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Abstract

The purpose of the project is to analyse the given index data with the aim
of generating scenarios that can form the basis of decisions regarding strategic
asset allocation. The data available is observations of the daily closing value
of eleven �nancial market indices; six stock market indices, four bond market
indices, and one money market index.

The distribution of the log returns is a mixture of a normal distribution and a few
extreme observations from a di�erent distribution. Traditional measures reject
any resemblance with the normal distribution due to the presence of extreme
values. Yet, more robust measures are able to �nd certain similarities.

The index data has a growing mean trend, a time dependent variance, auto-
and cross-correlation. A log return transformation is suitable for making the
mean stationary, sampling on weekly basis instead of daily eliminates most of
the autocorrelation, a regime model, where upturns and downturns are modelled
independently, handles the changing cross-correlation, and �nally ARCH-models
are employed to model the changing variance.

The approach taken is to model the principal components of the log return
series. The advantage of modelling the independent principal components is the
possibility of reducing the dimensionality based on the strong cross-correlation
exhibited, as well as easy applicability for scenario generation.

The simulated scenarios were compared to bootstrapped scenarios, and were
found to be better at reproducing the crises observed in the dataset. The abil-
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ity to reproduce realistic crises appeared to be connected with the ability to
reproduce volatility clustering correctly.

The bootstrapped scenarios were also more optimistic with median returns closer
to the average returns from the dataset, where the scenarios simulated from the
regime model were more in�uenced by the recession at the end of the data
period/the beginning of the scenarios.

Keywords: Financial Returns, Leptokurtic Distributions, Principal Compo-
nent Analysis, Conditional Heteroscedasticity, Non-linear Time Series Mod-
elling, Regime Models, Leading Indicators, Scenario Generation, Bootstrapping.



Resumé

Formålet med projektet er at analysere det givne indeksdata med henblik på
at generere scenarier, der kan danne grundlag for en beslutning om strategisk
aktivallokering. Det tilgængelige data er observationer af den daglige lukkepris
for elleve �nansielle indeks: Seks aktieindeks, �re obligationsindeks og et penge-
markedsindeks.

Fordelingen af de logaritmiske afkast er en blanding af en normalfordeling og
nogle få ekstreme observationer fra en anden fordeling. Traditionelle test afviser
enhver lighed med normalfordelingen grundet de ekstreme værdier. Mere ro-
buste teststørrelser er dog i stand til at �nde visse ligheder med normalfordelin-
gen.

Indeksdataet har en voksende middelværdi, en tidsvarierende varians, auto- og
krydskorrelation. En transformation til logaritmiske afkast gør middelværdien
stationær, ugentlig sampling i stedet for daglig eliminerer det meste af autoko-
rrelationen, en regimemodel, hvor opsving og nedgang modelleres uafhængigt,
håndterer den varierende krydskorrelation og endelig anvendes ARCH-modeller
til at modellere den skiftende varians.

Fremgangsmåden, der benyttes, er at modellere de principale komponenter for
de logaritmiske afkast. Ved at modellere de uafhængige principalkomponenter
kan dimensionen af problemet reduceres, idet den udviste stærke krydskorrela-
tion udnyttes, hvilket har yderligere den fordel, at modellen er let anvendelig til
scenariegenerering.
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Ved en sammenligning med de bootstrappede scenarier blev de simulerede sce-
narier fundet at være bedre til at genskabe de observerede kriser i datasættet.
Evnen til at genskabe realistiske kriser syntes relateret til evnen til at genskabe
volatilitetsklumpning korrekt.

De bootstrappede scenarier var også mere optimistiske med medianafkast tæt-
tere på de gennemsnitlige afkast fra dataperioden, hvor scenarierne simuleret
ud fra regimemodellen var mere præget af recessionen i slutningen af dataperi-
oden/begyndelsen af scenarierne.

Nøgleord: Finansielle afkast, leptokurtiske fordelinger, principal komponent
analyse, betinget heteroskedasticitet, ikke-lineær tidsrækkemodellering, regime-
modeller, ledende indikatorer, scenariegenerering, bootstrapping.
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Chapter 1

Introduction

In a pension fund like ATP1, the board decide on the overall risk budget based
on their expectation for the future Sharpe ratio, that is excess return per unit
volatility. The larger the expected Sharpe ratio, the more risk the board will be
willing to take on. Based on their expectations, the board also decide on certain
benchmarks such as the ratio of stocks to bonds as part of the risk management.

The portfolio managers research the investment opportunities and come up with
proposals that the chief investment o�cer then either rejects or allocates risk to.
This is where the actual asset allocation happens, even though the benchmarks
set by the board put certain constraints on the allocation.

When searching for investment opportunities, the portfolio managers apply a
top-down approach. Based on scenarios and analyses they decide on a region
and country of interest, and then the asset class. Then they narrow it down to
a sector, and then �nally a speci�c asset within that sector.

The �rst chapter gives an introduction to the concepts of asset allocation and
scenario generation, which are the framework of this thesis.

1The investment decision in ATP, Arbejdsmarkedets Tillægspension, as sketched by a port-
folio manager from ATP during a guest lecture at DTU.
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1.1 Asset Allocation

Investors, both institutional and private, decide upon investment policies or
strategies through considerations of their objectives and constraints. Objectives
being return requirements and risk tolerance. Constraints being liquidity, time
horizon, regulations, taxes, and unique needs. Portfolio policymaking is about
asset allocation, diversi�cation, risk positioning, tax positioning, and income
generation, where the most important part is the allocation of assets. Asset
allocation is the decision on how to divide the portfolio onto the di�erent major
asset categories:[2]

a. Money market instruments (usually called cash).

b. Fixed-income securities (usually called bonds).

c. Equities (usually called stocks).

d. Derivatives such as forwards, futures, options, and swaps.

e. Real estate.

f. Commodities such as oil and precious metals.

g. Foreign currency.

h. Other.

Often, investors only consider including some of the above mentioned asset
categories in their portfolio. The process of asset allocation can be divided into
four steps:

i. Specifying the asset classes to be considered for inclusion in the portfolio.

ii. Identifying the expectations of future rates of return.

iii. Finding the portfolios that deliver the maximum expected return for any
given degree of risk.

iv. Determining the allocation of assets that best meets the risk and return
objectives while satisfying the constraints.

The expectations of future rates of return are normally determined from histor-
ical data and economic analyses. This includes generating scenarios.
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The fundamental idea behind asset allocation is to exploit that di�erent asset
classes o�er returns that are not perfectly correlated, for which reason diversi�-
cation reduces the overall risk in terms of tail risk and the volatility of returns for
a given level of expected return.2 There are di�erent asset allocation strategies
depending on investment objectives, time frame, risk tolerance, and demands
for diversi�cation. In this thesis, the focus will be on strategic asset allocation.
The primary goal of strategic asset allocation is to �nd the optimal balance
between expected risk and return for a long-term investment horizon.[27]

1.2 Scenario Generation

A general way to describe risk is by using scenarios. A scenario being a re-
alisation of the future value of all parameters that in�uence the portfolio. A
collection of scenarios should capture the range of variations that is likely to
occur in these parameters including the impact of the shocks that are likely to
come. These representations of uncertainty are the cornerstone of risk manage-
ment. It is important to emphasise that the purpose of generating scenarios is
not to forecast, what will happen.

There are three overall approaches to generating scenarios that should be men-
tioned. The �rst is to generate scenarios by sampling historical data through
bootstrapping. The second approach is to generate scenarios through random
sampling and then accept each scenario if its statistical moments match those
of the observed data. The third approach, which is also the approach that will
be emphasised in this project, is to develop a theoretical model with parameters
calibrated to historical data and then simulate this model to generate scenar-
ios. In order to obtain a standard of comparison there will also be generated
scenarios using the bootstrapping approach.

Before scenarios are used as basis of an asset allocation decision, the quality of
the scenarios has to be checked. This can be divided into three stages; checking
accuracy, correctness, and consistency. The process of generating scenarios typ-
ically involves a discretisation of a continous process. Approximations like this
of course give rise to a number of errors. The sum of the accumulated errors
has to be controlled in order to secure accuracy.

Correctness is whether the generated scenarios contain the properties known

2Tail risk arises, when the probability of an investment moving more than three standard
deviations from the mean is greater than what is assumed by the normal distribution.
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from theory or empirical evidence. This also implies that the scenarios have
to satisfy the no-arbitrage principle. An arbitrage opportunity arises, if it is
possible to make a riskless pro�t. In a perfect �nancial market, in which all
investors have acces to the same information and can react instantaneously,
there should not be any arbitrage opportunity. Otherwise each investor would
immediately try to realise the riskless pro�t. The resulting transactions would
of course eradicate the arbitrage opportunity. Thus, the estimated future values
of asset prices should not allow arbitrage opportunities.[6]

When generating scenarios for more than one stochastic variable, the scenarios
also have to be internally consistent. For instance an increase in the interest
rate together with an increase in the bond prices is inconsistent.

1.3 Problem Statement

This thesis is concerned with the second part of the asset allocation descision
only, that is scenario generation to be exact. As outlined in the introduction,
the generated scenarios are of outmost importance to the investment decision
process and the risk management in for instance a pension fund. Generating
su�cient scenarios is therefore a practical problem of high relevance.

The asset classes considered are limited to money market instruments, bonds,
and stocks, with the goal of establishing the correlation between these asset
classes. Inclusion of the other major asset classes remains a possibility for future
work.

The data available is twelve years and seven months of daily values of eleven
di�erent indices covering the period from 1st of January 1999 to 12th of August
2011. Six of them are stock indices, four are bond indices, and �nally a Danish
LIBOR-index, which will serve as the link to the money market. For the LIBOR-
index, the data is only available from 16th of June 2003 and onwards. The
indices will be explored in more detail in the following chapter.

The purpose of the project is to analyse the index data with the aim of generating
scenarios that can form the basis of decisions regarding strategic asset allocation.
A scenario in this sense is the future values of the indices. The time horizon
of the generated scenarios will be �ve years, which is a reasonable horizon for
a short term, strategic asset allocation descision. With ten years' index data
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available, it would not be meaningful to look at a longer horizon than �ve years.
There will be generated a number of scenarios, and the quality of these scenarios
will be assessed.

The analysis will proceed according to the following steps:

1. The raw data is analysed for outliers, distribution, trends, autocorrelation,
and cross-correlation.

2. A time series model is chosen and calibrated to the index series.

3. The model performance is tested on the data.

4. There will be generated scenarios using two di�erent methods and the
quality of the scenarios will be assessed.

The analysis will be conducted using the statistical software R.3 All the R-code
used can be found in appendix B on page 97. There will be no prejudices as
to what class of models that will be the better choise. The approach that will
be used is therefore, through thorough data analysis to determine the necessary
properties of a time series model that is able to describe the observed main
features of the index data.

Part of the project work has been done in collaboration with Emil Ahlmann
Østergaard, but the model chosen by him in connection with point two on the
above list is di�erent from the model that will be presented in this thesis. As
a consequence, also the work done in connection with point three and four will
di�er. Apart from this subsection presenting the problem statement, the two
theses have been written independently. In the concluding chapter, a comparison
to the results from Emil Ahlmann Østergaards work[25] will be part of the
discussion.

3www.r-project.org
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Chapter 2

Market Indices

In the context of �nance, an index is a statistical measure usually expressed
in terms of the change from a base value. A �nancial market index tracks the
performance of an imaginary portfolio of securities representing a particular
market or a portion of it. Companies like Standard and Poor, Morgan Stanley
Capital International (MSCI), and J.P. Morgan specialise in the provision of
such indices.

Stock and bond market indices are used to construct index mutual funds and
exchange-traded funds (ETFs), whose portfolios mirror the components of an
index. These funds allow investors to invest in securities representing market
indices. Indices are important benchmarks for fundmanagers, who use them to
measure the performance of portfolios such as mutual funds.

Each index has its own calculation methodology. This chapter gives a pre-
sentation of the eleven �nancial market indices included in this thesis and a
description of how they are calculated.
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2.1 Stock Market Indices

2.1.1 KAXGI: CSE All Share GI Index

The Copenhagen Stock Exchange (CSE) All-Share Index includes all the shares
listed on the Copenhagen Stock Exchange. The index is measured in Danish
kroner. The aim of the index is to re�ect the current status and changes in the
market. KAXGI is the Bloomberg short name for the index. The Bloomberg
short names will be used throughout the thesis as references to the di�erent
indices.

KAXGI is a free �oat-adjusted market capitalisation weighted index, implying
that the index is computed by summing the capitalisation of the free �oat of
all the �rms in the index and dividing by some constant base number chosen in
order to obtain a desirable scale (initially).1

I (t) =
1

nbase

∑
all shares

niSi (t) . (2.1)

The free �oat market capitalisation is the market value niSi (t) (number of
shares × stock price) of all the shares that are freely tradable among investors.

It is a total return index with gross dividends, meaning that returns from div-
idends are reinvested without inclusion of any tax e�ects.2 The dividends are
reinvested at the close of trading on the day the security is quoted ex dividend.
The reinvestment is carried out by adjusting the base number to make the index
level una�ected by the dividend payout:

I (tcd) =
1

nbase

∑
all shares

niSi (tcd) =
1

ñbase

∑
all shares

niSi (txd) = I (txd) , (2.2)

for txd = tcd + δt, where δt is an in�nitesimal time span immediately after the
payment of dividend. cd is short for �cum dividend� and xd is short for �ex
dividend�.

If the adjustment wasn't made, then the stock index would decline following a
dividend payment by one of its constituents, since the share price itself drops

1The base date for the CSE All-Share Index is December 31, 1995, with a base value of
100.

2GI in KAXGI is short for gross index.



2.1 Stock Market Indices 9

by an amount equal to the dividend that is paid:

S (tcd) = S (txd) + (1− γ)Dividend, (2.3)

where γ is the tax rate that makes the gross dividend amount into the net
dividend after tax. Hence, γ = 0 when looking at gross dividend indices.

