, old, old + id)) {
 b.success()
 break
 }
 b.failure()
 }
}

backoffRS() {
 old = counter
 while(1) {
 b.spin()
 if(CAS(&counter, &old, old + id)) {
 b.success()
 break
 }
 b.failure()
 }
}

Listing 19:Application of backoff on a counter, that either spins before reading (SR), or
reads before spinning (RS)

Each test was performed using up to 16 threads, where each was bound to a specific
CPU. In the tests each thread incremented the counter 3.000.000 times. The tests started
all the threads simultaneously, and each thread is measured the wall-clock time when
they start and finished their tests. Each of the presented results are based on 160
measurements. To get 160 measurements, when testing with p threads, the tests is run
160 / p times.

45 5.5.3Evaluation of truncated exponential backoff

System name Acer Aspire 4820TG

Ram 4 gb

OS Windows 7 64 bit

Processors Intel Core 5 M450@2.4GHz (4 CPUs)

Compiler GCC (TDM-64)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG
-fopenmp -Ofast -fwhole-program
-static -flto -fno-align-functions
-fno-align-labels -fno-align-loops
-fno-align-jumps -s

Table 11:A description of the platform for running the tests

Graph 4: Thread total throughput with different backoff schemes

Graph 4 shows the results of running the tests on the system described in table 11. The
following 4 observations are immediately obvious from the results:

1. Not using any backoff scheme when accessing a contended resource, yields a
much lower throughput, than using a backoff scheme.

2. The RS solutions are up to twice as fast as the corresponding SR solutions.

3. The RS solutions have decreasing average latency.

4. Using the modified backoff scheme provides up 15 % higher throughput, than
the original.

1 thread 2 threads 4 threads
00E-1

20E+6

40E+6

60E+6

80E+6

10E+7

12E+7

14E+7

Thread total throughput for counters

Counter w old backoffSR

Counter w old backoffRS

Counter w/o backoff

Counter w new backoffSR

Counter w new backoffRS

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

5.5.3Evaluation of truncated exponential backoff 46

The first observation should not come as a surprise. It shows that having the threads
back off, if the resource is contended, can reduce the average latency of operations.

The size of the gap between the average latency of the RS and SR solutions, is
somewhat surprising. As previously mentioned, the RS applications have a more
pessimistic view at the contention. RS applications also and tend to favor short backoff
periods for threads that already have short backoff periods. Doing so leads to lower
average latency for two reasons, the actual contention is reduced more aggressively, and
some of the threads might finish their operations earlier than others. The observation
that the RS solutions have decreasing average latencies can also largely be explained by
some of the threads finishing their operations significantly earlier.

The last observations shows, as we argued, that using an aging variable, to decide when
to reduce the backoff duration, can lead to lower contention.

5.6 MCS locks

This section describes the locks used to compare performance of lock based and lock-
free data structures, throughout the rest of this thesis. The locks are basically MCS spin
locks, that use the modified truncated exponential backoff scheme, when acquiring
locks. In this section describe how MCS locks work, our modifications, and the
performance impact of using the different kinds of MCS locks.

5.6.1 Design

MCS locks support acquiring and releasing locks, and they guarantee a queue like first-
in-first-out (FIFO) ordering. This ordering is achieved by storing the order of pending
acquires as a link based queue. Each element in the queue corresponds to a spinning
thread, waiting to acquire the lock. Each spinning thread only needs to look at the
element in front of it in the queue, reducing the locks contention. Illustration 3 shows an
example of a system with three MCS locks, and four threads.

Illustration 3:3 locks L1, L2, L3, and 4 threads T1, T2, T3, T4.
T4 has acquired L4. T1 has acquired L1, and T2 is waiting for T1 to release L1

47 5.6.1Design

The memory overhead of storing a queue is sometimes used as a reason for avoiding
MCS locks. However, each thread can only wait on a single lock at a time, so the
memory overhead for using n MCS locks in a p threaded program is Ο(n+ p) .

5.6.2 Implementation

The MCS can be implemented like as shown in listing 20. In the listing each thread
stores their own QNode locksState, that is inserted into the queue when acquiring, and
removed from the queue upon release.

class MCSLock {
public:
 class QNode {
 QNode* volatile next;
 volatile bool locked;
 };

 QNode* volatile lock = nullptr;

 void acquire(QNode* lockState) {
 lockState->next = nullptr;
 QNode* prev = fetchAndStore(&lock, lockState);
 if(prev != nullptr) {
 lockState->locked = true;
 prev->next = lockState;
 while(lockState->locked);
 }
 }

 void release(QNode* lockState) {
 if(lockState->next == nullptr) {
 if(compareAndSwap(&lock, lockState, nullptr)) {
 return;
 }
 while(lockState->next == nullptr);
 }
 lockState->next->locked = false;
 }
};

Listing 20:A traditional MCS lock implementation

We propose using a backoff scheme to reduce contention on the lock, when acquiring
the lock. Specifically we propose using the modified exponential backoff scheme
described in section 5.5.2. The backoff scheme should be applied in a way where
threads spin before acquiring the lock. Threads increase the spin duration when they do
not immediately get exclusive access, and they may decrease it when they do get
immediate exclusive access, as seen in listing 21. We advice against using a backoff
scheme to reduce contention when releasing the lock, because the lock should be
released as quickly as possible. Using the backoff scheme increases the amortized
memory consumption to: Ο(n+ p⋅c) , where n is the number of threads, p the number
of threads, and c is the number of backoff objects each thread has to maintain.

5.6.2Implementation 48

 void acquire(QNode* lockState, Backoff* b) {
 lockState->next = nullptr;
 b->spin();
 QNode* prev = fetchAndStore(&lock, lockState);
 if(prev != nullptr) {
 lockState->locked = true;
 prev->next = lockState;
 b.failure();
 while(lockState->locked);
 } else {
 b.success();
 }
 }

Listing 21:Acquiring MCS locks with a backoff scheme

5.6.3 Evaluation of MCS locks

This section evaluates the performance of the traditional and our modified MCS lock
implementations, when applied to a shared counter. The tests lock the counter,
increment it, and release the lock, as seen in listing 22. As a blind test we also tested the
performance of the corresponding OpenMP locks. A counter was chosen as the basic
test case, because the operations are fast, leading to high contention. By locking a
counter, we get to see how big the overhead for locking is, when under extreme
contention.

counter
counterLock

lockTest() {
 counterLock.acquire()
 counter = counter + id
 counterLock.release()
}

Listing 22:The test run to evaluate performance of locks

Each test was performed using up to 16 threads, where each was bound to a specific
CPU. In the tests each thread incremented the counter 3.000.000 times. The tests started
all the threads simultaneously, and each thread is measured the wall-clock time when
they start and finished their tests. The each of the presented results are based on 160
measurements. To get 160 measurements, when testing with p threads, the tests is run
160 / p times. Based on the measurements we present the average latency per operation.

49 5.6.3Evaluation of MCS locks

System name HP ProLiant SL165z G7 server

Ram 64 gb

OS Scientific Linux 6.1

Processors 2 x AMD Opteron 6168 (24 CPUs)

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG
-fopenmp -Ofast -fwhole-program
-static -flto -fno-align-functions
-fno-align-labels -fno-align-loops
-fno-align-jumps -s

Table 12:A description of the platform for running the tests

Graph 5: Thread total throughput of a shared counter, protected by different locks. mcs are
user space MCS locks. mcsb are user space MCS locks with the modified backoff scheme.
omp are the default OpenMP locks for the tested system.

Graph 5 shows the results of running the tests on the system described in table 12.

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

10E+6

20E+6

30E+6

40E+6

50E+6

60E+6

Thread total throughput for counter

Counter w mcs

Counter w mcsb

Counter w omp

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

5.6.3Evaluation of MCS locks 50

In the test case with 16 threads, the threads finish 27 times faster on average, by using
the backoff scheme when locking MCS locks. In the same case the MCS locks without
backoff, are on average 2.5 times faster than the default OpenMP locks. The following 2
observations are immediately obvious from the results:

1. The MCS locks with the new backoff scheme are much faster in the presence of
contention.

2. The MCS locks with the new backoff scheme increase the thread total
throughput, when increasing the number of threads.

3. The MCS locks without backoff, are slower than the OpenMP locks at low levels
of contention, and faster at high levels.

The first observation shows that using the proposed backoff scheme when acquiring
MCS locks dramatically reduces contention for locking. Part of the reason why the
backoff scheme produces such good results, is that has been tuned to reduce contention
for single atomic operations. This makes it ideal for reducing contention on locks with
very short lock durations.

The second observation can be explained by the fact that we are measuring thread total
throughput, and not system throughput. The increased thread total throughput, is due to
some of the threads finishing the test much earlier than other threads. This phenomenon
is largely due to the use of a pessimistic backoff scheme.

All of the observations also highlight the importance of selecting the right lock for the
task at hand.

5.7 Summary

In this chapter we have presented the basic building blocks used to implement the data
structures presented in the remainder of this thesis. Specifically we presented efficient
ways to access hardware synchronization primitives, ways to reduce context switches,
and ways to reduce the impact of contention.

We found that using linear congruential generators with specific parameters, can
guarantee that each thread has a unique access pattern. We found that GCC inline
assembly and goto assembly blocks provide the most efficient interface to
synchronization primitives, but compiler builtins are almost as fast. We presented a
modification to truncated exponential backoff, leading to a 15 % higher throughput. We
presented a lock based on MCS locks, that use the modified backoff scheme to reduce
the overhead of locking contended resources. The modified locking is highly promising,
showing throughput improvements of up to 2700 % for highly contended data
structures.

51 6Static search structure based priority queues

6 Static search structure based priority queues

6.1 Introduction

This chapter covers the research we have done into how one can create a lock-free
quantatized priority queue. We have made the groundwork to create a solution that is
related to the FunnelTree data structure described in “Combining Funnels: A Dynamic
Approach to Software Combining” [SZ00]. The FunnelTree uses concurrent stacks and
counters, with fairly complex locking schemes. As an alternative we have also
implemented stacks and counters that are similar to the data structure described in “A
Scalable Lock-free Stack Algorithm”, truncated exponential backoff, and a combination
of the two concepts.

This chapter starts with a description of the concepts we have inherited from, before
moving on to the specifics of the various concurrent stacks and counters. Throughout
the chapter we evaluate the performance of the various data structures for current
AMD64 hardware.

6.2 A static tree structure for priority queues

The paper “Scalable Concurrent Priority Queue Algorithms”[SZ99] proposed using a
binary search tree with a static structure, to store a priority queue, as shown in
illustration 4. The search tree has counters at each internal node, and containers for the
prioritized objects at each leaf node. The counter of a node indicate the number of
objects stored in the left sub tree of the node. The leftmost leafs are the represents the
objects that should be extracted first.

Illustration 4:An example of a tree structure supporting 8 priorities. Nodes with
numbers are internal nodes, and nodes with letters represent the contents of leaf nodes.
Ø is the empty stack.

6.2A static tree structure for priority queues 52

Internal* root;
int height;

void insert(Value value, Key key) {
 Node* n = getLeaf(key);
 getLeaf(key)->push(value);
 for(int h = 0; h < height; h++) {
 Internal* p = n->getParent();
 if(n == p->getLeftChild()) {
 p->increment();
 }
 n = p;
 }
}

Value extract() {
 Internal* n = root;
 for(int h = height; h > 0; h--) {
 uint i = n->boundedFetchAndDecrement();//Never decrements below 0
 n = (i > 0) ? n->getLeftChild() : n->getRightChild();
 }
 return ((Leaf*)n)->pop();
}

Listing 23:Operations on a static tree structured priority queue

Inserts proceed from the leaf node representing the stack to insert into, and traverse up
the tree to the root. Whenever it goes up from a left child it increments the parents
counter by one, since the insertion into the leaf node added one object to the parents left
sub tree.

Extractions proceed from root to the leaf it extracts from. To decide the child to descend
into, it attempts to decrement the counter of the parent by 1, without the counter
decreasing below 0. If it was possible it descends into the left child, otherwise it
descends into the rightmost child. Upon reaching the leaf it pops an element and returns.

The updating of the counters in the internal nodes is used to keep track of the number of
elements with a given priority. Insertions proceed bottom up to ensure that the count is
never incremented before an object is inserted to the leaf. Extractions proceed top down
to ensure that the count is always decremented before an object is removed. Doing so
ensures that the counters are always equal to, or less than, the number of objects in the
leafs of the left sub tree.

The nodes can be stored in an array, where node node at index i has the i⋅2 , i⋅2+1 and
i /2 , as left child, right child, and parent respectively. Such kind of storage is also often
used for binary heaps, and avoids storing references to the other nodes.

To reduce contention for the stacks and counters, they are implemented with combining
funnels. Combining funnels allow operations to be combined, if they are similar, or
eliminated if they are opposite. For instance two push operations can be combined into
one push operation that push two values, and a push and pop operation can be
eliminated so that the pusher sends the value being pushed to the popper.

53 6.2A static tree structure for priority queues

During elimination of increment and boundedFetchAndDecrement for this data
structure, it is not strictly necessarily have to ensure linearizability. Specifically it is not
required that decrementing threads receive the correct values. If a decrement operation
eliminates with an increment operation, then it has prevented an increment operation,
implying that there is at least one object in the left sub tree.

The paper “Scalable Concurrent Priority Queue Algorithms”[SZ99] found that
implementing a priority queue with combining funnels for the counters and stacks gave
better performance MCS lock at high contention. Specifically they tested the
performance of combining funnels on a simulated MIT Alewife architecture, with up to
256 processors. They found that when more than 16 processors are consistently working
on the priority queue, combining funnels significantly outperform MCS locks.

6.3 Combining funnels

In order to determine if combining funnels are fit for current AMD64 processors, this
section explores an their design, implementation, and evaluates their performance. Be
aware that combining funnels are lock based. The implementation is primarily made for
the purpose of determining if the basic structure of combining funnels, can be applied to
a highly concurrent priority queues, for current hardware.

6.3.1 Design of combining funnels

Combining funnels allow operations to be combined or eliminated. After eliminating
operations they exchange data and return without modifying the data structure behind
the combining funnel. If a pair of operations combine, one of the threads assume
responsibility for starting the operation. Before starting the operation, the responsible
thread will try to combine or eliminate the pair of operations with other another pair of
operations. Combined pairs of operations can continue to try to combine or eliminate
with other operations. For instance in a system with 64 processors operations can
combine into groups of 2, 4, 8, 16, 32, or 64 operations, and groups of 1, 2, 4, 8, 16, and
32 operations can eliminate with similarly sized groups of opposite operations.

Combining funnels can generally be applied to data structures whose operations can be
efficiently combined or eliminated. The only applications of combining funnels that we
have found described in prior work, are for array based stacks, and possibly bounded
counters.

Operations find other operations to combine or eliminate with by attempting to collide
with them, as shown in listing 24.

6.3.1Design of combining funnels 54

width = getWidth(depth)
r = rand() % width
q = swap(&layer[depth][r], id)
if(q == NOBODY) {
 return;
}
if(CAS(&location[id], desc, NOTHING)) {
 if(CAS(&location[q], desc, NOTHING)) {
 // Collided with q
 … decide to combine or eliminate with q
 } else {
 location[id] = desc
 … spin and give other a chance to collide with you
 }
} else {
 // Someone collided or eliminated with this thread
 … wait for the other thread to get access, then do your part
}

Listing 24:Pseudo-code for attempting collision

The following is a description of the used variables, and functions:

depth is log2 of the number of operations in this group. id is this threads id. layer is a
per data structure globally visible two-dimensional array, used to find other groups.
Groups at layer i describe groups of 2i combined operations. location is an array that
maps to a per thread description of the object and depth that it currently operates on.
desc is a description of the object and depth that it currently operates on.
getWidth(depth) returns the width of the layer at the given depth multiplied by a
factor that represents the threads guess at the amount of contention for the data
structure. random(0, width) returns a uniformly distributed random number in the
range [0 ;width [.

Before attempting to combine, the thread should set its location field, to specify its
current operation, so other threads can collide with it. In the uncontended case, threads
should access the data structure, without affecting the layers of the combining funnel.
As the contention estimate increases, threads should attempt to collide more times, and
use a larger fraction of the layers for attempting collisions. After each failed collision
attempt, threads enter a backoff loop, giving other threads a chance to collide with them.
The duration of the backoff loops should be tuned for the given machine. The number of
attempted collisions is maintained in a manner similar to truncated exponential backoff.

After a thread has finished attempting to collide, it removes the description of its
operation, and attempts to access the underlying data structure, as per listing 25. For
counters the operation is performed with a regular fetchAndAdd operation, or CAS
operation for the bounded counters. After the operation, the thread sends results to the
group. Accessing the stacks is more complicated.

Each stack has a stack pointer, and a counter for queuing up the pending operations, in
addition to the stack itself. The queue is maintained through the fields stack.ticket,
and stack.serving, forming a ticket lock [RK79]. Listing 26 shows how threads
handle access to the stack, Once a thread has access to the stack it does the following:

55 6.3.1Design of combining funnels

1. Inform its group

2. Wait for its turn in the queue

3. Tell the group to start

4. Perform its part of the operation

5. Wait for the group to finish

6. Let the next group start.

Communication in the group is handled through simulated message passing, where each
operation has a responsibility to send messages to the operations that it combined with.

location[id] = desc;
while(1) {
 for(uint attempt = 0..attempts[id]) {
 … try to collide
 }
 if(&CAS(location[id], desc, NOTHING)) {
 if(tryOperation()) {
 … possibly decrease attempts[id] and accessed layer width
 } else {
 … possibly increase attempts[id] and accessed layer width
 }
 } else {
 … wait for the other thread to get access, then do your part
 }
}

Listing 25:The basic structure of combining funnels

if(!tryLock(stack.lock)) {
 … go back to colliding
}
sp = stack.pointer
t = stack.ticket
stack.pointer += operations_in_this_group
stack.ticket++
releaseLock(stack.lock)
… pass a stack pointer to the operation this thread combined with
based on sp
while(stack.serving != t);
go[id] = operations_in_this_group
… perform the stack operation
while(go[id] != 0);
stack.serving++ // let the next group of operations start

Listing 26:Getting access to a stack behind a combining funnel

6.3.2Implementation of combining funnels 56

6.3.2 Implementation of combining funnels

There are a some issues to consider when implementing combining funnels. The issues
addressed in this section are mainly related to the layout of the data, and the
synchronization.

