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Abstract

We discuss the independent component problem within a context of mul-
timedia applications. The literature o�ers several independent component
analysis schemes which can be applied in this context, and each have its own
trade-o� between exibility, complexity and computational e�ort. The speci�c
applications investigated in this chapter comprise modeling of speech/sound,
images, and text data.

1 Background

Blind reconstruction of statistically independent source signals from linear mixtures
is relevant to many signal processing contexts [1, 6, 8, 9, 22, 24, 36]. With reference
to Principal Component Analysis the problem is often referred to as Independent
Component Analysis (ICA)1.

The source separation problem can be formulated as a likelihood formulation,
see e.g., [7, 32, 35, 37]. The likelihood formulation is attractive for several reasons.
First, it allows a principled discussion of the inevitable priors implicit in any sep-
aration scheme. The prior distribution of the source signals can take many forms
and factorizes in the source index expressing the fact that we look for indepen-
dent sources. Secondly, the likelihood approach allows for direct adaptation of the
plethora of powerful schemes for parameter optimization, regularization, and eval-
uation of supervised learning algorithms. Finally, for the case of linear mixtures

1There are a number of very useful ICA Web pages providing links to theoretical analy-
sis, implementations and applications. Follow links from the page http://eivind.imm.dtu.dk/

staff/lkhansen/ica.html
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without noise, the likelihood approach is equivalent to another popular approach
based on information maximization [1, 6, 27].

The source separation problem can be analyzed under the assumption that the
sources are either time-independent, or possessing a more general time dependence
structure. The separation problem for autocorrelated sequences was studied by
Molgedey and Schuster [33]. They proposed a source separation scheme based on as-
sumed non-vanishing temporal autocorrelation functions of the independent source
sequences evaluated at a speci�c time lag. Their analysis was developed for sources
mixed by square, non-singular matrices. Attias and Schreiner derived a likelihood
based algorithm for separation of correlated sequences with a frequency domain
implementation [2, 3, 4]. The approach of Molgedey and Schuster is particularly in-
teresting as regards computational complexity because, as it forms a non-iterative,
constructive solution.

Belouchrani and Cardoso presented a general likelihood approach allowing for
additive noise and for non-square mixing matrices. They applied the method to
separation of sources taking discrete values [7] estimating the mixing matrix using
an Estimate-Maximize (EM) approach with both a deterministic and a stochastic
formulation. Moulines et al. generalized the EM approach to separation of autocor-
related sequences in presence of noise, and they explored a family of exible source
priors based on Gaussian Mixtures [34]. The di�cult problem of noisy, overcomplete
source models2 is recently analyzed by Lewicki and Sejnowski within the likelihood
framework [28, 31].

In this chapter we study the likelihood approach and entertain two di�erent
approaches to the problem: a modi�ed version of the Molgedey-Schuster scheme
[15], based on time-correlations, and a novel iterative scheme generalizing the mix-
ing problem to separation of noisy mixtures of time-independent white sources [16].
The Molgedey-Schuster scheme is extended to the undercomplete3 case, and further
inherent erroneous complex number results are alleviated. In the noisy mixture
problem we �nd a maximum posterior estimate for the sources which interestingly
turns out to be non-linear in the observed signal. The speci�c model investigated
here is a special case of the general framework proposed by Belouchrani and Car-
doso [7], however, we formulate the parameter estimation problem in terms of the
Boltzmann learning rule, which allows for a particular transparent derivation of the
mixing matrix estimate.

The methods are applied within several multimedia applications, separation of
sound, image sequences, and text.

2 Principal and Independent Component Analy-

sis

Principal Component Analysis (PCA) is a very popular tool for analysis of corre-
lated data, like temporal correlated image databases. By PCA the image database

2More sources than acquired mixture signals.
3More acquired mixture signals than sources.
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is decomposed in terms of \eigenimages" that often lend themselves to direct inter-
pretation. A most striking example is face recognition where so-called \eigenfaces"
are used as orthogonal preprocessing projection directions for pattern recognition.
The Principal Components (the sequence of projections of the image data onto the
eigenimages) are also uncorrelated, hence, perhaps the simplest example of inde-
pendent components [9]. The basic tool for PCA is Singular Value Decomposition
(SVD).

De�ne the observed M � N signal matrix, representing a multi-channel signal,
by

X = fXm;ng = fxm(n)g = [x(1);x(2); � � � ;x(N)] (1)

where M is the number measurements and N is the number of samples. xm(n),
n = 1; 2; � � � ; N is the m'th signal, and x(n) = [x1(n); x2(n); � � � ; xM(n)]>. In the
case of image sequences, M is the number of pixels.

For �xed choice of P �M , SVD of X reads4

X = UDV > =
PX
i=1

uiDi;iv
>

i ; Xm;n =
PX
i=1

Um;iDi;iVn;i (2)

where the M �P matrix U = fUm;ig = [u1;u2; � � � ;uP ] and the N �P matrix V =
fVn;ig = [v1; v2; � � � ; vP ] represent the orthonormal basis vectors (i.e., eigenvectors
of the symmetric matrices XX> and X>X, respectively). D = fDi;ig is a P �
P diagonal matrix of singular values. In terms of independent sources, SVD can
identify a set of uncorrelated time sequences, the Principal Components: Di;ivi,
enumerated by the source index i = 1; 2; : : : ; P . That is, we can write the observed
signal as a weighted sum of �xed eigenvectors (eigenimages) ui.

