
Long Wang (s080894)

A Graphics Library for System
Analysis

Master’s Thesis, February 2012

LONG WANG (S080894)

A Graphics Library for System Analysis

Master’s Thesis, February 2012

Supervisor:

Christian W. Probst (probst@imm.dtu.dk)

DTU - Technical University of Denmark, Kgs. Lyngby - 2012

Table of Contents

Table of Contents i

Abstract iii

1 Introduction 1

2 Background 3
2.1 Graph and its Representation . 3

2.1.1 Graph Representation . 3
2.2 JUNG Graph Library . 5

2.2.1 The JUNG System . 5
2.2.2 Major features of JUNG . 5

2.3 Java Language Related Issues . 6
2.3.1 JVM client and server mode . 6
2.3.2 Java Generics . 7
2.3.3 Annotations . 7
2.3.4 Exceptions . 8

2.4 Java Graphics related . 10
2.5 Benchmark . 10

2.5.1 Definitions . 10
2.5.2 Purpose . 11
2.5.3 How to benchmark . 11

3 Analysis and Comparison of Existing Libraries 13
3.1 Graph Libraries . 13
3.2 System Settings . 15

3.2.1 JVM Options . 15
3.2.2 Test System . 16

3.3 Benchmark . 16
3.3.1 JUNG Library Results . 17
3.3.2 jGraphX Library Results . 20

4 Design and Implementation 23
4.1 API . 23
4.2 Design Problems . 24

4.2.1 Finding the right objects . 25
4.2.2 Determine object granularity . 26

i

ii TABLE OF CONTENTS

4.2.3 Determine method signature . 26
4.2.4 Inheritance and Composition . 31

4.3 Detailed design . 35
4.3.1 Choice of data structure . 35
4.3.2 Layout Algorithm . 36
4.3.3 Exceptions . 42

5 Testing, Evaluation and Case studies 45
5.1 Case 1: Mutual authentication . 45

5.1.1 Analysis, Design and Implementation . 45
5.2 Case 2: Lock system . 50

5.2.1 Analysis, Design and Implementation . 50

6 Conclusion and Future Work 55

Bibliography 61

Abstract

This project aims to establish a software library(API) that enables users to analyse, visualize
and manipulate graph or network that is common within the domain of system analysis. The
library will extend a graph library, and make the relevant functionality available, plus add new,
domain-specific functionality.

To this end an evaluation of different libraries will be performed, and several problem domains
explored, for example, communication protocols and process calculi. Based on these explorations,
a library will be designed and implemented, and evaluated on different case studies.

iii

Chapter 1
Introduction

There are a plethora of graph libraries available in a great number of programming languages,
yet there are not any specific one that comes handy for application in the field of system analysis.
Some of them are too complicated to use that have unrelated complexity, some are specialized in
certain areas (mathematics or graph algorithm, etc) that do not fit well. Visualising the results of
system analysis also requires specialized support in a graph library.

The abundance in library gives us great resource to reference when building our own library,
however it also made the choice of choosing one as a foundation for our project hard. To select the
right one, we carefully examined our requirement and tries to align it with each of the libraries,
besides that, we also performed a evaluation of some of the existing libraries, and analyzed the
data to get a full view of libraries available, before made the final decision of choosing the JUNG
library.

This project aims to establish such a software library(API) that enables users to analyze, visual-
ize and manipulate graph or network that is common within the domain of system analysis. The
library is based on the JUNG(Java Universal Network/Graph) system. It is written in the Java
programming language, allowing this library to take advantage of the extensive functionalities
provided by the JUNG system, as well as the many Java libraries.

The library has a clear structure with various interfaces, abstract classes and implementing
classes. It is designed to be used directly as well as to be extended and evolved in the future. The
library also includes documentation of the set of class definitions and the behaviors associated
with those classes. Concretely, for example, the library provides different interfaces that represents
the ability of transferring data between vertexes, and also has concert classes that implement these
functionalities so that they are ready for use. On the graphical side, we implemented a basic
layout algorithm for simple graphs in the domain of system analysis, which other libraries does
not provide.

This report is structured in four parts:

Background. Background information related to this report is listed and discussed here in the
hope that it can improve the understanding of the overall issue.

1

2 CHAPTER 1. INTRODUCTION

Benchmark. Comparison of existing graph libraries is carried out on different criteria, includ-
ing availability, reliability and performance, etc. Thus a benchmark for the sake of comparing
performance is carried out. The result and analysis is discussed in this chapter.

Design and Implementation. With the results we get from the previous chapter, we continue
with the design and implementation of the library. Starting with general principles as well as detail
design, also provides the thought behind some decisions.

Case Study. We provide two non-trivial cases demo for the application of the library, we examine
the requirements and build the case step by step, in hopes that it can help grasping the uses of this
library.

Chapter 2
Background

In this section, we will discuss the background information that may not be obvious, but will be
mentioned and applied later in this thesis. It contains a general discussion about graph/network
representation. Besides that, we also gives a brief instruction to the JUNG Library which will be
the main graph library on which we build our application (though the detailed evaluation and
benchmark will be discussed in next chapter).

2.1 Graph and its Representation

The intuitive notion of a graph is a drawing of (possibly labeled) nodes with edges connecting
some of them. A more formal data structure definition is like : A graph (denoted G) is a pair of
sets (V,E) , where V is the set of vertices (or nodes) and E is the set of edges. Vertices are usually
the elements of the problem we are interested in. Each edge connects two vertices, so it can be
represented as a pair E(v1,v2).1

2.1.1 Graph Representation

There are two common ways to represent graphs in memory: as an adjacency list or as an
adjacency matrix. Each of them has its own advantages and disadvantages. First, let us investigate
their definitions.

According to Cormen Thomas H. (2001):

• Adjacency list - Vertices are stored as records or objects, and every vertex stores a list of
adjacent vertices. This data structure allows to store additional data on the vertices.

• Adjacency matrix - A two-dimensional matrix, in which the rows represent source vertices
and columns represent destination vertices. Data on edges and vertices must be stored
externally. Only the cost for one edge can be stored between each pair of vertices.

And now the question are which one is better? There basically are two factors that we need
to consider: the time complexity and the space trade-offs. The following table 2.1 gives the time
complexity cost of performing various operations on graphs.2

If we are to implement the adjacency lists on a 32-bit computer using basic array, an adjacency
list for an undirected graph requires around 8e bytes of storage, where e is the number of edges:

1http://www.cs.toronto.edu/~heap/270F02/node32.html
2http://en.wikipedia.org/wiki/Graph_(data_structure)

3

http://www.cs.toronto.edu/~heap/270F02/node32.html
http://en.wikipedia.org/wiki/Graph_(data_structure)

4 CHAPTER 2. BACKGROUND

Adjacency list Adjacency matrix

Storage O(|V|+ |E|) O(| V | 2)
Add vertex O(1) O(| V | 2)
Add edge O(1) O(1)
Remove vertex O(| E |) O(| V | 2)
Remove edge O(| E |) O(1)
Query: are vertices
u, v adjacent?

O(| E |) O(1)

Remarks When removing edges or ver-
tices, need to find all vertices or
edges

Slow to add or remove vertices,
because matrix must be resized
or copied

Table 2.1: Different representation of graph or networks in memory

each edge will appear in the entries in two adjacency lists and uses four bytes in each, more
concretely each edge appears on the adjacency lists of its two endpoints.

On the other hand, because each entry in an adjacency matrix requires only one bit, they can be

represented in a very compact way, occupying only
n2

8
bytes of contiguous space, where n is the

number of vertices.

Noting that a graph can have at most n2 edges allowing loops, or in our situation n× (n− 1)
in directed graph which is called Directed Complete Graph, to simplify things out, we can let

d =
e

n2 denote the density of the graph. Then, if 8e >
n2

8
, the adjacency list representation

occupies more space, which is true when d >
1

64
. Thus a graph must be sparse for an adjacency

list representation to be more memory efficient than an adjacency matrix. However, this analysis
is valid only when the representation is intended to store the connectivity structure of the graph
without any numerical information about its edges.

In our case, considering the requirement, we would assume (quite fairly) that there will be quite
a few operations that checks if an edge exists. Also, since its use for visualization, the numerical
information on its edges seems less likely. Most importantly is that when sued for small scale
application, the space storage does not really matter. However, in the event of the vertexes in
a graph goes up, n2 builds up quickly and the application frequently results in a sparse graph,
which cries for the application of adjacent list.3

We are building our library on top of JUNG library, and in JUNG most of the current JUNG ver-
tex implementations employ a variant of the adjacency list representation (read Joshua O Madad-
hain (2005)), which we term an adjacency map representation: each vertex maintains a map from
each adjacent vertex to the connecting edge (or connecting edge set, in the case of graphs that
permit parallel edges). (Separate maps are maintained, if appropriate, for incoming directed
edges, outgoing directed edges, and undirected edges.) This uses slightly more memory than
the adjacency list representation, but makes findEdge approximately as fast as the corresponding
operation on the 2D array representation. This representation makes JUNG’s data structures and

3http://en.wikipedia.org/wiki/Adjacency_list

http://en.wikipedia.org/wiki/Adjacency_list

2.2. JUNG GRAPH LIBRARY 5

algorithms, in general, well-suited for use on large sparse networks.

2.2 JUNG Graph Library

The JUNG library being the foundation of the library we developed undoubtedly needs some
elaboration. Here we will present it in two parts:

• The Jung System Overview

• Features of Jung System

2.2.1 The JUNG System

As Joshua O Madadhain (2005) noted, the JUNG (Java Universal Network/Graph) Framework
is a free, open-source software library that provides a common and expendable language for the
manipulation, analysis,and visualization of data that can be represented as a graph or network. It
is written in the Java programming language, allowing JUNG-based applications to make use of
the extensive built-in capabilities of the Java Application Programming Interface (API), as well as
those of other existing third-party Java libraries. We describe the design, and some details of the
implementation, of the JUNG architecture, and provide illustrative examples of its use.

2.2.2 Major features of JUNG

The major features of JUNG includes the following (see Joshua O Madadhain (2005)):

• Support for a variety of representations of entities and their relations, including directed and
undirected graphs, multi-modal graphs (graphs which contain more than one type of vertex
or edge), graphs with parallel edges (also known as multigraphs), and hypergraphs (which
contain hyperedges, each of which may connect any number of vertices). Of course, for our
case we used the normal sparse graph with only directed and undirected edges allowed.

• Mechanisms for annotating graphs, entities, and relations with metadata. These capabilities
facilitate the creation of analytic tools for complex data sets that can examine the relations
between entities, as well as the metadata attached to each entity and relation.

• Implementations of a number of algorithms from graph theory, exploratory data analysis,
social network analysis, and machine learning. These include routines for clustering, de-
composition, optimization, random graph generation, statistical analysis, and calculation of
network distances, ?ows, and ranking measures (centrality, PageRank, HITS, etc.)

• A visualization framework that makes it easy to construct tools for the interactive exploration
of network data. Users can choose among the provided layout and rendering algorithms, or
use the framework to create their own custom algorithms.

• Filtering mechanisms which extract subsets of a network; this allows users to focus their
attention, or their algorithms, on specific portions of a network.

6 CHAPTER 2. BACKGROUND

These capabilities make JUNG a good foundation for data representation and manipula-
tion in graphs. Especially considering the visualization framework it provides suit our require-
ment(detailed in later chapter). And as Joshua O Madadhain (2005) put it: "JUNG is a framework
on which applications and tools for manipulating graph and network data can be built. It can be
used in simple snippets of code to test ideas, or to aid in the development of a sophisticated tool
with a graphic user interface. JUNG is not itself a standalone tool, but rather a library that can be
used to support the construction of specialized tools."

2.3 Java Language Related Issues

Since the project is built on Java libraries, and developed in Java Programming Language,
there are quite some topics that we need to address. It is though that the prevalence of Java made
discussions about the Java Language background seems less indispensable, yet we would like to
keep this part and focus more on three less discussed area of Java. Namely JVM, Java generics and
Annotation SuppressWarnings.

2.3.1 JVM client and server mode

The knowledge of JVM and its settings are important in this project, not only because the
project and the libraries that it reference is in Java programming language, but that a benchmark
of these existing libraries is needed, we cannot test without fine tuning the JVM. Thus we shall say
few words about this topic here.

