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Summary

In survival analysis, the survival times of the subjects in the study population are
generally assumed to be statistically independent, conditional on the covariate
information. However, situations where the survival times are correlated due to
a natural clustering of the study subjects may arise.

In this study, different statistical methods for analysis of clustered survival data
are evaluated and compared using data from a Danish register-based family
study of the psychological effects of exposure to childhood cancer. In addition
to assessing the effect of exposure to childhood cancer whilst coping with familial
clustering, two of the presented models are applied in order to estimate familial
correlation of ages at onset. The models show that individuals diagnosed with
cancer and individuals with a family history of admission have an increased
hazard rate. Furthermore, a significant correlation of age at onset within families
is identified.

Of the models presented, the shared gamma frailty Cox proportional hazards
model and the Clayton-Oakes copula model with the marginal Cox proportional
hazards model as margin are the most applicable in this study.






Resumé

I overlevelsesanalyse antages det generelt, at observationernes overlevelsestider
er statistisk uafheengige betinget af kovariaterne. Der kan imidlertid opsta si-
tuationer, hvor overlevelsestiderne er korrelerede pga. en naturlig gruppering af
data.

I dette projekt evalueres og sammenlignes forskellige statistiske metoder til ana-
lyse af korreleret overlevelsdata vha. data fra et dansk registerbaseret familie-
studie af de psykologiske senfglger af eksponering for bgrnecancer. Udover at
estimere effekten af eksponering for bgrnecancer, alt imens der tages hgjde for,
at data er grupperet, kan to af de praesenterede modeller bruges til at estimere
korrelationen mellem overlevelsestiderne indenfor en familie. Modellerne viser,
at individer, der diagnosticeres med kreeft, samt individer med tidligere ind-
leeggelser i familien har en gget hazard rate. Endvidere ses det, at der er en
signifikant korrelation mellem overlevelsestiderne indenfor en familie.

De mest anvendelige modeller er i dette projekt shared gamma frailty Cox
proportional hazards modellen og Clayton Oakes copula modellen med den
marginale Cox proportional hazards model som margin.
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CHAPTER 1

Introduction

In survival analysis, the survival times of the subjects in the study population are
generally assumed to be statistically independent, conditional on the covariate
information. However, situations where the survival times are correlated due to
a natural clustering of the study subjects may arise and can occur for different
kinds of data [23, 36]. Simple examples where independence between survival
times cannot be assumed are the lifetimes of related individuals, e.g. twins, or
time between recurrent events.

Dependence between survival times may be considered a nuisance of survival
data. In other applications the correlation is of primary interest. For example,
in family studies, correlation of age at onset is typically of main interest and
considered as evidence of familial aggregation [1]. Familial aggregation may be
attributed to unobserved genetic and environmental factors, which are shared
by the members of a family, and it may be important for understanding the
etiology of many common diseases including cancers and psychiatric disorders.

A commonly used and very general approach to the modelling of clustered sur-
vival data is to assume that there is an unobserved risk factor, a so-called frailty,
which is shared by all subjects in a cluster, see e.g. [22, 24, 35, 37, 43, 49]. This is
similar to classic linear regression, where a cluster effect is typically modelled as
a random effect. In the classic linear regression model, the mean of the response
variable is unaltered by the random effect because of the linear structure of the
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model [36, 39], however, in the shared frailty model the covariate effects are
specified conditionally on the frailty and are thus to be interpreted on cluster
level, i.e. within clusters.

Another approach is to apply a marginal model, see e.g. [18, 19, 25, 47, 56], where
the survival times are compared across clusters and the covariate effects may
be interpreted on population level. In the marginal model, the covariate effects
are modelled without taking the clustering of subjects into account, however,
the standard errors of the estimates are subsequently adjusted for correlation of
survival times.

As mentioned, the association between survival times may be considered a nui-
sance or an interesting aspect of survival data. The shared frailty model can
readily be used to obtain a measure of the dependence between survival times
of subjects in a cluster, whereas the marginal model cannot. Yet, the marginal
model may be used in combination with a copula model in order to obtain a
measure of dependence [2, 16, 12, 50]. Copula models can link population sur-
vival functions to generate the joint survival function and in the process estimate
the dependence between the population survival functions [5, 42]. By using the
combined approach, an estimate of the degree of dependence between the clus-
tered survival times are obtained together with covariate effects that may be
interpreted on population level.

1.1 Objectives

The objectives of this study, is to evaluate and compare different statistical
methods for analysis of clustered survival data. This includes the shared frailty
model and the marginal model in combination with the copula model. In ad-
dition, simpler methods will be studied. Focus is on semi-parametric methods,
however their parametric counterparts are also presented, though not applied.

The statistical methods will be evaluated and compared using data from a Dan-
ish register-based family study of the psychological late effects of exposure to
childhood cancer. The purpose of the family study is to investigate how child-
hood cancer survivors and their parents and siblings are affected later in life
with regard to psychological outcomes. In this study, focus is on the childhood
cancer survivors and their siblings. In addition to assessing the effect of exposure
to childhood cancer whilst coping with familial clustering, the statistical meth-
ods are applied in order to estimate correlation of age at onset of psychological
disorders within families.
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Before the statistical methods are applied to the large data set from the register-
based family study, they are explored using three smaller data sets, which are
available through the statistical software R [48].

1.2 Overview of thesis

Chapter 2 will start with a brief introduction to survival analysis, where the
basic terminology will be covered. Hereafter, the different statistical methods,
which are applied in this study, will be presented. Although, focus in this study
is on semi-parametric survival models, their parametric counterparts are also
presented. In Chapter 3, the data analysed in this study will be presented and
it will be described how the statistical analyses are conducted. The results from
the statistical analyses are presented in Chapter 4. In Chapter 5, the applied
statistical models are discussed based on the results. This will be followed by
suggestions for further work. Finally, a summary of the results and conclusions
is given in Chapter 6.



Introduction




CHAPTER 2

Theory

In this chapter, the different statistical methods, which are applied in this study,
will be described. First, a brief introduction to survival analysis is given and
then the proportional hazards model is presented. Finally, different statistical
methods for analysis of clustered survival data are presented. The methods are
all based on the proportional hazards model. Two of the methods presented,
may be applied for estimation of the degree of dependence between the clustered
survival data.

2.1 Survival analysis

Survival analysis is statistical analysis of data, where the response of interest is
time from a well-defined origin to the occurrence of an event of interest [36]. A
key feature, which makes survival analysis different from other areas in statistics
is that survival data is usually censored [7]. Censoring occurs when the exact
survival time (time until event of interest) is unknown. The survival time may
be unknown because the subjects have withdrawn from the study or in some
other way been lost to follow-up, e.g. moved to another country. For these
subjects, the survival time is at least until withdrawal or last contact. Subjects
for whom no event of interest has occurred at the end of the study are also
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censored. Their survival times are at least until the end of the study. The type
of censoring described here is called right censoring and is the most common
form of censoring in survival data [27] though other censoring schemes exist,
e.g. left censoring which is applied when the event of interest occurs prior to a
certain time ¢ or interval censoring which is applied if the event of interest occurs
between times ¢, and t;,. Censoring is assumed to be statistically independent
of the survival time.

In addition to censoring, survival data can be truncated. Truncation is con-
cerned with the entry of subjects into a study. When the survival data is trun-
cated, only subjects with survival times within a certain interval, e.g. [Tf, Tg|
are observed. Left truncation occurs when subjects for whom the event of in-
terest either has occurred before some truncation threshold Ty, i.e. T' < Ty, or
is known never to occur, are excluded from the study. Right truncation occur
when subjects for whom the event of interest has occurred after some truncation
threshold Tg, i.e. Tg < T, are excluded from the study [29].

2.1.1 Terminology

The information of interest for a subject is contained in the pair (7', d), where T
is the survival time until the event of interest or censoring, and  is the censoring
indicator. The survival time T is a random variable and is equal to or greater
than 0. The indicator variable d is equal to 1 if the event of interest has occurred
and 0 otherwise

1 if event

T>0 and o= { 0 if censored

A visualisation of (T, ) is given in Figure 2.1.

Three important and closely related functions in survival analysis are the proba-
bility density function, f(t), the survival function, S(t), and the hazard function,
h(t). Specifying one of three functions, specifies all three functions as there is a
clearly defined relationship between them, i.e. the probability density function
can be expressed as

f() = h(t)S(t) (2.1)

The probability density function, f(t), gives the unconditional event rate and is
defined as
Pr(t <T <t+ At)

A0 At (2.2)
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Subject

Survival time

Figure 2.1: An example of survival times and censoring. The symbol x indi-
cates event and the symbol o indicates censoring.

The probability density function is non-negative and the integral of f(¢) from 0
to infinity is equal to 1. The corresponding cumulative distribution function is
given as

F(t)=Pr(T <t) = /0 f(u) du (2.3)

The survival function, S(t) is defined as the probability of a subject surviving
longer than time ¢

S(t) = Pr(T > ) = 1 — F(t) = /t ~ fw)du (2.4)

The survival function is non-increasing and theoretically equal to one for ¢ equal
to zero, and zero for ¢ equal to infinity. An example of a hypothetical survival
function is shown in Figure 2.2.

The survival function gives the cumulative survival and may be estimated using
the non-parametric Kaplan-Meier method [23, 29]. If there are multiple events
at the same time (ties), the Kaplan-Meier estimate is given as

sty =11 (1 - YTti)) (2.5)

t; <t

where t1,...,t. are the ordered event times, m; is the number of events at ¢;,
and Y'(¢;) is the number of subjects at risk immediately before ¢;. The Kaplan-
Meier function is right continuous decreasing step function, that changes at each
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Figure 2.2: An example of a hypothetical survival function.

event time. Utilising, that S(t) = 1 — F(¢) (2.4), the Kaplan-Meier method can
also be used to estimate the cumulative incidence.

The hazard function, h(t), gives the instantaneous and conditional event rate
and is defined as

Prt <T <t+ At|T > t)
T A0 At

(2.6)

The hazard function is non-negative and it typically progresses according to
the event being studied. For example, if the event of interest is dying after
having received complicated and risky surgery, the hazard function is most likely
decreasing, as the risk of dying from the surgery will decrease as time goes by.
Conversely, the hazard function is most likely increasing if the event of interest
is dying after being diagnosed with a fatal illness.

2.2 Proportional hazards models

In survival analysis as well as in many other areas of statistics, the goal is to ob-
tain some measure of effect describing the relationship between given covariates
and a given outcome. In survival analysis, the outcome of interest is time to
event, and the effect of the covariates of interest is most often measured using
the proportional hazards model [7], which is based on the hazard function. The
proportional hazards model is given as

h(t‘X) :ho(t)eXp(Xlﬁl-l-XQBQ—l—+Xkﬂk) (27)
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where hg(t) is the baseline hazard function, Xy, ..., X} are the covariates, and
B1,. .., 0k are the covariate effects. The covariate effects act multiplicatively on
and thereby scale the baseline hazard function, which is common to all subjects.
As seen, the effects of the covariates are independent of time, and thus assumed
to be the same at all values of t. The covariate effects are additive and linear
for the log hazard

log(h(t| X)) = log(ho(t)) + X161 + Xof2 + ... + Xifr (2.8)

The baseline hazard function hg(t) can be assumed to have a particular paramet-
ric form, i.e. have the survival times follow some distribution, or left unspecified.
Commonly used distributions for the survival times are the Weibull distribution,
the exponential distribution (which is a special case of the Weibull distribution),
and the log-logistic distribution [27]. If the baseline hazard is left unspecified,
the proportional hazards model is semi-parametric. In the following sections,
the parametric Weibull proportional hazards model and the semi-parametric
Cox proportional hazards model are introduced.

2.2.1 Weibull proportional hazards model

The Weibull model is the most widely used parametric survival model [27]. If
the survival times are assumed to be Weibull distributed, T' ~ W (A, p), then
the hazard function is given as

h(t) = Mpt?™, p>0and A >0 (2.9)

The shape of the hazard function is determined by the shape parameter p, which
is typically held fixed. As illustrated in Figure 2.3, if p > 1, the hazard function
is increasing with time; if p < 1, the hazard function is decreasing with time. If
p = 1, the hazard function is constant and the Weibull model is reduced to the
exponential model h(t) = .

The parameter A is called the scale parameter and influences the statistical dis-
persion of the underlying probability distribution. If X is large, the distribution
will be more spread out and conversely if A is small, the distribution will be
more concentrated.

The Weibull proportional hazards model is defined by reparameterising the scale
parameter \

h(t|X) = exp(Bo + X181 + Xofla + ... + XpSp)pt? (2.10)
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8,
o
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5 2]
T
07\ | \..\ | |
0 0.2 0.4 0.6 0.8 1
Time

Figure 2.3: Hazard functions for Weibull distributed survival times. Hazard
functions with different values for p are depicted with A = 1.

The Weibull proportional hazards model can also be expressed as in (2.7)

h(t|X) = exp(Bo)pt” " exp(X181 + Xofa + ... + XifBr) (2.11)

where exp(8)pt?~! may be regarded as ho(t).