However, considering the likelihood for the time correlated source density, we
are often interested in a slightly more general separation of image sources that are
independent in time, but not necessarily orthogonal in space, i.e., we would like to
be able to perform a more general decomposition of the signal matrix,

X = AS; Xm;n =
PX
i=1

Am;iSi;n (3)

where A is a general mixing matrix of dimension M � P and S is a source data
matrix with dimension P � N consisting of P � M independent sources. Finding
A;S is often referred to as Independent Component Analysis (ICA), see e.g., [6],
[9].

4Usual SVD expresses X = eU eD eV >

where eU is M �M , eD is M �N , and eV is N �N . U is
the �rst P columns of eU , D is the P �P upper-left submatrix of eD, and V is the �rst P columns
of eV .
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3 Likelihood Framework for Independent Com-

ponent Analysis

Reconstruction of statistically independent components/sources from linear mix-
tures is relevant to many information processing contexts, see e.g., [27] for an in-
troduction and a recent review. We will derive a solution to the source separation
based on the likelihood formulation, see e.g., [7, 32, 37]. An additional bene�t from
working in the likelihood framework is that it is possible to discuss the generaliz-
ability of the ICA representation, in particular we use the generalization error as a
tool for optimizing the complexity of the representation, see also [14, 17].

The noisy mixing model takes the form,

X = AS + E (4)

where E is the M � N noise signal matrix. The noise is supposed to obey a spe-
ci�c zero mean, parameterized stationary probability distribution. The source sig-
nals are assumed to be stationary and mutually independent, i.e., p(si(k)sj(n)) =
p(si(k))p(sj(n)); 8 i; j 2 [1;M ]; 8n; k 2 [1;N ]. The properties of the source signals
are introduced by a parameterized prior probability density p(Sj ), where  are
the parameter vector. The likelihood of the parameters of the noise distribution,
the parameters of the source distribution and of the mixing matrix is given by,

L(A; �; ) = p(XjA; �; ) =
Z
p(X �ASj�)p(Sj )dS (5)

where p(X �ASj�) = p(E j�) is the noise distribution parameterized by the vector
�. We will assume that the noise can modeled by i.i.d. Gaussian sequences with a
common variance � = �2,

p(E j�2) =
1

(2��2)MN=2
exp

 
�

1

2�2

MX
m=1

NX
n=1

"2m(n)

!
: (6)

We will consider two di�erent assumptions about the independent source distribu-
tions leading to di�erent algorithms.

For the time-independent white source problem the parameter free source distri-
bution of [32] is deployed,

p(S) =
PY
i=1

p(si) =
1

�NP
exp

 
�

NX
n=1

PX
i=1

log cosh si(n)

!
: (7)

where S> = fs1; s2; � � � ; sPg and si = [si(1); si(2); � � � si(N)]>. In the time-correlated
case, it is assumed that the sources are stationary, independent, possess time-
autocorrelation, have zero mean, and are Gaussian distributed5,

p(Sj ) =
PY
i=1

p(sij i) =
PY
i=1

1

(2�)N=2
q
det(�si)

exp
�
�
1

2
s>i �

�1
si
si

�
(8)

5By assuming stationarity, we implicitly neglect transient behavior due to initial conditions.

4



where  = [ 1; � � � ; P ] and �si = E[sis
>

i ] = Toeplitz([si(0); � � � ; si(N � 1)]) 6 is
the N � N Toeplitz autocorrelation matrix consisting of autocorrelation function
values, si(m) = E[si(n)si(n+m)], m = 0; 1; � � � ; N�1. The autocorrealtion matrix
�si is supposed to be parameterized by  i.

3.1 Generalization and the Bias-Variance Dilemma

The parameters of our blind separation model are estimated from a �nite random
sample, and therefore they also are random variables which inherit noise from the
data set they were trained on. Within the likelihood formulation the generalization
error of a speci�c set of parameters is given by the average negative log-likelihood7

G(A; �; ) =
Z
� logL(A; �; ) � p�(X) dX

=
Z
[� log

Z
p(X �ASj�)p(Sj ) dS] � p�(X) dX: (9)

where p�(X) is the true distribution of data. The generalization error is a principled
tool for model selection. In the context of blind separation the optimal number of
sources retained in the model is of crucial interest. We face a typical bias-variance
dilemma [13]. If too few components are used, a structured part of the signal will
be lumped with the noise, hence leading to a high generalization error because of
\lack of �t". On the other hand, if too many sources are used we expect \over�t"
since the model will use the additional degrees of freedom to �t non-generic details
in the training data. The generalization error in Eq. (9) can be estimated using a
test set of data independent of the training set8.

3.2 Noisy Mixing of White Sources

The speci�c model investigated here is a special case of the general framework pro-
posed by Belouchrani and Cardoso [7], however, we formulate the parameter estima-
tion problem in terms of the Boltzmann learning rule, which allows for a particular
transparent derivation of the mixing matrix estimate.

Let us �rst address the problem of estimating the sources if the mixing param-
eters are known, i.e., for given A and �2. Note that MacKay [32] showed that the
gradient descent scheme for the likelihood problem, for vanishing noise variance, is

6Toeplitz(�) transforms a vector into a Toeplitz matrix.
7Note the close connection between generalizaton error and the Kullback-Leibler Information

(KL), as

KL( p�(X) : p(XjA;�; ) ) =

Z
log

p�(X)

p(X jA;�; )
p�(X) dX

= G(A;�; ) +

Z
log(p�(X))p�(X) dX

8That is, we evaluate Eq. (9) on the test data by using p�(X) = �(X �Xtest) where � is the
Dirac delta function and Xtest are the test data.
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equivalent to the Bell-Sejnowski rule [6]. Here we want to consider the more general
noisy case. We use Bayes formula p(SjX) / p(XjS)p(S) to obtain the posterior
distribution of the sources

p(SjX;A; �2) / exp

 
�

1

2�2

MX
m=1

NX
n=1

"2m(n)�
PX
i=1

NX
n=1

log cosh si(n)

!