The layout of the data has a significant effect on performance, due to the performance
implications of cache misses and false sharing. False sharing is especially problematic,
because the threads communicate, by sending messages, and attempting to collide with
one another. This communication is performed by writing to memory locations, that are
likely to be in other threads caches, causing cache line invalidations. To reduce such
issues, the following 4 measures have been taken:

1. All data that is only accessed by one thread, is stored on the stack.

2. All threads have their own data structure used for communication. The data
structure is aligned to a cache line.

3. Other concurrent data structures, such as the layers of the funnel, and the data
structure behind the combining funnel, are stored on separate cache lines.

4. The layer is stored as a 1 dimensional array. The maximum width of the layer at
height i is w i=2h−i where h is the height of the funnel. A look up at (i, j) in the
2 dimensional layer, corresponds to a look up at: 2 n−wi+ j .

All AMD64 processors have L1 and L2 data cache line sizes of 64 bytes, according to
the AMD64 instruction set [AMD09]. This guarantee makes it fairly easy to ensure that
the data is aligned at compile-time.

The synchronization used in the combining funnels is fairly complex, and it may have
significant overhead in some cases. To improve on this, one could do the following:

1. Do not have threads publicly declare the operation they want to perform, in
cases where contention is low. In such cases the cost of retracting the operation
may be significant compared to accessing the underlying data structure.

2. It is possible to avoid checking if collision partners exist. This can be done by
having communication fields for a dummy thread, that never performs
operations, and initialize all fields in the layers to point to the dummy thread.

3. When combining or eliminating with another group of operations, do so by
setting their operation field to a representation of the current group operations.
That way the other group might not have to wait as much.

4. Do not use an explicit lock for the stack pointer/ticket counter, use a CAS
operation to update them instead.

5. Allow several groups to start their operations on stacks early, if the group ahead
of them in the queue is of the also allowed to start, and is performing a similar
operation. That is several groups of pushes can operate concurrently, or several
groups of pops can operate concurrently, but pushes and pops cannot operate
concurrently.

57 6.3.2Implementation of combining funnels

attempt = 0
while(1) {
 if(attempt == attempts[id]) {
 if(tryOperation) {
 … possibly decrease attempts[id] and accessed width
 } else {
 … possibly increase attempts[id] and accessed width
 }
 }
 location[id] = desc
 if(attempt != 0) {
 … spin and give others a chance to collide with you
 }
 if(CAS(&location[id], desc, scramble(id))) {
 while(1) {
 width = getWidth(depth)
 r = random(0, width)
 q = swap(&layer[depth][r], id)
 if(CAS(&location[q], desc, scramble(id))) {
 // Collided with q
 … decide to combine or eliminate with q
 } else {
 break
 }
 }
 } else {
 // Someone collided or eliminated with this thread
 … do your part, possibly wait for the other thread
 }
}

Listing 27:Combining funnel code structure with the first three improvements

The 5th improvement can be implemented by keeping an additional counter on the stack,
that counts the number of similar operations that are enqueued after each other. The
counter is updated together with the stack pointer and ticket counter. For instance if a
pushing thread can tell that n other groups of pushes are ahead of it in the queue, then it
knows that it can start its operation when stack.serving – ticket – n≤0 . This change
also means that the serving variable has to be updated with read-modify-write updates,
in order to ensure its consistency.

When implementing the spin loop for testing if group has access to the stack, one should
be aware that in C and C++ the result of signed integers overflowing is undefined. The
spin loop is particularly problematic to express properly after the 5th improvement.

6.3.3 Evaluation of combining funnels

This section evaluates the performance of the combining funnels for stacks and bounded
counters. The combining funnels are separated into by whether or not they have
synchronization improvement 1. All other improvements are implemented for all of the
combining funnels. The tests are performed as per listing 28. Stacks alternate between
pushing and popping elements. Counters alternate between incrementing and
decrementing. For reference we also tested the performance incrementing and

6.3.3Evaluation of combining funnels 58

decrementing a counter using CAS operations, and fetchAndAdd operations. The tests
alternate between operations, because it gives optimal conditions for elimination. The
combining funnels were run with spin durations ranging from 0 to 220 , to find the best
conditions. These optimal conditions were chosen, because we want to determine if the
combining funnel mechanism is viable for the tested setup.

counterFunnel
stackFunnel

counter() {
 counterFunnel.inc()
 counterFunnel.dec()
}

stack() {
 stackFunnel.push(val)
 val = stackFunnel.pop()
}

Listing 28: The test case performed for the combining funnels.

Each test was performed using up to 16 threads, where each was bound to a specific
CPU. Each thread measured the wall-clock time, ran the tested code 300.000 times, and
measured the wall-clock time again. The tests started all the threads simultaneously.
Each of the presented results are based on 160 measurements. To get 160 measurements,
when testing with p threads, the tests are run 160 / p times. Based on the measurements
we present the average time that threads spend to complete the test.

System name HP ProLiant SL165z G7 server

Ram 64 gb

OS Scientific Linux 6.1

Processors 2 x AMD Opteron 6168 (24 CPUs)

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG
-fopenmp -Ofast -fwhole-program
-static -flto -fno-align-functions
-fno-align-labels -fno-align-loops
-fno-align-jumps -s

Table 13:A description of the platform for running the tests

59 6.3.3Evaluation of combining funnels

Graph 6: Evaluation of counters, and stacks using combining funnels

Graph 6 shows the results of running the tests on the system described in table 13. The
following 2 observations are immediately obvious from the results:

1. The performance of the same kind of data structure, can vary greatly depending
on contention.

2. The use of synchronization optimization 1 improves performance significantly
in the single threaded case.

One of the things that are not immediately obvious from the results, is that the spin
durations have a large impact on performance. For instance the bounded counter w i1
was 10 times faster when using a delay loop of 215 , then with a delay loop of 0 or 218 .

We never see an increase in the systems throughput when increasing the number of
threads for any of the combining funnels. With a lot of tuning of the spin duration, the
thread total throughput is nearly constant. Based on these results we conclude that
combining funnels do not produce particularly good results on current hardware. The
poor results are most likely due to the complexity of the operations.

6.4 Stacks with elimination

The paper “A Scalable Lock-free Stack Algorithm” presented a lock-free stack using
elimination to reduce contention and increase throughput [HSY10]. The stack uses
similar principles to combining funnels, but it is generally simpler and avoids locking,
so such a data structure might be more suitable for current hardware. Additionally the
stack is a link based stack, making it more attractive for practical use.

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

10E+6

20E+6

30E+6

40E+6

50E+6

60E+6

70E+6

80E+6

90E+6

10E+7

Thread total throughput for stacks and counters with combining funnels

stack w/o i1

stack w i1

bounded counter w i1

bounded counter w/o i1

cas bounded counter

fetchAndAdd counter

O
pe

ra
tio

ns
 *

 th
re

ad
s

pe
r (

se
co

nd
 *

 th
re

ad
)

6.4Stacks with elimination 60

The following sections describe the design, implementation and evaluation of such
stacks. Again the implementation is primarily made for the purpose of determining if
such a scheme is suitable for current hardware.

6.4.1 Design of stacks with elimination

Operations on the stack alternate between trying to do an operation on the stack, and
trying to eliminate with an opposing operation, until either succeeds, as per listing 29.

In general elimination is fairly simple to apply to lock-free data structures, without
harming the lock-free property. The only requirement is that both parties in the
elimination can determine the operation that was eliminated, without waiting for the
other party.

The operations can be made ABA safe by using tags or any kind of memory reclamation
scheme, similar to what is described in the section 4.1.3 The ABA problem. Finding
elimination partners works in a fashion that is similar to combining funnels, as per
listing 30.

while(1) {
 if(tryToPerformStackOperation) {
 … return the result if any
 }
 if(tryElimination()) {
 … return the result if any
 }
 … spin for a while
}

Listing 29:Basic structures of the stacks

There are three main differences from combining funnels:

1. By not using combining, there is no need for message passing and having a
separate layers for each group size.

2. The description of the operations are stored in ThreadInfo objects. These
object stores a thread id, and the operation, rather than the object and the group
size.

3. Threads only try to eliminate with threads performing the opposite operations.

One should be aware that the version of the paper from 2004 has an issue in the
description of the elimination, that is fixed in the 2010 version. The descriptions of
operations are stored and passed to other threads by reference. If the ThreadInfo object
can be reused, then a popping operation that eliminates a pushing operation, may read
another operation after the elimination. The possible race condition is prevented in the
2010 version by allocating new ThreadInfo objects per operation. The problem could
also have been solved by storing the description of the operation by value instead.

61 6.4.1Design of stacks with elimination

location[id] = desc
r = random(0, width);
q = swap(&collision[r], id);
ThreadInfo* qdesc = location[q]
if(qdest->id == q && qdesc->operationType != desc->operationType) {
 if(CAS(&location[id], &desc, NOTHING)) {
 if(CAS(&location[q], qdesc, id)) {
 // Eliminated with q
 … q's operation is in qdesc
 } else {
 … possibly increase width, try to operate on the stack again
 }
 } else {
 // Someone eliminated with this thread
 … the eliminators operation is in desc
 }
}
… spin for a while and give others a chance for colliding with you
if(!CAS(&location[id], &desc, NOTHING)) {
 // Someone eliminated with this thread
 … the eliminators operation is in desc
}

Listing 30:Attempting elimination for stack operations

6.4.2 Implementing stacks with elimination

There are a some issues to consider when implementing stacks with elimination. The
issues addressed in this section are mainly related to memory management, the layout of
the data, and access patterns of the data structure.

Our implementation uses tags on the stack top pointer, rather than hazard pointers to
avoid ABA problems. Nodes are allocated from thread local free lists, and every thread
reuses the same ThreadInfo objects, to keep memory reclamation simple and fast. To
avoid the race condition mentioned in 6.4.1Design of stacks with elimination, the
description of the operation is passed by value during elimination.

The layout of the data structure has been optimized to reduce false sharing, in order to
deal with high contention efficiently. 4 measures have been taken to reduce false
sharing:

1. Every element of the collision and location arrays are aligned to cache lines.

2. Every node for the stack is aligned to cache lines.

3. The pointer to the top of the stack is aligned to a cache line.

4. All data that is only accessed by one thread is stored on the stack.

It might be possible to reduce the contention more significantly by starting out trying to
eliminate, instead of starting out trying to access the stack. Another way of reducing
contention could be remembering the stack top pointer in between attempted operations.
Doing so would reduce the number of loads, at the expense of the chance of
successfully updating the stack. Both of these suggestions do not guarantee performance
improvements, so their effect is documented in the evaluation section. Depending on the

6.4.2Implementing stacks with elimination 62

level of contention, it might also make sense to move the delay loops from the places
described in the original paper, to before trying to perform operations on the stack.

6.4.3 Evaluation of stacks with elimination

This section evaluates the performance of the stacks with elimination. The tests are
performed as per listing 31. The test code alternates between pushing and popping
elements, because it gives optimal conditions for elimination. The stacks were run with
spin durations ranging from 0 to 222 , to find the best conditions. These optimal
conditions were chosen, because we want to determine if the stacks are viable for the
tested setup.

stack

test() {
 stack.push(val)
 val = stack.pop()
}

Listing 31: The test case performed for the stacks with elimination

Each test was performed using up to 16 threads, where each was bound to a specific
CPU. Each thread measured the wall-clock time, ran the tested code 300.000 times, and
measured the wall-clock time again. The tests started all the threads simultaneously.
Each of the presented results are based on 160 measurements. To get 160 measurements,
when testing with p threads, the tests are run 160 / p times.

System name HP ProLiant SL165z G7 server

Ram 64 gb

OS Scientific Linux 6.1

Processors 2 x AMD Opteron 6168 (24 CPUs)

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG
-fopenmp -Ofast -fwhole-program
-static -flto -fno-align-functions
-fno-align-labels -fno-align-loops
-fno-align-jumps -s

Table 14:A description of the platform for running the tests

63 6.4.3Evaluation of stacks with elimination

Graph 7: The thread total throughput of the various stack implementations

Graph 7 shows the results of running the tests on the system described in table 14. The
following 3 observations are immediately obvious from the results:

1. The fastest stack in most cases, is the one most similar to the original stack with
elimination. This particular stack achieved its best result when using a delay
loop of 220 iterations.

2. The stack with reduced loads scales the best, but it performs poorly at low
contention levels. This stack also achieved its best results when using a delay
loop of 220 iterations.

3. The stacks that try to eliminate, or enter a delay loop prior to accessing the stack
have very poor performance. This is especially true when increasing the size of
the delay loop.

Observations indicate that the placement of the elimination, and backoff loops in the
original data structure, give the best performance. The observations also indicate that
the most scalable stacks, are the stacks with use the longest delay periods.

The results indicate that the stacks with elimination require very long backoff periods,
to get good scalability. In a more realistic setup, it might not be acceptable to have
threads spin for a million iterations whenever they fail a CAS operation. In addition,
when delaying for such long periods, the threads rarely get an opportunity to eliminate.

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

10E+6

20E+6

30E+6

40E+6

50E+6

60E+6

70E+6

80E+6

90E+6

Thread total throughput for stacks

Elim/Stack

Delay first

Delay r. loads

Stack w Elim

Reduced loads

Treiber stack

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

6.5Truncated exponential backoff with elimination 64

6.5 Truncated exponential backoff with elimination

This section presents stack implementations that use a combination of truncated
exponential backoff and elimination. Such a scheme should be better at dealing with
different levels of contention, and it can give better possibilities for elimination. This
section presents changes to the modified truncated exponential backoff scheme from
section 5.5.2. The changes allow threads to eliminate, rather than spin, while backing
off.

This section primarily focuses on the issues raised by using elimination in a backoff
scheme, and efficient implementation of eliminations. The inner workings of
exponential backoff are covered in section 5.5Truncated exponential backoff.

6.5.1 Implementing elimination

To perform an elimination, in general, threads need to find an elimination partner, and
the two threads must transfer a value between one another. Depending on the operation,
the thread will either send or receive a value. The elimination partners always has one
sending and one receiving thread.

The following basic structure is used for an attempting elimination:

1. Declare operation.

2. Publish that you are looking to eliminate.

3. Pick a partner to eliminate with.

4. Attempt to retract the operation declaration, if this fails the operation has been
eliminated by some other thread.

5. Attempt to exchange operation declaration with the partner, if this succeeds, the
operation has be eliminated.

6. Failed to eliminate.

The actual implementation of the elimination is described in listing 32. The threads use
a collision array is for finding elimination partners, and an elimination array is used for
declaring and transferring operations. In a program with n threads, the n / 2 first
elements of the collision array is used to store sending thread ids, and the next n / 2
elements store the receiving thread ids. Threads attempt to find elimination partners, by
writing their id to a random element in the collision array, and reading a partner id from
the other part of the collision array.

The elimination array has an element per thread. In the elimination array, threads
describe their operation in the least significant bits, and a counter in the most significant
bits. The counter is used to ensure that at most one thread can receive a value being
sent.

65 6.5.1Implementing elimination

n;
collision[n];
elimination[n];

send(id, val) {
 while(isBackingOff()) {
 elimination[id] = val;
 r = rand() % (n/2);
 collision[r] = id;
 partner = collision[r+n/2];
 if(fetchAndStore(&elimination[id], NO_OP) != val)) {
 // Someone took the message
 return true;
 } else if(compareAndSwap(&elimination[partner].ls, RECIEVING_OP,
val | RECIEVED_OP)) {
 // Sent the message to partner
 return true;
 }
 }
 return false;
}

recieve(id) {
 while(isBackingOff()) {
 elimination[id] = RECIEVING_OP;
 r = rand() % (n/2);
 collision[r+n/2] = id;
 partner = collision[r];
 data = fetchAndStore(&elimination[id], NO_OP);
 if(data != RECIEVING_OP) {
 // Recieved a message from someone
 return data & ~RECIEVED_OP;
 }
 data = fetchAndAdd(&elimination[partner], COUNT_MASK);
 if((data & COUNT_MASK) == 0) {
 // Took a message from partner
 return data & ~COUNT_MASK;
 }
 }
 return DID_NOT_RECIEVE;
}

Listing 32:Pseudo-code for elimination of sending and receiving threads

This form of elimination has a 3 of advantages:

1. Threads have a higher probability of finding partners with the opposite type of
operation. This is achieved because the collision array is separated into
elements for sending and receiving threads.

2. The eliminations largely avoids using CAS operations.

3. The eliminations do not read the contents of memory locations before
performing read-modify-write operations on them. This reduces the chance of
cache misses.

6.5.2Backoff with elimination 66

6.5.2 Backoff with elimination

When combining elimination with the modified exponential backoff, there are a couple
issues that needs to be addressed.

The first issue is that when a thread successfully eliminates, it can finish an operation
before backing off completely. This might cause threads to access the stack earlier than
normal, since they can get multiple chances of picking a low delay period.

The second issue is that threads should not read anything from the data structure, when
the threads are backing off. Specifically if threads eliminating on the counters read the
current value of the counter, it may impact performance.