2.2.1.1 Estimation of the Weibull proportional hazards model

As the Weibull proportional hazards model is fully parametric, the model pa-
rameters are estimated by maximising the likelihood function. Right censored
survival data consists of a combination of subjects that experience an event and
subjects that are right censored, and as a result [7], the likelihood function for
a sample with n subjects is given by

n

Lo(a|T,8) = [[(F(T))% (S(T:)' (2.12)

=1

where « is the parameter vector of interest. Utilising that the probability density
function, f(t), can be expressed as a product of the survival function and the
hazard function (2.1), the likelihood function can be rewritten as

£u(alT.8) = [T S(T) .13

=1
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For Weibull distributed event times, the likelihood function is

n

Lo(B.p|T. 8, X) = [[ (0T exp(XiB))” exp(~T/ exp(X;8))  (2.14)
=1

where X; = (1,X;1,...,Xi) and B = (Bo,B1,---,8k)T. The log-likelihood
function ¢, (a) = log L, (), is typically easier to work with than the likelihood
function itself, and it is therefore used in the maximisation process. It makes no
difference since maximising the log-likelihood gives the same estimates as max-
imising the likelihood. The log-likelihood function is maximised in an iteratively
manner.

2.2.2 Cox proportional hazards model

The baseline hazard function in the proportional hazards model (2.7) can be left
unspecified, which will result in a semi-parametric proportional hazards model.
The most widely used semi-parametric survival model is the Cox proportional
hazards model, which is given as

h(t|X) = ho(t) exp(X181 + XaBs + .. . + XiBr) (2.15)

The model is semi-parametric, because while no knowledge of the baseline haz-
ard function, hg(t), is required, the covariates still enter the model linearly on
the log hazard scale.

2.2.2.1 Estimation of the Cox proportional hazards model

Since the Cox proportional hazards model is semi-parametric, the model pa-
rameters cannot be estimated using the likelihood function in (2.13). Instead,
one must use the method of partial likelihood, developed by David R. Cox in
1972 [6]. The partial likelihood function is given by

exp(X;0)
ﬁlX T H ZT >T; eXp(X /8)

(2.16)

where r is the number of events, X; = (X;1,...,Xix), and X; = (Xj1,..., Xji).
The likelihood is called partial, as only the probabilities of subjects that ex-
perience an event are considered [27]. The estimates obtained by the partial
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likelihood are consistent and asymptotic normal [9, 12], and found by maximis-
ing the partial log-likelihood in an iteratively manner. The partial likelihood is
valid when no subjects have the same event time (no ties). If this is not the
case, the Efron approximation [8, 52] to the partial likelihood may be applied.

2.2.3 Interpretation of the hazard ratio

The covariate effects obtained by the proportional hazards model are interpreted
by means of the hazard ratios. The hazard ratio is given as the ratio of the
hazard rates of two subjects with different levels of the covariate in question.
The hazard ratio (HR) is given as

_ M) _ o) exp(XiB) _ exp(XiB) _ oy - X;)B)  (217)

HR = h(t|Xj) N ho(t) exp(Xjﬁ) GXp(Xjﬁ)

As seen, the hazard ratio is independent of time ¢ and thus constant, i.e. the
hazard rates are proportional. If there is only one covariate X, which is binary
and X; =1 and X; = 0, the hazard ratio is given as

_ h(t[Xi=1) _ ho(t) exp(B)

HR = I, =0) o (D) = exp(B) (2.18)

If the covariate is continuous rather than categorical, the hazard ratio states the
effect of increasing the level of the covariate by one unit. The interpretation of
the hazard ratio is the same for parametric and semi-parametric proportional
hazards models. The hazard ratio acts multiplicative on the baseline hazard,
thus a hazard ratio of 0.5 reduces the hazard rate by 50%, while a hazard ratio
of 1.5 increases the hazard rate by 50%. If the hazard ratio is equal to one, the
covariate in question has no effect on the hazard rate. The significance of the
covariate effects can be evaluated using hypothesis testing (typically based on
the Wald statistic) and a confidence interval for the hazard ratio is also easily
constructed.
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2.2.4 Checking model assumptions

A key assumption of the proportional hazards model is proportional hazards,
which means that the hazard ratio of two subjects is constant and the covariate
effects are independent of time. The appropriateness of the proportional hazards
assumption may be evaluated using different approaches:

e Log-log survival curves
e Checking the Scoenfeld residuals

e Interaction of covariates with time

Log-log survival curves It can be shown that

S(t) = exp ( — /Ot h(u|X) du)

= exp ( — /Ot ho(u) exp(X 3) du) (2.19)

= exp(—Ho (t) eXp(Xﬁ))

where Hy(t) = fot ho(u) du. In consequence

log(S(1)) = ~Ho(t)exp(XB) &
log(— log(S(1))) = log(—Ho (1)) + X3 (2.20)

Thus, the proportional hazards assumption may be evaluated by visualising the
log-log survival curves of the different levels of the covariates. The survival
curves may be estimated using the non-parametric Kaplan-Meier method [23,

]. If the covariates are continuous, they will need to be categorised into an
appropriate number of groups. If the log-log survival curves are approximately
parallel when plotted on the log-log scale, the proportional hazards assumption
is satisfied.

Checking the Schoenfeld residuals Another way of checking the propor-
tional hazards assumption is by means of the scaled Schoenfeld residuals. It
can be shown, that if the proportional hazards assumption for a given covariate
holds, then the Schoenfeld residuals for that covariate will be independent of
the survival time. The method is elaborated by Therneau and Grambsch in [20]
and [52].
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Interaction of covariates with time The proportional hazards assumption
can also be evaluated by extending the proportional hazards model and including
an interaction term involving the covariate being assessed and some function of
time [27]. The proportional hazards assumption is then evaluated by testing
the significance of the interaction term. The significance may be tested using a
Wald test or a likelihood ratio test.

Weibull assumption

In addition to the proportional hazards assumption, the Weibull proportional
hazards model is based on the assumption that the survival times are Weibull
distributed. This assumption can also be evaluated by means of the log-log
survival curves. The Weibull survival function is given by

S(t) = exp(—\t?) (2.21)

And thus

log(— log(S(#))) = log(\) + plog(t) (2.22)

From (2.22), it is seen that the log(—log(S(t))) is a linear function of log(¢). This
means, that if the log-log survival curves are reasonably straight, the Weibull
assumption holds. If the log-log survival curves are parallel but not straight, it
means the proportional hazards assumption holds, but the Weibull assumption
does not and vice versa. If the Weibull assumption holds and the proportional
hazards assumption does not, this indicates that the shape parameter p cannot
assumed to be constant in the Weibull proportional hazards model (2.10)[27].
In Kleinbaum and Klein (2005) a method for modeling p is presented.

Linearity of continuous covariates

The linearity of continuous covariates may be checked by visual inspection of
the exposure-response relationship between the covariate in question and the log
relative hazard or by adding higher-order terms of the covariate and checking
their significance. Furthermore, the linearity may be checked by comparing the
model fit to that of a more flexible model, e.g. a spline model [52].
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2.3 Analysis of clustered survival data

In the following sections, different statistical methods for analysis of clustered
survival data are presented. Only methods based on the proportional hazards
model will be considered. First, the fixed effects model and the semi-parametric
stratified model will be presented. The two methods are computationally simple,
but have some major drawbacks [7]. Then, the shared frailty model will be pre-
sented. In the shared frailty model all subjects in a cluster are assumed to share
a random cluster effect, which impacts the interpretation of the hazard ratio.
Finally, the marginal model and the copula model are presented. The marginal
model is an independence working model, which means that the estimates are
obtained by assuming all subjects are independent. The estimated parameter
variance of the estimates are subsequently adjusted according to the correlation
between subjects. The copula model can be used to combine the marginal sur-
vival functions of different subjects in a cluster and thereby generate the joint
survival function.

2.3.1 Fixed effects model

The clustering of data may be modeled by introducing a fixed effect for each
cluster in the proportional hazards model

hij(t]Xi5) = ho(t) exp(Xi;B + ¢;) (2.23)

where h;;(t) is the conditional hazard function for subject j in cluster 7, ¢; is
the fixed effect for cluster 4, and X;; = (Xjj1,...,Xik). The introduction of
a fixed cluster effect results in a loss of degrees of freedom, and to avoid an
overparameterised model, a restriction is necessary, e.g. ¢; = 0. As a result,
the fixed effects of all other clusters are to be compared to cluster 1, which
complicates the model interpretation. In addition, since the number of subjects
in each cluster is likely to be limited, the standard errors of the fixed effects will
be very large. Moreover, there may be some clusters with no events and only
censored observations, where the hazard is difficult to estimate [7]. However,
the fixed effect estimates and their standard errors are of secondary interest,
as the fixed effect is introduced in order to adjust for the clustering and not to
estimate the fixed cluster effects per se.
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2.3.2 Semi-parametric stratified model

In the semi-parametric stratified model, each cluster is allowed to have its own
unspecified baseline hazard

hij(t|Xij) = hio(t) exp(Xi;8) (2.24)
where h;;(t) is the conditional hazard function for subject j in cluster i, hs

is the baseline hazard for cluster ¢, and X;; = (Xjj;1,...,X;jx). The partial
likelihood function for the stratified model is

s n N bij
ﬁn(ﬁX,T,é):HH< p(Xy5) )> (2.25)

i=1j=1 ZTuzTij exp(X“,B

where s is the number of clusters, n; is the number of subjects in the ith cluster.
A cluster only contributes to the partial likelihood if an event for a subject occurs
while at least one other subject is still at risk. Furthermore, a cluster where all
subjects have the same covariate information do not contribute to the partial
likelihood [7, 23].

2.3.3 Shared frailty model

Another way of managing clustering of data is by assuming that there is an
unobserved risk factor, a so-called frailty, which is shared by all subjects in a
cluster. The frailty accounts for the between-group variability and simultane-
ously induces a dependence within clusters [23]. The shared frailty model is
defined as

hij(t| Xs5) = ho(t)u; exp(Xy;3) (2.26)

where h;;(t|X;;) is the conditional hazard function for subject j in cluster ¢,
and wu; is the frailty of cluster i. The frailty is considered random and constant
over time and acts multiplicatively on the baseline hazard function. Given the
values of the frailties, the subjects are assumed to be independent, thus the
shared frailty model is a conditional independence model [23]. The frailty is
random, because focus is not on each cluster as such, but on the population of
clusters [23].
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2.3.3.1 Choice of frailty distribution

The dependence structure in the clustered data is described by the frailties,
which all follow the same distribution. The most common choice of distribution
is the one-parameter gamma distribution [7, 23] with the density function

u/?= L exp(—u/f)

. ., 0>0 (2.27)
09T (1/0)

fu(u) =

with mean 1 and variance 6, where the latter of the two provides information
on the variability in the population of clusters. As 6 approaches 0, there is
no heterogeneity between clusters and no dependence between subjects in a
cluster. The gamma distribution is mathematically convenient, as the gamma
distributed frailties can be integrated out from the conditional likelihood, which
is used to estimate the model parameters.

2.3.3.2 Estimation of the shared frailty model

The estimation of the model parameters in the shared frailty model depends on
whether the baseline hazard is assumed to have a particular parametric form or
is left unspecified. Just like any of the other model parameters, the significance
of the parameter 6§ can be evaluated using a Wald or a likelihood ratio test.
According to Therneau and Gramsch (2000) and Therneau et al. (2003), the
likelihood ratio test is preferable.

Parametric baseline If the survival times are assumed to follow the Weibull
distribution, the conditional likelihood for the ith cluster is according to (2.14)
given as

ng

Li(B, pIT;, i, Xiywi) = [ [ (0T ui exp(Xi58))% exp(—TYu; exp(Xi;3))

j=1

(2.28)

The gamma distributed frailties can be integrated out to obtain the marginal
likelihood [7] given as

D(e; +1/0) [10%, (pT2 " exp(Xi;8))%

. 1/6+d;
(1760 + S5, TG exp(Xi58)) © 01/97(1/6)
(2.29)

Emarg,i(ﬁv 97P|Ti»5ia Xiv ei) =
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where e; is the number of events in the ith cluster. By taking the logarithm
of this expression and summing over all clusters, the marginal log-likelihood
function is obtained [7], and the model parameters can be estimated by max-
imisation.

Unspecified baseline If the shared frailty model is semi-parametric and
based on the Cox proportional hazards model, the model parameters can be esti-
mated using either partial likelihood ideas in combination with the expectation-
maximisation (EM) algorithm [26] or the penalised partial likelihood. If the
frailties follow a gamma distribution, the two approaches lead to the same so-
lution [7, 52, 53]. In this study, focus is on the penalised partial likelihood
approach, which is implemented in the R function coxph.

The penalised partial log-likelihood function can be written as a sum of two
parts

Cppt (€, 1) = Lpart (B, 6) + Lpen(u) (2.30)

where ¢ = (3,0), and

s M . ex .. %
bpare(B,w) = log [T T] < us xp(Xiy ) ) (2.31)

i=1j=1 ZTW>TU g exp(Xquw)

and
Cpen(w) = log fu(u:) (2.32)
=1

The first part of the penalised log-likelihood, £,4,¢(3,w), is the log of an usual
Cox partial likelihood, where the frailty u; is treated as fixed. The second part
of the likelihood is a penalty term, which will have a large negative contribution
if the random effect is very different from its mean. The maximisation of the
penalised partial log-likelihood consists of an inner and an outer loop. The
parameter 6 is held fixed in the inner loop, where the penalised partial log-
likelihood function (2.30) is maximised to obtain an estimate of 8 and w. In
the outer loop, maximisation of the observable log-likelihood is used to obtain
an estimate of 6 [7, 52, 53]. The observable log-likelihood is given as

00) =lpp + i 1/6 — (1/6 + e;)log(1/0 + e;) + log(1/6)/6

=1

L(1/60 + e;)
+ log <I‘(1/9)> (2.33)
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where e; is the number of events in the ith cluster. The maximisation process is
conducted in an iteratively manner and can be quite computationally expensive
and time-consuming [53].