= exp

 
�

1

2�2

MX
m=1

NX
n=1

(X �AS)2m;n �
PX
i=1

NX
n=1

log coshSi;n

!
:(10)

The maximum a posteriori (MAP) source estimate is found by maximizing this
expression w.r.t. S 9, leading to the following non-linear equation to solve iteratively
for the MAP estimate bS,

�A>A bS +A>X � �2 tanh bS = 0: (11)

There are two problems facing in Eq. (11). First, the equation is non-linear { though
only weakly non-linear for low noise levels10. Second, A>A, may be ill-conditioned
or even singular. A useful rewriting that takes care of potential ill-conditioning of
the system matrix leads to the iterative scheme,

bS(j+1)
=
�
A>A+ �2I

��1 �
A>X + �2

� bS(j)
� tanh( bS(j+1)

)
��

(12)

where j denotes the iteration number and I is the identity matrix. This form
suggests an approximate solution for low noise levels

bS(1)
= S(0) + �2H�1

�
S(0) � tanhS(0)

�
;

S(0) = H�1A>X; H = A>A+ �2I; (13)

exposing the fact that the presence of additive noise turns the otherwise linear
separation problem in to a non-linear one. A non-linear source estimate is also
found in Lewicki and Sejnowski's analysis of the overcomplete problem [31].

Since the likelihood is of the hidden-Gibbs form we can use a generalized Boltz-
mann learning rule to �nd the gradients of the likelihood of the parameters A, �2.
These averages can be estimated in a mean �eld approximation [16, 38] leading to
recursive rules for A and �2,

bA = X bS> � bS bS> + �I

��1
; (14)

b�2 =
1

MN
Tr(X � bA bS)>(X � bA bS): (15)

9Note in case of zero noise, the posterior expression leads to the expression given in [32], and
the solution is obtained by the Bell-Sejnowski algorithm [6].

10This expression is the gradient of the exponent of the posterior distribution. A globally conver-
gent iterative solution can be assured if solving by gradient ascentrS = � �@ log p(SjX;A; �2)=@S,
with a su�ciently small step-size, �. Here, however, we aim for a fast approximate solution for S.
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� is a regularization constant representing the lumped e�ect of neglected uctuations
in the mean �eld approach. � is estimated by

� = b�2

 
1�

1

PN

PX
i=1

NX
n=1

tanh2 Si;n

!
; (16)

see [16].
Fluctuation corrections (hence the magnitude of �) can derived in the low noise

limit, based on a Gaussian approximation of the likelihood [16].
The overall algorithm then consists in iterating Eq. (13), (14){(16), (12), (14){

(16), etc. Convergence of the algorithm is discussed in [16].

3.3 Separation based on Time-Correlation

Molgedey and Schuster [33] have proposed a simple non-iterative source separation
scheme based on assumed non-vanishing (time) autocorrelation functions of the
independent sources which can be Gaussian distributed11. Their idea was developed
for sources mixed by square, non-singular, A matrices. Here we generalize their
approach in three ways:

� Handling the undercomplete case of more mixture signals than sources, i.e.,
P �M . In particular, the algorithm is well-suited for cases where P �M .

� Alleviating inherent erroneous complex valued results.

� Allowing for simultaneously use of more crosscorrelation matrix function values
maintaining the simple non-iterative solution.

De�ne the M �M crosscorrelation function matrix for the mixture signals

Cx(�) = Efx(n)x>(n+ �)g = f i; j 2 [1;M ] : xi(n)xj(n+ �) g (17)

where � = 0;�1;�2; � � � is a time-lag and Ef�g is the expectation operator. Note
for � = 0 we get the usual crosscorrelation matrix, Cx(0) = Efx(n)x>(n)g which is
positive semi-de�ninte. Assume the noise-free model Eq. (3), x(n) = As(n), where
s(n) = [s1(n); � � � ; sP (n)]

>, x(n) = [x1(n); � � � ; xM(n)]> and further that the M �P

mixing matrix has rank(A) = P � M . Since Cx(0) = ACs(0)A
> where Cs(0) is

the P � P crosscrorrelation matrix for the source signals, and rank(A) = P then
rank(Cx(0)) = P . An eigenvalue decomposition of Cx(0) reads

Cx(0) = QLQ
> (18)

where Q = [q1; q2; � � � ; qM ] is the orthogonal matrix (Q>Q = I) of eigenvectors qi
and L = diag(l1; � � � ; lM) is the diagonal matrix of eigenvalues l1 � l2 � � � � � lP � 0
and lP+1 = lP+2 = � � � = lM = 0. Consider projection onto the P -dimensional full
rank subspace, ex = eQ>

x (19)

11At most one source is allowed to be white.
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where eQ = [q1; q2; � � � ; qP ] is the M � P projection matrix and ex is the P � 1
projected mixture signal vector. Now de�ne quotient matrix

K = Cex(�)C�1ex (0): (20)

Since Cex(�) = eQ>

ACs(�)A
> eQ the quotient matrix can be expressed as12

K = ( eQ>

A)Cs(�)C
�1
s
(0)( eQ>

A)�1 (21)