The JDK includes two flavors of the VM - a client-side offering, and a VM tuned for server
applications. These two solutions share the Java HotSpot runtime environment code base, but use
different compilers that are suited to the distinctly unique performance characteristics of clients
and servers. These differences include the compilation inlining policy and heap defaults.4

Figure 2.1: The Java HotSpot Client VM, on the left, and the Java HotSpot Server VM, on the
right, use a different compiler but otherwise interface to the same virtual machine, using the same
garbage collection (GC) routine, interpreter, thread and lock subsystems, and so on.

Although the Server and the Client VMs are similar, the Server VM has been specially tuned
to maximize peak operating speed. It is intended for executing long-running server applications,

4http://java.sun.com/products/hotspot/whitepaper.html

http://java.sun.com/products/hotspot/whitepaper.html

2.3. JAVA LANGUAGE RELATED ISSUES 7

which need the fastest possible operating speed more than a fast start-up time or smaller runtime
memory footprint.

The Client VM compiler does not try to execute many of the more complex optimizations
performed by the compiler in the Server VM, but in exchange, it requires less time to analyze
and compile a piece of code. This means the Client VM can start up faster and requires a smaller
memory footprint.5

The Server VM contains an advanced adaptive compiler that supports many of the same
types of optimizations performed by optimizing C++ compilers, as well as some optimizations
that cannot be done by traditional compilers, such as aggressive inlining across virtual method
invocations. This is a competitive and performance advantage over static compilers. Adaptive
optimization technology is very flexible in its approach, and typically outperforms even advanced
static analysis and compilation techniques.See footnote 4.

2.3.2 Java Generics

Java generics, like C++ templates, allows the abstraction of types. And most commonly used in
containers. As pointed out in Java’s own document Java Programming Language "This long-awaited
enhancement to the type system allows a type or method to operate on objects of various types
while providing compile-time type safety. It adds compile-time type safety to the Collections
Framework and eliminates the drudgery of casting"6.

This construct is very useful as it helps debugging the code and are widely accepted since great
number of other languages also has the feature available. with generics, type related mistakes
would be caught by the compiler, instead of crashing the application at runtime. One always favor
compile time error than runtime error, since compile time error informs one immediately and
one can use the compiler error messages to figure out what the problem is and fix it. Runtime
error, however, can be much more problematic; they do not always surface immediately, and
when they do, it may be at a point in time that is far removed from the actual cause of the problem7.

But there are drawbacks also. The authors of Design Patterns note that this technique, especially
when combined with delegation, is very powerful but that "[dynamic], highly parameterized
software is harder to understand than more static software" (see Erich Gamma (1994)).

2.3.3 Annotations

An Java annotation is a special form of syntactic metadata that can be added to Java source
code.They have no direct effect on the operation of the code they annotate. Yet they do affect
the way programs are treated by tools and libraries, which can in turn affect the semantics of the
running program. 8

Annotations have a number of uses, among them9:

5http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
6http://docs.oracle.com/javase/1.5.0/docs/guide/language/index.html
7http://docs.oracle.com/javase/tutorial/java/generics/generics.html
8http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
9http://docs.oracle.com/javase/tutorial/java/javaOO/annotations.html

http://java.sun.com/j2se/reference/whitepapers/memorymanagement_whitepaper.pdf
http://docs.oracle.com/javase/1.5.0/docs/guide/language/index.html
http://docs.oracle.com/javase/tutorial/java/generics/generics.html
http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html
http://docs.oracle.com/javase/tutorial/java/javaOO/annotations.html

8 CHAPTER 2. BACKGROUND

• Information for the compiler: Annotations can be used by the compiler to detect errors or
suppress warnings.

• Compiler-time and deployment-time processing: Software tools can process annotation
information to generate code, XML files, and so forth.

• Runtime processing: Some annotations are available to be examined at runtime.

1 @SuppressWarnings

The annotation mentioned above is one of the three annotation types that are predefined by the
language specification itself, as stated in the documentation of Java 2 Platform Standard Ed. 5.0:"(the
above) Indicates that the named compiler warnings should be suppressed in the annotated element
(and in all program elements contained in the annotated element). Note that the set of warnings
suppressed in a given element is a superset of the warnings suppressed in all containing elements.
For example, if you annotate a class to suppress one warning and annotate a method to suppress
another, both warnings will be suppressed in the method."

2.3.4 Exceptions

The design of Exception, or more precisely, the choice of which type of exception to use in our
library is a topic worth noting. So here we shall briefly list related background information.

Definitions

According to the definition given by Oracle10

1 An except ion i s an event , which occurs during the execut ion of a program , t h a t
d i s rupts the normal flow of the program ’ s i n s t r u c t i o n s .

In the detail of Java code, Throwable is at the top off all exceptions. Underneath Throwable
there is Error and Exception. Underneath Exception there is the subclass called RuntimeExcdep-
tion. When designing we need to differentiate these two classes. Java has two types of exceptions
- checked and unchecked. The difference between checked and unchecked exceptions is rather
simple: checked exceptions are subclasses of the Exception class, and an unchecked exception is a
subclass of RuntimeException, which is a subclass of Exception.

The role and design considerations are also different. Checked exceptions are enforced by the
Java compiler and virtual machine. Client programmers will not be able to compile their code
unless they have caught checked exceptions somewhere in the execution stack. Virtual machines
will not run unless the appropriate exception classes are available. A checked exception indicates
that a called function has failed to fulfill its end of the contract, and since the client programmer
is dependent on it for their program’s operation, it throws a checked exception so that client
programmers are given the opportunity to deal with such an anomaly.11

10http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
11http://osix.net/modules/article/?id=766

http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
http://osix.net/modules/article/?id=766

2.3. JAVA LANGUAGE RELATED ISSUES 9

An unchecked exception is a subclass of RuntimeException because it is discovered at runtime,
not at compile time. An unchecked exception is thrown because the calling function did not fulfill
its end of the contract by passing bad or invalid data.

When applying the above listed rules, our general idea is that checked exceptions are something
we may be able to foresee but may be based on input that is out of our control, and that we have
to deal with. Similarly,the advice by Joshua Bloch in Effective Java best summaries: Use checked
exceptions for recoverable conditions and runtime exceptions for programming errors (read Bloch
(2008)) 12. The case study for applying these rules shall be discussed in detail in the next chapter.

Why do we need Exceptions

We shall not go deep into the topic to discuss the mechanism or how the system handles a
exception. But we shall provide some evidence for our application of Exception in the system. In
other words, why we are using it.

Notes from Oracle states the following advantages of Exception13:

• Separating Error-Handling Code from "Regular" Code: Exceptions provide the means to
separate the details of what to do when something out of the ordinary happens from the
main logic of a program.

• Propagating Errors Up the Call Stack: A second advantage of exceptions is the ability to
propagate error reporting up the call stack of methods.

• Grouping and Differentiating Error Types: Because all exceptions thrown within a program
are objects, the grouping or categorizing of exceptions is a natural outcome of the class
hierarchy.

Principles of exception handling

Exception handling is simple enough in a hello-world scenario. So simple as if one is encoun-
tered, catch it and print the stack trace. Yet in real world this approach is not nearly sufficient. So it
would be necessary to have some guidelines and the following are some of the generally accepted
principles of exception handling (see Shenoy (2002)):

• If you can’t handle an exception, don’t catch it.

• If you catch an exception, don’t swallow it.

• Catch an exception as close as possible to its source.

• Log an exception where you catch it, unless you plan to rethrow it.

• Structure your methods according to how fine-grained your exception handling must be.

• Use as many typed exceptions as you need, particularly for application exceptions.

12Item 58
13http://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

http://docs.oracle.com/javase/tutorial/essential/exceptions/advantages.html

10 CHAPTER 2. BACKGROUND

2.4 Java Graphics related

The Java 2D API maintains two coordinate spaces (see Oracle (2012):

• User space: The space in which graphics primitives are specified

• Device space: The coordinate system of an output device such as a screen, window, or a
printer

User space is a device-independent logical coordinate system, the coordinate space that your
program uses. All geometries passed into Java 2D rendering routines are specified in user-space
coordinates.

Figure 2.2: User Space and coordinates

When the default transformation from user space to device space is used, the origin of user
space is the upper-left corner of the component¡¯s drawing area. The x coordinate increases to the
right, and the y coordinate increases downward, as shown in the figure 2.2. The top-left corner of a
window is (0,0). All coordinates are specified using integers, which is usually sufficient. However,
some cases require floating point or even double precision which are also supported.

2.5 Benchmark

Here listed some of the most basic ideas regarding the benchmark topic.

2.5.1 Definitions

A benchmark in general is a snapshot of some aspect of certain objects under evaluation at a
fixed point in time that allows us to measure performance and compare results. In computing, a
benchmark is the act of running a computer program, a set of programs, or other operations, in
order to assess the relative performance of an object, normally by running a number of standard
tests and trials against it14.

In our project here, it means specifically the measurement of performance. Without bench-
marks, it would be hard to make a choice out of the similar libraries, and there is no way to
confidently measure and report on the results.

14http://en.wikipedia.org/wiki/Benchmark_(computing)

http://en.wikipedia.org/wiki/Benchmark_(computing)

2.5. BENCHMARK 11

2.5.2 Purpose

The purpose of this benchmark is solely to evaluate performance, as it is hard to compare the
performance simply by looking at the specifications. And more over, the libraries available usually
lack information about their performance. Thus we need to take the action, the process is designed
to mimic the type of basic operations we perform when applying the system.

As this benchmark is only for evaluation, it has no consideration over otherwise important
features like facility burden, security, reliability, scalability, etc.

2.5.3 How to benchmark

There are some guidance found from the source15, though it is targeted at different area than
this report, I altered it to make it functional also for our purpose. And in the following chapter, the
actual benchmark process use this as instruction.

1. Determine what you are going to measure
Take time to identify the quantifiable elements of the library that needs to be and can be evaluate.
The more specific your measurements, the more clearly you will be able to assess progress.
Benchmarks need to be operational rather than strategic.

2. Work out how to measure it
Think about how you are going to measure the objectives you want to address. Be specific but not
too complicated.

3. Take measurements before you start
Measure all the things you want to quantify and record the measurements clearly. These measure-
ments become the benchmarks you will use to compare.

4. Repeat the same measurements
Measure everything in exactly the same way under same system/environment settings as you did
before with another library. This will show you the gains you have made from the training.

15http://www.skillshighway.govt.nz/setting-benchmarks_page16.html

http://www.skillshighway.govt.nz/setting-benchmarks_page16.html

Chapter 3
Analysis and Comparison of Existing

Libraries

In this chapter, we will solve the problem of choosing the right graph libraries to use, and
present the advantages and disadvantages with that particular choice. Concretely, this chapter
contains the following parts:

• Graph Libraries: a general discussion and comparison of existing graph libraries, more
focused on what each library is designed for

• System Settings: environment settings such as Java HotSpot virtual machine (JVM) in Sun’s
J2SE 5.0 release so that the environment is tuned to a suitable state.

• Benchmark: the process and results

3.1 Graph Libraries

There are a large number of graph libraries that are implemented in Java language. Yet some
of them belongs to the commercial area whereas others are developed under some free software
license. The ones that have been considered are listed in table 3.1, with a line of brief introduction
from its own site:

With the listed information, it becomes easy to rule out the commercial ones like EasyCharts
and ElegantJ. For the rest, there are some libraries that belongs to the group of charting libraries,
among them the main functionalities become to create beautifully presented histograms, fan charts,
line charts, etc. And that, is not what we are looking for. And then we can eliminate the JFreeChart
and left with the following 5:

• G

• JGraphT

• JGraphX

• JUNG

• Prefuse

13

14 CHAPTER 3. ANALYSIS AND COMPARISON OF EXISTING LIBRARIES

Name Brief Intro. Site Free?