Since the total value of the portfolio does not decline, when a dividend is paid,
the index needs to be adjusted to re�ect this. The adjustment corresponds to
reinvesting the dividend in all index constituents in proportion to their respective
weights. Consequently, the index measures the total return from a portfolio of
shares with the same weights as the index disregarding any tax e�ects.[23]

2.1.2 NDDUE15: MSCI Daily TR Net Europe

An index designed by Morgan Stanley Capital International (MSCI) to measure
the equity market performance of the developed markets in Europe. The index is
measured in US dollars. The index consists of the market indices of the following
16 countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and
United Kingdom.3

It is a free �oat-adjusted market capitalisation weighted index just like the
KAXGI. It is a total return index with net dividends, implying that returns
from dividends are reinvested after subtraction of withholding taxes.4 Thus,
γ 6= 0 in equation (2.3) contrary to the gross index. In this way, the index is a
measure of the total return from a portfolio of shares with the same weights as
the index including tax e�ects.[18]

2.1.3 NDDUJN: MSCI Daily TR Net Japan

The same as NDDUE15 except for the region considered being Japan instead
of Europe. For all the technical speci�cations see subsection 2.1.2.

3As of May 30, 2011.
4The tax rate used is applicable to non-resident institutional investors, who do not bene�t

from double taxation treaties.
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2.1.4 NDDUNA: MSCI Daily TR Net North America

The same as NDDUE15 except for the region considered being Canada and
USA. For all the technical speci�cations see subsection 2.1.2.[19]

2.1.5 NDUEEGF: MSCI Daily TR Net Emerging Markets

The MSCI Emerging Markets Index measures equity market performance of
emerging markets. The index is measured in US dollars. The index consists of
the following 21 emerging market country indices: Brazil, Chile, China, Colom-
bia, Czech Republic, Egypt, Hungary, India, Indonesia, Korea, Malaysia, Mex-
ico, Morocco, Peru, Philippines, Poland, Russia, South Africa, Taiwan, Thai-
land, and Turkey.5 See subsection 2.1.2 for all the technical speci�cations.[18]

2.1.6 TPXDDVD: TOPIX Total Return

TOPIX is an abbreviation for TokyO stock Price IndeX. The index tracks the
performance of all domestic companies of the Tokyo Stock Exchange's (TSE)
First Section. The TSE comprises three sections: The First section is the largest
companies, the Second section is for mid-sized �rms, and the �Mothers� section
is for emerging and high-growth stocks.6

TOPIX is measured in Japanese yen. It is a free �oat-adjusted market capi-
talisation weighted index like all the other stock indices included in this thesis.
Furthermore, it is a total return index with gross dividends just like the KAXGI-
index. Thus, the index measures the total return from a portfolio of shares with
the same weights as the index disregarding any tax e�ects. Review subsection
2.1.1 for all the technical details.[2]

5As of May 30, 2011.
6The First Section includes all the largest companies according to a number of criteria

regarding the company's pro�t, the number of shareholdes, the number of free-�oat shares,
the market capitalisation, the ratio between assets and liabilities, the trading volume etc. The
exact criteria can be found at http://www.tse.or.jp/english/rules/transfers/index.html.
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2.2 Bond Market Indices

2.2.1 CSIYHYI: JPMorgan High Yield Bond Index Global

J.P. Morgan High Yield Bond Index Global is an index tracking the perfor-
mance of a fund investing in �xed income instruments, primarily in bonds with
a maximum credit rating of BB+ of issuers in developed countries, primarily
corporations and banks. Although it is a global index, more than 90 % of the
bonds are American. The index is measured in US dollars.

High yeild is a reference to the credit ranking of the bonds included in the index.
A high yield bond is classi�ed as having a credit ranking of BB+ or lower. High
yield bonds carry a higher risk of default and therefore also o�er a higher yield.

It is a capitalisation weighted total return index. Hence, the index measures
the total return from an imaginary portfolio of bonds with the same weights as
the index. Capitalisation weighting in the context of bonds means that weight
is assigned based on the total debt outstanding. This implies that most weight
is appointed to the less creditworthy issuers with a larger outstanding debt.
An ETF tracking a speci�c bond market index will therefore have to put most
money into the most indebted companies, which of course induces a higher
risk.[17]

2.2.2 JPGCCOMP: JPMorgan EMBI Global Diversi�ed

J.P. Morgan Emerging Markets Bond Index Global Diversi�ed measures the
total return from US dollar-denominated sovereign bonds issued by a selection
of emerging market countries. The index is measured in US dollars. It includes
US dollar-denominated Brady bonds7, Eurobonds8, and traded loans issued by
sovereign and quasi-sovereign entities of emerging market countries.9 The debt
instruments included must have an outstanding face value of at least $500 million
and must meet certain criteria for secondary market trading liquidity.

7Bonds issued by the governments of developing countries.
8Bonds issued in a currency other than the currency of the country or market in which

they are issued.
9A sovereign entity is a government. A quasi-sovereign entity is an agency that has gov-

ernment backing.
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The emerging market countries included are selected from a combination of
World Bank-de�ned per capita income brackets and each country's debt restruc-
turing history. These two criteria allow the inclusion of a number of countries
with a higher credit rating compared to those included in the High Yield Index
discussed in the previous section.

The country weights are evenly distributed in the index. This is achieved by
limiting the weights of those index countries with larger debt stocks by only
including a portion of these countries eligible current face amounts of debt
outstanding.[12] It is not possible to be more speci�c regarding the criteria
for countries included, the weighting etc., since J.P. Morgan only shares this
information with their clients.

2.2.3 NDEAMO: Nordea Mortgage Index

Nordea Mortgage Index is a benchmark index for Danish mortgage bonds used
mainly by portfolio managers to measure their investment performance. It is a
total return index measured in Danish kroner. It comprises �xed rate, callable,
DKK-denominated mortgage bonds with a term to maturity of more than one
year that have been issued by one of the six leading mortgage institutions in
Denmark.10 Fixed rate means that the bonds carry a predetermined coupon
rate. On the call date(s), the issuer of the bond has the option to buy back
the bond from the bond holder at the prede�ned call price. The value of this
option gives rise to a higher coupon rate and a lower price compared to �straight�
bonds.

The weights of the index are determined by minimising the sum of the products
of the absolute and the relative deviations from the market weights, subject
to a constraint specifying a target for the modi�ed duration.11[1] The modi�ed
duration is the weighted average, of the times until the future cash�ows are
received, calculated using annual compounding. In other words, the weighting
should re�ect the liquidity of the bonds while maintaining a speci�ed duration.

10Realkredit Danmark A/S, Nykredit Realkredit A/S, DLR Kredit A/S, BRFkredit a/s,
Totalkredit A/S, and Nordea Kredit Realkreditaktieselskab.

11min
xi

∑
xi

(xi−xi)
2

xi
, s.t.

∑
i xiModDuri = TargetModDur,

∑
i xi = 1, and xi ≥ 0, where

xi is the market weight and xi is the index weight.
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2.2.4 NDEAGVT: Nordea Government Index

Nordea Government Index measures the total return from treasury bonds issued
by the Danish government. The index is measured in Danish kroner. Only
bonds with a term to maturity of more than one year are included in the index.
Government bonds are often referred to as risk-free, since the risk of default
is minimal (this is of course not true for all contries). For the same reason,
they are characterised as the safest type of bonds and therefore pay the lowest
interest rate. The index is often used as a benchmark for the risk-free rate. The
weights of the index constituents are found in the same way as for the mortgage
index.[1]

2.3 Money Market Indices

2.3.1 DK00S/N: LIBOR DKK Spot/Next

The London Interbank O�ered Rate (LIBOR) is a daily reference rate based on
the interest rates at which banks borrow unsecured funds from other banks in
the London interbank lending market.[28] LIBOR is computed for ten di�erent
currencies, in the present case Danish kroner. It is a short-term interest rate and
is calculated for maturities between overnight and twelve months. Spot/next
(S/N) refers to the purchase of an asset for delivery the day after the spot
delivery date. In most markets the spot delivery date is two business days after
the day the transaction was made. So the spot/next rate matures in three days.

The LIBOR is released every business day just after 11 am London time by the
British Bankers' Association in conjunction with Reuters. There are ten LIBOR
panels, one for each of the ten currencies for which the rate is determined. Each
panel is composed of at least eight banks, chosen for their reputations and
their perceived expertise in a given currency. The LIBOR is calculated for each
currency as the interquartile mean of the daily deposit rates reported by the
banks in the panel for the given currency.12 The average rates at which these
banks say they would lend to one another is taken as an indication of the health
of the banking system.[26]

The core of the money market consists of interbank lending. The instruments

12The interquartile mean is the mean of the middle 50%.
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used in the lending process, like commercial papers, repurchase agreements,
and similar, are often benchmarked to the LIBOR for the appropriate term and
currency.[29] LIBOR has become the premier short-term interest rate in the
European money market, and it serves as a reference rate for a wide range of
transactions.[2, p. 60] The Danish LIBOR spot/next will serve as the link to
the money market in this project.



Chapter 3

Data Analysis

The objective of this chapter is to explore the main features of the dataset and
through that form the basis of the following chapter, where the data will be
modelled. The main features being stationarity properties, distribution, auto-
and cross-correlation. The data is displayed and there are drawn general con-
clusions regarding the distribution and the correlations within and between the
series through application of suitable transformations and statistical tests.

The dataset contains 3291 observations of the value of eleven di�erent �nancial
market indices recorded on a daily basis (weeksdays only) in the period between
the 1st of January 1999 and the 12th of August 2011. On bank holidays the
closing price of the previous weekday is quoted. As noted in the introduction,
observations are only available from the 16th of June 2003 and onwards for the
LIBOR-index.

The chapter begins with a reconstruction of the �rst 24 months' observations of
the NDUEEGF-index.
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3.1 Data Reconstruction
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Figure 3.1: The original and the recon-
structed index data for the �rst 24 months
for the NDUEEGF-index.

Values for the �rst 24 months have
only been recorded monthly for the
NDUEEGF-index. All the values in-
betweeen the �rst of each month are
simply repetitions. This appears from
the black curve in �gure 3.1. These
data are not applicable for the analy-
sis, since they would lead to a lot of
zero returns and a few very large re-
turns.

The data for the �rst 24 months are
instead reconstructed using linear interpolation between the �rst in each month
adding some normally distributed noise. It is evident from �gure 3.1, that doing
linear interpolation between more than two successive months at a time, would
lead to increasing trends in months, where the overall index level acctually has
gone down and vice versa.

The standard deviation of the noise is decided from the standard deviation of
the dataset containing the di�erence between the �rst value in each of the 24
months. This quantity is estimated as 8.0. This standard deviation of the
monthly variation can in some sense be interpreted as the standard deviation
of the sum of the daily variations. Hence, the standard deviation of the daily
variations can be estimated as 8/

√
22 ≈ 1.7, assuming there are roughly 22

bankdays in each month. This estimate is based on the assumption that the
daily returns are uncorrelated, which is in fact not true. The contribution from
the covariance is ignored for the time being, since the estimate is very rough
anyway.

For T ∈ [Ti, Ti+1] XT is interpolated as

XT =
T − Ti
Ti+1 − Ti

XTi+1 +
Ti+1 − T
Ti+1 − Ti

XTi + εT , εT ∼ N
(
0, 1.72

)
. (3.1)

The application of linear interpolation results in constant returns within each
month, and consequently the standard deviation of the returns will be nil.
Adding normally distributed noise with the estimated standard devation of the
daily variations leads to returns that have the correct overall magnitude of vari-
ation. The shortfall of the used approach is that the standard deviation of the
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daily returns is constant for the �rst 24 months, which is not consistent with
reality. But the simple reconstruction is su�cient for the use of the data in this
work. The reconstructed data is displayed together with the original data in
�gure 3.1.

3.2 Considering Stationarity

The daily values of the eleven indices are shown in �gure 3.2 as a function of time
(black lines). The red lines are recursively estimated mean values, meaning that
the value plotted at time t is the mean of all the values prior to time t weighted
equally.

None of the series are stationary, since the mean is either growing as a function
of time (e.g. NDEAGVT), has strong local trends (e.g. NDDUJN), or both.
The four bond indices near the bottom of �gure 3.2 are seen to be much less
volatile than the stock indices.

Figure 3.2 also reveals a remarkable resemblance between most of the indices.
The stock indices and the �rst two of the bond indices tend to move up and
down at almost the same points in time. The two Nordea indices do not show
the same distinct �uctuations. Also, the LIBOR-index, at the bottom of �gure
3.2, seems to move a bit out of sync with the rest of the indices.

The magnitude of the �uctuations are not the same for all the indices, and for
instance the TOPIX-index has not recovered from the �nancial crisis in 2008
in the same way the other stock indices have. Moreover, the CSIYHYI- and
JPGCCOMP-indices do not have a distinct peak around year 2000, like the
stock indices have. There are after all certain di�erences, but the resemblance
is still remarkable.

3.2.1 Log Returns

In order to obtain stationarity a transformation is needed. A di�erence is suit-
able to get rid of the growing mean value that most of the series possess. But
instead of di�erencing the series directly, a log-transformation is applied prior
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Figure 3.2: The daily value of the eleven indices as a function of time (black lines)
together with the recursively estimated mean values (red lines).
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to taking the di�erence. This leads to the log return de�ned as

rt = lnPt − lnPt−1 = ln
Pt
Pt−1

. (3.2)

Taking the natural logarithm before the di�erence results in a key �gure of
approximately the same scale for all the indices. In the raw index data some of
the stock indices encountered values of up to 6000, while the bond indices lay
around 200. Taking the logarithm ensures a convenient rescaling that narrows
the gap between the indices. This appears from �gure 3.3, where the daily log
return values are plotted as a function of time.

Performing a log-transformation is always a good choice when interested in small
changes in large numbers. For returns less than 10%, the log return actually
approximates the discrete return very well anyway, since it is the �rst order
Taylor approximation.1[6] The log return values are seen to be mean stationary,
since they �uctuate around a constant mean level close to zero for all the indices.