2.3.3.3 The frailties

The clustering can either be considered a nuisance or an interesting aspect of
the survival data. If the clustering is considered a nuisance, the shared frailty
model may be used as a method of variance reduction [23]. If the clustering
is considered an interesting aspect, the distribution of the individual frailties
according to different cluster traits may be explored [52], for example by plotting
the individual frailties against cluster size.

The interpretation of the individual frailties is similar to the interpretation of
the hazard ratio; subjects in a cluster ¢ with frailty u; > 1 are frail, meaning
they have a higher risk of experiencing the event of interest and subjects in a
cluster k with frailty ug < 1 are strong, they have a lower risk.

2.3.3.4 Conditional hazard ratio

For the shared frailty model, the hazard ratio is conditioned on the same level
of frailty

_ ho(t)u; exp(X;;8)
HR = h,o(t)um exp(kaﬁ)

= exp((Xi; — Xomk)B) only if u; = uy, (2.34)

where w; is the frailty of cluster ¢ and w,, is the frailty of cluster m. Thus,
the hazard ratio cannot be interpreted at population level as the proportional
hazard assumption is not satisfied for the unconditional hazards. In the shared
frailty model, the relative risks are estimated within clusters.

2.3.4 Marginal model

The marginal model is a so-called independence working model (IWM), which
means that all subjects are assumed to be independent despite of the cluster-
ing. I.e. a marginal Cox proportional hazards model is identical to the model
(2.15) on page 11, and the model parameters are estimated in the same way.
Although the estimation of the model parameters is conducted without taking
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the clustering of subjects into account, the estimators are consistent under a
reasonable set of conditions [7, 51]. However, the information matrix obtained
by the IWM is not a consistent estimator of the asymptotic variance-covariance
matrix. An approximation to the grouped jackknife estimator [31, 32] is applied
to obtain the robust variance estimator

I71(B)S(B)S" (B (B) (2.35)

~ ~

where I(8) and S(83) are the information matrix and the score vector, respec-
tively, of the IWM for all observations. The expression of the robust variance
estimator is equivalent to the sandwich estimator [57].

2.3.5 Copula model

The copula model can be used to combine the marginal survival functions of
different subjects in a cluster and thereby generate the joint survival function.
The joint survival function is given as

St tn,) = ColS1(t1)s . S, (tn)}s t1seestn, >0 (2.36)

7

where Cg(v1,...,v,,) is a n;-dimensional copula function with parameter vector
0, defined for (vi,...,v,;) € [0,1]" and taking values in [0,1]. The copula
model enables modeling of the dependence between the marginals expressed in
the parameter 6 [2].

2.3.5.1 The Clayton-Oakes copula

The family of Archimedean copulas are very popular and most often applied to
multivariate survival data [7]. An Archimedean copula has the form

Co(v1, ., vn,) = Po(dy ' (V1) + ... + &5 (vn,)) (2.37)

where ¢ is a decreasing function defined on [0, cc], taking values in [0, 1] and
satisfying ¢(0) = 1. The Archimedean copula family is popular, because the
copulas are easily derived and are capable of capturing many kinds of depen-
dence. For more details on Archimedean copulas see Genest and MacKay (1986),
Nelsen (2006) and Trivedi and Zimmer (2007).
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The Clayton-Oakes copula [5, 42] from the family of Archimedean copulas is
suitable for correlated survival times [55]. The Clayton-Oakes copula is given
as

S(tryeestn) = {STO(t) 4+ oo+ S0 (b)) — (i — 1)} 78, 6>0  (2.38)

where the parameter 6 measures the dependence between the marginal survival
functions. As 6 approaches 0, the marginal survival functions become indepen-
dent, and for # > 0, the survival times are positively correlated. As a rule,
the Clayton-Oakes copula cannot account for negative dependence [55], how-
ever, a bivariate Clayton-Oakes copula may be extended to present a negative
dependence [11, 41]. In this case

-

S(t1, t2) = (max {S70(ty) + Sy (ta) —1},0) 7, 0 [~1,00)\ {0} (2.39)

An example of negative dependence is in transplantation studies, where it has
been shown, that the longer an individual has to wait for a transplant, the
shorter the survival time after the transplantation [58].

2.3.5.2 Estimation of the Clayton-Oakes copula model

The estimation of the model parameters in the Clayton-Oakes copula model
is a two-stage procedure. The model parameters in the marginal model are
estimated first and the variance of the parameter estimates adjusted by taking
the clustering of the subjects into account. In the subsequent estimation of the
association parameter 6, the estimates from the marginal model are regarded
as fixed. The estimation of the association parameter # depends on whether
the baseline hazard is assumed to have a particular parametric form or is left
unspecified [2, 50]. In the following, focus is on bivariate survival data for ease
of notation, however all methods can be used for clusters of varying size. For
bivariate survival data, the Clayton-Oakes copula is given by

S(ty,t2) = {S7%(t1) + S5 %(ta) =1} 7, 6>0 (2.40)

And the corresponding likelihood function

1151-2 0S(ti1,t ) 8;1(1—8;2)
e (5

85 tl' ,ti (1_57"1)57:2 5. _
s (_ (atl.z 2)> (S(tin, 1) 700U (2.41)
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Parametric baseline If the survival times are assumed to follow a given
distribution, the association parameter 6 is estimated by maximisation of the
likelihood function given in (2.41), where the estimated parameters from the
marginal model have been plugged in. If the baseline is parametric, the param-
eters B and 0 may also be estimated simultaneously [17], but the computations
quickly become very complicated [2].

Unspecified baseline If the baseline is left unspecified and the marginals are
modeled by a Cox proportional hazards model, it is necessary to estimate the
baseline hazard function ho(t) in addition to the model parameters 3 in order
to estimate the association parameter §. The baseline hazard function hg(t)
is estimated by means of an Aalen-Breslow type estimator [2, 51]. Using the
estimated parameters 8 and the estimated baseline hazard function hq (t) in the
likelihood function (2.41), a pseudo log-likelihood is obtained. The association
parameter is then estimated by maximisation of this pseudo log-likelihood [2,
, 36]. The pseudo log-likelihood is given as

(o) == (Z /0 Clog (1+ 67 N (t-)) dNA(1) + Z nz 0~ N;i(7) G

=20+ Ni(7)) 10g(f3i(9))> (2.42)

éji = ijz“) exp(inB) df{()(t), Ri =1 + i(exp(ﬁ_léji) — 1)

Jj=1

2.3.5.3 The Clayton-Oakes copula and the shared gamma frailty
model

For bivariate survival data, the joint survival function derived from the shared
frailty model described in Section 2.3.3 becomes [7]

D=

Syt t2) = (S79(0) + 559(t) 1) (2.43)

This function looks very similar to the joint survival function of the Clayton-
Oakes copula, which may written as

=

Selty,t2) = (Sp8(t1) + Syl (t2) — 1) (2.44)
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Indeed, the joint survival function derived from the shared frailty model is also
a Clayton-Oakes copula. However, even though the functional forms of the joint
survival functions are identical, the two models are not equivalent and do not
lead to the same parameter estimates because the marginal survival functions are
modelled differently [7, 17]. The difference is that the survival function S; ;(¢;)
from the conditional shared frailty model is also a function of the parameter 6,
whereas the survival function S; .(¢;) from the Clayton-Oakes copula is not, cf.
Section 2.3.3.2 and Section 2.3.5.2.

2.4 Measure of dependence

The shared frailty model and the Clayton-Oakes copula model described in Sec-
tion 2.3.3 and in Section 2.3.5, respectively, can both be applied for estimation
of the degree of dependence between clustered survival data. The shared frailty
model estimates the variance 6 of the frailties, and the copula model estimates
the association parameter 6.. The two parameters are somewhat similar due to
the concordance of the two models (cf. previous section).

The parameters 6 and 6, can be considered as measures of correlation of the
survival times within clusters. For both models applies that if § approaches 0,
there is no dependence between the survival times of the subjects in a cluster
and if 6 is greater than 0, the survival times are positively correlated. As
mentioned, the bivariate Clayton-Oakes copula may be extended to present a
negative dependence, in this case the survival times are negatively correlated if
f < 0. For negatively correlated survival times, there is no frailty interpretation

[23]-

Just like any of the other model parameters, the significance of the parameter 6
can be evaluated using a Wald or a likelihood ratio test. According to Therneau
and Gramsch (2000) and Therneau et al. (2003), the likelihood ratio test is
preferable.

2.4.0.4 Kendall’s T

The degree of dependence of bivariate survival data may be evaluated using

Kendall’s 7 [10, 52], which gives a generalised measure of the correlation between
the survival times. For the shared frailty model, Kendall’s 7 is given as
0
=4 _ 0 >0 (2.45)

(O +2)°
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As seen, Kendall’s 7 will be between 0 and 1. For the extended bivariate
Clayton-Oakes copula, Kendall’s 7 is given by the same formula but defined
on a wider interval

b

= : 7 6. € [-1,00) \ {0} (2.46)

Here, Kendall’s 7 will be between —1 and 1.




CHAPTER 3

Materials & Methods

The purpose of this study is to investigate and compare different statistical
methods for analysis of clustered survival data by means of data from a large
Danish register-based family study of the psychological late effects of exposure
to childhood cancer. First, however, the statistical methods are explored using
three smaller data sets, which are available through the statistical software R
[48]. In this chapter, the three small data sets as well as the data from the
register-based family study are presented. In addition, it will be described how
the statistical analyses have been conducted.

3.1 Data

The three small data sets, which are available through different R packages are
described in the following section, after which the data from the register-based
family study of the late effects of childhood cancer is presented.
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3.1.1 Data sets available through R

The three data sets are

e The diabetic retinopathy data (timereg package)
e The kidney catheter data (survival package)

e The NCCTG lung cancer data (survival package)

3.1.1.1 Diabetic retinopathy data

The diabetic retinopathy data was collected in order to test the effect of laser
treatment for delaying blindness in patients with diabetic retinopathy, which
is a complication associated with diabetes. The data set available through R
consists of the subset of 197 patients defined in Huster et al. (1989). The 197
patients all had laser treatment on a randomly selected eye, while the other eye
was observed without treatment. The patients were then followed over several
years for observation of blindness. The clusters in this data set are the 197
patients. In addition to the treatment variable, the variable defining juvenile
versus adult onset of the disease (younger or older than 20, respectively) is
included. The diabetic retinopathy data have previously been analysed, i.a.,
by Huster et al. (1989), Lee et al. (1992), Therneau and Grambsch (2000) and
Martinussen and Scheike (2006).

The cumulative incidence of blindness for the two treatment groups and for
patients with juvenile and adult onset, respectively, of the disease is shown in
Figure 3.1. The overall incidence rates are listed in Table 3.1. Laser treatment
seems to have a positive effect with regard to delaying blindness, which is most
pronounced in patients with adult onset of the disease.

Table 3.1: Incidence rates by treatment group and disease onset (diabetic
retinopathy data).

Person-years No. Events Rate per 10 person-years

No treatment, juvenile onset 316.96 114 51 1.61
No treatment, adult onset 213.61 83 50 2.34
Treatment, juvenile onset 346.85 114 36 1.04

Treatment, adult onset 291.79 83 18 0.62
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Figure 3.1: Cumulative incidence of blindness for treatment group and disease
onset (diabetic retinopathy data).

3.1.1.2 Kidney catheter data

One of the most common complications in kidney patients using portable dialysis
equipment is recurrent infection of the catheter, which is inserted in order to
lead the blood from the patient to the dialysis equipment. When an infection
occurs, the catheter is removed, the infection cleared, and the catheter reinserted
[37]. The kidney data consists of time to recurrence of infection in 38 kidney
patients. The variables included in the analysis are gender and age (continuous).
The recurrence time is censored, if the catheter is removed for reasons other than
infection. Two recurrence times (some of which may be censored) are measured
for each patient, thus the clusters are the 38 patients. The kidney catheter
data have previously been analysed, i.a., by McGilchrist and Aisbett (1991),
Hougaard (2000), and Therneau and Grambsch (2000).

The cumulative incidence of recurrent infection for males and females is shown
in Figure 3.2. The overall incidence rates are listed in Table 3.2. In addition, the
overall incidence rates for defined age groups have been calculated. These are
listed in Table 3.3. It looks like there is an increased risk of recurrent infection
for males, while the effect of age is less clear.
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Figure 3.2: Cumulative incidence of recurrent infection for males and females
(kidney catheter data).

Table 3.2: Incidence rates by gender (kidney catheter data).

Person-years No. Events Rate

Male 3.25 20 18 5.54
Female 17.90 56 40  2.23

Table 3.3: Incidence rates by age group (kidney catheter data).