EasyCharts EasyCharts is a 100% java based chart library
that enables you to add great-looking charts in
your java applications, web pages, and server
based web applications with very little coding
effort.

http://www.
objectplanet.
com/easycharts/

No

ElegantJ Charts ElegantJ Charts is a complete Java component
model. It supports the standard component ar-
chitecture features of properties, events, meth-
ods, and persistence.

http://www.
elegantjcharts.
com/

No

G G is a generic graphics library built on top of
Java 2D in order to make scene graph oriented
2D graphics available to client applications in
a high level, easy to use way.

http://geosoft.
no/graphics/

Yes

JFreeChart JFreeChart is a free 100% Java chart library
that makes it easy for developers to display
professional quality charts in their applica-
tions.

http://www.
jfree.org/
jfreechart/

Yes

JGraphT JGraphT is a free Java graph library that pro-
vides mathematical graph-theory objects and
algorithms.

http://jgrapht.
sourceforge.net/

Yes

JGraphX JGraphX enables you to produce Java Swing
applications that feature interactive diagram-
ming functionality

http://www.
jgraph.com/doc/
mxgraph/index_
javavis.html

Yes

JUNG JUNG, the Java Universal Network/Graph
Framework, is a software library that provides
a common and extendible language for the
modeling, analysis, and visualization of data
that can be represented as a graph or network.

http://jung.
sourceforge.net/

Yes

Prefuse Prefuse is a set of software tools for creating
rich interactive data visualizations.

http://prefuse.
org/

Yes

Table 3.1: Graph Libraries

As mentioned, our intention for the library is more focused on display and manipulation,
rather than usage of the graph theory/algorithm. So according to the introduction given by their
corresponding websites, JGraphT focused more on "the mathematical graph-theory objects and
algorithms".

Now let us look at Prefuse, it is more focused on data modeling and visualization :"supports a
rich set of features for data modeling, visualization, and interaction." And for G, though the profile
fits our expectation, it is quite a lightweight library(80kB, self contained, simple to use) and lacks
extensive documentation, thus made it relatively hard to extend.

The two left libraries Jung and JGraphX have both met our basic requirements, they also possess
extensive documentations and demos, thus we decided to benchmarking them by choosing the
one that has a better performance.

http://www.objectplanet.com/easycharts/
http://www.objectplanet.com/easycharts/
http://www.objectplanet.com/easycharts/
http://www.elegantjcharts.com/
http://www.elegantjcharts.com/
http://www.elegantjcharts.com/
http://geosoft.no/graphics/
http://geosoft.no/graphics/
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://jgrapht.sourceforge.net/
http://jgrapht.sourceforge.net/
http://www.jgraph.com/doc/mxgraph/index_javavis.html
http://www.jgraph.com/doc/mxgraph/index_javavis.html
http://www.jgraph.com/doc/mxgraph/index_javavis.html
http://www.jgraph.com/doc/mxgraph/index_javavis.html
http://jung.sourceforge.net/
http://jung.sourceforge.net/
http://prefuse.org/
http://prefuse.org/

3.2. SYSTEM SETTINGS 15

3.2 System Settings

In this section, the detailed settings are listed and discussed. Configuring the system settings
are essential, the purpose is not only to tune the system for a better performance (and certainly
not for an unrealistic result), but also to keep the environment consistent thorough out the whole
evaluation process and also for later replicate.

3.2.1 JVM Options

In order to evaluate the performance of the two different graph libraries, a series of benchmark
of basic actions on a graph is carried out. But before we dive into the practice, we need to configure
the testing environment. Since both libraries to be tested runs on JVM, the setting and contributing
factors are discussed in this section.

In the J2SE 5.0 release, default values for the garbage collector, heap size, and HotSpot virtual
machine (client or server) are automatically chosen based on the platform and operating system
on which the application is running.

On machines that are not server-class machines, the default values for JVM, garbage collector,
and heap sizes are listed:

• the client JVM

• the serial garbage collector

• Initial heap size of 4MB

• Maximum heap size of 64MB

The default options for client(default) mode here are in Table 3.2:

JVM option Default Description
-Xms 4MB initial java heap size
-Xmx 64MB maximum java heap size
-Xmn Platform¨Cdependen Default initial size of the new (young) generation, in bytes

Table 3.2: heap memory options

Another point worth considering is Java’s garbage collection mechanism. The heap size of
virtual machine determines the cost of collecting garbage on two measurements: time and fre-
quency. These measurements desired value is application dependent, and should be determined
by analyzing the actual garbage collection time and frequency. In the event that the heap size
is large, full garbage collection will be very slow, but the frequency will be reduced. If the heap
size and memory requirements are consistent, complete collection will run quickly, but will be
more frequent. The purpose of tuning the heap size is to minimize the garbage collection time, to
maximize the handling of customer requests. In the benchmark test in our case, in order to ensure
the best performance, we should set a large heap size, in the hope that garbage collection will not
be performed throughout the benchmark process, or at least does not have a big influence on this
evaluation process.

16 CHAPTER 3. ANALYSIS AND COMPARISON OF EXISTING LIBRARIES

Processor Intel Core 2 U9400 @ 1.40GHz
Memory 2 GB (DDR3)

Hard disk 128G SSD
Chipset Intel ICH9 Family SMBus Controller - 2930

Operating System Windows 7 32bit Professional SP1

Table 3.3: System specifications

3.2.2 Test System

It does not gives much information if we lack the specifications about the system. System
specifications are listed in Table 3.3.

Note: The Java object heap has to be allocated in contiguous virtual addresses, for implemen-
tation reasons. In 32 bit operating systems only 2gb memory can be addressed as contiguous 1,
which happens to be the memory size of my laptop.

JVM Version

JVM Version for this benchmark is:

1 C:\ Users\Logan>java −vers ion
java vers ion " 1 . 6 . 0 _29 "

3 Java (TM) SE Runtime Environment (bui ld 1 . 6 . 0 _29−b11)
Java HotSpot (TM) C l i e n t VM (bui ld 20.4−b02 , mixed mode)

JVM Set Up

Since Java Virtual Machine is set to default3.2.1, and adding one million vertex would result in
MemoryOutofUse Exception. Thus, when running the test, VM argument -Xms128m -Xmx1024m
is passed to VM.

3.3 Benchmark

In order to find the more suitable library as mentioned in section 3.1, we need to perform a basic
benchmark on these two candidates. We evaluated two aspects of the library as a representation
for their corresponding performance. Specifically, each of them will perform add vertex and add
edge action and we compare their efficiency doing so. The initial scale is set to add one million
vertex consecutively, and add one million edges in the each two vertex that were added after one
another. To make the estimation more accurate, both benchmark process were performed for 10
times and compared against the average value.

More formally, our starting point is a random experiment with a sample space and a probability
measure P. In the basic statistical model, we have an observable random variable X taking values
in a set S. Here we sample n = 10 objects from a population and record measurements of running
time taken

X = (X1, X2, ..., X10) (3.1)

1http://weblogs.java.net/blog/aiqa/archive/2005/04/jvm_memory_usag.html

http://weblogs.java.net/blog/aiqa/archive/2005/04/jvm_memory_usag.html

3.3. BENCHMARK 17

where Xi is the vector of measurements for the i’th object. Thus we have sample space (X1, X2, ..., X10)

size of 10 and each of them is independent and identically distributed. The arithmetic mean X is
defined via the equation

X :=
1
n

10

∑
i=1

Xi (3.2)

And we are using the arithmetic mean in view of the fact that it holds several properties, the most
crucial to us is:

• The mean value X we get is a real-valued function of the random sample and thus is a
statistic. Like any statistic, the sample mean is itself a random variable with a distribution,
mean, and variance of its own. Here the distribution mean is unknown and the sample mean
is used as an estimator of the distribution mean. And it is a good estimator, it is unbiased.

• The strong law of large numbers2 states that the sample mean X converges to the distribution
mean µ with probability 1:

X → µ for n→ ∞ (3.3)

The above stated properties ensure us that the arithmetic mean is a good estimator of the
running time and thus made our benchmark effective in addressing the purpose.

And since JUNG library provides many more ways of representing a graph, there are more
tests for JUNG library on different graph types.

The overall result in graph is shown below in figure 3.1 and figure 3.2. We We can easily tell
that JUNG library has a better performance under our test criteria.

3.3.1 JUNG Library Results

We performed two evaluation on JUNG library. We chose three different types of graphs of the
JUNG library: SparseGraph, DirectedSparseGraph, and UndirectedSparseGraph to evaluate.

Add vertex benchmark

One million vertexes add into different types of graph, namely three: SparseGraph, Direct-
edSparseGraph, UndirectedSparseGraph.

SparseGraph
2 * * Benchmarking add ver tex . * *

Running time : 4239 ms .
4 Running time : 3341 ms .

Running time : 3124 ms .
6 Running time : 4920 ms .

Running time : 26317 ms . (way of f , excluded)
8 Running time : 55221 ms . (way of f , excluded)

Running time : 5557 ms .
10 Running time : 1757 ms .

Running time : 2148 ms .
12 Running time : 3566 ms .

2http://en.wikipedia.org/wiki/Law_of_large_numbers

http://en.wikipedia.org/wiki/Law_of_large_numbers

18 CHAPTER 3. ANALYSIS AND COMPARISON OF EXISTING LIBRARIES

Figure 3.1: Result for add edge. Add one million edge into the graph. Time in milliseconds.

Figure 3.2: Result for add vertex. Add one million vertex into the graph. Time in milliseconds.

3.3. BENCHMARK 19

===Average time : 11019 .0 ms.===
14

DirectedSparseGraph
16 * * Benchmarking add ver tex . * *

Running time : 1882 ms .
18 Running time : 1312 ms .

Running time : 1770 ms .
20 Running time : 1886 ms .

Running time : 1911 ms .
22 Running time : 1990 ms .

Running time : 1279 ms .
24 Running time : 3162 ms .

Running time : 1946 ms .
26 Running time : 1662 ms .

===Average time : 1880 .0 ms.===
28

UndirectedSparseGraph
30 * * Benchmarking add ver tex . * *

Running time : 1352 ms .
32 Running time : 424 ms .

Running time : 714 ms .
34 Running time : 976 ms .

Running time : 402 ms .
36 Running time : 546 ms .

Running time : 904 ms .
38 Running time : 407 ms .

Running time : 514 ms .
40 Running time : 849 ms .

===Average time : 708 .8 ms.===

In the first part of benchmark, where we add vertex to SparseGraph, there occurred two values
that are around ten times more than other measured values. These two results are inconsistent,
hence excluded from the final result and are not likely to be random error.

Random errors3 are errors in measurement that lead to measurable values being inconsistent
when repeated measures of a constant attribute or quantity are taken. The word random indicates
that they are inherently unpredictable, and have null expected value, namely, they are scattered
about the true value, and tend to have null arithmetic mean when a measurement is repeated
several times with the same instrument. All measurements are prone to random error.

These two results are caused by unpredictable fluctuations, these fluctuations may be in part
due to interference of the environment with the measurement process. Or perhaps resulted from
the Java virtual machine with the garbage collection mechanism mentioned earlier. But it is worth
a mention that we have kept the testing system strictly consistent during the testing process.

3http://en.wikipedia.org/wiki/Random_error

http://en.wikipedia.org/wiki/Random_error

20 CHAPTER 3. ANALYSIS AND COMPARISON OF EXISTING LIBRARIES

Add edge benchmark

One million vertexes added into different kinds of graph, namely three: SparseGraph, Direct-
edSparseGraph, UndirectedSparseGraph. And then edges are created following the rule of linking
the adjacent numbered vertexes. So it is quite a sparse graph indeed.

1 SparseGraph

* * Benchmarking add edge . * *
3 Running time : 3261 ms .

Running time : 3011 ms .
5 Running time : 3216 ms .

Running time : 5508 ms .
7 Running time : 3480 ms .

Running time : 1990 ms .
9 Running time : 3770 ms .

Running time : 3494 ms .
11 Running time : 2050 ms .

Running time : 3763 ms .
13 ===Average time : 3354 .3 ms.===

15 DirectedSparseGraph

* * Benchmarking add edge . * *
17 Running time : 3486 ms .

Running time : 1710 ms .
19 Running time : 1662 ms .

Running time : 3375 ms .
21 Running time : 3688 ms .

Running time : 3942 ms .
23 Running time : 4170 ms .

Running time : 4547 ms .
25 Running time : 1648 ms .

Running time : 3386 ms .
27 ===Average time : 3161 .4 ms.===

29 UndirectedSparseGraph

* * Benchmarking add edge . * *
31 Running time : 1618 ms .

Running time : 3070 ms .
33 Running time : 3266 ms .

Running time : 1610 ms .
35 Running time : 3157 ms .

Running time : 1668 ms .
37 Running time : 3216 ms .

Running time : 2775 ms .
39 Running time : 3062 ms .

Running time : 3689 ms .
41 ===Average time : 2713 .1 ms.===

3.3.2 jGraphX Library Results

Similar to above benchmark with JUNG library,

3.3. BENCHMARK 21

Add vertex to graph.

