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1 Abstract
This  thesis  primarily  deals  with  the  design  and  implementation  of  concurrent  data 
structures, as well as related facilities. Any concurrent data structure may have strictly 
limited scalability, unless care is taken in their access patterns.

This thesis seeks to investigate ways to reduce these issues, for the specific context of 
priority queues used for picking tasks in operating systems.

The thesis makes improvements upon a state of the art locking mechanism, to provide 
up  27  times  faster  locking,  for  small  data  structures.  This  is  in  part  achieved,  by 
improving  a  leading  backoff  scheme,  and  applying  it  in  a  novel  fashion.  We have 
designed and implemented a priority queue based on a balanced search tree. The new 
data structure is based on a new lock-free data structure based on B-trees. To the best of 
our knowledge, this is the first lock-free B-tree, that does not depend on the presence of 
a garbage collector.
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3 Introduction
This thesis deals with data structures suitable for controlling the order in which tasks 
run, on computers that can run tasks in parallel. Specifically the thesis deals with the 
case where tasks are given priority levels, where tasks with the highest priority are run 
first.  The  general  data  structure  for  solving  this  issue  is  called  a  priority 
queue[CLRS09]. The priority queue is to be implemented into the AMD64 branch of 
FenixOS, a research operating system developed at DTU.

Picking the task with the highest priority takes computation time. Most solutions tend to 
significantly increase the computation time, when more tasks are picked concurrently, 
due to contention of resources. As computer systems grow in complexity, they tend to 
get more concurrent. With this change, it is increasingly important to be able to deal 
with high contention efficiently.

3.1 Contributions

This thesis presents three primary contributions:

1. Refinement of ways to keep the computation time low at high contention.

2. Refinement of contention resistant stacks and counters.

3. Introduction of a new priority queue.

Managing contention

The improved ways of keeping computation time low at high contention, are focused on 
ways of reducing the contention. We present three significant contributions:

1. We provide an efficient way of giving each task a unique access pattern.

2. We provide an improvement to truncated exponential backoff, which is a state of 
the art backoff scheme, ie scheme for reducing contention.

On the tested setups the improved backoff scheme gets up to 15 % higher throughput, in 
highly contended test  cases. The new scheme does have the drawback, that it  has a 
slightly higher memory consumption.

3. We show how to apply the improved truncated exponential backoff scheme to 
MCS locks. MCS locks is a state of the art locking mechanism, ie a mechanism 
for ensuring exclusive access.

On the tested setups the improved locking scheme was able to provide a shared counter 
up to 2700 % higher throughput. The scheme was also able to give a shared priority 
queue  150  %  higher  throughput.  In  general  the  the  improved  locking  mechanism 
provides significantly better performance, when operating on contended data. The only 
drawback is a slightly higher memory consumption.
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New priority queue

The new priority queue has 4 attractive features:

1. Finding the highest priority task has a worst case amortized running time of 
O(log n) , in the uncontended case.

2. It supports priorities in the range [1 ; 231
−1] .

3. The data structure is lock-free, ie as long as operations are being performed, at 
least one operation is making progress.

4. The  data  structure  is  concurrently  accessible,  without  requiring  a  traditional 
garbage collector.

The new priority queue is built from a new dictionary data structure, with the same 
attractive features. Dictionary data structures provide remove and add operations, for 
key-value pairs. The underlying data structure is a balanced k-ary search tree, where 
each node can have up to k children. For instance a binary tree has k=2. To the best of 
our  knowledge  this  is  the  first  k-ary search  tree  that  can  reclaim unused resources 
without the use of a traditional garbage collector, or reference counting.

Evaluation of contention resistant data structures

We  have  also  designed,  implemented  and  evaluated  the  performance  of  contention 
resistant of counters and stacks. Such data structures can be used to implement priority 
queues  for  more  limited  priority  ranges.  Some  of  the  counters  and  stacks  use  our 
improved backoff scheme. Some of the counters and stacks use mechanisms to reduce 
the  number  of  operations  on  the  data  structures,  rather  than  just  spacing  out  the 
operations.  Our  evaluation  show  that  the  mechanisms  to  reduce  the  number  of 
operations, provide at most a 4 % speedup.

3.2 Outline

This section describes the structure of the remainder of the thesis.

Chapter 4 covers the terminology, theory, and prior work that our contributions build on.

Chapter  5  covers  the  design  and  implementation  of  the  concurrent  primitives  used 
through the rest of the thesis. The concurrent primitives include the improved backoff 
scheme, and the improved locking mechanism.

Chapter  6  covers  the  design,  implementation,  and evaluation of  contention  resistant 
stacks and counters, for use in bounded priority queues.

Chapter 7 covers the design, implementation, and evaluation of the new dictionary and 
priority queue.

Chapter 8 concludes the thesis, by bringing the findings together, and suggesting future 
research.

Chapter 9 contains the risk analysis, and time-line used for this project, and evaluates 
how the project has progressed.
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4 Background
This chapter describes the terminology and theoretical background for the thesis, and 
prior work in the same area. The subjects covered are mainly related concurrency, non-
blocking data structures, priority queues, and the hardware support for synchronization. 
The purpose of this chapter is to make the issues encountered in the following chapters 
relatable, and show how similar issues have been addressed previously.

4.1 Terminology

The kind of system studied in this thesis, is called a cache coherent shared-memory 
multiprocessor system.

To explicitly define what this means, we introduce the following 10 commonly used 
terms. Be aware that the first 3 terms are often used with meanings that differ from the 
ones used in this thesis:

1. Microprocessor, or processor, is a chip that is responsible for executing general 
purpose code. 

2. A thread is a running task, that may share some of its state with other threads.

3. CPU is the hardware unit in a processor that can execute a single thread. Every 
thread is at most running on one CPU at any given time.

Consider  a  system  with  4  Xeon  E7-8870  processors.  Each  processor  contains  10 
“cores”, and each core is capable of simultaneously executing 2 threads, therefore the 
system would be said to have 4⋅10⋅2=80  CPUs.

4. A shared multiprocessor is a system with multiple CPUs, that can access the 
same shared-memory. On such a system, threads can run on any CPU.

5. Scheduling is the process of picking a thread for a given CPU to run.

6. A cache  is  a  system  for  speeding  up  access  to  recently  accessed  memory 
locations.

7. A cache line is a continuous fixed size memory location, that is stored in the 
cache.

8. Cache coherency protocols  are  systems for  keeping shared-memory coherent 
across CPUs, often through cache line invalidation.

9. Cache line invalidation, is when a cache line is removed from the cache.

10. Serial  bottlenecks,  are  when  the  performance  of  an  algorithm,  is  limited  by 
access  to  a  single  resource.  For  instance  several  CPUs  writing  to  the  same 
memory location, would typically be a serial bottleneck.

The following sections deal with the theoretical properties of tasks running on such 
systems.
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4.1.1 Blocking data structures

When multiple threads access a data structure concurrently,  it  must  be protected,  in 
order  to  maintain  a  correct  state.  Depending  on  the  guarantees  provided  by  the 
operations, the data structure is either blocking, obstruction-free, lock-free, or wait-free. 
The guarantees provided are summarized in in table 1. The table considers 5 guarantees 
[Andrews00]:

1. Independence. Delaying or stopping threads performing operations on the data 
structure, does not affect other threads.

2. Fairness. Any operation is guaranteed to make progress.

3. Deadlock-free. The data structure is guaranteed to return to a usable state.

4. Livelock-free.  At  any  time  at  least  one  operations  is  guaranteed  to  make 
progress.

5. Avoiding priority inversion.  High priority threads never  yield indefinitely to 
lower priority threads.

Independence Fairness Deadlock-
free

Livelock-
free

Avoids priority 
inversion

Blocking No Maybe* Maybe** Maybe** Maybe*

Obstruction
-free

Yes No Yes No Yes

Lock-free Yes No Yes Yes Yes

Wait-free Yes Yes Yes Yes Yes

Table 1: The properties provided by different types of data structures
* depends on scheduling and synchronization
** depends on use

The most common solution to accessing a data structure concurrently, is to have threads 
acquire exclusive access to the data structure before use. After use the thread has to 
release the exclusive access. The thread can safely operate on the data structure, when it 
holds exclusive access, because there is no concurrency. Data structures using such a 
solution are called blocking data structures. Blocking data structures, do not provide 
independence, making them unreliable in systems where threads are spuriously delayed 
or killed. Blocking data structures can avoid priority inversion, if the synchronization is 
handled in the scheduling, with schemes such as priority inheritance. If any thread may 
acquiring exclusive access to multiple regions, then blocking data might not be livelock-
free or deadlock-free. This makes it difficult to compose blocking data structures, and 
using them inside operating systems.

Obstruction-free, lock-free, and wait-free data structures avoid some of the issues of 
blocking data structures. They do so, by never acquiring exclusive access in multi CPU 
systems.  In practice most wait-free data structures are fairly inefficient, because they 
have to provide a strong fairness guarantee to all operations. Meanwhile lock-free data 
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structures often provide performance that is competitive with lock based data structures. 
As a result most work on practical non-blocking data structures has focused on creating 
lock-free variants. Recently a scheme has been suggested, for creating wait-free data 
structures with performance that resembles lock-free data structures[KP11].

4.1.2 Atomic primitives

In non-blocking algorithms, threads are not allowed to indefinitely prevent the progress 
of other threads. In other words, such algorithms may not use any kind of exclusivity 
guarantee  such  as  a  regular  lock,  mutex,  semaphore,  monitor,  barrier  or  signal 
primitives.

To provide safe concurrent updates, such algorithms instead use atomic operations, such 
as read-modify-write operations. An example of such an operation is a fetchAndAdd 
operation. fetchAndAdds behavior is shown in listing 1.

fetchAndAdd(*a, b) {
  c = *a;
  *a = c + b;
  return c;
}

Listing 1: Atomic behavior of fetchAndAdd operations

The atomicity basically provides the same functionality as acquiring a lock for a when 
entering  the  function,  and releasing  it  upon leaving.  Read-modify-write  instructions 
basically provide locks at an instruction level. In concurrent settings read-modify-write 
instructions are typically used to implement locks. The advantage of having the lock 
inside an instruction, is that instructions are either executed or not. In other words they 
first show an impact when they have been completed. Therefore the “lock” acquired 
when performing the instruction, is guaranteed to eventually be released. If the lock had 
been  implemented  in  software,  then  the  thread  that  acquired  the  lock  could  be 
indefinitely delayed while holding the lock.

There  are  many  different  kinds  of  read-modify-write  instructions,  with  different 
strengths and weaknesses. The different read-modify-write instructions can be used to 
implement non-blocking versions of different data structures. One of the more powerful 
read-modify-write  instructions  is  compareAndSwap (CAS).  The behavior  of  CAS is 
shown in listing 2:

compareAndSwap(*adr, oldVal, newVal) {
  if(*adr == oldVal) {
    *adr = newVal;
    return true;
  }
  return false;
}

Listing 2: Atomic behavior of compareAndSwap operations



11 4.1.2Atomic primitives

CAS can be used to implement any operation on any wait-free data structure, under 
some  mild  conditions[Herlihy91].  Some  other  read-modify-write  write  instructions 
cannot. The proof can be summarized in two parts as:

1. A solution  to  the  consensus  problem,  can  be  used  to  implement  any  data 
structure with wait-free guarantees.

The consensus problem, is  basically the problem of getting n entities to  agree on a 
decision. Using a solution to the consensus problem to implement wait-free guarantees 
is possible, but not necessarily efficient.

2. CAS can solve the consensus problem for any number of entities.

This  step assumes that  CAS can set  enough data  to  identify the  decision.  On most 
systems the decision could be identified by a memory location.

Some  RISC  architectures  support  loadLinked/storeConditional  (LL/SC)  instructions 
instead of CAS operations. The LL instruction loads from a memory location, and SC 
writes a value back to the location, if the data at the memory location has not changed. 
LL/SC can be used to implement CAS. Unfortunately the use of LL/SC on modern 
systems, may fail infinitely often. If LL/SC can fail infinitely often, then algorithms 
using it cannot provide more than obstruction-free guarantees[PMS09].

4.1.3 The ABA problem

CAS operations are frequently used to write to fields in data structures, with invocations 
on the form CAS(&field, oldValueOfField, newValueOfField). Such usage of the 
CAS operation may suffer from the ABA problem, if the correct new value cannot be 
described as a function of the old value. Listing 3 shows a simple stack that suffer from 
the ABA problem.

The type stored in the stack is represented with T, and for the sake of simplicity the code 
assumes that  T contains a next pointer. The code suffers from the ABA problem. For 
instance  if  the  stack  contains  two  elements  A and  B,  two  threads  can  perform the 
following actions:

Illustration 1: The simple stack can fail in these 5 steps

If thread 2 reads oldVal as A and newVal as B, then thread 1 pops A and B, and pushes 
A again, thread 2 can still succeed in its pop leading to a stack containing B. In the 
correct case thread 2 should fail its pop, and the stack should be empty, and 2 should 
have failed. The problem is basically that the operation depends on the contents of the 
head element, and the element is not guaranteed to be constant when interleaving push 
and pop operations.

Step Actions
1  AB  2 starts popping A, 1 pops A
2  A  1 pops B
3  1 pushes A
4  A
5  AB

Stack contents

 2 finishes popping A
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class Stack {
  T* top = nullptr; // Head pointer of the stack

  void push(T* elem) {
    T* oldVal;
    do {
      oldVal = top;
      elem->next = oldVal;
    } while(!CAS(&top, oldVal, elem));
  }

  T* pop() {
    Element<T>* oldVal, *newVal;
    do {
      oldVal = top;
      newVal = oldVal->next;
    } while(!CAS(&top, oldVal, newVal));
    return oldVal;
  }
}

Listing 3: Link based stack that does not handle the ABA problem.
The basic loop structure of writing do - read/calculate - while(CAS), is fairly common, 
especially for simple updates of data structures.

One way to alleviate the ABA problem is to include a tag in the field being updated 
[IBM83].  The  tag  is  typically  implemented  as  a  counter  field  in  the  head,  that  is 
incremented whenever the head is updated. Listing 4 shows the code for such a stack:

class Stack {
  typedef struct {
    T* ptr;
    uintptr_t counter;
  } StackPointer;
  StackPointer head = {nullptr, 0}; // Head pointer of the stack

  void push(T* elem) {
    StackPointer oldVal, newVal;
    do {
      oldVal = head;
      elem->next = &oldVal;
      newVal = {elem, oldVal.counter + 1}
    } while(!CAS(&head, oldVal, newVal));
  }

  T* pop() {
    StackPointer oldVal, newVal;
    do {
      oldVal = head;
      newVal = {oldVal->ptr->next, oldVal.counter + 1}
    } while(!CAS(&head, oldVal, newVal));
    return oldVal;
  }
}

Listing 4: Link based stack using a counter tag to deal with the ABA problem
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The purpose of the counter is to ensure that for any successful CAS operation, the head 
has not changed since it was read. If the head has not changed, the operation will be 
correct,  since  there  will  be  no  opportunity  for  an  ABA  problem.  Using  tags  is 
computationally cheap, but it has 2 disadvantages:

1. It requires being able to perform a CAS operation on a field that contains the 
counter, as well as the original field.

In many cases, this can be accomplished by reducing the size of the field, or the counter. 
For the head of link based stacks, one could store the next field as index instead of a 
pointer, or use a smaller address space.

2. It is not a completely safe solution, since the counter can get the same value 
twice through overflow.

This would lead to CAS operations that write an incorrect result. In practice it is quite 
unlikely to happen when using large counters.

An alternative solution is to ensure that the data pointed, is constant while visible to any 
other thread. This can for instance be achieved with garbage collectors, that is never 
reusing objects.

4.2 Prior work

This section describes work relevant to the creation of concurrent priority queues, non-
blocking data structures, and ways of reducing contention. The descriptions focus on the 
problems that have been solved, and the concepts used to solve them.

4.2.1 Dynamic non-blocking data structures

Concurrently readable, and non-blocking data structures face an interesting issue, when 
dynamically deallocating elements.  Their elements can be read by any thread, but it 
unsafe  to  deallocate  data  that  other  threads  may read from. If  it  sufficient  to  reuse 
elements,  then  it  is  not  necessary  to  explicitly  deallocate  them,  avoiding  the  issue. 
Deallocation of such elements can be handled by using a more or less reduced form of 
garbage collection[Michael04] [MS98] [HMBW07] [GPST05] [KPS09] [Valois95].

In order for the data structure to be non-blocking, the utilities used for operations should 
also be non-blocking, including the memory allocator.  There are a  number of fairly 
efficient non-blocking memory allocators in litterature, most notably nbmalloc[GPT05] 
and McRT-Malloc[HSAH06].

4.2.2 Garbage collection

As previously mentioned there are quite a few garbage collection schemes that can be 
used for dynamic non-blocking data structures. This section covers reference counting, 
QSBR, Hazard pointer, generic garbage collectors, and related schemes. The properties 
of the different schemes are summarized in table 2.
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Reclamation scheme Memory overhead Performance overhead General

Reference counting Ο( p+n) Very high No

QSBR Unbounded Low for read
Medium for updates

No

Hazard pointers Ο(s⋅k⋅p2
) Medium No

Beware&Cleanup Ο(s⋅(k +l)⋅p2
+n) Higher than hazard pointers Yes

Table 2: Properties of reclamation schemes.
The symbols correspond to the number of: p threads, n objects, k maximum active 
reference from a thread, l references in an object. s is the average object size.

Reference counting

Reference  counting  can  be  the  simplest  form of  garbage  collection.  It  is  typically 
implemented  by  having  a  counter  maintain  the  number  of  references  to  the 
object[Valois95]. When the counter reaches 0, the object can be deallocated. Reference 
counting has the advantage that inaccessible objects can be deallocated immediately. A 
significant issue with reference counting, is finding a place to store the counter. For 
instance, in a tree data structures it is possible to store the counter inside the globally 
visible pointer. Another issue is that every time a thread accesses an object, it must first 
write to the counter. Updating the counter can lead to contention, serial bottlenecks, and 
cache invalidation.

QSBR

Quiscent-state-based  reclamation  (QSBR)  is  another  relatively  simple  garbage 
collection scheme. It is related to Epoch based reclamation[MS98], and the use of limbo 
lists/delete lists[ML84]. To safely deallocate objects, they are put on a list. When no 
threads are accessing the data structure,  the elements on the list can be deallocated. 
QSBR has a relatively low performance overhead  [HMBW07]. The main issue with 
QSBR  is  that  nothing  is  deallocated,  as  long  as  one  thread  is  accessing  the  data 
structure.  Since  it  is  generally  not  possible  to  tell  if  a  thread  is  currently  active, 
preempted threads may also prevent deallocation. QSBR is typically implemented in a 
locking  fashion,  but  it  is  possible  to  implement  with  lock-free  guarantees.  A 
study[HMBW07] has found that the lock-free QSBR implementations tend to be slower 
than the lock based versions.

Hazard pointers

Hazard pointers is  a  scheme where each thread publicly declares that it  is  going to 
access objects before accessing it  [Michael04]. If the object is still globally accessible 
after the declaration, the thread can safely access the object, and otherwise the thread 
should find another object to operate on. By globally accessible, we mean whether or 
not the object is reachable from the data structures current state. Illustration 2 shows an 
example of our definition.

To safely deallocate objects, the object is first made globally inaccessible, by removing 
it from the data structure. The thread that makes the object inaccessible then adds the 
object to a thread local list of objects that are pending deallocation. This process is 
called retiring. Once the list of retired objects exceed a given size, the thread deallocates 
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any object  in  the  list,  that  is  not  are  currently  used  by other  threads.  The  cost  of 
deallocation can be kept low, by allowing long lists. Specifically the amortized cost of 
deallocation is constant, if the list is allowed to grow to a size s∝n , for n threads. Such 
a case will also permit a memory overhead of O(n2

) .

Illustration 2: A linked list before and after culling the 
elements after B. Afterwards C and D are not globally 
visible, although some threads may have references to them

Hazard  pointers  require  strict  ordering  on  some  operations.  Specifically  the  public 
declaration must happen strictly before accessing the object, leading to overhead on out-
of-order machines. The efficiency of hazard pointers also depends on how difficult it is 
to  tell  whether  or  not  objects  are  globally  accessible.  Using  hazard  pointers  for 
reclaiming  elements  in  data  structures,  tends  to  be  slower  than  using  QSBR 
[HMBW07]. Whether hazard pointers or QSBR has the lowest overhead, depends on 
the ratio of reads and replacements of elements. If elements are rarely replaced, the 
overhead for publicly declaring what is being read is significant.

As an alternative to testing for global accessibility, one can use the reclamation scheme 
Beware&Cleanup. The scheme uses a combination of reference counting and hazard 
pointers.  By  keeping  reference  counters,  it  is  significantly  simpler  to  test  global 
accessibility for arbitrary data structures [GPST05].

Generic garbage collectors

Most  generic  garbage  collectors  are  lock  based,  including  those  used  in  runtime 
environments.  Popular  examples  include  the  garbage  collectors  of  the  java  virtual 
machine (JVM), and the common language runtime (CLR). Recently a lock-free generic 
garbage  collector  has  been  proposed  [KPS09].  Unfortunately  implementing  such  a 
garbage collector would seem like a significant effort. Additionally we could not find 
any evaluation of its performance or memory overhead of the garbage collector.
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Summary

There are several garbage collection schemes, and none of them are optimal for every 
case. Generic lock-free garbage collectors may be coming, but they will likely require 
significant implementation effort, and might not have comparable performance. QSBR 
usually has the lowest performance overhead, but it provides no guarantees about its 
memory overhead. Reference counting usually has the lowest memory overhead, but it 
is  not  generally  applicable,  and  it  can  cause  significant  contention.  The  memory 
overhead of hazard pointers increases dramatically with the number of threads, and it 
requires  implementing  an  accessibility  test.  The  test  may  be  expensive,  or  even 
impossible for arbitrary data structures. Beware&Cleanup trades the overhead of the 
accessibility test of hazard implementation with occasional use of reference counting.

QSBR tends to be fastest. If it is possible to argue about how often all threads stay away 
from the data structure, then QSBR is probably the best solution. Hazard pointers are 
likely to have the second lowest performance overhead, if testing whether objects are 
globally accessible is simple. If the test is expensive Beware&Cleanup is likely to have 
the second best performance overhead. Reference counting can be extremely slow, and 
it is not generally applicable. Reference counting does however tend have the lowest 
possible number of unreclaimed objects.

4.2.3 Providing non-blocking algorithms

There are a few general strategies, that are typically used to implement non-blocking 
data structures.

One strategy is to follow the following three steps:

1. Create a partial copy of the data structure.

2. Perform the operation on the copy.

3. Write  the  partial  data  structure  back  into  global  storage,  unless  the  data 
structure has changed.

In such a setup, any thread may start an operation at any time. If the operation fails, then 
it must be because some other operation made progress.

Many non-blocking data structures have been implemented efficiently in ways that are 
similar  to  this  strategy.  Specifically  stacks  [IBM83],  skip-lists  [Sundell04],  queues 
[Michael04] and counters have been implemented in similar fashions.

Another strategy, referred to as help locking works as follows:

1. Write the operations being performed directly into the data structure, to avoid 
conflicting operations.

2. Perform the operations written into the data structure.

The name “help  locking” derives  from, the strategy avoiding conflicts  in  a  manner 
similar  to  locking,  while  avoiding  blocking.  It  avoids  blocking,  by  allowing  other 
threads to complete pending operations. A pseudo code version of the general strategy 
can be seen in listing 5.
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The operations is first written with CAS or a similar read-modify-write instruction. If 
writing  the  operation  fails,  then  help  the  operation  preventing  the  write,  and  retry 
writing. After successfully writing, perform the operation, and remove the description.

doOperation(op, dataStructure) {
  do {
    status = dataStructure.tryToAdd(op);
    if(status != SUCCEEDED) {
      status.helpPreventingOperation();
    }
  } while(status != SUCCEEDED);
  datastructure.do(op);
  datastructure.remove(op);
}

Listing 5: General form used in help locking

The  actual  operations  execute  in  a  very  similar  fashion  to  the  other  strategy.  The 
advantages of this strategy are that the operations can have multiple steps, there is less 
need for local copies, and it may simplify checking for success. The main disadvantage 
is the expense of making more writes to global memory. Some of the more complex 
non-blocking data structures have been implemented in this way [Fomitchev03] [BH11] 
[EFRB10].

There are also 3 ways to create non-blocking versions of data structures, that require 
fewer changes:

1. Use of a lock-free software transactional memory (STM) scheme [Fraser04].

2. Use a solution to the consensus problem to orchestrate operations on objects 
[Herlihy91].

3. Conversion of explicit locks to lock-free operations using the scheme from the 
paper “Locking without blocking” [TSP92].

All three solutions are applications of the help locking strategy, applied in ways that 
work  for  any  data  structure.  These  general  solutions  do  however  have  significant 
disadvantages.  Using  the  consensus  problem to  implement  wait-free  data  structures 
tends  to  be  extremely  slow,  and  has  a  high  memory  overhead.  The  scheme  from 
“Locking without blocking”, was primarily a proof of concept, for there being other 
general solutions with lower overhead. From what we can tell the details of the scheme 
was never fully published, or used outside the paper. STM is a more realistic solution. It 
depends on having a specialized framework, and/or compiler support. Data structures 
based on STM tend to perform worse than data structures that have been adapted to be 
lock-free by hand [Fraser04].
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4.2.4 Non-blocking priority queues

There are several existing lock-free priority queues. They generally use some kind of 
search structure to find a location to insert or extract elements from.

One overall strategy for implementing priority queues is only allowing a fixed range of 
priorities and keeping a container for each priority level. This scheme is often called 
static search structures or quantatized priority queues. Such schemes has the advantage 
that it  does not really require much in the way of maintenance,  since there is a 1:1 
mapping from priority level to container. The message passing system Tempo[BER07], 
implements such a priority queue. That queue is based on the SimpleTree data structure 
described in the paper “Scalable Concurrent Priority Queue Algorithms” [SZ99], only 
using lock-free counters and stacks.