The first issue is resolved by storing when the thread would be allowed to access the
stack, according to the regular backoff scheme. The time that the thread is supposed to
back off until, is updated whenever the thread attempts to perform an operation, unless
the mask of the thread is 0. We resolved the second issue by giving the decrementing
operation the value 1, and ignoring the actual value of the counter. Doing so does not
violate the correctness of the operations, as explained in section 6.2A static tree
structure for priority queues.

6.5.3 Evaluation

This section evaluates the performance of the stacks that with combined backoff and
elimination schemes. We applied each of the schemes in two way. The first application,
referred to as RS, reads the stack head before backing off. The second application,
referred to as SR, backs off before reading the stack head. The tested code alternate
between pushing and popping elements, as seen in listing 33. The test was chosen,
because it gives optimal conditions for elimination, and we want to determine if
elimination stacks are viable for the tested setup. As a blind test we also tested stacks
without backoff, and stacks with backoff, but without elimination. The stacks with
backoff were tested using both the RS and SR scheme.

stack

testStack() {
 stack.push(val)
 val = stack.pop()
}

Listing 33: Test case for evaluating performance of stacks

Each test was performed using up to 16 threads, where each was bound to a specific
CPU. Each thread measured the wall-clock time, ran the tested code 300.000 times, and
measured the wall-clock time again. The tests started all the threads simultaneously.
Each of the presented results are based on 160 measurements. To get 160 measurements,
when testing with p threads, the tests are run 160 / p times.

67 6.5.3Evaluation

System name HP ProLiant SL165z G7 server

Ram 64 gb

Processors 2 x AMD Opteron 6168 (24 CPUs)

OS Scientific Linux 6.1

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG
-fopenmp -Ofast -fwhole-program
-static -flto -fno-align-functions
-fno-align-labels -fno-align-loops
-fno-align-jumps -s

Table 15:A description of the platform for running the tests

Graph 8: Thread total throughput of stacks with elimination and/or backoff. RS refers to
backoff schemes where the head of the stack is read before spinning, and SR to reading it
after spinning.

Graph 8 shows the results of running the tests on the system described in table 15. The
following 4 observations are immediately obvious from the results:

1. Applying the backoff schemes in an SR fashion is more scalable than the RS
fashion.

2. Applying a backoff scheme with elimination, in an RS fashion gives very poor
results.

3. Eliminating in the SR fashion provides less than a 4 % speedup, when compared
to spinning.

1 thread 2 threads 4 threads 8 threads 16 threads
00E-1

20E+6

40E+6

60E+6

80E+6

10E+7

12E+7

Thread total throughput for stacks

Treiber stack

backoffRS

backoffSR

eliminateRS

eliminateSR

O
p

e
ra

tio
n

s
 *

 th
re

a
d

s
 p

e
r

(s
e

co
n

d
 *

 th
re

a
d

)

6.5.3Evaluation 68

4. Applying the backoff schemes in an SR fashion, is up to 36 % faster than the
original stacks with elimination.

The first observation is somewhat surprising, given that we found RS schemes to scale
better for counters. We are unsure exactly why RS is better for counters, while SR is
better for stacks. It may be related to the fact that stack operations involve multiple
memory locations, while a counter is a single field. We would also like to highlight that
this test almost achieves twice as high thread total throughput for 16 threads, when
compared to a single thread.

The poor results from the eliminateRS test, can be explained by the fact that it is not
backing off properly. Whenever an operation is eliminated, the its thread will make an
additional read of the stack header. The additional reads increases contention, leading to
poor results.

The third observation indicates that for the given setup, elimination cannot provide
significant improvements to throughput of stacks. The results do not state whether or
not it makes sense to apply elimination on other hardware or data structures though.
Additionally one might get a larger improvement, by improving the elimination scheme.
One possibility that we have not worked with, is trying to bias elimination towards
eliminating operations from CPUs that are physically close.

6.6 Conclusion

In this section we have looked at a fairly simple priority queue built from stacks and
counter, described in the paper “Scalable Concurrent Priority Queue Algorithms”.

To support high levels of concurrency, we have investigated ways of reducing
contention. We reduced contention through backoff schemes, and mechanisms for
reducing the number of operations. We found that adding an elimination mechanism to
the modified version of the truncated exponential backoff scheme gave the best results.
Unfortunately we found that the performance gain from eliminating during truncated
exponential backoff, is negligible on current hardware, for the data structures tested.

The poor results achieved when using elimination, may be explained by the fact that
elimination is fairly slow, compared to the operations of the data structures tested.
Future work in applying elimination mechanisms, could focus on applying it to more
expensive operations. Another promising topic, would be optimizing the mechanisms to
take take advantage of CPUs physical locality.

69 7Investigation of wide search trees

7 Investigation of wide search trees

7.1 Overview

This section covers the research into how one can create a lock-free B-tree, and how it
can be applied as a priority queue.

Our solution is related to the data structures described in the papers “Non-blocking
Binary Search Trees” [EFRB10], “Non-blocking k-ary Search Trees” [BH11] and
“Locality-Conscious Lock-Free Linked Lists” [BP11]. In particular it uses a
synchronization and helping scheme that is based on the schemes used in the two latter
papers.

This chapter starts with a description of the non-blocking k-ary search tree data
structure, because it is largely the foundation for our solution. The chapter then moves
onto how we applied a similar data structure and synchronization scheme, to a B-tree
like data structure. Since the data structure and synchronization is most similar to “Non-
blocking k-ary Search Trees”, we will briefly explain how their solution works. Then
we will describe how we applied a similar scheme to B-trees.

7.2 Non-blocking k-ary search tree

The non-blocking k-ary search tree, stores values in its leaf node. As a search tree it
supports a dictionary interface, where key-value pairs can be inserted and removed.
Keys are unique, so there can only be one key-value pair for a given key. The actual
data stored, can be seen in listing 34.

class Node {
 Key key[k-1];
}
class InternalNode extends Node {
 Status* status;
 Node* nodes[k];
}
class LeafNode extends Node {
 int size
 Value* value[k];
}

Listing 34:Java-like pseudo code, defining the data structures layout

Internal nodes have k child pointers and k-1 separator keys satisfying:

largestKey(nodesi)< keyi∧(key i≤keyi+ 1∨i> k−1)

Leaf nodes may have up to k values and keys forming pairs as follows:

pair i=< keyi , valuei > .

Illustration 5 shows an example of a 3-ary tree.

7.2Non-blocking k-ary search tree 70

7.2.1 Synchronization

Illustration 6 shows a flow graph of the operations. Any operation that changes the
search tree, or any value stored within it, is done using help locking, as described in
4.2.3Providing non-blocking algorithms. The data structures assumes the presence of a
garbage collector. This allows it to avoid the ABA problem, and problems related to
memory reclamation, for data stored accessed as references.

The helping scheme works by setting the status fields of the parents of all involved
nodes to point to an object describing the pending operation. The status field effectively
works as a continuation for the operation. The order the status fields are set in, is
specific to the operation being attempted.

Before setting the status field, it checks that the old status field points to a “no pending
operations” status. The status field is set with a CAS operation, so that it fails if the
node gets a new pending operation. If there is a pending operation on a node involved, it
will instead cleanup any set status fields, help the pending operation, and retry the
operation.

71 7.2.1Synchronization

They use the following 4 status types:

1. ReplaceFlag: Used to specify that a parent is about to replace one of its
children, with another child. Contains pointers to the child being replaced, the
child its being replaced with, and the parent of the child.

2. PruneFlag: Used to specify that a grandparent is about to replace one of its
children with a grandchild.

3. Mark: Used to specify that a parent is being replaced by one of its children.

4. Clean: Used to specify that there are no pending operations.

In the simplest cases, insertion and removal is handled by replacing the leaf node, with a
new leaf node with one entry more or less. Before replacing the leaf the parent of the
leaf node has its status field set to a ReplaceFlag pointing to the leaf node, and an
updated leaf node.

When removing the last entry from a leaf node, whose parent has only 2 non-empty
children, a “pruning” removal is performed. Pruning removals first set the grandparent's
status field to a PruneFlag, then setting the parents status to a Mark status, and finally
replacing the parent with its only nonempty child.

When inserting into a full node, they perform a “sprouting” insertion, where the leaf
node is replaced by an internal node, with a leaf child for each entry in the old leaf node.
Sprouting insertions set the status field of parent in the same manner as simple
insertions and removals.

After finishing an operation, the status field of the new child’s parent is reset to a Clean
state.

7.2.1Synchronization 72

73 7.2.2Issues with the k-ary search tree

7.2.2 Issues with the k-ary search tree

The k-ary search tree provides no form of balance guarantees. The lack of balance

means that the tree can degenerate into a having a height h=
n
2

, where n is the number

of key-value pairs in the tree. An obvious way of solving this issue would be to use a B-
tree instead, as the actual data structure is strikingly similar.

The synchronization scheme used in the k-ary tree handles operations in a simple and
uniform way, and it might be possible to apply something similar to B-trees. The
synchronization scheme does have 2 disadvantages however.

1. All operations require two CAS operations on the status field of the leaf nodes
parent, as well as a updating the pointer to the child.

2. All operations require allocation of at least one new LeafNode and Status
object.

The first issue means that at most one operation can make progress on a sub tree of
height 2 at any given time. The second issue may cause significant performance
penalties in the presence of slow memory allocation.

The first issue can be solved by having unordered key-value pairs in leaf nodes, and
updating them directly with CAS operations. Any operation that depends on the
contents of a leaf node not changing, must instead freeze the every key-value pairs, as in
“Locality-Conscious Lock-Free Linked Lists”[BP11]. Having to freeze every key-value
pair is obviously more expensive than updating a field in the parent, but hopefully it will
not be necessary for common operations.

Allocating Status objects for the operation continuations, could be avoided by storing
them by value, rather than reference. Doing so will require that the entire continuation
can fit within a field that can be updated by a single CAS operation.

7.3 B-trees

7.3.1 General properties

B-trees are balanced search trees, storing key-value pairs, where values are stored in
leaf nodes. All leaf nodes are stored at the same height, and in most implementations all
nodes except the root are at least half full. The keys of any node are stored in increasing
order, and every key stored by the tree must be unique.

The density of nodes and the balance of the tree, is typically ensured by balancing
operations on the nodes. If a node becomes too full or to sparse, it rebalances either by
splitting, merging with a sibling node, or stealing from a sibling node. Splits and merges
change the number children that the parent has to manage, and may in turn require
rebalancing of the parent. The root cannot merge, steal or split like the other nodes,
since it does not have siblings. Whenever the root is too full, it creates a new root
pointing to the old root, and then it splits the old root in two as usual. If the root only
has a single child, it is replaced with its child.

7.3.1General properties 74

The fact that the B-tree can only increase its height by changing the root, ensures that
the height of every node is constant while it is in the tree. It also ensures that all nodes
of the same height, also have the same depth.

If every internal node aside from the root has at least k/2 children, then the B-tree can at
most have a height of k= log k

2

n

7.3.2 Weakened properties

It has been pointed out, that achieving the properties of B-trees in highly concurrent
implementations, can be problematic [BFGK05]. General schemes for creating lock-free
data structures can be applied, specifically the scheme in “Locking without Blocking”,
was applied to a B-tree. The authors of “Locality-Conscious Lock-Free Linked Lists”
have also submitted a paper for a B-tree that follows the properties of traditional B-trees
quite closely [Daniels11]. As far as we can tell, the paper has not yet been published.

We find that the main issues with the properties of B-trees, for our uses are:

1. Alternating insertions and removals, can lead alternating rebalancings, because
the nodes are restricted to being no more than half empty.

2. The keys in leaf nodes are stored in an ordered fashion. Enforcing the ordering
may require updating the entire node, when adding or removing.

3. Since B-trees are search trees, all keys must be unique. This property conflicts
with using it as a priority queue.

The first issue can largely be avoided, by allowing nodes to be less than half full. This
comes at the possible expense of internal memory fragmentation, and the height of the
tree. The second issue can be avoided by storing the keys in the leaf nodes in an
unordered fashion, to allow updating individual entries in leaf nodes. Synchronizing
access to unordered entries, can be achieved similar to the solution found in “Locality-
Conscious Lock-Free Linked Lists”. The third issue can be resolved by storing the value
of a key-value pair in the least significant bits of the key. This change will obviously
require longer keys, and it may even make the key size larger than the word size.

To summarize, we hypothesize that it should be possible to create a lock-free B-tree like
data structure, with good performance, that is useable as a priority queue. This
hypothesis is based on the structure of B-trees, and the synchronization schemes used in
the papers “Non-blocking k-ary Search Trees” and “Locality-Conscious Lock-Free
Linked Lists”. For operations on internal nodes, a helping scheme similar to “Non-
blocking k-ary Search Tree” can be used. For operations on leaf nodes a scheme similar
to “Locality-Conscious Lock-Free Linked Lists” can be used. By allowing nodes to be
less then half full, it should be possible to reduce the frequency of rebalancing. We want
to reduce rebalancing, since it affects multiple nodes, requiring more powerful
synchronization.

75 7.4Lock-free B-tree derivative

7.4 Lock-free B-tree derivative

In this section we describe our lock-free B-tree based data structure. We start out by
describing the layout and properties of the data structure, then the synchronization
scheme used, present some pseudo-code, and finally explain how it handles memory
reclamation.

7.4.1 Layout and Properties

The keys of the data structure are 31 bits, the values are 32 bits. The key 0 is reserved to
represent key-value pairs that have not been set.

Key-value pairs must be unique, but keys do not need to be unique.
The data structure supports the following 3 operations:

1. void insert(key, value) - inserts the key-value pair

2. uint32_t remove(key min , key max) - extracts a key-value pair with the key in
[keymin ;key max] , with the smallest key

3. uint32_t extractSmallest() - extracts a key-value pair, with the smallest
key

The remove operations can be used to partition the space of used keys, in order to store
multiple priority queues inside the same data structure.

The data structure is structured as a search tree, with internal and leaf nodes. The root
node is a special internal node. It uses rebalancing similar to B-trees, but with a few
important differences:

1. Rebalancing never steals key-value pairs, since that would involve too many
nodes, compared to how much rebalancing is performed.

2. 2 sibling nodes can be merged into 2 rebalanced siblings, to compensate for the
lack of stealing.

3. Nodes are allowed to be more than 50 % empty, and a leaf node that is less than
completely full might get split. How empty nodes are allowed to be is a compile-
time constant, and it can be different for leaf and internal nodes.

Nodes that are removed from the tree, are deallocated using a hazard pointer scheme.
The hazard pointers ensures that nodes are never deallocated or reused, when they are
visible to any threads, or in the tree. This ensures that the ABA problem does not occur
for pointer to the child nodes, as described in 4.1.3 The ABA problem. The details of
how the nodes are reclaimed is described in section 7.7 Memory reclamation.

7.4.2 Layout of nodes

The general data structures used are described in listing 35. In the following sections we
will describe what their fields are used for. The nodes of the tree are divided into Leaf
nodes, that have a height of 0, and Internal nodes. Only Internal nodes store their
height explicitly.

7.4.2Layout of nodes 76

class Entry {
 uint32_t value;
 uint31_t key;
 uint1_t freeze;
} alignas(uint64_t);

class Leaf : Node {
 volatile Entry entries[KL];
}

class Mark {
 Entry key;
 Internal* parent;
 uint16_t cHeight;
 MarkType type;
}

class Internal : Node {
 uint16_t size;
 uint8_t height;
 Node* volatile c[K_internal];
 Entry s[K_internal - 1];
 volatile Mark m;
}

Listing 35:C++-like declaration for the types used in the lock-free B-tree

An Entry is a key-value pair. Each Leaf stores KL unordered key-value pairs, as per
illustration 7. After a Leaf has been inserted into the tree, the Entries can be updated
individually with read-modify-write operations. The entire key-value pair can be
updated in a single CAS operation, since it resides within 64-bits. It is possible to
update two adjacent Entries atomically with a CMXCHNG16B instruction, if the first
Entry is aligned on a 128-bit address.

Operations that depend on multiple Entries use their freeze bit, to prevent them from
changing. All insert/remove/extract operations, assume that the freeze bit is
unset, and the operations will fail if it is set.

<3,8,0> <9,6,0> <0,0,0> <2,7,0>

Illustration 7:A node with 4 Entries containing the key-value pairs <8,3>, <6,9>, and
<7,2>, where no Entries are frozen

In Internal nodes c stores pointers to for its children, and s[i] specifies the largest
allowed key-value pair of c[i]. After an Internal is added to the tree, its height, s,
and size does not change. The the child pointers, and the Mark can change, and
therefore need to be volatile.

Marks uniquely identify operations involving Internal nodes. The key, cHeight and
parent fields are used to identify the nodes involved in the operation. Specifically the
children involved in the operation have the height cHeight, they can be found by
searching for key, and they have the parent parent.

77 7.4.2Layout of nodes

MarkType identifies the type of pending operation, and how far along it is, similar to the
Status class used in the k-ary tree. The following types are used:

• NOT_MARKED: Used to specify that there are no pending operation.

• REBALANCE_STEP2: Used to specify that a grandchild of the marked node is
about to be rebalanced.

• REBALANCE_STEP3: Used to specify that a child of the marked node is about to
be rebalanced.

• REBALANCE_STEP4: Used to specify that this node is about to be rebalanced,
possibly with one of its siblings.

• REBALANCE_STEP5: Used to specify that this node is about to be rebalanced with
one of its siblings

In order to keep the Marks synchronized, they must fit into 128-bits, so they can set by a
single CAS instruction. We solved this by storing Internal pointers in 32 bits, and
MarkType in 16 bits, giving a total size of 128 bits. Only using 32 bits for Internal
pointers reduces the usable address space for Internal objects, but inside an operating
system it should be sufficient. If a 32 bit address space is too small, one could store
cHeight and MarkType in 8 bits each, and store the parent reference as a 48 bit index.

7.4.2Layout of nodes 78

The height of the child node could also be derived from the height of the marked node,
and the type of mark, but storing the child height in marks simplifies some of the code.