It is very inconvenient if one just wants to add vertex to graph of JGraphX library. One has
to specifically point out the coordinates of the point to be added. Admittedly, this helps to make
graph layout easier, but not always come in handy in the requirement of this project. And it is
natural that the performance of simply adding one million vertexes is very much below JUNG’s.

The code line and results:

1 / / command t o add
graph . i n s e r t V e r t e x (parent , null , S t r i n g . valueOf (i) , 0 , 0 , 0 , 0) ;

3

Running time : 11885 ms .
5 Running time : 9390 ms .

Running time : 8727 ms .
7 Running time : 8412 ms .

Running time : 8526 ms .
9 Running time : 8325 ms .

Running time : 8816 ms .
11 Running time : 8309 ms .

Running time : 8703 ms .
13 Running time : 8861 ms .

===Average time : 8995 .4 ms.===

Add edge

Similar with add vertex, the insert edge function is not efficient, and hard to benchmark. The
line looks like this:

Object v1 = graph . i n s e r t V e r t e x (parent , null , " Hello " , 20 , 20 , 80 , 30) ;
2 Object v2 = graph . i n s e r t V e r t e x (parent , null , " World ! " , 240 , 150 , 80 , 30) ;

graph . inser tEdge (parent , null , " Edge " , v1 , v2) ;

Thus to add one million edges, I have to keep track of all the nodes added in the graph.
And when even testing for only 100000 vertex and edge connecting one from the other, it took
unbearable time:

1 Running time : 159719 ms .

As for the reason of this result, in my mind, is that to hold all the nodes in memory is just
not possible and thus the operating system automatically activates its paging memory scheme,
which provides virtual memory using the disk storage for data that does not fit into physical
random-access memory (RAM). And because the store and retrieve of data from secondary storage
for use in main memory is significantly slower, thus the operation becomes really slow.

Chapter 4
Design and Implementation

As we have discussed in the previous chapter about the advantage and disadvantages of each
available libraries, and came to the conclusion that overall JUNG library is more suitable to this
project and thus are chosen accordingly. Now, we would like to show how each requirement is
met in the details of our implementation, and why we are doing it.

Designing any object-oriented software is hard, and even more difficult if it is to be a library
like ours that provides satisfiable, reusable functionalities. This chapter consists of the following
parts: first we list out the specific design problems we are facing in this project, second section
gives overview of the design of our library, the third section discuss the detailed design of some
class and functions. We will show how our design capture solutions to design problems in our
application.

4.1 API

We are building an library, and it is only through the API that users can access the functionali-
ties of this library. So before we look at the problems and design, it is important to investigate the
meaning and properties regarding API (with reference to NetBeans (2012)).

The need for API

API is an abbreviation that stands for Application Programming Interface. Interface here takes
the general meaning rather than the Java language specific one. It means that there are two
different subjects involved at least. One being the provider of various services/functionalities,
while the other is the one left for applications to make calls into it. And from another perspective,
the producer of the code and other programmers using it are also on two separated sides. They
intrinsically differs in many aspects, like their goals, needs, expectations and schedules, etc. This
observation is fundamental to understands what is to come.

It is exactly this separation that implies the rules for designing and maintaining an API. Sup-
pose that there was no separation and the whole product was developed by one single tight team
and build at once, there would be less need for bothering with API (as it is definitively more work).
But as the real world products are composed from a set of independent projects developed by
teams that do not necessarily know about each other, have completely different schedules and

23

24 CHAPTER 4. DESIGN AND IMPLEMENTATION

build their projects independently, but still want to communicate among themselves there is a
need for a stable contract that can be used for such communication.

What is API

API is developed to enable communication between teams and applications within separated
and distributed development situations. The answer to "what is API" shall include every factor
that can influence such kind of development. Thus we should look into these factors before we get
started on developing our own.

The API can and should take these factors into consideration (see NetBeans (2012)):

method and field signatures : communication between applications is usually about calling func-
tions and passing data structures between each other. If there is a change in the names of
the methods, in their arguments or in structure of exchanged data, the whole program often
does not even link well, nor it can run.

files and their content : many applications read various files and their content can influence their
behavior. Imagine application relying on the other one to read its configuration file and
modifying its content prior to invoking the application. If the format of the file changes or
the file is completely ignored, the communication between those applications gets broken.

behavior : a bit harder to grip, but important for the separation as well is the the dynamic behavior.
How the program flow looks like - what is the order of execution, what locks are being held
during calls, in which threads a call can happen, etc.

The important thing with respect to distributed development is to be aware of possible APIs -
of possible things other code can depend on. Only by identifying such aspects of own application
one can develop it in a way that will not hurt cooperation with separately developed applications.

4.2 Design Problems

A good design can deal with a bunch of challenges, as Erich Gamma (1994) noted, we need find
the pertinent objects, factor them into classes at the right granularity, define class interfaces and
inheritance hierarchies, and establish key relationships among them. The design should be specific
to the problem at hand but also general enough to address future problems and requirements.

In our project, we will examine the following problems in our design:

1. Finding the appropriate objects. The "right" objects to include in the library. Our goal is to
have the objects represents the problem space at the right granularity. We need to find out
not so obvious abstractions of the target system and the objects that can capture them.

2. Structure of our library, inheritance hierarchies, the graphs and specialized vertexes and
edges. This affects all aspects of our library design. We are not writing a completely new
library, but rather to build upon the existing library of JUNG. With techniques like inheritance
and composition, we need to both reuse the functionalities and build them flexible.

4.2. DESIGN PROBLEMS 25

3. User operations. Our intention is to build a library for the application in the field of system
analysis. These requirement demands us to keep our implementation details transparent to
the user.

4. Layout algorithm. JUNG provides various layout algorithms, yet we lack those that are easy
to use and understand. We provided the most simple and straightforward one: grid layout.

Since we are designing an API library, we also have the following goals(from Harold (2004)
that we tries to meet, though the actual effect is hard to quantify:

• It must be absolutely correct. In the our case, this meant that the API could never produce
unexpected result no matter what the caller did.

• It must be easy to use. This is hard to quantify. A good way to get an idea is to write lots of
example code. Are there groups of operations that you keep having to repeat? Do you have
to keep looking up your own API because you forget what things are called? Are there cases
where the API does not do what you might expect?

• It must be easy to learn. This overlaps considerably with ease of use. But there are some
obvious principles to make learning easier. The smaller the API, the less there is to learn.
Documentation should include examples. Where appropriate, the API should look like
familiar APIs.

• It must be fast enough. Make sure the API is simple and correct. Then think about perfor-
mance. You might be inclined to make API changes because the original API could only
be implemented in an inefficient way. By all means change it to allow a more efficient
implementation, provided you do not compromise correctness or simplicity. Do not rely
on your intuition to know what performs well. Measure. Then tweak the API if you have
determined that it really matters.

We will discuss the above listed problems and tries to meet the goals presented above in the
sections that follow. Each problem has an associated set of goals plus constraints on how we
achieve those goals. We explain these goals and constraints in detail before proposing a specific
solution.

4.2.1 Finding the right objects

Object-oriented programs are all about objects, and indeed, the programs are made up of
objects. It might be easy and straightforward to identify some objects in a system, yet the hard part
is to decomposing a system into objects in a good way. It is difficult because many factors came
into play: encapsulation, granularity, dependency, flexibility, performance, evolution, reusability,
and on and on.Erich Gamma (1994)

The design methodologies of object-oriented design has many established and different ap-
proaches. As pointed out in Erich Gamma (1994), one can write a problem statement, single out the
nouns and verbs, and create corresponding classes and operations. Or one can put some focus on
the responsibility and collaborations within the target system. Or even model the real world using
’role play’ or ’card game’ methods, and translate the objects found during analysis into design. Yet

26 CHAPTER 4. DESIGN AND IMPLEMENTATION

it is hard to tell which are the best approach.

In this project, as noted before, has its own special requirements. We are building on the
existing library of JUNG and thus follow its intrinsic way of abstraction. For example, we set our
own graph class MyGraph to extend the SparseGraph of JUNG. As shown in the figure 4.4, subclass
relationship are usually indicated with a vertical line and a white triangle at the end. The class at
the triangle end is the parent class, and the class on the other end is the subclass.

1 publ ic c l a s s MyGraph<T> extends SparseGraph <Vertex <T> , Edge> implements
MoveData<T , Edge > , CopyData<T , Edge>

4.2.2 Determine object granularity

In general, granularity is the extent to which a system is broken down into small parts, either
the system itself or its description or observation. It is the "extent to which a larger entity is
subdivided." 1

In object-oriented program, objects can vary tremendously in size and number. They can
represent everything from a hardware or all the way up to entire applications. In this project for
instance, we are required to store information of the layout specifications of a vertex, we could list
one by one in the field of vertex or we can abstract out a layout class to encapsulate the variables.
We opt for the latter choice, to encapsulate the layout specifications and isolate them from the rest
of the program. The encapsulation here keep the parts that stay the same separate from the parts
that might change(which is the layout specifications) and thus it becomes easy to make changes.

Figure 4.1 depicts what the class VertexLayoutSpec consists of, it naturally holds the private
parts of fields about the color, style, shape, position, etc as the layout specifications. There are
naturally also constructors, getters and setters that provide access to the data. The encapsulation
has the advantage of remove the dependencies on layout information from the vertex itself. It also
made it easy to adjust to future modifications of requirement, for example, if we are required to
add a new layout specifications for vertex like the absolute position of each vertex in double, we
does not need to change the constructors of Vertex, but only the implementation detail of the class
VertexLayoutSpec. These made them low in coupling and higher in cohesion.

4.2.3 Determine method signature

A method signature defines a functions inputs and outputs, includes at least the function
name and the number of its arguments. In some programming languages, it may also specify
the function’s return type, the types of its arguments, or errors it may pass back. The set of all
signatures defined by an objet’s operations is called the interface to the object. By the way, the
interface here is different from the Java programming language’s keyword interface, it means the
generic sense of the term.

1http://en.wikipedia.org/wiki/Granularity

http://en.wikipedia.org/wiki/Granularity

4.2. DESIGN PROBLEMS 27

Figure 4.1: Class detail for VertexLayoutSpec

Considering that we are writing a customized API for others to use, it is important to keep in
mind one of the principles of object-oriented programming:

Program to an interface, not an implementation.

Following this guideline, our system supports the developer in coding against the interface
and we can change the internal workings without impacting the usage of them. And there is no
way to know anything about an object or to ask it to do any operations without going through the
interface. Knowing this, we have kept only those classes and methods public or protected that are
intended to be used by others, other implementation details and private fields is kept away. We
provides extensive documentation as well.

Generally speaking, we have two techniques that would enable us to "program to interface",
either through an abstract class or a interface.

Abstract class or Interface

This is not intended solely to compare the advantages and disadvantages of abstract class and
interface, but to demonstrate the logic behind designing - when to apply abstract class and when

28 CHAPTER 4. DESIGN AND IMPLEMENTATION

to use interface.

It is easy to tell abstract class from concrete class, if some class should never be initialized, never
make instance of, then it should be declared as abstract class(or consider interface). So if one base
class will never be made instance of, then Abstract class and Interface are the more appropriate
choice. As for the decision of abstract class or interface, basically abstract class is a abstract view of
any real world entity, whereas interface is more abstract one, it sometimes expresses an ability or
relationship.

Another consideration is enforced single inheritance in Java programming language, compared
with other programming languages like C++. For example in our case, we want a vertex that can
be moved around, it is natural to let the vertex be a subclass of some abstract vertex class and
implement a interface that enables it to move between edges. As we do not have the mechanism
of multiple inheritance, subclassing to both vertex and moveable object is not possible.

These are the in general idea of taking decision between abstract class, interface and normal
class. There are more to it. As there is one constant factor in software that is the change of require-
ment. If a class is made as interface then it is difficult to accommodate changes in this class in future.
Because if I add new method in the interface, then it is demanded that in every implementing class
the newly added method are implemented.

CAN-DO and IS-A relationship can also help define the difference between Interface and ab-
stract class. As we already discussed Interface can be use for multiple inheritance for example we
have another interface named copyData which having behavior copy. IS-A is for "generalization"
and "specialization", denote the extension relationship. CAN-DO offers a way to see the implement
interface relationship.