Alternatively one can use a dynamic structure, allowing for a wider range of priorities, 
at  the  expense  of  additional  maintenance.  Prior  work has  been done on using non-
blocking  heaps[IR93].  Unfortunately  most  lock-free  heaps  depend  on  exotic  read-
modify-write instructions, that are not generally available. Some of the instructions can 
be simulated on current hardware, either using STM or special algorithms, but it tends 
to come at a significant cost. By comparison some lock based queues perform rather 
well, especially under low contention [DB08].

Priority queues based on lock-free and lock based skip-lists have also been brought 
forth [ST05] [SL00]. Skip-lists normally supports add remove operations, of key-value 
pairs. It is possible to adapt skip-lists to work as priority queues, with the limitation that  
the  elements  in  the  queue  must  have  unique  keys.  Providing  unique  keys  can  be 
accomplished  in a number of ways. For instance using key-values pairs as keys, having 
redundancy bits in the keys, or by using references to containers as values. Storing a 
container in each element, may require using more complicated lock-free objects, to 
ensure  that  they  can  be  composed  properly.  Recently  non-blocking  binary  search 
trees[EFRB10], and k-ary search trees[BH11] have been proposed. A k-ary search tree 
is a search tree where each node can have up to k children. It might be possible to use 
those data structures as priority queues, with similar schemes to those for skip-lists.

4.2.5 Backoff schemes

Backoff schemes are measures to keep contention low. One way of doing this is to make 
threads wait before or after performing operations, or after failing to perform operations. 
One of the more influential papers dealing with backoff schemes for concurrent data 
structures  is  “The  performance  of  spin  lock  alternatives  for  shared-money 
multiprocessors” [Anderson90]. The paper presented a number of backoff schemes, and 
applies them to a lock implementation. The more successful schemes are simulating 
queuing, using constant individual spin times to each thread, and truncated exponential 
backoff.

Simulating queuing works by having the processors get in a queue, and perform their 
operation when its their turn. There have been proposed a number of different kinds of 
queue based locks, such as CLH locks  [Craig93] [MLH94]and MCS locks[MCS91], 
providing  different  tradeoffs.  The  schemes  can  all  dramatically  reduce  contention. 
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Unfortunately they are not directly applicable for non-blocking data structures, since it 
forces threads to wait for each other. 

Giving  each  thread  a  constant  individual  spin  time,  can  keep  contention  low,  and 
ensures that some processors can operate with fairly high throughput.  Unfortunately 
good results require highly tuned spin times. Poor choices for the individual spin times 
can lead to redundant or insignificant spinning. This results in overhead from spinning 
or contention. In short, the solution is not very flexible, and might give very poor results 
if not properly tuned.

Truncated exponential backoff works by having the threads spin for a number of time 
slots  before  attempting  to  perform  operations.  The  number  of  slots  to  spin  for  is 
sampled from a discrete uniform random distribution. The longest possible duration is 
stored individually for each thread.  If the threads detect significant contention when 
performing an operation, they double the upper bound on the spin duration. If it detects 
low contention it  halves its spin duration.  The longest possible spin duration has an 
upper bound (truncation), proportional to the number of CPUs. The truncation reduces 
the overhead for changing levels of contention. Additionally it ensures that exponential 
backoff  is  always  competitive  to  assigning each processor  separate  spin  times.  The 
scheme assumes you can find some way of detecting contention. For CAS operations, 
one  hint  would  be  failing  operations.  For  other  read-modify-write  instructions  that 
provide the old value there are the following 4 possibilities:

1. Reading the value being updated, before changing it, and check if someone else 
changed the value in between.

2. Remembering the fields last value, and assume contention, if it has changed.

3. The  value  might  indirectly  be  a  tell  of  whether  or  not  there  is  significant 
contention.

4. The level of contention on one object might be proportional to the contention of 
another object.

4.2.6 Elimination and combination of operations

For some data structures, their operations can be eliminated and combined with one 
another,  to  reduce  contention.  Doing  so  reduces  the  number  of  operations  on  the 
contended  data.  Combination  and  elimination  can  be  implemented  through  a 
synchronization  scheme  called  combining  funnels  [SZ00].  Combining  funnels  have 
been applied to counters, bounded counter, and stacks by the authors of the original 
paper.  They  used  the  bounded  counters  and  stacks  to  implement  a  priority  queues 
[SZ99]. The priority queues showed significantly better performance than competing 
priority queues, such as the queue by Hunt et al  [HMPS96]. The priority queues were 
compared under  high contention,   running on simulated  hardware with  hundreds  of 
processors. Combining funnels have not been extensively studied lately, but some of its 
concepts have seen recent interest.  For instance, elimination has been applied to the 
lock-free stack by Treiber et al[IBM83]  [HSY10]. The stack with elimination is still 
lock-free, because elimination of two opposing operations is fairly simple to implement 
in a lock-free fashion. They were able to show a significant performance improvement 
over a regular stack, on a specific hardware setup.
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4.3 Summary

This chapter introduced the theoretical background for rest of the thesis, and prior work 
in  the  same  area.  The  theoretical  background  covered  features  of  concurrent  data 
structures, and the concepts necessary to argue about them. The prior work included 
concurrent data structures, and high level ways of ensuring properties of concurrent data 
structures. The remainder of this thesis is primarily about concurrent priority queues, 
and concurrent primitives. Therefore the atomic primitives, concurrent priority queues, 
and backoff schemes were covered in greater detail.
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5 Concurrent building blocks

5.1 Introduction

This chapter describes basic building blocks used to for the data structures presented in 
the  remainder  of  this  thesis.  The  chapter  covers  methods  for  accessing  hardware 
synchronization  primitives,  reducing  context  switches,  and  reducing  the  impact  of 
contention.

Reducing the impact  of contention includes  ways to randomize access patterns,  and 
ways  to  implement  backoff  schemes.  We  will  also  apply  those  concepts  to  lock 
implementations, so we can perform fair performance evaluation, when comparing lock 
based and lock-free data structures.

5.2 Random number generation

Generating a uniformly distributed pseudo random number is a fairly standard feature in 
many standard libraries and toolkits. Pseudo random numbers are typically generated by 
initializing a pseudo random number generator (PRNG) to a certain state, and picking 
new numbers by evolving that state. The evolution is deterministic, unlike true random 
number generators.

On SMP machines the PRNGs internal state is usually protected with locks. Locking in 
order to get  a  random number may by quite  expensive,  and it  completely ruins the 
advantages of non-blocking data structures. To avoid such issues we have each thread 
store a PRNG, and ensure that threads only access their own PRNG.

There  are  many  different  PRNGs  for  uniform distributions,  and  picking  a  suitable 
PRNG depends on what it is used for. The typical performance metrics of an RNG are 
its period length, internal state size, the time it takes to evolve its state, how closely the 
output  follows  a  uniform distribution,  and  how random the  output  is.  There  are  a 
number tests to determine how random the output of a PRNG is, but the criteria they 
measure are beyond the scope of this  thesis.  The length of the period is  how many 
numbers it can generate before reaching a previously reached internal state.

We primarily use PRNGs to randomize access  patterns  to  contended resources.  For 
instance randomizing the amount of time a thread back off before accessing contended 
fields, or picking a random order to access fields in.  The primary reason for using 
PRNGs  in  randomized  access  patterns,  is  to  reduce  the  chance  of  resources  being 
contested. We opt to use a linear congruential generator (LCG). An LCG has very small 
state, and fast evolutions, at the expense of poor randomness and period length. Poorer 
randomness, and a shorter period are not significant issues for our uses, as described in 
the following section.
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5.2.1 LCGs for randomizing access patterns

An LCG that generates m-bit integers stores an m-bit internal state x. LCGs evolve their 
state as x i+ 1=(x i⋅a+ c)mod m , where m is typically 216 , 232  or 264 . Listing 6 shows 
what  such a RNG might look like:

template<class IntType, IntType a, IntType c>
class LCG {
  IntType x;
  IntType rand() {
    x = x * a + c;
    return x;
  }
}

Listing 6:A templated LCG, where a, c, and  the type of integer generated is passed as 
template parameters

The quality of the random numbers depend highly on the values used for a, c, and m. If 
an LCG can achieve all internal states possible, it is said to have a full period. LCGs 
have full periods if the following conditions are met [Knuth97]:

1. c and m are relatively prime

2. a-1 is divisible by all prime factors of  m

3. a-1 is a multiple of 4, if m is a multiple of 4

When m=2n , n∈ℕ , the conditions translate to (c mod 2)=1∧((a−1)mod 4)=0 , since 
the only prime factor of such m is 2.

LCGs with  full  periods  do  not  necessarily produce  good representations  of  random 
numbers.  However  an  LCG without  a  full  period  produce  a  poor  representation  of 
uniformly distributed numbers, because it cannot generally produce all numbers. Our 
LCG  has  a=2531011 ,  c=2531011+ 2⋅tid ,  where  t id  is  the  threads  id.  Using  a 
different c value for each thread ensures that the each thread evolves the internal state of 
in a unique pattern, assuming t id< 2m

−1 .

LCGs  are  often  considered  to  be  poor  PRNGs,  because  they  have  relatively  short 
periods, and the numbers produced from a single LCG tends to be highly correlated. In 
other words it is easy to predict the next value generated based on a few outputs, even if 
a and c are unknown. LCGs do however have some redeeming qualities. If you sample 
2k  random numbers  from an LCG with  m=2n , n∈ℕ∧n≥k  then there will  be no 
numbers with the same  k least significant bits. This property is very attractive when 
randomizing access patterns, if the number of elements to chose from is a power of two, 
and each LCG evolves its  state  in a  unique fashion. The property can also be used 
generate 2k  different values relatively quickly, without having to resort to shuffling.
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Proof:

1. The result  of  updating  the  k lowest  bits  of  x only depends on  a,  c and  the 
previous k lowest bits of x. This is true because the update of x can be written as 

a series of additions  x i+ 1=((∑j=1

a

x i)+ c)mod m ,  and the  k lowest  bits  of the 

additions only depend on the k lowest bits of x.

2. The k lowest bits of the samples from the LCG correspond to the entire result of 
an LCG B. B has the parameters a B=a , cB=c , mB=2k , and an initial state that 
corresponds to the k lowest bits of the original LCGs initial state.

3. Since the LCG B uses the same variables uses the same a and c parameters, it 
also satisfies the constraint (c mod 2)=1∧((a−1)mod 4)=0 . Therefore B has a 
full period.

4. The LCG B would therefore produce 2k  different variables, meaning the lowest 
k-bits of the original LCGs samples are different from each other.

The property is also one of LCGs primary weaknesses. The lowest k bits of the samples 
produced by the LCG have a period of 2k . This implies that the lowest bit has a period 
of 2, the two lowest bits have a period of 4, and so on. This property puts an upper 
bound on the periods of the individual bits of the samples. The bound primarily affects 
the lowest bits. For this reason one should generally avoid depending on the randomness 
of the lower bits  in LCGs. This also means that when generating samples from the 
Bernoulli distribution based on a sample from an LCG, one should generally use code 
that looks like: lcgSample < successCriteria.

A similar property exists for some forms of XOR shift PRNGs. We chose to use LCGs 
because the space of useable XOR shift PRNGs is smaller, and they tend to be slower 
than LCGs on AMD64 hardware.  By comparison, using a “better” PRNGs, such as 
Mersenne Twisters, or multiply-with-carry PRNGs, may produce more random output, 
but they do not have the property.

5.3 Avoiding context switches

Using threads to implement task states requires storing the state of the thread, whenever 
it is preempted and restored. In some cases it may be possible to avoid restoring the 
entire  state  of  the  thread.  For  instance when restoring  a  thread  that  previously ran, 
registers that the operating system does not touch do not need to be restored. Even with 
such  optimizations  switching  threads  inside  and  outside  of  the  kernel  can  still  be 
expensive.

Instead of using threads, one can describe tasks with continuations. Continuations are 
typically identified as a function, and the parameters to the function. Continuations are 
frequently used inside functional programming languages. Uses include lazy evaluation 
of  variables,  where  the  evaluation  is  postponed,  by  storing  a  continuation  to  the 
computation of the variable, rather than the actual variable. For scheduling purposes, the 
advantage of continuations is that they may be run within the context of any thread, with 
the  same privileges,  avoiding  the  need  for  context  switches.  To replace  the  use  of 
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threads with continuations, the task should never block, but instead create a continuation 
that finishes the task after blocking.

Continuations have been used to avoid using threads inside the L4::Pistachio kernel 
[Warton05], by instead using continuations whenever code blocks inside the kernel. By 
avoiding the use of kernel threads, each processor only needs to have one stack for use 
inside  the  kernel.  The  L4::Pistachio  already applied  other  tricks  to  avoid  most  full 
context switches, but continuations seemed to improve performance, due to better cache 
locality when keeping the same stack. Prior to L4::Pistachio the Mach kernel also used 
continuations to reduce the need for threads inside the kernel [Draves94] [DBRD91]. In 
addition the Mach 3.0 kernel used what they referred to as continuation recognition, to 
implement  fast  paths  for  certain  types  of  operations.  For  instance  continuation 
recognition was used for the send/receive operations in inter processes communication. 
If a message is sent to a thread that is waiting for a message, then the kernel can in some 
cases process the message inside the sender kernel context. Doing so avoids running the 
continuation for the receiving thread.

Describing tasks as continuations has also been used in various user level threading 
libraries,  including the C-Threads library for Mach 3.0 [Dean93]. The library used the 
same  basic  framework  as  the  Mach  kernel  to  implement  continuations,  and  also 
supported continuation recognition.

More recently C++11 lambda expressions with capture, can also model continuations. 
Listing  7 shows how to create a continuation  c in  C++11. The continuation can be 
called at a later time to evaluate calculation(0, 1).

int a = 0, b = 1;
std::function<int()> c = [=]() {
  return calculation(a, b);
};

Listing 7:Creates a continuation to calculation(a,b).
[=] defines how to store the parameters a and b.

One significant problem with the use of continuations for describing tasks, is that the 
code must  be split  into functions whenever  a  blocking call  is  executed,  in  order  to 
describe the remainder of the operation.  This requires splitting code blocks  that  are 
logically connected, leading to a more fragmented view of the operations, and it may 
require  significant  amounts  of  refactoring.  Parallel  Patterns  Library  is  a  library  by 
Microsoft that can wrap C++11 lambda expressions into “tasks”, in attempts to reduce 
the issue. They do so by having “tasks” store a field that can contain the continuation to 
call after performing blocking calls. This means that they can define the continuations in 
a way that resembles a normal structured flow[PPL11].

5.4 Interfacing to synchronization primitives

Synchronization primitives, such as read-modify-write instructions, are used to provide 
guarantees, to the executing threads. In order to use the read-modify-write instructions 
of a given platform, in a non-assembly language, it is necessary to interface to them in 
some  way.  This  section  investigates  the  performance  and  code  impact  of  various 
interfaces to such instructions. The purpose of this comparison is to find interfaces to 
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the atomic instructions of the AMD64 instruction set, that leads GCC to produce the 
best results. Whether or not the results are good, is determined based on the throughput, 
and the quality of the assembly code generated for selected test cases. The comparison 
primarily focuses on the CMPXCHG instruction, corresponding to CAS. We chose to focus 
on that instruction, because it is one of the more difficult instructions to interface to, and 
because it is frequently used in non-blocking data structures. 

This  section  starts  out  describing  the  guarantees  provided  by  the  compiler  and 
processor, used tested interfaces, and it ends with a discussion of the results.

5.4.1 Analysis

This section covers the theoretical background for implementing and using interfaces to 
read-modify-write instructions. It covers memory ordering guarantees provided by the 
GCC, and AMD64, the read-modify-write instructions of AMD64, and ways to interface 
to them.

5.4.1.1 Memory ordering

Strict ordering of memory accesses is required for the correctness of some algorithms, 
such as Dekkers algorithm, Petersons algorithm, and the Hazard Pointers. One typically 
use abstractions referred to as memory barriers. Memory barriers ensure that all the 
CPUs  memory  accesses  made  before  the  barrier  are  completed  before  leaving  the 
barrier. Implementing memory barriers requires interacting with both the compiler and 
underlying CPU architecture.

At a compiler level, the volatile qualifier can be applied to variables in C++, to ensure 
that the compiler does not break the memory ordering. Specifically access to volatile 
variables guarantees that the compiler will not reorder any accesses to the variable. It 
does not  work as  a memory barrier,  since accesses to  non-volatile  variables  can be 
reordered across volatile accesses. In addition the compiler can still remove code that 
accesses  volatile  variables,  if  it  can  guarantee  that  the  code  is  never  reached.  The 
volatile qualifier does not guarantee anything about how the processor will execute the 
code,  it  only  makes  guarantees  about  the  produced  assembly code.  In  other  words 
whether or not the memory ordering is satisfied,  depends on the processor that it  is 
running on.

The AMD64 instruction set provides the following guarantees[AMD10]:

• The weakening of the ordering is never visible to a single CPU system.

• Stores to regular memory (write-back memory) is executed in order

• If n CPUs write to a memory location, and m other CPUs observe the memory 
location, then the m CPUs will see the writes in the same order.

• Loads cannot be executed out of order, with respect to loads and stores to the 
same memory location.
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To implement memory barriers, one can use one of the following instructions, ordered 
by how fast they tend to be:

• SFENCE guarantees that all the CPUs stores to memory locations are terminated 
before the next store to a memory location.

• LFENCE guarantees  that  all  the  CPUs  loads  from  memory  locations  are 
terminated before the next load from a memory location. 

• MFENCE guarantees that all the CPUs access to memory locations are terminated 
before the next access to a memory location.

• Instructions with the LOCK prefix also serve as mfences.

In general the instructions that provide the weakest guarantees are the fastest. When 
accessing regular write-back memory in AMD64, the stores are already in order,  so 
sfence is only necessary when using other types of memory.

5.4.1.2 Available primitives

The AMD64 instruction set supports a number of commonly used read-modify write 
operations[AMD09], that return the read value in a register, as summarized in table 3. 
The AMD64 instruction set supports additional read-modify-write instructions, that only 
indirectly refer to the read value through condition codes as summarized in table  4. 
Condition codes are flags that are set after the execution of instructions. They can be 
used to branch, and make predicated assignments. The condition codes can also be read 
explicitly.

All of the instructions can be performed on 8, 16, 32, and 64 bit memory locations, and 
CAS can additionally be performed on 128 bit memory locations. Any memory location 
being written to must be aligned on its own base, for instance 32 bit memory locations 
must be aligned on 32 bits. The instructions must be prefixed with LOCK, when used in 
contexts with multiple CPUs, except for XCHG which is “always locked”.

Instruction (mnemonic) Description

extended CAS (CMPXCHG) Like regular CAS but it returns both whether it succeeded 
or not, and the previous value.

fetchAndAdd (XADD) Regular fetchAndAdd

fetchAndStore (XCHG) Swaps a value in memory with a register value

Table 3:The conventional read-modify-write instructions of the AMD64 instruction set 
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Instruction mnemonic Description

INC, DEC Increment and decrement

ADD, SUB, ADC, SBB Add and subtract, with and without a carry or borrow bit

OR, AND, XOR, NOT Bitwise operations

NEG Subtracts the value of an integer from 0

BTC, BTR, BTS testAndComplement, testAndClear, testAndSet

Table 4:Atomic instructions that only provide output through the condition codes

5.4.1.3 Interfacing to read-modify-write instructions

There are a number of different ways to interface to the read-modify-write instructions 
of any given platform. FenixOS is targeted towards GCC, so the most obvious solutions 
is  using  the  compiler  builtins,  using  GCC  inline  assembly  syntax,  or  the  atomic 
primitives introduced in C++11 described in proposal N2427[BC07].

Unfortunately using the C++11 features is not an option, since the primitives depend on 
library functions. Such functions are not available inside FenixOS, unless we implement 
them ourselves. A feature in the proposal is that it allows programmers to describe the 
minimum memory ordering that should be enforced for each atomic operation. Doing so 
can affect the overhead of the code produced by the compiler.

GCC inline assembly syntax  allows the  programmer to  run assembly code in  other 
programming  languages.  The  read-modify-write  instructions  can  be  performed  in 
assembly  code,  wrapped  in  functions  or  macros,  to  provide  a  simple  API.  By 
comparison GCC's atomic builtins are wrapper functions to atomic operations, that the 
compiler creates read-modify-write instructions from. The atomic builtins supported by 
GCC are basically the same as ICC's atomic builtins [GNU11]. The ICC builtins are in 
turn inspired by the Itanium processor architecture.

5.4.2 Implementation

5.4.2.1 The interfaces

GCC  provides  the  builtins  __sync_bool_compare_and_swap and  __sync_val-
_compare_and_swap, as an interface CAS operations. The builtins return whether or not 
the operation succeeded and the previous value at the memory location respectively. 
Additionally GCC provides  the  builtins  __sync_fetch_and_add and  __sync_test-
_and_set, to interface to the fetchAndAdd and fetchAndStore operations, respectively.

Most of the calls to the atomic builtins work as memory barriers for both hardware and 
the compiler. This means that that all loads and stores before the call are completed 
before the call, and no loads or stores are moved from after the call to before the call.
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GCC  inline  assembly  syntax  allows  the  programmer  to  specify  constraints  for 
placement of variables. This may give the compiler more freedom regarding register 
windowing, leading to less overhead from using inline assembly.  Each assembly block 
contains a list of outputs, inputs, and a clobber list. Each element in the input and output 
lists specify constraints on where they are placed. The clobber list specifies the variables 
or memory locations that are invalidated.

template <class T>
T casVal(volatile T * const adr, T oldVal, T newVal) {
    asm volatile("LOCK CMPXCHG %2, %0" // assembly code
    : "=m"(*adr), "=a" (oldVal) // output
    : "r"(newVal), "1"(oldVal)); // input
    return oldVal;
}

Listing 8:casVal, a templated interface to CAS that returns the previous value.

Listing  8 shows the interface  casVal that returns the value previously stored at  adr. 
The function loads oldVal into the a register, and the newVal into any register. Then it 
performs a LOCK CMPXCHG instruction, and returns the value stored in the a register.

The interface  casBool is presented in listing  9.  casBool also returns a boolean value 
that specifies whether or not the operation succeeded, by returning the zero bit of the 
condition codes.

template <class T>
bool casBool(volatile T * const adr, T* oldVal, T newVal) {
    uint8_t success;
    asm volatile(" LOCK CMPXCHG %3, %0; setz %2"
    : "=m"(*adr), "+a"(*oldVal), "=r"(success)
    : "r"(newVal));
    return success;
}

Listing 9:casBool, a templated interface to CAS that returns whether the operation 
succeeded, in addition to the previous value through oldVal

In most cases the purpose of getting a boolean success value, is to branch based on 
whether or not the operation succeeds. Doing so based on the previous interface might 
be inefficient,  since the compiler generally cannot optimize the assembly blocks,  or 
interpret the condition codes after an assembly block. One way to reduce this problem is 
to use assembly goto blocks. Asm goto blocks are supported by GCC 4.5 and newer. 
Such blocks  allows the assembly code to  jump to  regular  code,  through the  use of 
labels, but such blocks cannot currently specify outputs.

The interface casGoto in listing 10 avoids this problem by performing the operation in 
an assembly block, and branch in a separate assembly goto block. It branches based on 
the  zf condition  code,  similar  to  how  casBool returns  zf. Although  the  compiler 
cannot optimize the assembly code, it can optimize the code that the assembly block 
jumps into, by inlining the function.
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template <class T>
bool casGoto(volatile T* adr, T* oldVal, T newVal) {
    T o = *oldVal;
    asm volatile(" LOCK CMPXCHG %2,%0"
    : "+m"(*adr), "+a"(o)
    : "r"(newVal));
    asm volatile goto("JNZ %l[failed]"::::failed);
    *oldVal = o;
    return true;
failed:
    *oldVal = o;
    return false;
}

Listing 10:casGoto, a templated interface to CAS that returns the previous value 
through oldVal, and branches based on whether or not the operation succeeded

All  of  the  inline  assembly  blocks  allow the  compiler  to  keep  temporary  copies  of 
variables, as long as they do not overlap with adr. On the other hand the hardware is not 
allowed to speculate any loads or stores across the LOCK CMPXCHG instruction, because 
of the semantics of the lock prefix. In some cases it might be desirable to ensure rereads  
the variables after a read-modify-write instruction. In such cases one can add assembly 
blocks  after  the atomic  operation,  that  specify that  the memory may have changed, 
forcing the compiler discard any temporary copies.

For other atomic instructions,  one can use inline assembly similar to  the  casVal to 
interface  to  the  registers  returned,  and  blocks  similar  to  casBool or  casGoto,  to 
interface to the condition codes returned. To use the 128 bit CAS operations, we use 
code that is very similar to the previous interfaces, but it stores the value of oldVal, and 
newVal in two 64 bit values. For instance the casGoto code for 128 bit values is:

bool casGoto(volatile uint128_t* adr, uint128_t* oldVal, uint128_t 
newVal) {
    uint64_t o1 = *oldVal, o2 = (*oldVal) >> 64;
    asm volatile("LOCK CMPXCHG 16B %0"
    : "+m"(*adr), "+a"(o1), "+d"(o2)
    : "b"((uint64_t)(newVal)), "c"((uint64_t)((newVal)>>64)));
    asm volatile goto("JNZ %l[failed]"::::failed);
    *oldVal = (((uint128_t)o2) << 64) | o1;
    return true;
failed:
    *oldVal = (((uint128_t)o2) << 64) | o1;
    return false;
}

Listing 11:The 128 bit version of casGoto. The primary difference is that all parameters  
are stored in specific registers
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5.4.3 Evaluation

This section describes how the interfaces were applied, how the interfaces performed, 
and describe the characteristics of the generated code. The results are abbreviated to the 
most relevalt pieces.