According to Appendix A the quotient matrix has the eigenvalue decomposition
K = ����1 where � is a diagonal matrix of real eigenvalues and � are the
associated real eigenvectors. De�ne a permutation matrix13 P = [ej1 ; : : : ; ejP ] where
ej = f�ij; i 2 [1;P ]g are P -dimensional unit column vectors and [j1; j2; � � � ; jP ] is a
permutation of the numbers [1;P ]. Note that PP> = I. Further, de�ne a diagonal
scaling matrix � = diag([�1; � � � ; �P ]) with �i 6= 0. Comparing with Eq. (21) shows
that eigenvalue decomposition of K can be used to identify the mixing matrix A,
as shown by:

K = ( eQ>

A)Cs(�)C
�1
s
(0)( eQ>

A)�1 = ��PP>��1��PP>��1��1 (22)

Consequently,

eQ>

A = ��P ; (23)

Cs(�)C
�1
s
(0) = P>��1��P = P>�P : (24)

Here we use the fact that Cs(�) is diagonal due to independence of the sources
signals.

Consider measurements of crosscorrelation function matrix for T di�erent � 's
and de�ne the extended quotient matrix:

Kext =
TX
j=1

�j �Cex(�j)C�1ex (0) (25)

where �j are scalar weights. Then eigenvalue decomposition of Kext = ����1

leads to

eQ>

A = ��P ; (26)
TX
j=1

�j �Cs(�j)C
�1
s
(0) = P>�P : (27)

The generalized Molgedey-Schuster algorithm for identi�cation of mixing and source
signals up to scaling and permutations is thus summarized in the following steps:

1. Perform eigenvalue decomposition: Cx(0) = QLQ
>.

12Note that eQ>

A has full rank equal to P .
13WP gives a permutation W 's columns, whereas PW gives a permutation of the rows.
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2. Compute projected mixing signals, ex = eQ>

x.

3. Choose �j and �j for j = 1; 2; � � � ; T and compute the extended quotient matrix
Kext

4. Perform eigenvalue decomposition: Kext = ����1

5. Up to scaling and permutations, the mixing matrix and sources are identi�ed
as:

A = eQ� (28)

S = (A>A)�1A>X = ��1 eQ>

X (29)

3.3.1 Estimation of Mixing Matrix and Source Signals

The procedure described above is based on true crosscorrelation function matrices
which in practice are estimated from available data. Consider the estimate,

cCx(�) =
1

2N

�
X�X

> +XX>

�

�
(30)

where X� = fxm(n+ �)g is the time-shifted data matrix. Here we consider a cyclic
permutation by � time steps, i.e., X� = fxm((n + �)N )g where (�)N denotes the
argument modulo N . Eq. (30) respects the fact that the true correlationmatrix
funtion Cx(�) is symmetric.

Consider the SVD ofX = UDV > in Eq. (2) with P selected so that D consists
of positive singular values only. WhenX� is formed by cyclic permutation,XX> =
X�X

>

� ; hence, X� = UDV
>

� where V � is the cyclic permutation of V . The P �N

projected mixture signal matrix is fX = U>X = DV > and fX� = DV
>

� as U is an
estimate of eQ. The estimated quotient matrix is according to Eq. (20) given by

cK = cCex(�)cC�1ex (0) (31)

=
1

2

�fX�
fX>

+ fXfX>

�

��fXfX>
��1

=
1

2
D
�
V >

� V + V >V �

�
D
�
DV >V D

��1
=

1

2
D
�
V >

� V + V >V �

�
D�1:

The generalized Molgedey-Schuster (MS) ICA algorithm can be summarized, in the
following steps:

1. Perform SVD: X = UDV > with P selected so that all singular values in D
are positive. There is an option for regularization by discarding some of the
smallest singular values causing an reduction of P .
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2. Perform eigenvalue decomposition of the estimated quotient matrix14

cK =
1

2
D(V >

� V + V >V � )D
�1 (32)

= b� b� b��1
:

3. Estimate mixing matrix and sources signals:

bA = U b�; (33)bS = b��1
DV >: (34)

4. Crosscorrelation matrix functions of the source signals are estimated as

cCs(0) = N�1 bS bS> = N�1 � b��1
D2 b��>

; (35)cCs(�) = b�cCs(0): (36)

The fact that b� is non-orthogonal in general implies that cCs(0) and cCs(�) are
not diagonal. That is, �nite sequence source signals can not be expected to be
uncorrelated. Unlike PCA, this scheme and other ICA schemes, do not automatically
produce a set of uncorrelated features.

3.4 Likelihood

The major advantage of the Molgedey-Schuster algorithm is its non-iterative nature,
however, is not directly guaranteed to minimize the likelihood. Still the likelihood
is still a convenient tool for understanding the nature of the modeling. Deploying
one � (T = 1) is consistent with parameterizing the source distribution p(Sj ) in
Eq. (8) using one parameter per source. As more � 's is deployed a more exible
parameterization of the likelihood applies.

The likelihood can be computed in a simple way using Fourier techniques, as
will be shown in a forthcoming paper. This also enables computation of valida-
tion/generalization error, and consequently a principled way to select optimal � 's
aiming at achieving minimum generalization error. However, the discussion is be-
yond the scope of this chapter.

4 Separation of Sound Signals

In this example the aim is to demonstrate how ICA is applied to separation of
sound signals. This could be thought of as a special case of blind signal separation
in connection with the cocktail party problem illustrated in Figure 1.