To simplify management of the tree, it contains an additional “fake root”, above the
regular root. The fake root is an Internal node with the root as its only child. The fake
root ensures that all Leaf nodes have grand parents.

7.5 Synchronization

The tree uses two significantly different forms of synchronization depending on the
operation.
Most operations proceed by searching for a Leaf node, operating on it, and returning,
without any rebalancing. Since such operations change a single entry, they are
performed with a single CAS operation directly on the data. Before performing the
CAS, it first checks to see if the entry is frozen. If an entry is frozen the Leaf must be
rebalanced before the simple operation can proceed.

Entry eOld = entries[i];
if(eOld.freeze) {
 ... rebalance the leaf node
}
if(theOperationCanBePerformedOn(eOld)) {
 if(compareAndSwap(&entries[i], eOld, operate(eOld))) {
 operationSucceeded(eOld);
 }
}

Listing 36:Pseudo-code showing how to attempt operations on Entries in Leafs.

It may be not be possible to apply an operation directly on a Leaf node, if the Leaf
node or its parent is being rebalanced. In such cases the thread will have to help finish
up the rebalancing. Illustration 10 shows how rebalancing and simple operations are
used to implement operations on the tree structure. One should be aware that
rebalancing is significantly more complicated than performing an operation on a Leaf
node.

Illustration 9:A flow graph of the algorithms general structure. The edges going into
“Attempt to rebalance” are taken if the action fails

79 7.6Rebalancing

7.6 Rebalancing

Rebalancing operations always end up replacing the parent of a node, with a parent
where one or two of its children have changed. Rebalancing involves the node being
rebalanced, its parent, and its grandparent. It may also include a sibling to the node
being rebalanced, unless the child is being split.

In order to modify multiple nodes, a helping scheme is used, similar to the “Non-
blocking K-Ary Search Tree”. The rebalancing is shown in illustration 10. First it
locates the involved nodes. Then it sets the status field of the involved nodes, in the
order grandparent, parent, node, sibling. The fields of the mark field is set as described
in the section 7.4.2 Layout of nodes on page 75.

The Mark is effectively a continuation for the operation, that any thread can execute.
When the Mark is set, it is only changed by threads that attempt to complete the
operation. If a thread fails to change a Mark, because someone else changed it, the
thread will instead help the new pending operation, before retrying its own operation.

Pending operations are described in a unambiguous way through Marks, such that when
a thread executes a pending operation, one of two things can happen:

1. The thread fails to complete the operation.

2. The thread completes the operation and produces the exact same result as any
other thread executing it would have.

The Mark is unambiguous in the sense that it provides unambiguous directions the
operation, and all the nodes involved in the operation. The child being rebalanced and
its parent can be found by searching for the key. If the found parent is different from the
one in the Mark, then some other thread must have finished the operation. The sibling
can be determined based on the index of the child. The grandparent can be verified, by
checking that it has the parent as a child.

7.6Rebalancing 80

81 7.6Rebalancing

Since Leaf nodes have no status field, their parents store this field instead. This is
sufficient, since rebalancing of a Leaf node, would also affect its parent, so the parent
should already have its status field set. Rather than setting the status field of Leaf
nodes, all their entries are frozen to prevent conflicting modifications. Freezing the
Entries is retried until successful, so “setting the status field” of a Leaf node will
always succeed. The rebalancing is effectively performed as follows:

1. The grandparents Mark is set to a REBALANCE_STEP2 mark, with a CAS
operation.

2. The parents Mark is set to a REBALANCE_STEP3 mark, with a CAS operation

3.

a) The childs status field is set to a REBALANCE_STEP4 mark, with a CAS
operation, if the node is an Internal node.

b) Every Entry in the child is frozen, if the node is a Leaf

4.

a) If the child is too full, goto step 5.

b) The partners status field is set to REBALANCE_STEP_5 mark, if the partner is
an Internal node.

c) Every Entry in the partner is frozen, if the partner is a Leaf.

5. Rebalance the children, into one or two nodes

6. Create a new parent with the new children

7. Replace the old parent with the new one

8. Allow for changes to the grandparent

Step 1 and 2 correspond to the first three states of illustration 9. Step 3, 4 and 5
correspond to the boxes Leaf nodes and Internal nodes in illustration 9. Step 6, 7, and 8
correspond to the last three states of illustration 9. The rebalancing can fail at step 1, 2,
3, 4, 7, and 8.

If it fails at 1, it must be because grandparent is involved in another rebalancing, so the
current threads help finish that rebalancing before retrying its own child of the
grandparent.

If it fails at 7, it must be because another thread finished the operation, so the current
thread just executes step 8, to ensure that the operation no longer blocks other
operations, and then it retries its original operation. If it fails at 8, another thread cleaned
up after the operation, so the current thread should just retry its original operation.

If an operation fails at step 2, 3 or 4, then it must be because another rebalancing
operation started on another descendant of the grandparent node. The current thread
helps finish the other operation, and then retries its own original operation, rather than
retrying the rebalancing. It is not necessary to clean up the after the failed rebalancing,
because it can be finished by any thread at any time.

7.7Memory reclamation 82

7.7 Memory reclamation

As previously mentioned the B-tree uses hazard pointers, also known as safe memory
reclamation in order to reclaim memory. Hazard pointers are used for reclaiming Leaf
and Internal nodes. Any other part of the data structure is either in local scope only, or
assumed to have a well defined lifespan. For instance the tree itself is not reclaimed
with hazard pointers, only the nodes in it. Using hazard pointers ensures that nodes
cannot be deallocated while any thread is allowed to access data inside the node.

We use hazard pointers, because it is the most balanced approach, currently available. It
is typically the second fastest reclamation scheme, with the second lowest bound on
unreclaimed memory. Only QSBR is faster, and only reference counting has a lower
bound on unreclaimed memory. The basic concepts of hazard pointers was covered in
the section 4.2.2 Hazard pointers on page 14.

In order to apply hazard pointers you need:

1. To implement the algorithms required for hazard pointers [Michael04].

2. To find all the hazardous references and determine the number of objects any
thread may access at a given time.

3. To implement efficient tests for the global visibility of hazardous references.

The last step can be problematic for arbitrary link based data structures, as described in
the paper “Efficient and Reliable Lock-Free Memory reclamation based on reference
counting” [GPST05], but it is possible for this tree based data structure.

7.7.1 Algorithms for hazard pointers

Hazard pointers require the presence of two serial data structures. The first data
structure must support insert(void*) and contains(void*) operations, where the
data being pointed to by the parameters must not be accessed. The second must support
a way to store nodes that are eventually going to be reclaimed. Both data structures have
an upper bound on the number of objects they will ever need to store.

For the second data structure we use a simple array. The paper suggests that the first
data structure can be a hash set, if amortized average case running time is a concern, or
a sorted list, for the sake of simplicity. We use a hash set, because an array backed hash
set supporting the required operations is as simple as to implement, as a sorting
algorithm.

Since the hash set must not access the data pointed to by the pointers inserted into it, we
use a hash function that hashes the pointer itself. Alternatively one could just truncate
the pointer, but that would likely cause collision problems, since the pointers cannot be
assumed to be uniformly distributed. We use hash functions based on “Integer Hash
Function”[Wang07]. Specifically we use the “Robert Jenkins 32 bit integer hash
function” for 32 bit pointers, and “64 bit to 32 bit Hash function” for 64 bit pointers.
The hash functions are optimized to the specific data size, unlike functions, such as
CityHash [Google], MurmurHash [Appleby11], or SpookyHash [Jenkins].

83 7.7.2Dealing with hazardous references

7.7.2 Dealing with hazardous references

When searching in the tree for a given node, it will be necessary to access nodes that
may be dynamically deallocated. Whenever a search proceeds from a parent node to its
child, it must be sure that the parent and child are both still allocated (2 references).

Whenever performing an operation on a Leaf, the Leaf node is accessed (1 reference).

Whenever performing a rebalancing operation, up to 4 nodes may be accessed; two
child nodes being rebalanced, the parent, and the grandparent of the nodes being
rebalanced (4 references).

To simplify maintaining the needed hazard pointers, threads keep the acquired hazard
pointers to the nodes at 3 levels while searching, rather than 2 levels. So once a search
terminates, the thread will have hazard pointers to the desired node, its parent, and its
grandparent. If the thread needs to rebalance the found node, then it already has the
hazard pointers needed, with the possible exception of a neighbor to the desired node. If
a rebalancing needs to access the neighbor of the node that has to be rebalanced, then it
acquires a hazard pointer to the node when needed.

7.7.3 Testing for global accessibility

To implement an efficient test for the global visibility of a node, we take advantage of
the synchronization scheme used. Since hazard pointers are practically only acquired
during the search, we will start by covering how it is done there. During searches the
code upholds the following invariants:

1. Whenever a node is no longer visible, the thread restarts the search.

2. Whenever a parent node may no longer be visible, due to ambiguity about how
far along a rebalancing operation is, the thread tries to help the rebalancing
operation.

3. No hazard pointer is acquired to the fake root node of the tree, as it is always
present.

4. The child of the fake root is the actual root. Testing the global visibility of the
root, is simply done by checking that the fake root still points to the root.

5. Testing the global visibility of children of the root, is done by checking that the
fake root still points to the root, and that the root still points to the child.

6. Testing for the presence of child nodes further down the tree, is done by
checking that the parent still points to the child, and that the status fields of the
parent and grand parent are safe.

7. If the parent is marked with REBALANCE_STEP4 or REBALANCE_STEP5, then the
parent and grand parent may or may not be present in the tree anymore.

8. If the parent is marked with REBALANCE_STEP3, and the grandparent is not
marked with an operation that is equivalent to the parents mark, then the parent
is not present in the tree anymore.

Listing 37 shows how searches are performed, and how the invariants are upheld.
Finding the child of an Internal node that might contain a key-value pair, is done with

7.7.3Testing for global accessibility 84

the findChild function. The function finds the relevant descendant of an Internal
node using binary search on s. This is possible because s contains a sorted list of upper
bounds on the keys that the children can contain. The search is quite similar to the
search used in “Lock-Free Multiway Search Trees” [SR10]. The memory barriers can be
implemented with an MFENCE instruction, or by loading the hazard pointer after storing
it, and executing LFENCE.

Outside of searching, it may be necessary to acquire a hazard pointer to a sibling of the
node being rebalanced. This occurs after marking the grandparent, parent and the node
being rebalanced. In that case, the only way the sibling may no longer be visible, is if
the operation has finished already. This can be checked by seeing if the grand parent
still points to the parent.

85 7.7.3Testing for global accessibility

class SearchResult {
 union {
 Leaf* l;
 Internal* i;
 Node* n;
 }
 uint16_t index;
};

SearchResult findChild(uint32_t value, uint31_t key) {
 uint16_t index = binarySearch<Entry>(<value, key>, s, size - 1)
 return {c[index], index};
}

<SearchResult, SearchResult, Internal*> findNode(Entry key, uint8_t
height) {
retry:
 Internal* gParent = fakeRoot;
 SearchResult parent = <fakeRoot->c[0], 0>;
 hp[1] = parent.i;
 memoryBarrier();
 if(parent.n != fakeRoot->c[0]) {
 goto retry; // See rule 4
 }
 Node* child = parent->findChild(key);
 hp[2] = child.n;
 memoryBarrier();
 if(child.n != parent.i->c[child.index] || parent.n != fakeRoot-
>c[0]) {
 goto retry; // See rule 5
 }
 for(uint8_t cHeight = parent->height - 1; cHeight > height;
cHeight--) {
 gParent = parent.i;
 parent = child;
 hp[0] = hp[1];
 hp[1] = hp[2];
 child = parent->findChild(key);
 hp[3] = child.n;
 Mark m = parent.i->mark;
 if(child.n != parent.i->c[child.index]
 || !gParent->isGrandParentTo(m)) {
 goto retry; // See rule 6 and 8
 }
 if(m.isChild()) {
 … help finish the operation on parent instead. // See rule 7
 }
 }
 return <child, parent, gParent>;
}

Listing 37:Pseudo-code that searches for a node at a given height

7.8Implementation 86

7.8 Implementation

7.8.1 Implementation of helping

The section 7.6Rebalancing on page 79 describes how rebalancing operations work at a
high level, and it represents the rebalancing operations with a flow diagram in
illustration 9. In illustration 9, the state “Help pending operation” has quite a few
ingoing and outgoing edges, and the control flow is not exactly easy to implement in a
structured language. This section describes how we implemented helping at a pseudo-
code level. The actual pseudo-code is in listing 38.

The helping is implemented in a function that is used for performing all operation steps
that can be helped. In other words the function performs step 1 through 5 of the
rebalancing. All of these steps are handled inside one function, because implementing
helping will require being able to switch between different steps.

Switching between the different operations is handled with a switch statement, inside an
infinite loop. When an operation successfully marks the involved node, it proceeds to
the next case in the switch statement, corresponding to the next step in the rebalancing.
When an operation fails to mark the involved node, it remembers the mark, breaks from
the switch statement, and tries to help the operation described by the mark. It does so by
finding the involved nodes, and reentering the switch statement.

The function returns, once it has witnessed some rebalancing operation completing.
This can happen at the cases for step 3, 4 or 5, where a rebalancing operation can be
completed. This can also happen at step 1, if someone rebalances descendants of the
grandparent. Finally threads can also witness operations completing, while trying to
load the parameters for helping the operation.

As an alternative to implementing helping by tying all of the helping operations into one
function, one could have used proper continuations. Such continuations perform the
operations based on a mark. We found that such continuations are more trouble than
they are worth. For one the continuations fragments the code, making it hard to see what
happens before and after each fragment. Another issue is that using continuations in this
way had poor performance, unless the code for helping rebalancing and attempting
rebalancing is separated. In this sense separating is practically equivalent to writing the
code twice, and complicating the helping. Currently there is little incentive to use such
continuations, since all helping steps are fairly related, and using continuations would
likely be less clear and/or slower.

87 7.8.1Implementation of helping

helpOperation(op, m) {
 while(1) {
 switch(op) {
 case MarkType::NOT_MARKED:
 {
 return;
 }
 case MarkType::REBALANCE_STEP1:
 {
 if(!markGrandParent()) {
 m = grandParentMark;
 break;
 }
 if(gParent->c[parentIndex] != parent) {
 gParent->cleanUp(oldMark);
 return;
 }
 }
 case MarkType::REBALANCE_STEP2:
 {
 if(!markParent()) {
 m = parentMark;
 break;
 }
 }
 case MarkType::REBALANCE_STEP3:
 {
 if(childHeight == LEAF_HEIGHT) {
 ... rebalance the leaf children
 return;
 }
 if(!markChild()) {
 m = childMark;
 break;
 }
 }
 case MarkType::REBALANCE_STEP4:
 {
 if(childSize >= DI) {
 ... split the child, and write back a new parent
 return;
 }
 if(!acquirePartnerHazardPointer()) {
 return;
 }
 if(!markPartner()) {
 m = partnerMark;
 break;
 }
 }
 case MarkType::REBALANCE_STEP5:
 {
 ... merge the children and write back a new parent
 return;
 }
 }

7.8.1Implementation of helping 88

 // The operation was prevented by a another operation,
 // lets help the other operation then
 do {
 key = m.key;
 } while(!findNode(key, m.cHeight, gParent, parent, child));
 if(!grandParentMark->isEquivalent(m.toStep2())) {
 return; // Someone may have finished the operation
 }
 if (parent != m.parent) {
 // Someone may have finished the operation
 gParent->cleanUp(m.toStep2());
 return;
 }
 op = m.type;
 m = m.toStep2();
 if(op == MarkType::REBALANCE_STEP5 && !getPartnerHP()) {
 return;
 }
 }
}

Listing 38:Pseudo code for the first five steps of rebalancing and helping operations

7.8.2 Replacing the parent node

Step 6, 7, and 8 of the rebalancing are primarily concerned with replacing the parent of
the nodes being rebalanced, with a new parent. The general control flow of rebalancing
ensures that the new parents size is in [SI ; DI] , unless the old parent is the root of the
tree. If the old parent is the root of the tree, additional logic handles growing and
shrinking the tree, to keep the roots size within]1 ; KI [, as shown in listing 39.

if(newParentSize == 1 && childHeight != 0) {
 … make the only child the new root
 … this reduces the height of the tree
} else {
 … create a new parent, containing the two children
 if(gParent == fakeRoot && newParentSize == KI) {
 … split the new parent in two
 … use the two pieces for a new parent/root
 … the new parent increases the height of the tree
 }
}
if(!CAS(gParent->c[parentIndex], oldParent, newParent)) {
 … free any allocated nodes
 cleanUpGParent()
} else {
 cleanUpGParent()
 … begin reclaiming the old nodes
}

Listing 39:Pseudo-code showing how to replace parent nodes, at the end of
rebalancing, while maintaining the constraints for the B-tree

89 7.8.3Optimizations

7.8.3 Optimizations

There are a number of opportunities for improving performance of the basic data
structure, as described in this section. The impact of some of the optimizations is
discussed in the section 7.9 Evaluation.

7.8.3.1 Memory system and Hazard pointers

As discussed in the section 7.7 Memory reclamation, the general use of Hazard Pointers
may lead to a memory overhead of up to O(k⋅n2

) objects. It is possible to store
O(k⋅n) freed objects on thread local stacks, without increasing the amortized memory
overhead. Doing so improves the locality of the allocations, and may reduce contention
in the memory allocator. This is basically the same concept that slab allocators
[Bonwick94] use, but they do not have as well defined permitted memory overhead
bounds. Based on these observations, we propose a fairly general extension to a hazard
pointer framework, enable reuse of recently reclaimed objects. For the B-tree we only
need to allocate Leaf and Internal nodes, so in this case a general scheme may seem
like overkill, but the extension is fairly simple.