Person-years No. Events Rate

10-19 3.18 8 7220
20-29 0.41 4 4 9.68
30-39 4.17 10 8 1.92
40-49 6.13 20 12 1.96
50-59 5.11 24 19 3.72

60-69 2.14 10 8 3.74
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3.1.1.3 NCCTG lung cancer data

The North Central Cancer Treatment Group (NCCTG) lung cancer data con-
sists of data on 228 patients from a study of prognostic variables in advanced
lung cancer [33]. The 228 patients were enrolled at 18 different institutions,
which here represent the clusters. After enrollment in the study, patients were
followed for observation of death. The variables included in the analysis are
gender, age (continuous), and ECOG performance score estimated by the physi-
cians. The ECOG performance score is a measure of the patients well-being
ranging from 0 (good) to 5 (dead). None of the patients in this data set have
an ECOG score above 3. Patients missing information on any of the variables
have been removed, and the number of patients reduced to 226. The NCCTG
lung cancer data have previously been analysed, i.a., by Loprinzi et al. (1994)
and Therneau and Grambsch (2000).

In Figure 3.3, a bar plot visualising the number of patients enrolled at each
institution is shown. The number of patients enrolled ranges from 2 to 36.
The median number of patients is 10.5 and the interquartile range is 11.8. In
Figure 3.4, the cumulative incidence of death for males and female is shown.
The overall incidence rates for male and females are listed in Table 3.4. In
addition, the overall incidence rates for defined age groups and the ECOG score
have been calculated. These are listed in Table 3.5 and Table 3.6. It looks like
there is an increased risk of death for males, and not surprisingly that the risk
of death increases with age and ECOG score.

Table 3.4: Incidence rates by gender (NCCTG lung cancer data).

Person-years No. Events Rate per 10 person-years

Male 105.92 136 110 10.39
Female 83.52 90 53 6.35

Table 3.5: Incidence rates by age group (NCCTG lung cancer data).

Person-years No. Events Rate per 10 person-years

30-39 1.30 2 0 0.00
40-49 16.33 18 11 6.73
50-59 56.91 63 45 7.91
60-69 72.63 87 61 8.40
70-79 40.39 52 42 10.40

80-89 1.88 4 4 21.24
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Figure 3.3: Number of patients at each enrollment institution (NCCTG lung
cancer data).
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Figure 3.4: Cumulative incidence of death for males and females (NCCTG
lung cancer data).
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Table 3.6: Incidence rates by ECOG score (NCCTG lung cancer data).

ECOG score Person-years No. Events Rate per 10 person-years

0 60.69 63 37 6.10
1 97.28 113 82 8.43
2 31.14 49 43 13.81
3 0.32 1 1 30.95

3.1.2 Childhood cancer data

The childhood cancer data analysed in this study consists of data from a Danish
register-based family study of psychological late effects in families exposed to
childhood cancer. Research suggests that childhood cancer survivors, particular
those with central nervous system tumors, have poor psychological health [21,

, 60], and also siblings may suffer from from psychological distress [1]. The
original cohort from the family study will be briefly described in the following
section after which the analysed subset is presented.

3.1.2.1 Description of original cohort

The original cohort is based on 8561 children diagnosed with cancer in the pe-
riod January 1 1975 to December 31 2009. The children were aged between
0 and 19 at diagnosis and identified through the Danish Cancer Register [13].
By means of the Danish Civil Registration System [44, 45], each of the children
were matched on gender and age to twenty children without cancer (at date of
diagnosis). In the following, the children with cancer and their match are named
exposed and unexposed probands, respectively. The probands’ (both exposed
and unexposed) full siblings and half siblings born no later than December 31
2009 (end of study period) were identified based on the personal identification
number of their parents through the Danish Civil Registration System and in-
cluded in the cohort. The parents were also included in the cohort.

The Danish Civil Registration System was used to obtain date of death, dis-
appearance and emigration (if any), and by linking the cohort to the Danish
Psychiatric Central Research Register [10] admissions due to mental disorder
were identified. The incidence admission was defined as any admission due to
a mental disorder between inclusion date and December 31 2009 (end of study
period). The inclusion date was date of diagnosis of the exposed proband. How-
ever, for unborn siblings (at date of diagnosis) inclusion date was date of birth.
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Both individual and family-based left truncation were applied. Exposed and
unexposed individuals admitted due to a mental disorder five years prior to
the inclusion date were excluded from the study and their families marked.
Furthermore, families where a family member (aged 0 to 19) had been diagnosed
with cancer up to five years prior to the inclusion date, were excluded from the
study. If the family in question was an exposed family, the twenty matched
unexposed families were also excluded. The cohort was right censored in the
event of death, disappearance, emigration or December 31 2009, whichever came
first. In addition, unexposed families were right censored in the event of cancer
in a family member aged 0 to 19 and hereafter entered as an exposed family.

3.1.2.2 Subset

The childhood cancer data analysed in this study consists of exposed and un-
exposed probands and their full brothers and sisters. The original twenty un-
exposed probands per exposed proband have been reduced to 5, which have
been chosen so that the family size of the exposed and unexposed probands
match. The family size is equal to the total number of identifiable family mem-
bers; parents, full siblings and half siblings. Families with no full siblings have
been excluded. The data consists of 56252 individuals in 24066 families. In
Table 3.7, the distribution of individuals according to exposure group and rela-
tion is shown. In Table 3.8 and Table 3.9, the distribution of number of family
members (sum of proband and full sibling(s)) and the distribution of number of
events are shown. There were 3272 events.

Table 3.7: Distribution of individuals according to relation (childhood cancer
data).

Probands Siblings  Total

Exposed 3987 5369 9356
Unexposed 20079 26817 46896

Table 3.8: Distribution of families according to number of family members
(childhood cancer data).

2 3 4 5

Exposed families 2662 1271 51 3
Unexposed families 13620 6184 271 4

In the statistical analysis, age is used as underlying time scale, and three vari-
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Table 3.9: Distribution of families according to number of events (childhood
cancer data).

0 1 2 3

Exposed families 3485 469 32 1
Unexposed families 17614 2208 243 14

ables are included. The three variables are exposure group, relation (proband
or sibling), and previous admission in family.

The cumulative incidence of admission for exposed and unexposed probands
and siblings and for previous admission in family are shown in Figure 3.5 and
Figure 3.6, respectively. The overall incidence rates are listed in Table 3.10 and
Table 3.11. It looks like there is an increased risk of admission for exposed
probands and for individuals with previous admission in the family.

— Exposed proband

0.15- -~~~ Exposed sibling

—— Unexposed proband
- Unexposed sibling

0.10

0.05

Cumulative incidence of admission

T T T T T T I
0 5 10 15 20 25 30 35

Time (years)

Figure 3.5: Cumulative incidence of admission for exposed and unexposed
probands and siblings (childhood cancer data).
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0.20 | —— No previous admission in family
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Figure 3.6: Cumulative incidence of admission for variable previous admission
in family (childhood cancer data).

Table 3.10: Incidence rates by exposure group (childhood cancer data).

Person-years No. Events Rate per 10® person-years
Exposed proband 43236 3987 220 5.09
Exposed sibling 86513 5369 316 3.65
Unexposed proband 322557 20079 1205 3.74
Unexposed sibling 432550 26817 1531 3.54

Table 3.11: Incidence rates by previous admission in family (childhood cancer
data).

Person-years No. Events Rate per 10® person-years

Previous admission 23494 1800 169 7.19
No previous admission 861362 54452 3103 3.60
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3.2 Statistical analysis

The statistical analyses in this study have all been conducted using the sta-
tistical software R version 2.14.1 [48] by means of the two packages survival
and timereg. As mentioned, only semi-parametric models based on the Cox
proportional hazards model have been fitted to the data.

The function coxph in the package survival has been applied to fit the unad-
justed Cox proportional hazards model, the fixed effects model, the stratified
model, and the shared frailty model. The shared frailty model are fitted using
the penalised partial likelihood approach [53].

The proportional hazard assumption has been tested by means of the Schoenfeld
residuals using the function cox.zph also from the package survival. The
linearity assumption has been tested by means of restricted cubic splines using
the function cph in the rms package.

The function cox.aalen in the package timereg has been applied to fit the
marginal Cox proportional hazards model, which is the first step of the esti-
mation of the copula model. The function two.stage also from the package
timereg has been applied to the second and final step of the estimation of the
copula model.

With regard to the significance of the parameters 6¢ and 6. from the shared
frailty model and the copula model, respectively, they are evaluated using a
Wald test. The reason for this is, that it has not been possible to get an estimate
of the log likelihood from the copula model using the timereg package.

The R code can be found in Appendix A.
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CHAPTER 4

Results

In this chapter, the results of the statistical analyses are presented. First, the
results from the analyses of the three data sets available through the statistical
software R will be presented. Hereafter, the results from the analyses of the data
from the Danish register-based family study of the psychological late effects of
exposure to childhood cancer are presented.

4.1 Data sets available through R

4.1.1 Diabetic retinopathy data

The survival models that have been fitted to the diabetic retinopathy data are
the Cox proportional hazards model unadjusted for any patient effect, the Cox
proportional hazards model stratified by patient, the shared gamma frailty Cox
proportional hazards model, and the Clayton-Oakes copula with the marginal
Cox proportional hazards model as margin.

It was not possible to fit a Cox proportional hazards model with patient as a fixed
effect, as several patients did not experience blindness on either of their eyes.
Thus the fixed effects model did not converge. Furthermore, the variable disease
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onset in the diabetic retinopathy data was nested within patient, and thus it was
not possible to estimate the effect of this variable using the Cox proportional
hazards model stratified by patient. Therefore, in the Cox proportional hazards
model stratified by patient, the only variable included is treatment.

4.1.1.1 Unadjusted Cox proportional hazards model

The Cox proportional hazard model unadjusted for any patient effect was first
fitted to the diabetic retinopathy data. The estimated covariate effects, their
standard errors (se), the corresponding hazard ratios (HR) and 95% confidence
intervals (CI) are shown in Table 4.1, where the term interaction covers the
effect modification of adult onset of the disease on treatment. As seen, the
effect of laser treatment and onset of disease are slightly insignificant based
on a 5% significance level, while the interaction between treatment and adult
onset of the disease is significant. The hazard ratios of the treatment groups
with juvenile onset and adult onset, respectively, are shown in Table 4.2 and
visualised in Figure 4.1. Generally seen, laser treatment reduces the hazard rate
of blindness. The effect is most pronounced in patients with adult onset of the
disease, where the hazard rate is reduced by approximately 60%.

Table 4.1: Estimates from unadjusted Cox proportional hazards model (dia-
betic retinopathy data).

B se (B) HR (95% CI) p-value
No treatment 1.000
Treatment -0.425 0.218 0.654 (0.427—14002) 0.051
Juvenile onset 1.000
Adult onset 0.341  0.199  1.407 (0.952-2.079) 0.087
Interaction -0.846  0.351  0.429 (0.216-0.853) 0.016

Table 4.2: Hazard ratios from unadjusted Cox proportional hazards model
(diabetic retinopathy data).

HR 95% CI

No treatment, juvenile onset  1.000

No treatment, adult onset 1.407  0.952-2.079
Treatment, juvenile onset 0.654 0.427-1.002
Treatment, adult onset 0.395 0.230-0.676
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Figure 4.1: Visualisation of results from Cox proportional hazards model un-
adjusted for any patient effect (diabetic retinopathy data).

The proportional hazards assumption has been tested by means of the Schoen-
feld residuals. There is no evidence against proportionality.

4.1.1.2 Stratified Cox proportional hazards model

Then, the Cox proportional hazard model stratified by patient was fitted to
the data. The only variable included in the model was treatment group. The
estimated covariate effects, their standard errors (se), the corresponding hazard
ratios (HR) and 95% confidence intervals (CI) are shown in Table 4.3. The effect
of laser treatment is highly significant (p-value 1.3-107%) and reduces the hazard
rate of blindness by approximately 64%. As the unadjusted Cox proprotional
hazards model shows, that the interaction between laser treatment and disease
onset is significant, stratification by patient is not a satisfactory solution, when
disease onset is nested within patient.

Table 4.3: Estimates from Cox proportional hazards model stratified by patient
(diabetic retinopathy data).

B se(B) HR (95% CI) p-value

No treatment 1.000
Treatment -1.030  0.213  0.357 (0.235-0.542) 1.3-107¢
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4.1.1.3 Shared gamma frailty Cox proportional hazards model

Then, the Cox proportional hazards model with shared gamma-distributed frail-
ties was fitted to the data. The estimated covariate effects, their standard errors
(se), the corresponding hazard ratios (HR) and 95% confidence intervals (CI) are
shown in Table 4.4. As in the unadjusted model, the interaction between treat-
ment and adult onset of the disease is significant (p-value 6.4-1073) and reduces
the hazard rate of blindness considerably. The hazard ratios of the treatment
groups with juvenile onset and adult onset, respectively, are shown in Table 4.5.
The estimated effects are slightly different than the estimates from the Cox pro-
portional hazards model unadjusted for any patient effect. However, the effects
estimated in the shared gamma frailty Cox proportional hazards model are to
be interpreted on patient level.

The estimate of the variance of the frailties 6 is 0.93 corresponding to Kendall’s 7¢
equal to 0.32, thus there is on average a positive correlation of 0.32 between the
time to blindness for the eyes of a patient. The random effect is significant
with a p-value of 9.8-1073. The estimated individual frailties are visualised in
a histogram in Figure 4.2.