The present example deals with speech from 3 persons which are assumed sta-
tistically independent. The sampling frequency of the signals is 11025Hz and they

14When T > 1 the term (V >

� V + V >V � ) is replaced by
PT

j=1
�j(V

>

�j
V + V >V �j ).
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voice 1

voice 2

voice 3

voice 4

Blind signal separation

Figure 1: In the cocktail party problem speech from a group of people is recorded by
a number of microphones. Without prior knowledge of the dynamics in the voices,
how they are mixed, or presence of additional noise sources, the goal is to separate
the voice of the individual speakers into di�erent output channels.

consist of 50000 samples each. A linear instantaneous mixing with �xed known
3 � 3 mixing matrix is deployed and enables a quantitative evaluation of the ICA
separation. The source and mixing signals are shown in Figure 2. In general these
assumptions would not hold in real world applications due to echo, noise, delay, and
di�erent kind of nonlinear e�ects. In such cases more elaborate source separation
is needed, as described e.g., in [2, 3, 4, 10]. In order to evaluate the results of the
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Figure 2: The orginal source sound signals s1(n), s2(n), s3(n) consist of 50000
samples and are assumed to be statistically independent. The mixture signals x1(n),
x2(n), x3(n) are linear instantaneous combinations of the source signals.

separation, we consider the so-called system matrix de�ned as

SM = ( bAcCs(0)
1=2)�1PA (37)

where bA is the estimated mixing matrix, P is a permutation matrix, and cCs(0)
is the crosscorrelation matrix of the estimated source signals. If the separation is
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SM =

264 0:56 0:98 0:62
0:28 0:72 0:23
0:18 0:50 0:06

375

Table 1: System matrix for the PCA separation of sound signals.

successfully, the system matrix equals the identity matrix.

4.1 Sound Separation using PCA

The principal component analysis described in Section 2 is often used because it is
simple and relatively fast. Moreover it o�ers the possibility of reducing the number
of sources by ranking sources according to power (variance). The result of the PCA
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Figure 3: Separated sound source signals using PCA. Right panels show error signals,
ei(n) = si(n)� bsi(n).
separation is shown in Figure 3 and the corresponding system matrix in Table 1. Ob-
viously the result is poor when comparing estimated sources to the original sources
in Figure 2. This is also con�rmed by inspecting the system matrix in Table 1.

4.2 Sound Separation using Molgedey-Schuster ICA

The main advantage of the MS-ICA algorithm is that it is non-iterative, and conse-
quently very fast. A standard T = 1 MS was employed, and the choice � = 1 gave
best performance. In Figure 4 the estimated sound signals from the separation are
shown. Comparison with original source signals in Figure 2 indicates very good sep-
aration. The system matrix in Table 2 and an additional listening test also con�rms
this result.
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Figure 4: Separated sound source signals using Molgedey-Schuster ICA. Right panels
show error signals, ei(n) = si(n)� bsi(n).

SM =

264 1:00 0:02 0:03
0:02 1:00 �0:01

�0:03 �0:03 �1:00

375

Table 2: System matrix for the Molgedey-Schuster ICA separation of sound signals.

4.3 Sound Separation using Bell-Sejnowski ICA

The very commonly used Bell-Sejnowski ICA [6] is equivalent to maximum likeli-
hood with assumptions like those presented in Section 3.2 in the case of zero noise.
Bell-Sejnowski ICA iteratively computes an estimate of the mixing matrix by up-
dating proportional to the natural gradient of the likelihood. The step size (gradient
parameter) was initially 10�4 and a line search was employed using bisection. The
algorithm was terminated when the negative log-likelihood was below 10�12. Due to
the iterative nature, the algorithm is much more time consuming than the Molgedey-
Schuster algorithm.

In Figure 3 and Table 3 the results of the separation are shown. Clearly, the
system matrix is closer to the identity matrix than that of Molgedey-Shuster at the
expense of increased computational burden.

4.4 Comparison

Table 4 lists the norm of the system matrix deviation from the identity matrix as
well as computation time.

Obviously, PCA was out-performed by both ICA algorithms due to very re-
stricted separation capabilities. Both ICA algorithms performed very well. The

13



−1

0

1

s
1

^

−0.01
0

0.01
e

1

−1

0

1

s
2

^

−0.01
0

0.01
e

2

−1

0

1

s
3

n

^

−0.01
0

0.01
e

3

n

Figure 5: Separated sound source signals using Bell-Sejnowski ICA. Right panels
show error signals, ei(n) = si(n)� bsi(n).

SM =

264 1:00 �0:01 0:01
0:00 1:00 �0:01
0:01 0:01 1:00

375

Table 3: System matrix for the Bell-Sejnowski ICA separation of sound signals.

major di�erence is computation time, thus MS-ICA was more than 200 times faster
than the BS-ICA. The advantage of the BS-ICA algorithm is that the system matrix
can be signi�cantly closer to unity provided su�cient computation time. A hybrid of
MS-ICA and BS-ICA in which MS-ICA is used to initialize BS-ICA seems obvious.

By listening to the separated signals it was hardly impossible to tell the di�erence
between the ICA results.

jSM � Ij Comp. time (sec.)
PCA 1:21 0:25
MS-ICA 0:05 0:25
BS-ICA 22 iterations 0:05 56:10
BS-ICA 56 iterations 0:01 152:18

Table 4: Norm of the system matrix' deviation from the identity matrix and com-
putation time in seconds. MS-ICA is the Molgedey-Schuster ICA, BS-ICA is Bell-
Sejnowksi ICA for 22 and 56 iterations, respectively.
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5 Separation of Image Mixtures

Applying ICA to images has been carried out in a number of applications ranging
from face recognition to localizing activated areas in the brain, see e.g., [5, 16, 19,
20, 29, 30].