In order for a new object to be placed in an old objects memory location, the new object
must not:

1. Be larger than the old object.

2. Require larger alignments than the old object.

Our solution to first requirement is to only allow objects of the same size to reuse the
locations. Our solution to the second requirement, is to enforce a common alignment for
all object types of the same size.

Every object size is identified with a unique id. The id is used to identify the correct
stack to put recently reclaimed objects on. When reclaiming, retiring, and creating
objects, both the object size id and the object size is passed along. For convenience the
object size id can be determined from the object size at compile time, so the
programmer only has to pass the type of object. Quite often the type, and hence size, of
variables are known at compile-time. Specifically for the B-tree it is always known
whether a node is a Leaf node or an Internal node when replacing the nodes.

The creation and retirement of objects depends is handled by the code shown in listing
40. The codes behavior depends on the number of elements on the threads recent stacks.
In the code retired is a list of retired objects, reclaimed is the recent stacks, and
getType is a function that finds the object size id for a given object size, at compile
time. If the elements on a threads recent stacks exceeds an upper bound f, where
f ∈O (k⋅n) , then the element is freed by the memory allocator. Otherwise it is pushed

on a recent stack, for reuse. Upon allocation, if there are elements on a threads stack for
that object size id, the memory location is popped from the stack, otherwise a new
object is allocated.

7.8.3.1Memory system and Hazard pointers 90

template<class Type>
void retire(Type* object) {
 retireObject(object, getType<sizeof(Type)>());
}

template<class Type>
Type* create() {
 return (Type*) createObject(sizeof(Type), getType<sizeof(Type)>());
}

void* createObject(uint64_t objectSize, uint64_t objectType) {
 if(freed[objectType].getSize() == 0) {
 ... return a new object of size objectSize
 }
 return reclaimed[objectType].pop();
}

void retireObject(void* object, uint64_t objectType) {
 retired.push({object, objectType});
 if(retired.getSize() >= k * nP) {
 scan();
 }
}

Listing 40:Creation and retirement of objects, where recently reclaimed objects can be
reused.

The changes require that the object type is known upon deallocation, so the list of
retired objects must store both object size ids and object pointers. Our implementation
stores it as actual tuples, but it is possible to be more space conserving. If the number of
object sizes is no larger than the minimum object alignment guaranteed, then the object
size id can be stored in the lower order bits of the object pointers. In current AMD64
code with 64 bit pointers, it is also possible to use the 16 most significant bits to store
the object size id, since the address space is 48 bits.

7.8.3.2 Separating Entries into two Leaf nodes

When producing two Leaf nodes from a rebalancing, the algorithm must create two
approximately evenly large nodes. In addition all the Entries in the first child, must be
smaller than the Entries in the second child. This can be accomplished by dividing the
Entries based on the median Entry.

Finding the median can be done in Θ(n) time with Hoare's find algorithm[Hoare61],
where n is the total number of Entries in the children. Hoare's find algorithm is based on
quicksort, it can be implemented in place, and has a side effect. All values that are lower
than the median, are placed before the median, thereby doing the work of separating the
Entries into Entries for the first and second child. Hoare's find algorithm does
however have a very poor worst case running time of O(n2

) .

91 7.8.3.3Ammortized running times

7.8.3.3 Ammortized running times

Leaf and Internal nodes have compile-time constant upper and lower bounds on their
size. Different boundaries leads to different performance metrics.

It is possible to argue about the performance metrics from a theoretical point of view
through their asymptotic running time. To simplify the reasoning about the asymptotic
running time, the reasoning ignores the cost and probability of operations failing. This
may seem like a large approximation, but it is fairly common practice.

Generally the operations can be described as: Search the tree, possibly rebalance, and
search for an Entry a Leaf node. Searching in a Leaf node can require looking at every
Entry, so it takes Ο(kl) . Rebalancing requires searching the tree, and performing the
actual rebalancing of nodes. The actual rebalancing can be achieved in Θ(kl) for Leaf
nodes, and Ο(ki) for Internal nodes.

The running time of searching the tree is:

 Θ(TreeSearchCost)=Θ(TreeHeight⋅SearchInternalNodeCost) .

The height of the tree is:

Θ(Tree Height)=Θ(log ki+ si
2
(n

2(dl+ sl)))=Θ(log(n)−(dl+ sl)
log(ki+ si)) , assuming the average

Internal node has a size of
ki+ si

2
, and the average Leaf node has a size of

dl+ sl
2

.

The the running time for searching in an internal node with binary search is:

Θ(SearchInternalNodeCost)=Θ(log (ki))

Therefore the cost of searching in the tree is:

Θ(TreeSearchCost)=Θ(Θ(TreeHeight)⋅Θ(SearchInternalNodeCost))=Θ(log(n)−(dl +sl))

Giving all operations a running time of: Θ(log(n)+ki)=Θ(log(n))

The running time can be reduced to Θ(log(n)) , because ki is a constant.

Theoretically, using larger Leaf nodes should lead to fewer rebalancings and faster
search times, at the cost of slower insertions, removals, extractions and rebalancings.
Using larger Internals should lead to fewer but slower rebalancing, while search times
should not be significantly affected.

7.9Evaluation 92

7.9 Evaluation

This section evaluates the performance priority queue performance of the lock-free B-
tree. The test was performed as per linting 41. 300,000 elements are inserted and
extracted from an initially empty priority queue. The ordering of insert and extract
operations was decided by sampling from a Bernoulli(p) distribution, unless such an
action would lead to more removals, than insertions.

The elements being inserted each have a unique value, to avoid collisions, and to test for
correctness. The keys of the elements form a distribution where the following 4
constrains are met:

1. 20% are 1

2. 20% are 231
−1

3. 50% are 230

4. 10 % are discretely uniformly distributed from the set [2 ;231
−2]/ 230

The distribution of keys is meant to represent the distribution of priorities used in tasks
running on an operating system. In such a case, it is common for the vast majority of the
tasks to use either the default, lowest, or highest priority.

For comparison we evaluated the performance of pairing heap based priority queues,
using different locking mechanisms. The pairing heap implementation is from GCC's
STL. Pairing heaps tend to be one of the fastest priority queues [TDK]. The locks used
include MCS locks, and our improved MCS locks. Initially we also planned to use the
OpenMP based locks, but the default locks on the tested system were simply too slow.

test() {
 … measure start time
 inserts = 0
 removes = 0
 while(inserts < 300000) {
 if(inserts == removes || rbern(p)) {
 … add an element to the queue
 inserts = inserts + 1
 } else {
 … remove an element from the queue
 removes = removes + 1
 }
 }
 while(removes < 300000) {
 … remove an element from the queue
 removes = removes + 1
 }
 … measure end time
}

Listing 41: The test case performed for priority queues. rbern(p) takes a sample from
the Bernoulli(p) distribution

93 7.9Evaluation

Each test was performed using up to 4 threads, where each was bound to a specific
CPU. The tests started all the threads simultaneously. Each of the presented results are
based on 160 measurements. To get 160 measurements, when testing with p threads, the
tests are run 160 / p times.

System name HP ProLiant SL165z G7 server

Ram 64 gb

Processors 2 x AMD Opteron 6168 (24 CPUs)

OS Scientific Linux 6.1

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG
-fopenmp -Ofast -fwhole-program
-static -flto -fno-align-functions
-fno-align-labels -fno-align-loops
-fno-align-jumps -s

Table 16:A description of the platform for running the tests

Graph 9 shows the results of running the tests on the system described in table 16. The
following 4 observations are immediately obvious from the results:

1. The STL w MCSB case shows that the our modified MCS locking mechanism
also works quite well for longer locking periods.

2. The lock-free B-tree scales better in the Bernoulli(0.5) case, but in both cases
performance is decreasing.

3. In the uncontended cases, all of the priority queues are approximately twice as
fast in the Bernoulli(0.1), compared to the Bernoulli(0.5) case.

4. The STL w MCSB scales better in the Bernoulli(0.1) case.

The second observation indicates that the B-tree is contended. A backoff scheme, or
randomization of the access patterns to Leaf nodes may lead to improved throughput.
Applying a backoff scheme the a B-tree is somewhat more complex, than it is to apply it
to a stack, due to operations having more steps.

The fourth observation indicates that factors, other than the locks synchronization,
dominate the performance of the STL priority queue. If synchronization had been the
bottleneck, then the Bernoulli(0.1) would scale worse, due to more lock acquisitions.
One explanation for the poorer scalability in the Bernoulli(0.5) case, is the priority
queue grows larger. Another possibility is the way memory allocations are handled in
the STL priority queue.

In general the evaluation shows that the throughput of locked priority queues depend
highly upon the locking mechanism used, and the order of operations. The LF B-tree

7.9Evaluation 94

was approximately 50 % faster than the STL based priority queue with regular MCS
locks, at high contention levels in the Bernoulli(0.5) case.

Graph 9: Thread total throughput for priority queues. STL w MCS and STL w MCSB
are the STL priority queues using MCS locks, with and without backoff. The LF Btree is
the priority queue primarily covered in this chapter

We also kept track of the number of malloc calls made by hazard pointer framework, to
evaluate the impact of reusing objects. Graph 10 shows the ratio of malloc calls to the
number of objects created. The graph is based on the Bernoulli(0.5) distribution of
operations.

1 thread 2 threads 4 threads 8 threads 16 threads
0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

Thread total throughput for priority queues p = 0.5

STL w MCS

STL w MCSB

LF Btree

STL w OMP

O
pe

ra
tio

ns
 *

 th
re

ad
s

pe
r (

se
co

nd
 *

 th
re

ad
)

1 thread 2 threads 4 threads 8 threads 16 threads
0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

Thread total throughput for priority queues p = 0.1

STL w MCS

STL w MCSB

LF Btree

STL w OMP

O
pe

ra
tio

ns
 *

 th
re

ad
s

pe
r (

se
co

nd
 *

 th
re

ad
)

95 7.9Evaluation

1 thread 2 threads 4 threads 8 threads 16 threads
0,00%

0,10%

0,20%

0,30%

0,40%

0,50%

0,60%

0,70%

0,80%

0,90%

1,00%

Graph 10: Ratio of malloc calls to Node creations
The graph highlights 2 important properties:

1. Less than 1 % of the Nodes created are allocated using malloc

2. The fraction of allocations is highest in the case with 4 threads.

The first property shows that reusing a objects can dramatically reduce the the number
of allocations. The second property can is likely due to the fraction of allocoations
decreasing when the recent lists increases with the number of threads, together with the
average queue size. A longer recent list leads to fewer allocations, improving the
fraction at high concurrency levels. A smaller queue means less rebalancing, improving
the fraction at low concurrency levels.

7.10Conclusion

In this chapter we introduced a lock-free B-tree based on a help locking scheme. The B-
tree is an ordered dictionary structure, that we adapted to a priority queue. The data
structure uses hazard pointers to reclaim nodes, thus avoiding traditional garbage
collection and reference counting. Inserting, removing, and extracting elements from the
data structure has an amortized running time of Θ(log n) , in the uncontended case. The
remove operations, can additionally provide upper and lower bounds on the keys being
removed. This ability makes it possible to partition the space of used keys, to make it
possible to store multiple priority queues inside the same tree structure.

We found that the data structure is approximately 50 % faster than a pairing heap based
priority queues, protected by traditional MCS locks, at high contention levels. By
comparison the the backoff scheme for with MCS locks we presented in 5.6 MCS locks,
was appropriately 150 % faster for the locked priority queues.

8Conclusions 96

8 Conclusions
This thesis has dealt with the design and implementation contention resistant priority
queues. It covered a wide range of methods for providing contention resistant priority
queues.

It introduced improved variations of truncated exponential backoff, and MCS locks.
These schemes can be used to manage contention in lock-free and lock-based data
structures. At the highest contention levels, the new MCS locks can provide 2700 %
higher throughput for locked counters, and 150 % higher throughput for priority queues.

We have implemented and evaluated the performance of prior contention resistant data
structures. These data structures allow threads to operate on them, without directly
accessing the data structure. We have also designed and implemented similar data
structures, by combining their concept of elimination with truncated exponential
backoff. We found that our new data structures are up to 36 % faster, than similar
eliminating data structures. Unfortunately the data structure is not significantly faster,
than the same data structure without elimination.

We have also introduced a new lock-free priority queue. In our evaluation, the new
priority queue does not have decreasing throughput at high contention. This is in spite
of the priority queue not using any explicit measures against contention. We found that
the priority queue approximately 50 % faster at high contention levels, than a lock-
based priority queue, using traditional MCS locks.

The wide range of topics covered, leaves plenty of opportunities for future work. One
possibility is investigating the impact of applying randomized access patterns to the
lock-free priority queue. Another interesting topic, could be more extensive correctness
proofs for the data structure. Another possibility is investigating the possibilities of
applying combined backoff and elimination schemes to more complex data structures,
with more expensive operations. One can also investigate ways of making elimination
faster, to make it a more viable mechanism for reducing contention.

97 9Project planning

9 Project planning
This section shows how the project was planned, and how it progressed. The plan
includes a risk analysis, and an actual plan for the project.

9.1 Risk analysis

This section covers the risks I estimated to be significant at the start of the project, and
how I planned to reduce the risks.

9.1.1 Potential risks

These are the risks that can occur during the development, and that I should try to avoid
by all means.

1. Finding minor bugs in the implementation will require absurd amounts of
debugging.

2. Lost work due to accidents or regressions breaking existing work.

3. The priority queue cannot be directly applied to the scheduling in Fenix, because
it does not uphold specific requirements.

4. Integrating the priority queue structure into Fenix will cause serious problems.

5. The project is not completed in time.

6. The theoretical background for the solution will not hold up.

7. I, or someone vital to the project, will get ill for a prolonged period.

8. After implementing and optimizing the solution we find that its performance is
insufficient.

9.1.2 Reducing risks

9.1.2.1 Minor bugs

The risk of minor bugs slowing down work on the implementation is significant for
concurrent code and kernel based code, but it can be reduced by doing test driven
development. The work on the implementation should be done by alternating between
developing a small feature, and subjecting the feature to tests, debugging tools and static
analysis tools.

The tests would probably start out as minor tests in a main function, but eventually they
should be moved to separate functions, so they can be used as unit tests. Whether or not
the unit tests are run can be controlled by putting them in assert statements, so they are
compiled out of performance builds, but run in debugging builds.

The debugging tool of choice is GDB, especially since Fenix is written GCC specific
C++. In order to be able to debug properly, any statement that can possibly fail, or
produce output that I want to debug, must not be written as a macro. Additionally it

9.1.2.1Minor bugs 98

might make sense to pass additional parameters to functions, as it may help when
debugging. The extra parameters will be compiled away if the functions are inlined in
the performance builds, so it might even make sense to keep redundant parameters when
doing performance tests, or integrating the priority queue into Fenix.

Most static analysis tools do not work well with the gnu specific C++ dialect, so the
most important static analysis tool will probably be GCC with additional warnings
enabled. Some parts of the implementation are likely to contain no GCC specific code.
Such code can be analyzed by other C++ static analysis tools that are available, such as
cppcheck, Uno or Oracle Solaris Studio. The Fenix group is considering getting a
license to PCLint.

9.1.2.2 Lost work due to accidents

To reduce the risk of losing work, I will try to save my work often, at least every 10
minutes, and I will keep any code or important documents stored on a remotely stored
versioning system. New versions should be committed to the versioning system
whenever things work, as well as at important steps between functional versions. To be
able to the contents has developed, I will clearly mark non functional versions, and each
commit will have a message briefly describing its changes, and the reasoning behind
them. If I find that I have severely broken existing work, I will revert to a version where
it is not broken and create a new fork, so that it will possible for me review parts the
work done since the regression, in case it can be applied at a later time. I am writing this
section after just having lost about an hour of work, due to my computer inexplicably
shutting down, so I thought it would be a good idea to include this section.

9.1.2.3 Arriving at a inappropriate solution

To ensure that the priority queue is sufficient for use in scheduling in Fenix, the use
cases and possible applications of it should be clear before choosing a design to
implement. I can however make short and quick mock up implementations of parts of
possible designs, to get a feel for the properties of such designs. To find possible use
cases and applications of the priority queue, I should discuss it with other developers on
Fenix, and look at the existing code. At the time of writing Sven is looking into various
areas of Fenix where priority queues can be used. Doing so will serve to find different
ways of applying them with different memory/processing/contention tradeoffs. Ideally
the design should be sufficient to support any of those relevant tradeoffs, but it might be
necessary to pick a design that is supports a subset of the tradeoffs, in order to simplify
the requirements to the solution.

9.1.2.4 Problems with the integration into Fenix

Integrating the priority queue into Fenix is likely to cause minor headaches due to the
projects current build process. We are currently in the updating the build process to
support gcc's link time optimization, and this may cause changes that makes integrating
new code easier. Another problem with integrating the new code into Fenix is the risk of
breaking existing code. That risk can be reduced by integrating small parts of the
solution at a time, honoring the existing API for the priority queues, and verifying the

99 9.1.2.4Problems with the integration into Fenix

functionality at each step. It is also important to initially verify that the priority queue is
functional on its own merits outside of Fenix.

9.1.2.5 Running out of time

To avoid the risk of not completing the project in time, I should set up a loose timetable,
that gives upper and lower bounds to different parts of the development, so that
milestones and deadlines can be set up. This risk analysis provides some hint to the
order in which development should proceed, and based on that I can create a somewhat
realistic schedule. If the milestones are not met, I should either pick up the pace, chose a
simpler solution, or drop parts of the project.

There are a number of ways the solution can be simplified:

1. I can support a reduced set of use cases for Fenix, for instance not supporting
dynamic priorities.

2. I can worry less about providing a high performance priority queue in
uncommon cases, for instance extremely high contention (simpler or no backoff
scheme), extremely many elements on the queue, or reducing the range of
supported priority levels.