Abstract Class

An abstract class is one whose main purpose is to define a common interface for its subclasses.
An abstract class will defer its implementation of some or all of the operations to its subclass. For
example, our AbstractVertex<T> class implements the interface implements Comparable<Vertex<T» ,
the operation

1 publ ic a b s t r a c t i n t compareTo (Vertex <T> v2) ;

is declared abstract, since we have no idea as to how each vertex should rank against the other.
And thus implementation detail is pushed to its subclass like Vertex, where the are ranked by their
unique index.

1 / * *
*

3 * compares two v e r t e x a c c o r d i n g t o t h e r e i n d e x .

* @param v2 i s t h e v e r t e x t o compare wi th
5 * @return 0 i f i n d e x a r e t h e same . 1 i f t h i s v e r t e x ’ s i n d e x i s l a r g e r

than v2 ’ s . −1 o t h e r w i s e .

* /
7 @Override

4.2. DESIGN PROBLEMS 29

publ ic i n t compareTo (Vertex <T> v2) {
9 i f (t h i s . index == v2 . index)

return 0 ;
11 e lse i f (t h i s . index > v2 . index)

return 1 ;
13 e lse

return −1;
15 }

The Advantages of Abstract Classes2

The main reason that there is preference to the application of abstract classes is their ability
to evolve in a time - it is possible to add a new method with a default implementation without
breaking existing clients or implementors (here we talk about runtime compatibility, not compile
time one). Interfaces lack such functionality, so it is necessary to introduce another interface to
provide future extensions. So you end up with a lot of interfaces.

A second very useful feature of abstract classes is the possibility of restricting access rights.
Every method in a public interface is public and everybody can implement the interface. That for
example means anybody can implement such interface, but in real life, one often wants to restrict
that and have the creation under control. Interfaces lack such restrictions.

Another thing that is possible with abstract classes is that they can contain static methods. Of
course that with interface one can create separate classes with factory methods, but the truth is that
a class is usually the most natural and reasonable place for factory methods that return instances.

Interface

What JUNG library provides here is also applicable to our library. So listed here as a reference.
JUNG makes use of Java interfaces, abstract classes, and implementation classes in its type defini-
tions. There are a few reasons that JUNG uses combinations of these layers of abstraction.

The Advantages of Interfaces

The most obvious one is that usage of the type, if implemented as an abstract class, is limited
as java does not allow multiple inheritance of classes. This only becomes a problem when a type is
huge, or when it significantly enhances developer productivity to be able to subclass and reuse a
base implementations. We will call these support classes, where one is expected to subclass and
reuse a base class’s implementation.

The second advantage of interfaces is that there is an enforced separation between the API and
the implementation. But this can be achieved with abstract classes too, with a bit of self control,
while in interfaces that is enforced by the compiler.

2http://wiki.netbeans.org/API_Design

http://wiki.netbeans.org/API_Design

30 CHAPTER 4. DESIGN AND IMPLEMENTATION

Interface design

One unique requirement from the user is the ability to spread information between vertexes.
Specifically, there are three different functionalities that we need to provide: to move the data, to
copy the data and to pass the data. The name might be a little bit confusing or misleading, so
the fact is: move means that the data in the source vertex should be removed if the process is
successful in moving the data to the target vertex, and a directed edge should be established in
that direction between the to endpoints. On the contrary, copy does not delete the original data.
For pass, it is the move function without the need to create a edge between them, but have to make
sure beforehand that between the source node and target node there is a pass connecting them. If
directed edges are involved, then with direction there is only one way reachable. For undirected
edges, they can go both ways. Let us first look at the move functionalities in detail:

• Move a specific data from one vertex(startNode) to another vertex(targetNode), and if suc-
cessful creates an directed edge from startNode to targetNode.
Precondition: startNode contains data d, which is the one to be moved.
Postcondition: startNode does not contain data d, and targetNode contains data d, and there
is an edge from startNode to targetNode.

• Move all the data from startNode to the targetNode.
Precondition: startNode contains some data.
Postcondition: startNode does not contain any data, and targetNode contains the data from
startNode, and an edge from startNode to targetNode.

1 moveData (Vertex <T> startNode , Vertex <T> targetNode , T d , Graph<Vertex <T> ,E> g)
throws Exception ;

moveAll (Vertex <T> startNode , Vertex <T> targetNode , Graph<Vertex <T> ,E> g) throws
Exception ;

Let us wrap the two combined API in one structure moveData. Should the moveData be
interface or abstract class? Simple analysis can show that firstly, the concept does not fall into the
realm of an entity, much less an object, but it provides a functionality. Moreover the moveData
itself contains just two methods that are open. All of the that leads to answer that the type should
be an interface. We have the ability for multiple inheritance, and there is no fear of evolving the
interface because it has just one method that does it all, no need for static factory methods, no need
to prevent subclassing. Thus an interface is the right choice.

Similarly, for copyData and passData we also has the method signatures listed below. Notice
that copyData do not require a reference to the original graph since nothing other than the infor-
mation inside the endpoints are altered.

/ / copyData
2 copyData (Vertex <T> sourceNode , Vertex <T> targetNode , T d) throws

Exception ;

4.2. DESIGN PROBLEMS 31

copyAll (Vertex <T> sourceNode , Vertex <T> targetNode) throws
Exception ;

4

/ / pas sData
6 passData (Vertex <T> startNode , Vertex <T> targetNode , T d , Graph<Vertex <T> ,E> g)

throws Exception ;
passAll (Vertex <T> startNode , Vertex <T> targetNode , Graph<Vertex <T> ,E> g) throws

Exception ;

The specifications are also similar to moveData with a little difference:

CopyData:

• copyData: Copy a specific data from one vertex(startNode) to another vertex(targetNode).
Precondition: startNode contains data d, which is the one to be copied.
Postcondition: startNode contains data d, and targetNode contains data d.

• copyAll: Copy all the data from startNode to the targetNode.
Precondition: startNode contains some data
Postcondition: startNode remains intact, and targetNode contains all the data from startNode.

PassData:

• passData: Pass a specific data from one vertex(startNode) to another vertex(targetNode).
Precondition: startNode contains data d, which is the one to be copied. It must be reachable
from startNode to targetNode.
Postcondition: startNode do not contain data d, and targetNode contains data d.

• passAll: Pass all the data from startNode to the targetNode.
Precondition: startNode contains some data, it must be reachable from startNode to targetN-
ode.
Postcondition: startNode does not contain any data, and targetNode contains all the data from
startNode.

The above listed specifications comes intuitively as we analyzed our case, however we now
face a problem of whether we should design three separated interfaces with each representing the
above mentioned functionalities? Or should we put all six methods into one interface? We need
to realize one fact that if a concrete class were to implement that interface, it would be forced by
the compiler to implement all the interface methods. So wrapping all methods into one interface
would be a bad idea, it will decrease the cohesion of this interface. Thus we have three separated
interface: moveData, passData and copyData.

4.2.4 Inheritance and Composition

There are two most common techniques in reusing functionalities in object-oriented system
design, they are class inheritance and object composition. Each have their own advantage and
disadvantage, we shall give a brief introduction and brief about their application in our library.

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

Inheritance

One major feature we are using here is the class inheritance of the object-oriented programming.
When such a subclass inherits from a parent class, it includes the definition, data and function-
alities that the parent class holds. But not necessarily all of them, as in Java and many other
object-oriented languages, there are access specifiers that control access to class members. The
primary purpose is to separate the interface of a class from its implementation, so as to support
the concept of information hiding and encapsulation.

A common set of access specifiers that many object-oriented languages support is3:

• private (or class-private) restricts the access to the class itself. Only methods that are part of
the same class can access private members.

• protected (or class-protected) allows the class itself and all its subclasses to access the member.

• public means that any code can access the member by its name.

In our project for example, Vertex is a subclass of AbstractVertex, the former contains the data
and operations defined by the latter ones, as shown in figure 4.2 and figure 4.3.4

Figure 4.2: Class diagram detail for AbstractVertex

3http://en.wikipedia.org/wiki/Class_(computer_programming)
4The figure is generated by Eclipse.

http://en.wikipedia.org/wiki/Class_(computer_programming)

4.2. DESIGN PROBLEMS 33

Figure 4.3: Class diagram detail for Vertex

The relationships including the interfaces they implemented and the two classes mentioned
above are showed in figure 4.4, it displays explicitly that Vertex extends AbstractVertex whereas
both classes implement the interface Comparable.

Composition

Classes can be composed of other classes, thereby establishing a compositional relationship
between the enclosing class and its embedded classes. Compositional relationship between classes
is also commonly known as a has-a relationship. Object composition is an alternative to inheri-
tance. New functionality is obtained by assembling or composing objects to get more complex
functionalities. There is another principle for object-oriented designErich Gamma (1994):

Favor object composition over class inheritance.

Compared with inheritance, composition has some advantages over inheritance:

• It helps to keep each class encapsulated and focused on one task. The class and class hierarchy
will be less likely to grow into huge unmanageable monsters. Whereas inheritance expose
a subclass to details of its parent’s implementation, and may force the subclass to change
should the parent class has any changes. And since Java is a enforced single inheritance
language, where a class can only derive from one base class, composition provides a more
flexible way out.

• Object composition is defined dynamically at run time through objects acquirement refer-
ences to other objects. Whereas object inheritance is defined statically at compile time. And
because the reference is solely through their interfaces, an object can be replaced at run time
by another as long as it has the same type (or subclasses through polymorphism), thus fewer
implementation dependencies.

In UML, composition is depicted as a filled diamond and a solid line. It always implies a
multiplicity of 1 or 0..1, as no more than one object at a time can have lifetime responsibility

34 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.4: Class diagram detail for both AbstractVertex and Vertex

4.3. DETAILED DESIGN 35

for another object. (Note that it is different from the more general form, aggregation, which is
depicted as an unfilled diamond and a solid line.) In the figure 4.4 as we have shown previously,
the composition is depicted as an arrow and a solid line.

Let us take the example of layout class for vertex, where in the AbstractVertex class, the Ver-
texLayoutSpec and other primitive types int and String are combined to form the member of the
class. Or in other words, the object AbstractVertex contains a reference or pointer to the object
VertexLayoutSpec and thus has an arrow from the former one pointing the latter.

4.3 Detailed design

Now that we have the whole picture described, we will discuss concretely how each class is
implemented and how each requirement is met.

4.3.1 Choice of data structure

When we are to design AbstractVertex and AbstractEdge, a choice need to be made on which
data structure we should use to store the data. The data structure that first comes to mind is arrays
and collections. Obviously, it ought to be a class that implements the Interface Collection of java.util.
Arrays do not fit here as we do not know how many elements we are expected to hold. Java
provides wide variety of implementations and we need to choose carefully.

Our requirements:

• we want the data structure to hold a group of objects

• we do not need to allow duplicate elements

• the order of elements is not important

• we need to be able to look up given element at a low time cost

These requirements calls for a hash-based solution. It satisfies the above listed requirements.
The fact that we do not allow duplicate elements even lowered the possibility of collision, thus
improve the efficiency of search and retrieving operations. And most importantly, its overall
performance are excellent compared with all the linear data structure.(A linear data structure is
one in which, while traversing sequentially, we can reach only one element directly from another.)
Indeed the performance depends on the choice of hash function, and for the best possible choice of
hash function, a table of size n with open addressing has no collisions and holds up to n elements,
with a single comparison for successful lookup, and a table of size n with chaining and k keys has
the minimum max(0, k-n) collisions and O(1 + k/n) comparisons for lookup. For the worst choice
of hash function, every insertion causes a collision, and hash tables degenerate to linear search,
with Ω(k) amortized comparisons per insertion and up to k comparisons for a successful lookup.5

We considered these three classes HashTable, HashMap and HashSet as candidate. And we
chose HashSet as the one. We shall explain the reasoning behind it.

5http://en.wikipedia.org/wiki/Hash_table

http://en.wikipedia.org/wiki/Hash_table

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

1 protec ted HashSet<T> i n f o ;

HashTable and HashMap is similar, both provides key-value access to data. The major differ-
ence lies in the fact that Hashtable is synchronized, whereas HashMap is not. This makes HashMap
better for non-threaded applications, as unsynchronized Objects typically perform better than
synchronized ones. And, another difference is that HashMap permits null values in it, while
Hashtable does not. So for these reasons, HashMap is preferred here.