It appears from �gure 3.3 that the log returns are much more volatile in some
periods than others. This e�ect, as noted by Mandelbrot in 1963, is referred to
as volatility clustering. That is, after a large price change (positive or negative)
a large price change tends to occur, while small changes tend to be followed by
small changes.[6]

Figure 3.4 shows the standard deviation of the eleven log returns series estimated
recursively as a function of time using exponential weights (black lines). The
weight assigned to the t'th observation at time T is λt,T = c · 0.95T−t, where
t ≤ T and c = 1−0.95

1−0.95T is a normalising factor. The red line is a smoothing
of the recursively estimated standard deviation showing the local mean level of
volatility. The smoothing is done using locally weighted polynomial regression
in R with a span of 1/5, which is the proportion of points that in�uence the
smooth at each value.

The standard deviation is far from constant for any of the log return series as
noted in relation to �gure 3.3. Furthermore, the �gure shows that large peaks
in the standard deviation tend to occur in periods, where the local mean level of
volatility is above the overall mean level, whereas there are few large peaks in the
periods, where the local mean level of variation is low. The standard deviation

1rt = ln Pt
Pt−1

= ln (1 +Rt) = ln (1) + Rt −
R2

t
2!

+
R3

t
3!

+ O
(
R4

t

)
≈ Rt for discrete returns

Rt close to zero.
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Figure 3.3: The daily log return values of the eleven indices as a function of time.
The red lines are recursively estimated mean values applying uniform weights to all
past observations.
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Figure 3.4: The standard deviation of the log returns estimated recursively as a func-
tion of time using exponential weights. The red line is a smoothing of the recursively
estimated standard deviation showing the local mean level.
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of the indices themselves shows the same behaviour as for the log returns. This
appears from �gure A.1 in appendix A on page 89. Such processes with non-
constant variance are said to be conditionally heteroscedastic, when there is no
evidence that the overall variance, or the unconditional variance, is changing.
This is seen to be the case.

The resemblance between the indices in �gure 3.2 is not as evident from �gure
3.3 and 3.4, but it is still there. The most striking similarity is obviously the
large peak in volatility around 2009 that all the log return series have in common.
The volatility of the LIBOR-index does however �rst peak in late 2010. From
a comparison of �gure 3.2 and 3.4 it is seen that the largest peaks in volatility
occur, when the indices are at a local minimum. In periods where the indices
are growing, the volatility is found to be below average.

The log return processes are only weakly stationary of order one, since the
mean values are stationary, but the variances (the second moments) are still not
stationary.[14]

3.3 The Distribution of Data

Density histograms of the daily log return values of the eleven indices are dis-
played in �gure 3.5 together with the theoretical density of a normal distribution
with the same mean and variance as the data (red lines). Except for CSIYHYI
and LIBOR, all the log return distributions seem somewhat close to the normal
distribution. It should be noted that the raw index values have less resemblance
with the normal distribution compared to the log returns. This is evident from
the histograms of the index data in �gure A.2 in appendix A on page 89. For
that reason, the focus will be solely on the distribution of the log returns.

The mean values of the log returns appear to be zero, but a t-test rejects this
null hypothesis at a 5%-signi�cance level for the four bond indices that all have
positive mean returns. This is evident from table 3.1, where the estimated mean
values are listed together with the p-values of the t-test. Only the TPXDDVD
and the LIBOR-index have negative mean returns. These conclusions agree with
what appeared from the recursive mean values in �gure 3.2 on page 18.

The estimated standard deviations in table 3.1 also support the conclusions
drawn from �gure 3.2 on page 18 in that the four bond indices are less volatile
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Figure 3.5: Density histograms of the daily log return values of the eleven indices
together with the theoretical density of a normal distribution with the same mean and
variance as the log return data (red lines).
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µ̂
10−4 p-value σ̂

10−2 γ̂1 γ̂2 JB

KAXGI 2.66 0.18 1.14 -0.39 6.45 5800
NDDUE15 0.96 0.70 1.42 -0.08 7.07 6854
NDDUJN 0.44 0.87 1.49 -0.15 3.96 2157
NDDUNA 0.51 0.82 1.32 -0.23 7.62 7993
NDUEEGF 4.44 0.05 1.30 -0.44 7.35 7510
TPXDDVD −0.57 0.82 1.40 -0.36 6.81 6436
CSIYHYI 2.68 0.00 0.27 -2.54 40.4 227623
JPGCCOMP 4.20 0.00 0.44 -1.64 33.0 150322
NDEAGVT 1.92 0.00 0.22 -0.28 3.60 1821
NDEAMO 2.20 0.00 0.21 -0.35 13.9 26710
DK00S.N −2.33 0.93 12.2 5.44 170 2587839

Table 3.1: Estimated mean value, µ̂ , of the daily log returns, associated p-value
of t-test of the null hypothesis: µ = 0, estimated standard deviation, σ̂, estimated
skewness, γ̂1, estimated excess kurtosis, γ̂2, and the Jarque-Bera test statistic, JB.

than the stock indices, and the LIBOR-index is much more volatile than both
the stock and the bond indices.

The distributions appear a bit skew compared to the normal distribution. This
observation is supported by the estimated skewness,

γ̂1 =
1
N

∑N
t=1 (rt − µ̂r)

3

σ̂3
r

, (3.3)

in table 3.1. In fact, the distributions are all left skew with exception of the
LIBOR-index, which is very right skew.

What is more appearent from �gure 3.5 is that all the distributions have more
mass centered around the mean and in the tails compared to the normal distri-
bution. Such distributions with excess kurtosis,

γ̂2 =
1
N

∑N
t=1 (rt − µ̂r)

4

σ̂4
r

− 3, (3.4)

are said to be leptokurtic.2 It appears from table 3.1 that the estimated excess
kurtoses for the daily log returns are all much greater than zero.

2The normal distribution has kurtosis 3.
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3.3.1 Testing for normality

The Jarque-Bera test statistic

JB = N

(
γ̂21
6

+
γ̂22
24

)
(3.5)

is used to test wether the estimated skewness and excess kurtoses are signi�cant.
The Jarque-Bera test statistic is asymptotically χ2-distributed with two degrees
of freedom.[6] The 95%-quantile for the χ2-distribution with two degrees of
freedom is 6. The probability of the log return data being normally distributed
is therefore nil according to the Jarque-Bera test, since all the estimated test
statistics are much larger than 6. This conclusion is also backed by a Shapiro-
Wilk test for normality returning p-values of less than 2.2×10−16 for all the log
return series, which rejects any resemblance with the normal distribution. This
is above all caused by the excess kurtoses.

3.3.2 Outliers

It is a general characteristic of �nancial returns, that there are too many ex-
treme values compared to the normal distribution, which results in the very
large kurtoses observed. It is however important to distinguish between outliers
and extreme observations in this connection; extreme observations deviate con-
siderably from the group mean, but may still represent meaningful conditions,
and thus should not be disregarded. It is important to include these extreme
observation in the model estimation in order for the scenarios to be as realistic
as possible. The scenarios should after all preferably re�ect the possibility of
such extreme events, since they are seen to occur.

The log return graph on page 20 is a good means of detecting outliers, since
the presence of outliers would lead to sudden spikes in the returns. There is
no reason to investigate the observations, where all the graphs spike around the
same point in time like late 2008, since these simultaneous peaks are most likely
caused by extreme conditions in the �nancial markets and therefore should not
be disregarded.

The two Japanese indices (NDDUJN and TPXDDVD) are seen to have spikes
in the �rst part of 2011, which are not recovered in the rest of the indices. The
large �uctuations took place in the period from the 14th March to the 17th
March, at the time where Japan was hit by earthquakes and a tsunami.
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The CSIYHYI has a very large negative deviation in the last half of 2001. It is
a large decline from Friday the 14th September to Monday the 17th September.
This large decline is probably caused by the events on the 11th September in
USA that year.

There are no obvious explanation for the spikes JPGCCOMP shows right at the
beginning of the period as well as the spikes NDEAMO has in 2000 and 2003,
but the amplitude of these spikes is smaller than the spikes that occured during
the latest �nancial crisis. There is no need to remove these large returns, when
it is not known with certainty that they are outliers.

Originally the NDEAGVT-index had some unexplainable peaks in 2002. This
turned out to be caused by mistakes by the people manually entering the data.
These outliers have been corrected in the presented data.

The LIBOR-index shows large �uctuations in the last part of 2010. The interest
rate was very low at that point in time and therefore even minor absolute changes
resulted in large deviations in the index, since log return is a relative measure
(see eq. (3.2)).

3.3.3 Robust Moments

The presence of this many extreme events is what causes the tests for normal-
ity to reject any resemblance with the normal distribution, even though there
appeared to be some resemblance based on the histograms on page 23. With
more than three thousand observations it doesn't take more than a few extreme
observations to reject normality, since the applied tests are very sensitive to
outliers.

The sensivity to outliers is recognised from the sample mean, and since the
conventional measures of skewness and kurtosis are essentially based on sample
averages, they are also sensitive to outliers. Moreover, the impact of outliers is
greatly ampli�ed in the conventional measures of skewness and kurtosis due to
the fact that they are raised to the third and fourth powers.

If the most extreme observations were disregarded, the similarity with the nor-
mal distribution would be more convincing. Therefore it would make sense to
estimate the moments of the distributions using measures that are more robust
towards the presence of extreme values.



3.3 The Distribution of Data 27

The median could be used instead of the mean as a measure of location. The
interquartile range could be used as a measure of the dispersion instead of
the standard deviation. As an alternative measure of skewness, the following
estimate, which is also based on quantiles, could be applied:

γ̂robust1 =
Q3 +Q1 − 2Q2

Q3 −Q1
, (3.6)

where Q1 = F−1 (0.25) is the lower quartile, Q2 = F−1 (0.5) is the the median
etc., and F is the cumulative distribution function of the process in question.
This robust measure of skewness is zero for a symmetric distribution like the
normal distribution, one for extreme right skew distributions, and minus one for
extreme left skew distributions.

Finally, as a measure of excess kurtosis the following estimate could be applied:

γ̂robust2 =
F−1 (0.975)− F−1 (0.025)

Q3 −Q1
− 2.91, (3.7)

which is zero for the standard normal distribution.[9]

The robust estimates for the log return series appear from table 3.2. When
comparing these estimates to the non-robust, conventional measures from ta-
ble 3.1 on page 24, it is �rst noticed that the measures of location and dispersion
are of the same magnitude. None of the medians are negative, and especially
for the NDUEEGF-index, the median is much more positive than the mean
value (4.44 × 10−4). Furthermore, the dispersion of the LIBOR-index is more
than halved, when quanti�ed by the interquartile range instead of the standard
deviation, due to the many extreme returns observed for this index.

The estimated skewness is close to zero for all the indices. When looking at the
robust measure, there are actually more right skew than left skew distributions.
More importantly, the estimated kurtoses are much smaller than the non-robust
estimates in table 3.1 on page 24. All the distributions still have excess kurtosis,
but it is only a small amount.

The best describtion of the log returns is probably obtained by some mixture
distribution, where the majority of the returns are normally distributed, and
then there are a few extreme returns from a completely di�erent distribution.[9]
This makes perfectly sense in that most of the observed extreme returns could be
explained by a speci�c event like 9/11, the bankruptcy of Lehmann Brothers,
the Tsunami in Japan etc., and most of these events were caused by outer
circumstances.
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Q2

10−4
Q3−Q1

10−2

γ̂robust
1

10−2 γ̂robust2

KAXGI 1.59 1.11 7.12 1.25
NDDUE15 4.41 1.40 1.06 1.16
NDDUJN 1.25 1.68 -0.11 0.54
NDDUNA 4.06 1.19 -3.81 1.47
NDUEEGF 11.7 1.32 -6.04 0.84
TPXDDVD 0.00 1.43 6.20 0.82
CSIYHYI 3.84 0.17 2.98 2.78
JPGCCOMP 4.53 0.33 5.45 1.95
NDEAGVT 1.17 0.23 9.41 0.77
NDEAMO 1.90 0.20 9.89 1.15
DK00S.N 0.00 6.20 -6.56 2.54

Table 3.2: Robust estimates of location, Q2, dispersion, Q3 −Q1, skewness, γ̂
robust
1 ,

and excess kurtosis, γ̂robust
2 , of the daily log returns.

The conclusion is, that even though there is no doubt that the log returns are not
normally distributed as a whole, it is not pointless to assume some ressemblance
with the normal distribution after all.

3.3.4 The Distribution of Weekly Log Returns

Looking at weekly log returns instead of daily log returns doesn't change the
conclusion. From table 3.3 it appears that the median and the dispersion is
slightly larger for the weekly log returns. The distributions are a more skew
compared to the daily log returns, and all of them, except for JPGCCOMP, to
the left.

The largest di�erence is that only CSIYHYI, JPGCCOMP, and LIBOR have
excess kurtoses above one, when using the robust estimate (3.7). The reason
being that the weekly sampling smooths the impact of the extreme events.

Density histograms of the weekly log returns can be found in �gure A.3 on
page 92 in appendix A. The histograms support the conclusion, that also the
weekly log returns have ressemblances with the normal distribution.
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Q2

10−4
Q3−Q1

10−2

γ̂robust
1

10−2 γ̂robust2

KAXGI 42.0 2.82 -10.6 0.58
NDDUE15 36.1 3.17 -14.6 0.83
NDDUJN 4.48 3.57 -0.93 0.19
NDDUNA 18.8 2.74 -8.69 0.95
NDUEEGF 44.2 3.36 -7.38 0.59
TPXDDVD 20.0 3.65 -3.20 -0.11
CSIYHYI 21.4 0.67 -11.7 2.57
JPGCCOMP 27.6 0.98 0.62 1.30
NDEAGVT 10.8 0.59 -2.81 0.55
NDEAMO 13.8 0.56 -2.92 0.80
DK00S.N 0.00 6.48 -13.9 6.77

Table 3.3: Robust estimates of location, Q2, dispersion, Q3 −Q1, skewness, γ̂
robust
1 ,

and excess kurtosis, γ̂robust
2 , of the weekly log returns.

3.4 Correlations

There are two types of correlation to consider, namely intra- and inter-series
correlation. Autocorrelation is the cross-correlation of a time series with itself.
It is a way of �nding repeating patterns in data. The autocorrelation of a
stochastic process describes the correlation between values of the process at
di�erent points in time as a function of the two times. If the process is stationary,
then the autocorrelation will only be a function of the time di�erence, usually
referred to as the lag, k.