In this section we will illustrate some of the basic features using ICA in contrast
to/or in combination with PCA for image segmentation. From a sequence of images,
the objective is to extract a sequence images where common features has been
separated into di�erent images. In the present case ICA is based on raw images,
however, in principle, the segmentation can also be done from features extracted
from the images. The simple data set as shown in Figure 6 is used in this example.
There are P = 4 original source images of N = 9100 (91 by 100) pixels rearranged
into the P �N source matrix S so that each row represents an images. The M �N

signal matrix X with M = 6 is generated by using the following M � P mixing
matrix

A =

2666666664

1 1 0 1
�1 1 0 1
1 1 �2 1

�1 �1 �2 1
1 �1 0 1

�1 �1 0 1

3777777775
(38)
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Figure 6: The arti�cial face data set used for image segmentation. The top row
shows the P = 4 sources of N = 9100 pixels which is multiplied with the mixing A
in the middle row to generate the signal matrix X with M = 6 components in the
bottom row.
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5.1 Image Segmentation using PCA

The result of applying PCA to the face data set in shown in Figure 7. The number
of non-zero eigenvalues are correctly determined to 4. Notice that eyebrows and
mouth position operate in pairs; when the mouth is \smiling" it can not be \sad"
and likewise for the eyebrows. PCA is able to detect this behavior but mixes both
eyebrows and mouth pieces in source 2 and 3. Further the nose is present in source
1. This is a typical e�ect in PCA since its decomposition is based on �nding the
directions with the most variance, which it is not always well-suited for the data.
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1 2 3 4 5 6

−50
0

50
U

1 2 3 4 5 6

−20
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20

1 2 3 4 5 6

−20

0

20

1 2 3 4 5 6

−10
0

10

Figure 7: Applying PCA to the arti�cial face data. The sources V (top row) and
corresponding mixing matrix estimate (bottom row). Unfortunately PCA mixes the
eyebrows and mouth pieces in source 2 and 3. Further the nose is present in source
1.

5.2 Image Segmentation using Molgedey-Schuster ICA

ICA on images can be perfomed either to the signal matrix X or the transpose
X>. In the �rst case N = number of pixels, M = number of images in sequence
corresponding to assuming independence of pixels in the sources. In this case the
sources are images and the mixing matrix is time sequence. In the second case
N = number of images in sequence and M = number of pixels corresponding to
assuming independence driving time sequence sources. Thus, the mixing matrix
corresponds to (eigen)images. This is summarized in Table 5.

The result when assuming pixel-independence (i.e., using X as signal matrix) is
shown in Figure 8. The result when assuming time-independence (i.e., using X> as
signal matrix) is shown in Figure 9.

5.3 Discussion

PCA and ICA used in real images applications often show preference towards ICA.
This is mainly because ICA is able to produce a non-orthogonal basis and is not
constrained by the variance ranking inherent in PCA. Using PCA as preprocessing
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Signal Matrix

X X>

M no. of images in seq. no. of pixels

N no. of pixels no. of images in seq.

S images time-sequence

A time-sequence images

assumption pixel-independence time-independence

Table 5: Two ways of performing ICA on image sequences.

S

1 2 3 4 5 6

−50
0

50
A

1 2 3 4 5 6
−20

0

20

1 2 3 4 5 6
−20

0

20

1 2 3 4 5 6
−20
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Figure 8: Using MS-ICA on the arti�cial face data with the pixel-independence as-
sumption, i.e.,X is the signal matrix. The estimated sources (eigenimages) is shown
in the top row and associated mixing matrix (time-sequences) in the bottom row.
Unlike PCA in Figure 7, MS-ICA does not mix eyebrows and mouths together, i.e.,
the sources are almost perfect except for a small problem with the nose component
in source 1. Also the mixing matrixA is almost perfect in comparison with Figure 6.

to ICA in order to determine the number of sources has proven successfully [6]. Also
the PCA estimate of the mixing matrix can be used as initialization for an iterative
ICA scheme like Bell-Sejnowski [6] and the algorithm of Section 3.2. Performing ICA
using the Molgedey-Schuster algorithm gives better results than PCA at comparable
computational cost.

The choice of pixel-independence versus time-independence is related to the prob-
lem at hand. In the image segmentation problem above pixel-independence gave the
best result, however, other cases have shown preference to time-independence, see
e.g., [15, 16].
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Figure 9: Using MS-ICA on the arti�cial face data with the time-independence
assumption, i.e., X> as signal matrix. The estimated sources (time-sequences) is
shown in the bottom row and associated mixing matrix (eigenimages) in the top
row. The mouth is present in both eigenimage 2 and 3, thus producing a slightly
worse result than that in Figure 8.

6 ICA for Text Representation

6.1 Text Analysis

The �eld of text analysis aims at searching for speci�c information and structure
in text data which has emerged rapidly in recent years due to the Internet and
other massive text databases. The general way of search and grouping are usually
boolean15 search and query16 subset selection. These methods are straight forward,
however, not based on statistical modeling. Due to the large amount of data any
statistical approach has been very di�cult, and only in the resent years a serious
e�ort has been carried out.