Table 4.4: Estimates from shared gamma frailty Cox proportional hazards
model (diabetic retinopathy data).

B se(B) HR (95% CI) p-value
No treatment 1.000
Treatment -0.505  0.225  0.603 (0.388-0.938) 0.025
Juvenile onset 1.000
Adult onset 0.397 0.259  1.488 (0.895-2.472) 0.130
Interaction -0.986 0.362 0.373 (0.184-0.758) 6.4-1073

Table 4.5: Hazard ratios from shared gamma frailty Cox proportional hazards
model (diabetic retinopathy data).

HR 95% CI

No treatment, juvenile onset  1.000

No treatment, adult onset 1.488 0.895-2.472
Treatment, juvenile onset 0.603  0.388-0.938
Treatment, adult onset 0.335 0.180-0.623
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Figure 4.2: Histogram of estimated frailties (diabetic retinopathy data).

4.1.1.4 Clayton-Oakes copula model

Finally, the Clayton-Oakes copula with the marginal Cox proportional hazards
model as margin was fitted to the data. The estimated covariate effects, their
standard errors (se), the corresponding hazard ratios (HR) and 95% confidence
intervals (CI) are shown in Table 4.6. Again, the interaction between treatment
and adult onset of disease is significant and reduces the hazard rate of blindness
considerably. The hazard ratios of the treatment groups with juvenile onset
and adult onset, respectively, are shown in Table 4.7. The estimated effects are
identical to the estimates from the Cox proportional hazards model unadjusted
for any patient effect. This is not surprising, since the effects in the marginal
model are estimated using the IWM approach. The robust standard errors of
the estimates are smaller, especially for the variable laser treament and the in-
teraction term. This makes perfectly good sense, as both levels of the treatment
variable are tested on each patient, i.e. the variable treatment is balanced within
patients [52].

The association parameter 6. estimated by the copula model is 1.07 correspond-
ing to Kendall’s 7. 0.35, thus there is on average a positive correlation of 0.35
between the time to blindness for the eyes of a patient. The association parame-
ter is significant with a p-value of 3.6-1073. Note, that the estimated association
parameter 6. is very similar to the estimated variance of the frailties 6 in the
shared frailty model.
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Table 4.6: Estimates from margin of Clayton-Oakes copula model (diabetic

retinopathy data).

B se (B) HR (95% CI) p-value
No treatment 1.000
Treatment -0.425  0.185  0.654 (0.455-0.940) 0.022
Juvenile onset 1.000
Adult onset 0.341  0.196  1.407 (0.958-2.064) 0.081
Interaction -0.846  0.304  0.429 (0.237-0.778)  5.3-1073

Table 4.7: Hazard ratios from margin of Clayton-Oakes copula model (diabetic

retinopathy data).

HR

95% CI

No treatment, juvenile onset  1.000

No treatment, adult onset
Treatment, juvenile onset
Treatment, adult onset

1.407
0.654
0.395

0.958-2.064
0.455-0.940
0.242-0.644

4.1.1.5 Summary of results

The estimated covariate effects, standard errors, hazard ratios and p-values from
the survival models fitted to the diabetic retinopathy data are summarised in
Table 4.8. The stratified model is omitted, since it is not comparable to the

other fitted models.
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4.1.2 Kidney catheter data

The survival models that have been fitted to the kidney catheter data are the
Cox proportional hazards model unadjusted for any patient effect, the shared
gamma frailty Cox proportional hazards model, and the Clayton-Oakes copula
with the marginal Cox proportional hazards model as margin.

It was not possible to fit a Cox proportional hazards model with patient as a
fixed effect to the kidney data. Several patients did not experience recurrence
of infection, and thus the fixed effects model did not converge. Furthermore, it
was not possible to fit a Cox proportional hazards model stratified by patient
to the kidney data. The variable gender was both nested within patients and
the variable age only varied for 11 out of the 38 patients and only by one year.

4.1.2.1 Unadjusted Cox proportional hazards model

The Cox proportional hazard model unadjusted for any patient effect was first
fitted to the kidney catheter data. There were no significant interaction be-
tween the variable gender and the variable age (tested by means of likelihood
ratio tests). The estimated covariate effects, their standard errors (se), the cor-
responding hazard ratios (HR) and 95% confidence intervals (CI) are shown in
Table 4.9. As seen, the effect of gender is significant based on a 5% significance
level (p-value 5.5:1072). The hazard rate of females is approximately 70% lower
than the hazard rate of males. The effect of age is insignificant.

Table 4.9: Estimates from unadjusted Cox proportional hazards model (kidney
catheter data).

B se (B) HR (95% CI) p-value
Male 1.000
Female 0.829  0.299  0.436 (0.243-0.784) 551073
Age (per 10 years)  0.020  0.092 1.021 (0.851-1.223) 0.826

The proportional hazards assumption have been tested by means of the Schoen-
feld residuals. With regard to the variable gender there is evidence against
proportionality. However, this is because of an outlier, which will be elaborated
in a moment. The linearity assumption of the variable age has been evaluated
by means of a restricted cubic spline. In Figure 4.3, the relationship of age and
the log relative hazard is shown. It looks okay.
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Figure 4.3: Relationship between age and incidence recurrent infection (kidney
catheter data).

4.1.2.2 Shared gamma frailty Cox proportional hazards model

Then, the Cox proportional hazards model with shared gamma-distributed frail-
ties was fitted to the data. The estimated covariate effects, their standard errors
(se), the corresponding hazard ratios (HR) and 95% confidence intervals (CI)
are shown in Table 4.10. In this model, the effect of gender is significant (p-
value 5.7-107%). The event rate of females is approximately 80% lower than the
hazard rate of males. The estimated effects are different than the estimates from
the Cox proportional hazards model unadjusted for any patient effect, especially
the effect of gender. However, the effects estimated in the shared gamma frailty
Cox proportional hazards model are to be interpreted on patient level.

The estimate of the variance of the frailties 6 is 0.41 corresponding to Kendall’s 7¢
equal to 0.17, thus there is on average a positive correlation of 0.17 between the
infection recurrence times. The random effect is significant with a p-value of
0.04. The estimated individual frailties are visualised in a histogram in Fig-
ure 4.4.
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Table 4.10: Estimates from shared gamma frailty Cox proportional hazards
model (kidney catheter data).

B se (/3) HR (95% CI) p-value
Male 1.000
Female -1.587 0.461  0.204 (0.083-0.504) 5.7-1074
Age (per 10 years)  0.052 0.119  1.054 (0.835-1.331) 0.660
15
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Figure 4.4: Histogram of estimated frailties (kidney catheter data).
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4.1.2.3 Clayton-Oakes copula model

Finally, the Clayton-Oakes copula with the marginal Cox proportional haz-
ards model as margin was fitted to the data. The estimated covariate effects,
their standard errors (se), the corresponding hazard ratios (HR) and 95% con-
fidence intervals (CI) are shown in Table 4.11. In this model, the effect of both
gender and age are insignificant (p-values 0.082 and 0.832, respectively). The
association parameter 6. estimated by copula model is 0.20 corresponding to
Kendall’s 7. 0.09, thus there is on average a small positive correlation of 0.09
between the infection recurrence times. The association parameter is on the
border of significance with a p-value of 0.056.

Not surprisingly, the estimated effects are approximately the same as the es-
timates from the Cox proportional hazards model unadjusted for any patient
effect. The small discrepancies may be explained by the fact that the models
are fitted using functions from two different R packages. The estimated robust
standard error is smaller for the effect of age and larger for the effect of gender.

As emphasised by Therneau and Grambsch (2000), there is an outlier in the
kidney catheter data. The patient with identification number 21, a 46-year-old
male, had recurrence of infection at 152 and 562 days. As there are only 10 men
in the study and their median time to recurrence of infection is 19.5 days, the
male outlier most likely influences the effect and standard error of gender and
the degree of dependence observed in the data in the model unadjusted for any
patient effect and in the shared frailty model, respectively. However, because
the variance of the estimates in the marginal Cox proportional hazards model
are calculated using an approximation to the grouped jackknife technique, the
influence of the outlier is reduced in Clayton-Oakes copula with the marginal
Cox proportional hazards model as margins. Note, that the estimated associ-
ation parameter 6. is much smaller than the estimated variance of the frailties
0 in the shared frailty model and insignificant.

Table 4.11: Estimates from margin of Clayton-Oakes copula model (kidney
catheter data).

B se(B) HR (95% CI) p-value
Male 1.000
Female -0.843  0.485  0.430 (0.166-1.114) 0.082

Age (per 10 years)  0.017  0.082  1.018 (0.867-1.195) 0.832
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The analyses presented here have been repeated without the patient with iden-
tification number 21. The parameter estimates from these analyses are sum-
marised in Table B.1 on page 86 in Appendix B. Without this patient, neither
the variance of frailties or the association parameter are significant. However,
gender is significant in all models. Thus, if the patient with identification num-
ber 21 is included in the analysis, the frailty in the shared frailty Cox propor-
tional hazards model will account for the specific characteristics of this patients,
while the Clayton-Oakes copula model with marginal Cox proportional hazards
model as margin will compensate with the association parameter and by in-
creasing the robust standard errors.

4.1.2.4 Summary of results

The estimated covariate effects, standard errors, hazard ratios and p-values
from the survival models fitted to the kidney catheter data are summarised in
Table 4.12.
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4.1.3 NCCTG lung cancer data

The survival models that have been fitted to the NCCTG lung cancer data
are the Cox proportional hazards model unadjusted for any institution effect,
the Cox proportional hazards model with institution as a fixed effect, the Cox
proportional hazards model stratified by institution, the shared gamma frailty
Cox proportional hazards model, and the Clayton-Oakes copula model with the
marginal Cox proportional hazards model as margin.

4.1.3.1 Unadjusted Cox proportional hazards model

The Cox proportional hazard model unadjusted for any patient effect was first
fitted to the NCCTG lung cancer data. There were no significant interaction
between any of the included variables (tested by means of likelihood ratio tests).
The estimated covariate effects, their standard errors (se), the corresponding
hazard ratios (HR) and 95% confidence intervals (CI) are shown in Table 4.13.
As seen, the effect of gender and ECOG score are significant (p-values 9.3-1074
and 4.0-107°, respectively). The hazard rate of females are 43% lower than the
hazard rate of males, while the hazard rate increases with increasing ECOG
score. The effect of age is insignificant.

Table 4.13: Estimates from unadjusted Cox proprotional hazards model (NC-
CTG lung cancer data).

B se (B) HR (95% CI) p-value
Male 1.000
Female 0.557  0.168 0.573 (0.412-0.797) 9.3-10~*
Age (per 5 years) 0.056  0.046  1.058 (0.966-1.158) 0.225
ECOG score 0.469 0.114 1.599 (1.278-2.000) 4.0-107°

The proportional hazards assumption has been tested by means of the Schoen-
feld residuals. There is no evidence against proportionality. The linearity as-
sumption has been tested by restricted cubic splines. In Figure 4.5 and Fig-
ure 4.6, the relationship between the log relative hazard and age and ECOG
score, respectively, are shown. The relationships are linear.
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Figure 4.5: Relationship between age and incidence death (NCCTG lung can-

cer data).
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Figure 4.6: Relationship between ECOG score and incidence death (NCCTG

lung cancer data).
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4.1.3.2 Fixed effects Cox proportional hazards model

Then, the Cox proportional hazards model with enrollment institution as a fixed
effect was fitted to the data. The estimated covariate effects, their standard
errors (se), the corresponding hazard ratios (HR) and 95% confidence intervals
(CI) are shown in Table 4.14. As seen, the effects of gender and ECOG score
are significant (p-values 1.0-1072 and 3.4-107%, respectively), while the effects
of age and institution are not. Compared to the unadjusted Cox proportional
hazards model, the estimates change a bit, when institution is included as a
fixed effect. The overall significance of the institution variable has been tested
in a likelihood ratio test and found to be insignificant (p-value 0.29). Some of
the standard errors of the institution effects are quite large, since only a few
patients are enrolled at these institutions.

Table 4.14: Estimates from Cox proportional model with institution as fixed
effect (NCCTG lung cancer data).

Institution 17 -0.349  0.740  0.705 (0.165-3.006 0.637
Institution 18 0.472 1.030 1.603 (0.213-12.071) 0.647

B se (B) HR (95% CI) p-value
Male 1.000
Female -0.571  0.174  0.565 (0.402-0.795) 1.0-1073
Age (per 5 years) 0.049  0.049 1.051 (0.955-1.156) 0.312
ECOG score 0.604 0.130 1.829 (1.418-2.359)  3.4.10°°
Institution 1 1.000
Institution 2 0.530 0.546  1.699 (0.583-4.951) 0.331
Institution 3 -0.317  0.325  0.728 (0.386-1.376) 0.329
Institution 4 -0.464  0.539  0.629 (0.218-1.809) 0.390
Institution 5 0.034  0.456 1.034 (0.423—2.526) 0.941
Institution 6 0.029 0.348  1.030 (0.520-2.037) 0.933
Institution 7 -0.612  0.462  0.542 (0.219-1.342) 0.186
Institution 8 0.495  0.543  1.640 (0.566-4.754) 0.362
Institution 9 -0.547  0.360  0.578 (0.286-1.172) 0.128
Institution 10 -0.119  0.308  0.887 (0.485-1.623) 0.698
Institution 11 -0.522  0.351  0.593 (0.298-1.180) 0.137
Institution 12 -0.508  0.544  0.602 (0.207-1.746) 0.350
Institution 13 -0.718  0.362  0.488 (0.240-0.992) 0.047
Institution 14 0.334  0.376  1.397 (0.669-2.917) 0.374
Institution 15 -0.790  0.347  0.454 (0.230-0.896) 0.023
Institution 16 -0.940  0.740  0.391 (0.092-1.665) 0.204

( )
(
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4.1.3.3 Stratified Cox proportional hazards model

Then, the Cox proportional hazards model stratified by enrollment institution
was fitted to the data. The estimated covariate effects, their standard errors
(se), the corresponding hazard ratios (HR) and 95% confidence intervals (CI)
are shown in Table 4.15. As before, the effect of gender and ECOG score are
significant (p-values 2.6-1073 and 1.5-1075, respectively). The hazard rate of
females is approximately 42% lower than the hazard rate of males, while the
hazard rate increases 82% with increasing ECOG score. The effect of age is
insignificant. The estimates are a bit different from the estimates from the
unadjusted Cox proportional hazards model.