For the class of Hashset, it implements the Set interface, yet actually run a HashMap instance
at the background. It makes no guarantees as to the iteration order of the set; in particular, it does
not guarantee that the order will remain constant over time. This class permits the null element.
This class offers constant time performance for the basic operations (add, remove, contains and
size), assuming the hash function disperses the elements properly among the buckets. It is not
synchronized.6 The major difference lies in the fact that HashMap keeps a (key,value) pair whereas
HashSet only a set of non-duplicate elements. So according to the nature of this problem, HashSet
fit here. One of HashSet’s subclasses is LinkedHashSet, so in the event that we want predictable
iteration order (which is insertion order by default), you could easily swap out the HashMap for a
LinkedHashMap. This would not be as easy if you were using Hashtable.

4.3.2 Layout Algorithm

The problem comes from one of the demos for the application of the library. We want to have
several vertexes that spread in a grid like two dimensional space, where each vertex is given its
position. In other words, we need a simple layout algorithm similar to the GridLayout in java.awt
package7. More specifically, want a algorithm that creates a grid layout with the specified number
of rows and columns. All components in the layout are given equal size and have equal gaps
between them.

Background

First, we need to get straight where JUNG library place the layout class and how it works in
the system.

JUNG provides mechanisms for laying out and rendering graphs. The current renderer imple-
mentations use the Java Swing API to display graphs, but they may be implemented using other
toolkits (such as SWT).

In general, a visualization requires one of each of the following as noted in Joshua O Madadhain
(2005):

• A Layout, which takes a graph and determines the location at which each of its vertices will
be drawn.

6http://docs.oracle.com/javase/6/docs/api/java/util/HashSet.html
7http://docs.oracle.com/javase/7/docs/api/java/awt/GridLayout.html

http://docs.oracle.com/javase/6/docs/api/java/util/HashSet.html
http://docs.oracle.com/javase/7/docs/api/java/awt/GridLayout.html

4.3. DETAILED DESIGN 37

• A (Swing)Component, which provides a "drawing area" upon which the data is rendered.
JUNG provides a VisualizationViewerclass for this purpose, which is an extension of the
Swing JPanel class. A currently available experimental version of VisualizationViewer allows
the user to create a "window" on the graph visualization, which can be used to magnify
(zoom in on) portions of the graph, and to select different areas for magnification (panning).

• A Renderer, which takes the data provided by the Layout and paints the vertices and edges
into the provided Component.

As for the different layout algorithms, the JUNG library also provides a great number of them
(see the classes that implementing the interface on http://jung.sourceforge.net/doc/api/edu/

uci/ics/jung/algorithms/layout/Layout.html). They all implement the interface in the pack-
age edu.uci.ics.jung.algorithms.layout. Notice that JUNG’s documentation8 noted:" A generalized
interface is a mechanism for returning (x,y) coordinates from vertices. In general, most of these
methods are used to both control and get information from the layout algorithm."

1 publ ic i n t e r f a c e Layout<V, E> extends org . apache . commons . c o l l e c t i o n s 1 5 .
Transformer <V, Point2D>

To name some of them, there are the widely used force-based algorithms, like SpringLayout or
KKLayout, for drawing graphs in an aesthetically pleasing way. There is also the CircleLayout
and TreeLayout for different purposes. But all in all, is to position the nodes of a graph in two-
dimensional or three-dimensional space so that all the edges are of more or less equal length and
there are as few crossing edges as possible in the two dimensional space9.

Solution

However, these fancy layout algorithms do not give us much help, because what we are looking
for is a simple grid like layout, like the one shown in figure 5.2. In the figure, the vertexes are
placed into a three row by two column grid. In it the vertexes a1,a2,a3 would be in the first column
and b1,b2,b3 would be in the second column, where as a1 and b1 shall be on the first row. Following
this fashion, a2,b2 and a3,b3 are on the seconde and third row respectively.

This class implements the basic grid layout, according to the index of each vertex in the graph.
It extends the StaticLayout, by default fill the static grid row by row according to the index. Can
be altered to fill the column first. The class diagram is shown in figure 4.6.

The essence of this class is to take a Vertex in and return a Point2D object, in which stored the
layout position information. This is the method that has been inherited from the parent class, and
need to be overridden to achieve the designed functionality. There are two situations, as shown in
the flowchart in figure 4.7. If the vertex passed in a the parameter knows where it should be in the
panel, then the position is calculated for it and returned wrapped in a Point2D object. If the vertex
does not hold that information, then the class calculates the layout for all of the vertexes in the
graph and store them back into each vertexes.

8http://jung.sourceforge.net/doc/api/edu/uci/ics/jung/algorithms/layout/Layout.html
9http://en.wikipedia.org/w/index.php?title=Force-based_algorithms_(graph_drawing)&oldid=

477528895

http://jung.sourceforge.net/doc/api/edu/uci/ics/jung/algorithms/layout/Layout.html
http://jung.sourceforge.net/doc/api/edu/uci/ics/jung/algorithms/layout/Layout.html
http://jung.sourceforge.net/doc/api/edu/uci/ics/jung/algorithms/layout/Layout.html
http://en.wikipedia.org/w/index.php?title=Force-based_algorithms_(graph_drawing)&oldid=477528895
http://en.wikipedia.org/w/index.php?title=Force-based_algorithms_(graph_drawing)&oldid=477528895

38 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.5: Desired simple layout

The code snippet below are the details of calculating the vertex layout position if the vertex
stores specific row, column information in the VertexLayoutSpec class. It is known by examining
the non-null of its fields in line 9. However, if it fails to find its layout information, then we call in
the function calculate() to calculate the positions for each vertex.

1 @Override
publ ic Point2D transform (Vertex v) {

3 / / t h e l o c a t i o n i s c a l c u l a t e d f o r e a c h v e r t e x
i f (c a l c u l a t e d == f a l s e) {

5 c a l c u l a t e () ;
c a l c u l a t e d = true ;

7 }
/ / t h e v e r t e x knows where i t w i l l be in t h e g r i d

9 i f (v . getLayoutSpec () != n u l l && v . getLayoutSpec () . g e t P o s s i t i o n
() != n u l l) {

t h i s . s e t L o c a t i o n (v , v . getLayoutSpec () . g e t P o s s i t i o n () .
getSecond ()

11 * disX + of fse tX , v . getLayoutSpec () .
g e t P o s s i t i o n ()

. g e t F i r s t ()
13 * disY + o f f s e t Y) ;

4.3. DETAILED DESIGN 39

Figure 4.6: Class diagram for BasicGridLayout

}
15 return new Point2D . Double (t h i s . getX (v) , t h i s . getY (v)) ;

}

The code snippet below shows the calculation for each vertex. It is only excused for once, this
is a static process. We assume that each vertex that has already been in the graph should be similar
in their states concerning their layout information, in other words they either know where they
should be, or they do not know at all. And the newly added vertex through the interactive GUI
does not apply here. Their position is decided by the canvas itself.

The few lines of code creates a local copy of the vertexes that the graph has, and then sorts the
vertexes according to the index(internal unique number), and lay them at corresponding position.
Because the scale of the grid is set and there are small chances that the number of vertexes is equal
to the number of grids. With this possibility of space left, there are two ways of filling the grid, so
if rowFlag == true (which is the default value), then it follows the fashion of filling the row first.
Otherwise, it will fill the column first.

p r i v a t e void c a l c u l a t e () {
2

40 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.7: Flowchart of BasicGridLayout

ar = (Vertex []) new b a s i c . Vertex [graph . getVertexCount ()] ;
4 i n t count = 0 ;

6 / / copy i n t o a r r a y
for (Vertex v : graph . g e t V e r t i c e s ()) {

8 ar [count] = v ;
count ++;

10 }
/ / s o r t

12 Arrays . s o r t (ar) ;

14 count = 0 ;
while (count < ar . length) {

16 i f (rowFlag) {
/ / row f i r s t

18 t h i s . s e t L o c a t i o n (ar [count] ,

4.3. DETAILED DESIGN 41

disY * (count % c o l) + of f se tY
, disX * (count / c o l) +
o f f s e t X) ;

20 } e lse {
/ / column f i r s t

22 t h i s . s e t L o c a t i o n (ar [count] , disY * (count /
row) + of fse tY , disX * (count % row) +
o f f s e t X

) ;
24

}
26 count ++;

}
28 }

Calculation process

VertexLayoutSpec has a private field to save the coordinates of the vertex, as shown in its class
diagram in figure 4.1 and the code snippet below.

p r i v a t e Pair <Integer > p o s i t i o n

The reason that position takes Integer as argument other than Double or Float is that position
indicates where the vertex is by storing the relative coordinates in the (row,column) pair. The
design originally intended to hold (row,column) information for the BasicGridLayout class. And
thus kept the Integer as always. Strictly speaking, the vertex should not care much about the actual
position in detail, it should be the canvas/container’s responsibility.

Other than the constructors for the BasicGridLayout class, the API signatures below enable
users to have access to its layout information.

1 publ ic Pair <Integer > g e t P o s i t i o n ()
publ ic void s e t P o s i t i o n (i n t row , i n t c o l)

The calculation process goes like this: suppose the pair of double number (x, y) represents the
coordinates of the vertex in the user space, which is also the value to be returned. And suppose
that the VertexLayoutSpec holds the position of the vertex to be (a, b), the pair of numbers stored
in type integer. Then the actual lay out position should be calculated following the equation 4.1.

(x, y) = (horizontalGap× b + o f f setX, verticalGap× a + o f f setY) (4.1)

The BasicGridLayout API

As shown in the table 4.1, aside from the getters and setters of the BasicGridLayout class, it
also provides four constructors. The following table lists constructors of the BasicGridLayout class
that specify the number of rows and columns, and the additional parameter of horizontal gaps
and vertical gaps.

42 CHAPTER 4. DESIGN AND IMPLEMENTATION

Constructor Purpose

BasicGridLayout(Graph<Vertex, E> graph, int
row, int col)

Creates a grid layout with the specified num-
ber of rows and columns. All components in
the layout are given equal size.

BasicGridLayout(Graph<Vertex, E> graph, int
row, int col, int hgap, int vgap)

Creates a grid layout with the specified num-
ber of rows and columns. In addition, the hori-
zontal and vertical gaps are set to the specified
values. Horizontal gaps are places between
each of columns. Vertical gaps are placed be-
tween each of the rows.

BasicGridLayout(Graph<Vertex, E> graph, int
row, int col,boolean rowFlag)

Creates a grid layout with the specified num-
ber of rows and columns. With a boolean to
set the filling by row or column.

BasicGridLayout(Graph<Vertex, E> graph, int
row, int col,int hgap, int vgap,boolean rowFlag)

Creates a grid layout with the specified num-
ber of rows and columns, and the horizontal
and vertical gaps. With a boolean to set the
filling by row or column

Table 4.1: The BasicGridLayout class constructors

4.3.3 Exceptions

Exception design is also a part of the whole system. With the help of the Eclipse IDE, it is easy
to get things through without rasing errors or warnings. We have developed some exceptions of
ourselves, as Thinking in Java Eckel (2006) noted: "To create your own exception class, you¡¯re
forced to inherit from an existing type of exception, preferably one that is close in meaning to your
new exception." This is easy and straightforward. However, when choosing the right exception to
use (or extend), it becomes more than just reading the documentation.

IllegalArgumentException vs. NullPointerException

The problem is from the interface shown below that defines the signature where null parameter
is not appropriate for the situation. So we wonder for this specific question, should we use the
IllegalArgumentException or NullPointerException.

publ ic boolean moveData (Vertex <T> startNode ,
2 Vertex <T> targetNode , T d , Graph<Vertex <T> ,E> g)

throws Exception ;

With the help of references, we come to the conclusion that a NullPointerException should be
the one to be thrown. Like the one shown below.

i f (d == n u l l || targetNode == n u l l || sourceNode == n u l l) {
2 throw new NullPointerExcept ion () ;

There are several reasons for this. Yet first and foremost, we shall look at where in the class
hierarchy these two class lie. For IllegalArgumentException and NullPointerException, the class
hierarchy of each class is listed in the code snippet below.(from Java Documentation see Oracle
(2011)) Obviously, these two classes belongs to the same category as they both are subclass of the
java.lang.RuntimeException. From the description in the previous chapter: they all belongs to the

4.3. DETAILED DESIGN 43

unchecked exception. So they should be treated the same under rules.

j ava . lang . Object
2 j ava . lang . Throwable

java . lang . Exception
4 j ava . lang . RuntimeException

java . lang . I l legalArgumentException

1 j ava . lang . Object
java . lang . Throwable

3 j ava . lang . Exception
java . lang . RuntimeException

5 j ava . lang . Nul lPointerExcept ion

Some thoughts that supports the decision of preference of IllegalArgumentException over
NullPointerException 10:

First, the Java Documentation explicitly lists the cases where NullPointerException is appro-
priate. Notice that all of them are thrown by the runtime when null is used inappropriately. In
contrast, the IllegalArgumentException JavaDoc could not be more clear: "Thrown to indicate that
a method has been passed an illegal or inappropriate argument."