The autocovariance of a stationary time series X1, ..., XN can be estimated as

CXX (k) =
1

N

N−|k|∑
t−1

(
Xt −X

) (
Xt+|k| −X

)
, (3.8)

where |k| = 0, 1, ...N − 1.

From this, the autocorrelation of the process can be estimated as

ρ̂ (k) =
C (k)

C (0)
, (3.9)

implying that ρ̂ (0) ≡ 1.

For a white noise process ρ̂ (k) is asymptotically normally distributed with mean
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value and variance

E [ρ̂ (k)] ' 0, k 6= 0, (3.10)

Var [ρ̂ (k)] ' 1

N
, k 6= 0. (3.11)

Hence, an approximate 95% con�dence interval for the null hypothesis of inde-
pency is ±2/

√
N .[14]

3.4.1 Autocorrelation in Log Returns

The blue bins in �gure 3.6 are the estimated autocorrelation for the daily log
returns for the �rst ten lags. The dashed blue lines make up an approximate
95% con�dence interval for the null hypothesis of no correlation. For most of
the indices, there are seen to be signi�cant correlation at lag 1, and for some of
the series there are also signi�cant correlation at lag 2. The CSIYHYI-index is
di�erent from the rest since it has signi�cant positive correlation at all ten lags.

In order to �nd a time series model that �ts the series, it is bene�cial to get
rid of some of the observed autocorrelation. Since the objective is to generate
scenarios �ve years forward in time, there is no point in looking at daily values. If
the data is instead sampled on a weekly basis, then the autocorrelation function
looks like the red bins in �gure 3.6. Only the CSIYHYI- and the LIBOR-index
have signi�cant correlation at lag 1, when looking at weekly log returns. Some
of the weekly log return series appear to have signi�cant correlation at lag 2, but
it should be remembered that the dashed lines only make up a 95% con�dence
interval after all. It is only the CSIYHYI- and the LIBOR-index that could not
reasonably be assumed to be independent, when looking at weekly log returns.

Though the majority of the weekly log returns series don't exhibit any signi�cant
autocorrelation when looking at the entire period, it is relevant to investigate,
whether the autocorrelation is constant, or if it is signi�cant in some shorter
periods.

The blue lines in �gure 3.7 are the estimated autocorrelations at lag 1 for the
weekly log return series estimated for a rolling window of 26 weeks. The red lines
are the same estimates for the squared log returns. If the weekly log returns
are a GARCH(p, q)-process, as often assumed in econometrics because of the
observed volatility clustering (see section 4.2 on page 51), then the squared
residuals follow an ARMA(m, p)-process, with m = max (p, q).[6]
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Figure 3.6: The autocorrelation function for the daily log returns (blue) and the
weekly log returns (red) estimated for lag 1 through 10. The dashed lines make up an
approximate 95% con�dence interval for the null hypothesis of no autocorrelation.
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Figure 3.7: The autocorrelation function at lag 1 for the weekly log returns (blue) and
the squared weekly log returns (red) estimated using a rolling window of 26 weeks. The
dashed lines make up a 95% con�dence interval for the null hypothesis of independency.
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The autocorrelations at lag 1 are seen to be far from constant. For most of the
indices, the ACF is seen to �uctuate in-between the dashed lines that make up
an approximate 95% con�dence interval most of the time. Some of the indices
do, however, exhibit signi�cant autocorrelation in shorter periods. For instance
around year 2010 some of the indices appear to have signi�cant autocorrelation.
The CSIYHYI- and the LIBOR-index are di�erent in that they have signi�cant
�rst order autocorrelation in a large part of the period, which is consistent with
the estimates in �gure 3.6. The conclusion remains the same, whether it is the
weekly log returns or the squared weekly log returns that are focused on, except
for CSIYHYI, where the squared returns are less signi�cant.

It is evident from �gure 3.7 that the autocorrelations are �uctuating, but look-
ing at weekly data, it could reasonably be assumed that the autocorrelation is
insigni�cant for the entire period for most of the indices except for CSIYHYI
and LIBOR.

3.4.2 Cross-correlation

The cross-correlation of two stochastic processes describes the correlation be-
tween values of the processes at di�erent points in time as a function of the two
times. If the processes are stationary, then the cross-correlation will only be a
function of the time-lag.

The cross-covariance for lag k = 0, 1, ..., N−1 between two time seriesX1, ..., XN

and Y1, ..., YN can be estimated as

CXY (k) =
1

N

N−k∑
t=1

(
Xt −X

) (
Yt+k − Y

)
(3.12)

and similarly for negative lags

CXY (−k) = 1

N

N−k∑
t=1

(
Xt+k −X

) (
Yt − Y

)
. (3.13)

Based on the estimated cross-covariance function, the cross-correlation function
is estimated as

ρ̂XY (k) =
CXY (k)√

CXX (0)CY Y (0)
. (3.14)
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Figure 3.8: The upper panel shows the estimated cross-correlation functions for the
weekly log returns for lag -3 through 3. The blue bins are estimated from the period
from the beginning of may 2009 and 26 weeks forward, while the red lines are estimated
from the period from the beginning of may 2008 and 26 weeks forward. The dashed
horizontal lines make up a 95% con�dence interval for the cross correlation. The lower
panel shows scatterplots of the weekly log returns together with the best linear �ts.
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The estimated cross-correlation between two mutually uncorrelated time series
is asymptotically normally distributed with mean value and variance

E [ρ̂XY (k)] ' 0, (3.15)

Var [ρ̂XY (k)] ' 1

N
, (3.16)

conditioned that at least one of the processes is white noise. Thus, ±2/
√
N also

makes up an approximate 95% con�dence interval for the cross-correlation.[14]

3.4.3 Cross-correlation between Weekly Log Returns

From the very �rst plot of the indices it was evident that the series exhibit
a great deal of similarity. For that reason, it is expected that there should
be signi�cant cross-correlation between many of the indices. This presumption
turns out to be correct which appears from �gure 3.8.

The upper panel shows the estimated cross correlation functions for the weekly
log returns for lag -3 through 3. The blue bins are estimated from the period
from the beginning of may 2009 and 26 weeks forward, while the red lines
are estimated from the period from the beginning of may 2008 and 26 weeks
forward. The dashed horizontal lines make up a 95% con�dence interval for the
cross correlation. The lower panel shows scatterplots of the weekly log returns
from the same two periods together with the best linear �t for each period.

The two periods have been choosen carefully as exempli�cations of a steep de-
cline and incline respectively. There are three main conclusions that should be
drawn from the �gure. First of all, it appears from the graphs that sampling on
a weekly basis almost removes all higher order cross-correlation. Second of all,
it should be noticed that there is signi�cant cross-correlation at lag 0, usually
referred to as the correlation, between most of the series. Third of all, the level
of cross-correlation at lag 0 is in many cases not the same for the two di�erent
estimation periods.

The correlation between some of the series is almost the same for the two periods,
while for other series the correlation is less in the upturn, and in some cases it is
even in-signi�cant during the upturn, while it is signi�cant during the downturn.

The correlation between the two Nordea indices (NDEAGVT and NDEAMO)
and some of the stock indices is seen to change from signi�cantly negative during
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the downturn to in-signi�cant or even signi�cantly positive during the upturn.
This is a remarkable di�erence.

From the scatter plots in the lower panel it is seen that the blue points tend to
be centered in very small areas, while the red points tend to be spread out over
larger areas. In for instance the scatter plot of NDDUNA against NDDUJN,
the blue points form some kind of cluster, while the red points appears to be
a much better �t for a straight line. In some of the scatterplots, the two lines
are almost coinciding, while in other plot the two lines have completely di�erent
slopes. This agrees with the conclusions drawn from the CCF-plots.

3.5 Principal Component Analysis

Principal component analysis (PCA) is a procedure for reducing the dimen-
sionality of a set of correlated random variables whilst keeping most of the
explanatory power. It uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of values of uncorrelated
variables called principal components. The number of principal components is
by de�nition less than or equal to the number of original variables.

The transformation is de�ned in such a way that the �rst principal component
has as high a variance as possible, meaning that it accounts for as much of
the variability in the dataset as possible. The succeeding components in turn
have the highest variance possible under the constraint that each one has to be
orthogonal to (uncorrelated with) the preceding components.[30]

Expressing the data in terms of principal components is a way of highlighting
the similarities and di�erences, making it possible to identify the underlying
structures in the dataset. It is the correlations that determine how parsimo-
niously the PCA will be able to summarise the data. Higher correlations mean
greater redundancy, and greater redundancy results in more variation extracted
in fewer components. A large number of high correlations may however indi-
cate that several variables will weight heavily in each principal component, thus
complicating interpretation.[16]
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3.5.1 The Mathematical Foundation

Most of the characteristics of principal components are simply statistical refor-
mulations of results from linear algebra. Let

X =

 X1

...
Xn

 (3.17)

be a multi-dimensional, standardised, stochastic variable with variance-covariance
matrix

Var [X] = ΣX, (3.18)

which has only ones in the diagonal. ΣX is by de�nition always symmetric and
positive semi-de�nite.[14] The standardisation of the variables X1, ..., Xn cor-
responds to analysing the empirical correlation matrix instead of the empirical
variance-covariance matrix.

The eigenvalues of ΣX in descending order are denoted

λ1 ≥ · · · ≥ λn, (3.19)

with corresponding orthonormal eigenvectors q1, ..., qn.

The matrix
Q = [q1 · · · qn] , (3.20)

which has the eigenvectors as columns, is an orthogonal matrix, implying that

Q−1 = QT. (3.21)

The vector of principal components, PC, is then de�ned as the result of the
orthogonal transformation

PC =

 PC1

...
PCn

 = QTX. (3.22)

Hence, the i'th principal component of X is the projection PCi = qTi X of X
onto the direction of the i'th eigenvector. It follows that the principal compo-
nents are uncorrelated and the variance of the i'th component is λi:

var [PC] = var
[
QTX

]
= QTΣXQ =

 λ1 · · · 0
...

. . .
...

0 · · · λn

 . (3.23)
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It hereby follows, that the �rst principal component is the linear combination
of the original variables that has the largest variance, since λ1 is the largest
eigenvalue. Also, the total variance of the original variables, X1, ..., Xn, is seen
to equal the sum of the variances of the principal components, since they both
equal one.[4, 5, 10]

It can be useful to think of the orthogonal transformation (3.22) as a rotation
from the high-dimensional data space into a lower-dimensional principal com-
ponent space. The less eigenvectors that are used in the transformation, the
less the dimension of the principal component space will be. The data can of
course be rotated back from the principal component space through multiplica-
tion with Q from left in equation (3.22). If less than n eigenvectors are used in
the transformation, then the reconstructed data will be a smoothed version of
the original data due to the loss of some variation. In this way, PCA is also a
means of compressing data.

3.5.2 Assumptions

PCA assumes that the observations represent an independent, random sample
from a multivariate normal distribution. The multivariate normality assumption
is only important, if the purpose of the analysis is to do statistical inference.
Otherwise, it is su�cient if the observations represent an independent, random
sample from a distribution with constant mean and variance. The sample has
to be independent and random in order to obtain an unbiased estimate of the
principal components. The correlations also have to be constant, since the
correlation matrix would otherwise be changing in time, which would lead to
non-constant principal components. The principal components are guaranteed
to be independent only if these assumptions are met.

The essence of PCA is to �nd the new basis, which is the linear combination of
the original basis, that best expresses the data set. An important underlying
assumption is that linear relationships exist among the variables so that they
can be combined in a linear fashion to create principal components. Pronounced
non-linearities in the dataset result in large errors, when the relationships among
the variables are linearised, and usually make it impossible to extract a large
explanatory power in only a few principal components.

PCA is sensitive to the relative scaling of the original variables, which is why
the variables should be standardised prior to the analysis. Extreme observa-
tions will exert undue pull on the direction of the component axes and therefore
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strongly a�ect the ordination. As mentioned previously, it is important to dis-
tinguish between outliers and extreme observations, since the latter represents
exceptional, yet meaningful conditions, and therefore should not be disregarded.
Anyway, it is important to be aware of the strong in�uence of these points on
the linearisation.

3.5.3 PCA on Weekly Log Returns

The weekly log returns cannot be assumed to be an independent sample from a
multivariate normal distribution with constant mean and variance as both CSIY-
HYI and the LIBOR-index showed signs of signi�cant autocorrelation (appeared
from �gure 3.6 on page 31). Furthermore, the correlation between some of the
indices changes over time (appeared from �gure 3.8 on page 34), resulting in
non-constant principal components. Despite this, PCA is still a means of ex-
ploring the underlying structures in the data set, without doing any statistical
inference.

Table 3.4 summarises the standard deviation, the proportion of variance, and
the cumulative proportion of variance explained by the estimated principal com-
ponents for the eleven log return series. The analysis is based on the weekly data
from 16th of June 2003 and onwards, since observations of the LIBOR-index are
only available from that point on.

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 2.37 1.37 1.00 0.92 0.68 0.59
Proportion of Variance 0.51 0.17 0.09 0.08 0.04 0.03
Cumulative Proportion 0.51 0.68 0.77 0.85 0.89 0.92

PC7 PC8 PC9 PC10 PC11
Standard deviation 0.51 0.47 0.43 0.35 0.29
Proportion of Variance 0.02 0.02 0.02 0.01 0.01
Cumulative Proportion 0.94 0.96 0.98 0.99 1.00

Table 3.4: Standard deviation, proportion of variance, and cumulative proportion of
variance explained by the principal components estimated from the weekly log returns
from 16th of June 2003 and onwards.

The standard deviation listed for each principal component is the squareroot
of the corresponding eigenvalue, meaning that it is the amount of variation
explained by that component. Thus, the �rst principal component is seen to
explain a total standard deviation of 2.37 corresponding to 51% of the total
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variance of the dataset. The second principal component explains 17%, and it
takes eigth components to explain more than 95% of the total variation.