5.4.3.1 Setup

To  evaluate  the  performance  we  have  used  the  different  interfaces  to  implement 
increment, xor, and swap operations, using CAS. We also implemented interfaces to the 
read-modify-write instructions  add,  inc,  swap,  and  xor,  to compare their  respective 
performance. The interface based on  inc does not have the same functionality as the 
other adding interfaces, and instead it always adds 1. All the instructions, aside from 
CAS, only support up to 64 bit fields. We also implemented a 128 bit  add operation 
using  locked  add and  adc instructions,  and  a  128  bit  xor with  two  locked  xor 
operations.  Performing the operation with two read-modify-write  instructions  means 
that the value stored in the memory location might not be valid at all times, but the end 
result will be correct, because add and xor operations are associative. The operations are 
implemented in slightly different fashions for the various interfaces, as shown in the 
following listings 12 through 14.

T add(T* field, T increment) {
  T old;
  do {
      old = *field;
  } while(!CAS(field, old, old + increment));
  return old;
}

T swap(T* field, T newVal) {
  T old;
  do {
    old = *field;
  } while(!CAS(field, old, newVal));
  return old;
}

T xor(T* field, T bits) {
  T old;
  do {
      old = *field;
  } while(!CAS(field, old, old ^ bits));
  return old;
}

Listing 12:The operations implementation, when using 
__sync_bool_compare_and_swap
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T inc(T* field, T increment) {
  T old = *field, tmp;
  while(old != (tmp = CAS(field, old, old + increment))) {
    old = tmp;
  }
  return old;
}

T swap(T* field, T newVal) {
  T old = *field, tmp;
  while(old != (tmp = CAS(field, old, newVal))) {
    old = tmp;
  }
  return old;
}

T xor(T* field, T bits) {
  T old = *field, tmp;
  while(old != (tmp = CAS(field, old, old ^ bits))) {
    old = tmp;
  }
  return old;
}

Listing 13:The operations implementation when using __sync_val_compare_and_swap 
or casVal

T inc(T* field, T increment) {
  T old = *field;
  while(old != CAS(field, &old, old + increment));
  return old;
}

T swap(T* field, T newVal) {
  T old = *field;
  while(old != CAS(field, &old, newVal));
  return old;
}

T xor(T* field, T bits) {
  T old = *field;
  while(old != CAS(field, &old, old ^ bits));
  return old;
}

Listing 14:The operations implementation, when using casBool or casGoto
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5.4.3.2 Evaluated performance

This section evaluates the performance of the interfaces to the atomic operations. The 
tests  were performed by doing the 300,000 operations on a  shared field,  as seen in 
listing 15. The tests were performed using up to 16 threads, where each was bound to a 
specific CPU. The tests started all the threads simultaneously, and each thread measured 
the wall-clock time when they start and finished their tests. Each of the presented results 
are based on 160 measurements. To get 160 measurements, when testing with p threads,  
the tests is run 160 / p times.

field

opTest() {
  … measure start time
  for(i = 0 .. 300000) {
    useInterface(&field, id)
  }
  … measure completion time
}

Listing 15:The test run to evaluate performance of the interfaces

Based on the measurements when run on the system described in table 5, we present the 
graph 1 through 3.

Graph 1 shows the throughput of the interfaces in the single threaded case, as a function 
of the size of the operations. Graph 2 shows the thread total throughput of the interfaces, 
averaged over 8, 16, 32 and 64 bit operations, as a function of the number of threads. 
Graph  3 shows the thread total throughput of the interfaces as a function of the number 
of threads.

The graphs name the individual tests as the concatenation of the operation and interface 
of the test. The naming scheme used for the interfaces is given in table 6.

By thread total throughput, we refer to the sum of the threads throughput. The term is 
different from system throughput.  The difference between the two terms, is  that the 
thread total throughput calculates each threads throughput over the based on the threads 
start and completion time. The system throughput and thread total throughput are only 
the same, if all of the threads completed the tests in the same time. Typically the system 
throughput  can  be  no  more  than  constant,  when  increasing  the  number  of  threads 
running the operations on highly contended data. In the same setting the thread total 
throughput can double, if the threads completion times are uniformly distributed.
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System name  HP ProLiant SL165z G7 server

Ram 64 gb

OS Scientific Linux 6.1

Processors 2 x  AMD Opteron 6168 (24 CPUs)

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG 
-fopenmp -Ofast -fwhole-program 
-static -flto -fno-align-functions 
-fno-align-labels -fno-align-loops 
-fno-align-jumps -s

Table 5:A description of the platform for running the tests

Ending Interface

BVal __sync_val_compare_and_swap

Val casVal

BBool __sync_bool_compare_and_swap

Bool casBool

Goto casGoto

A Inline assembly to read-modify-write version of operation

B Builtin to __sync_fetch_and_ version of operation

Table 6:Shorthand names for atomic instruction interface 
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Graph 1: Throughput for the various interfaces in the single threaded case
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Graph 2: Thread total throughput for the various interfaces
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Graph 3: Thread total throughput for the interfaces to 128 bit operations
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The following 6 observations are immediately obvious from the graphs:

1. In graph 2 and 3 we see that the thread total throughput drops, when increasing 
the number of threads. The throughput of a system with 16 threads, is less than 
half that of a single thread in all cases

2. In graph 2 the direct read-modify-write versions of the operations are faster than 
the CAS based operations.

3. In graph 3 the CAS based operations are faster than the direct read-modify-write 
operations, in the single threaded case, and slower at high contention.

4. In graph  1 and  2 the locked  xchg,  xor,  xadd,  add, and  inc instructions have 
very similar throughput, when under the same level of contention.

5. In graph 1 and 2 the various interfaces to CAS have very similar performance.

6. In graph 3 the casGoto interface consistently outperforms the other interfaces in 
the single threaded case. There is no significant difference in the other cases.

The first observation basically shows that there is significant overhead to contention for 
the test cases. The observation is in no way surprising, and it illustrates why backoff 
schemes are useful for contended resources

The second and third observations show characteristics about the locked instructions. 
CAS based updates tend to be slower than more direct instructions, because CAS is 
more  complex,  and it  because  the  updates  can  fail.  In  graph  3 the  updates  can  be 
performed by a single CAS instruction, while it takes two of the direct instructions, 
explaining why CAS is faster in the single threaded case. At higher contention levels of 
graph 3 the direct interfaces are faster, because their updates always succeeds, unlike the 
CAS instruction.

The forth and fifth observations indicate that ensuring atomicity of the operations, is 
more expensive then actually performing them, for these tests.

5.4.3.3 Generated code

This section reviews the quality of the assembly code generated for the update loops, of 
the different CAS based operations, when using the different interfaces.

The full update loops can be seen in appendix 10.1Read-modify-write update loops. We 
evaluate the quality of the code based on:

• Min  instructions:  The  number  of  instructions  executed  per  update,  if  the 
operation succeeds.

• Retry instructions: The number of instructions executed each time an update 
fails.

• Total size: The total size of the code in bytes.

The quality is evaluated individually for 8, 16, 32, 64, and 128 bit operations.

Table  7 through  9 show the  characteristics  of  the  generated  code,  for  the  different 
implemented operations.
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Interface Min instructions Retry instructions Total size

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Val 8 7 7 7 12 5 5 5 5 9 25 25 21 25 44

BVal 7 7 7 7 5 5 5 5 29 31 26 31

Bool 7 6 6 6 12 4 4 4 4 8 23 23 20 21 40

BBool 6 6 5 5 4 4 3 3 19 20 14 17

Goto 5 4 4 4 8 2 2 2 2 7 16 18 13 14 35

Table 7:Performance metrics of CAS based swap operations

Interface Min instructions Retry instructions Total size

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Val 9 8 8 8 19 6 6 6 6 16 28 28 24 29 66

BVal 10 10 10 10 7 7 7 7 36 38 29 35

Bool 8 7 7 7 18 5 5 5 5 14 24 24 21 23 56

BBool 8 8 6 6 6 6 4 4 24 25 17 21

Goto 6 5 5 5 14 3 3 3 3 13* 19 19 16 18 53

Table 8:Performance metrics of CAS based add operations

Interface Min instructions Retry instructions Total size

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

Val 11 9 9 9 17 8 7 7 7 14 31 29 25 31 59

BVal 11 11 11 11 8 8 8 8 37 39 30 37

Bool 9 8 8 8 16 6 6 6 6 12 25 25 22 25 50

BBool 8 7 7 7 6 5 5 5 24 25 18 23

Goto 7 6 6 6 12 4 4 4 4 11* 20 20 17 20 48

Table 9:Performance metrics of CAS based xor operations

The code generated by all of the interfaces in all of the test cases, except the 128 bit  
versions  of  casGoto,  store  the  update  loops  in  one  continuous  block.  The  128  bit 
versions of casGoto store some of the retry instructions slightly after the update loop.

The 32 bit operations appear to be very space conserving. In fact all interfaces produced 
the smallest update loops for all of the test cases, when they used 32 bit operands. The 
update loops for the 128 bit operations are by far the largest. This is because the 128 bit 
values require two registers, and it generated code for the update loops with a lot of 
redundant mov instructions. The problem is most pronounced for the add operations. For 
instance the 128 bit add update loop using casGoto, has 6 redundant mov instructions. 
By  comparison  the  128  bit  xchg loop  for  casGoto only  has  2  redundant  mov 
instructions. The poor results indicate that GCC is less efficient at optimizing the 128 bit 
types. This is most likely because the extensions see far less use than the primitive types 
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of C++, so optimizing operations on such variables is not a high priority. Additionally 
GCC  might  not  be  able  to  satisfy  the  assembly  constraints  for  128  bit  values  as 
efficiently.

The casGoto interface produces the best results in all the test cases, in the sense that it  
uses  the  fewest  and  smallest  instructions.  None  of  the  interfaces  introduce  any 
expensive instructions, aside from the locked instructions.

Table 10 shows the characteristics of the interfaces to atomic instructions, that directly 
implement their operation.

Interface Instructions Total size

8 16 32 64 128 8 16 32 64 128

xorB 3 3 3 3 5 12 12 11 11 19

xorA 3 2 2 2 5 10 9 7 8 22

addA 3 2 2 2 5 10 9 7 8 22

xaddB 3 3 3 3 12 14 11 11

xaddA 3 2 2 2 12 10 8 9

incA 2 1 1 1 6 4 3 4

swapA 3 2 2 2 11 9 7 8

swapB 3 3 3 3 11 12 10 10

Table 10:Performance metrics of operations implemented without loops

In general the inline assembly blocks tend to produce better code than the compiler 
builtins. The builtins do however have some significant advantages, that are not visible 
from the above table.  For one the compiler may be able to use the condition codes 
stored after the locked instruction. Another advantage is that the compiler may chose to 
pick  simpler  instructions,  if  they  provide  the  same  functionality.  For  instance  the 
__sync_fetch_and_add  compiled to a LOCK ADD instruction, instead of a LOCK XADD 
instruction,  because  the  test  case  does  not  use  the  output  from  the  builtin.  Both 
advantages make it easier to write efficient code using the builtins, but it seems that 
better results can be achieved with inline assembly. Another thing worth noticing is that 
the incA code is smaller than the addA code. Furthermore addA in turn is smaller than 
the xaddA code.
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5.4.4 Summary

This  section  described  issues  related  to  ordering  constraints,  and  low  level 
synchronization primitives. It also empirically tested the performance and code quality 
of a number of interfaces to read-modify-write instructions. The findings from the tests 
can be summed up as:

• The the systems throughput decreases, when increasing the number of threads 
actively modifying a field.

• CAS is generally the slowest read-modify-write instruction, especially at high 
contention.

• There is no significant performance difference between fetchAndAdd,  ADD and 
INC instructions. However  INC instructions are shorter than  ADD, and  ADD are 
shorter than  fetchAndAdd.

• The  performance  of  all  the  read-modify-write  instructions,  is  practically 
independent of whether they operate on 8, 16, 32, and 64 bit integers. The size 
of the instructions tend to be lowest for the 32 bit operations.

• 128 bit CAS operations are slower than their 64 bit counterparts, but faster than 
two 64 bit operations at low contention levels.

• The most efficient interface to the read-modify-write instructions can be derived 
with gcc's extended asm blocks, or asm goto blocks, but compiler builtins may 
similar results.

From a performance view the best practice is:

• Try to reduce contention.

• Use  GCCs  extended  asm  blocks  or  asm  goto  blocks  to  interface  to  the 
instructions.

• Prefer  to  use  any  other  operation  over  CAS,  whenever  possible  without 
introducing new overhead.

• Prefer  DEC/INC over  ADD/SUB,  and  ADD/SUB over  fetchAndAdd,  whenever 
possible without introducing new overhead.

Based on the results, we have decided to use an interface based on asm goto blocks 
when the code branches based on whether or not CAS operations succeed. For all other 
uses of CAS, we used an interface based on inline assembly.  The interfaces for the 
implementations  in  the  rest  of  the  thesis  are  similar  to  casGoto and  casVal, as 
described in section 5.4.2.1 The interfaces.
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5.5 Truncated exponential backoff

The basic design of truncated exponential backoff is covered in section  4.2.5 Backoff
schemes on page  18.  Unfortunately truncated  exponential  backoff  has  several  often 
overlooked implementation details. The following sections describe those details, the 
variations  of  exponential  backoff  that  have  been  implemented,  and  ends  with  an 
evaluation of those variations.

5.5.1 Implementing truncated exponential backoff

Exponential  backoff  can  be  applied  in  different  ways,  by  changing  when  threads 
backoff,  and the  conditions  for  when  the  delay duration  may increase  or  decrease. 
Listing 16 shows how we represent these actions in code form, and listing 17 shows an 
example of applying truncated exponential backoff:

class Backoff {
  mask;

  void spin() {
    if(mask != 0) {
      spinTime = (rand() & mask) * slotSize;
      delayFor(spinTime);
    }
  }

  void success() {
    mask = mask / 2;
  }

  void failure() {
    mask = (mask * 2 + 1) & largestMask;
  }
};

Listing 16:Basic interface used to apply truncated exponential backoff

while(1) {
  b.spin();
  if(tryOperation()) {
    b.success();
    return;
  }
  b.failure();
}

Listing 17:A possible application of truncated exponential backoff, to an operation that 
can fail. The backoff scheme is used through a Backoff object b,

In listing 16 mask is a variable that defines the upper bound for the number of slots that 
the current thread can delay for.  largestMask is an upper bound for  mask, that must 
satisfy largestMask=2n –1, n∈ℕ ,largestMask ∝ p , where p is the number of CPUs.
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In order  to  back off  for  an appropriate  amount  of  time,  each  thread  should  store a 
Backoff object, for each object with a different level of contention.

A problem with truncated exponential backoff, is that it requires tuning slotSize and 
largestMask, in order to get good results. Unfortunately different systems may require 
different settings to get good performance.  slotSize needs to be tuned such that the 
smallest backoff period is sufficient to provide some impact on the level of contention, 
without backing off too much.  largestMask needs to be large enough to handle the 
highest  levels  of  contention,  but  not  so high  that  changing levels  of  contention,  or 
overestimates  of  contention,  harm  the  throughput.  Another  problem  with  truncated 
exponential  backoff  is  that  just  adding  the  code  for  backing  off,  might  harm 
performance, especially if the operation being attempted is fairly simple. This issue can 
however be reduced by ensuring that the compiler optimizes the code for the case where 
no backoff is necessary.

The following paragraphs describe ways meet the requirements of  largestMask, and 
implement ways to implement the delayFor spin loop.

The constraints for largestMask can be satisfied by setting:

largestMask=2round (k + log2 p)
−1 , or largestMask=nearestPowerOfTwo (k⋅p) –1

Where p is the number of CPUs, and k is a constant for tuning the variable.

Calculating ⌊ log2⌋  of positive integers is equivalent to finding the most significant set 
bit. This is in turn equivalent to counting the number of leading zeros in the integer, and 
subtracting it from the bit length of the integer.  Rounding to the nearest power of two, 
and counting the number of leading zeros, can be implemented fairly efficiently with 
regular  code  [Anderson09].  Such  functions  are  also  available  as  builtins  for  some 
compilers. The implementations covered in this section use the GCC compiler builtins 
for  counting  the  number  of  leading  zeroes.  Using  the  builtin  function  has  certain 
advantages. The result can be calculated at compile-time for constants, and for variables 
it ends up compiling to a single AMD64's bitScanReverse (BSR) instruction. BSR returns 
the most significant bit set in a register, and sets the zero flag, if the register is 0.

Delaying for a number of slots can be implemented with a simple spinning loop using a 
counter, assuming the loop is not optimized away. Using a simple spinning loop is fairly 
easy,  and  it  is  possible  to  have  loops  that  delay for  very  short  periods  of  time.  A 
disadvantage of such a loop is that it  might produce wildly different spinning times, 
because the spinning thread may be preempted while  spinning,  causing extra  delay. 
Instead  of  delaying  with  a  regular  counter,  one  can  use  architecture  specific 
performance counters, to tell how long the thread has waited for, and spin until the loop 
has waited for sufficiently long time. AMD64 has such a time-stamp counter, that can be 
read with the RDTSC instruction.

While  a  thread  is  delaying,  it  could  also execute  the  PAUSE instruction.  The  PAUSE 
instruction, was introduced to reduce power consumption of threads in spin loops, by 
having the CPU wait for number of cycles. While the CPU waits it may reduce power 
consumption, and possibly free resources for CPUs that are physically close to it.



43 5.5.2Modifications to truncated exponential backoff

5.5.2 Modifications to truncated exponential backoff

Truncated exponential backoff is fairly simple, and tends to provide decent protection 
from contention.  However at very high levels of contention,  even the best truncated 
exponential backoff schemes tend to degrade in performance. The following sections 
look at various modifications that might improve the performance at high contention 
levels.

One of causes of the performance degradation at high contention levels, is that threads 
might have a fairly high success ratio, even at high contention levels. As long as threads 
have a success ratio of  50 % or less, they will not increase their backoff duration.

For some data structures, one can load the variable, that is about to be changed, before 
the backoff  duration.  This is  basically applying backoff in  a way that  gives a more 
pessimistic view of the level of contention. In addition, such a scheme would give the 
threads  with  longer  backoff  periods  a  lower  probability  of  succeeding.  Therefore  it 
would favor keeping the backoff period short for threads that already have short backoff 
periods. Doing so will lead to fever cache line invalidations, due to less false sharing, 
and it might also lead to less time spent where all threads are backing off.

Another possibility is to use an aging variable to decide whether or not to decrease the 
mask variable when succeeding, as shown in listing 18. Using an aging variable, evens 
out  fluctuations  of  contention,  and  makes  it  easier  to  bias  towards  more  or  less 
pessimistic views of the contention.

class Backoff {
  mask, failureRate;
  
  void spin() {
    if(mask != 0) {
      spinTime = (rand() & mask) * slotSize;
      delayFor(spinTime);
    }
  }

  void success() {
    failureRate = failureRate * 0.75;
    if(failureRate < 0.28) {
      mask = mask / 2;
    }
  }
  
  void failure() {
    failureRate = failureRate * 0.75 + 0.25;
    mask = (mask * 2 + 1) & largestMask;
  }
};

Listing 18:The modified Backoff data structure, that uses an aging variable

The aging of the variable  failureRate can, and should, be implemented with integer 
operations.
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5.5.3 Evaluation of truncated exponential backoff

This section evaluates the performance of the traditional and our modified truncated 
exponential backoff implementations, when applied to a shared CAS based counter. All 
of the backoff schemes use k = 6 and a slot size of 256 cycles. We applied each of the 
backoff  schemes  in  two ways,  as  seen in  listing  19.  The first  application  loads  the 
counter before backing off. The second application backs off before loading the counter. 
As a blind test we also tested the performance of a CAS based counter without any 
backoff scheme. CAS based counters were chosen as the basic test case, because the 
operations are fast, leading to high contention. The test case gives the backoff schemes 
optimal conditions to make an impact on performance.

counter

backoffSR() {
  while(1) {
    b.spin()
    old = counter
    if(CAS(&counter, old, old + id)) {
      b.success()
      break
    }
    b.failure()
  }
}

backoffRS() {
  old = counter
  while(1) {
    b.spin()
    if(CAS(&counter, &old, old + id)) {
      b.success()
      break
    }
    b.failure()
  }
}

Listing 19:Application of backoff on a counter, that either spins before reading (SR), or 
reads before spinning (RS)

Each test was performed using up to 16 threads, where each was bound to a specific 
CPU. In the tests each thread incremented the counter 3.000.000 times. The tests started 
all the threads simultaneously, and each thread is measured the wall-clock time when 
they start  and  finished  their  tests.  Each  of  the  presented  results  are  based  on  160 
measurements. To get 160 measurements, when testing with p threads, the tests is run 
160 / p times.
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System name Acer Aspire 4820TG

Ram 4 gb

OS Windows 7 64 bit

Processors Intel Core 5 M450@2.4GHz (4 CPUs)

Compiler GCC (TDM-64)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG 
-fopenmp -Ofast -fwhole-program 
-static -flto -fno-align-functions 
-fno-align-labels -fno-align-loops 
-fno-align-jumps -s

Table 11:A description of the platform for running the tests

Graph 4: Thread total throughput with different backoff schemes

Graph 4 shows the results of running the tests on the system described in table 11. The 
following 4 observations are immediately obvious from the results:

1. Not using any backoff scheme when accessing a contended resource, yields a 
much lower throughput, than using a backoff scheme.

2. The RS solutions are up to twice as fast as the corresponding SR solutions.

3. The RS solutions have decreasing average latency.

4. Using the modified backoff scheme provides up 15 % higher throughput, than 
the original.
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The first observation should not come as a surprise. It shows that having the threads 
back off, if the resource is contended, can reduce the average latency of operations.

The  size  of  the  gap  between  the  average  latency  of  the  RS  and  SR  solutions,  is 
somewhat  surprising.  As  previously  mentioned,  the  RS  applications  have  a  more 
pessimistic view at the contention. RS applications also and tend to favor short backoff 
periods for threads that already have short backoff periods. Doing so leads to lower 
average latency for two reasons, the actual contention is reduced more aggressively, and 
some of the threads might finish their operations earlier than others. The observation 
that the RS solutions have decreasing average latencies can also largely be explained by 
some of the threads finishing their operations significantly earlier.

The last observations shows, as we argued, that using an aging variable, to decide when 
to reduce the backoff duration, can lead to lower contention.

5.6 MCS locks

This section describes the locks used to compare performance of lock based and lock-
free data structures, throughout the rest of this thesis. The locks are basically MCS spin 
locks,  that  use  the  modified  truncated  exponential  backoff  scheme,  when acquiring 
locks.  In  this  section  describe  how  MCS  locks  work,  our  modifications,  and  the 
performance impact of using the different kinds of MCS locks.

5.6.1 Design

MCS locks support acquiring and releasing locks, and they guarantee a queue like first-
in-first-out (FIFO) ordering. This ordering is achieved by storing the order of pending 
acquires as a link based queue. Each element in the queue corresponds to a spinning 
thread,  waiting to  acquire  the lock.  Each spinning thread only needs  to look at  the 
element in front of it in the queue, reducing the locks contention. Illustration 3 shows an 
example of a system with three MCS locks, and four threads.

Illustration 3:3 locks L1, L2, L3, and 4 threads T1, T2, T3, T4.
T4 has acquired L4. T1 has acquired L1, and T2 is waiting for T1 to release L1
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The memory overhead of storing a queue is sometimes used as a reason for avoiding 
MCS locks.  However,  each thread can only wait  on a single lock at  a time,  so the 
memory overhead for using n MCS locks in a p threaded program is Ο(n+ p) .

5.6.2 Implementation

The MCS can be implemented like as shown in listing  20. In the listing each thread 
stores their own QNode locksState, that is inserted into the queue when acquiring, and 
removed from the queue upon release.

class MCSLock {
public:
  class QNode {
    QNode* volatile next;
    volatile bool locked;
  };

  QNode* volatile lock = nullptr;

  void acquire(QNode* lockState) {
    lockState->next = nullptr;
    QNode* prev = fetchAndStore(&lock, lockState);
    if(prev != nullptr) {
      lockState->locked = true;
      prev->next = lockState;
      while(lockState->locked);
    }
  }

  void release(QNode* lockState) {
    if(lockState->next == nullptr) {
      if(compareAndSwap(&lock, lockState, nullptr)) {
        return;
      }
      while(lockState->next == nullptr);
    }
    lockState->next->locked = false;
  }
};

Listing 20:A traditional MCS lock implementation

We propose using a backoff scheme to reduce contention on the lock, when acquiring 
the  lock.  Specifically  we  propose  using  the  modified  exponential  backoff  scheme 
described  in  section  5.5.2.  The  backoff  scheme should  be  applied  in  a  way where 
threads spin before acquiring the lock. Threads increase the spin duration when they do 
not  immediately  get  exclusive  access,  and  they  may decrease  it  when  they do  get 
immediate exclusive access, as seen in listing  21. We advice against using a backoff 
scheme  to  reduce  contention  when  releasing  the  lock,  because  the  lock  should  be 
released  as  quickly  as  possible.  Using  the  backoff  scheme  increases  the  amortized 
memory consumption to: Ο(n+ p⋅c) , where n is the number of threads, p the number 
of threads, and c is the number of backoff objects each thread has to maintain.
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  void acquire(QNode* lockState, Backoff* b) {
    lockState->next = nullptr;
    b->spin();
    QNode* prev = fetchAndStore(&lock, lockState);
    if(prev != nullptr) {
      lockState->locked = true;
      prev->next = lockState;
      b.failure();
      while(lockState->locked);
    } else {
      b.success();
    }
  }

Listing 21:Acquiring MCS locks with a backoff scheme

5.6.3 Evaluation of MCS locks

This section evaluates the performance of the traditional and our modified MCS lock 
implementations,  when  applied  to  a  shared  counter.  The  tests  lock  the  counter, 
increment it, and release the lock, as seen in listing 22. As a blind test we also tested the 
performance of the corresponding OpenMP locks. A counter was chosen as the basic 
test  case,  because the  operations  are  fast,  leading to  high  contention.  By locking a 
counter,  we  get  to  see  how  big  the  overhead  for  locking  is,  when  under  extreme 
contention.

counter
counterLock

lockTest() {
  counterLock.acquire()
  counter = counter + id
  counterLock.release()
}

Listing 22:The test run to evaluate performance of locks

Each test was performed using up to 16 threads, where each was bound to a specific 
CPU. In the tests each thread incremented the counter 3.000.000 times. The tests started 
all the threads simultaneously, and each thread is measured the wall-clock time when 
they start and finished their tests. The each of the presented results are based on 160 
measurements. To get 160 measurements, when testing with p threads, the tests is run 
160 / p times. Based on the measurements we present the average latency per operation.
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System name  HP ProLiant SL165z G7 server

Ram 64 gb

OS Scientific Linux 6.1

Processors 2 x  AMD Opteron 6168 (24 CPUs)

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG 
-fopenmp -Ofast -fwhole-program 
-static -flto -fno-align-functions 
-fno-align-labels -fno-align-loops 
-fno-align-jumps -s

Table 12:A description of the platform for running the tests

Graph 5: Thread total throughput of a shared counter, protected by different locks. mcs are 
user space MCS locks. mcsb are user space MCS locks with the modified backoff scheme. 
omp are the default OpenMP locks for the tested system.