Second, NullPointerException in a stack trace is prone to indicate that someone dereferenced
a null. Whereas IllegalArgumentException might lead to the assumption that the caller of the
method at the top of the stack passed in an illegal value. Again, the latter assumption is true, the
former is misleading.

Third, the name tells everything. Since IllegalArgumentException is clearly designed for vali-
dating parameters, as we can find out in the its name, you have to assume it as the default choice
of exception.

Fourth, all other incorrect parameter data will be IllegalArgumentException, so why not be
consistent? An illegal null is not so special that it deserves a separate exception from all other
types of illegal arguments.

By referencing the "book of rule" Effective Java 2nd Edition (Bloch (2008)), we could also easily
come to the conclusion, as the book puts:"Arguably, all erroneous method invocations boil down
to an illegal argument or illegal state, but other exceptions are standardly used for certain kinds
of illegal arguments and states. If a caller passes null in some parameter for which null values
are prohibited, convention dictates that NullPointerException be thrown rather than IllegalArgu-
mentException. Similarly, if a caller passes an out-of-range value in a parameter representing an
index into a sequence, IndexOutOfBoundsException should be thrown rather than IllegalArgu-
mentException."

10http://stackoverflow.com/questions/3881/illegalargumentexception-or-nullpointerexception-for-a-null-parameter

http://stackoverflow.com/questions/3881/illegalargumentexception-or-nullpointerexception-for-a-null-parameter

Chapter 5
Testing, Evaluation and Case studies

In this chapter, we are going to test the graph library by applying it to two non-trivial case
studies. And following that, we will discuss the testing and evaluation of our library, in the hope
to present a more comprehensive coverage of the library.

The two cases are:

• Mutual authentication using public key

• To simulate a lock system

These two cases fall right into the designed field of application of the library.

5.1 Case 1: Mutual authentication

The first case is a mutual authentication case, where two parties authenticate each other. Ac-
cording to wikipedia, in technology terms, it refers to a client or user authenticating themselves to
a server and that server authenticating itself to the user in such a way that both parties are assured
of the others’ identity. When describing online authentication processes, mutual authentication is
often referred to as website-to-user authentication, or site-to-user authentication1.

National Institute of Standards and Technology also has a standard regarding this topic, and
there definition goes:"This standard specifies two challenge-response protocols by which entities in
a computer system may authenticate their identities to one another."U.S. DEPARTMENT OF COM-
MERCE and Technology (1997)

There are several different kinds of authentication mechanisms, the discussion of which is
beyond the scope of this thesis, but here we would like to show one. The figure 5.1 shows what
occurs during username and password-based mutual authentication2.

5.1.1 Analysis, Design and Implementation

The requirement is to use a graph to show the interactions, which can be a typical application
of the library. To make things simple, we decided to use the very basic undirected simple graph
(contrary to the multi-graph), and the data type to be stored in vertexes is set to String. And it is
out of the same intuition, as this should not be a major concern in this case and thus we do not put

45

46 CHAPTER 5. TESTING, EVALUATION AND CASE STUDIES

Figure 5.1: User Name- and Password-Based Mutual Authentication.

Figure 5.2: Information flow path denoted in the figure, from a1 to b3.

5.1. CASE 1: MUTUAL AUTHENTICATION 47

further effort in here. The figure 5.2 shows the interactions between two parties as time develops.

As for this case, a two way authenticating situation, we introduce two series of vertexes into
the graph, one of them in the a series and the other the b series, there trailing number indicates
the development over time. And to be consistent with the scenario, the a actually stands for the
Client side of the authentication and the b series represents the Server side. There communication
and calculation on each side is abstracted away, with only the communication between them left.
Concretely, we add four vertex of one side, namely [a1,a2,a3,a4], to the graph, and set their color
to be green; on the other side, four vertex [b1,b2,b3,b4] are added to the graph. Each vertex holds
some random information represented in String. The figure shows the result after several round of
data exchange between vertexes. Concretely, a1 holds the information in String that is to be passed
around: "to be moved". And the data is passed between vertexes in the following order:

1 a1 −> b1 −> a2 −> b2 −> a3 −> b3

And we can verify the result by visual output in figure 5.4 and the console output that b3 holds
the data "to be moved".

Figure 5.3: Print screen result of the first case.

1http://en.wikipedia.org/wiki/Mutual_authentication
2http://docs.oracle.com/cd/E19226-01/820-7627/bncbs/index.html

http://en.wikipedia.org/wiki/Mutual_authentication
http://docs.oracle.com/cd/E19226-01/820-7627/bncbs/index.html

48 CHAPTER 5. TESTING, EVALUATION AND CASE STUDIES

Implementation

The case is implemented using the library and wrapped into the class Demo1.java .

Figure 5.4: Class diagram of demo1 for the above discussed case.

The code snippet below creates the graph that holds the vertexes and the edges. The two
factory objects are for the purpose of creating Vertex<String> and Edge<String> objects on the fly,
when user operates on the graphical user interface. The static variable edgeCount is kept only for
the naming of the edge.

1 MyStringGraph g ;
s t a t i c i n t edgeCount ;

3 Factory <Vertex <Str ing >> ver texFac tory ;
Factory <Edge<Str ing >> edgeFactory ;

The following initialize the fields of this class and set the layout convention to be a 4 by 2 grid
layout with the column filling first. We set the string of "to be moved" as the data that needs to be
passed around in the system and initially it is added to the vertex a1.

Demo1 sgv = new Demo1 () ;
2 Layout<Vertex , S tr ing > layout = new BasicGridLayout (sgv . g , 4 , 2 , f a l s e) ;

layout . s e t S i z e (new Dimension (5 0 0 , 500)) ;
4

/ / a
6 Vertex a1 = new MyVertex (" a1 ") ;

Vertex a2 = new MyVertex (" a2 ") ;
8 Vertex a3 = new MyVertex (" a3 ") ;

Vertex a4 = new MyVertex (" a4 ") ;
10

sgv . g . addVertex (a1) ;
12 sgv . g . addVertex (a2) ;

sgv . g . addVertex (a3) ;

5.1. CASE 1: MUTUAL AUTHENTICATION 49

14 sgv . g . addVertex (a4) ;

16 S t r i n g d a t a S t r i n g = " to be moved" ;
a1 . addData (d a t a S t r i n g) ;

Following this fashion we get the b series of vertex added into the graph. With a little manipu-
lation of the color of the b series to differentiate them from a series. Shown in the code below.

1 for (Abstrac tVertex i t e r : sgv . g . g e t V e r t i c e s ()) {
i t e r . setLayoutSpec (new VertexLayoutSpec (Color . green)) ;

3 i t e r . addData (" t h i s i s node " + i t e r . getName ()) ;
}

And now we are ready for the information exchange operation.

/ / move d a t a
2 sgv . g . moveData (a1 , b1 , dataStr ing , sgv . g) ;

sgv . g . moveData (b1 , b2 , dataStr ing , sgv . g) ;
4 sgv . g . moveData (b2 , a2 , dataStr ing , sgv . g) ;

sgv . g . moveData (a2 , a3 , dataStr ing , sgv . g) ;
6 sgv . g . moveData (a3 , b3 , dataStr ing , sgv . g) ;

We do the following simple print out to verify the result, we check every vertex the graph
contains and look for the dataString in it.

/ / l o c a l v e r i f i c a t i o n t h a t t h e nodes h o l d s t h e d a t a .
2 for (Vertex <Str ing > v : sgv . g . g e t V e r t i c e s ()) {

System . out . p r i n t l n (v . getName () +" c o n t a i n t s the data : " +v .
getData () . conta ins (d a t a S t r i n g)) ;

4 }

Result should be: b3 should contain the dataString whereas all other vertexes should not. And
are shown below.

a4 c o n t a i n t s the data : f a l s e
2 b1 c o n t a i n t s the data : f a l s e

a2 c o n t a i n t s the data : f a l s e
4 a3 c o n t a i n t s the data : f a l s e

b4 c o n t a i n t s the data : f a l s e
6 b2 c o n t a i n t s the data : f a l s e

b3 c o n t a i n t s the data : t rue
8 a1 c o n t a i n t s the data : f a l s e

In this part we shall briefly introduce the structure of user interface. We first have a Visualiza-
tionViewer that extends Java panel class, so this is the canvas for display.

/ / a c t u a l l y v i s u a l i z a t i o n V i e w e r i s a s u b c l a s s o f p a n e l
2 Visual izat ionViewer <Vertex , Str ing > vv = new

Visual izat ionViewer <Vertex , Str ing >(
layout) ;

50 CHAPTER 5. TESTING, EVALUATION AND CASE STUDIES

5.2 Case 2: Lock system

The second case is about an simulation of a lock system, for example an access control system
that identifies people exerting control over who can interact with a resource. Access control is,
in reality, an everyday phenomenon. A lock on a car door is essentially a form of access control.
A PIN on an ATM system at a bank is another means of access control. The possession of access
control is of prime importance when persons seek to secure important, confidential, or sensitive
information and equipment.3

In general there are two categories of lock systems: physical securities and computer securities.
Physical access by a person may be allowed depending on payment, authorization, etc. Also there
may be one-way traffic of people. In physical security, the term access control refers to the practice
of restricting entrance to a property, a building, or a room to authorized persons.

In computer security, access control includes authentication, authorization and audit. It also
includes measures such as physical devices, including biometric scans and metal locks, hidden
paths, digital signatures, encryption, social barriers, and monitoring by humans and automated
systems.

The above description of the problem cries for an representation using graph/networks. And
that is what we do next, to model a lock system.

5.2.1 Analysis, Design and Implementation

To model a lock system, we need first to have a map of it. The figure 5.5 below shows the map.
There are few points that worth noticing:

• On the first row, the path is bidirectional, which means one can move back and forward as
one wishes;

• On the second row, the "CL" stands for Cypher Lock, which is a lock itself, and a method for
the access control;

• On the second, third and the last rows, there are some abbreviations that needs clarification:
srv = surveillance, usr = user, jan = janitor;

• On the last line, the entities represented are somehow different from previous ones. They
represent PCs and thus are locations on the net.

These information are crucial not only in the case itself, but also in designing the library. First
we need to find the right objects. There are clearly two different entities that should be abstracted
out, net location and physical location. The vertexes on the rows except the last are physical
locations, whereas the last row represents the net location. We here make them simple subclass of
MyVertex class. It is though that they do not provide its own functionality or properties, it is open
for change and evolve. The code snippet are listed below.

3http://en.wikipedia.org/wiki/Access_control

http://en.wikipedia.org/wiki/Access_control

5.2. CASE 2: LOCK SYSTEM 51

Figure 5.5: object relationship for case 2.

1 publ ic c l a s s PhysLocation extends MyVertex
publ ic c l a s s NetLocation extends MyVertex

And through these, we then have four different kinds of edge entities as shown in the figure 5.6.
We have the class called NPEdge which stands for net location to physical location edge. And
so do we have NNEdge, PNEdge, PPEdge. Again these classes showed no more than properties
of the edge class, but they should be essential for future development, they can be a control or
restriction over the accessability of personnel. Especially combined with the power of predicate of
JUNG library.

Figure 5.6: Class diagram of edge and its subclasses

Like the NPEdge class below, it depicts an edge with string data having source node being
NetLocation and target node being PhysLocation.

52 CHAPTER 5. TESTING, EVALUATION AND CASE STUDIES

publ ic c l a s s NPEdge extends AbstractEdge <NetLocation , PhysLocation , Str ing >

Now let us look at the demo class it self. All the initialization and operations are here in demo
2 class, as shown below in figure 5.7.

Figure 5.7: demo2 class diagram

And similar to the previous case, there are factory methods to create objects of vertexes and
edges.