The �rst seven eigenvectors are listed in table 3.5. The eigenvector coe�cients
represent the weights that is applied to the variables in the transformation. The
coe�cients are therefore sometimes referred to as the loadings.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7

KAXGI -0.37 -0.05 0.03 -0.20 0.04 -0.35 0.77
NDDUE15 -0.38 -0.05 0.04 -0.17 0.31 -0.21 -0.18
NDDUJN -0.31 0.05 -0.06 0.68 -0.08 0.01 -0.08
NDDUNA -0.37 -0.07 0.03 -0.17 0.27 -0.27 -0.45
NDUEEGF -0.39 0.01 0.02 -0.03 0.29 0.18 -0.12
TPXDDVD -0.35 -0.02 -0.07 0.51 -0.07 0.14 0.18
CSIYHYI -0.32 0.10 0.02 -0.22 -0.83 -0.23 -0.18
JPGCCOMP -0.30 0.31 0.03 -0.32 -0.09 0.72 0.00
NDEAGVT 0.11 0.64 0.07 0.14 0.02 -0.36 -0.19
NDEAMO 0.00 0.68 0.06 -0.02 0.19 -0.02 0.22
DK00S.N 0.01 -0.09 0.99 0.10 -0.03 0.04 0.01

Table 3.5: Estimates of the �rst seven eigenvectors based on the weekly log returns
from 16th of June 2003 and onwards.

The �rst principal component can be interpreted as some kind of general level.
Most of the indices have almost equal weight in this component except for the
two Nordea bond indices and the LIBOR-index. This agrees with the conclusion
from �gure 3.2 on page 18, where these three indices also stood out. For the
same reason the two Nordea indices achieve high weight on the second com-
ponent, while the LIBOR-index has weight 0.99 on the third component. A
weight of almost one, when none of the other indices have weights above 0.07,
indicates that the LIBOR-index is completely uncorrelated with the rest of the
indices. The two Japanese indices achieve high weight on the fourth component,
while the CSIYHYI achieves a very high weight on the �th component. JPGC-
COMP and KAXGI are weighted heavily on the sixth and seventh component
respectively.

Deciding on the number of components

The crucial point in PCA is the decision on how many principal components
to retain in order to get a su�cient description of the variation in the data.
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Typically, only those components that have a meaningful interpretation will be
kept. Retaining enough components to explain at least 95%, which is the usual
threshold used in statistics, often results in keeping way to many components.
After all, there is no point in keeping components that explain way less than
what is explained by the same component in a truely random distribution.

One criterion for selecting the number of principal components to retain is the
broken stick criterion. This is based on the eigenvalues from random data. If
the total variation is randomly distributed among components, then the scree
plot should exhibit a broken stick distribution. A scree plot is a plot of the
estimated eigenvalues as a function of the component number. Observed eigen-
values that exceed the eigenvalue expected under the broken stick distribution
are considered meaningful and should be retained for interpretation. The eigen-
values under the broken stick distribution3 are

λ∗i =

L∑
k=i

1

k
. (3.24)
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Figure 3.9: Scree plot of the eigenvalues
from the principal components analysis of
the weekly log return data (black) and from
random data (red) against the rank order

The eigenvalues of the broken stick
distribution are plotted together with
the estimated eigenvalues in �gure
3.9. According to the broken stick
criterion, only the �rst component
should be kept.[16] This would lead
to only 51% of the total variance be-
ing explained. For most applications,
this is simply to little.

Another approach is to decide based
on the screeplot alone how many com-
ponents to retain. The smaller eigen-
values, representing random varia-

tion, tend to lie along a straight line. Thus, one could look for a turning point in
the scree plot, where the curve �attens out. In the present case, this is after the
fourth component. The third and the fourth components have almost identical
eigenvalues, but these two points are not on line with the following points. Re-
taining the �rst four components, which altogether account for acceptable 85%
of the total variance, seems more reasonable. See [8] for further criteria.

3If a stick of unit length is broken into L pieces, then the expected length of the i'th longest
segment is 1

L

∑L
k=i

1
k
.



3.5 Principal Component Analysis 43

Communalities

Having decided on the number of components to retain, it should be measured,
how well each variable is explained by the retained components. This measure
is called the communality. The communality of the j'th variable is

cj =
L∑
i=1

q2i,jλi, (3.25)

where qi,j is j'th element of eigenvector qi, and the L ∈ [1;n] is the number of re-
tained principal components. The communality is the proportion of a variable's
variance that is accounted for by the principal components. The communalities
will of course be one, if all the principal components were reatined.[16]

The communalities for the eleven series based on retention of four principal com-
ponents appear from table 3.6. CSIYHYI has the lowest communality with 64%
of the variance being explained, while the LIBOR-index is explained perfectly.
This is due to the fact that the third component almost exclusively explained
the LIBOR-index. If the third component was excluded, then the communality
of the LIBOR-index would be close to zero, while the rest of the communalities
would be una�ected. There is no point in including the LIBOR-index in the
PCA, when it is completely uncorrelated with the rest of the indices.

KAXGI NDDUE15 NDDUJN NDDUNA NDUEEGF TPXDDVD

0.79 0.86 0.95 0.81 0.84 0.92

CSIYHYI JPGCCOMP NDEAGVT NDEAMO DK00S.N

0.64 0.78 0.87 0.87 1.00

Table 3.6: Communalities for the eleven weekly log return series based on the �rst
four principal components.

Finally, it should be emphasised that the conclusions drawn from the PCA
should be accepted with caution, since the weekly log returns don't meet the
assumptions of PCA, as already discussed. There is however no doubt left, that
the LIBOR-index is very di�erent from the rest, while the rest of the indices
have a lot in common.
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Chapter 4

Modelling

This chapter is concerned with �nding and calibrating a time series model to the
index series. In the choice among approaches, it is important to emphasise that
the aim is to use the model for generating scenarios. Therefore, a model that is
more readily applied to generating scenarios is preferred to a more exhaustive
model with a larger explanatory power, if it is able to describe the variation in
the data su�ciently.

It is only the stock and bond market indices that are modelled, since it appeared
from chapter 3 that the LIBOR-index is uncorrelated with the rest of the indices.
Thus, the LIBOR-index should have its own distinct model, which would not
contribute to the present analysis. Furthermore, the lack of observations of the
LIBOR-index from the �rst four and a half years means that this period would
have to be disregarded in the model estimation, if this index was included in a
multivariate model.

As the last thing in the chapter, the perfomance of the chosen model is tested
on the data in an in-sample test. It will be the weekly log returns that are
modelled, since these are mean stationary and almost free of autocorrelation.
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4.1 Choosing a Regime Approach

From chapter 3 it appeared that the main challenge is that everything in the
dataset seems to be changing over time. Since there is no doubt about the
strong correlation between many of the series, the chosen model should bene�t
from the correlations in order to improve the model performance. Given that
the correlations between the indices aren't constant, the only option is some
kind of threshold model.

A threshold model is useful when modelling a system, where the dynamical
behaviour depends on the actual state.[15] From �gure 3.8 on page 34 it appeared
that there is as a minimum a di�erence between the behaviour during upturns
and downturns.

Since threshold models can be very complicated to estimate, the approach taken
here is to partition the overall period into shorter periods, where correlations
can be assumed to be constant. In each discrete regime the dynamics of the
system is then approximated by some 'simple' model.

4.1.1 The Number of Regimes

The �rst thing to decide on is the number of di�erent regimes. The partition-
ing into regimes should be based on the primary trend, which is the long-term
movement of prices, lasting from several months to several years. Otherwise the
number of regimes would be too large for the approach to be feasible. Within
each regime there will then be intermediate trends caused by short-term de-
viations from the underlying trend line. These deviations are less important,
since they are eliminated, when prices revert back to the trend line.[2] The daily
�uctuations can of course deviate from the intermediate trend, but this has no
importance, when looking at a �ve year time horizon. Looking at weekly data
also has the advantage that it smooths these minor trends.

Based on the analysis of the cross-correlation function in section 3.4, it is ex-
pected that as a minimum there will be a signi�cant di�erence between upturn
and downturn. The typical choise, when dealing with �nancial data, is four
di�erent types of regimes; expansion, peak, recession, and trough.[2]

Peak is the period, where the economy is running at its highest. After a peak
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follows a recession, where the economy experiences negative growth. The re-
cession leads to a trough, where the economy is at its lowest. After a trough
comes a period of expansion, where the economy experiences growth. The ex-
pansion then leads to a peak and so on. This recurring pattern of contraction
and recovery is called the business cycle.

The simplest choise is obviously to partition into upturn and downturn. The
rather abrupt changes observed between expansion and recession advocate this
approach, since there is no need for intermidate regimes. The more di�erent
regimes that are applied, the more turningpoints are needed, and the harder it
will be to identify the turningpoints. The approach that will be taken here is
to partition the period into upturn and downturn, and then afterwards assess,
whether this partitioning is su�cient.

Having decided upon the number of di�erent regimes, the decision on the actual
number of regimes still remains. The question is, whether each upturn and
downturn, respectively, can be assumed to be identical. It seems reasonable
to expect that the dynamics underlying the two types of regimes would be the
same for each respective phase. On the other hand, it appeared from the data
analysis that almost everything in the dataset is changing over time.

Once again the approach taken will be the simplest one, that is joining the
upturns and downturns into two di�erent regimes. This reduces the number of
models that have to be estimated and avoids the choice of which upturn and
downturn to simulate from, when generating scenarios.

4.1.2 OECD Composite Leading Indicators

As already mentioned, the economy recurrently experiences periods of upturn
and downturn. The length and depth of those phases can be irregular. In
a two regime model, the transistion points across cycles are called peaks and
troughs; a peak is the transition from the end of an expansion to the start of a
contraction. A trough occurs at the bottom of a recession just as the economy
enters a recovery. Here peaks and troughs are points in time and not periods
of time like before, when they referred to regimes.[2] More precisely, a cycle is
the time span separating two turning points of the same nature (two peaks or
two troughs). The time span between a peak and a trough is referred to as the
phase length.

Given the cyclical nature of the economy, it is not suprising that to some extend
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the cycle can be predicted. Leading economic indicators are economic time
series that tend to rise or fall in advance of the rest of the economy.[2] A leading
indicator is said to have a leading relationship with respect to the turning points
of a reference series. A composite leading indicator, CLI, is constructed by
combining two or more leading indicators into a single index number.

96
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Normalised CLI
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Figure 4.1: The normalised compos-
ite leading indicator together with a nor-
malised index of industrial production for
the total OECD area. The vertical lines
indicate the turning points of the CLI:
Trough 1998M10, Peak 2000M2, Trough
2001M9, Peak 2007M5, Trough 2009M2,
Peak 2011M2.

The OECD1 system of composite
leading indicators was developed in
the 1970's to predict turningpoints in
a reference series chosen as a proxy
for economic activity. Fluctuations in
economic activity are measured as the
variation in the output gap, typically
represented by the movements in the
GDP around its long-term trend. The
normalised CLI in �gure 4.1 shows
a leading relationship with the nor-
malised index of industrial produc-
tion (the reference series) for the to-
tal OECD area. Since 1961 the turn-
ingspoints of the OECD CLI has con-
sistently been preceding those of the
economic activity relative to long-

term trend with a median of six months and a standard deviation of three
and a half month for the total OECD area.[21]

The construction of the OECD CLI is a complicated matter. First reference
series and component series are chosen. Reference series are economic time series
that exhibit similar cyclical �uctuations to those of the business cycle, but which
precede those of the business cycle. The typical choice is an index of industrial
production. The component series have to show a leading relationship with
the reference series and the relationship should have an economic explanation.
Also, series with a broad coverage of economic activity are preferred to narrowly-
de�ned series.

The potential leading indicators are divided into four groups: Early stage indi-
cators such as new orders and construction approvals. Rapidly responsive indi-
cators such as average hours worked, pro�ts, and stocks. Expectation-sensitive
indicators measuring, or sensistive to, expectations, such as stock prices, raw
material prices, and data from business surveys concerning production, the gen-
eral economic situation, consumer con�dence etc. And �nally prime mover

1Organisation for Economic Co-operation and Development.
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indicators relating to monetary policy and foreign economic developments such
as money supply and terms of trade.

Some potential indicators might belong to more than one of the groups. The
idea behind dividing potential leading indicators into the four above mentioned
groups is to balance the composition of a given CLI and the cyclical events that
can impact it by including indicators from all four categories.

When the leading components have been selected they are �ltered for out-
liers, seasonal patterns, long term trends etc. in order to clarify the cyclical
patterns. This also includes a smoothing that removes high frequency noise.
Then the turningpoints are detected using the Bry-Boschan algorithm. This
routine speci�es a minimum duration of �ve months for a phase and �f-
teen months for a cycle. The last step in the �ltering process is a normalisation
to secure a common scale.

The cyclical performance of each candidate component series is then evaluated
using di�erent statistical methods. A component is only considered for inclusion
if the detected turning points have suitable leading properties. The best per-
foming component series are selected based on the length and the consistency of
their lead and the cyclical conformity between the indicators and the reference
series.

The selected leading indicators are then composed to one composite leading
indicator. Each component receives the same weight. It should be noted that
the normalisation of the components described above, introduces an implicit
weighting of the component series, with the series being weighted by the inverse
of their standard deviation. OECD calculates CLIs for di�erent countries and
zones. In the zone aggregates the CLIs themselves are weighted re�ecting the
country weights.[20]

4.1.3 Partitioning According to OECD CLI

Instead of partitioning the data period into upturn and downturn based on a
subjective assessment, the partioning will be done according to the CLI for
the total OECD area.2 No matter how the partioning is done, it will give rise

2The OECD Total Area covers the following 29 countries: Australia, Austria, Belgium,
Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Por-
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Figure 4.2: The eleven indices scaled to start at index 100 on the 1st of January
1999. The vertical lines indicate the partition into upturns and downturns based on
the turning points of the CLI for the total OECD area.

to an error as a consequence of the indices representing di�erent parts of the
world, and the turning points being di�erent from one country to another. For
instance, the turning point marking the end of the latest �nancial crisis was at
the end of October 2009 in Denmark, while it was at the end of June 2009 in
the United States. The total area CLI is chosen since the indices included in
this project represent a large part of the world.

The CLI can be used to partition the indices into regimes even though the CLI
tends to precede turning points in economic activity by six months. The reason
being that the �nancial markets react on expectations based on such indicators
and therefore also precede the turning points in the economic activity. This is
supported by the fact that stock indices are grouped both as rapidly responsive
indicators and expectation-sensitive indicators in the construction of the CLI.