3. I can implement a smaller foundation of the scheduling in Fenix, by not
integrating scheduling into every aspect where it is relevant, but instead leaving
that job to future projects.

4. I can reduce the project to only dealing with designing, verifying, implementing
and testing a suitable priority queue in user space, and let another project deal
with integrating it into Fenix.

9.1.2.6 Non-functional solution

To reduce the risk of having a priority queue that has a foundation that cannot be proven
to work, it should whenever possible be based on existing work, and established
conventions. After choosing a design and prior to integrating it into Fenix, important
properties of the priority queue should be proven at least in sketched simplified proofs,
and tests cases should be provided to back up the proofs.

9.1.2.7 Illness

To reduce the risk of illness interfering with the productivity of the project, I will be
sure to dress appropriately when going outside (it is not exactly suitable weather for
sandals and shorts anymore), and try to get lots of sleep if I feel sick. Additionally if
illness does strike, I should try to continue working in some degree, possibly by
focusing on less strenuous tasks, such as reading up on existing work.

9.1.2.8 Solution is too expensive

To reduce the cost of finding that the solution is too expensive, I should be able to argue
about the amortized memory consumption and running time prior to implementing.
After implementing operations I should set up somewhat realistic benchmarks for the

9.1.2.8Solution is too expensive 100

operations, and compare it to existing solutions. Comparing with existing solutions can
be done by implementing simpler existing work, or by comparing to publicly available
implementations of other solutions.

9.1.3 Evaluation

During this project I mainly followed the guidelines of the risk analysis, for reducing
risks. However, 4 main problems were encountered:

1. Getting useable results from old test cases.

This was not predicted by the risk analysis, because it was largely a result of what had
happened prior to writing the risk analysis. I made some early concepts that showed
interesting results. Unfortunately at the time, they seemed interesting, but not
promising, so it was abandoned in a fairly messy state, and I had not documented the
findings. While writing the report, I believed it would be a good idea to present the
results. Getting the results to a useful state, ended up taking a lot of time. A lesson to
take from this issue, is that one should always document interesting findings, rather than
assume that they are easy to reproduce.

2. Theoretical/implementation issues.

To reduce such issues, the risk analysis suggested using prior work, arguing early about
correctness, using test driven development, and using debugging and static analysis
tools. Debugging and static analysis tools were used extensively during development,
and it helped resolve both minor and major issues. The main issues encountered, were
related to the extensions made to prior work. Specifically the memory reclamation
scheme, and details in the new synchronization scheme.

The largest issue, was that the original design of the solution, was too vague to tell if
individual aspects were fully correct. Specifically I never wrote a full pseudo code for
the data structure, until long after I was implemented. Instead I had descriptions of the
properties that had to be maintained at every stage, and a description of the order things
should happen in. This made it difficult to argue about correctness at a fine-grained
level.
The weaker description, was chosen partly due B-trees being very complex beasts. The
complexity would introduce a lot of noise in proper pseudo-code. Another contributing
factor, was that describing complex help-locking functionality is very unintuitive in
structured languages. The structure of the helping code I had initially imagined, would
require handling a great many implementation specific details. That is why I thought it
better to not use proper pseudo-code. When I was writing the documentation of the
synchronization scheme used, I realized that it would be much easier to express it
through a flow graph. This revelation would have helped immensely during
development.

It turned out to be quite hard to apply test driven development to a data, since features
of the data structure are connected. To reduce this issue, I initially skipped
implementing memory reclamation, as most of the features can be tested even if
memory is not reclaimed. Unfortunately this meant that the tests had to be limited in
scope, in order to avoid running out of memory. This in turn meant that a lot of issues
were caught fairly late.

101 9.1.3Evaluation

3. The project did not finish at the planned time.

The two first problems meant that not all of the planned features were in the project.
The risk analysis identified this risk, and suggested dropping or delaying less important
features. The project was trimmed accordingly. The project did however drop features in
a slightly different order, than what was proposed from the plan and risk analysis.
Specifically the priority queue was never implemented into Fenix, but it was compared
to other implementations, and optimized to some degree. The ordering was largely due
to Fenix being in a state of flux, for the majority of the projects duration. As a result, the
topic of the project has evolved from designing a priority queue for Fenix, towards
designing priority queues in general.

4. Lost work due to accidents or regressions.

For the entire project I followed the guidelines for version control and data management
for the code. The only issue I had, was that the restricted testing meant, that I was not
always completely sure if revisions were completely correct or not. In my oppinion that
is primarily due to the issues discussed under problem 2.

I did not follow the guidelines for version control, when writing the report, which lead
to interesting issues. I probably lost less than one days worth of work in total. It is still a
significant loss, which I do my best to avoid in the future. I failed to follow the
guidelines, partially because I started writing the report fairly late, and at that point I
had forgotten the guidelines.

9.2 Project process and time planning

This project informally started during the summer of 2011. In the beginning the project
was very loosely organized, which makes it hard for me to specify exactly when it
started. The project did not have a clear definition until August of 2011. The project was
originally going to be handed in by December 24th 2011, but it was extended until
January 20th 2012. Due to issues related to project registration, the official delivery was
changed, to March 15th 2012 during week 11 of 2012. During week 11, from January
21st to week 11, I did not work on the project, but in week 11 I made several
improvements to the report. The improvements were mainly fixing linguistic problems,
and improving the presentation.

During the first months of the project, I investigated prior work in the field of
concurrent priority queues. This investigation was primarily focused on bounded
priority queues. The investigation resulted in the majority of the content presented in
chapter 6. After experimenting with such data structures for about a month, without
properly starting the project, I had a thorough meeting with Sven. In the meeting we
planned the final direction of the project.

We decided to focus on the idea of creating a lock-free B-tree based priority queue. In
the first weeks I read about B-trees, and similar wide search trees. During September I
read up on lock-free search data structures, in order to get a basic understanding, of how
such a tree could be made lock-free.

After getting an understanding of the problem, I made the time plan seen in graph 11. It
contains mandatory and non-mandatory features, planned in order of importance. The

9.2Project process and time planning 102

priorities are derived from the risk analysis, and the deadlines have been set in an
attempt to make them possible, yet optimistic. The idea behind the mandatory and non-
mandatory features, is that if a deadline is missed, it can be delayed by dropping non-
mandatory features. That could provide a more flexible schedule, to ensure having a
draft of the report a month before the due date, and that the due date was met.

Graph 12 shows what I actually worked on. Several factors meant that non-mandatory
features were not implemented. In fact the only non mandatory features provided, are
some optimizations, and a comparison to competing solutions.

The end result is that I did not have a working user space implementation before
November, and at that point I did not have much in the way of technical report. This
lead to the the draft being postponed to the middle of December. I had decided to
describe my findings on bounded priority queues in the technical report, hoping that the
I would be able to quickly reproduce my findings from last summer. Long story short,
the code I had used to make my findings was extremely messy, and I had to spend a lot
of time to make sure the findings were correct. This took me weeks, in contrast to the
original time plan, which assumed that it was already done.

Cleaning up the findings, was one of the main reasons for this project needing an
extension. Another reason was that the technical report was too unfinished, and that we
would like compare the performance of the solutions with the competition. The
comparison to competing priority queues is limited to GCC's STL implementation of the
priority_queue class. I had applied for a free licence to LEDA (http://www.algorithmic-
solutions.com/leda/index.htm) as well as various licence variants of NOBLE
(http://www.non-blocking.com/), but I never received any feedback, so I was unable to
evaluate their solutions.

http://www.non-blocking.com/
http://www.algorithmic-solutions.com/leda/index.htm
http://www.algorithmic-solutions.com/leda/index.htm

103 9.2Project process and time planning

DeadlinesWeek
26-30 sept 30 sept: Finalize a design for priority queue
3-7 oct 9 oct: Provide simple proofs
10-14 oct 14 oct: User space implementation
17-21 oct 19 oct: Pass test for correctness. 21 oct: Provide benchmarks
24-28 oct 25 oct: Kernel space implementation
31-4 nov 31 oct: Integrate into scheduling. 4 nov: Support continuations
7-11 nov 8 nov: Support priority inheiritance. 10 nov: Extensive proofs
14-18 nov 16 nov: Extensive test of properties. 20 nov: Draft of technical report
21-25 nov 25 nov: Support block cache
28-2 dec
5-9 dec 11 dec: Optimized
12-16 dec 13 dec: Compared to competition
19-23 dec 22 dec: Due date

Mandatory feature/deadline
Non-mandatory feature/deadline

Create a design
for the priority

queue

Implement in
user space

Provide
simple proofs
for properties

Provide
extensive proofs

for properties

Test for
correctness

Test for
properties
extensively

Implement in
kernel space

Integrate
into scheduling

Extend the
scheduling to

support priority
inheiritance

Extend the
scheduling to

support
continuations

Extend the
scheduling to
support block

cache

Provide
benchmarks

Compare
with competition

Optimize

Graph 11: Original time table

9.2Project process and time planning 104

2-6 Jan

9-13 Jan

16-20 Jan

12-15 Mar

Week Occurences

26-30 Sept Had a concept for the priority queue, and arguments why it should work

3-7 Oct Worked on user space implementation

10-14 Oct Worked on user space implementation

17-21 Oct Found a significant issue in the design, which was fixed the same week

24-28 Oct User space implementation passed early simple test, but had no reclamation

31-4 Nov Investigated ways to implement reclamation

7-11 Nov Implemented working reclamation, extended tests, insert and extract worked

14-18 Nov Worked on the report, improved data structure

21-25 Nov Worked on the report, improved data structure

28-2 Dec Worked on the report

5-9 Dec Worked on the report, started verifying old findings

12-16 Dec Worked on the report, verifying old findings

19-23 Dec Worked on the report, verifying old findings

Worked on the old findings, fixed remove

Worked on the report, verifying old findings

Worked on the report

Worked on the report

Mandatory feature/deadline
Non-mandatory feature/deadline

Create a design
for the priority

queue

Implement in
user space

Provide
simple proofs
for properties

Test for
correctness

Provide
benchmarks

Compare
with competition

Optimize

Graph 12: Actual time table

105 10Appendix

10 Appendix

10.1Read-modify-write update loops

This section contains the assembly code generated for the update loops described in
section 5.4.1.3 Interfacing to read-modify-write instructions.

 Add
 Val
128-16-16-50
 402500: 49 89 c1 mov %rax,%r9
 402503: 49 89 d2 mov %rdx,%r10
 402506: 4d 89 cb mov %r9,%r11
 402509: 4d 89 d4 mov %r10,%r12
 40250c: 4c 89 c8 mov %r9,%rax
 40250f: 4d 01 eb add %r13,%r11
 402512: 4c 89 d2 mov %r10,%rdx
 402515: 4d 11 f4 adc %r14,%r12
 402518: 4c 89 db mov %r11,%rbx
 40251b: 4c 89 e1 mov %r12,%rcx
 40251e: f0 48 0f c7 4d 00 lock cmpxchg16b 0x0(%rbp)
 402524: 4c 89 d1 mov %r10,%rcx
 402527: 49 31 c1 xor %rax,%r9
 40252a: 48 31 d1 xor %rdx,%rcx
 40252d: 4c 09 c9 or %r9,%rcx
 402530: 75 ce jne 0x402500

64-7,6,25
402090: 48 8b 16 mov (%rsi),%rdx

 402093: eb 03 jmp 0x402098
 402095: 48 89 c2 mov %rax,%rdx
 402098: 48 8d 2c 0a lea (%rdx,%rcx,1),%rbp
 40209c: 48 89 d0 mov %rdx,%rax
 40209f: f0 48 0f b1 2e lock cmpxchg %rbp,(%rsi)
 4020a4: 48 39 c2 cmp %rax,%rdx
 4020a7: 75 ec jne 0x402095
32-7,6,17

401c40: 8b 16 mov (%rsi),%edx
 401c42: eb 02 jmp 0x401c46
 401c44: 89 c2 mov %eax,%edx
 401c46: 8d 2c 1a lea (%rdx,%rbx,1),%ebp
 401c49: 89 d0 mov %edx,%eax
 401c4b: f0 0f b1 2e lock cmpxchg %ebp,(%rsi)
 401c4f: 39 c2 cmp %eax,%edx
 401c51: 75 f1 jne 0x401c44

16-6,5,21
 4017d3: eb 02 jmp 0x4017d7
 4017d5: 89 c2 mov %eax,%edx
 4017d7: 44 8d 1c 3a lea (%rdx,%rdi,1),%r11d
 4017db: 89 d0 mov %edx,%eax
 4017dd: 66 f0 44 0f b1 1e lock cmpxchg %r11w,(%rsi)
 4017e3: 66 39 c2 cmp %ax,%dx
 4017e6: 75 ed jne 0x4017d5

10.1Read-modify-write update loops 106

8-7,6,28(22)
401635: 0f b6 16 movzbl (%rsi),%edx

 401638: eb 08 jmp 0x401642
 40163a: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)
 401640: 89 c2 mov %eax,%edx
 401642: 44 8d 1c 0a lea (%rdx,%rcx,1),%r11d
 401646: 89 d0 mov %edx,%eax
 401648: f0 44 0f b0 1e lock cmpxchg %r11b,(%rsi)
 40164d: 38 c2 cmp %al,%dl
 40164f: 75 ef jne 0x401640

 bool
8-7(6),5,25(17)
 401635: 0f b6 06 movzbl (%rsi),%eax
 401638: 0f 1f 84 00 00 00 00 nopl 0x0(%rax,%rax,1)
 40163f: 00
 401640: 8d 14 08 lea (%rax,%rcx,1),%edx
 401643: f0 0f b0 16 lock cmpxchg %dl,(%rsi)
 401647: 0f 94 c2 sete %dl
 40164a: 84 d2 test %dl,%dl
 40164c: 74 f2 je 0x401640

16-7(6),5,24(18)
 4017c5: 0f b7 06 movzwl (%rsi),%eax
 4017c8: 0f 1f 84 00 00 00 00 nopl 0x0(%rax,%rax,1)
 4017cf: 00
 4017d0: 8d 14 38 lea (%rax,%rdi,1),%edx
 4017d3: 66 f0 0f b1 16 lock cmpxchg %dx,(%rsi)
 4017d8: 0f 94 c2 sete %dl
 4017db: 84 d2 test %dl,%dl
 4017dd: 74 f1 je 0x4017d0

32-7(6),5,24(19)
 401c15: 8b 06 mov (%rsi),%eax
 401c17: 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)
 401c1e: 00 00
 401c20: 8d 14 18 lea (%rax,%rbx,1),%edx
 401c23: f0 0f b1 16 lock cmpxchg %edx,(%rsi)
 401c27: 0f 94 c2 sete %dl
 401c2a: 84 d2 test %dl,%dl
 401c2c: 74 f2 je 0x401c20

64-6,5,19
 402060: 48 8b 06 mov (%rsi),%rax
 402063: 48 8d 14 08 lea (%rax,%rcx,1),%rdx
 402067: f0 48 0f b1 16 lock cmpxchg %rdx,(%rsi)
 40206c: 0f 94 c2 sete %dl
 40206f: 84 d2 test %dl,%dl
 402071: 74 f0 je 0x402063

128-17(16),14,59(51)
 4024c0: 4c 8b 0e mov (%rsi),%r9
 4024c3: 4c 8b 56 08 mov 0x8(%rsi),%r10
 4024c7: 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)
 4024ce: 00 00

107 10.1Read-modify-write update loops

 4024d0: 4d 89 cb mov %r9,%r11
 4024d3: 4d 89 d4 mov %r10,%r12
 4024d6: 4c 89 c8 mov %r9,%rax
 4024d9: 4d 01 eb add %r13,%r11
 4024dc: 4c 89 d2 mov %r10,%rdx
 4024df: 4d 11 f4 adc %r14,%r12
 4024e2: 4c 89 db mov %r11,%rbx
 4024e5: 4c 89 e1 mov %r12,%rcx
 4024e8: f0 48 0f c7 4d 00 lock cmpxchg16b 0x0(%rbp)
 4024ee: 0f 94 c1 sete %cl
 4024f1: 84 c9 test %cl,%cl
 4024f3: 49 89 c1 mov %rax,%r9
 4024f6: 49 89 d2 mov %rdx,%r10
 4024f9: 74 d5 je 0x4024d0

 goto 8-4,3,12
 401625: 0f b6 06 movzbl (%rsi),%eax
 401628: 8d 14 08 lea (%rax,%rcx,1),%edx
 40162b: f0 0f b0 16 lock cmpxchg %dl,(%rsi)
 40162f: 75 f7 jne 0x401628

16-4,3,13
 4017a0: 0f b7 06 movzwl (%rsi),%eax
 4017a3: 8d 14 28 lea (%rax,%rbp,1),%edx
 4017a6: 66 f0 0f b1 16 lock cmpxchg %dx,(%rsi)
 4017ab: 75 f6 jne 0x4017a3

32-4,3,11
 401bd0: 8b 06 mov (%rsi),%eax
 401bd2: 8d 14 18 lea (%rax,%rbx,1),%edx
 401bd5: f0 0f b1 16 lock cmpxchg %edx,(%rsi)
 401bd9: 75 f7 jne 0x401bd2

64-4,3,14
 401ff5: 48 8b 06 mov (%rsi),%rax
 401ff8: 48 8d 14 08 lea (%rax,%rcx,1),%rdx
 401ffc: f0 48 0f b1 16 lock cmpxchg %rdx,(%rsi)
 402001: 75 f5 jne 0x401ff8