1

ver texFac tory = new Factory <Vertex <Str ing > >() { / / My v e r t e x
f a c t o r y

3 publ ic Vertex <Str ing > c r e a t e () {
Vertex <Str ing > n1 = new MyVertex () ;

5 n1 . setLayoutSpec (new VertexLayoutSpec (Color .
black)) ;

return n1 ;
7 }

} ;
9

edgeFactory = new Factory <Edge<Str ing > >() { / / My edge f a c t o r y
11 publ ic Edge<Str ing > c r e a t e () {

return new Edge<Str ing >("E" + S t r i n g . valueOf (
edgeCount)) ;

13 }
} ;

We set the space layout to be 4 by 4. And initialize each vertex row by row. The difference
of layout lies in here, we explicitly tell these vertex where to stay. For example, a1 is set to be at
first row, first column. They after all the vertexes are added to the graph, we carefully establish
edges between them as shown in the graph. Note that we use undirected edge to represent
bidirectional directed edges, this on one hand lower the workload, on the other hand, also simplify
the generated user interface.

Layout<Vertex , S tr ing > layout = new BasicGridLayout (sgv . g , 4 , 4)
;

2 / / f i r s t row
Vertex <Str ing > a1 = new NetLocation (" Hallway ") ;

5.2. CASE 2: LOCK SYSTEM 53

4 / / h e r e we s e t t h e l a y o u t s p e c o f e a c h node
a1 . setLayoutSpec (new VertexLayoutSpec (1 , 1)) ;

6 . . .
/ / s e t e d g e s

8 sgv . g . addEdge (sgv . edgeFactory . c r e a t e () , new Pair <Vertex <Str ing
>>(a3 , a4)) ;

sgv . g . addEdge (sgv . edgeFactory . c r e a t e () , new Pair <Vertex <Str ing
>>(a1 , b1) , EdgeType . DIRECTED) ;

Lastly, we pass the data around, and copied at the NetLocation in the figure, at the end
successfully pass the data back to the start point. With the code snippet below and result of demo2
in figure 5.8

1 sgv . g . passData (a4 , a3 , " J a n i t o r " , sgv . g) ;
sgv . g . passData (a3 , a2 , " J a n i t o r " , sgv . g) ;

3 sgv . g . passData (a2 , a1 , " J a n i t o r " , sgv . g) ;
sgv . g . passData (a1 , b3 , " J a n i t o r " , sgv . g) ;

5 sgv . g . passData (b3 , c3 , " J a n i t o r " , sgv . g) ;
sgv . g . copyData (c3 , d3 , " J a n i t o r ") ;

7 sgv . g . copyData (d3 , d4 , " J a n i t o r ") ;
sgv . g . copyData (d4 , a3 , " J a n i t o r ") ;

9 sgv . g . passData (a3 , a4 , " J a n i t o r " , sgv . g) ;

Figure 5.8: The result of case 2

Chapter 6
Conclusion and Future Work

This project has achieved the goal we mentioned in the introduction chapter, which is "to
build a library for the analyze, visualize and manipulation of graph and networks", as we can see
from the demos given. Through the process of doing this project, I have acquired a great deal of
knowledge in the field of software engineering, especially in writing an API library. Starting from
the choice of base library, to determine interfaces and operation signatures, every step on the way
requires deliberation on decisions to be made.

Aside from the achievement, there are and always will be something that can be improved. So
here we list some thoughts on future work:

• The evaluation of libraries is based on some intuitive assumptions about what kind of
operations are of the first priority in our domain. It would be advisable if we can make an
detailed investigation into the requirements and list out the operations needed, and comes
with a more informed decision.

• More cases are required, not only to demonstrate usage of this library, but to provide
requirements that can enrich the content of this library.

• Better coding styles and techniques would make building this library more effortless. It is
though that implementation details can be kept transparent to users, a "beauty inside" would
not only make things pleasant, but also reduce the difficulties when refactor and evolving of
the library are needed in future.

Hopefully, this work shall be applied elsewhere as a step stone towards a better and more
comprehensive library.

55

A. Benchmark Program

A.1. BasicBenchmark.java

1 package Sample . Benchmark ;
import edu . uc i . i c s . jung . graph . * ;

3

/ * *
5 *

* @author Logan
7 * /

publ ic c l a s s BasicBenchmark {
9

publ ic long addVer (i n t num) {
11 System . out . p r i n t l n (" Benchmarking add ver tex . ") ;

SparseGraph <Integer , S tr ing > g = new SparseGraph<Integer , S tr ing > () ;
13 long s tar tTime = System . currentTimeMil l i s () ;

for (i n t i = 0 ; i < num; i ++) {
15 g . addVertex ((I n t e g e r) i) ;

}
17

long endTime = System . currentTimeMil l i s () ;
19 long time = endTime − s tar tTime ;

System . out . p r i n t l n (" Tota l time : " + time + " ms . ") ;
21 return time ;

}
23

publ ic s t a t i c void main (S t r i n g [] args) {
25 BasicBenchmark b = new BasicBenchmark () ;

long t o t a l = 0 ;
27 double t imes = 1 0 ;

for (i n t i = 0 ; i < times ; i ++) {
29 t o t a l +=b . addVer (1000000) ;

}
31 System . out . p r i n t l n (" Average time : " + t o t a l /times + " ms . ") ;

}
33 }

A.2. BasicBenchmarkJung.java

57

58 CHAPTER 6. CONCLUSION AND FUTURE WORK

1 package benchmark ;

3 import edu . uc i . i c s . jung . graph . Graph ;
import edu . uc i . i c s . jung . graph . SparseGraph ;

5

/ * *
7 *

* @author Logan
9 * /

publ ic c l a s s BasicBenchmarkJung implements BasicBechmark {
11 / * (non−J a v a d o c)

* @see benchmark . Bas i cBechmark # addVer (i n t , edu . u c i . i c s . jung . graph .
Graph)

13 * /
@Override

15 publ ic long addVer (i n t num, Graph<Integer , S tr ing > g) {
long s tar tTime = System . currentTimeMil l i s () ;

17 for (i n t i = 0 ; i < num; i ++) {
g . addVertex ((I n t e g e r) i) ;

19 }

21 long endTime = System . currentTimeMil l i s () ;
long time = endTime − s tar tTime ;

23 System . out . p r i n t l n (" Running time : " + time + " ms . ") ;
return time ;

25

}
27

/ * (non−J a v a d o c)
29 * @see benchmark . Bas i cBechmark # addEdge (i n t , edu . u c i . i c s . jung . graph .

Graph)

* /
31 @Override

publ ic long addEdge (i n t num, Graph<Integer , S tr ing > g) {
33 for (i n t i = 0 ; i < num; i ++) {

g . addVertex ((I n t e g e r) i) ;
35 }

37 long s tar tTime = System . currentTimeMil l i s () ;

39 for (i n t j = 0 ; j < num − 1 ; j ++) {
g . addEdge (S t r i n g . valueOf (j) , j , j + 1) ;

41 }

43 long endTime = System . currentTimeMil l i s () ;
long time = endTime − s tar tTime ;

45 System . out . p r i n t l n (" Running time : " + time + " ms . ") ;
return time ;

47

59

}
49 }

A.3. BasicBenchmarkJung.java

1 package benchmark ;

3 import com . mxgraph . swing . mxGraphComponent ;
import com . mxgraph . view . mxGraph ;

5

publ ic c l a s s BasicBecnhmarkjGraphX {
7

f i n a l s t a t i c i n t s c a l e = 100000 ;
9 f i n a l s t a t i c double t imes = 1 0 . 0 ;

11 publ ic s t a t i c long addVer () {
f i n a l mxGraph graph = new mxGraph () ;

13 Object parent = graph . getDefaul tParent () ;
graph . getModel () . beginUpdate () ;

15 long s tar tTime = System . currentTimeMil l i s () ;
long time ;

17 t r y {
for (i n t i = 0 ; i < s c a l e ; i ++) {

19 graph . i n s e r t V e r t e x (parent , null , S t r i n g .
valueOf (i) , 0 , 0 , 0 , 0) ;

}
21

long endTime = System . currentTimeMil l i s () ;
23 time = endTime − s tar tTime ;

System . out . p r i n t l n (" Running time : " + time + " ms . ") ;
25 } f i n a l l y {

graph . getModel () . endUpdate () ;
27 }

return time ;
29 }

31 publ ic s t a t i c long addEdge () {
f i n a l mxGraph graph = new mxGraph () ;

33 Object parent = graph . getDefaul tParent () ;
graph . getModel () . beginUpdate () ;

35 Object [] ar = new Object [s c a l e] ;
long s tar tTime ;

37 long time ;
t r y {

39 for (i n t i = 0 ; i < s c a l e ; i ++) {
ar [i] = graph . i n s e r t V e r t e x (parent , nul l ,

S t r i n g . valueOf (i) , 0 , 0 , 0 , 0) ;
41 }

43 s tar tTime = System . currentTimeMil l i s () ;

60 CHAPTER 6. CONCLUSION AND FUTURE WORK

for (i n t i = 1 ; i < s c a l e ; i ++) {
45 graph . inser tEdge (parent , null , S t r i n g . valueOf (

i) , ar [i] , ar [i −1]) ;
}

47 long endTime = System . currentTimeMil l i s () ;
time = endTime − s tar tTime ;

49 System . out . p r i n t l n (" Running time : " + time + " ms . ") ;
} f i n a l l y {

51 graph . getModel () . endUpdate () ;
}

53 return time ;

55 }

57 publ ic s t a t i c void main (S t r i n g [] args) {
long t o t a l = 0 ;

59 for (i n t i = 0 ; i < times ; i ++)
t o t a l += addVer () ;

61 System . out . p r i n t l n ("===Average time : " + t o t a l / times + " ms
.===\n") ;

63

long Edgetota l = 0 ;
65 for (i n t i = 0 ; i < times ; i ++)

Edgetota l += addEdge () ;
67 System . out . p r i n t l n ("===Average time : " + Edgetota l / times + "

ms.===\n") ;

69 }
}

A.4. BasicBechmark.java

package benchmark ;
2

import edu . uc i . i c s . jung . graph . Graph ;
4

publ ic i n t e r f a c e BasicBechmark {
6

/ * *
8 * B a s i c s p a r s e graph t e s t i n g : add 1 m i l l i o n nodes i n t o t h e graph .

*
10 * @param num

* @return p r o c e s s i n g t ime
12 * /

publ ic a b s t r a c t long addVer (i n t num, Graph<Integer , S tr ing > g) ;
14

publ ic a b s t r a c t long addEdge (i n t num, Graph<Integer , S tr ing > g) ;
16

}

Bibliography

Bloch, J.: 2008, Effective java: Second edition.

Cormen Thomas H., Leiserson Charles E., R. R. L. S. C.: 2001, Introduction to Algorithms (Second ed.),
MIT Press and McGraw-Hill.

Eckel, B.: 2006, Thinking In Java (Fourth ed.), Prentice Hall; 4 edition.

Erich Gamma, Richard Helm, R. J. J. V.: 1994, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison Wesley.

Harold, E. R.: 2004, Xom design principles.

Joshua O Madadhain, Danyel Fisher, P. S.: 2005, Analysis and visualization of network data using
jung.

NetBeans, W.: 2012, Api design.

Oracle: 2011, Java 2 platform api specification standard edition (version 1.6).

Oracle: 2012, The java tutorials.

Shenoy, S.: 2002, Best practices in ejb exception handling.

U.S. DEPARTMENT OF COMMERCE, N. I. o. S. and Technology: 1997, Entity authentication using
public key cryptography, Federal Information Processing Standards Publication 196, 3974–3981.

61

	Table of Contents
	Abstract
	Introduction
	Background
	Graph and its Representation
	Graph Representation

	JUNG Graph Library
	The JUNG System
	Major features of JUNG

	Java Language Related Issues
	JVM client and server mode
	Java Generics
	Annotations
	Exceptions

	Java Graphics related
	Benchmark
	Definitions
	Purpose
	How to benchmark

	Analysis and Comparison of Existing Libraries
	Graph Libraries
	System Settings
	JVM Options
	Test System

	Benchmark
	JUNG Library Results
	jGraphX Library Results

	Design and Implementation
	API
	Design Problems
	Finding the right objects
	Determine object granularity
	Determine method signature
	Inheritance and Composition

	Detailed design
	Choice of data structure
	Layout Algorithm
	Exceptions

	Testing, Evaluation and Case studies
	Case 1: Mutual authentication
	Analysis, Design and Implementation

	Case 2: Lock system
	Analysis, Design and Implementation

	Conclusion and Future Work
	Bibliography