Figure 4.2 shows the eleven indices, scaled to start at index 100 on the 1st of
January 1999, partitioned into regimes according to the turning points of the
CLI for the total OECD area (see �gure 4.1).

The OECD CLIs are revised regularly, partly because countries revise many

tugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom, and United
States.
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informations after they have been published, partly because of changes in the
computation method, and partly because the �ltering of the series means that
new information can change previous numbers. The partioning was done ac-
cording to the turning points of the normalised CLI for the total OECD area
based on data extracted from the OECD database on the 5th of January 2012.

The partitioning seems overall decent. Especially the turning point at the end
of May 2007 would be moved sligthly if it was decided based on a subjective
assessment instead. It is however evident that the indices don't share the same
turning points. It appears that there are intermediate trends like a steep decline
for a couple of months during an upturn and vice versa, but the restrictions on
phase and cycle length are perfectly �ne, since otherwise the number of regimes
would be too large.

Once again it appears that the choice of disregarding the LIBOR-index is correct,
since this index seen to have moved opposite the rest of the indices for the last
couple of years.

4.2 Choosing a Model

Having decided on the partitioning, the next choice is the model class to be
used within each regime. A linear time series model like ARIMA is not appli-
cable, since it is unable to encount for the non-constant variance observed (see
�gure 3.4 on page 21).

Only one of the ten indices in question (CSIYHYI) exhibited signi�cant au-
tocorrelation, when looking at weekly log returns. Assuming that there is no
autocorrelation, a possibility could be a multivariate random walk.

The downside of using a multivariate model is that the scenario generation is
complicated as all the indices have to be simulated simultaniously. Emphasising
that the aim is to generate scenarios, there is a preference towards simulating
principal components instead, since these are independent and consequently
can be simulated independently, still assuming that there is no autocorrelation.
Modelling principal components also has the advantage that it o�ers an easy
way of reducing the dimensionality of the simulation space.

The principal components are conditionally heteroscedastic just like the log re-
turns, since the principal components are simply a rotation of the log returns.
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Since the log returns displayed signs of volatility clustering (�gure 3.3 on page 20
and 3.4 on page 21), it is expected that a conditional heteroscedastic model is
necessary for modelling the principal components. Conditional heteroscedastic-
ity means that the conditional variance depends on past observations.

The conditional heteroscedasticity doesn't con�ict with the assumption of PCA,
that the log returns originate from a multivariate normal distribution with con-
stant mean and variance, since the unconditional variance is assumed to be
constant. The crucial point is whether the correlations can be assumed to be
constant within the regimes.

4.2.1 ARCH and GARCH Models

The Generalised AutoRegressive Conditional Heteroscedastic model (GARCH-
model) of order (p, q) is given by

yt = µt + εt, εt ∼ N
(
0, σ2

t

)
(4.1)

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j , (4.2)

where ω > 0, α ≥ 0, β ≥ 0, and µt = E [yt|Yt−1] is the conditional mean of yt.
It appeared from �gure 3.3 on page 20 that the log returns are mean stationary,
thus µt = µ. The model is weakly stationary if α + β < 1. In the special case
p = 0, the model is referred to as an ARCH(q)-model.

The GARCH-model assumes that the conditional variance σ2
t is a linear function

of previous squared errors and previous variances. Large �uctuations in yt
induces a larger variance, and thus a larger probability of large �uctuations in
the future.

The unconditional variance of the process is

Var [yt] =
ω

1− α− β
. (4.3)

The model is based on the assumption that the conditional distribution of yt
is normal. This is seen to be consistent with the no-arbitrage principle, as the
best prediction of the next return is simply its unconditional mean:

yt+1|t = E [yt+1|Yt] = E [yt+1] = µt. (4.4)
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It is possible to make other assumptions about εt than the normal distribution,
but this is rarely done in practice. The reason being that the maximum likeli-
hood estimator based on the normal distribution has the huge advantage that
it is robust to misspeci�cation of the conditional distribution, if the conditional
mean, µt, and the conditional variance, σ2

t , are correctly speci�ed.[13]

4.2.2 The Likelihood of the Model

The likelihood function of the model is the probability density function of the
observed outcome YN = (yN , ..., y1) given the parameters θ:

L (θ) = f (YN |θ) = f (y1)

N∏
i=2

f (yt|Yt−1, θ) . (4.5)

The conditional distribution is assumed to be

f (yt|Yt−1) =
1√
2πσ2

t

exp

(
−1

2

ε2t
σ2
t

)
, (4.6)

where εt = yt − µt.

Since the likelihood function is a product of N terms involving the exponential
function of a negative value, it is often convenient to consider the logarithm
of the likelihood function instead of the likelihood function itself, since this
function is easier to evaluate on a computer:

lnL (θ) =

N∑
t=1

lnLt (θ) , (4.7)

where

lnLt (θ) = −
1

2
ln (2π)− 1

2
lnσ2

t −
1

2

ε2t
σ2
t

(4.8)

is the conditional distribution of yt given Yt−1.

For a GARCH(p, q)-model, there is no knowledge of the distribution of the
�rst p + q observations. This problem is tackled by looking at the conditional
distribution of yN , ..., yp+q+1 given Yp+q corresponding to t = p+ q+1, ..., N in
(4.7). This has no in�uence on an optimisation of the likelihood function, since
these terms would be constant.
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4.3 Estimating Principal Components

Table 4.1 summarises the standard deviation, the proportion of variance, and
the cumulative proportion of variance explained by the estimated principal com-
ponents for the ten centered and scaled weekly log return series during the three
upturns from �gure 4.2 on page 50. The centering and scaling factors for both
upturn and downturn appear from table A.1 on page 93 in appendix A.

PC1 PC2 PC3 PC4 PC5
Standard deviation 2.11 1.39 1.07 0.82 0.75
Proportion of Variance 0.44 0.19 0.12 0.07 0.06
Cumulative Proportion 0.44 0.64 0.75 0.82 0.87

PC6 PC7 PC8 PC9 PC10
Standard deviation 0.64 0.56 0.49 0.44 0.31
Proportion of Variance 0.04 0.03 0.02 0.02 0.01
Cumulative Proportion 0.91 0.95 0.97 0.99 1.00

Table 4.1: Standard deviation, proportion of variance, and cumulative proportion of
variance explained by the principal components estimated from the joined expansive
periods according to �gure 4.2 on page 50.

The �rst seven associated eigenvectors are listed in table 4.1.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7

KAXGI -0.35 0.05 0.18 -0.15 0.63 -0.59 -0.09
NDDUE15 -0.41 0.04 0.19 -0.37 -0.08 0.09 -0.07
NDDUJN -0.32 -0.10 -0.63 0.10 -0.07 -0.04 0.03
NDDUNA -0.38 0.03 0.21 -0.47 -0.21 0.28 0.48
NDUEEGF -0.40 0.01 0.06 0.06 -0.28 0.16 -0.79
TPXDDVD -0.35 -0.00 -0.58 0.04 0.05 -0.04 0.20
CSIYHYI -0.31 -0.20 0.24 0.54 0.45 0.53 0.14
JPGCCOMP -0.24 -0.38 0.30 0.41 -0.50 -0.48 0.23
NDEAGVT 0.16 -0.62 -0.09 -0.17 0.07 0.12 -0.05
NDEAMO 0.06 -0.65 -0.03 -0.32 0.12 -0.01 -0.14

Table 4.2: Estimates of the �rst seven eigenvectors based on the joined expansive
periods according to �gure 4.2 on page 50.

The squareroots of the eigenvalues and the eigenvectors for the joined recessive
periods appears from table 4.3 and 4.4.

It takes four principal components to explain 82% of the variation during the
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PC1 PC2 PC3 PC4 PC5
Standard deviation 2.33 1.36 0.95 0.72 0.65
Proportion of Variance 0.55 0.19 0.09 0.05 0.04
Cumulative Proportion 0.55 0.73 0.82 0.87 0.92

PC6 PC7 PC8 PC9 PC10
Standard deviation 0.50 0.47 0.42 0.35 0.28
Proportion of Variance 0.02 0.02 0.02 0.01 0.01
Cumulative Proportion 0.94 0.96 0.98 0.99 1.00

Table 4.3: Standard deviation, proportion of variance, and cumulative proportion of
variance explained by the principal components estimated from the joined recessive
periods according to �gure 4.2 on page 50.

joined upturn, while three principal components are enough to explain the same
proportion of variation during the joined downturn. This is not suprising, since
the cross-correlations in many cases appeared stronger during the downturn
than the upturn (see �gure 3.8 on page 34). This di�erence in the eigenvalues,
and consequently the explanatory power, of the �rst principal components is
further evidence of the di�erence between the two types of regimes.

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7

KAXGI -0.38 0.05 -0.17 0.08 -0.22 0.37 -0.27
NDDUE15 -0.38 0.02 -0.19 0.37 -0.11 0.11 0.09
NDDUJN -0.31 0.04 0.70 -0.11 -0.08 -0.01 0.01
NDDUNA -0.36 0.09 -0.20 0.34 -0.43 -0.55 0.08
NDUEEGF -0.38 -0.00 -0.07 0.10 0.32 0.59 0.13
TPXDDVD -0.35 0.07 0.52 -0.03 0.12 -0.18 -0.02
CSIYHYI -0.31 -0.02 -0.26 -0.84 -0.28 -0.02 -0.02
JPGCCOMP -0.32 -0.27 -0.24 -0.09 0.66 -0.38 0.24
NDEAGVT 0.06 -0.67 0.12 0.03 -0.34 0.16 0.60
NDEAMO -0.06 -0.68 0.03 0.09 0.01 -0.07 -0.69

Table 4.4: Estimates of the �rst seven eigenvectors based on the joined recessive
periods according to �gure 4.2 on page 50.

Comparing the eigenvectors of the two regimes it is seen that there are certain
di�erences, but the overall interpretation of the �rst four components is the
same: the �rst principal component is the general level. Most of the indices
have almost equal weight in this component except for the two Nordea bond
indices. The two Nordea indices achieve high weights on the second component.
The two Japanese indices achieve high weights on the third component, while
CSIYHYI has by far the highest weight on the fourth component.
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4.3.1 Deciding on the Number of Components

As mentioned previously, the crucial point in PCA is the decision on how many
principal components to retain. It is of course possible to retain all ten compo-
nents and simply use the principal component analysis to obtain independency
between the components that is simulated. But why not use the analysis to
reduce the number of quantities that should be simulated, when this can be
done without losing anything but some apparent random disturbance.
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Figure 4.3: Scree plot of the eigenvalues
against the rank order for random data and
for the principal components of the weekly
log returns partitioned into regimes.

According to the broken stick cri-
terion, only the �rst two principal
components should be kept. This
appeares from �gure 4.3, where the
eigenvalues of the broken stick dis-
tribution are plotted together with
the estimated eigenvalues for the two
regimes. Keeping two principal com-
ponents would lead to an average ex-
planatory power of 64% during the
upturns, which seems insu�cient for
the purpose of generating scenarios.

Based on the screeplot alone it appears that three components should be re-
tained, since the curves �atten out after the third component. Retaining the
�rst three components would result in average explanatory powers of 75% and
82% respectively, which is more likely to be su�cient for the purpose of gener-
ating scenarios. The di�erence in explanatory power betweeen the two regimes
re�ects that correlations are weaker during upturns resulting in more unexplain-
able random behaviour.

4.3.2 Communalities

Upon deciding on the number of components to retain, the communalities should
be investigated to see how well each variable is explained by the retained prin-
cipal components.

The communalities for the ten indices based on retention of three principal com-
ponents during the upturns appear from table 4.5. The corresponding estimates
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for the downturns appear from table 4.6. It should be noted that the commu-
nalities are averages, since the conditional variance of the principal components
is expected to be non-constant.

KAXGI NDDUE15 NDDUJN NDDUNA NDUEEGF

0.60 0.78 0.93 0.68 0.72

TPXDDVD CSIYHYI JPGCCOMP NDEAGVT NDEAMO

0.92 0.56 0.63 0.85 0.82

Table 4.5: Communalities for the ten weekly log return series during the joined
upturn based on the three four principal components.

The index with the lowest communality is the CSIYHYI-index with only 56% of
the variance being explained during upturns and 60% during downturns. The
obvious explanation is that the CSIYHYI-index has a high weight on the fourth
component, which is the �rst component not retained. Also the KAXGI and
the JPGCCOMP-index have very low communalities during upturns. The low
communalities during upturns are accetable since they have an explanation in
the amount of random behaviour.

KAXGI NDDUE15 NDDUJN NDDUNA NDUEEGF

0.83 0.84 0.96 0.76 0.81

TPXDDVD CSIYHYI JPGCCOMP NDEAGVT NDEAMO

0.94 0.60 0.75 0.86 0.88

Table 4.6: Communalities for the ten weekly log return series during the joined
downturn based on the �rst three principal components.

Only the CSIYHYI-index is not su�ciently explained neither during upturns nor
downturns by the retained components. This could be the result of disregarding
the signi�cant autocorrelation observed in this index series. With most of the
communalities for the rest of the indices being much above 70%, the number of
components retained seems su�cient.

4.3.3 Assumptions

PCA assumes that there is no autocorrelation within the log return series since
the observations represent an independent, random sample from a multivariate
normal distribution. The normality assumptions has already been discussed
thoroughly in section 3.3 and seems acceptable, but the CSIYHYI has signi�cant
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autocorrelation. Accepting the indepency assumption means accepting a one in
ten error, which has to be emphasised. The risk of the principal components not
being perfectly independent is accepted, since there is no obvious explanation
for the observed weekly autocorrelation.

The linearity assumtion appears unproblematic, as it would be hard to extract
an explanatory power as high as 80% in only a few principal components if there
were pronounced non-linearities.

The ten log return series were standardised prior to the PCA in order to handle
the sensivity of the analysis to the relative scaling of the original variables.
Finally, the in�uence of the many extreme observations on the direction of the
component axes has to be taken into account, but as discussed in chapter 3,
these extreme observations should be included since realistic scenarios have to
contain a possibility of such extreme events.