The general ideal behind many text analysis algorithms are the so called N -gram
histograms. The N -gram histogram is based on counting simultaneous occurrence of
N words or terms. We consider merely 1-gram histograms as higher order histograms
often has large areas of in�nitesimal probability mass due to infrequent occurrence
of many word combinations. In Figure 10 a 1-gram histogram is shown and will be
referenced to as the term/document matrix. The term/document matrix can contain
features extracted from the documents and can be used as a signal matrixX for PCA
and ICA. Recently PCA and ICA has been apply to text analysis [21, 23, 25] and
in the following we shall apply both PCA and ICA on the 1-gram histogram using
a the MED data set [11]. The MED data set is a commonly studied collection of
medical abstracts. It consists of 1033 abstracts of which 30 labels has been assigned
to 696 of the documents. The goal is not to compare the performance of ICA to
other unsupervised methods, rather the intend is to demonstrate its capability in

15Boolean search operates from AND and OR operators.
16By making a query a subset of the data are selected. This can e.g., be done by boolean search

{ often found by SQL statements.
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Figure 10: The term/document matrix X is an 1-gram histogram. The rows rep-
resent di�erent words/terms appearing in a collection of text documents. In the
present study we use M = 1159 terms. Each column represents the histogram for a
speci�c document or text group. In the present example, N = 124 documents were
used.

text analysis. Consequently, we restrict the study to 124 abstracts, i.e., the �rst
5 groups/classes in the MED data set which can be characterized by the following
verbal descriptions:

1. The crystalline lens in vertebrates, including humans.

2. The relationship of blood and cerebrospinal uid oxygen concentrations or
partial pressures. A method of interest is polarography.

3. Electron microscopy of lung or bronchi.

4. Tissue culture of lung or bronchial neoplasms.

5. The crossing of fatty acids through the placental barrier. Normal fatty acid
levels in placenta and fetus.

When constructing the histogram term/document matrix, words that occur in more
than one abstract where chosen as a term word. In order to facilitate the analysis
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commonly used words17 were removed. 1159 terms remained in the construction of
the term/document matrix. In summary, the term/document matrixX isM = 1159
by N = 124. The ICA algorithm used in this example is the noisy mixing algorithm
described in Section 3.2.

6.2 Latent Semantic Analysis { PCA

A classical method for both search and grouping (clustering) is Latent Semantic
Analysis LSA introduced by [11]. The principle of LSA is to build the term/document
matrix and �nding a better basis representation using PCA. Consider the SVD
X = UDV > where U contains the eigenvectors of the term covariance matrix
XX>. Likewise V contains the eigenvectors of the document covariance matrix
X>X . D is the diagonal matrix of increasing singular values equal to square root
of the eigenvalues. Paraphrased, U provides relative coordinates for the covariance
between di�erent terms and likewise, V relative coordinates for the documents. In
Figure 11 the documents are represented by a 3 dimensional PCA basis. A clear
data cluster structure is noticed.
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Figure 11: PCA on the term/document matrix. The documents are plotted with
di�erent signatures corresponding to the pre-labeling into 5 classes. A clear cluster
structure is noticed.

Using clustering techniques the documents can now be clustered into groups of
similar meaning. This also enables the characterization new document by projecting
on to the identi�ed PCA basis.

6.3 Latent Semantic Analysis { ICA

The objective of ICA in LSA is that it should serve as a clustering algorithm so that
di�erent semantic groups is represented by separate independent components. The
ICA algorithm produces the mixing matrix A in which each column represents a
histogram associated with a speci�c semantic cluster. The source matrix S expresses
the how the documents contribute to the semantic clusters.

17A stop word list was de�ned.
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Since we typically face problems with thousands of words in the terms list and
a possibly much fewer documents, we face a so-called extremely ill-posed learn-
ing problem which can be remedied without loss of generality by PCA projection.
The PCA decompose the term/document matrix on eigen-histograms. These eigen-
histograms are subject to an orthogonality constraint being eigenvectors to a sym-
metric real matrix. We are interested in a slightly more general separation of sources
that are independent as sequences, but not necessarily orthogonal in the word his-
togram, i.e., we would like to be able to perform a more general decomposition of
the data matrix, corresponding to the model in Eq. (4). Before performing the ICA
we can make use of the PCA for simpli�cation of the ICA problem. The approach
taken here is similar to the so-called \cure for extremely ill-posed learning" [26] used
to simplify supervised learning in short image sequences. We �rst note that the like-
lihood, considered as a function of the columns ofA (histograms) can be split in two
parts. A part, A1, orthogonal to the subspace spanned by the M rows of X, and a
part A2 situated in the subspace spanned by the N columns of X. The �rst is part
trivially minimized for any non-zero con�guration of sources by putting A1 = 0. It
simply does not \couple" to data. The remaining part A2 can be projected onto
an N -dimensional hyperplane spanned by the documents. In this way we reduce
the high-dimensional separation problem to the separation of a square (projected)
data matrix of size N � N . We note that it often may be possible to further limit
the dimensionality of the PCA subspace, hence, further reducing the histogram di-
mensionality M of the remaining problem. Using the \cure for extremely ill-posed
learning" method the problem is reduced to a M = 124 by N = 124 problem with-
out loss of generality. However, we expect that even fewer components are needed
for creating a generalizable model. In Figure 12 we show the test and training set
errors evaluated on training sets of 104 patterns randomly chosen among the set of
124. The test set consists of the remaining 20 documents in each resample. The
generalization error shows a shallow minimum for P = 4 independent components,
reecting a bias-variance tradeo� (Section 3.1) as function of the complexity of the
estimated mixing matrix. In Figure 13 we show scatterplots in the most variant
independent components. While the distribution of documents forms rather well-
de�ned group structure in the PCA scatterplots, clearly the ICA scatterplots are
much better axis aligned. We conclude that the non-orthogonal basis found by ICA
better \explains" the group structure. To further illustrate this �nding we have
converted the ICA solution to a pattern recognition device by a simple heuristic.
We assign a group label based on the magnitude of the recovered source signal. In
Table 6 and 7 we show that this device is quite successful in recognizing the group
structure although the ICA training procedure is completely unsupervised. For an
ICA with three independent components two are recognized perfectly, and three
classes are lumped together. The four component ICA, which is the generalization
optimal model, \recognizes" three of the �ve classes almost perfectly and confuses
the two classes 3 and 4. Inspecting the groups we found that the two classes indeed
are on very similar topics18, and investigating classi�cations for �ve or more ICA

18They both concern medical documents on diseases of the human lungs.