128-12,13,53
 402440: 4c 8b 0e mov (%rsi),%r9
 402443: 4c 8b 56 08 mov 0x8(%rsi),%r10
 402447: 4d 89 cb mov %r9,%r11
 40244a: 4d 89 d4 mov %r10,%r12
 40244d: 4c 89 c8 mov %r9,%rax
 402450: 4d 01 eb add %r13,%r11
 402453: 4c 89 d2 mov %r10,%rdx
 402456: 4d 11 f4 adc %r14,%r12
 402459: 4c 89 db mov %r11,%rbx
 40245c: 4c 89 e1 mov %r12,%rcx
 40245f: f0 48 0f c7 0e lock cmpxchg16b (%rsi)
 402464: 0f 85 c6 03 00 00 jne 0x402830

...
402830: 49 89 c1 mov %rax,%r9

 402833: 49 89 d2 mov %rdx,%r10
 402836: e9 0c fc ff ff jmpq 0x402447

10.1Read-modify-write update loops 108

 BBool
8-6,6,17
 401600: 0f b6 13 movzbl (%rbx),%edx
 401603: 0f b6 c2 movzbl %dl,%eax
 401606: 01 ca add %ecx,%edx
 401608: 0f b6 d2 movzbl %dl,%edx
 40160b: f0 0f b0 13 lock cmpxchg %dl,(%rbx)
 40160f: 75 ef jne 0x401600

16-6,6,18
 401740: 0f b7 13 movzwl (%rbx),%edx
 401743: 0f b7 c2 movzwl %dx,%eax
 401746: 01 f2 add %esi,%edx
 401748: 0f b7 d2 movzwl %dx,%edx
 40174b: 66 f0 0f b1 13 lock cmpxchg %dx,(%rbx)
 401750: 75 ee jne 0x401740

32-4,4,13
 401b50: 8b 03 mov (%rbx),%eax
 401b52: 41 8d 54 05 00 lea 0x0(%r13,%rax,1),%edx
 401b57: f0 0f b1 13 lock cmpxchg %edx,(%rbx)
 401b5b: 75 f3 jne 0x401b50

64-4,4,14
 401f50: 48 8b 03 mov (%rbx),%rax
 401f53: 48 8d 14 01 lea (%rcx,%rax,1),%rdx
 401f57: f0 48 0f b1 13 lock cmpxchg %rdx,(%rbx)
 401f5c: 75 f2 jne 0x401f50

BVal
8-8,7,27
 401600: 0f b6 13 movzbl (%rbx),%edx
 401603: eb 02 jmp 0x401607
 401605: 89 c2 mov %eax,%edx
 401607: 44 8d 04 0a lea (%rdx,%rcx,1),%r8d
 40160b: 0f b6 c2 movzbl %dl,%eax
 40160e: 45 0f b6 c0 movzbl %r8b,%r8d
 401612: f0 44 0f b0 03 lock cmpxchg %r8b,(%rbx)
 401617: 38 c2 cmp %al,%dl
 401619: 75 ea jne 0x401605

16-8,7,39(29)
 401741: 0f b7 13 movzwl (%rbx),%edx
 401744: eb 0c jmp 0x401752
 401746: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
 40174d: 00 00 00
 401750: 89 c2 mov %eax,%edx
 401752: 44 8d 04 32 lea (%rdx,%rsi,1),%r8d
 401756: 0f b7 c2 movzwl %dx,%eax
 401759: 45 0f b7 c0 movzwl %r8w,%r8d
 40175d: 66 f0 44 0f b1 03 lock cmpxchg %r8w,(%rbx)
 401763: 66 39 c2 cmp %ax,%dx
 401766: 75 e8 jne 0x401750

109 10.1Read-modify-write update loops

32-8,7,25
 401b60: 8b 13 mov (%rbx),%edx
 401b62: eb 03 jmp 0x401b67
 401b64: 44 89 c2 mov %r8d,%edx
 401b67: 46 8d 04 2a lea (%rdx,%r13,1),%r8d
 401b6b: 89 d0 mov %edx,%eax
 401b6d: f0 44 0f b1 03 lock cmpxchg %r8d,(%rbx)
 401b72: 39 c2 cmp %eax,%edx
 401b74: 41 89 c0 mov %eax,%r8d
 401b77: 75 eb jne 0x401b64

64-8,7,28
 401f70: 48 8b 13 mov (%rbx),%rdx
 401f73: eb 03 jmp 0x401f78
 401f75: 4c 89 c2 mov %r8,%rdx
 401f78: 4c 8d 04 0a lea (%rdx,%rcx,1),%r8
 401f7c: 48 89 d0 mov %rdx,%rax
 401f7f: f0 4c 0f b1 03 lock cmpxchg %r8,(%rbx)
 401f84: 48 39 c2 cmp %rax,%rdx
 401f87: 49 89 c0 mov %rax,%r8
 401f8a: 75 e9 jne 0x401f75

 Swap
 Val
8-6,5,17
 401610: 0f b6 1e movzbl (%rsi),%ebx
 401613: eb 02 jmp 0x401617
 401615: 89 c3 mov %eax,%ebx
 401617: 89 d8 mov %ebx,%eax
 401619: f0 0f b0 0e lock cmpxchg %cl,(%rsi)
 40161d: 38 c3 cmp %al,%bl

 40161f: 75 f4 jne 0x401615

16-6,5,19
 401760: 0f b7 16 movzwl (%rsi),%edx
 401763: eb 02 jmp 0x401767
 401765: 89 c2 mov %eax,%edx
 401767: 89 d0 mov %edx,%eax
 401769: 66 f0 0f b1 3e lock cmpxchg %di,(%rsi)
 40176e: 66 39 c2 cmp %ax,%dx
 401771: 75 f2 jne 0x401765

32-6,5,16
 401b80: 8b 16 mov (%rsi),%edx
 401b82: eb 02 jmp 0x401b86
 401b84: 89 c2 mov %eax,%edx
 401b86: 89 d0 mov %edx,%eax
 401b88: f0 0f b1 1e lock cmpxchg %ebx,(%rsi)
 401b8c: 39 d0 cmp %edx,%eax
 401b8e: 75 f4 jne 0x401b84

64-5,5,16
 401f90: 48 89 c2 mov %rax,%rdx
 401f93: 48 89 d0 mov %rdx,%rax
 401f96: f0 48 0f b1 0e lock cmpxchg %rcx,(%rsi)

10.1Read-modify-write update loops 110

 401f9b: 48 39 d0 cmp %rdx,%rax
 401f9e: 75 f0 jne 0x401f90

128-10,9,45(38)
 4023b0: 4c 8b 0e mov (%rsi),%r9
 4023b3: 4c 8b 46 08 mov 0x8(%rsi),%r8
 4023b7: eb 0d jmp 0x4023c6
 4023b9: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)
 4023c0: 49 89 c1 mov %rax,%r9
 4023c3: 49 89 d0 mov %rdx,%r8
 4023c6: 4c 89 c8 mov %r9,%rax
 4023c9: 4c 89 c2 mov %r8,%rdx
 4023cc: f0 48 0f c7 4d 00 lock cmpxchg16b 0x0(%rbp)
 4023d2: 49 31 d0 xor %rdx,%r8
 4023d5: 49 31 c1 xor %rax,%r9
 4023d8: 4d 09 c8 or %r9,%r8
 4023db: 75 e3 jne 0x4023c0

 Bool
8-5,4,16
 401610: 0f b6 06 movzbl (%rsi),%eax
 401613: f0 0f b0 0e lock cmpxchg %cl,(%rsi)
 401617: 41 0f 94 c2 sete %r10b
 40161b: 45 84 d2 test %r10b,%r10b

40161e: 74 f3 je 0x401613

16-5,4,15
 401760: 0f b7 06 movzwl (%rsi),%eax
 401763: 66 f0 0f b1 3e lock cmpxchg %di,(%rsi)
 401768: 0f 94 c2 sete %dl
 40176b: 84 d2 test %dl,%dl
 40176d: 74 f4 je 0x401763

32-6(5),4,22(13)
 401b65: 8b 06 mov (%rsi),%eax
 401b67: 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)
 401b6e: 00 00
 401b70: f0 0f b1 1e lock cmpxchg %ebx,(%rsi)
 401b74: 0f 94 c2 sete %dl
 401b77: 84 d2 test %dl,%dl
 401b79: 74 f5 je 0x401b70

64-6(5),4,23(15)
 401f75: 48 8b 06 mov (%rsi),%rax
 401f78: 0f 1f 84 00 00 00 00 nopl 0x0(%rax,%rax,1)
 401f7f: 00
 401f80: f0 48 0f b1 0e lock cmpxchg %rcx,(%rsi)
 401f85: 0f 94 c2 sete %dl
 401f88: 84 d2 test %dl,%dl
 401f8a: 74 f4 je 0x401f80

128-8(7),4,29
 4023a0: 48 8b 06 mov (%rsi),%rax
 4023a3: 48 8b 56 08 mov 0x8(%rsi),%rdx
 4023a7: 45 89 ca mov %r9d,%r10d
 4023aa: 66 0f 1f 44 00 00 nopw 0x0(%rax,%rax,1)

111 10.1Read-modify-write update loops

 4023b0: f0 48 0f c7 4d 00 lock cmpxchg16b 0x0(%rbp)
 4023b6: 41 0f 94 c1 sete %r9b
 4023ba: 45 84 c9 test %r9b,%r9b
 4023bd: 74 f1 je 0x4023b0

 Goto
8-3,2,9
 401610: 0f b6 06 movzbl (%rsi),%eax
 401613: f0 0f b0 0e lock cmpxchg %cl,(%rsi)
 401617: 75 fa jne 0x401613

16-3,2,10
 401745: 0f b7 06 movzwl (%rsi),%eax
 401748: 66 f0 0f b1 3e lock cmpxchg %di,(%rsi)
 40174d: 75 f9 jne 0x401748

32-3,2,8
 401b45: 8b 06 mov (%rsi),%eax
 401b47: f0 0f b1 1e lock cmpxchg %ebx,(%rsi)
 401b4b: 75 fa jne 0x401b47

64-3,2,10
 401f35: 48 8b 06 mov (%rsi),%rax
 401f38: f0 48 0f b1 0e lock cmpxchg %rcx,(%rsi)
 401f3d: 75 f9 jne 0x401f38

128-4,2,14
 402340: 48 8b 06 mov (%rsi),%rax
 402343: 48 8b 56 08 mov 0x8(%rsi),%rdx
 402347: f0 48 0f c7 0e lock cmpxchg16b (%rsi)
 40234c: 75 f9 jne 0x402347

 BBool
8-3,3,9
 401600: 0f b6 03 movzbl (%rbx),%eax
 401603: f0 0f b0 0b lock cmpxchg %cl,(%rbx)
 401607: 75 f7 jne 0x401600

16-3,3,10
 401730: 0f b7 03 movzwl (%rbx),%eax
 401733: 66 f0 44 0f b1 2b lock cmpxchg %r13w,(%rbx)
 401739: 75 f5 jne 0x401730

32-3,3,8
 401b31: 8b 03 mov (%rbx),%eax
 401b33: f0 44 0f b1 2b lock cmpxchg %r13d,(%rbx)
 401b38: 75 f7 jne 0x401b31

64-3,3,10
 401f30: 48 8b 03 mov (%rbx),%rax
 401f33: f0 48 0f b1 0b lock cmpxchg %rcx,(%rbx)
 401f38: 75 f6 jne 0x401f30

 BVal
8-6,5,18
 401600: 0f b6 13 movzbl (%rbx),%edx

10.1Read-modify-write update loops 112

 401603: eb 02 jmp 0x401607
 401605: 89 c2 mov %eax,%edx
 401607: 0f b6 c2 movzbl %dl,%eax
 40160a: f0 0f b0 0b lock cmpxchg %cl,(%rbx)
 40160e: 38 c2 cmp %al,%dl
 401610: 75 f3 jne 0x401605

16-6,5,21
 401740: 0f b7 13 movzwl (%rbx),%edx
 401743: eb 02 jmp 0x401747
 401745: 89 c2 mov %eax,%edx
 401747: 0f b7 c2 movzwl %dx,%eax
 40174a: 66 f0 44 0f b1 2b lock cmpxchg %r13w,(%rbx)
 401750: 66 39 c2 cmp %ax,%dx
 401753: 75 f0 jne 0x401745

32-7,6,21
 401b50: 8b 13 mov (%rbx),%edx
 401b52: eb 03 jmp 0x401b57
 401b54: 44 89 c2 mov %r8d,%edx
 401b57: 89 d0 mov %edx,%eax
 401b59: f0 44 0f b1 2b lock cmpxchg %r13d,(%rbx)
 401b5e: 39 c2 cmp %eax,%edx
 401b60: 41 89 c0 mov %eax,%r8d
 401b63: 75 ef jne 0x401b54

64-7,6,24
 401f60: 48 8b 13 mov (%rbx),%rdx
 401f63: eb 03 jmp 0x401f68
 401f65: 4c 89 c2 mov %r8,%rdx
 401f68: 48 89 d0 mov %rdx,%rax
 401f6b: f0 48 0f b1 0b lock cmpxchg %rcx,(%rbx)
 401f70: 48 39 c2 cmp %rax,%rdx
 401f73: 49 89 c0 mov %rax,%r8
 401f76: 75 ed jne 0x401f65

xor
 Val
8-9,8,25
 401620: 0f b6 16 movzbl (%rsi),%edx
 401623: eb 02 jmp 0x401627
 401625: 89 c2 mov %eax,%edx
 401627: 89 d0 mov %edx,%eax
 401629: 31 c8 xor %ecx,%eax
 40162b: 41 89 c5 mov %eax,%r13d
 40162e: 89 d0 mov %edx,%eax
 401630: f0 44 0f b0 2e lock cmpxchg %r13b,(%rsi)
 401635: 38 c2 cmp %al,%dl
 401637: 75 ec jne 0x401625

16-8,7,23
 401780: 0f b7 16 movzwl (%rsi),%edx
 401783: eb 02 jmp 0x401787
 401785: 89 c2 mov %eax,%edx
 401787: 89 d5 mov %edx,%ebp
 401789: 89 d0 mov %edx,%eax

113 10.1Read-modify-write update loops

 40178b: 31 fd xor %edi,%ebp
 40178d: 66 f0 0f b1 2e lock cmpxchg %bp,(%rsi)
 401792: 66 39 c2 cmp %ax,%dx
 401795: 75 ee jne 0x401785

32-8,7,20
 401bb0: 8b 16 mov (%rsi),%edx
 401bb2: eb 02 jmp 0x401bb6
 401bb4: 89 c2 mov %eax,%edx
 401bb6: 89 d5 mov %edx,%ebp
 401bb8: 89 d0 mov %edx,%eax
 401bba: 31 dd xor %ebx,%ebp
 401bbc: f0 0f b1 2e lock cmpxchg %ebp,(%rsi)
 401bc0: 39 c2 cmp %eax,%edx
 401bc2: 75 f0 jne 0x401bb4

64-8,7,27
 401fd0: 48 8b 16 mov (%rsi),%rdx
 401fd3: eb 03 jmp 0x401fd8
 401fd5: 48 89 c2 mov %rax,%rdx
 401fd8: 48 89 d5 mov %rdx,%rbp
 401fdb: 48 89 d0 mov %rdx,%rax
 401fde: 48 31 cd xor %rcx,%rbp
 401fe1: f0 48 0f b1 2e lock cmpxchg %rbp,(%rsi)
 401fe6: 48 39 c2 cmp %rax,%rdx
 401fe9: 75 ea jne 0x401fd5

128-13,12,54(47)
 402400: 4c 8b 06 mov (%rsi),%r8
 402403: 4c 8b 4e 08 mov 0x8(%rsi),%r9
 402407: eb 0d jmp 0x402416
 402409: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)
 402410: 49 89 c0 mov %rax,%r8
 402413: 49 89 d1 mov %rdx,%r9
 402416: 4c 89 c3 mov %r8,%rbx
 402419: 4c 89 c0 mov %r8,%rax
 40241c: 4c 89 ca mov %r9,%rdx
 40241f: 4c 31 d3 xor %r10,%rbx
 402422: 4c 89 c9 mov %r9,%rcx
 402425: f0 48 0f c7 4d 00 lock cmpxchg16b 0x0(%rbp)
 40242b: 49 31 d1 xor %rdx,%r9
 40242e: 49 31 c0 xor %rax,%r8
 402431: 4d 09 c1 or %r8,%r9
 402434: 75 da jne 0x402410

 Bool
8-7,6,20
 401610: 0f b6 06 movzbl (%rsi),%eax
 401613: 89 c3 mov %eax,%ebx
 401615: 31 cb xor %ecx,%ebx
 401617: f0 0f b0 1e lock cmpxchg %bl,(%rsi)
 40161b: 41 0f 94 c3 sete %r11b
 40161f: 45 84 db test %r11b,%r11b
 401622: 74 ef je 0x401613

16-8(7),6,27(19)

10.1Read-modify-write update loops 114

 401765: 0f b7 06 movzwl (%rsi),%eax
 401768: 0f 1f 84 00 00 00 00 nopl 0x0(%rax,%rax,1)
 40176f: 00
 401770: 89 c2 mov %eax,%edx
 401772: 31 fa xor %edi,%edx
 401774: 66 f0 0f b1 16 lock cmpxchg %dx,(%rsi)
 401779: 0f 94 c2 sete %dl
 40177c: 84 d2 test %dl,%dl
 40177e: 74
 f0 je 0x401770

32-8(7),6,26(18)
 401b75: 8b 06 mov (%rsi),%eax
 401b77: 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)
 401b7e: 00 00
 401b80: 89 c2 mov %eax,%edx
 401b82: 31 da xor %ebx,%edx
 401b84: f0 0f b1 16 lock cmpxchg %edx,(%rsi)
 401b88: 0f 94 c2 sete %dl
 401b8b: 84 d2 test %dl,%dl
 401b8d: 74 f1 je 0x401b80