Graph 5 shows the results of running the tests on the system described in table 12.
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In the test case with 16 threads, the threads finish 27 times faster on average, by using  
the backoff scheme when locking MCS locks. In the same case the MCS locks without 
backoff, are on average 2.5 times faster than the default OpenMP locks. The following 2 
observations are immediately obvious from the results:

1. The MCS locks with the new backoff scheme are much faster in the presence of 
contention. 

2. The  MCS  locks  with  the  new  backoff  scheme  increase  the  thread  total 
throughput, when increasing the number of threads.

3. The MCS locks without backoff, are slower than the OpenMP locks at low levels 
of contention, and faster at high levels.

The first observation shows that using the proposed backoff scheme when acquiring 
MCS locks dramatically reduces  contention for locking.  Part  of the reason why the 
backoff scheme produces such good results, is that has been tuned to reduce contention 
for single atomic operations. This makes it ideal for reducing contention on locks with 
very short lock durations.

The second observation can be explained by the fact that we are measuring thread total 
throughput, and not system throughput. The increased thread total throughput, is due to 
some of the threads finishing the test much earlier than other threads. This phenomenon 
is largely due to the use of a pessimistic backoff scheme.

All of the observations also highlight the importance of selecting the right lock for the 
task at hand.

5.7 Summary

In this chapter we have presented the basic building blocks used to implement the data 
structures presented in the remainder of this thesis. Specifically we presented efficient 
ways to access hardware synchronization primitives, ways to reduce context switches, 
and ways to reduce the impact of contention.

We  found  that  using  linear  congruential  generators  with  specific  parameters,  can 
guarantee  that  each  thread  has  a  unique  access  pattern.  We found  that  GCC inline 
assembly  and  goto  assembly  blocks  provide  the  most  efficient  interface  to 
synchronization primitives,  but  compiler  builtins  are  almost  as fast.  We presented a 
modification to truncated exponential backoff, leading to a 15 % higher throughput. We 
presented a lock based on MCS locks, that use the modified backoff scheme to reduce 
the overhead of locking contended resources. The modified locking is highly promising, 
showing  throughput  improvements  of  up  to  2700  %  for  highly  contended  data 
structures.
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6 Static search structure based priority queues

6.1 Introduction

This chapter covers the research we have done into how one can create a lock-free 
quantatized priority queue. We have made the groundwork to create a solution that is 
related to the FunnelTree data structure described in “Combining Funnels: A Dynamic 
Approach to Software Combining” [SZ00]. The FunnelTree uses concurrent stacks and 
counters,  with  fairly  complex  locking  schemes.  As  an  alternative  we  have  also 
implemented stacks and counters that are similar to the data structure described in “A 
Scalable Lock-free Stack Algorithm”, truncated exponential backoff, and a combination 
of the two concepts.

This chapter starts with a description of the concepts we have inherited from, before 
moving on to the specifics of the various concurrent stacks and counters. Throughout 
the  chapter  we  evaluate  the  performance  of  the  various  data  structures  for  current 
AMD64 hardware.

6.2 A static tree structure for priority queues

The paper “Scalable Concurrent Priority Queue Algorithms”[SZ99] proposed using a 
binary  search  tree  with  a  static  structure,  to  store  a  priority  queue,  as  shown  in 
illustration 4. The search tree has counters at each internal node, and containers for the 
prioritized objects  at  each leaf  node.  The counter  of a node indicate  the number of 
objects stored in the left sub tree of the node. The leftmost leafs are the represents the 
objects that should be extracted first.

Illustration  4:An  example  of  a  tree  structure  supporting  8  priorities.  Nodes  with  
numbers are internal nodes, and nodes with letters represent the  contents of leaf nodes.  
Ø is the empty stack.
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Internal* root;
int height;

void insert(Value value, Key key) {
  Node* n = getLeaf(key);
  getLeaf(key)->push(value);
  for(int h = 0; h < height; h++) {
    Internal* p = n->getParent();
    if(n == p->getLeftChild()) {
      p->increment();
    }
    n = p;
  }
}

Value extract() {
  Internal* n = root;
  for(int h = height; h > 0; h--) {
    uint i = n->boundedFetchAndDecrement();//Never decrements below 0
    n = (i > 0) ? n->getLeftChild() : n->getRightChild();
  }
  return ((Leaf*)n)->pop();
}

Listing 23:Operations on a static tree structured priority queue

Inserts proceed from the leaf node representing the stack to insert into, and traverse up 
the tree to the root. Whenever it goes up from a left child it increments the parents 
counter by one, since the insertion into the leaf node added one object to the parents left  
sub tree.

Extractions proceed from root to the leaf it extracts from. To decide the child to descend 
into,  it  attempts  to  decrement  the  counter  of  the  parent  by  1,  without  the  counter 
decreasing  below  0.  If  it  was  possible  it  descends  into  the  left  child,  otherwise  it 
descends into the rightmost child. Upon reaching the leaf it pops an element and returns.

The updating of the counters in the internal nodes is used to keep track of the number of 
elements with a given priority. Insertions proceed bottom up to ensure that the count is 
never incremented before an object is inserted to the leaf. Extractions proceed top down 
to ensure that the count is always decremented before an object is removed. Doing so 
ensures that the counters are always equal to, or less than, the number of objects in the 
leafs of the left sub tree.

The nodes can be stored in an array, where node node at index i has the i⋅2 , i⋅2+1  and 
i /2 , as left child, right child, and parent respectively. Such kind of storage is also often 
used for binary heaps, and avoids storing references to the other nodes.

To reduce contention for the stacks and counters, they are implemented with combining 
funnels.  Combining funnels allow operations to be combined, if  they are similar,  or 
eliminated if they are opposite. For instance two push operations can be combined into 
one  push  operation  that  push  two  values,  and  a  push  and  pop  operation  can  be 
eliminated so that the pusher sends the value being pushed to the popper.
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During  elimination  of  increment and  boundedFetchAndDecrement for  this  data 
structure, it is not strictly necessarily have to ensure linearizability. Specifically it is not 
required that decrementing threads receive the correct values. If a decrement operation 
eliminates with an increment operation, then it has prevented an increment operation, 
implying that there is at least one object in the left sub tree.

The  paper  “Scalable  Concurrent  Priority  Queue  Algorithms”[SZ99] found  that 
implementing a priority queue with combining funnels for the counters and stacks gave 
better  performance  MCS  lock  at  high  contention.  Specifically  they  tested  the 
performance of combining funnels on a simulated MIT Alewife architecture, with up to 
256 processors. They found that when more than 16 processors are consistently working 
on the priority queue, combining funnels significantly outperform MCS locks. 

6.3 Combining funnels

In order to determine if combining funnels are fit for current AMD64 processors, this 
section explores an their design, implementation, and evaluates their performance. Be 
aware that combining funnels are lock based. The implementation is primarily made for 
the purpose of determining if the basic structure of combining funnels, can be applied to 
a highly concurrent priority queues, for current hardware.

6.3.1 Design of combining funnels

Combining funnels allow operations to be combined or eliminated. After eliminating 
operations they exchange data and return without modifying the data structure behind 
the  combining  funnel.  If  a  pair  of  operations  combine,  one  of  the  threads  assume 
responsibility for starting the operation. Before starting the operation, the responsible 
thread will try to combine or eliminate the pair of operations with other another pair of 
operations. Combined pairs of operations can  continue to try to combine or eliminate 
with  other  operations.  For  instance  in  a  system with  64  processors  operations  can 
combine into groups of 2, 4, 8, 16, 32, or 64 operations, and groups of 1, 2, 4, 8, 16, and 
32 operations can eliminate with similarly sized groups of opposite operations.

Combining funnels can generally be applied to data structures whose operations can be 
efficiently combined or eliminated. The only applications of combining funnels that we 
have found described in prior work, are for array based stacks, and possibly bounded 
counters.

Operations find other operations to combine or eliminate with by attempting to collide 
with them, as shown in listing 24.
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width = getWidth(depth)
r = rand() % width
q = swap(&layer[depth][r], id)
if(q == NOBODY) {
  return;
}
if(CAS(&location[id], desc, NOTHING)) {
  if(CAS(&location[q], desc, NOTHING)) {
    // Collided with q
    … decide to combine or eliminate with q
  } else {
    location[id] = desc
    … spin and give other a chance to collide with you
  }
} else {
  // Someone collided or eliminated with this thread
  … wait for the other thread to get access, then do your part
}

Listing 24:Pseudo-code for attempting collision

The following is a description of the used variables, and functions:

depth is log2  of the number of operations in this group. id is this threads id. layer is a 
per  data  structure globally visible two-dimensional array,  used to  find other  groups. 
Groups at layer i describe groups of 2i  combined operations. location is an array that 
maps to a per thread description of the object and depth that it currently operates on. 
desc is  a  description  of  the  object  and  depth  that  it  currently  operates  on. 
getWidth(depth) returns the width of the layer at  the given depth multiplied by a 
factor  that  represents  the  threads  guess  at  the  amount  of  contention  for  the  data 
structure.  random(0, width) returns a uniformly distributed random number in the 
range [0 ;width [ .

Before attempting to combine, the thread should set its  location field, to specify its 
current operation, so other threads can collide with it. In the uncontended case, threads 
should access the data structure, without affecting the layers of the combining funnel. 
As the contention estimate increases, threads should attempt to collide more times, and 
use a larger fraction of the layers for attempting collisions. After each failed collision 
attempt, threads enter a backoff loop, giving other threads a chance to collide with them. 
The duration of the backoff loops should be tuned for the given machine. The number of 
attempted collisions is maintained in a manner similar to truncated exponential backoff.

After  a  thread  has  finished  attempting  to  collide,  it  removes  the  description  of  its 
operation, and attempts to access the underlying data structure, as per listing  25. For 
counters the operation is  performed with a regular  fetchAndAdd operation,  or  CAS 
operation for the bounded counters. After the operation, the thread sends results to the 
group. Accessing the stacks is more complicated.

Each stack has a stack pointer, and a counter for queuing up the pending operations, in 
addition to the stack itself. The queue is maintained through the fields stack.ticket, 
and  stack.serving,  forming a ticket  lock  [RK79].  Listing  26 shows how threads 
handle access to the stack, Once a thread has access to the stack it does the following:
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1. Inform its group

2. Wait for its turn in the queue

3. Tell the group to start

4. Perform its part of the operation

5. Wait for the group to finish

6. Let the next group start.

Communication in the group is handled through simulated message passing, where each 
operation has a responsibility to send messages to the operations that it combined with.

location[id] = desc;
while(1) {
  for(uint attempt = 0..attempts[id]) {
    … try to collide
  }
  if(&CAS(location[id], desc, NOTHING)) {
    if(tryOperation()) {
      … possibly decrease attempts[id] and accessed layer width
    } else {
      … possibly increase attempts[id] and accessed layer width
    }
  } else {
    … wait for the other thread to get access, then do your part
  }
}

Listing 25:The basic structure of combining funnels

if(!tryLock(stack.lock)) {
  … go back to colliding
}
sp = stack.pointer
t = stack.ticket
stack.pointer += operations_in_this_group
stack.ticket++
releaseLock(stack.lock)
… pass a stack pointer to the operation this thread combined with 
based on sp
while(stack.serving != t);
go[id] = operations_in_this_group
… perform the stack operation
while(go[id] != 0);
stack.serving++            // let the next group of operations start

Listing 26:Getting access to a stack behind a combining funnel
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6.3.2 Implementation of combining funnels

There are a some issues to consider when implementing combining funnels. The issues 
addressed  in  this  section  are  mainly  related  to  the  layout  of  the  data,  and  the 
synchronization.

The layout of the data has a significant effect on performance, due to the performance 
implications of cache misses and false sharing. False sharing is especially problematic, 
because the threads communicate, by sending messages, and attempting to collide with 
one another. This communication is performed by writing to memory locations, that are 
likely to be in other threads  caches, causing cache line invalidations. To reduce such 
issues, the following 4 measures have been taken:

1. All data that is only accessed by one thread, is stored on the stack.

2. All  threads have their  own data structure used for communication.  The data 
structure is aligned to a cache line.

3. Other concurrent data structures, such as the layers of the funnel, and the data 
structure behind the combining funnel, are stored on separate cache lines.

4. The layer is stored as a 1 dimensional array. The maximum width of the layer at 
height i is w i=2h−i  where h is the height of the funnel. A look up at (i, j) in the 
2 dimensional layer, corresponds to a look up at: 2 n−wi+ j .

All AMD64 processors have L1 and L2 data cache line sizes of 64 bytes, according to 
the AMD64 instruction set [AMD09]. This guarantee makes it fairly easy to ensure that 
the data is aligned at compile-time.

The synchronization used in the combining funnels is fairly complex, and it may have 
significant overhead in some cases. To improve on this, one could do the following:

1. Do not  have threads  publicly declare the operation they want  to  perform, in 
cases where contention is low. In such cases the cost of retracting the operation 
may be significant compared to accessing the underlying data structure.

2. It is possible to avoid checking if collision partners exist. This can be done by 
having  communication  fields  for  a  dummy  thread,  that  never  performs 
operations, and initialize all fields in the layers to point to the dummy thread.

3. When  combining or  eliminating  with  another  group of  operations,  do  so  by 
setting their operation field to a representation of the current group operations. 
That way the other group might not have to wait as much.

4. Do not  use  an  explicit  lock  for  the  stack  pointer/ticket  counter,  use  a  CAS 
operation to update them instead.

5. Allow several groups to start their operations on stacks early, if the group ahead 
of them in the queue is of the also allowed to start, and is performing a similar 
operation. That is several groups of pushes can operate concurrently, or several 
groups of pops can operate concurrently, but pushes and pops cannot operate 
concurrently.
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attempt = 0
while(1) {
  if(attempt == attempts[id]) {
    if(tryOperation) {
      … possibly decrease attempts[id] and accessed width
    } else {
      … possibly increase attempts[id] and accessed width
    }
  }
  location[id] = desc
  if(attempt != 0) {
    … spin and give others a chance to collide with you
  }
  if(CAS(&location[id], desc, scramble(id))) {
    while(1) {
      width = getWidth(depth)
      r = random(0, width)
      q = swap(&layer[depth][r], id)
      if(CAS(&location[q], desc, scramble(id))) {
        // Collided with q
        … decide to combine or eliminate with q
      } else {
        break
      }
    }
  } else {
    // Someone collided or eliminated with this thread
    … do your part, possibly wait for the other thread
  }
}

Listing 27:Combining funnel code structure with the first three improvements

The 5th improvement can be implemented by keeping an additional counter on the stack, 
that counts the number of similar operations that are enqueued after each other. The 
counter is updated together with the stack pointer and ticket counter. For instance if a 
pushing thread can tell that n other groups of pushes are ahead of it in the queue, then it 
knows that it can start its operation when  stack.serving – ticket – n≤0 .  This change 
also means that the serving variable has to be updated with read-modify-write updates, 
in order to ensure its consistency.

When implementing the spin loop for testing if group has access to the stack, one should 
be aware that in C and C++ the result of signed integers overflowing is undefined. The 
spin loop is particularly problematic to express properly after the 5th improvement.

6.3.3 Evaluation of combining funnels

This section evaluates the performance of the combining funnels for stacks and bounded 
counters.  The  combining  funnels  are  separated  into  by  whether  or  not  they  have 
synchronization improvement 1. All other improvements are implemented for all of the 
combining funnels.  The tests are performed as per listing 28. Stacks alternate between 
pushing  and  popping  elements.  Counters  alternate  between  incrementing  and 
decrementing.  For  reference  we  also  tested  the  performance  incrementing  and 
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decrementing a counter using CAS operations, and fetchAndAdd operations. The tests 
alternate between operations, because it gives optimal conditions for elimination. The 
combining funnels were run with spin durations ranging from 0 to 220 , to find the best 
conditions. These optimal conditions were chosen, because we want to determine if the 
combining funnel mechanism is viable for the tested setup.

counterFunnel
stackFunnel

counter() {
  counterFunnel.inc()
  counterFunnel.dec()
}

stack() {
  stackFunnel.push(val)
  val = stackFunnel.pop()
}

Listing 28: The test case performed for the combining funnels.

Each test was performed using up to 16 threads, where each was bound to a specific 
CPU. Each thread measured the wall-clock time, ran the tested code 300.000 times, and 
measured the wall-clock time again. The tests started all  the threads simultaneously. 
Each of the presented results are based on 160 measurements. To get 160 measurements, 
when testing with p threads, the tests are run 160 / p times. Based on the measurements 
we present the average time that threads spend to complete the test.

System name  HP ProLiant SL165z G7 server

Ram 64 gb

OS Scientific Linux 6.1

Processors 2 x  AMD Opteron 6168 (24 CPUs)

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG 
-fopenmp -Ofast -fwhole-program 
-static -flto -fno-align-functions 
-fno-align-labels -fno-align-loops 
-fno-align-jumps -s

Table 13:A description of the platform for running the tests
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Graph 6: Evaluation of counters, and stacks using combining funnels

Graph 6 shows the results of running the tests on the system described in table 13. The 
following 2 observations are immediately obvious from the results:

1. The performance of the same kind of data structure, can vary greatly depending 
on contention.

2. The use of synchronization optimization 1 improves performance significantly 
in the single threaded case.

One of the things that are not immediately obvious from the results, is that the spin 
durations have a large impact on performance. For instance the bounded counter w i1 
was 10 times faster when using a delay loop of 215 , then with a delay loop of 0 or 218 .

We never see an increase in the systems throughput when increasing the number of 
threads for any of the combining funnels. With a lot of tuning of the spin duration, the 
thread  total  throughput  is  nearly constant.  Based on these  results  we conclude  that 
combining funnels do not produce particularly good results on current hardware. The 
poor results are most likely due to the complexity of the operations.

6.4 Stacks with elimination

The paper “A Scalable Lock-free Stack Algorithm” presented a lock-free stack using 
elimination  to  reduce  contention  and  increase  throughput  [HSY10].  The  stack  uses 
similar principles to combining funnels, but it is generally simpler and avoids locking, 
so such a data structure might be more suitable for current hardware. Additionally the 
stack is a link based stack, making it more attractive for practical use.
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The  following  sections  describe  the  design,  implementation  and  evaluation  of  such 
stacks. Again the implementation is primarily made for the purpose of determining if 
such a scheme is suitable for current hardware.

6.4.1 Design of stacks with elimination

Operations on the stack alternate between trying to do an operation on the stack, and 
trying to eliminate with an opposing operation, until either succeeds, as per listing 29.

In general  elimination is  fairly simple to  apply to lock-free data  structures,  without 
harming  the  lock-free  property.  The  only  requirement  is  that  both  parties  in  the 
elimination can determine the operation that was eliminated, without waiting for the 
other party.

The operations can be made ABA safe by using tags or any kind of memory reclamation 
scheme, similar to what is described in the section  4.1.3 The ABA problem. Finding 
elimination partners  works in a  fashion that  is  similar  to combining funnels,  as  per 
listing 30.

while(1) {
  if(tryToPerformStackOperation) {
    … return the result if any
  }
  if(tryElimination()) {
    … return the result if any
  }
  … spin for a while
}

Listing 29:Basic structures of the stacks

There are three main differences from combining funnels:

1. By not using combining, there is no need for message passing and having a 
separate layers for each group size.

2. The  description  of  the  operations  are  stored  in  ThreadInfo objects.  These 
object stores a thread id, and the operation, rather than the object and the group 
size.

3. Threads only try to eliminate with threads performing the opposite operations.

One  should  be  aware  that  the  version  of  the  paper  from 2004  has  an  issue  in  the 
description of the elimination,  that is  fixed in the 2010 version.  The descriptions of 
operations are stored and passed to other threads by reference. If the ThreadInfo object 
can be reused, then a popping operation that eliminates a pushing operation, may read 
another operation after the elimination. The possible race condition is prevented in the 
2010 version by allocating new ThreadInfo objects per operation. The problem could 
also have been solved by storing the description of the operation by value instead.
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location[id] = desc
r = random(0, width);
q = swap(&collision[r], id);
ThreadInfo* qdesc = location[q]
if(qdest->id == q && qdesc->operationType != desc->operationType) {
  if(CAS(&location[id], &desc, NOTHING)) {
    if(CAS(&location[q], qdesc, id)) {
      // Eliminated with q
      … q's operation is in qdesc
    } else {
      … possibly increase width, try to operate on the stack again
    }
  } else {
    // Someone eliminated with this thread
    … the eliminators operation is in desc
  }
}
… spin for a while and give others a chance for colliding with you
if(!CAS(&location[id], &desc, NOTHING)) {
  // Someone eliminated with this thread
  … the eliminators operation is in desc
}

Listing 30:Attempting elimination for stack operations

6.4.2 Implementing stacks with elimination

There are a some issues to consider when implementing stacks with elimination. The 
issues addressed in this section are mainly related to memory management, the layout of 
the data, and access patterns of the data structure.

Our implementation uses tags on the stack top pointer, rather than hazard pointers to 
avoid ABA problems. Nodes are allocated from thread local free lists, and every thread 
reuses the same ThreadInfo objects, to keep memory reclamation simple and fast. To 
avoid  the  race  condition  mentioned  in  6.4.1Design  of  stacks  with  elimination,  the 
description of the operation is passed by value during elimination.

The layout of the data structure has been optimized to reduce false sharing, in order to 
deal  with  high  contention  efficiently.  4  measures  have  been  taken  to  reduce  false 
sharing:

1. Every element of the collision and location arrays are aligned to cache lines.

2. Every node for the stack is aligned to cache lines.

3. The pointer to the top of the stack is aligned to a cache line.

4. All data that is only accessed by one thread is stored on the stack.

It might be possible to reduce the contention more significantly by starting out trying to 
eliminate, instead of starting out trying to access the stack. Another way of reducing 
contention could be remembering the stack top pointer in between attempted operations. 
Doing  so  would  reduce  the  number  of  loads,  at  the  expense  of  the  chance  of 
successfully updating the stack. Both of these suggestions do not guarantee performance 
improvements, so their effect is documented in the evaluation section. Depending on the 
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level of contention, it might also make sense to move the delay loops from the places 
described in the original paper, to before trying to perform operations on the stack.

6.4.3 Evaluation of stacks with elimination

This  section evaluates the performance of the stacks with elimination.  The tests  are 
performed as  per  listing  31.  The test  code  alternates  between pushing and popping 
elements, because it gives optimal conditions for elimination. The stacks were run with 
spin  durations  ranging  from  0  to  222 ,  to  find  the  best  conditions.  These  optimal 
conditions were chosen, because we want to determine if the stacks are viable for the 
tested setup.

stack

test() {
  stack.push(val)
  val = stack.pop()
}

Listing 31: The test case performed for the stacks with elimination

Each test was performed using up to 16 threads, where each was bound to a specific 
CPU. Each thread measured the wall-clock time, ran the tested code 300.000 times, and 
measured the wall-clock time again. The tests started all  the threads simultaneously. 
Each of the presented results are based on 160 measurements. To get 160 measurements, 
when testing with p threads, the tests are run 160 / p times.

System name  HP ProLiant SL165z G7 server

Ram 64 gb

OS Scientific Linux 6.1

Processors 2 x  AMD Opteron 6168 (24 CPUs)

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG 
-fopenmp -Ofast -fwhole-program 
-static -flto -fno-align-functions 
-fno-align-labels -fno-align-loops 
-fno-align-jumps -s

Table 14:A description of the platform for running the tests
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Graph 7: The thread total throughput of the various stack implementations

Graph 7 shows the results of running the tests on the system described in table 14. The 
following 3 observations are immediately obvious from the results:

1. The fastest stack in most cases, is the one most similar to the original stack with 
elimination.  This particular stack achieved its best  result  when using a delay 
loop of 220  iterations.

2. The stack  with  reduced loads  scales  the  best,  but  it  performs poorly at  low 
contention levels. This stack also achieved its best results when using a delay 
loop of 220  iterations.

3. The stacks that try to eliminate, or enter a delay loop prior to accessing the stack 
have very poor performance. This is especially true when increasing the size of 
the delay loop.

Observations indicate that the placement of the elimination, and backoff loops in the 
original data structure, give the best performance. The observations also indicate that 
the most scalable stacks, are the stacks with use the longest delay periods.