4.4 Estimating Model Parameters

The parameters in the GARCH-model (4.2) are estimated through a maximi-
sation of the conditional log likelihood function using the function �garch� from
the �tseries� package in R. The code used can be found in appendix B.2 on
page 109.

It has to be mentioned that there is a �aw in the estimation of the parameters
that arises from the merging of the di�erent upturns and downturns respectively.
The �rst p + q observations after each merging point should be disregarded in
the evaluation of the conditional likelihood function. This is not done due to
the technical challenges that is involved in writing a new parameter estimation
function. The e�ect of not disregarding a few points should be negligible given
the large number of observations within each regime.

4.4.1 Parameter Estimates

The parameter estimates of the optimal ARCH-models appear from table 4.7.
The principal components are found to be best described by an ARCH(1)-model.
This means that the conditional variances are independent of previous variances.
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ω̂ SD (ω̂) α̂1 SD (α̂1) pJB pLB

PCup1 3.519 0.23 0.221 0.06 0.00 0.47
PCup2 1.493 0.12 0.225 0.05 0.00 0.95
PCup3 1.041 0.08 *0.092 0.07 0.08 0.74
PCdown1 1.978 0.30 0.732 0.13 0.00 0.69
PCdown2 1.365 0.14 0.261 0.10 0.01 0.69
PCdown3 0.894 0.09 *0.015 0.09 0.00 0.98

Table 4.7: Estimates of the parameters in (4.2) along with the standard deviation
of the estimates and p-values for a Jarque-Bera test for normality of the residuals and
a Ljung-Box test for independency among the squared residuals. * denotes estimates
that are statistically insigni�cant at 95%-level.

µt = 0 in all cases since the principal components are computed for the stan-
dardised weekly log returns (the standardisation factors appear from table A.1
on page 93 in appendix A).

Most of the stated parameters are statistically signi�cant on a 95%-con�dence
level. This does however not apply to the α1 parameter for PC3. The third
principal components is simply a random walk with variance ω.

pJB is the p-value of a Jarque-Bera test of whether the residuals can be assumed
to be normally distributed, as they should be. The test is seen to reject the
possibility of the residuals being normally distributed in all but one case, namely
PCup3 . This is not surprising, since it is the same conclusion that was drawn in
section 3.3, when the same test was applied to the log return series, despite the
resemblance noticed by the robust moments.

pLB is the p-value of af Ljung-Box test for independency among the squared
residuals. It is seen to be very likely that the squared residuals are independent,
as they should be. This suggests that the models are valid. If the neglected
autocorrelation in the CSIYHYI-index compromised the indepency assumption,
this test should have shown.

The 95%-con�dence intervals for the parameter estimates for PC2 and PC3

during upturn and downturn are seen to overlap, meaning that the behaviour of
these principal components is not signi�cantly di�erent from upturn to down-
turn.3 This is not the case for the parameter estimates for PC1. The parameters

3If the model assumptions are ful�lled, the parameter estimates are approximately t-
distributed, meaning that an approximate 95%-con�dence interval for a parameter estimate
is ±2 · SD, when the number of degrees of freedom is large.
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for this component, which is interpreted as the general level of log returns, are
signi�cantly di�erent from upturn to downturn. This is the �nal evidence of the
di�erence between the two regimes.

The merging of the individual upturns and downturns into two regimes leads
to a smoothing. The expansive regime will not be as expansive as the most
expansive of the three upturns, and conversely the recessive regime will not be
as recessive as the worst decline observed during the two downturns. In this
way, the di�erences between upturn and downturn are smoothed, which could
be part of the explanation for the similarities observed between some of the
principal components.

4.4.2 Considering Stationarity

It has been shown that if a GARCH-model is estimated on data that contain
switches in the data-generating parameters of the conditional variance equation
(4.2) that are not accounted for, then the sum of the estimated parameters con-
verges to one.[7] Therefore it is worth noting that none of the estimated models
are close to being non-stationary, since α̂1 is clearly less than one. This suggests
that the partitioning based on the OECD leading indicators is reasonable even
though it is far from perfect.

Also, if the �aw in the estimation of the parameters that arose from not disre-
garding the �rst observation after each merging point was important, it should
have shown through parameters converging to one.

In the process of modelling the data several partitionings have been tried.
Among those, partitioning according to the turning points of the OECD ref-
erence series. The parameter estimates were found to be very sensitive to the
partitioning. Minor changes in the turning points led to completely di�erent
model parameters. The impact on the generated scenarios would probably be
less apparent, since the model class was always the same. The important point
to make is that the estimated models are no way near being non-stationary,
which suggest that the choosen partitioning is adequate. Then the sensitivity
to the partioning is less important.
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4.5 Assessing Model Performance

Before the estimated models are applied to generate scenarios, they are tested in
a so-called in-the-sample test. This is done through simulations of the datape-
riod based on the estimated model. The simulated time series should resemble
the true data for the model to be applicable for generating scenarios forward in
time. There are not enough observations available to also do an out-of-sample
test, when the purpose is to generate scenarios �ve years forward in time.

The 5%, 25%, 50%, 75%, and 95%-quantiles of the 10,000 simulated time series
are shown in �gure 4.4 together with the observed time series (red). The lowest
dashed line is the 5%-quantile, the second lowest is the 25%-quantile, the median
is the solid black line etc. The phase length of each up- and downturn was kept
�xed to the observed value in the simulations.

The CSIYHYI-index is clearly the index that is worstly described by the model.
From 2004 until 2010 the median of the simulations deviates considerably from
the observed time series. After 2010 the median and the observed time series
are reunited.

The model seems unable to capture the magnitude of all the observed �uctua-
tions, but the observed values are seen to reunite with the median shortly after
each deviation. With only a few exceptions, the �uctuations are within the
interquartile range of the simulated data. Only three indices (KAXGI, TPXD-
DVD, and CSIYHYI) are seen to have �uctuations that lie outside the 5% or
the 95%-quantile at some point.

The simplicity of the model comes with the cost of a smoothing as already
discussed. Even with a more complicated model, it is unlikely that the median
would re�ect the observed magnitude of �uctuations. The important point is
that there should be some scenarios that re�ect the possibility of such steep
inclines and declines as observed in the data. All in all, the results are found to
be decent, so the model seems applicable, since the observed values lie within
the interquartile range most of the time.
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Figure 4.4: The 5%, 25%, 50%, 75%, and 95%-quantiles of the 10,000 simulated time
series together with the true datapoints (red). The simulations are done keeping the
phase length of each up- and downturn �xed to the observed value.



Chapter 5

Scenario Generation

Having chosen a model with emphasis on the purpose of generating scenarios
makes the scenario generation a lot easier. In the chosen regime model, which
�tted decently with the data, each principal component can be simulated inde-
pendently. The challenge that remains is the choice of which regime to simulate
from.

Each scenario is a weekly realisation of the value of all ten indices �ve years
forward in time from the 12th of August 2011. The generated scenarios are
visualised using quantiles, since these are robust to the presence of a few very
extreme scenarios. The interquartile range is very important as a measure of
volatility since the collection of scenarios should capture the range of variations
in the indices that is likely to occur.

There are also generated scenarios using a bootstrapping procedure developed
based on the observations from the data analysis chapter. The bootstrapped
scenarios provide a standard of comparison for the scenarios generated with the
model from chapter 4.
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5.1 The Choise of Regime

For each time step in the scenario generation there has to be a choice of which
regime to simulate from. This choice should be made in a way that is consistent
with the no-arbitrage principle. Given that the economy was in a recession on
the 12th of August 2011, where the scenarios begin, allmost all the scenarios
should begin with values simulated from the downturn model.

The length of the current phase is a positive random variable T chosen to have
exponential distribution with rate λ, where λ is a positive parameter. T then
has probability density

f (t) = λ exp (−λt) , t ≥ 0. (5.1)

The exponential distribution is chosen, because T then by de�nition has the
memoryless property:

P (T > t+ s|T > t) = P (T > s) , (s ≥ 0, t ≥ 0) . (5.2)

Given that a crisis has lasted t, the chance that it will last a further time s is the
same as the chance that it would last s in the �rst place.[24] In other words, the
probability of shifting regime is the same each week. This is perfectly consistent
with the no-arbitrage principle.

The parameter λ is chosen as the reciprocal of the empirical average length of
the phase in question:

E [T ] = SD [T ] =
1

λ
= µ̂T . (5.3)

The theoretical median of T is

Median [T ] =
1

λ
ln 2. (5.4)

The exponential distribution is a continous distribution. In the scenario gener-
ation, T has to be rounded in order to be a discrete number of weeks. In this
way, the probability of T = 0 is �nite, meaning that there is a chance that the
crisis ended on the 12th of August 2011 and therefore some scenarios should
begin with values simulated from the upturn model. This probability, which is
the probability that the current regime ended last week, is of course very little.
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5.1.1 Estimating the Parameter λ

The parameter λ has to be estimated for both upturn and downturn. The
estimates of λ will have a large in�uence on the generated scenarios. Hence, es-
timating the λ's solely based on the three upturns and two downturns contained
in the data period is too erratic.

The λ parameters are instead estimated from the historical phase lengths of

Peak/trough Time Length upturn Length downturn

P 1957M3
T 1958M6 15 months
P 1960M3 21 months
T 1963M1 34 months
P 1964M2 13 months
T 1965M8 18 months
P 1969M6 46 months
T 1971M8 26 months
P 1973M11 27 months
T 1975M6 19 months
P 1979M12 54 months
T 1982M12 36 months
P 1984M9 21 months
T 1986M12 27 months
P 1990M6 42 months
T 1993M8 38 months
P 1995M1 17 months
T 1996M4 15 months
P 1997M11 19 months
T 1999M1 14 months
P 2000M8 19 months
T 2001M12 16 months
P 2008M2 86 months
T 2009M4 14 months
P 2011M3 23 months

Mean 32.3 months 22.7 months
Median 22.0 months 18.5 months
Std. deviation 21.2 months 9.1 months

Table 5.1: Historical turning points and phase lengths of the reference series for the
total OECD area.[22]
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the reference series for the total OECD area since 1957. The reason for using
the turning points of the reference series instead of the CLI-series is simply the
availability of the data. A comparison of �gure 4.1 on page 48 and �gure 4.2 on
page 50 gives no reason to assume that this should introduce any bias.

From table 5.1 it appears that the mean phase length has been 32.3 months
for upturns and 22.7 months for downturns equalling 140 weeks and 98 weeks
respectively.1 Thus, the average upturns has lasted ten months longer than
the avarage downturns. This agrees with the majority of the past twelve years
being characterised as expansion. The probability of having to simulate from
an upturn should consequently be larger than for a downturn.

The large di�erence in the average phase lengths is not re�ected in the median.
Given the empirical averages the medians should be 22.4 and 15.7 months re-
spectively according to (5.4). The empirical medians are seen not to be too far
from the expected values, which supports the distribution assumption. The em-
pirical standard deviations are however much smaller than the averages, which
does not agree with an exponential distribution (5.3). Overestimating the stan-
dard deviation of the phase lengths by applying an exponential distribution
assumptions is not a problem, since it only leads to scenarios that capture a
slightly broader range of variation.

From the estimated average phase lengths in weeks the following estimates of λ
are obtained: λup = 1/140 and λdown = 1/98.

5.2 Generating Scenarios

The algorithm used for generating scenarios is summarised in pseudo code in
�gure 5.1. The nuber of scenarios is Nscenario = 10, 000 and the total number
of weeks in each scenario is Nweek = 5 × 52 = 260. Iup is a binary variable
indicating whether the economy is currently in an upturn or not. Iup is initialised
as zero in all simulations as the economy was in a recession on the 12th of
August 2011, where the scenarios begin. Also the number of weeks simulated
in the current scenario, N , is initially zero.

As long as the number of weeks simulated in the current scenario is less than
260, a random number n specifying the lenght in weeks of the current regime

1 32.3×52
12

= 140 and 22.7×52
12

= 98
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for i in 1 : Nscenario

Initialise N = 0 and Iup = 0

while N < Nweek

Generate parameter n ∈ Exponential (Iupλup+
(1− Iup)λdown)and round o� to nearest integer

Simulate principal components min (n,Nweek −N)
steps using up- or downturn model depending on Iup

Transform simulated components to weekly log returns

Set N = N + n and Iup = ¬Iup

endwhile

Combine simulated weekly log returns to one time series

endfor

Transform weekly log return series to weekly index values

Figure 5.1: Scenario generation algorithm in pseudo code.

is genereated from an exponential distribution with parameter λ depending on
the current regime. n is then rounded to the nearest integer. Then the ARCH-
models describing the �rst three principal components of the current regime are
simulated n steps or the remaining number of steps in the current scenario.

After the simulated components have been transformed to weekly log returns,
the number of weeks simulated, N , is updated and the indicator variable Iup is
negated, such that the next regime is the opposite type. If the number of weeks
simulated is less than 260, the procedure is repeated starting with generating
a new n. When N = 260 the simulated log returns are pasted to one time
series. After the simulation of Nscenario scenarios, all the log return series are
transformed to weekly index values.
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5.3 Assessing Scenarios

Ten of the 10,000 scenarios generated using the pseudo code in �gure 5.1 on the
preceding page are visualised in �gure 5.2 together with the 5%, 25%, 50%, 75%,
and 95%-quantiles (black lines). The median is the solid black line. The red line
is the scenario containing the maximum drawdown for each index. The median,
interquartile range, and return is summarized for each 52 weeks in table A.3 on
page 94 in appendix A.

The ten scenarios visualised are strati�ed according to the �nal value ranging
from the scenario ending at the lowest value to the 999th highest value. The
scenarios ending at the highest values are not visualised because they end at
extremely high values and consequently mess up the scale of the second axis. If
KAXGI ends at a value of 20,000 and the other indices likewise, then it does
not really matter which index that was invested in, since the pro�t will be huge
anyway. The in�uence of these few very optimistic scenarios on the quantiles is
not a problem, since the quantiles are robust.

The distribution of the �nal values of the scenarios indexed by the value on the
12th of August 2011 are displayed in �gure 5.3 excluding the 1% highest values.
The 5%, 25%, 50%, 75%, and 95%-quantiles are also shown (blue lines).