Table 4.15: Estimates from stratified Cox proportional hazards model (NC-
CTG lung cancer data).

B se (B) HR (95% CI) p-value
Male 1.000
Female -0.547  0.182  0.578 (0.405-0.826) 2.6-1073
Age (per 5 years)  0.048 0.051  1.049 (0.948-1.160) 0.353
ECOG score 0.597 0.138  1.817 (1.387-2.381) 1.5-107°

4.1.3.4 Shared gamma frailty Cox proportional hazards model

Then, the Cox proportional hazards model with shared gamma-distributed frail-
ties was fitted to the data. The estimated covariate effects, their standard errors
(se), the corresponding hazard ratios (HR) and 95% confidence intervals (CI)
are shown in Table 4.16. The estimated covariate effects and their standard er-
ror are practically identical to the estimates from the Cox proportional hazards
model unadjusted for any patient effect. The explanation is straightforward; the
estimate of the variance of the frailties 6 is very small 8.4-1072 and insignificant
(p-value 0.27). Thus, there is no random effect of patient and the shared frailty
model is reduced to the unadjusted Cox proportional hazards model. The esti-
mated individual frailties are visualised in a histogram in Figure 4.7. As seen,
they are distributed closely around 1.
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Table 4.16: Estimates from shared gamma frailty Cox proportional hazards
model (NCCTG lung cancer data).

B se (B) HR (95% CI) p-value
Male 1.000
Female 20557 0.168  0.573 (0.412-0.797) 9.4-10~*
Age (per 5 years)  0.056 0.046  1.058 (0.965-1.159) 0.225
ECOG score 0.481 0.116 1.618 (1.290-2.029) 3.1-107°
15
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Figure 4.7: Histogram of estimated frailties (NCCTG lung cancer data).
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4.1.3.5 Clayton-Oakes copula model

Finally, the Clayton-Oakes copula with the marginal Cox proportional hazards
model as margin was fitted to the data. The estimated covariate effects, their
standard errors (se), the corresponding hazard ratios (HR) and 95% confidence
intervals (CI) are shown in Table 4.17. Again, the effect of gender and ECOG
score are significant (p-values 7.1-10~7 and 6.4-10~°, respectively), while the
effect of age is insignificant. The hazard rate of females are 43% lower than
the hazard rate of males, while the hazard rate increases with increasing ECOG
score. The effect of age is insignificant. Compared to the estimates from the
unadjusted Cox proportional hazards model, the robust standard errors of the
estimates are smaller, except for the ECOG score.

The association parameter 6. estimated by copula model is very small 3.7-1073
and significant (p-value <2-10716. Tt is approximately half as big as the esti-
mated variance of the frailties in the shared frailty model.

Table 4.17: Estimates from margin of Clayton-Oakes copula model (NCCTG
lung cancer data).

B se (B) HR (95% CI) p-value
Male 1.000
Female -0.556  0.112  0.574 (0.460-0.714) 7.1.10~7
Age (per 5 years)  0.056  0.035 1.058 (0.988-1.132)  0.105
ECOG score 0.469 0.117  1.598 (1.270-2.012) 6.4-107°

4.1.3.6 Summary of results

The estimated covariate effects, standard errors, hazard ratios and p-values from
the survival models fitted to the NCCTG lung cancer data are summarised in
Table 4.18.
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Table 4.18: Summary of results (NCCTG lung cancer data).

m se Qwv HR p-value  Additional parameters

Unadjusted model Female -0.557 0.168 0.573 9.3-107*
Age (per 5 years)  0.056 0.046  1.058 0.225
ECOG score 0.469 0.114 1599 4.0-107°

Fixed effects model Female -0.571 0.174 0.565 1.0-1073
Age (per 5 years)  0.049 0.049 1.051 0.312
ECOG score 0.604 0.130 1.829 3.4-107°
Institution 2 0.530 0.546  1.699 0.331
Institution 18 0.472 1.030 1.603 0.647

Stratified model Female -0.547 0.182 0.578 2.6-1073
Age (per 5 years)  0.048 0.051  1.049 0.353
ECOG score 0.597 0.138 1.817 1.5107°

Shared frailty model Female -0.557  0.168 0.573 9.4-107* 0; = 851073
Age (per 5 years)  0.056  0.046  1.058 0.225 (p-value 0.27)
ECOG score 0.481 0.116 1.618 3.1.107°

Copula model Female -0.556  0.112 0.574 7.1.1077 6. =3.710"3
Age (per 5 years)  0.056 0.035 1.058 0.105 (p-value <2-107'9)
ECOG score 0.469 0.117 1.598 6.4-107°
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4.2 Childhood cancer data

In this section, the results from the statistical analyses of the childhood cancer
data are presented. The number of families in the childhood cancer data is
24066, thus to fit Cox proportional hazards model with family as a fixed effect
is extremely computationally expensive and not possible in R. Therefore, this
model has not been fitted to the childhood cancer data. The variable of interest
in the childhood cancer data is exposure group, however all members in a family
are in the same exposure group and therefore it does not make sense to fit the
Cox proportional hazards model stratified by family to this data. This being so,
the survival models that have been fitted to this data are the Cox proportional
hazards model unadjusted for any family effect, the shared gamma frailty Cox
proportional hazards model, and the Clayton-Oakes copula with the marginal
Cox proportional hazards model as margin.

4.2.1 Unadjusted Cox proportional hazards model

The Cox proportional hazard model unadjusted for any family effect was first fit-
ted to the childhood cancer data. The estimated covariate effects, their standard
errors (se), the corresponding hazard ratios (HR) and 95% confidence intervals
(CI) are shown in Table 4.19, where the term interaction covers the interaction
between no exposure and sibling. As seen, all variables are significant. The
hazard ratios of the different groups are shown in Table 4.20 and visualised
in Figure 4.8. Siblings and unexposed individuals have a lower hazard rate of
admission due to a mental disorder than childhood cancer survivors (exposed
probands).

Table 4.19: Estimates from unadjusted Cox proportional hazards model (child-
hood cancer data).

Ié; se HR (95% CI) p-value
Exposed 1.000
Unexposed -0.335  0.073  0.715 (0.619-0.826) 4.9-107
Proband 1.000
Sibling -0.328 0.088 0.720 (0.606-0.855) 1.9-107*
Interaction 0.290 0.096 1.336 (1.107-1.612) 2.5-107°
No previous admission 1.000

Previous admission 0.664 0.079 1.942 (1.664-2.268) <2-107'6




58 Results

Table 4.20: Hazard ratios from unadjusted Cox proportional hazards model
(childhood cancer data).

HR 95% CI
Exposed proband 1.000
Exposed sibling 0.720  0.606-0.855

Unexposed proband 0.715  0.619-0.826
Unexposed sibling 0.688  0.597-0.793

The proportional hazards assumption of the included variables have been tested
by means of the Schoenfeld residuals and their correlation with time. There is
no evidence against proportionality.

12 H
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Figure 4.8: Visualisation of results from Cox proportional hazards model un-
adjusted for any patient effect (childhood cancer data).

4.2.2 Shared gamma frailty Cox proportional hazards model

Then, the Cox proportional hazards model with shared gamma-distributed frail-
ties was fitted to the data. The estimated covariate effects, their standard errors
(se), the corresponding hazard ratios (HR) and 95% confidence intervals (CI)
are shown in Table 4.21, where the term interaction covers the interaction be-
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tween no exposure and sibling. As in the unadjusted model, the interaction
term and all the variables are significant. The estimated effects are slightly dif-
ferent than the estimates from the Cox proportional hazards model unadjusted
for any family effect. The hazard ratios of the different groups are shown in Ta-
ble 4.22 and visualised in Figure 4.9. Siblings and unexposed individuals have a
lower hazard rate of admission due to a mental disorder than childhood cancer
survivors (exposed probands).

The estimate of the variance of the frailties 65 is 1.31 and significant (p-value
4.1-1073). The frailties are visualised in a histogram in Figure 4.10. In Fig-
ure 4.11, the frailties have been plotted against number of events in family. As
seen, there is a clear relationship between the frailty and the number of admis-
sions in a family. Families with multiple events are more frail than families with
no or only a single event.

Table 4.21: Estimates from shared gamma frailty Cox proportional hazards
model (childhood cancer data).

B se (/3) HR (95% CI) p-value
Exposed 1.000
Unexposed -0.349  0.078  0.706 (0.605-0.822) 8.3.1076
Proband 1.000
Sibling -0.340  0.090  0.712 (0.597-0.848) 1.5:107*
Interaction 0.302 0.098 1.353 (1.117-1.638) 2.0-107°
No previous admission 1.000
Previous admission 0.749  0.096 2.114 (1.751-2.552) 6.6-107'°

Table 4.22: Hazard ratios from shared gamma frailty Cox proportional hazards
model (childhood cancer data).

HR 95% CI
Exposed proband 1.000
Exposed sibling 0.712  0.597-0.848

Unexposed proband 0.706  0.605-0.822
Unexposed sibling 0.679  0.584-0.790
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Figure 4.9: Visualisation of results from shared gamma frailty Cox propor-
tional hazards model (childhood cancer data).
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Figure 4.10: Histogram of estimated frailties (childhood cancer data).



4.2 Childhood cancer data 61
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Figure 4.11: Estimated frailty plotted against number of events in family
(childhood cancer data).

4.2.3 Clayton-Oakes copula model

Finally, the Clayton-Oakes copula with the marginal Cox proportional hazards
model as margin was fitted to the data. The estimated covariate effects, their
standard errors (se), the corresponding hazard ratios (HR) and 95% confidence
intervals (CI) are shown in Table 4.23, where the term interaction covers the
interaction between no exposure and sibling. As seen, the estimates are approx-
imately identical to the estimates from the Cox proportional hazards model
unadjusted for any family effect, however, the estimated robust standard errors
of the covariate effects are extremely small, which cause all effects to be very
significant. This will be elaborated in the discussion. The hazard ratios of the
different groups are shown in Table 4.24 and visualised in Figure 4.12. Siblings
and unexposed individuals have a lower hazard rate of admission due to a mental
disorder than childhood cancer survivors (exposed probands).

The association parameter 6, estimated by copula model is 1.42 and significant
(p-value <2-10716). Note, that the estimated association parameter 6, is of the
same magnitude as the estimated variance of the frailties f; from the shared
gamma frailty model.
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Table 4.23: Estimates from margin of Clayton-Oakes copula model (childhood

cancer data).

B se (B) HR (95% CI) p-value
Exposed 1.000
Unexposed -0.335  0.001  0.715 (0.713-0.717) <2-107'¢
Proband 1.000
Sibling -0.328  0.013  0.720 (0.702-0.739) <2:107'6
Interaction 0.290 0.014 1.336 (1.299-1.373) <2-107'¢
No previous admission 1.000
Previous admission 0.664 0.008 1.942 (1.913-1.973) <2.1071'¢

Table 4.24: Hazard ratios from margin of Clayton-Oakes copula (childhood

cancer data).

HR 95% CI

Exposed proband
Exposed sibling
Unexposed proband
Unexposed sibling

1.000
0.720  0.702-0.739

0.715 0.713-0.717

0.688  0.680-0.696
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Figure 4.12: Visualisation of results from margin of Clayton-Oakes copula
(childhood cancer data).

4.2.4 Summary of results

The estimated covariate effects, standard errors, hazard ratios and p-values
from the survival models fitted to the childhood cancer data are summarised in
Table 4.25.
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Table 4.25: Summary of results (childhood cancer data).

B se Amv HR p-value  Additional parameters
Unadjusted model Unexposed -0.335  0.073 0.715 4.9-107°
Sibling -0.328 0.088 0.720 1.9-107*
Interaction 0.290 0.096 1.336 2.5.1073
Previous admission ~ 0.664  0.079 1.942 <2.10716
Shared frailty model Unexposed -0.349 0.078 0.706  8.3-.10°° 0 = H.NL
Sibling -0.340  0.090 0.712 1.5.107* (p-value 4.1.107%)
Interaction 0.302 0.098 1.353 2.0-1073
Previous admission ~ 0.749  0.096 2.114 6.6-107'5
Copula model Unexposed -0.335  0.001 0.715 <2.1071'¢ 6. = 1.42
Sibling -0.328 0.013 0.720 <2-1071¢ (p-value <2:10716)
Interaction 0.290 0.014 1.336 <2.107'¢
Previous admission ~ 0.664  0.008 1.942 <2.10716




CHAPTER 5

Discussion

In this chapter, the statistical methods will be discussed based on the results
presented in the previous chapter. In addition, extensions of the applied meth-
ods will be presented and suggestions for further work will be given.