The results indicate that the stacks with elimination require very long backoff periods, 
to get good scalability.  In a more realistic setup, it might not be acceptable to have 
threads spin for a million iterations whenever they fail a CAS operation. In addition, 
when delaying for such long periods, the threads rarely get an opportunity to eliminate. 
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6.5 Truncated exponential backoff with elimination

This  section  presents  stack  implementations  that  use  a  combination  of  truncated 
exponential backoff and elimination. Such a scheme should be better at dealing with 
different levels of contention, and it can give better possibilities for elimination. This 
section presents changes to the modified truncated exponential backoff scheme from 
section  5.5.2. The changes allow threads to eliminate, rather than spin, while backing 
off.

This section primarily focuses on the issues raised by using elimination in a backoff 
scheme,  and  efficient  implementation  of  eliminations.  The  inner  workings  of 
exponential backoff are covered in section 5.5Truncated exponential backoff.

6.5.1 Implementing elimination

To perform an elimination, in general, threads need to find an elimination partner, and 
the two threads must transfer a value between one another. Depending on the operation, 
the thread will either send or receive a value. The elimination partners always has one 
sending and one receiving thread.

The following basic structure is used for an attempting elimination:

1. Declare operation.

2. Publish that you are looking to eliminate.

3. Pick a partner to eliminate with.

4. Attempt to retract the operation declaration, if this fails the operation has been 
eliminated by some other thread.

5. Attempt to exchange operation declaration with the partner, if this succeeds, the 
operation has be eliminated.

6. Failed to eliminate.

The actual implementation of the elimination is described in listing 32. The threads use 
a collision array is for finding elimination partners, and an elimination array is used for 
declaring  and  transferring  operations.  In  a  program with  n threads,  the  n /  2  first 
elements of the collision array is used to store sending thread ids, and the next  n / 2 
elements store the receiving thread ids. Threads attempt to find elimination partners, by 
writing their id to a random element in the collision array, and reading a partner id from 
the other part of the collision array.

The  elimination  array  has  an  element  per  thread.  In  the  elimination  array,  threads 
describe their operation in the least significant bits, and a counter in the most significant 
bits. The counter is used to ensure that at most one thread can receive a value being 
sent.
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n;
collision[n];
elimination[n];

send(id, val) {
  while(isBackingOff()) {
    elimination[id] = val;
    r = rand() % (n/2);
    collision[r] = id;
    partner = collision[r+n/2];
    if(fetchAndStore(&elimination[id], NO_OP) != val)) {
      // Someone took the message
      return true;
    } else if(compareAndSwap(&elimination[partner].ls, RECIEVING_OP, 
val | RECIEVED_OP)) {
      // Sent the message to partner
      return true;
    }
  }
  return false;
}

recieve(id) {
  while(isBackingOff()) {
    elimination[id] = RECIEVING_OP;
    r = rand() % (n/2);
    collision[r+n/2] = id;
    partner = collision[r];
    data = fetchAndStore(&elimination[id], NO_OP);
    if(data != RECIEVING_OP) {
      // Recieved a message from someone
      return data & ~RECIEVED_OP;
    }
    data = fetchAndAdd(&elimination[partner], COUNT_MASK);
    if((data & COUNT_MASK) == 0) {
      // Took a message from partner
      return data & ~COUNT_MASK;
    }
  }
  return DID_NOT_RECIEVE;
}

Listing 32:Pseudo-code for elimination of sending and receiving threads

This form of elimination has a 3 of advantages:

1. Threads have a higher probability of finding partners with the opposite type of 
operation.  This  is  achieved  because  the  collision  array  is  separated  into 
elements for sending and receiving threads.

2. The eliminations largely avoids using CAS operations.

3. The  eliminations  do  not  read  the  contents  of  memory  locations  before 
performing read-modify-write operations on them. This reduces the chance of 
cache misses.
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6.5.2 Backoff with elimination

When combining elimination with the modified exponential backoff, there are a couple 
issues that needs to be addressed.

The first issue is that when a thread successfully eliminates, it can finish an operation 
before backing off completely. This might cause threads to access the stack earlier than 
normal, since they can get multiple chances of picking a low delay period.

The second issue is that threads should not read anything from the data structure, when 
the threads are backing off. Specifically if threads eliminating on the counters read the 
current value of the counter, it may impact performance.

The first issue is resolved by storing when the thread would be allowed to access the 
stack, according to the regular backoff scheme. The time that the thread is supposed to 
back off until, is updated whenever the thread attempts to perform an operation, unless 
the  mask of the thread is 0. We resolved the second issue by giving the decrementing 
operation the value 1, and ignoring the actual value of the counter. Doing so does not 
violate  the  correctness  of  the  operations,  as  explained  in  section  6.2A static  tree
structure for priority queues.

6.5.3 Evaluation

This section evaluates the performance of the stacks that with combined backoff and 
elimination schemes. We applied each of the schemes in two way. The first application, 
referred to as  RS, reads  the stack head before backing off.  The second application, 
referred to as SR, backs off before reading the stack head. The tested code alternate 
between pushing and popping elements,  as seen in  listing  33.  The test  was chosen, 
because  it  gives  optimal  conditions  for  elimination,  and  we  want  to  determine  if 
elimination stacks are viable for the tested setup. As a blind test we also tested stacks 
without  backoff,  and  stacks  with  backoff,  but  without  elimination.  The  stacks  with 
backoff were tested using both the RS and SR scheme.

stack

testStack() {
  stack.push(val)
  val = stack.pop()
}

Listing 33: Test case for evaluating performance of stacks

Each test was performed using up to 16 threads, where each was bound to a specific 
CPU. Each thread measured the wall-clock time, ran the tested code 300.000 times, and 
measured the wall-clock time again. The tests started all  the threads simultaneously. 
Each of the presented results are based on 160 measurements. To get 160 measurements, 
when testing with p threads, the tests are run 160 / p times.
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System name  HP ProLiant SL165z G7 server

Ram 64 gb

Processors 2 x  AMD Opteron 6168 (24 CPUs)

OS Scientific Linux 6.1

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG 
-fopenmp -Ofast -fwhole-program 
-static -flto -fno-align-functions 
-fno-align-labels -fno-align-loops 
-fno-align-jumps -s

Table 15:A description of the platform for running the tests

Graph 8: Thread total throughput of stacks with elimination and/or backoff. RS refers to 
backoff schemes where the head of the stack is read before spinning, and SR to reading it 
after spinning.

Graph 8 shows the results of running the tests on the system described in table 15. The 
following 4 observations are immediately obvious from the results:

1. Applying the backoff schemes in an SR fashion is more scalable than the RS 
fashion.

2. Applying a backoff scheme with elimination, in an RS fashion gives very poor 
results.

3. Eliminating in the SR fashion provides less than a 4 % speedup, when compared 
to spinning.
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4. Applying the backoff schemes in an SR fashion, is up to 36 % faster than the 
original stacks with elimination.

The first observation is somewhat surprising, given that we found RS schemes to scale 
better for counters. We are unsure exactly why RS is better for counters, while SR is  
better for stacks. It may be related to the fact that stack operations involve multiple 
memory locations, while a counter is a single field. We would also like to highlight that 
this  test  almost achieves twice as high thread total  throughput for 16 threads,  when 
compared to a single thread.

The poor results from the eliminateRS test, can be explained by the fact that it is not 
backing off properly. Whenever an operation is eliminated, the its thread will make an 
additional read of the stack header. The additional reads increases contention, leading to 
poor results.

The third observation indicates  that  for  the given setup,  elimination cannot  provide 
significant improvements to throughput of stacks. The results do not state whether or 
not it makes sense to apply elimination on other hardware or data structures though. 
Additionally one might get a larger improvement, by improving the elimination scheme. 
One possibility that we have not worked with,  is  trying to bias elimination towards 
eliminating operations from CPUs that are physically close.

6.6 Conclusion

In this section we have looked at a fairly simple priority queue built from stacks and 
counter, described in the paper “Scalable Concurrent Priority Queue Algorithms”.

To  support  high  levels  of  concurrency,  we  have  investigated  ways  of  reducing 
contention.  We  reduced  contention  through  backoff  schemes,  and  mechanisms  for 
reducing the number of operations. We found that adding an elimination mechanism to 
the modified version of the truncated exponential backoff scheme gave the best results. 
Unfortunately we found that the performance gain from eliminating during truncated 
exponential backoff, is negligible on current hardware, for the data structures tested.

The poor results achieved when using elimination, may be explained by the fact that 
elimination  is  fairly  slow,  compared  to  the  operations  of  the  data  structures  tested. 
Future work in applying elimination mechanisms, could focus on applying it to more 
expensive operations. Another promising topic, would be optimizing the mechanisms to 
take take advantage of CPUs physical locality.
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7 Investigation of wide search trees

7.1 Overview

This section covers the research into how one can create a lock-free B-tree, and how it 
can be applied as a priority queue.

Our solution is  related to the data structures described in the papers “Non-blocking 
Binary  Search  Trees”  [EFRB10],  “Non-blocking  k-ary  Search  Trees”  [BH11] and 
“Locality-Conscious  Lock-Free  Linked  Lists”  [BP11].  In  particular  it  uses  a 
synchronization and helping scheme that is based on the schemes used in the two latter 
papers.

This  chapter  starts  with  a  description  of  the  non-blocking  k-ary  search  tree  data 
structure, because it is largely the foundation for our solution. The chapter then moves 
onto how we applied a similar data structure and synchronization scheme, to a B-tree 
like data structure. Since the data structure and synchronization is most similar to “Non-
blocking k-ary Search Trees”, we will briefly explain how their solution works. Then 
we will describe how we applied a similar scheme to B-trees.

7.2 Non-blocking k-ary search tree

The non-blocking k-ary search tree, stores values in its leaf node. As a search tree it 
supports  a  dictionary interface,  where key-value pairs  can be inserted and removed. 
Keys are unique, so there can only be one key-value pair for a given key. The actual 
data stored, can be seen in listing 34.

class Node {
  Key key[k-1];
}
class InternalNode extends Node {
  Status* status;
  Node* nodes[k];
}
class LeafNode extends Node {
  int size
  Value* value[k];
}

Listing 34:Java-like pseudo code, defining the data structures layout

Internal nodes have k child pointers and k-1 separator keys satisfying:

largestKey(nodesi)< keyi∧(key i≤keyi+ 1∨i> k−1)

Leaf nodes may have up to k values and keys forming pairs as follows:

pair i=< keyi , valuei > .

Illustration 5 shows an example of a 3-ary tree.
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7.2.1 Synchronization

Illustration  6 shows a flow graph of the operations.  Any operation that  changes the 
search tree, or any value stored within it, is done using help locking, as described in 
4.2.3Providing non-blocking algorithms. The data structures assumes the presence of a 
garbage collector. This allows it to avoid the ABA problem, and problems related to 
memory reclamation, for data stored accessed as references.

The helping scheme works by setting the status fields of the parents of all involved 
nodes to point to an object describing the pending operation. The status field effectively 
works  as  a  continuation  for  the  operation.  The order  the  status  fields  are  set  in,  is 
specific to the operation being attempted.

Before setting the status field, it checks that the old status field points to a “no pending 
operations” status. The status field is set with a CAS operation, so that it fails if the 
node gets a new pending operation. If there is a pending operation on a node involved, it 
will  instead  cleanup any set  status  fields,  help  the pending operation,  and retry the 
operation.
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They use the following 4 status types: 

1. ReplaceFlag:  Used  to  specify  that  a  parent  is  about  to  replace  one  of  its 
children, with another child. Contains pointers to the child being replaced, the 
child its being replaced with, and the parent of the child.

2. PruneFlag:  Used to specify that a grandparent is about to replace one of its 
children with a grandchild.

3. Mark: Used to specify that a parent is being replaced by one of its children.

4. Clean: Used to specify that there are no pending operations.

In the simplest cases, insertion and removal is handled by replacing the leaf node, with a 
new leaf node with one entry more or less. Before replacing the leaf the parent of the 
leaf node has its status field set to a  ReplaceFlag pointing to the leaf node, and an 
updated leaf node.

When removing the last entry from a leaf node, whose parent has only 2 non-empty 
children, a “pruning” removal is performed. Pruning removals first set the grandparent's 
status field to a PruneFlag, then setting the parents status to a Mark status, and finally 
replacing the parent with its only nonempty child.

When inserting into a full node, they perform a “sprouting” insertion, where the leaf 
node is replaced by an internal node, with a leaf child for each entry in the old leaf node. 
Sprouting  insertions  set  the  status  field  of  parent  in  the  same  manner  as  simple 
insertions and removals.

After finishing an operation, the status field of the new child’s parent is reset to a Clean 
state.
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7.2.2 Issues with the k-ary search tree

The k-ary search tree provides  no form of balance guarantees.  The lack of  balance 

means that the tree can degenerate into a having a height h=
n
2

, where n is the number 

of key-value pairs in the tree. An obvious way of solving this issue would be to use a B-
tree instead, as the actual data structure is strikingly similar.

The synchronization scheme used in the k-ary tree handles operations in a simple and 
uniform way,  and  it  might  be  possible  to  apply  something  similar  to  B-trees.  The 
synchronization scheme does have 2 disadvantages however.

1. All operations require two CAS operations on the status field of the leaf nodes 
parent, as well as a updating the pointer to the child.

2. All  operations  require  allocation of  at  least  one new  LeafNode and  Status 
object.

The first issue means that at most one operation can make progress on a sub tree of 
height  2  at  any  given  time.  The  second  issue  may  cause  significant  performance 
penalties in the presence of slow memory allocation.

The first issue can be solved by having unordered key-value pairs in leaf nodes, and 
updating  them  directly  with  CAS  operations.  Any  operation  that  depends  on  the 
contents of a leaf node not changing, must instead freeze the every key-value pairs, as in 
“Locality-Conscious Lock-Free Linked Lists”[BP11]. Having to freeze every key-value 
pair is obviously more expensive than updating a field in the parent, but hopefully it will 
not be necessary for common operations.

Allocating Status objects for the operation continuations, could be avoided by storing 
them by value, rather than reference. Doing so will require that the entire continuation 
can fit within a field that can be updated by a single CAS operation.

7.3 B-trees

7.3.1 General properties

B-trees are balanced search trees, storing key-value pairs, where values are stored in 
leaf nodes. All leaf nodes are stored at the same height, and in most implementations all 
nodes except the root are at least half full. The keys of any node are stored in increasing 
order, and every key stored by the tree must be unique.

The density of nodes and the balance of the tree,  is  typically ensured by balancing 
operations on the nodes. If a node becomes too full or to sparse, it rebalances either by 
splitting, merging with a sibling node, or stealing from a sibling node. Splits and merges 
change the number children that the parent has to manage, and may in turn require 
rebalancing of the parent. The root cannot merge, steal or split like the other nodes, 
since it  does not have siblings.  Whenever the root is  too full,  it  creates a new root 
pointing to the old root, and then it splits the old root in two as usual. If the root only 
has a single child, it is replaced with its child.
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The fact that the B-tree can only increase its height by changing the root, ensures that 
the height of every node is constant while it is in the tree. It also ensures that all nodes 
of the same height, also have the same depth.

If every internal node aside from the root has at least k/2 children, then the B-tree can at 
most have a height of k= log k

2

n

7.3.2 Weakened properties

It has been pointed out, that achieving the properties of B-trees in highly concurrent 
implementations, can be problematic [BFGK05]. General schemes for creating lock-free 
data structures can be applied, specifically the scheme in “Locking without Blocking”, 
was applied to a B-tree. The authors of “Locality-Conscious Lock-Free Linked Lists” 
have also submitted a paper for a B-tree that follows the properties of traditional B-trees 
quite closely [Daniels11]. As far as we can tell, the paper has not yet been published.

We find that the main issues with the properties of B-trees, for our uses are:

1. Alternating insertions and removals, can lead alternating rebalancings, because 
the nodes are restricted to being no more than half empty.

2. The keys in leaf nodes are stored in an ordered fashion. Enforcing the ordering 
may require updating the entire node, when adding or removing.

3. Since B-trees are search trees, all keys must be unique. This property conflicts 
with using it as a priority queue.

The first issue can largely be avoided, by allowing nodes to be less than half full. This 
comes at the possible expense of internal memory fragmentation, and the height of the 
tree.  The  second  issue  can  be  avoided by storing  the  keys  in  the  leaf  nodes  in  an 
unordered fashion, to allow updating individual entries in leaf nodes.  Synchronizing 
access to unordered entries, can be achieved similar to the solution found in “Locality-
Conscious Lock-Free Linked Lists”. The third issue can be resolved by storing the value 
of a key-value pair in the least significant bits of the key. This change will obviously 
require longer keys, and it may even make the key size larger than the word size.

To summarize, we hypothesize that it should be possible to create a lock-free B-tree like 
data  structure,  with  good  performance,  that  is  useable  as  a  priority  queue.  This 
hypothesis is based on the structure of B-trees, and the synchronization schemes used in 
the  papers  “Non-blocking  k-ary  Search  Trees”  and  “Locality-Conscious  Lock-Free 
Linked Lists”.  For operations on internal nodes,  a  helping scheme similar  to  “Non-
blocking k-ary Search Tree” can be used. For operations on leaf nodes a scheme similar 
to “Locality-Conscious Lock-Free Linked Lists” can be used. By allowing nodes to be 
less then half full, it should be possible to reduce the frequency of rebalancing. We want 
to  reduce  rebalancing,  since  it  affects  multiple  nodes,  requiring  more  powerful 
synchronization.
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7.4 Lock-free B-tree derivative

In this section we describe our lock-free B-tree based data structure. We start out by 
describing  the  layout  and properties  of  the  data  structure,  then  the  synchronization 
scheme used, present some pseudo-code, and finally explain how it handles memory 
reclamation.

7.4.1 Layout and Properties

The keys of the data structure are 31 bits, the values are 32 bits. The key 0 is reserved to 
represent key-value pairs that have not been set. 

Key-value  pairs  must  be  unique,  but  keys  do  not  need  to  be  unique.
The data structure supports the following 3 operations:

1. void insert(key, value) - inserts the key-value pair

2. uint32_t remove( key min , key max ) - extracts a key-value pair with the key in 
[keymin ;key max] , with the smallest key

3. uint32_t extractSmallest() -  extracts a key-value pair, with the smallest 
key

The remove operations can be used to partition the space of used keys, in order to store 
multiple priority queues inside the same data structure.

The data structure is structured as a search tree, with internal and leaf nodes. The root 
node is a special internal node. It uses rebalancing similar to B-trees, but with a few 
important differences:

1. Rebalancing never steals  key-value pairs, since that would involve too many 
nodes, compared to how much rebalancing is performed.

2. 2 sibling nodes can be merged into 2 rebalanced siblings, to compensate for the 
lack of stealing.

3. Nodes are allowed to be more than 50 % empty, and a leaf node that is less than 
completely full might get split. How empty nodes are allowed to be is a compile-
time constant, and it can be different for leaf and internal nodes.

Nodes that are removed from the tree, are deallocated using a hazard pointer scheme. 
The hazard pointers ensures that nodes are never deallocated or reused, when they are 
visible to any threads, or in the tree. This ensures that the ABA problem does not occur 
for pointer to the child nodes, as described in  4.1.3 The ABA problem. The details of 
how the nodes are reclaimed is described in section 7.7 Memory reclamation.

7.4.2 Layout of nodes

The general data structures used are described in listing 35. In the following sections we 
will describe what their fields are used for. The nodes of the tree are divided into Leaf 
nodes, that have a height of 0, and Internal nodes. Only Internal nodes store their 
height explicitly.
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class Entry {
  uint32_t value;
  uint31_t key;
  uint1_t freeze;
} alignas(uint64_t);

class Leaf : Node {
  volatile Entry entries[KL];
}

class Mark {
  Entry key;
  Internal* parent;
  uint16_t cHeight;
  MarkType type;
}

class Internal : Node {
  uint16_t size;
  uint8_t height;
  Node* volatile c[K_internal];
  Entry s[K_internal - 1];
  volatile Mark m;
}

Listing 35:C++-like declaration for the types used in the lock-free B-tree

An Entry is a key-value pair. Each  Leaf stores  KL unordered key-value pairs, as per 
illustration 7. After a Leaf has been inserted into the tree, the Entries can be updated 
individually  with   read-modify-write  operations.  The  entire  key-value  pair  can  be 
updated in  a  single  CAS operation,  since it  resides  within 64-bits.  It  is  possible  to 
update two adjacent  Entries atomically with  a  CMXCHNG16B instruction,  if  the first 
Entry is aligned on a 128-bit address.

Operations that depend on multiple Entries use their freeze bit, to prevent them from 
changing. All  insert/remove/extract operations,  assume  that  the  freeze bit  is 
unset, and the operations will fail if it is set.

<3,8,0> <9,6,0> <0,0,0> <2,7,0>

Illustration 7:A node with 4 Entries containing the key-value pairs <8,3>, <6,9>, and 
<7,2>, where no Entries are frozen

In  Internal nodes  c stores pointers to for its children, and s[i] specifies the largest 
allowed key-value pair of c[i].  After an Internal is added to the tree, its height, s, 
and  size does  not  change.  The  the  child  pointers,  and  the  Mark can  change,  and 
therefore need to be volatile.

Marks uniquely identify operations involving Internal nodes. The key,  cHeight and 
parent fields are used to identify the nodes involved in the operation. Specifically the 
children  involved  in  the  operation  have  the  height  cHeight,  they can  be  found by 
searching for key, and they have the parent parent.
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MarkType identifies the type of pending operation, and how far along it is, similar to the 
Status class used in the k-ary tree. The following types are used:

• NOT_MARKED: Used to specify that there are no pending operation.

• REBALANCE_STEP2: Used to specify that  a grandchild of the marked node is 
about to be rebalanced.

• REBALANCE_STEP3: Used to specify that a child of the marked node is about to 
be rebalanced.

• REBALANCE_STEP4:  Used to  specify that  this  node is  about to be rebalanced, 
possibly with one of its siblings.

• REBALANCE_STEP5: Used to specify that this node is about to be rebalanced with 
one of its siblings

In order to keep the Marks synchronized, they must fit into 128-bits, so they can set by a 
single CAS instruction. We solved this by storing  Internal pointers in 32 bits, and 
MarkType in 16 bits, giving a total size of 128 bits. Only using 32 bits for  Internal 
pointers reduces the usable address space for Internal objects, but inside an operating 
system it should be sufficient. If a 32 bit address space is too small, one could store 
cHeight and MarkType in 8 bits each, and store the parent reference as a 48 bit index. 
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The height of the child node could also be derived from the height of the marked node, 
and the type of mark, but storing the child height in marks simplifies some of the code.

To simplify management of the tree, it contains an additional “fake root”, above the 
regular root. The fake root is an Internal node with the root as its only child. The fake 
root ensures that all Leaf nodes have grand parents.

7.5 Synchronization

The tree uses two significantly different forms of synchronization depending on the 
operation.
Most operations proceed by searching for a  Leaf node, operating on it, and returning, 
without  any  rebalancing.  Since  such  operations  change  a  single  entry,  they  are 
performed with a  single CAS operation directly on the data.  Before performing the 
CAS, it first checks to see if the entry is frozen. If an entry is frozen the Leaf must be 
rebalanced before the simple operation can proceed.

Entry eOld = entries[i];
if(eOld.freeze) {
  ... rebalance the leaf node
}
if(theOperationCanBePerformedOn(eOld)) {
  if(compareAndSwap(&entries[i], eOld, operate(eOld))) {
    operationSucceeded(eOld);
  }
}

Listing 36:Pseudo-code showing how to attempt operations on Entries in Leafs.

It may be not be possible to apply an operation directly on a  Leaf node, if the  Leaf 
node or its parent is being rebalanced. In such cases the thread will have to help finish 
up the rebalancing. Illustration  10 shows how rebalancing and simple operations are 
used  to  implement  operations  on  the  tree  structure.  One  should  be  aware  that 
rebalancing is significantly more complicated than performing an operation on a Leaf 
node. 

Illustration 9:A flow graph of the algorithms general structure. The edges going into  
“Attempt to rebalance” are taken if the action fails
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7.6 Rebalancing

Rebalancing operations always end up replacing the parent of a node, with a parent 
where one or two of its children have changed. Rebalancing involves the node being 
rebalanced, its parent, and its grandparent. It may also include a sibling to the node 
being rebalanced, unless the child is being split.

In  order  to  modify multiple  nodes,  a  helping  scheme is  used,  similar  to  the  “Non-
blocking  K-Ary Search  Tree”.  The  rebalancing  is  shown in  illustration  10.  First  it 
locates the involved nodes. Then it sets the status field of the involved nodes, in the 
order grandparent, parent, node, sibling. The fields of the mark field is set as described 
in the section 7.4.2 Layout of nodes on page 75.

The  Mark is effectively a continuation for the operation, that any thread can execute. 
When  the  Mark is  set,  it  is  only  changed  by threads  that  attempt  to  complete  the 
operation.  If a thread fails  to change a  Mark, because someone else changed it,  the 
thread will instead help the new pending operation, before retrying its own operation.

Pending operations are described in a unambiguous way through Marks, such that when 
a thread executes a pending operation, one of two things can happen:

1. The thread fails to complete the operation.

2. The thread completes the operation and produces the exact same result as any 
other thread executing it would have.

The  Mark is  unambiguous  in  the  sense  that  it  provides  unambiguous  directions  the 
operation, and all the nodes involved in the operation. The child being rebalanced and 
its parent can be found by searching for the key. If the found parent is different from the 
one in the Mark, then some other thread must have finished the operation. The sibling 
can be determined based on the index of the child. The grandparent can be verified, by 
checking that it has the parent as a child.
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Since  Leaf nodes have no status  field,  their  parents store this  field instead.  This  is 
sufficient, since rebalancing of a Leaf node, would also affect its parent, so the parent 
should  already have its  status  field  set.  Rather  than  setting the status  field of  Leaf 
nodes,  all  their  entries  are  frozen to  prevent  conflicting modifications.  Freezing the 
Entries is retried until successful, so “setting the status field” of a  Leaf node will 
always succeed. The rebalancing is effectively performed as follows:

1. The  grandparents  Mark is  set  to  a  REBALANCE_STEP2 mark,  with  a  CAS 
operation.

2. The parents Mark is set to a REBALANCE_STEP3 mark, with a CAS operation

3.

a) The  childs  status  field  is  set  to  a  REBALANCE_STEP4 mark,  with  a  CAS 
operation, if the node is an Internal node.

b) Every Entry in the child is frozen, if the node is a Leaf

4.

a) If the child is too full, goto step 5.

b) The partners status field is set to REBALANCE_STEP_5 mark, if the partner is 
an Internal node.

c) Every Entry in the partner is frozen, if the partner is a Leaf.