64-8(7),6,29(21)
 401f85: 48 8b 06 mov (%rsi),%rax
 401f88: 0f 1f 84 00 00 00 00 nopl 0x0(%rax,%rax,1)
 401f8f: 00
 401f90: 48 89 c2 mov %rax,%rdx
 401f93: 48 31 ca xor %rcx,%rdx
 401f96: f0 48 0f b1 16 lock cmpxchg %rdx,(%rsi)
 401f9b: 0f 94 c2 sete %dl
 401f9e: 84 d2 test %dl,%dl
 401fa0: 74 ee je 0x401f90

128-10(9),7,38(29)
 4023b0: 48 8b 06 mov (%rsi),%rax
 4023b3: 48 8b 56 08 mov 0x8(%rsi),%rdx
 4023b7: 66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)
 4023be: 00 00
 4023c0: 48 89 c3 mov %rax,%rbx
 4023c3: 48 89 d1 mov %rdx,%rcx
 4023c6: 4c 31 c3 xor %r8,%rbx
 4023c9: f0 48 0f c7 4d 00 lock cmpxchg16b 0x0(%rbp)
 4023cf: 0f 94 c3 sete %bl
 4023d2: 84 db test %bl,%bl
 4023d4: 74 ea je 0x4023c0

 Goto
8-5,4,13
 401605: 0f b6 06 movzbl (%rsi),%eax
 401608: 89 c3 mov %eax,%ebx
 40160a: 31 cb xor %ecx,%ebx
 40160c: f0 0f b0 1e lock cmpxchg %bl,(%rsi)
 401610: 75 f6 jne 0x401608

16-5,4,14
 401750: 0f b7 06 movzwl (%rsi),%eax

115 10.1Read-modify-write update loops

 401753: 89 c2 mov %eax,%edx
 401755: 31 fa xor %edi,%edx
 401757: 66 f0 0f b1 16 lock cmpxchg %dx,(%rsi)
 40175c: 75 f5 jne 0x401753

32-5,4,12
 401b60: 8b 06 mov (%rsi),%eax
 401b62: 89 c2 mov %eax,%edx
 401b64: 31 da xor %ebx,%edx
 401b66: f0 0f b1 16 lock cmpxchg %edx,(%rsi)
 401b6a: 75 f6 jne 0x401b62

64-5,4,16
 401f60: 48 8b 06 mov (%rsi),%rax
 401f63: 48 89 c2 mov %rax,%rdx
 401f66: 48 31 ca xor %rcx,%rdx
 401f69: f0 48 0f b1 16 lock cmpxchg %rdx,(%rsi)
 401f6e: 75 f3 jne 0x401f63

128-7,5,23
 402370: 48 8b 06 mov (%rsi),%rax
 402373: 48 8b 56 08 mov 0x8(%rsi),%rdx
 402377: 48 89 c3 mov %rax,%rbx
 40237a: 48 89 d1 mov %rdx,%rcx
 40237d: 4c 31 d3 xor %r10,%rbx
 402380: f0 48 0f c7 0e lock cmpxchg16b (%rsi)
 402385: 75 f0 jne 0x402377

 BBool
8-6,6,17
 401600: 0f b6 13 movzbl (%rbx),%edx
 401603: 0f b6 c2 movzbl %dl,%eax
 401606: 31 ca xor %ecx,%edx
 401608: 0f b6 d2 movzbl %dl,%edx
 40160b: f0 0f b0 13 lock cmpxchg %dl,(%rbx)
 40160f: 75 ef jne 0x401600

16-6,6,18
 401740: 0f b7 13 movzwl (%rbx),%edx
 401743: 0f b7 c2 movzwl %dx,%eax
 401746: 31 f2 xor %esi,%edx
 401748: 0f b7 d2 movzwl %dx,%edx
 40174b: 66 f0 0f b1 13 lock cmpxchg %dx,(%rbx)
 401750: 75 ee jne 0x401740

32-5,5,13
 401b50: 8b 03 mov (%rbx),%eax
 401b52: 44 89 ea mov %r13d,%edx
 401b55: 31 c2 xor %eax,%edx
 401b57: f0 0f b1 13 lock cmpxchg %edx,(%rbx)
 401b5b: 75 f3 jne 0x401b50

64-5,5,16
 401f50: 48 8b 03 mov (%rbx),%rax
 401f53: 48 89 ca mov %rcx,%rdx
 401f56: 48 31 c2 xor %rax,%rdx

10.1Read-modify-write update loops 116

 401f59: f0 48 0f b1 13 lock cmpxchg %rdx,(%rbx)
 401f5e: 75 f0 jne 0x401f50

 BVal
8-9,8,27
 401600: 0f b6 13 movzbl (%rbx),%edx
 401603: eb 02 jmp 0x401607
 401605: 89 c2 mov %eax,%edx
 401607: 89 d0 mov %edx,%eax
 401609: 31 c8 xor %ecx,%eax
 40160b: 44 0f b6 c0 movzbl %al,%r8d
 40160f: 0f b6 c2 movzbl %dl,%eax
 401612: f0 44 0f b0 03 lock cmpxchg %r8b,(%rbx)
 401617: 38 c2 cmp %al,%dl
 401619: 75 ea jne 0x401605

16-9,8,41
 401741: 0f b7 13 movzwl (%rbx),%edx
 401744: eb 0c jmp 0x401752
 401746: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
 40174d: 00 00 00
 401750: 89 c2 mov %eax,%edx
 401752: 41 89 d0 mov %edx,%r8d
 401755: 0f b7 c2 movzwl %dx,%eax
 401758: 41 31 f0 xor %esi,%r8d
 40175b: 45 0f b7 c0 movzwl %r8w,%r8d
 40175f: 66 f0 44 0f b1 03 lock cmpxchg %r8w,(%rbx)
 401765: 66 39 c2 cmp %ax,%dx
 401768: 75 e6 jne 0x401750

32-9,8,36(26)
 401b62: 8b 13 mov (%rbx),%edx
 401b64: eb 0d jmp 0x401b73
 401b66: 66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
 401b6d: 00 00 00
 401b70: 44 89 c2 mov %r8d,%edx
 401b73: 41 89 d0 mov %edx,%r8d
 401b76: 89 d0 mov %edx,%eax
 401b78: 45 31 e8 xor %r13d,%r8d
 401b7b: f0 44 0f b1 03 lock cmpxchg %r8d,(%rbx)
 401b80: 39 c2 cmp %eax,%edx
 401b82: 41 89 c0 mov %eax,%r8d
 401b85: 75 e9 jne 0x401b70

64-9,8,30
 401f80: 48 8b 13 mov (%rbx),%rdx
 401f83: eb 03 jmp 0x401f88
 401f85: 4c 89 c2 mov %r8,%rdx
 401f88: 49 89 d0 mov %rdx,%r8
 401f8b: 48 89 d0 mov %rdx,%rax
 401f8e: 49 31 c8 xor %rcx,%r8
 401f91: f0 4c 0f b1 03 lock cmpxchg %r8,(%rbx)
 401f96: 48 39 c2 cmp %rax,%rdx
 401f99: 49 89 c0 mov %rax,%r8
 401f9c: 75 e7 jne 0x401f85

117 10.1Read-modify-write update loops

References
AMD09: AMD, AMD64 Architecture Programmer’s Manual Volume 3:General-
Purpose and System Instructions, 2009,
AMD10: AMD, AMD64 Architecture Programmer’s Manual Volume 2: System
Programming, 2010,
Anderson09: Sean Eron Anderson, Bit Twiddling Hacks, 2009,
http://graphics.stanford.edu/~seander/bithacks.html
Anderson90: Thomas E. Anderson, The performance of spin lock alternatives for
shared-money multiprocessors, 1990,
Andrews00: Gregory R. Andrews, Foundations of Multithreaded, Parallel, and
Distributed Programming, 2000,
Appleby11: Austin Appleby, MurmurHash, 2011,
https://sites.google.com/site/murmurhash/
BC07: Hans-J. Boehm, Lawrence Crowl, C++ Atomic Types and Operations, 2007,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
BER07: Daniel Bauer, Luis Garcés-Erice, Sean Rooney, Tempo - A Simple Time-
Sensitive Messaging System, 2008,
BFGK05: Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, Bradley C. Kuszmaul,
Concurrent Cache-Oblivious B-Trees, 2005,
BH11: Trevor Brown, Joanna Helga, Non-blocking k-ary Search Trees, 2011,
Bonwick94: Jeff Bonwick, The Slab Allocator: An Object-Cacheing Kernel Memory
Allocator, 1994,
BP11: Anastasia Braginsky, Erez Petrank, Locality-Conscious Lock-Free Linked Lists,
2011,
CLRS09: Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Clifford Stein,
Introduction to Algorithms, 2009,
Craig93: Travis S. Craig, Queuing spin lock algorithms to support timing predictability,
1993,
Daniels11: Adam Daniels, Progress with Progress Guarantees, 2011,
http://www.slideserve.com/adamdaniel/progress-with-progress-guarantees
DB08: Kristijan Dragicevic, Daniel Bauer, Survey of Concurrent Priority Queue
Algorithms, 2008,
DBRD91: Richard P. Draves, Brian N. Bershad, Richard F. Rashid, Randall W. Dean,
Using Continuations to Implement Thread Management and Communication in
Operating Systems, 1991,
Dean93: Randall Dean, Using Continuations to Build a User-Level Threads Library,
1993,
Draves94: Richard P. Draves, Control Transfer in Operating System Kernels, 1994,
EFRB10: Faith Ellen, Panagiota Fatourou, Eric Ruppert, Franck van Breugel, Non-
blocking binary search trees, 2010,
Fomitchev03: Mikhail Fomitchev, Lock-Free Linked Lists and Skip Lists, 2004,
Fraser04: Keir Fraser, Practical lock-freedom, 2004,
GNU11: GNU, Atomic Builtins, 2011, http://gcc.gnu.org/onlinedocs/gcc-
4.6.1/gcc/Atomic-Builtins.html
Google: Google, CityHash, 2011, http://code.google.com/p/cityhash/
GPST05: Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, Philippas Tsigas,
Efficient and Reliable Lock-Free Memory Reclamation Based on Reference Counting,

10.1Read-modify-write update loops 118

2005,
GPT05: Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas, Allocating
memory in a lock-free manner, 2005,
Herlihy91: Maurice Herlihy, Wait-free synchronization, 1991,
HMBW07: Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, Jonathan
Walpole, Performance of memory reclamation for lockless synchronization, 2007,
HMPS96: Galen C. Hunt, Maged M. Michael, Srinivasan Parthasarathy, Michael L.
Scott, An efficient algorithm for concurrent priority queue heaps, 1996,
Hoare61: C.A.R. Hoare, Algorithm 65: Find, 1961,
HSAH06: Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, Benjamin C.
Hertzberg, McRT-Malloc: a scalable transactional memory allocator, 2006,
HSY10: Danny Hendler, Nir Shavit, Lena Yerushalmi, A scalable lock-free stack
algorithm, 2009,
IBM83: IBM, System/370 Extended Architecture, Principles of Operation, 1983,
IR93: Amos Israeli, Lihu Rappoport, Efficient Wait-Free Implementation of a
Concurrent Priority Queue, 1993,
Jenkins: Bob Jenkins, Bob Jenkins' Web Site, , http://burtleburtle.net/bob/
Knuth97: Donald E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 1997,
KP11: Alex Kogan, Erez Petrank, Wait-free queue with multiple enqueuers and
dequeuers, 2011,
KPS09: Gabriel Kliot, Erez Petrank, Bjarne Steensgaard, A Lock-Free, Concurrent, and
Incremental Stack Scanning Mechanism for Garbage Collectors, 2009,
MCS91: John M. Mellor-Crummey and Michael L. Scott, Algorithms for scalable
synchronization on shared-memory multiprocessors, 1991,
Michael04: Maged M. Michael, Hazard Pointers: Reclamation for Lock-Free Objects,
2004,
ML84: Udi Manbar and Richard E. Ladner, Concurrency control in a dynamic search
structure, 1984, http://doi.acm.org/10.1145/1270.318576
MLH94: Peter Magnusson, Anders Landin, and Erik Hagersten, Queue Locks on Cache
Coherent Multiprocessors, 1994,
MS98: Paul E. McKenney, J.D. Slingwine, Read-copy update: using execution history
to solve concurrency problems, ,
PMS09: Erez Petrank, Madanlal Musuvathi, Bjarne Steensgaard, Progress guarantee for
parallel programs via bounded lock-freedom, 2009,
PPL11: Charles Torre, Asynchronous Programming for C++ Developers: PPL Tasks and
Windows 8, 2011, http://channel9.msdn.com/Blogs/Charles/Asynchronous-
Programming-for-C-Developers-PPL-Tasks-and-Windows-8
RK79: David P. Reed and Rajendra K. Kanodia, Synchronization with eventcounts and
sequencers, 1979,
SL00: Nir Shavit, Itay Lotan, Skiplist-Based Concurrent Priority Queues, 2000,
SR10: Michael Spiegel, Paul F. Reynolds, Jr., Lock-Free Multiway Search Trees, 2010,
ST05: Håkan Sundell, Philippas Tsigas, Fast and lock-free concurrent priority queues
for multi-thread systems, 2005,
Sundell04: Håkan Sundell, Efficient and Practical Non-Blocking Data Structures, 2004,
SZ00: Nir Shavit, Asaph Zemach, Combining funnels: a dynamic approach to software
combining, 2000,
SZ99: Nir Shavit, Asaph Zemach, Scalable concurrent priority queue algorithms, 1999,

119 10.1Read-modify-write update loops

TDK: Ami Tavory and Vladimir Dreizin, IBM Haifa Research Laboratories, and
Benjamin Kosnik, Red Hat, Policy-Based Data Structures, ,
http://gcc.gnu.org/onlinedocs/libstdc++/ext/pb_ds/
TSP92: John Turek, Dennis Sasha, Sundeep Prakash, Locking without blocking: making
lock based concurrent data structure algorithms nonblocking, 1992,
Valois95: J.D. Valois, Lock-free linked lists using compare-and-swap, 1995,
Wang07: Thomas Wang, Integer Hash Function, 2007,
http://www.cris.com/~Ttwang/tech/inthash.htm
Warton05: Matthew Warton, Single Kernel Stack L4, 2005,

	1 Abstract
	2 Acknowledgments
	3 Introduction
	3.1 Contributions
	3.2 Outline

	4 Background
	4.1 Terminology
	4.1.1 Blocking data structures
	4.1.2 Atomic primitives
	4.1.3 The ABA problem

	4.2 Prior work
	4.2.1 Dynamic non-blocking data structures
	4.2.2 Garbage collection
	4.2.3 Providing non-blocking algorithms
	4.2.4 Non-blocking priority queues
	4.2.5 Backoff schemes
	4.2.6 Elimination and combination of operations

	4.3 Summary

	5 Concurrent building blocks
	5.1 Introduction
	5.2 Random number generation
	5.2.1 LCGs for randomizing access patterns

	5.3 Avoiding context switches
	5.4 Interfacing to synchronization primitives
	5.4.1 Analysis
	5.4.1.1 Memory ordering
	5.4.1.2 Available primitives
	5.4.1.3 Interfacing to read-modify-write instructions

	5.4.2 Implementation
	5.4.2.1 The interfaces

	5.4.3 Evaluation
	5.4.3.1 Setup
	5.4.3.2 Evaluated performance
	5.4.3.3 Generated code

	5.4.4 Summary

	5.5 Truncated exponential backoff
	5.5.1 Implementing truncated exponential backoff
	5.5.2 Modifications to truncated exponential backoff
	5.5.3 Evaluation of truncated exponential backoff

	5.6 MCS locks
	5.6.1 Design
	5.6.2 Implementation
	5.6.3 Evaluation of MCS locks

	5.7 Summary

	6 Static search structure based priority queues
	6.1 Introduction
	6.2 A static tree structure for priority queues
	6.3 Combining funnels
	6.3.1 Design of combining funnels
	6.3.2 Implementation of combining funnels
	6.3.3 Evaluation of combining funnels

	6.4 Stacks with elimination
	6.4.1 Design of stacks with elimination
	6.4.2 Implementing stacks with elimination
	6.4.3 Evaluation of stacks with elimination

	6.5 Truncated exponential backoff with elimination
	6.5.1 Implementing elimination
	6.5.2 Backoff with elimination
	6.5.3 Evaluation

	6.6 Conclusion

	7 Investigation of wide search trees
	7.1 Overview
	7.2 Non-blocking k-ary search tree
	7.2.1 Synchronization
	7.2.2 Issues with the k-ary search tree

	7.3 B-trees
	7.3.1 General properties
	7.3.2 Weakened properties

	7.4 Lock-free B-tree derivative
	7.4.1 Layout and Properties
	7.4.2 Layout of nodes

	7.5 Synchronization
	7.6 Rebalancing
	7.7 Memory reclamation
	7.7.1 Algorithms for hazard pointers
	7.7.2 Dealing with hazardous references
	7.7.3 Testing for global accessibility

	7.8 Implementation
	7.8.1 Implementation of helping
	7.8.2 Replacing the parent node
	7.8.3 Optimizations
	7.8.3.1 Memory system and Hazard pointers
	7.8.3.2 Separating Entries into two Leaf nodes
	7.8.3.3 Ammortized running times

	7.9 Evaluation
	7.10 Conclusion

	8 Conclusions
	9 Project planning
	9.1 Risk analysis
	9.1.1 Potential risks
	9.1.2 Reducing risks
	9.1.2.1 Minor bugs
	9.1.2.2 Lost work due to accidents
	9.1.2.3 Arriving at a inappropriate solution
	9.1.2.4 Problems with the integration into Fenix
	9.1.2.5 Running out of time
	9.1.2.6 Non-functional solution
	9.1.2.7 Illness
	9.1.2.8 Solution is too expensive

	9.1.3 Evaluation

	9.2 Project process and time planning

	10 Appendix
	10.1 Read-modify-write update loops