5.1 Data sets available through R

As illustrated by the three data examples, natural clustering of study subjects
arises in different situations and for different kinds of data.

When cluster sizes are small relative to the number of clusters, introduction
of a fixed effect for each cluster is generally not a good solution, and in some
situations it is not even possible. With regard to the data sets available through
R, it was only possible to fit the Cox proportional hazards model with cluster as a
fixed effect to one out of the three; the NCCTG lung cancer data. In the diabetic
retinopathy data and the kidney catheter data, there were clusters without any
events, where it was not possible to estimate a cluster effect, and thus the model
did not converge. With regard to the model fitted to the NCCTG lung cancer
data, the standard errors for some of the cluster effects were very large because of
a limited number of subjects in these clusters. Although, data was adjusted for
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clustering, the introduction of a fixed cluster effect did not contribute valuable
information to the analysis but reduced the degrees of freedom.

Stratification by cluster allows each cluster to have its own unspecified baseline.
This approach is normally used to accommodate covariates that do not satisfy
the proportional hazard assumption [27]. Although this model is more flexible
than the fixed effects model [7], it is inefficient, when the covariates of interest
are nested within the clusters as was the case with both the diabetic retinopathy
data and the kidney catheter data. When the clustering is on a higher level as
in the NCTTG lung cancer data, i.e. institution versus patient, stratification by
cluster is a reasonable solution. With regard to the NCCTG lung cancer data,
the effect estimates were similar to that of the Cox proportional hazards model
unadjusted for any cluster effect, although the standard errors were somewhat
higher. This may be explained by the fact that a cluster only contributes to the
partial likelihood if an event is observed, while at least one other subject is still
at risk [7, 23].

It was possible to fit the shared frailty model to all three data sets, however the
variance of the frailty parameter was only significant in the diabetic retinopa-
thy data and in the kidney catheter data. The estimated effects were slightly
different from the estimates from the model unadjusted for any patient effect,
however, this is not surprising, as the covariate effects are conditioned on the
frailty and have to be interpreted on cluster level. For the NCCTG lung cancer
data, the variance of the frailty was approximately zero, and the shared frailty
model was practically reduced to the model unadjusted for any cluster effect.

The Clayton-Oakes copula modula with the marginal Cox proportional hazards
model as margin was like the shared frailty model fitted to all three data sets.
As the marginal Cox proportional hazards model is an IWM, the effect esti-
mates were identical to the estimates from the Cox proportional hazards model
unadjusted for any cluster effect, while the standard errors varied. With regard
to the diabetic retinopathy data, the estimated association parameter was sig-
nificant and very similar to the variance of the frailty parameter in the shared
frailty model. There was an outlier in the kidney catheter data, which affected
both the shared frailty model and the copula model. The characteristics of the
outlier was accounted for by the frailty in the shared frailty model, while the
Clayton-Oakes copula model with marginal Cox proportional hazards model
as margin compensated by means of the association parameter and the robust
standard errors, see Table 4.12 and Table B.1 on page 49 and 86, respectively.
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5.2 Childhood cancer data

Three different statistical models were applied in the analysis of the data from
the Danish register-based study of incident admission due to mental disorder in
families exposed to childhood cancer. The three models were

e The Cox proportional hazards model unadjusted for any family effect
e The shared gamma frailty Cox proportional hazards model

e The Clayton-Oakes copula with the marginal Cox proportional hazards
model as margin

All three models showed that individuals diagnosed with cancer and individuals
with a family history of admission due to mental disorders have an increased
hazard rate. Having a sister or brother diagnosed with cancer did not increase
the hazard rate.

5.2.1 Degree of dependence

The variance of the frailty parameter in the shared gamma frailty Cox propor-
tional hazards model was significant, thus the event times within a family was
positively correlated. As seen in Figure 4.11 on page 61, there was a clear rela-
tionship between the number of events and the frailty of a family; families with
multiple events were more frail than families with no or only a single event.
This is not surprising, as the individual frailties may be considered as unob-
served risk factors. The association parameter estimated in the Clayton-Oakes
copula model was also significant, and somewhat similar to the variance of the
frailty parameter.

5.2.2 Robust standard errors

The robust standard errors of the estimated covariate effects in the Clayton-
Oakes copula model with the marginal Cox proportional hazards model as mar-
gin, were extremely small, which caused all variables to be significant, see Ta-
ble 5.1. The marginal model was fitted using the function cox.aalen in the
timereg package. The marginal Cox proportional hazards model has subse-
quently been fitted using the function coxph in the survival package. The
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robust standard errors of the marginal model when fitted using this function
are larger and more reasonable, see Table 5.2.

Table 5.1: Estimates from Cox proportional hazards model fitted using the
function cox.aalen in the timereg package and with age as timescale.

B se (B) p-value

Unexposed -0.335 0.001 <2107
Sibling -0.328  0.013 <2-10716
Interaction 0.290 0.014 <2106

Previous admission 0.664 0.008 <2.1071¢

Table 5.2: Estimates from Cox proportional hazards model fitted using the
function coxph in the survival package and with age as timescale.

B se (B) p-value

Unexposed -0.335  0.073 4.7.1076
Sibling -0.328  0.086 1.4-1074
Interaction 0.290  0.094 2.0-1073

Previous admission 0.664 0.083 1.67-107%°

In the analysis of the three data examples, the standard errors estimated by
the Cox proportional hazards model unadjusted for any cluster effects and the
robust standard errors estimated by the margin of the Clayton-Oakes copula
were generally of the same magnitude. In these analyses, time on study was
used as timescale as opposed to age as in the analysis of the childhood cancer
data. Generally, it is recommended to use age as timescale, as age is a proba-
ble confounding variable in most epidemiological studies and because of delayed
entry [28, 54]. To test if it is the timescale, that causes problems, the marginal
Cox proportional hazards model have been fitted using the function cox.aalen
from the timereg package and the function coxph from the survival pack-
age, respectively, with time on study as timescale and age at entry included
as a covariate. The estimated covariate effects and robust standard errors (se)
are listed in Table 5.3 and Table 5.4. As seen, there are much more concor-
dance between the estimated robust standard errors of the two functions. It
appears, that there is a problem with the function cox.aalen, when age is used
as timescale. These discrepancies should be investigated further.
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Table 5.3: Estimates from Cox proportional hazards model fitted using the
function cox.aalen in the timereg package and with time on study as timescale.

B se (B) p-value

Unexposed -0.353  0.074  1.9-10°C
Sibling -0.369 0.087  2.3-107°
Interaction 0.299 0.095 1.6.1073
Previous admission 0.703 0.086 2.2.107 16
Age 0.003  0.003 0.284

Table 5.4: Estimates from Cox proportional hazards model fitted using the
function coxph in the survival package and with time on study as timescale.

ﬁ se (B) p-value

Unexposed -0.353  0.074  1.6-107°
Sibling -0.371 0.086 1.7-107°
Interaction 0.314  0.094 8.3.107*
Previous admission 0.709 0.084 <2.1071¢
Age 0.003 0.003 0.267

5.3 Discussion of models

In this study, the shared gamma frailty Cox proportional hazards model and
the Clayton-Oakes copula model with the marginal Cox proportional hazards
model as margin were the most applicable. It was possible to fit the two models
to all data sets, and in addition they could be applied in order to obtain a
measure of the degree of dependence within clusters (whether significant or
not). The Cox proportional hazards model with cluster as a fixed effect and
the Cox proportional hazards model stratified by cluster did not perform well
because of small cluster sizes and nested covariates, respectively. Yet, in other
situations they may be satisfactory for analysis of clustered data.

In the analysis of the diabetic retinopathy data and the childhood cancer data,
the estimated variance of the frailty parameters in the shared frailty Cox pro-
portional hazards model were similar to the estimated association parameter in
the Clayton-Oakes copula model. In the analysis of the two other data sets,
the two models were not completely consistent with regard to the estimated
degree of dependence within cluster. However, in these data sets the degree of
dependence within clusters was (seemingly) quite small. The interpretation of
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the estimated degree of dependence is easiest for bivariate survival data, where
there is a clear connection between the variance of the frailty parameters and
the association parameter, respectively, and Kendall’s 7.

An advantage of the shared gamma frailty Cox proportional hazards model is
that it has a natural random effects interpretation and that the individual frail-
ties are estimated and may be subsequently explored. The latter may provide
insight into what makes a family frail and for example lead to inclusion of ad-
ditional explanatory covariates. There is no frailty interpretation of negative
dependence [23], whereas the bivariate Clayton-Oakes copula model with the
marginal Cox proportional hazards model as margin may be extended to allow
for negative dependence.

There are great concordance between the shared gamma frailty Cox propor-
tional hazards model and the Clayton-Oakes copula with the marginal Cox
proportional hazards model as margin. The joint survival functions of the two
models have the same functional form, yet the two models are not equivalent
and do not lead to the same parameter estimates, because the marginal survival
functions are modelled differently [7, 17]. The parameter estimates obtained by
the shared frailty model are conditioned on the frailty and thus to be interpreted
on cluster level, while the parameter estimates obtained by the copula model
may be interpreted on population level. In this study, the parameter estimates
from the two models are somewhat similar and tell the same story, i.e. the prac-
tical implications of the cluster versus population level interpretation are minor.
However, this may not always be the case. If the practical implications were
large, a population level interpretation and thus the copula model would most
likely be preferred to the shared frailty model.

5.4 Checking the adequacy of the model

Checking the adequacy of the shared gamma frailty Cox proportional hazards
model and the Clayton-Oakes copula with the Cox proportional hazard model
as margin, respectively, has not been the focus of this study, but deserves some
attention and further work. As suggested by Hougaard (2000) and Andersen
(2005), the models may be checked by comparing the fit to that of a larger
model, here e.g. the power variance frailty model [23] and power variance copula,
respectively [2]. In addition, the shared frailty gamma model may be checked by
evaluating the conditional mean of the frailty variable 6 as a function of time.
Ideally, it should fluctuate around one [14, 23, 49]. For more details on checking
the model adequacy, please see Shih and Louis (1995a), Glidden (1999), and
Hougaard (2000).
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5.5 Extensions

In reality, all subjects in a cluster do not necessarily have the same degree of
dependence. For example if the cluster is a family with members on different
levels, e.g. parents and children, the degree of dependence between children
will be different from the degree of dependence between the parents, which will
again be different from the degree of dependence between a parent and a child.
Thus, the shared frailty model and the copula model are in some situations too
simple. However, several extensions of the models exists. E.g. the additive,
multiplicative and hierarchical frailty models [7, 23, 38, 46, 59] and hierarchical
copula models [1, 3]. It is evident, that these models may with advantage be
applied to the data from the register-based family study, where there are family
members on different levels, which cannot be assumed to have the same degree
of dependence.
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CHAPTER 6

Conclusion

In this study, different statistical methods for analysis of clustered survival data
have been evaluated and compared using data from a Danish register-based
family study of the psychological effects of exposure to childhood cancer. It
has been investigated how childhood cancer survivors and their full siblings are
affected later in life with regard to psychological outcomes. The methods that
have been applied to the data are the shared gamma frailty Cox proportional
hazards model and the Clayton-Oakes copula model with the marginal Cox
proportional hazards model as margin. In addition to assessing the effect of
exposure to childhood cancer whilst coping with familial clustering, the shared
frailty model and the copula model were applied in order to estimate familial
correlation of ages at onset of psychological disorders.

It was not possible to fit the Cox proportional hazards model with cluster as
a fixed effect and the Cox proportional hazards model stratified by cluster to
the data. Initially, all methods were explored using three smaller data sets, and
generally seen, these two methods did not perform well because of small cluster
sizes and nested covariates, among other things. Yet, in other situations they
may be satisfactory for analysis of clustered data.

The applied models showed, that individuals diagnosed with cancer and indi-
viduals with a family history of admissions due to mental disorders have an
increased hazard rate. Having a sister or brother diagnosed with cancer does
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not increase the hazard rate. A significant correlation of age at onset of psy-
chological disorders within families was identified by both the shared gamma
frailty Cox proportional hazards model and the Clayton-Oakes copula model.

An advantage of the shared gamma frailty Cox proportional hazards model
is that it has a natural random effects interpretation and that the individual
frailties are estimated and may be subsequently explored. The latter may pro-
vide insight into what makes a family frail and for example lead to inclusion
of additional explanatory covariates. There is no frailty interpretation of neg-
ative dependence, whereas the bivariate Clayton-Oakes copula model with the
marginal Cox proportional hazards model as margin may be extended to allow
for negative dependence. However, there are great concordance between the
shared gamma frailty Cox proportional hazards model and the Clayton-Oakes
copula with the marginal Cox proportional hazards model as margin. The main
difference between the two models, is that the estimated effects from the shared
frailty model are to be interpreted conditional on the frailty, i.e. within the same
cluster, while the estimated effects from the margin of the copula model may
be interpreted on population level. In this study, the parameter estimates from
the two models are somewhat similar and tell the same story, i.e. the practi-
cal implications of the cluster versus population level interpretation are minor.
However, this may not always be the case. If the practical implications were
large, a population level interpretation and thus the copula model would most
likely be preferred to the shared frailty model.