5. Rebalance the children, into one or two nodes

6. Create a new parent with the new children

7. Replace the old parent with the new one

8. Allow for changes to the grandparent

Step  1  and 2  correspond  to  the  first  three  states  of  illustration  9.  Step  3,  4  and 5 
correspond to the boxes Leaf nodes and Internal nodes in illustration 9. Step 6, 7, and 8 
correspond to the last three states of illustration 9. The rebalancing can fail at step 1, 2, 
3, 4, 7, and 8.

If it fails at 1, it must be because grandparent is involved in another rebalancing, so the 
current  threads  help  finish  that  rebalancing  before  retrying  its  own  child  of  the 
grandparent.

If it fails at 7, it must be because another thread finished the operation, so the current 
thread  just  executes  step  8,  to  ensure  that  the  operation  no  longer  blocks  other 
operations, and then it retries its original operation. If it fails at 8, another thread cleaned 
up after the operation, so the current thread should just retry its original operation.

If  an operation fails  at  step 2,  3  or 4,  then it  must  be because another  rebalancing 
operation started on another descendant of the grandparent node.  The current thread 
helps finish the other operation, and then retries its own original operation, rather than 
retrying the rebalancing. It is not necessary to clean up the after the failed rebalancing, 
because it can be finished by any thread at any time.
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7.7 Memory reclamation

As previously mentioned the B-tree uses hazard pointers, also known as safe memory 
reclamation in order to reclaim memory. Hazard pointers are used for reclaiming Leaf 
and Internal nodes. Any other part of the data structure is either in local scope only, or 
assumed to have a well defined lifespan. For instance the tree itself is not reclaimed 
with hazard pointers, only the nodes in it.  Using hazard pointers ensures that nodes 
cannot be deallocated while any thread is allowed to access data inside the node.

We use hazard pointers, because it is the most balanced approach, currently available. It 
is typically the second fastest reclamation scheme, with the second lowest bound on 
unreclaimed memory. Only QSBR is faster, and only reference counting has a lower 
bound on unreclaimed memory. The basic concepts of hazard pointers was covered in 
the section 4.2.2 Hazard pointers on page 14.

In order to apply hazard pointers you need:

1. To implement the algorithms required for hazard pointers [Michael04].

2. To find all the hazardous references and determine the number of objects any 
thread may access at a given time.

3. To implement efficient tests for the global visibility of hazardous references.

The last step can be problematic for arbitrary link based data structures, as described in 
the paper “Efficient and Reliable Lock-Free Memory reclamation based on reference 
counting” [GPST05], but it is possible for this tree based data structure.

7.7.1 Algorithms for hazard pointers

Hazard  pointers  require  the  presence  of  two  serial  data  structures.  The  first  data 
structure must support  insert(void*) and  contains(void*) operations,  where the 
data being pointed to by the parameters must not be accessed. The second must support 
a way to store nodes that are eventually going to be reclaimed. Both data structures have 
an upper bound on the number of objects they will ever need to store.

For the second data structure we use a simple array. The paper suggests that the first 
data structure can be a hash set, if amortized average case running time is a concern, or 
a sorted list, for the sake of simplicity. We use a hash set, because an array backed hash 
set  supporting  the  required  operations  is  as  simple  as  to  implement,  as  a  sorting 
algorithm.

Since the hash set must not access the data pointed to by the pointers inserted into it, we 
use a hash function that hashes the pointer itself. Alternatively one could just truncate 
the pointer, but that would likely cause collision problems, since the pointers cannot be 
assumed to be uniformly distributed. We use hash functions based on “Integer Hash 
Function”[Wang07].  Specifically  we  use  the  “Robert  Jenkins  32  bit  integer  hash 
function” for 32 bit pointers, and “64 bit to 32 bit Hash function” for 64 bit pointers. 
The hash functions are optimized to the specific data size, unlike functions, such as 
CityHash [Google], MurmurHash [Appleby11], or SpookyHash [Jenkins].
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7.7.2 Dealing with hazardous references

When searching in the tree for a given node, it will be necessary to access nodes that  
may be dynamically deallocated. Whenever a search proceeds from a parent node to its 
child, it must be sure that the parent and child are both still allocated (2 references).

Whenever performing an operation on a Leaf, the Leaf node is accessed (1 reference).

Whenever performing a rebalancing operation,  up to 4 nodes may be accessed; two 
child  nodes  being  rebalanced,  the  parent,  and  the  grandparent  of  the  nodes  being 
rebalanced (4 references).

To simplify maintaining the needed hazard pointers, threads keep the acquired hazard 
pointers to the nodes at 3 levels while searching, rather than 2 levels. So once a search 
terminates, the thread will have hazard pointers to the desired node, its parent, and its 
grandparent. If the thread needs to rebalance the found node, then it already has the 
hazard pointers needed, with the possible exception of a neighbor to the desired node. If 
a rebalancing needs to access the neighbor of the node that has to be rebalanced, then it 
acquires a hazard pointer to the node when needed.

7.7.3 Testing for global accessibility

To implement an efficient test for the global visibility of a node, we take advantage of 
the synchronization scheme used. Since hazard pointers are practically only acquired 
during the search, we will start by covering how it is done there. During searches the 
code upholds the following invariants:

1. Whenever a node is no longer visible, the thread restarts the search.

2. Whenever a parent node may no longer be visible, due to ambiguity about how 
far  along a rebalancing operation  is,  the thread  tries  to  help  the  rebalancing 
operation.

3. No hazard pointer is acquired to the fake root node of the tree, as it is always 
present.

4. The child of the fake root is the actual root. Testing the global visibility of the 
root, is simply done by checking that the fake root still points to the root.

5. Testing the global visibility of children of the root, is done by checking that the 
fake root still points to the root, and that the root still points to the child.

6. Testing  for  the  presence  of  child  nodes  further  down  the  tree,  is  done  by 
checking that the parent still points to the child, and that the status fields of the 
parent and grand parent are safe.

7. If the parent is marked with REBALANCE_STEP4 or REBALANCE_STEP5, then the 
parent and grand parent may or may not be present in the tree anymore.

8. If  the  parent  is  marked  with  REBALANCE_STEP3,  and  the  grandparent  is  not 
marked with an operation that is equivalent to the parents mark, then the parent 
is not present in the tree anymore.

Listing  37 shows  how searches  are  performed,  and  how the  invariants  are  upheld. 
Finding the child of an Internal node that might contain a key-value pair, is done with 
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the  findChild function. The function finds the relevant descendant of an  Internal 
node using binary search on s. This is possible because s contains a sorted list of upper 
bounds on the keys that the children can contain.  The search is quite similar to the 
search used in “Lock-Free Multiway Search Trees” [SR10]. The memory barriers can be 
implemented with an MFENCE instruction, or by loading the hazard pointer after storing 
it, and executing LFENCE.

Outside of searching, it may be necessary to acquire a hazard pointer to a sibling of the 
node being rebalanced. This occurs after marking the grandparent, parent and the node 
being rebalanced. In that case, the only way the sibling may no longer be visible, is if 
the operation has finished already. This can be checked by seeing if the grand parent 
still points to the parent.
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class SearchResult {
  union {
    Leaf* l;
    Internal* i;
    Node* n;
  }
  uint16_t index;
};

SearchResult findChild(uint32_t value, uint31_t key) {
  uint16_t index = binarySearch<Entry>(<value, key>, s, size - 1)
  return {c[index], index};
}

<SearchResult, SearchResult, Internal*> findNode(Entry key, uint8_t 
height) {
retry:
  Internal* gParent = fakeRoot;
  SearchResult parent = <fakeRoot->c[0], 0>;
  hp[1] = parent.i;
  memoryBarrier();
  if(parent.n != fakeRoot->c[0]) {
    goto retry; // See rule 4
  }
  Node* child = parent->findChild(key);
  hp[2] = child.n;
  memoryBarrier();
  if(child.n != parent.i->c[child.index] || parent.n != fakeRoot-
>c[0]) {
    goto retry; // See rule 5
  }
  for(uint8_t cHeight = parent->height - 1; cHeight > height; 
cHeight--) {
    gParent = parent.i;
    parent = child;
    hp[0] = hp[1];
    hp[1] = hp[2];
    child = parent->findChild(key);
    hp[3] = child.n;
    Mark m = parent.i->mark;
    if(child.n != parent.i->c[child.index] 
       || !gParent->isGrandParentTo(m)) {
      goto retry; // See rule 6 and 8
    }
    if(m.isChild()) {
      … help finish the operation on parent instead. // See rule 7
    }
  }
  return <child, parent, gParent>;
}

Listing 37:Pseudo-code that searches for a node at a given height
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7.8 Implementation

7.8.1 Implementation of helping

The section 7.6Rebalancing on page 79 describes how rebalancing operations work at a 
high  level,  and  it  represents  the  rebalancing  operations  with  a  flow  diagram  in 
illustration  9.  In  illustration  9,  the  state  “Help  pending  operation”  has  quite  a  few 
ingoing and outgoing edges, and the control flow is not exactly easy to implement in a 
structured language. This section describes how we implemented helping at a pseudo-
code level. The actual pseudo-code is in listing 38.

The helping is implemented in a function that is used for performing all operation steps 
that  can  be  helped.  In  other  words  the  function  performs  step  1  through  5  of  the 
rebalancing. All of these steps are handled inside one function, because implementing 
helping will require being able to switch between different steps.

Switching between the different operations is handled with a switch statement, inside an 
infinite loop. When an operation successfully marks the involved node, it proceeds to 
the next case in the switch statement, corresponding to the next step in the rebalancing. 
When an operation fails to mark the involved node, it remembers the mark, breaks from 
the switch statement, and tries to help the operation described by the mark. It does so by 
finding the involved nodes, and reentering the switch statement.

The function  returns,  once  it  has  witnessed some rebalancing operation completing. 
This can happen at the cases for step 3, 4 or 5, where a rebalancing operation can be 
completed. This can also happen at step 1, if someone rebalances descendants of the 
grandparent.  Finally threads can also witness operations completing,  while  trying to 
load the parameters for helping the operation.

As an alternative to implementing helping by tying all of the helping operations into one 
function,  one could have used proper continuations.  Such continuations perform the 
operations based on a mark. We found that such continuations are more trouble than 
they are worth. For one the continuations fragments the code, making it hard to see what 
happens before and after each fragment. Another issue is that using continuations in this 
way had poor  performance,  unless  the  code for  helping  rebalancing and attempting 
rebalancing is separated. In this sense separating is practically equivalent to writing the 
code twice, and complicating the helping. Currently there is little incentive to use such 
continuations, since all helping steps are fairly related, and using continuations would 
likely be less clear and/or slower.
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helpOperation(op, m) {
  while(1) {
    switch(op) {
    case MarkType::NOT_MARKED:
    {
      return;
    }
    case MarkType::REBALANCE_STEP1:
    {
      if(!markGrandParent()) {
        m = grandParentMark;
        break;
      }
      if(gParent->c[parentIndex] != parent) {
        gParent->cleanUp(oldMark);
        return;
      }
    }
    case MarkType::REBALANCE_STEP2:
    {
      if(!markParent()) {
        m = parentMark;
        break;
      }
    }
    case MarkType::REBALANCE_STEP3:
    {
      if(childHeight == LEAF_HEIGHT) {
        ... rebalance the leaf children
        return;
      }
      if(!markChild()) {
        m = childMark;
        break;
      }
    }
    case MarkType::REBALANCE_STEP4:
    {
      if(childSize >= DI) {
        ... split the child, and write back a new parent
        return;
      }
      if(!acquirePartnerHazardPointer()) {
        return;
      }
      if(!markPartner()) {
        m = partnerMark;
        break;
      }
    }
    case MarkType::REBALANCE_STEP5:
    {
      ... merge the children and write back a new parent
      return;
    }
    }
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    // The operation was prevented by a another operation,
    // lets help the other operation then
    do {
      key = m.key;
    } while(!findNode(key, m.cHeight, gParent, parent, child));
    if(!grandParentMark->isEquivalent(m.toStep2())) {
      return; // Someone may have finished the operation
    }
    if (parent != m.parent) {
       // Someone may have finished the operation
       gParent->cleanUp(m.toStep2());
       return; 
    }
    op = m.type;
    m = m.toStep2();
    if(op == MarkType::REBALANCE_STEP5 && !getPartnerHP()) {
      return;
    }
  }
}

Listing 38:Pseudo code for the first five steps of rebalancing and helping operations

7.8.2 Replacing the parent node

Step 6, 7, and 8 of the rebalancing are primarily concerned with replacing the parent of 
the nodes being rebalanced, with a new parent. The general control flow of rebalancing 
ensures that the new parents size is in [SI ; DI ] , unless the old parent is the root of the 
tree.  If  the  old  parent  is  the  root  of  the  tree,  additional  logic  handles  growing and 
shrinking the tree, to keep the roots size within ]1 ; KI [ , as shown in listing 39.

if(newParentSize == 1 && childHeight != 0) {
  … make the only child the new root
  … this reduces the height of the tree
} else {
  … create a new parent, containing the two children
  if(gParent == fakeRoot && newParentSize == KI) {
    … split the new parent in two
    … use the two pieces for a new parent/root
    … the new parent increases the height of the tree
  }
}
if(!CAS(gParent->c[parentIndex], oldParent, newParent)) {
  … free any allocated nodes
  cleanUpGParent()
} else {
  cleanUpGParent()
  … begin reclaiming the old nodes
}

Listing 39:Pseudo-code showing how to replace parent nodes, at the end of 
rebalancing, while maintaining the constraints for the B-tree
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7.8.3 Optimizations

There  are  a  number  of  opportunities  for  improving  performance  of  the  basic  data 
structure,  as  described  in  this  section.  The  impact  of  some of  the  optimizations  is 
discussed in the section 7.9 Evaluation.

7.8.3.1 Memory system and Hazard pointers

As discussed in the section 7.7 Memory reclamation, the general use of Hazard Pointers 
may lead  to  a  memory overhead of  up  to  O(k⋅n2

)  objects.  It  is  possible  to  store 
O(k⋅n)  freed objects on thread local stacks, without increasing the amortized memory 
overhead. Doing so improves the locality of the allocations, and may reduce contention 
in  the  memory  allocator.  This  is  basically  the  same  concept  that  slab  allocators 
[Bonwick94] use, but they do not have as well defined permitted memory overhead 
bounds. Based on these observations, we propose a fairly general extension to a hazard 
pointer framework, enable reuse of recently reclaimed objects. For the B-tree we only 
need to allocate Leaf and Internal nodes, so in this case a general scheme may seem 
like overkill, but the extension is fairly simple.

In order for a new object to be placed in an old objects memory location, the new object 
must not:

1. Be larger than the old object.

2. Require larger alignments than the old object.

Our solution to first requirement is to only allow objects of the same size to reuse the 
locations. Our solution to the second requirement, is to enforce a common alignment for 
all object types of the same size.

Every object size is identified with a unique id. The id is used to identify the correct 
stack  to  put  recently  reclaimed  objects  on.  When  reclaiming,  retiring,  and  creating 
objects, both the object size id and the object size is passed along. For convenience the 
object  size  id  can  be  determined  from  the  object  size  at  compile  time,  so  the 
programmer only has to pass the type of object. Quite often the type, and hence size, of 
variables are known at  compile-time. Specifically for the B-tree it  is  always known 
whether a node is a Leaf node or an Internal node when replacing the nodes. 

The creation and retirement of objects depends is handled by the code shown in listing 
40. The codes behavior depends on the number of elements on the threads recent stacks. 
In the code  retired is a list of retired objects,  reclaimed is the recent stacks, and 
getType is a function that finds the object size id for a given object size, at compile 
time.  If  the  elements  on  a  threads  recent  stacks  exceeds  an  upper  bound  f,  where 
f ∈O (k⋅n) , then the element is freed by the memory allocator. Otherwise it is pushed 

on a recent stack, for reuse. Upon allocation, if there are elements on a threads stack for 
that object size id,  the memory location is  popped from the stack,  otherwise a new 
object is allocated.
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template<class Type>
void retire(Type* object) {
  retireObject(object, getType<sizeof(Type)>());
}

template<class Type>
Type* create() {
  return (Type*) createObject(sizeof(Type), getType<sizeof(Type)>());
}

void* createObject(uint64_t objectSize, uint64_t objectType) {
  if(freed[objectType].getSize() == 0) {
    ... return a new object of size objectSize
  }
  return reclaimed[objectType].pop();
}

void retireObject(void* object, uint64_t objectType) {
  retired.push({object, objectType});
  if(retired.getSize() >= k * nP) {
    scan();
  }
}

Listing 40:Creation and retirement of objects, where recently reclaimed objects can be 
reused.

The changes require  that  the object  type is  known upon deallocation,  so the list  of 
retired objects must store both object size ids and object pointers. Our implementation 
stores it as actual tuples, but it is possible to be more space conserving. If the number of 
object sizes is no larger than the minimum object alignment guaranteed, then the object 
size id can be stored in the lower order bits of the object pointers. In current AMD64 
code with 64 bit pointers, it is also possible to use the 16 most significant bits to store 
the object size id, since the address space is 48 bits.

7.8.3.2 Separating Entries into two Leaf nodes

When producing two  Leaf nodes from a rebalancing, the algorithm must create two 
approximately evenly large nodes. In addition all the Entries in the first child, must be 
smaller than the Entries in the second child. This can be accomplished by dividing the 
Entries based on the median Entry.

Finding the median can be done in  Θ(n)  time with Hoare's find algorithm[Hoare61], 
where n is the total number of Entries in the children. Hoare's find algorithm is based on 
quicksort, it can be implemented in place, and has a side effect. All values that are lower 
than the median, are placed before the median, thereby doing the work of separating the 
Entries into  Entries for  the  first  and  second  child.  Hoare's  find  algorithm does 
however have a very poor worst case running time of O(n2

) .
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7.8.3.3 Ammortized running times

Leaf and Internal nodes have compile-time constant upper and lower bounds on their 
size. Different boundaries leads to different performance metrics.

It is possible to argue about the performance metrics from a theoretical point of view 
through their asymptotic running time. To simplify the reasoning about the asymptotic 
running time, the reasoning ignores the cost and probability of operations failing. This 
may seem like a large approximation, but it is fairly common practice.

Generally the operations can be described as: Search the tree, possibly rebalance, and 
search for an Entry a Leaf node. Searching in a Leaf node can require looking at every 
Entry, so it takes Ο(kl ) . Rebalancing requires searching the tree, and performing the 
actual rebalancing of nodes. The actual rebalancing can be achieved in Θ(kl)  for Leaf 
nodes, and Ο(ki)  for Internal nodes.

The running time of searching the tree is:

 Θ(TreeSearchCost)=Θ(TreeHeight⋅SearchInternalNodeCost) .

The height of the tree is:

Θ(Tree Height)=Θ(log ki+ si
2
( n

2(dl+ sl)))=Θ( log(n)−(dl+ sl )
log(ki+ si) ) ,  assuming  the  average 

Internal node has a size of 
ki+ si

2
, and the average Leaf node has a size of 

dl+ sl
2

.

The the running time for searching in an internal node with binary search is:

Θ(SearchInternalNodeCost)=Θ(log (ki ))

Therefore the cost of searching in the tree is:

Θ(TreeSearchCost )=Θ(Θ(TreeHeight)⋅Θ(SearchInternalNodeCost))=Θ(log(n)−(dl +sl))

Giving all operations a running time of: Θ(log(n)+ki)=Θ(log(n))

The running time can be reduced to Θ(log(n)) , because ki is a constant.

Theoretically,  using larger  Leaf nodes  should lead  to  fewer rebalancings  and faster 
search times, at the cost of slower insertions, removals, extractions and rebalancings. 
Using larger Internals should lead to fewer but slower rebalancing, while search times 
should not be significantly affected.
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7.9 Evaluation

This section evaluates the performance priority queue performance of the lock-free B-
tree.  The  test  was  performed  as  per  linting  41.  300,000  elements  are  inserted  and 
extracted  from an initially empty priority queue.  The ordering  of  insert  and extract 
operations was decided by sampling from a Bernoulli(p) distribution, unless such an 
action would lead to more removals, than insertions.

The elements being inserted each have a unique value, to avoid collisions, and to test for 
correctness.  The  keys  of  the  elements  form  a  distribution  where  the  following  4 
constrains are met:

1. 20% are 1

2. 20% are 231
−1

3. 50% are 230

4. 10 % are discretely uniformly distributed from the set [2 ;231
−2]/ 230

The distribution of keys is meant to represent the distribution of priorities used in tasks 
running on an operating system. In such a case, it is common for the vast majority of the 
tasks to use either the default, lowest, or highest priority.

For comparison we evaluated the performance of pairing heap based priority queues, 
using different locking mechanisms. The pairing heap implementation is from GCC's 
STL. Pairing heaps tend to be one of the fastest priority queues [TDK]. The locks used 
include MCS locks, and our improved MCS locks. Initially we also planned to use the 
OpenMP based locks, but the default locks on the tested system were simply too slow.

test() {
  … measure start time
  inserts = 0
  removes = 0
  while(inserts < 300000) {
    if(inserts == removes || rbern(p)) {
      … add an element to the queue
      inserts = inserts + 1
    } else {
      … remove an element from the queue
      removes = removes + 1
    }
  }
  while(removes < 300000) {
    … remove an element from the queue
    removes = removes + 1
  }
  … measure end time
}

Listing 41: The test case performed for priority queues. rbern(p) takes a sample from 
the Bernoulli(p) distribution
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Each test was performed using up to 4 threads, where each was bound to a specific 
CPU. The tests started all the threads simultaneously. Each of the presented results are 
based on 160 measurements. To get 160 measurements, when testing with p threads, the 
tests are run 160 / p times.

System name  HP ProLiant SL165z G7 server

Ram 64 gb

Processors 2 x  AMD Opteron 6168 (24 CPUs)

OS Scientific Linux 6.1

Compiler GCC (Ubuntu/Linaro 4.6.1-9ubuntu3)

Compiler flags -m64 -std=gnu++0x -fopenmp -DNDEBUG 
-fopenmp -Ofast -fwhole-program 
-static -flto -fno-align-functions 
-fno-align-labels -fno-align-loops 
-fno-align-jumps -s

Table 16:A description of the platform for running the tests

Graph 9 shows the results of running the tests on the system described in table 16. The 
following 4 observations are immediately obvious from the results:

1. The STL w MCSB case shows that the our modified MCS locking mechanism 
also works quite well for longer locking periods.

2. The lock-free B-tree scales better in the Bernoulli(0.5) case, but in both cases 
performance is decreasing.

3. In the uncontended cases, all of the priority queues are approximately twice as 
fast in the Bernoulli(0.1), compared to the Bernoulli(0.5) case.

4. The STL w MCSB scales better in the Bernoulli(0.1) case.

The second observation indicates that the B-tree is contended. A backoff scheme, or 
randomization of the access patterns to Leaf nodes may lead to improved throughput. 
Applying a backoff scheme the a B-tree is somewhat more complex, than it is to apply it 
to a stack, due to operations having more steps.

The  fourth  observation  indicates  that  factors,  other  than  the  locks  synchronization, 
dominate the performance of the STL priority queue. If synchronization had been the 
bottleneck, then the Bernoulli(0.1) would scale worse, due to more lock acquisitions. 
One explanation  for  the  poorer  scalability in  the  Bernoulli(0.5)  case,  is  the priority 
queue grows larger. Another possibility is the way memory allocations are handled in 
the STL priority queue.

In general the evaluation shows that the throughput of locked priority queues depend 
highly upon the locking mechanism used, and the order of operations. The LF B-tree 
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was approximately 50 % faster than  the STL based priority queue with regular MCS 
locks, at high contention levels in the Bernoulli(0.5) case.

Graph 9: Thread total throughput for priority queues. STL w MCS and STL w MCSB 
are the STL priority queues using MCS locks, with and without backoff. The LF Btree is 
the priority queue primarily covered in this chapter

We also kept track of the number of malloc calls made by hazard pointer framework, to 
evaluate the impact of reusing objects. Graph 10 shows the ratio of malloc calls to the 
number  of  objects  created.  The graph is  based on the  Bernoulli(0.5)  distribution  of 
operations.
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Graph 10: Ratio of malloc calls to Node creations
The graph highlights 2 important properties:

1. Less than 1 % of the Nodes created are allocated using malloc

2. The fraction of allocations is highest in the case with 4 threads.

The first property shows that reusing a objects can dramatically reduce the the number 
of allocations.  The second property can is  likely due to  the fraction of allocoations 
decreasing when the recent lists increases with the number of threads, together with the 
average  queue  size.  A longer  recent  list  leads  to  fewer  allocations,  improving  the 
fraction at high concurrency levels. A smaller queue means less rebalancing, improving 
the fraction at low concurrency levels.

7.10Conclusion

In this chapter we introduced a lock-free B-tree based on a help locking scheme. The B-
tree is an ordered dictionary structure, that we adapted to a priority queue. The data 
structure  uses  hazard  pointers  to  reclaim  nodes,  thus  avoiding  traditional  garbage 
collection and reference counting. Inserting, removing, and extracting elements from the 
data structure has an amortized running time of Θ(log n) , in the uncontended case. The 
remove operations, can additionally provide upper and lower bounds on the keys being 
removed. This ability makes it possible to partition the space of used keys, to make it 
possible to store multiple priority queues inside the same tree structure.