21



2 4 6 8 10
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

# IC COMPONENTS

E
R

R
O

R

TEST 
TRAIN
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of the number of sources, or number of components P . The training set consist of
104 documents randomly chosen among the set of 124 possible and the remaining
20 is used for test. The test curve shows a shallow minimum for P = 4 components
reecting the bias-variance tradeo� discussed in Section 3.1.
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Figure 13: ICA applied on on the term/document matrix. The documents are plot-
ted with di�erent signatures corresponding to the pre-labeling into 5 classes. ICA
projects the natural clusters along the basic vectors making them easy to separate.

component did not resolve the ambiguity between them. The ability of the ICA-
classi�er to identify the topic structure is further illustrated in Figure 14 where we
show scatterplots color coded according to ICA classi�cations. This shows that the
ICA is better than PCA based LSI in identifying relevant latent semantic structure.
Finally, we inspect the histograms produced by ICA by backprojection using the
PCA basis. Thresholding the ICA histograms we �nd the salient terms for the given
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Figure 14: ICA analysis of the MED dataset. The dataset consists of 124 documents
in �ve topics. The source signals recovered in the ICA has been converted to a
simple classi�er, and we have coded these classes by di�erent colors. From top to
bottom we show scatterplots in the principal component representation 1 vs. 2 and
3 vs. 2., with colors signifying the classi�cation proposed by the ICA with 2,3,4,5
independent components respectively.

component. These terms are keywords for the given topic as shown in Tables 6 and
7 and follow nicely the behavior of the confusion matrices.
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Class
1 2 3 4 5 Keywords

IC1 37 0 0 0 0 lens protein
IC2 0 16 1 1 0 arterial blood cerebral oxygen rise
IC3 0 0 21 22 26 acid blood cell fatty free glucose insulin

Table 6: Confusion matrix for a simple classi�er constructed from the three com-
ponent ICA. Two of the �ve MED classes are recovered while the last independent
component contains a mixture of the remaining three classes.

Class
1 2 3 4 5 Keywords

IC1 31 0 0 0 0 lens protein
IC2 0 16 0 1 0 arterial blood cerebral oxygen rise
IC3 6 0 22 21 2 alveolar cell lens lung
IC4 0 0 0 1 24 acid blood fatty free glucose insulin

Table 7: Confusion matrix for a simple classi�er constructed from the four com-
ponent ICA. Three of the �ve MED classes are recovered, while the remaining two
classes are mixed. The two unresolved classes are related by both making reference
to the lung physiology.

7 Conclusion

This chapter discussed the use of Independent Component Analysis (ICA) for mul-
timedia applications. In particular we applied ICA to separation of speech signals,
segmentation of images, and text analysis/clustering.

A likelihood framework for ICA was presented and enables a uni�ed view of
di�erent algorithms. Furthermore this enables formulation of the generalization
error, de�ned as the expected negative log-likelihood on independent examples. The
generalization error is a principled tool for model optimization, e.g., number of
sources retained in the model.

We focused on two ICA algorithms: separation based on time-correlation and
noisy mixing of white sources. In the �rst case we presented a generalized version
of the Molgedey-Schuster algorithm allowing for handling undercomplete problems,
alleviating inherent erroneous complex valued result, and simultaenous use of more
crosscorrelation measurements while maintaining the simple non-iterative nature
of the algorithm. In the noisy mixing case a maximum a posteriori estimate for
source estimation was employed, and the the mixing matrix and noise variance were
estimated via Boltzmann learning.

24



Acknowledgment

This work was funded by the Danish Research Councils through the Distributed
Multimedia Technologies and Applications within Center for Multimedia and the
THOR Center for Neuroinformatics. Andrew Back is acknowledged for valuable
discussions concerning the Molgedey-Schuster algorithm.

A Property of the Quotient Matrix

Theorem 1 The quotient matrixK = Cex(�)C�1ex (0) has real eigenvalues and eigen-

vectors, and obtains the eigenvalue decomposition K = ����1.

Proof Cex(�) is symmetric since it can be expressed as Cex(�) = eQ>

ACs(�)A
> eQ.

Further, Cex(0) is positive de�nite, as Cs(0) is positive de�nite. A similarity trans-
form of K is given by

Ksim = C
�1=2ex (0)KC

1=2ex (0) = C
�1=2ex (0)Cex(�)C�1=2ex (0) (39)

Ksim is thus symmetric with real eigenvalues and eigenvectors [18, Theorem 4.1.5],
and obtains the eigenvalue decompositionE�E> whereE is the orthogonal (E>E =
I) matrix of eigenvectors and � is a diagonal matrix of eigenvalues. Since K and
Ksim are similar they have the exact same eigenvalues, counting multiplicity [18,

Corollary 1.3.4]. Finally, using the similarity transformK = C
1=2ex (0)KsimC

�1=2ex (0),

then K obtains the eigenvalue decomposition K = ����1 where � = C
1=2ex (0)E.

Q.E.D.
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