Suggestions for further work include checking the model adequacy and exten-
sions of both the shared frailty model and the copula model.
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R Code

A.1 R code for data examples

Diabetic retinopathy data

p
#### Diabetic retinopathy data ####

# Loading libraries
library(survival); library(timereg);

# Reading data
data(diabetes)

# New factor

diabetes$new <- ifelse(diabetes$treat==

=1, 1, 0)

diabetes$new <- ifelse(diabetes$treat==
==2, 2, diabetes$new)

diabetes$new <- ifelse(diabetes$treat==
==1, 3, diabetes$new)

diabetes$new <- ifelse(diabetes$treat==
==2, 4, diabetes$new)

diabetes$new <- as.factor(diabetes$new)

diabetes$adult

diabetes$adult

diabetes$adult

diabetes$adult
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levels (diabetes$new) <- c("No treatment, juvenile onset","No
treatment , adult onset","Treatment, juvenile onset","
Treatment , adult onset")

# Factors and levels
diabetes$treat <- as.factor(diabetes$treat)
diabetes$adult <- as.factor(diabetes$adult)

levels (diabetes$treat) <- c("No treatment","Treatment")
levels (diabetes$adult) <- c("Younger than 20","0Older than 20
u)

## Cumulative incidence ##

fitl <- survfit(Surv(diabetes$time, status==1)" diabetes$new
, data=diabetes)

plot(fitl, fun="event", mark.time=F, conf.int=F, col=1:2,
lty=c(1,1,2,2), xlab="Time (months)", ylab="Cumulative
incidence of blindness")

## Crude rates ##

dia <- pyears(Surv(time, status==1)" new, data=diabetes,
data.frame=T, scale=12) $data

dia$rate <- round(dia$event/dia$pyears, 2)

## Unadjusted Cox proportional hazards model ##
u <- coxph(Surv(time, status==1)" treat*adult, data=diabetes
)

summary (u)

# Proportional hazards test
ph <- cox.zph(u, transform="km")

ph

## Cox proportional hazards model stratified by patient ##

s <- coxph(Surv(time, status==1)" treat + strata(id), data=
diabetes)

summary (s)

## Shared frailty Cox proportionals hazard model ##

sf <- coxph(Surv(time, status==1)" treat*adult + frailty(id)
, data=diabetes)

summary (sf)

## Copula model with Cox proportional hazards model as
marginal ##

# Step 1: Marginal model




A.1 R code for data examples 77

m <- cox.aalen(Surv(time, status==1)" prop(treat)*prop(adult
) + cluster (id),
data=diabetes, clusters=diabetes$id, robust=1, max.clust=
NULL)
summary (m)

# Step 2: Estimation of association parameter

¢ <- two.stage(m, data=diabetes, theta=0.99, detail=0, Nit
=40)

summary (c)

-

Kidney catheter data

-
#### Kidney catheter data ####

# Loading libraries
library(survival); library(timereg); library(rms);

# Reading data
data(kidney)

# Factors and levels

kidney$sex <- as.factor(kidney$sex)

levels (kidney$sex) <- c("Male","Female")

kidney$agegroup <- cut(kidney$age, seq(9,69,10), c("10-19","
20-29","30-39","40-49","50-59","60-69"))

# To get effect of age per 10 years
kidney$age <- kidney$age/10

## Cumulative incidence ##

fitl <- survfit(Surv(kidney$time,status==1)" sex, data=
kidney)

plot (fitl, fun="event", mark.time=F, conf.int=F, col=1:2,
lty=1, xlab="Time (days)", ylab="Cumulative incidence of
recurrent infection")

## Incidence rates ##

kidl <- pyears(Surv(time, status==1)~ sex, data=kidney, data
.frame=T, scale=365.25)%data

kidl$rate <- round(kidl$event/kidl$pyears, 2)

kid2 <- pyears(Surv(time, status==1)" agegroup, data=kidney,
data.frame=T, scale=365.25)$data
kid2$rate <- round(kid2$event/kid2$pyears, 2)
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## Unadjusted Cox proportional hazards model ##
u <- coxph(Surv(time, status==1)" sex + age, data=kidney)
summary (u)

# Proportional hazard test
ph <- cox.zph(u, transform="km")
ph

# Checking linearity
kidney$age_n <- kidney$agex10

dd <- datadist(kidney)
options(datadist=’dd’)

up <- cph(Surv(time, status==1) ~ sex + rcs(age_n), data =
kidney, x=T, y=T)

p <- Predict(up, age_n)

plot (p)

## Shared frailty Cox proportional hazards model ##

sf <- coxph(Surv(time, status==1)" sex + age + frailty(id),
data=kidney)

summary (sf)

## Copula model with Cox proportional hazards model as
marginal ##

# Step 1: Marginal model

m <- cox.aalen(Surv(time, status==1)" prop(sex) + prop(age)
+ cluster(id), data=kidney, clusters=kidney$id, robust=1,
max.clust=NULL)

summary (m)

# Step 2: Estimation of association parameter
¢ <- two.stage(m, data=kidney, theta=0.99, detail=0, Nit=40)

summary (c)
L J

NCCTG lung cancer data

#### NCCTG lung cancer data ####

# Loading libraries
library(survival); library(timereg); library(rms);
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# Reading data
data(lung)

# Removing observations with missing values
lung <- lung[-which(is.na(lung$inst)|is.na(lung$ph.ecog)), 1]

# Factors and levels

lung$sex <- as.factor(lung$sex)

levels (lung$sex) <- c("Male","Female")

lung$inst <- as.factor(lung$inst)

levels (lung$inst) <- c(l:nlevels(lung$inst))

lung$agegroup <- cut(lung$age, seq(29,89,10), c("30-39","
40-49","50-59","60-69","70-79","80-89"))

# To get effect of age per 5 years
lung$age <- lung$age/5

## Barplot ##

counts <- table(lung$inst)

barplot (counts, xlab="Enrollment institution", ylab="Number
of patients")

## Cumulative incidence ##

fitl <- survfit(Surv(time,status==2)" sex, data=lung)

plot(fitl, fun="event",mark.time=F,conf.int=F,col=1:2,1ty=1,
xlab="Time (days)", ylab="Cumulative incidence of death")

## Incidence rates ##

lungl <- pyears(Surv(time,status==2)" sex, data=lung, data.
frame=T, scale=365.25)%data

lungl$rate <- round(lungl$event/lungl$pyears, 2)

lung2 <- pyears(Surv(time,status==2)" agegroup, data=lung,
data.frame=T, scale=365.25)$data
lung2$rate <- round(lung2$event/lung2$pyears, 2)

lung3 <- pyears(Surv(time,status==2)" as.factor(ph.ecog),
data=lung, data.frame=T, scale=365.25)$data
lung3$rate <- round(lung3$event/lung3$pyears, 2)

## Unadjusted Cox proportional hazards model ##

u <- coxph(Surv(time, status==2)" sex + age + ph.ecog, data=
lung)

summary (u)

# Proportional hazards test
ph <- cox.zph(u, transform="km")
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ph

# Checking linearity
lung$age_n <- lung$age*5

dd <- datadist (lung)
options (datadist=’dd’)

up <- cph(Surv(time, status==2) ~ sex + rcs(age_n) + rcs(ph.
ecog), data = lung, x=T, y=T)

pl <- Predict(up, age_n)

plot (p1)

p2 <- Predict(up, ph.ecog)

plot (p2)

## Cox proportional hazards model with institution as fixed
effect ##

f <- coxph(Surv(time, status==2)~ sex + age + ph.ecog + as.
factor (inst), data = lung)

summary (£f)

anova (f,u)

## Cox proportional hazard model stratified by institution
##

s <- coxph(Surv(time, status==2)" sex + age + ph.ecog +
strata(inst), data = lung)

summary (s)

## Shared frailty Cox proportional hazards model ##

sf <- coxph(Surv(time, status==2)" sex + age + ph.ecog +
frailty(inst), data=lung)

summary (sf)

## Copula model with Cox proportional hazards model as
marginal ##

lung$inst <- as.numeric(as.character (lung$inst))

# Step 1: Marginal model

m <- cox.aalen(Surv(time, status==2)" prop(sex) + prop(age)
+ prop(ph.ecog) + cluster(inst), data=lung, clusters=lung
$inst, robust=1, max.clust=NULL)

summary (m)

# Step 2: Estimation of association parameter
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c <- two.stage(m, data=lung, theta=0.99, detail=0, Nit=40,
step=0.1)
summary (c)

A.2 R code for childhood cancer data

-
#### Childhood cancer data ####

# Loading libraries
library (cmprsk); library(rms); library(reshape); library(
survival); library(timereg)

# Reading data
cohort <- read.table("cohortthesis_070212.txt", sep="\t",
header=T)

# Correcting pnr

cohort$pnr <- as.character (cohort$pnr)

cohort$pnr <- ifelse(nchar (cohort$pnr)==9, paste(0, cohort$
pnr, sep=""), cohort$pnr)

# Factors

cohort$R_ID <- as.factor(cohort$R_ID)
cohort$F_ID <- as.factor (cohort$F_ID)
cohort$kF_ID <- as.factor(cohort$kF_ID)
cohort$exposed <- as.factor(cohort$exposed)

# Dates
cohort$fdato <- as.Date(cohort$fdato, "%Y-%m-%d")
cohort$date_in <- as.Date(cohort$date_in, "%Y-%m-%d")

## Cumulative incidence ##
cohort$time <- cohort$age_out - cohort$age_in

fitl <- survfit(Surv(cohort$time,event==1)~ R_ID, data=
cohort)

fit2 <- survfit(Surv(cohort$time,event==1)" histx, data=
cohort)

plot(fitl, fun="event",mark.time=F,conf.int=F,col=c(1,1,2,2)
,1ty=c(1,2,1,2) ,xlab="Time (years)", ylab="Cumulative
incidence of admission")

plot (fit2, fun="event",mark.time=F,conf.int=F,col=1:2,1ty=1,
xlab="Time (years)", ylab="Cumulative incidence of
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admission")

## Incidence rates ##

child <- pyears(Surv(time,event==1)" R_ID, data=cohort,data.
frame=T,scale=1) $data

child$rate <- round(1000*child$event/child$pyears,2)

child2 <- pyears(Surv(time,event==1)" histx, data=cohort,
data.frame=T,scale=1)$data
child2$rate <- round (1000*child2$event/child2$pyears,2)

cohort$exposed <- relevel (cohort$exposed, ref="1")

## Unadjusted Cox proportional hazards model ##

u <- coxph(Surv(age_in, age_out, event==1) ~ exposed*rel +
hist, data=cohort)

summary (u)

# Proportional hazard test
ph <- cox.zph(u, transform="km")

ph

## Shared frailty Cox proportional hazards model ##

sf <- coxph(Surv(age_in, age_out, event==1) ~ exposed*rel +
hist + frailty(newF_ID), data = cohort)

summary (sf)

## Copula model with Cox proportional hazards model as
marginal ##

# Step 1: Marginal model

m <- cox.aalen(Surv(age_in, age_out, event==1)" prop(exposed
)*xprop(rel) + prop(hist) + cluster(newF_ID), clusters=
cohort$newF_ID, data=cohort, max.clust=NULL, robust=1)

# Step 2: Estimation of association parameter
c <- two.stage(m, data=cohort, theta=0.99, detail=0, Nit=40)
summary (c)

## Marginal model fitting using coxph ##

m_coxph <- coxph(Surv(age_in, age_out, event==1)" exposedx*
rel + hist + cluster(newF_ID), data=cohort, robust=T)

summary (m_coxph)
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## Marginal models with time on study as timescale ##

cohort$age <- as.numeric (cohort$date_in - cohort$fdato)/
365.25
cohort$time <- as.numeric(cohort$age_out - cohort$age_in)

m_time.cox.aalen <- cox.aalen(Surv(time, event==1)" prop(
exposed) *prop(rel) + prop(hist) + prop(age) + cluster(
newF_ID), clusters=cohort$newF_ID, data=cohort, max.clust
=NULL, robust=1)

summary (m_time.cox.aalen)

m_time.coxph <- coxph(Surv(time, event==1)" exposed*rel +
hist + age + cluster(newF_ID), data=cohort, robust=T)
summary (m_time.coxph)
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APPENDIX B

Additional Results

B.1 Kidney catheter data

Here, additional results for the kidney catheter data are presented. The statis-
tical analyses presented in Chapter 4 have been repeated without the patient
with identification number 21. The results if these analyses are summarised in
Table B.1.
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Table B.1: Additional results (kidney catheter data).

B se Amv HR p-value Additional parameters
Unadjusted model Female -1.666  0.332  0.189 5.1-1077
Age (per 10 years) 0.063 0.090 1.065 0.484
Shared frailty model Female -1.666  0.332  0.189 5.1-1077  6; = 51077 and Kendall’s 7p = 2.5-107"
Age (per 10 years)  0.063 0.090 1.065 0.484 (p-value 0.93)
Copula model Female -1.682 0.350 0.186 1.6-107° 6. = -0.04 and Kendall’s 7. = -0.02
Age (per 10 years)  0.059 0.089  1.061 0.502 (p-value 0.87)
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