We found that the data structure is approximately 50 % faster than a pairing heap based 
priority  queues,  protected  by  traditional  MCS  locks,  at  high  contention  levels.  By 
comparison the the backoff scheme for with MCS locks we presented in 5.6 MCS locks, 
was appropriately 150 % faster for the locked priority queues.
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8 Conclusions
This thesis has dealt with the design and implementation contention resistant priority 
queues. It covered a wide range of methods for providing contention resistant priority 
queues.

It  introduced improved variations of truncated exponential  backoff,  and MCS locks. 
These  schemes  can  be  used to  manage contention  in  lock-free  and lock-based data 
structures. At the highest contention levels, the new MCS locks can provide 2700 % 
higher throughput for locked counters, and 150 % higher throughput for priority queues.

We have implemented and evaluated the performance of prior contention resistant data 
structures.  These  data  structures  allow threads  to  operate  on  them,  without  directly 
accessing  the  data  structure.  We  have  also  designed  and  implemented  similar  data 
structures,  by  combining  their  concept  of  elimination  with  truncated  exponential 
backoff.  We found that  our  new data  structures  are  up to  36 % faster,  than similar 
eliminating data structures. Unfortunately the data structure is not significantly faster, 
than the same data structure without elimination.

We have also introduced a new lock-free priority queue.  In our evaluation,  the new 
priority queue does not have decreasing throughput at high contention. This is in spite 
of the priority queue not using any explicit measures against contention. We found that 
the priority queue approximately 50 % faster at high contention levels, than a lock-
based priority queue, using traditional MCS locks.

The wide range of topics covered, leaves plenty of opportunities for future work. One 
possibility is investigating the impact of applying randomized access patterns to the 
lock-free priority queue. Another interesting topic, could be more extensive correctness 
proofs  for  the  data  structure.  Another  possibility is  investigating  the  possibilities  of 
applying combined backoff and elimination schemes to more complex data structures, 
with more expensive operations. One can also investigate ways of making elimination 
faster, to make it a more viable mechanism for reducing contention.
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9 Project planning
This  section  shows how the  project  was  planned,  and how it  progressed.  The  plan 
includes a risk analysis, and an actual plan for the project.

9.1 Risk analysis

This section covers the risks I estimated to be significant at the start of the project, and 
how I planned to reduce the risks.

9.1.1 Potential risks

These are the risks that can occur during the development, and that I should try to avoid 
by all means.

1. Finding  minor  bugs  in  the  implementation  will  require  absurd  amounts  of 
debugging.

2. Lost work due to accidents or regressions breaking existing work.

3. The priority queue cannot be directly applied to the scheduling in Fenix, because 
it does not uphold specific requirements.

4. Integrating the priority queue structure into Fenix will cause serious problems.

5. The project is not completed in time.

6. The theoretical background for the solution will not hold up.

7. I, or someone vital to the project, will get ill for a prolonged period.

8. After implementing and optimizing the solution we find that its performance is 
insufficient.

9.1.2 Reducing risks

9.1.2.1 Minor bugs

The risk of minor bugs slowing down work on the implementation is significant for 
concurrent  code  and kernel  based  code,  but  it  can  be reduced by doing test  driven 
development. The work on the implementation should be done by alternating between 
developing a small feature, and subjecting the feature to tests, debugging tools and static 
analysis tools.

The tests would probably start out as minor tests in a main function, but eventually they 
should be moved to separate functions, so they can be used as unit tests. Whether or not 
the unit tests are run can be controlled by putting them in assert statements, so they are 
compiled out of performance builds, but run in debugging builds.

The debugging tool of choice is GDB, especially since Fenix is written GCC specific 
C++. In order to be able to debug properly,  any statement that can possibly fail,  or 
produce output that I want to debug, must not be written as a macro. Additionally it 
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might  make  sense  to  pass  additional  parameters  to  functions,  as  it  may help  when 
debugging. The extra parameters will be compiled away if the functions are inlined in 
the performance builds, so it might even make sense to keep redundant parameters when 
doing performance tests, or integrating the priority queue into Fenix.

Most static analysis tools do not work well with the gnu specific C++ dialect, so the 
most  important  static  analysis  tool  will  probably be  GCC with  additional  warnings 
enabled. Some parts of the implementation are likely to contain no GCC specific code. 
Such code can be analyzed by other C++ static analysis tools that are available, such as 
cppcheck,  Uno  or  Oracle  Solaris  Studio.  The  Fenix  group  is  considering  getting  a 
license to PCLint.

9.1.2.2 Lost work due to accidents

To reduce the risk of losing work, I will try to save my work often, at least every 10 
minutes, and I will keep any code or important documents stored on a remotely stored 
versioning  system.  New  versions  should  be  committed  to  the  versioning  system 
whenever things work, as well as at important steps between functional versions. To be 
able to the contents has developed, I will clearly mark non functional versions, and each 
commit will have a message briefly describing its changes, and the reasoning behind 
them. If I find that I have severely broken existing work, I will revert to a version where 
it is not broken and create a new fork, so that it will possible for me review parts the 
work done since the regression, in case it can be applied at a later time. I am writing this 
section after just having lost about an hour of work, due to my computer inexplicably 
shutting down, so I thought it would be a good idea to include this section.

9.1.2.3 Arriving at a inappropriate solution

To ensure that the priority queue is sufficient for use in scheduling in Fenix, the use 
cases  and  possible  applications  of  it  should  be  clear  before  choosing  a  design  to 
implement. I can however make short and quick mock up implementations of parts of 
possible designs, to get a feel for the properties of such designs. To find possible use 
cases and applications of the priority queue, I should discuss it with other developers on 
Fenix, and look at the existing code. At the time of writing Sven is looking into various 
areas of Fenix where priority queues can be used. Doing so will serve to find different 
ways of applying them with different memory/processing/contention tradeoffs. Ideally 
the design should be sufficient to support any of those relevant tradeoffs, but it might be 
necessary to pick a design that is supports a subset of the tradeoffs, in order to simplify 
the requirements to the solution.

9.1.2.4 Problems with the integration into Fenix

Integrating the priority queue into Fenix is likely to cause minor headaches due to the 
projects current build process. We are currently in the updating the build process to 
support gcc's link time optimization, and this may cause changes that makes integrating 
new code easier. Another problem with integrating the new code into Fenix is the risk of 
breaking  existing  code.  That  risk  can  be  reduced  by integrating  small  parts  of  the 
solution at a time, honoring the existing API for the priority queues, and verifying the 
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functionality at each step. It is also important to initially verify that the priority queue is 
functional on its own merits outside of Fenix.

9.1.2.5 Running out of time

To avoid the risk of not completing the project in time, I should set up a loose timetable, 
that  gives  upper  and  lower  bounds  to  different  parts  of  the  development,  so  that 
milestones and deadlines can be set up. This risk analysis provides some hint to the 
order in which development should proceed, and based on that I can create a somewhat 
realistic schedule. If the milestones are not met, I should either pick up the pace, chose a 
simpler solution, or drop parts of the project.

There are a number of ways the solution can be simplified:

1. I can support a reduced set of use cases for Fenix, for instance not supporting 
dynamic priorities.

2. I  can  worry  less  about  providing  a  high  performance  priority  queue  in 
uncommon cases, for instance extremely high contention (simpler or no backoff 
scheme),  extremely  many  elements  on  the  queue,  or  reducing  the  range  of 
supported priority levels.

3. I  can  implement  a  smaller  foundation  of  the  scheduling  in  Fenix,  by  not 
integrating scheduling into every aspect where it is relevant, but instead leaving 
that job to future projects.

4. I can reduce the project to only dealing with designing, verifying, implementing 
and testing a suitable priority queue in user space, and let another project deal 
with integrating it into Fenix.

9.1.2.6 Non-functional solution

To reduce the risk of having a priority queue that has a foundation that cannot be proven 
to  work,  it  should  whenever  possible  be  based  on  existing  work,  and  established 
conventions. After choosing a design and prior to integrating it into Fenix, important 
properties of the priority queue should be proven at least in sketched simplified proofs, 
and tests cases should be provided to back up the proofs.

9.1.2.7 Illness

To reduce the risk of illness interfering with the productivity of the project, I will be 
sure to dress appropriately when going outside (it is not exactly suitable weather for 
sandals and shorts anymore), and try to get lots of sleep if I feel sick. Additionally if  
illness  does  strike,  I  should  try  to  continue  working  in  some  degree,  possibly  by 
focusing on less strenuous tasks, such as reading up on existing work.

9.1.2.8 Solution is too expensive

To reduce the cost of finding that the solution is too expensive, I should be able to argue 
about  the  amortized  memory consumption  and running time prior  to  implementing. 
After implementing operations I should set up somewhat realistic benchmarks for the 
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operations, and compare it to existing solutions. Comparing with existing solutions can 
be done by implementing simpler existing work, or by comparing to publicly available 
implementations of other solutions.

9.1.3 Evaluation

During this project I mainly followed the guidelines of the risk analysis, for reducing 
risks. However, 4 main problems were encountered:

1. Getting useable results from old test cases.

This was not predicted by the risk analysis, because it was largely a result of what had 
happened prior to writing the risk analysis. I made some early concepts that showed 
interesting  results.  Unfortunately  at  the  time,  they  seemed  interesting,  but  not 
promising, so it was abandoned in a fairly messy state, and I had not documented the 
findings. While writing the report, I believed it would be a good idea to present the 
results. Getting the results to a useful state, ended up taking a lot of time. A lesson to 
take from this issue, is that one should always document interesting findings, rather than 
assume that they are easy to reproduce.

2. Theoretical/implementation issues.

To reduce such issues, the risk analysis suggested using prior work, arguing early about 
correctness,  using test  driven  development,  and using debugging and static  analysis 
tools. Debugging and static analysis tools were used extensively during development, 
and it helped resolve both minor and major issues. The main issues encountered, were 
related  to  the  extensions  made  to  prior  work.  Specifically  the  memory reclamation 
scheme, and details in the new synchronization scheme.

The largest issue, was that the original design of the solution, was too vague to tell if 
individual aspects were fully correct. Specifically I never wrote a full pseudo code for 
the data structure, until long after I was implemented. Instead I had descriptions of the 
properties that had to be maintained at every stage, and a description of the order things 
should happen in. This made it difficult to argue about correctness at a fine-grained 
level.
The weaker description, was chosen partly due B-trees being very complex beasts. The 
complexity would introduce a lot of noise in proper pseudo-code. Another contributing 
factor,  was that  describing  complex help-locking functionality is  very unintuitive  in 
structured languages. The structure of the helping code I had initially imagined, would 
require handling a great many implementation specific details. That is why I thought it  
better to not use proper pseudo-code. When I was writing the documentation of the 
synchronization  scheme used,  I  realized  that  it  would  be  much easier  to  express  it 
through  a  flow  graph.  This  revelation  would  have  helped  immensely  during 
development.

It turned out to be quite hard to apply test driven development to a data, since features 
of  the  data  structure  are  connected.  To  reduce  this  issue,  I  initially  skipped 
implementing  memory  reclamation,  as  most  of  the  features  can  be  tested  even  if 
memory is not reclaimed. Unfortunately this meant that the tests had to be limited in 
scope, in order to avoid running out of memory. This in turn meant that a lot of issues 
were caught fairly late.
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3. The project did not finish at the planned time.

The two first problems meant that not all of the planned features were in the project.  
The risk analysis identified this risk, and suggested dropping or delaying less important 
features. The project was trimmed accordingly. The project did however drop features in 
a  slightly different  order,  than  what  was proposed from the  plan  and risk analysis.  
Specifically the priority queue was never implemented into Fenix, but it was compared 
to other implementations, and optimized to some degree. The ordering was largely due 
to Fenix being in a state of flux, for the majority of the projects duration. As a result, the 
topic of the project has evolved from designing a priority queue for Fenix,  towards 
designing priority queues in general.

4. Lost work due to accidents or regressions.

For the entire project I followed the guidelines for version control and data management 
for the code. The only issue I had, was that the restricted testing meant, that I was not 
always completely sure if revisions were completely correct or not. In my oppinion that 
is primarily due to the issues discussed under problem 2.

I did not follow the guidelines for version control, when writing the report, which lead 
to interesting issues. I probably lost less than one days worth of work in total. It is still a 
significant  loss,  which  I  do  my best  to  avoid  in  the  future.  I  failed  to  follow  the 
guidelines, partially because I started writing  the report fairly late, and at that point I 
had forgotten the guidelines.

9.2 Project process and time planning

This project informally started during the summer of 2011. In the beginning the project 
was very loosely organized,  which makes it  hard for me to specify exactly when it 
started. The project did not have a clear definition until August of 2011. The project was 
originally going to  be handed in by December 24th 2011, but  it  was extended until 
January 20th 2012. Due to issues related to project registration, the official delivery was 
changed, to March 15th 2012 during week 11 of 2012. During week 11, from January 
21st to  week  11,  I  did  not  work  on  the  project,  but  in  week  11  I  made  several 
improvements to the report. The improvements were mainly fixing linguistic problems, 
and improving the presentation.

During  the  first  months  of  the  project,  I  investigated  prior  work  in  the  field  of 
concurrent  priority  queues.  This  investigation  was  primarily  focused  on  bounded 
priority queues. The investigation resulted in the majority of the content presented in 
chapter  6. After experimenting with such data structures for about a month, without 
properly starting the project, I had a thorough meeting with Sven. In the meeting we 
planned the final direction of the project.

We decided to focus on the idea of creating a lock-free B-tree based priority queue. In 
the first weeks I read about B-trees, and similar wide search trees. During September I 
read up on lock-free search data structures, in order to get a basic understanding, of how 
such a tree could be made lock-free.

After getting an understanding of the problem, I made the time plan seen in graph 11. It 
contains mandatory and non-mandatory features, planned in order of importance. The 
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priorities  are  derived from the  risk analysis,  and the  deadlines  have  been set  in  an 
attempt to make them possible, yet optimistic. The idea behind the mandatory and non-
mandatory features, is that if a deadline is missed, it can be delayed by dropping non-
mandatory features. That could provide a more flexible schedule, to ensure having a 
draft of the report a month before the due date, and that the due date was met.

Graph 12 shows what I actually worked on. Several factors meant that non-mandatory 
features were not implemented. In fact the only non mandatory features provided, are 
some optimizations, and a comparison to competing solutions. 

The  end  result  is  that  I  did  not  have  a  working  user  space  implementation  before 
November, and at that point I did not have much in the way of technical report. This  
lead to  the the  draft  being  postponed to the  middle of  December.  I  had decided to 
describe my findings on bounded priority queues in the technical report, hoping that the 
I would be able to quickly reproduce my findings from last summer. Long story short, 
the code I had used to make my findings was extremely messy, and I had to spend a lot  
of time to make sure the findings were correct. This took me weeks, in contrast to the 
original time plan, which assumed that it was already done.

Cleaning up the  findings,  was  one  of  the  main  reasons  for  this  project  needing  an 
extension. Another reason was that the technical report was too unfinished, and that we 
would  like  compare  the  performance  of  the  solutions  with  the  competition.  The 
comparison to competing priority queues is limited to GCC's STL implementation of the 
priority_queue class. I had applied for a free licence to LEDA (http://www.algorithmic-
solutions.com/leda/index.htm)  as  well  as  various  licence  variants  of  NOBLE 
(http://www.non-blocking.com/), but I never received any feedback, so I was unable to 
evaluate their solutions.

http://www.non-blocking.com/
http://www.algorithmic-solutions.com/leda/index.htm
http://www.algorithmic-solutions.com/leda/index.htm
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DeadlinesWeek
26-30 sept 30 sept: Finalize a design for priority queue
3-7 oct 9 oct: Provide simple proofs
10-14 oct 14 oct: User space implementation
17-21 oct 19 oct: Pass test for correctness. 21 oct: Provide benchmarks
24-28 oct 25 oct: Kernel space implementation
31-4 nov 31 oct: Integrate into scheduling. 4 nov: Support continuations
7-11 nov 8 nov: Support priority inheiritance. 10 nov: Extensive proofs
14-18 nov 16 nov: Extensive test of properties. 20 nov: Draft of technical report
21-25 nov 25 nov: Support block cache
28-2 dec
5-9 dec 11 dec: Optimized
12-16 dec 13 dec: Compared to competition
19-23 dec 22 dec: Due date

Mandatory feature/deadline
Non-mandatory feature/deadline

Create a design
for the priority

queue

Implement in
user space

Provide
simple proofs
for properties

Provide
extensive proofs

for properties

Test for
correctness

Test for
properties
extensively

Implement in
kernel space

Integrate
into scheduling

Extend the
scheduling to

support priority
inheiritance

Extend the
scheduling to

support
continuations

Extend the
scheduling to
support block

cache

Provide
benchmarks

Compare
with competition

Optimize

Graph 11: Original time table
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2-6 Jan

9-13 Jan

16-20 Jan

12-15 Mar

Week Occurences

26-30 Sept Had a concept for the priority queue, and arguments why it should work

3-7 Oct Worked on user space implementation

10-14 Oct Worked on user space implementation

17-21 Oct Found a significant issue in the design, which was fixed the same week

24-28 Oct User space implementation passed early simple test, but had no reclamation

31-4 Nov Investigated ways to implement reclamation

7-11 Nov Implemented working reclamation, extended tests, insert and extract worked

14-18 Nov Worked on the report, improved data structure

21-25 Nov Worked on the report, improved data structure

28-2 Dec Worked on the report

5-9 Dec Worked on the report, started verifying old findings

12-16 Dec Worked on the report, verifying old findings

19-23 Dec Worked on the report, verifying old findings

Worked on the old findings, fixed remove

Worked on the report, verifying old findings

Worked on the report

Worked on the report

Mandatory feature/deadline
Non-mandatory feature/deadline

Create a design
for the priority

queue

Implement in
user space

Provide
simple proofs
for properties

Test for
correctness

Provide
benchmarks

Compare
with competition

Optimize

Graph 12: Actual time table
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10 Appendix

10.1Read-modify-write update loops

This section contains the assembly code generated for the update loops described in 
section 5.4.1.3 Interfacing to read-modify-write instructions.

  Add
 Val
128-16-16-50
  402500: 49 89 c1             mov    %rax,%r9
  402503: 49 89 d2             mov    %rdx,%r10
  402506: 4d 89 cb             mov    %r9,%r11
  402509: 4d 89 d4             mov    %r10,%r12
  40250c: 4c 89 c8             mov    %r9,%rax
  40250f: 4d 01 eb             add    %r13,%r11
  402512: 4c 89 d2             mov    %r10,%rdx
  402515: 4d 11 f4             adc    %r14,%r12
  402518: 4c 89 db             mov    %r11,%rbx
  40251b: 4c 89 e1             mov    %r12,%rcx
  40251e: f0 48 0f c7 4d 00    lock cmpxchg16b 0x0(%rbp)
  402524: 4c 89 d1             mov    %r10,%rcx
  402527: 49 31 c1             xor    %rax,%r9
  40252a: 48 31 d1             xor    %rdx,%rcx
  40252d: 4c 09 c9             or     %r9,%rcx
  402530: 75 ce                jne    0x402500

64-7,6,25
402090: 48 8b 16             mov    (%rsi),%rdx

  402093: eb 03                jmp    0x402098
  402095: 48 89 c2             mov    %rax,%rdx
  402098: 48 8d 2c 0a          lea    (%rdx,%rcx,1),%rbp
  40209c: 48 89 d0             mov    %rdx,%rax
  40209f: f0 48 0f b1 2e       lock cmpxchg %rbp,(%rsi)
  4020a4: 48 39 c2             cmp    %rax,%rdx
  4020a7: 75 ec                jne    0x402095
32-7,6,17

401c40: 8b 16                mov    (%rsi),%edx
  401c42: eb 02                jmp    0x401c46
  401c44: 89 c2                mov    %eax,%edx
  401c46: 8d 2c 1a             lea    (%rdx,%rbx,1),%ebp
  401c49: 89 d0                mov    %edx,%eax
  401c4b: f0 0f b1 2e          lock cmpxchg %ebp,(%rsi)
  401c4f: 39 c2                cmp    %eax,%edx
  401c51: 75 f1                jne    0x401c44

16-6,5,21
  4017d3: eb 02                jmp    0x4017d7
  4017d5: 89 c2                mov    %eax,%edx
  4017d7: 44 8d 1c 3a          lea    (%rdx,%rdi,1),%r11d
  4017db: 89 d0                mov    %edx,%eax
  4017dd: 66 f0 44 0f b1 1e    lock cmpxchg %r11w,(%rsi)
  4017e3: 66 39 c2             cmp    %ax,%dx
  4017e6: 75 ed                jne    0x4017d5
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8-7,6,28(22)
401635: 0f b6 16             movzbl (%rsi),%edx

  401638: eb 08                jmp    0x401642
  40163a: 66 0f 1f 44 00 00    nopw   0x0(%rax,%rax,1)
  401640: 89 c2                mov    %eax,%edx
  401642: 44 8d 1c 0a          lea    (%rdx,%rcx,1),%r11d
  401646: 89 d0                mov    %edx,%eax
  401648: f0 44 0f b0 1e       lock cmpxchg %r11b,(%rsi)
  40164d: 38 c2                cmp    %al,%dl
  40164f: 75 ef                jne    0x401640

 bool
8-7(6),5,25(17)
  401635: 0f b6 06             movzbl (%rsi),%eax
  401638: 0f 1f 84 00 00 00 00 nopl   0x0(%rax,%rax,1)
  40163f: 00 
  401640: 8d 14 08             lea    (%rax,%rcx,1),%edx
  401643: f0 0f b0 16          lock cmpxchg %dl,(%rsi)
  401647: 0f 94 c2             sete   %dl
  40164a: 84 d2                test   %dl,%dl
  40164c: 74 f2                je     0x401640

16-7(6),5,24(18)
  4017c5: 0f b7 06             movzwl (%rsi),%eax
  4017c8: 0f 1f 84 00 00 00 00 nopl   0x0(%rax,%rax,1)
  4017cf: 00 
  4017d0: 8d 14 38             lea    (%rax,%rdi,1),%edx
  4017d3: 66 f0 0f b1 16       lock cmpxchg %dx,(%rsi)
  4017d8: 0f 94 c2             sete   %dl
  4017db: 84 d2                test   %dl,%dl
  4017dd: 74 f1                je     0x4017d0

32-7(6),5,24(19)
  401c15: 8b 06                mov    (%rsi),%eax
  401c17: 66 0f 1f 84 00 00 00 nopw   0x0(%rax,%rax,1)
  401c1e: 00 00 
  401c20: 8d 14 18             lea    (%rax,%rbx,1),%edx
  401c23: f0 0f b1 16          lock cmpxchg %edx,(%rsi)
  401c27: 0f 94 c2             sete   %dl
  401c2a: 84 d2                test   %dl,%dl
  401c2c: 74 f2                je     0x401c20

64-6,5,19
  402060: 48 8b 06             mov    (%rsi),%rax
  402063: 48 8d 14 08          lea    (%rax,%rcx,1),%rdx
  402067: f0 48 0f b1 16       lock cmpxchg %rdx,(%rsi)
  40206c: 0f 94 c2             sete   %dl
  40206f: 84 d2                test   %dl,%dl
  402071: 74 f0                je     0x402063

128-17(16),14,59(51)
  4024c0: 4c 8b 0e             mov    (%rsi),%r9
  4024c3: 4c 8b 56 08          mov    0x8(%rsi),%r10
  4024c7: 66 0f 1f 84 00 00 00 nopw   0x0(%rax,%rax,1)
  4024ce: 00 00 
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  4024d0: 4d 89 cb             mov    %r9,%r11
  4024d3: 4d 89 d4             mov    %r10,%r12
  4024d6: 4c 89 c8             mov    %r9,%rax
  4024d9: 4d 01 eb             add    %r13,%r11
  4024dc: 4c 89 d2             mov    %r10,%rdx
  4024df: 4d 11 f4             adc    %r14,%r12
  4024e2: 4c 89 db             mov    %r11,%rbx
  4024e5: 4c 89 e1             mov    %r12,%rcx
  4024e8: f0 48 0f c7 4d 00    lock cmpxchg16b 0x0(%rbp)
  4024ee: 0f 94 c1             sete   %cl
  4024f1: 84 c9                test   %cl,%cl
  4024f3: 49 89 c1             mov    %rax,%r9
  4024f6: 49 89 d2             mov    %rdx,%r10
  4024f9: 74 d5                je     0x4024d0

 goto 8-4,3,12
  401625: 0f b6 06             movzbl (%rsi),%eax
  401628: 8d 14 08             lea    (%rax,%rcx,1),%edx
  40162b: f0 0f b0 16          lock cmpxchg %dl,(%rsi)
  40162f: 75 f7                jne    0x401628

16-4,3,13
  4017a0: 0f b7 06             movzwl (%rsi),%eax
  4017a3: 8d 14 28             lea    (%rax,%rbp,1),%edx
  4017a6: 66 f0 0f b1 16       lock cmpxchg %dx,(%rsi)
  4017ab: 75 f6                jne    0x4017a3

32-4,3,11
  401bd0: 8b 06                mov    (%rsi),%eax
  401bd2: 8d 14 18             lea    (%rax,%rbx,1),%edx
  401bd5: f0 0f b1 16          lock cmpxchg %edx,(%rsi)
  401bd9: 75 f7                jne    0x401bd2

64-4,3,14
  401ff5: 48 8b 06             mov    (%rsi),%rax
  401ff8: 48 8d 14 08          lea    (%rax,%rcx,1),%rdx
  401ffc: f0 48 0f b1 16       lock cmpxchg %rdx,(%rsi)
  402001: 75 f5                jne    0x401ff8

128-12,13,53
  402440: 4c 8b 0e             mov    (%rsi),%r9
  402443: 4c 8b 56 08          mov    0x8(%rsi),%r10
  402447: 4d 89 cb             mov    %r9,%r11
  40244a: 4d 89 d4             mov    %r10,%r12
  40244d: 4c 89 c8             mov    %r9,%rax
  402450: 4d 01 eb             add    %r13,%r11
  402453: 4c 89 d2             mov    %r10,%rdx
  402456: 4d 11 f4             adc    %r14,%r12
  402459: 4c 89 db             mov    %r11,%rbx
  40245c: 4c 89 e1             mov    %r12,%rcx
  40245f: f0 48 0f c7 0e       lock cmpxchg16b (%rsi)
  402464: 0f 85 c6 03 00 00    jne    0x402830

...
402830: 49 89 c1             mov    %rax,%r9

  402833: 49 89 d2             mov    %rdx,%r10
  402836: e9 0c fc ff ff       jmpq   0x402447
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 BBool
8-6,6,17
  401600: 0f b6 13             movzbl (%rbx),%edx
  401603: 0f b6 c2             movzbl %dl,%eax
  401606: 01 ca                add    %ecx,%edx
  401608: 0f b6 d2             movzbl %dl,%edx
  40160b: f0 0f b0 13          lock cmpxchg %dl,(%rbx)
  40160f: 75 ef                jne    0x401600

16-6,6,18
  401740: 0f b7 13             movzwl (%rbx),%edx
  401743: 0f b7 c2             movzwl %dx,%eax
  401746: 01 f2                add    %esi,%edx
  401748: 0f b7 d2             movzwl %dx,%edx
  40174b: 66 f0 0f b1 13       lock cmpxchg %dx,(%rbx)
  401750: 75 ee                jne    0x401740

32-4,4,13
  401b50: 8b 03                mov    (%rbx),%eax
  401b52: 41 8d 54 05 00       lea    0x0(%r13,%rax,1),%edx
  401b57: f0 0f b1 13          lock cmpxchg %edx,(%rbx)
  401b5b: 75 f3                jne    0x401b50

64-4,4,14
  401f50: 48 8b 03             mov    (%rbx),%rax
  401f53: 48 8d 14 01          lea    (%rcx,%rax,1),%rdx
  401f57: f0 48 0f b1 13       lock cmpxchg %rdx,(%rbx)
  401f5c: 75 f2                jne    0x401f50

BVal
8-8,7,27
  401600: 0f b6 13             movzbl (%rbx),%edx
  401603: eb 02                jmp    0x401607
  401605: 89 c2                mov    %eax,%edx
  401607: 44 8d 04 0a          lea    (%rdx,%rcx,1),%r8d
  40160b: 0f b6 c2             movzbl %dl,%eax
  40160e: 45 0f b6 c0          movzbl %r8b,%r8d
  401612: f0 44 0f b0 03       lock cmpxchg %r8b,(%rbx)
  401617: 38 c2                cmp    %al,%dl
  401619: 75 ea                jne    0x401605

16-8,7,39(29)
  401741: 0f b7 13             movzwl (%rbx),%edx
  401744: eb 0c                jmp    0x401752
  401746: 66 2e 0f 1f 84 00 00 nopw   %cs:0x0(%rax,%rax,1)
  40174d: 00 00 00 
  401750: 89 c2                mov    %eax,%edx
  401752: 44 8d 04 32          lea    (%rdx,%rsi,1),%r8d
  401756: 0f b7 c2             movzwl %dx,%eax
  401759: 45 0f b7 c0          movzwl %r8w,%r8d
  40175d: 66 f0 44 0f b1 03    lock cmpxchg %r8w,(%rbx)
  401763: 66 39 c2             cmp    %ax,%dx
  401766: 75 e8                jne    0x401750
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32-8,7,25
  401b60: 8b 13                mov    (%rbx),%edx
  401b62: eb 03                jmp    0x401b67
  401b64: 44 89 c2             mov    %r8d,%edx
  401b67: 46 8d 04 2a          lea    (%rdx,%r13,1),%r8d
  401b6b: 89 d0                mov    %edx,%eax
  401b6d: f0 44 0f b1 03       lock cmpxchg %r8d,(%rbx)
  401b72: 39 c2                cmp    %eax,%edx
  401b74: 41 89 c0             mov    %eax,%r8d
  401b77: 75 eb                jne    0x401b64

64-8,7,28
  401f70: 48 8b 13             mov    (%rbx),%rdx
  401f73: eb 03                jmp    0x401f78
  401f75: 4c 89 c2             mov    %r8,%rdx
  401f78: 4c 8d 04 0a          lea    (%rdx,%rcx,1),%r8
  401f7c: 48 89 d0             mov    %rdx,%rax
  401f7f: f0 4c 0f b1 03       lock cmpxchg %r8,(%rbx)
  401f84: 48 39 c2             cmp    %rax,%rdx
  401f87: 49 89 c0             mov    %rax,%r8
  401f8a: 75 e9                jne    0x401f75

  Swap
 Val
8-6,5,17
  401610: 0f b6 1e             movzbl (%rsi),%ebx
  401613: eb 02                jmp    0x401617
  401615: 89 c3                mov    %eax,%ebx
  401617: 89 d8                mov    %ebx,%eax
  401619: f0 0f b0 0e          lock cmpxchg %cl,(%rsi)
  40161d: 38 c3                cmp    %al,%bl

  40161f: 75 f4                jne    0x401615

16-6,5,19
  401760: 0f b7 16             movzwl (%rsi),%edx
  401763: eb 02                jmp    0x401767
  401765: 89 c2                mov    %eax,%edx
  401767: 89 d0                mov    %edx,%eax
  401769: 66 f0 0f b1 3e       lock cmpxchg %di,(%rsi)
  40176e: 66 39 c2             cmp    %ax,%dx
  401771: 75 f2                jne    0x401765

32-6,5,16
  401b80: 8b 16                mov    (%rsi),%edx
  401b82: eb 02                jmp    0x401b86
  401b84: 89 c2                mov    %eax,%edx
  401b86: 89 d0                mov    %edx,%eax
  401b88: f0 0f b1 1e          lock cmpxchg %ebx,(%rsi)
  401b8c: 39 d0                cmp    %edx,%eax
  401b8e: 75 f4                jne    0x401b84

64-5,5,16
  401f90: 48 89 c2             mov    %rax,%rdx
  401f93: 48 89 d0             mov    %rdx,%rax
  401f96: f0 48 0f b1 0e       lock cmpxchg %rcx,(%rsi)
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  401f9b: 48 39 d0             cmp    %rdx,%rax
  401f9e: 75 f0                jne    0x401f90

128-10,9,45(38)
  4023b0: 4c 8b 0e             mov    (%rsi),%r9
  4023b3: 4c 8b 46 08          mov    0x8(%rsi),%r8
  4023b7: eb 0d                jmp    0x4023c6
  4023b9: 0f 1f 80 00 00 00 00 nopl   0x0(%rax)
  4023c0: 49 89 c1             mov    %rax,%r9
  4023c3: 49 89 d0             mov    %rdx,%r8
  4023c6: 4c 89 c8             mov    %r9,%rax
  4023c9: 4c 89 c2             mov    %r8,%rdx
  4023cc: f0 48 0f c7 4d 00    lock cmpxchg16b 0x0(%rbp)
  4023d2: 49 31 d0             xor    %rdx,%r8
  4023d5: 49 31 c1             xor    %rax,%r9
  4023d8: 4d 09 c8             or     %r9,%r8
  4023db: 75 e3                jne    0x4023c0

 Bool
8-5,4,16
  401610: 0f b6 06             movzbl (%rsi),%eax
  401613: f0 0f b0 0e          lock cmpxchg %cl,(%rsi)
  401617: 41 0f 94 c2          sete   %r10b
  40161b: 45 84 d2             test   %r10b,%r10b

40161e: 74 f3                je     0x401613

16-5,4,15
  401760: 0f b7 06             movzwl (%rsi),%eax
  401763: 66 f0 0f b1 3e       lock cmpxchg %di,(%rsi)
  401768: 0f 94 c2             sete   %dl
  40176b: 84 d2                test   %dl,%dl
  40176d: 74 f4                je     0x401763

32-6(5),4,22(13)
  401b65: 8b 06                mov    (%rsi),%eax
  401b67: 66 0f 1f 84 00 00 00 nopw   0x0(%rax,%rax,1)
  401b6e: 00 00 
  401b70: f0 0f b1 1e          lock cmpxchg %ebx,(%rsi)
  401b74: 0f 94 c2             sete   %dl
  401b77: 84 d2                test   %dl,%dl
  401b79: 74 f5                je     0x401b70

64-6(5),4,23(15)
  401f75: 48 8b 06             mov    (%rsi),%rax
  401f78: 0f 1f 84 00 00 00 00 nopl   0x0(%rax,%rax,1)
  401f7f: 00 
  401f80: f0 48 0f b1 0e       lock cmpxchg %rcx,(%rsi)
  401f85: 0f 94 c2             sete   %dl
  401f88: 84 d2                test   %dl,%dl
  401f8a: 74 f4                je     0x401f80

128-8(7),4,29
  4023a0: 48 8b 06             mov    (%rsi),%rax
  4023a3: 48 8b 56 08          mov    0x8(%rsi),%rdx
  4023a7: 45 89 ca             mov    %r9d,%r10d
  4023aa: 66 0f 1f 44 00 00    nopw   0x0(%rax,%rax,1)
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  4023b0: f0 48 0f c7 4d 00    lock cmpxchg16b 0x0(%rbp)
  4023b6: 41 0f 94 c1          sete   %r9b
  4023ba: 45 84 c9             test   %r9b,%r9b
  4023bd: 74 f1                je     0x4023b0

 Goto
8-3,2,9
  401610: 0f b6 06             movzbl (%rsi),%eax
  401613: f0 0f b0 0e          lock cmpxchg %cl,(%rsi)
  401617: 75 fa                jne    0x401613

16-3,2,10
  401745: 0f b7 06             movzwl (%rsi),%eax
  401748: 66 f0 0f b1 3e       lock cmpxchg %di,(%rsi)
  40174d: 75 f9                jne    0x401748

32-3,2,8
  401b45: 8b 06                mov    (%rsi),%eax
  401b47: f0 0f b1 1e          lock cmpxchg %ebx,(%rsi)
  401b4b: 75 fa                jne    0x401b47

64-3,2,10
  401f35: 48 8b 06             mov    (%rsi),%rax
  401f38: f0 48 0f b1 0e       lock cmpxchg %rcx,(%rsi)
  401f3d: 75 f9                jne    0x401f38

128-4,2,14
  402340: 48 8b 06             mov    (%rsi),%rax
  402343: 48 8b 56 08          mov    0x8(%rsi),%rdx
  402347: f0 48 0f c7 0e       lock cmpxchg16b (%rsi)
  40234c: 75 f9                jne    0x402347

 BBool
8-3,3,9
  401600: 0f b6 03             movzbl (%rbx),%eax
  401603: f0 0f b0 0b          lock cmpxchg %cl,(%rbx)
  401607: 75 f7                jne    0x401600

16-3,3,10
  401730: 0f b7 03             movzwl (%rbx),%eax
  401733: 66 f0 44 0f b1 2b    lock cmpxchg %r13w,(%rbx)
  401739: 75 f5                jne    0x401730

32-3,3,8
  401b31: 8b 03                mov    (%rbx),%eax
  401b33: f0 44 0f b1 2b       lock cmpxchg %r13d,(%rbx)
  401b38: 75 f7                jne    0x401b31

64-3,3,10
  401f30: 48 8b 03             mov    (%rbx),%rax
  401f33: f0 48 0f b1 0b       lock cmpxchg %rcx,(%rbx)
  401f38: 75 f6                jne    0x401f30

 BVal
8-6,5,18
  401600: 0f b6 13             movzbl (%rbx),%edx
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  401603: eb 02                jmp    0x401607
  401605: 89 c2                mov    %eax,%edx
  401607: 0f b6 c2             movzbl %dl,%eax
  40160a: f0 0f b0 0b          lock cmpxchg %cl,(%rbx)
  40160e: 38 c2                cmp    %al,%dl
  401610: 75 f3                jne    0x401605

16-6,5,21
  401740: 0f b7 13             movzwl (%rbx),%edx
  401743: eb 02                jmp    0x401747
  401745: 89 c2                mov    %eax,%edx
  401747: 0f b7 c2             movzwl %dx,%eax
  40174a: 66 f0 44 0f b1 2b    lock cmpxchg %r13w,(%rbx)
  401750: 66 39 c2             cmp    %ax,%dx
  401753: 75 f0                jne    0x401745

32-7,6,21
  401b50: 8b 13                mov    (%rbx),%edx
  401b52: eb 03                jmp    0x401b57
  401b54: 44 89 c2             mov    %r8d,%edx
  401b57: 89 d0                mov    %edx,%eax
  401b59: f0 44 0f b1 2b       lock cmpxchg %r13d,(%rbx)
  401b5e: 39 c2                cmp    %eax,%edx
  401b60: 41 89 c0             mov    %eax,%r8d
  401b63: 75 ef                jne    0x401b54

64-7,6,24
  401f60: 48 8b 13             mov    (%rbx),%rdx
  401f63: eb 03                jmp    0x401f68
  401f65: 4c 89 c2             mov    %r8,%rdx
  401f68: 48 89 d0             mov    %rdx,%rax
  401f6b: f0 48 0f b1 0b       lock cmpxchg %rcx,(%rbx)
  401f70: 48 39 c2             cmp    %rax,%rdx
  401f73: 49 89 c0             mov    %rax,%r8
  401f76: 75 ed                jne    0x401f65

xor
 Val
8-9,8,25
  401620: 0f b6 16             movzbl (%rsi),%edx
  401623: eb 02                jmp    0x401627
  401625: 89 c2                mov    %eax,%edx
  401627: 89 d0                mov    %edx,%eax
  401629: 31 c8                xor    %ecx,%eax
  40162b: 41 89 c5             mov    %eax,%r13d
  40162e: 89 d0                mov    %edx,%eax
  401630: f0 44 0f b0 2e       lock cmpxchg %r13b,(%rsi)
  401635: 38 c2                cmp    %al,%dl
  401637: 75 ec                jne    0x401625

16-8,7,23
  401780: 0f b7 16             movzwl (%rsi),%edx
  401783: eb 02                jmp    0x401787
  401785: 89 c2                mov    %eax,%edx
  401787: 89 d5                mov    %edx,%ebp
  401789: 89 d0                mov    %edx,%eax
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  40178b: 31 fd                xor    %edi,%ebp
  40178d: 66 f0 0f b1 2e       lock cmpxchg %bp,(%rsi)
  401792: 66 39 c2             cmp    %ax,%dx
  401795: 75 ee                jne    0x401785

32-8,7,20
  401bb0: 8b 16                mov    (%rsi),%edx
  401bb2: eb 02                jmp    0x401bb6
  401bb4: 89 c2                mov    %eax,%edx
  401bb6: 89 d5                mov    %edx,%ebp
  401bb8: 89 d0                mov    %edx,%eax
  401bba: 31 dd                xor    %ebx,%ebp
  401bbc: f0 0f b1 2e          lock cmpxchg %ebp,(%rsi)
  401bc0: 39 c2                cmp    %eax,%edx
  401bc2: 75 f0                jne    0x401bb4

64-8,7,27
  401fd0: 48 8b 16             mov    (%rsi),%rdx
  401fd3: eb 03                jmp    0x401fd8
  401fd5: 48 89 c2             mov    %rax,%rdx
  401fd8: 48 89 d5             mov    %rdx,%rbp
  401fdb: 48 89 d0             mov    %rdx,%rax
  401fde: 48 31 cd             xor    %rcx,%rbp
  401fe1: f0 48 0f b1 2e       lock cmpxchg %rbp,(%rsi)
  401fe6: 48 39 c2             cmp    %rax,%rdx
  401fe9: 75 ea                jne    0x401fd5

128-13,12,54(47)
  402400: 4c 8b 06             mov    (%rsi),%r8
  402403: 4c 8b 4e 08          mov    0x8(%rsi),%r9
  402407: eb 0d                jmp    0x402416
  402409: 0f 1f 80 00 00 00 00 nopl   0x0(%rax)
  402410: 49 89 c0             mov    %rax,%r8
  402413: 49 89 d1             mov    %rdx,%r9
  402416: 4c 89 c3             mov    %r8,%rbx
  402419: 4c 89 c0             mov    %r8,%rax
  40241c: 4c 89 ca             mov    %r9,%rdx
  40241f: 4c 31 d3             xor    %r10,%rbx
  402422: 4c 89 c9             mov    %r9,%rcx
  402425: f0 48 0f c7 4d 00    lock cmpxchg16b 0x0(%rbp)
  40242b: 49 31 d1             xor    %rdx,%r9
  40242e: 49 31 c0             xor    %rax,%r8
  402431: 4d 09 c1             or     %r8,%r9
  402434: 75 da                jne    0x402410

 Bool
8-7,6,20
  401610: 0f b6 06             movzbl (%rsi),%eax
  401613: 89 c3                mov    %eax,%ebx
  401615: 31 cb                xor    %ecx,%ebx
  401617: f0 0f b0 1e          lock cmpxchg %bl,(%rsi)
  40161b: 41 0f 94 c3          sete   %r11b
  40161f: 45 84 db             test   %r11b,%r11b
  401622: 74 ef                je     0x401613

16-8(7),6,27(19)
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  401765: 0f b7 06             movzwl (%rsi),%eax
  401768: 0f 1f 84 00 00 00 00 nopl   0x0(%rax,%rax,1)
  40176f: 00 
  401770: 89 c2                mov    %eax,%edx
  401772: 31 fa                xor    %edi,%edx
  401774: 66 f0 0f b1 16       lock cmpxchg %dx,(%rsi)
  401779: 0f 94 c2             sete   %dl
  40177c: 84 d2                test   %dl,%dl
  40177e: 74
 f0                je     0x401770

32-8(7),6,26(18)
  401b75: 8b 06                mov    (%rsi),%eax
  401b77: 66 0f 1f 84 00 00 00 nopw   0x0(%rax,%rax,1)
  401b7e: 00 00 
  401b80: 89 c2                mov    %eax,%edx
  401b82: 31 da                xor    %ebx,%edx
  401b84: f0 0f b1 16          lock cmpxchg %edx,(%rsi)
  401b88: 0f 94 c2             sete   %dl
  401b8b: 84 d2                test   %dl,%dl
  401b8d: 74 f1                je     0x401b80

64-8(7),6,29(21)
  401f85: 48 8b 06             mov    (%rsi),%rax
  401f88: 0f 1f 84 00 00 00 00 nopl   0x0(%rax,%rax,1)
  401f8f: 00 
  401f90: 48 89 c2             mov    %rax,%rdx
  401f93: 48 31 ca             xor    %rcx,%rdx
  401f96: f0 48 0f b1 16       lock cmpxchg %rdx,(%rsi)
  401f9b: 0f 94 c2             sete   %dl
  401f9e: 84 d2                test   %dl,%dl
  401fa0: 74 ee                je     0x401f90

128-10(9),7,38(29)
  4023b0: 48 8b 06             mov    (%rsi),%rax
  4023b3: 48 8b 56 08          mov    0x8(%rsi),%rdx
  4023b7: 66 0f 1f 84 00 00 00 nopw   0x0(%rax,%rax,1)
  4023be: 00 00 
  4023c0: 48 89 c3             mov    %rax,%rbx
  4023c3: 48 89 d1             mov    %rdx,%rcx
  4023c6: 4c 31 c3             xor    %r8,%rbx
  4023c9: f0 48 0f c7 4d 00    lock cmpxchg16b 0x0(%rbp)
  4023cf: 0f 94 c3             sete   %bl
  4023d2: 84 db                test   %bl,%bl
  4023d4: 74 ea                je     0x4023c0

 Goto
8-5,4,13
  401605: 0f b6 06             movzbl (%rsi),%eax
  401608: 89 c3                mov    %eax,%ebx
  40160a: 31 cb                xor    %ecx,%ebx
  40160c: f0 0f b0 1e          lock cmpxchg %bl,(%rsi)
  401610: 75 f6                jne    0x401608

16-5,4,14
  401750: 0f b7 06             movzwl (%rsi),%eax
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  401753: 89 c2                mov    %eax,%edx
  401755: 31 fa                xor    %edi,%edx
  401757: 66 f0 0f b1 16       lock cmpxchg %dx,(%rsi)
  40175c: 75 f5                jne    0x401753

32-5,4,12
  401b60: 8b 06                mov    (%rsi),%eax
  401b62: 89 c2                mov    %eax,%edx
  401b64: 31 da                xor    %ebx,%edx
  401b66: f0 0f b1 16          lock cmpxchg %edx,(%rsi)
  401b6a: 75 f6                jne    0x401b62

64-5,4,16
  401f60: 48 8b 06             mov    (%rsi),%rax
  401f63: 48 89 c2             mov    %rax,%rdx
  401f66: 48 31 ca             xor    %rcx,%rdx
  401f69: f0 48 0f b1 16       lock cmpxchg %rdx,(%rsi)
  401f6e: 75 f3                jne    0x401f63

128-7,5,23
  402370: 48 8b 06             mov    (%rsi),%rax
  402373: 48 8b 56 08          mov    0x8(%rsi),%rdx
  402377: 48 89 c3             mov    %rax,%rbx
  40237a: 48 89 d1             mov    %rdx,%rcx
  40237d: 4c 31 d3             xor    %r10,%rbx
  402380: f0 48 0f c7 0e       lock cmpxchg16b (%rsi)
  402385: 75 f0                jne    0x402377

 BBool
8-6,6,17
  401600: 0f b6 13             movzbl (%rbx),%edx
  401603: 0f b6 c2             movzbl %dl,%eax
  401606: 31 ca                xor    %ecx,%edx
  401608: 0f b6 d2             movzbl %dl,%edx
  40160b: f0 0f b0 13          lock cmpxchg %dl,(%rbx)
  40160f: 75 ef                jne    0x401600

16-6,6,18
  401740: 0f b7 13             movzwl (%rbx),%edx
  401743: 0f b7 c2             movzwl %dx,%eax
  401746: 31 f2                xor    %esi,%edx
  401748: 0f b7 d2             movzwl %dx,%edx
  40174b: 66 f0 0f b1 13       lock cmpxchg %dx,(%rbx)
  401750: 75 ee                jne    0x401740

32-5,5,13
  401b50: 8b 03                mov    (%rbx),%eax
  401b52: 44 89 ea             mov    %r13d,%edx
  401b55: 31 c2                xor    %eax,%edx
  401b57: f0 0f b1 13          lock cmpxchg %edx,(%rbx)
  401b5b: 75 f3                jne    0x401b50

64-5,5,16
  401f50: 48 8b 03             mov    (%rbx),%rax
  401f53: 48 89 ca             mov    %rcx,%rdx
  401f56: 48 31 c2             xor    %rax,%rdx
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  401f59: f0 48 0f b1 13       lock cmpxchg %rdx,(%rbx)
  401f5e: 75 f0                jne    0x401f50

 BVal
8-9,8,27
  401600: 0f b6 13             movzbl (%rbx),%edx
  401603: eb 02                jmp    0x401607
  401605: 89 c2                mov    %eax,%edx
  401607: 89 d0                mov    %edx,%eax
  401609: 31 c8                xor    %ecx,%eax
  40160b: 44 0f b6 c0          movzbl %al,%r8d
  40160f: 0f b6 c2             movzbl %dl,%eax
  401612: f0 44 0f b0 03       lock cmpxchg %r8b,(%rbx)
  401617: 38 c2                cmp    %al,%dl
  401619: 75 ea                jne    0x401605

16-9,8,41
  401741: 0f b7 13             movzwl (%rbx),%edx
  401744: eb 0c                jmp    0x401752
  401746: 66 2e 0f 1f 84 00 00 nopw   %cs:0x0(%rax,%rax,1)
  40174d: 00 00 00 
  401750: 89 c2                mov    %eax,%edx
  401752: 41 89 d0             mov    %edx,%r8d
  401755: 0f b7 c2             movzwl %dx,%eax
  401758: 41 31 f0             xor    %esi,%r8d
  40175b: 45 0f b7 c0          movzwl %r8w,%r8d
  40175f: 66 f0 44 0f b1 03    lock cmpxchg %r8w,(%rbx)
  401765: 66 39 c2             cmp    %ax,%dx
  401768: 75 e6                jne    0x401750

32-9,8,36(26)
  401b62: 8b 13                mov    (%rbx),%edx
  401b64: eb 0d                jmp    0x401b73
  401b66: 66 2e 0f 1f 84 00 00 nopw   %cs:0x0(%rax,%rax,1)
  401b6d: 00 00 00 
  401b70: 44 89 c2             mov    %r8d,%edx
  401b73: 41 89 d0             mov    %edx,%r8d
  401b76: 89 d0                mov    %edx,%eax
  401b78: 45 31 e8             xor    %r13d,%r8d
  401b7b: f0 44 0f b1 03       lock cmpxchg %r8d,(%rbx)
  401b80: 39 c2                cmp    %eax,%edx
  401b82: 41 89 c0             mov    %eax,%r8d
  401b85: 75 e9                jne    0x401b70

64-9,8,30
  401f80: 48 8b 13             mov    (%rbx),%rdx
  401f83: eb 03                jmp    0x401f88
  401f85: 4c 89 c2             mov    %r8,%rdx
  401f88: 49 89 d0             mov    %rdx,%r8
  401f8b: 48 89 d0             mov    %rdx,%rax
  401f8e: 49 31 c8             xor    %rcx,%r8
  401f91: f0 4c 0f b1 03       lock cmpxchg %r8,(%rbx)
  401f96: 48 39 c2             cmp    %rax,%rdx
  401f99: 49 89 c0             mov    %rax,%r8
  401f9c: 75 e7                jne    0x401f85
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