In the process of modelling the data and generating scenarios several approx-
imations that in�uence the accuracy of the scenarios have been made. This
includes the error that arises from the smoothing due to the weekly sampling
of a continous process. From the communalities in table 4.5 and 4.6 on page 57
it appeared that the worst described index is the CSIYHYI with communalities
of about 60%. Consequently, the scenarios for this particular index cannot be
assumed to be very accurate. As far as the rest of the indices, there have not
been any indications that accuracy is compromised.

Some of the scenarios are seen to be very volatile, while others are more steady.
Some scenarios contain large setbacks and others contain steep inclines, just as
the real data. The scenarios for the stock indices are seen to be much more
volatile than for the bond indices. This observation is also consistent with the
observed behaviour of the real data. By choosing ARCH-models the scenarios
are also guaranteed to exhibit some level of volatility clustering.

None of the indices provide a possibility of a riskless pro�t. Only the medians
of the bond scenarios end up at values higher than the starting value, with
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Figure 5.2: Ten of the 10,000 simulated scenarios (grey) together with the 5%, 25%,
50%, 75%, and 95%-quantiles (black), and the maximum drawdown (red).

JPGCCOMP o�ering the highest median return (54%). This is despite the fact
that all indices except for TPXDDVD have provided positive total returns over
the twelve year data period. The average yearly returns through the data period
can be found in table A.2 on page 93 in appendix A. This is the result of most
of the scenarios beginning in a downturn with an average length of 15 months
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Figure 5.3: Density histograms of the �nal values of the 10,000 simulated scenarios
excluding the 1% highest �nal values. The values are indexed by the value of the
indices on the 12th of August 2011. The blue lines are the 5%, 25%, 50%, 75%, and
95%-quantiles.

out the total scenario length of 60 months.

The scenarios for the two Danish bond indices (NDEAGVT and NDEAMO)
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are closest to o�ering a riskless pro�t with only a few scenarios containing a
very limited loss. For instance, the probability of an investment in NDEAGVT
resulting in a gain is more than 95% and worst case is loosing less than 15%
of the initial investment. This is however balanced by the observation that the
more secure bond indices provide no way near the same pro�t opportunities as
the more volatile stock indices. The median returns of the Danish bond indices
are very high compared to the low risk, but this re�ects the fact that both
indices have almost doubled in value over the past twelve years.

Since the data was modelled as a multivariate distribution using principal com-
ponents, consistency cannot be troublesome either. The only way consistency
can be compromised with this approach is due to lack of accuracy. And as al-
ready argued, there are no signs of lack of accuracy. For instance, the scenario
containing the maximum drawdown is seen to decline rapidly in the �rst part
of 2014 for all the indices except the stable Danish bond indices. The drop hap-
pens at the same point in time for all the indices due to the strong correlations.
The magnitude of the drop is however di�erent from one index to another. To
summarise, both accuracy, correctness, and consistency seems approved.

Initialise MDD = 0 and peak = 0

for i in 1 : N

if xi > peak
peak = xi

else
DD = (peak − xi) /peak

if DD > MDD
MDD = DD

endif

endif

endfor

Figure 5.4: Pseudo code for computing the maxmimum drawdown of a variable X.
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5.3.1 Maximum Drawdown

The maximum drawdown is the largest relative decline from a historical peak
in the index value. The pseudo code for determining the maximum drawdown
of a variable X is shown in �gure 5.4.[31]

The scenario containing the maxmimum drawdown was visualised for each index
in �gure 5.2 on page 69. Maximum drawdown is a risk measure and is sometimes
used instead of the standard deviation. The maximum drawdown is particularly
interesting in connection with stop-loss mechanisms. The size of the maximum
drawdown is important in order to secure that the stop-loss mechanisms are
never activated, since an activation often causes a huge loss.

The 5%, 25%, 50%, 75%, and 95%-quantiles of the distribution of the maximum
drawdowns for the 10,000 generated scenarios are shown in �gure 5.5 together
with the worst case maximum drawdown (red). The median is the solid black
line. The worst case maximum drawdown is seen to increase quite rapidly in
the beginning because the scenarios begin in a downturn.

Generally speaking, what characterises a scenario is how many shocks there
will come, and when they will come. For instance, if a shock is de�ned as a
drawdown of minimum 40%, then probability that there will come at least one
shock within the next �ve years is more than 50% for KAXGI, while the chance
that there will come such a shock before 2013 is more than 25%.

5.4 Bootstrapping

The simplest bootstrap is to sample each observation in the scenarios at random
from the weekly log returns with replacement. The strength of this method, be-
sides being very simple, is that it captures the historical correlation between the
indices perfectly, implying that consistency is guaranteed. The great weakness
is that the method is unable to capture time dependent e�ects such as cross-
correlations at other lags than 0, autocorrelation, and volatility clustering.

It has already been assumed that there is no signi�cant cross-correlation at
other lags than 0, nor any signi�cant autocorrelation, but the volatility cluster-
ing observed has to be reproduced for the scenarios to be correct. A possible
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Figure 5.5: The 5%, 25%, 50%, 75%, and 95%-quantiles of the distribution of the
maximum drawdowns for the 10,000 simulated scenarios as percentages together with
the worst case maximum drawdown (red).

solution could be, instead of sampling completely at random, to specify proba-
bility weights so that it is most likely that each sample is within a few weeks of
the previous sample.
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The question is, how wide the week span can be, if the bootstrapped scenarios
are supposed to reproduce volatility clustering correctly. Laurini suggests that
the maximum number of days extreme information is related is 50 bank days
corresponding to ten weeks.[11] Thus, probability weights that makes it most
likely that the next sample will be within ten weeks of the previous sample
should be adequate.

A possibility is to apply normal probability weights with the last row index as
mean and a standard deviation of �ve. In this way, the probability that the
next sample will be drawn within ten weeks of the last sample is almost 95%.
The �rst sample in each scenario will then most likely be drawn from the last
ten observations in the dataset. This bootstrapping procedure is summarised in
pseudo code in �gure 5.6. It is actually a random walk in the (row) index with
re�ection at the endpoints of the interval [0; 658].

for i in 1 : Nscenario

Sample index1 from interval [0; 658] assuming normal
probability weights with µ = 658 and σ = 5

for j in 2 : Nweek

Sample indexj from interval [0; 658] assuming normal
probability weights with µ = tj−1 and σ = 5

endfor

Single out weekly log returns according to indices in
index vector

endfor

Transform weekly log return series to index observations

Figure 5.6: Bootstrapping algorithm in pseudo code.

The initialisation of the bootstraping algorithm is an issue on its own. The
approach used in the pseudo code, where the �rst sample is most likely to
be drawn within ten weeks of the last observation in the dataset, is the most
meaningful. The problem with this approach is that since the current recession
has only lasted a few months, the probability of escaping it within a few weeks
will be too large. As discussed in section 5.1, the probability of escaping the
current regime should be independent of how long the crisis has lasted.
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5.5 Bootstrapping Performance

The result of bootstrapping 10,000 scenarios using this procedure appears from
�gure 5.7. Ten of the 10,000 bootstrapped scenarios are visualised together with
the 5%, 25%, 50%, 75%, and 95%-quantiles (black lines). The median is the
solid black line. The red line is the scenario containing the maximum drawdown
for each index. The ten scenarios visualised are strati�ed according to the �nal
value ranging from the scenario ending at the lowest value to the 999th highest.

From a comparison of these scenarios with those in �gure 5.2 on page 69 it
appears that the bootstrapped scenarios are more smooth, which could indicate
that the standard deviation in the bootstrapping algorithm is chosen too large
to get proper representation of the observed volatility clustering. This could
also be the reason why only a few of the visualised bootstraped scenarios have
steep inclines and declines like the real data. Still, the quantile bands are seen to
be wider for the bootstrapped scenarios meaning that these are more dispersed.
Once again, the scenarios for the stock indices are more volatile than for the
bond indices.

Density histograms of the �nal values of the scenarios indexed by the value on
the 12th of August 2011 are displayed in �gure 5.8 excluding the 1% highest
�nal values. The 5%, 25%, 50%, 75%, and 95%-quantiles are also shown.

The distributions of the �nal values of the bootstraped scenarios are slightly
di�erent from those in �gure 5.3 on page 70. Among others due to the larger
standard deviation of the bootstrapped scenarios. Apart from the larger stan-
dard deviations, the shape of most of the distributions appear to be the same
except for CSIYHYI and JPGCCOMP. This conclusion is supported by the plot
in �gure A.4 on page 96 in appendix A of the �rst 99 quantiles of the �nal values
of the scenarios generated using the model as a function of the �rst 99 quantiles
of the �nal values of the bootstrapped scenarios.

Most of the distributions are shifted to the righ for the bootstraped scenarios,
meaning that the median returns of the bootstraped scenarios are larger. The
reason is that the initialisation of the bootstrapping procedure at the end of the
data period implies that the probability of sampling from the relatively steep
inclines in the periods from 2003 to 2008 and 2009 to 2010 will be large compared
to the probability of sampling from the short intermediate downturn.

The median, interquartile range, and return is summarized for each 52 weeks
in table A.4 on page 95 in appendix A. The yearly returns of the bootstrapped
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Figure 5.7: Ten of the 10,000 bootstrapped scenarios (grey) together with the 5%,
25%, 50%, 75%, and 95%-quantiles (black), and the maximum drawdown (red).

scenarios are seen to be much closer to the historical averages in table A.2 on
page 93, than for the scenarios generated using the model.

None of the indices provide a possibility of a riskless pro�t according to the
bootstraped scenarios. Only the medians of the KAXGI and the TPXDDVD
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Figure 5.8: Density histograms of the �nal values of the 10,000 bootstrapped sce-
narios excluding the 1% highest �nal values. The values are indexed by the value of
the indices on the 12th of August 2011. The blue lines are the 5%, 25%, 50%, 75%,
and 95%-quantiles.

scenarios end up at values lower than the starting value. This time CSIYHYI
o�ers the highest median return (72%).
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The error that arises from the smoothing due to the weekly sampling of a conti-
nous process is also present, when bootstrapping. But the bootstrapping proce-
dure does not include further approximations that could compromise accuracy.
As already argued, bootstrapping captures the historical correlation perfectly,
which guarantees consistency, unless accuracy is compromised.

5.5.1 Maximum Drawdown

The 5%, 25%, 50%, 75%, and 95%-quantiles of the distribution of the maxi-
mum drawdowns for the 10,000 bootstrapped scenarios are shown in �gure 5.9
together with the worst case maximum drawdown (red). The median is the solid
black line.

The worst case maximum drawdown is seen not to increase as rapidly as in
�gure 5.5 on page 73. A part of the reason is that even though the bootstrapped
scenarios most likely also begin in a downturn, the probability of escpaing the
downturn within a few weeks is much higher since the current downturn has only
lasted a few months. However, it could also be evidence of the lack of volatility
clustering implying that the bootstraped scenarios do not have the same rapid
drawdowns. Even though the maximum drawdowns are at least as severe, they
might not happen as rapidly.

A large di�erence to the distribution of maximum drawdown for the scenarios
generated using the model is the two Nordea indices. These are much more
volatile when bootstrapping, which leads to more severe drawdowns than in
�gure 5.5 on page 73.
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Figure 5.9: The 5%, 25%, 50%, 75%, and 95%-quantiles of the distribution of the
maximum drawdowns for the 10,000 bootstrapped scenarios as percentages together
with the worst case maximum drawdown (red).



80 Scenario Generation



Chapter 6

Summary and Conclusions

The distribution of the log returns was found to be a mixture of a normal distri-
bution and a few extreme observations originating from a completely di�erent
distribution. Due to the presence of these extreme values, traditional measures
rejected any resemblance with the normal distribution. Yet, more robust mea-
sures were able to �nd certain similarities.

The index data had a growing mean trend as well as a changing variance, auto-
correlation, and cross-correlation. A log return transformation was applied to
handle the growing mean and weekly sampling eliminated most of the autocor-
relation.

The LIBOR-index was left out from the rest of the analysis, since it was evident
from the data analysis that it was completely independent of the rest of the
indices. LIBOR is a rate and should therefore have its own type of model.
Furthermore, observations of the LIBOR-index were only available from the
last part of the data period.

The main conclusion from the data analysis was that a model with constant
coe�cients would not be able to account for the changes in the underlying
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dynamics of the dataset. A regime model, where upturns and downturns were
modelled independently, was applied to handle the changing cross-correlation,
and ARCH-models were employed within each regime to model the changing
variance. Instead of modelling the weekly log returns the �rst three principal
components of each regime were modelled.

The data period was partitioned into regimes based on the composite leading
indicator for the total OECD area. Regardless of the method, the partition-
ing gives rise to an error as a consequence of the indices representing di�erent
parts of the world with di�erent turning points. If the number of regimes or
the partitioning had been insu�cient, the estimated ARCH-models would have
converged towards not being stationary.

Based on the estimated regime model's ability to reproduce the index data,
the model was accepted for the scenario generation purpose. 10,000 scenarios
were generated using the exponential distribution to simulate the lenght of each
regime in a way that was perfectly consistent with the no-arbitrage principle
and made initialisation easy.

The median returns of the simulated scenarios for the stock indices were much
below the average returns over the dataperiod as a result of the scenarios be-
ginning in a recessive period. This was not the case for the more stable bond
indices. The scenarios were found to satisfy the no-arbitrage principle and to re-
produce the possibility of future crises, like those experienced in the estimation
period, correctly.

A bootstrapping procedure was implemented to obtain a standard of comparison
for the generated scenarios. The typical shortfall of bootstrapping is the inability
to capture time dependent e�ects like volatility clustering and consequently
the inability to reproduce the crises observed in the data. The bootstrapping
procedure applied used normal probability weights centered around the last
sample to capture the volatility clustering.

The initialisation of the bootstrapping procedure turned out to be quite prob-
lematic, since it had a large in�uence on the scenarios. The initialisation at the
end of the data period was problematic, since the probability of escaping the
current crisis within a few weeks was too large.

The bootstrapped scenarios were found to have median returns much closer to
the average returns over the dataperiod. The bootstrapped scenarios appeared
to be smoother, but the overall dispersion of the bootstrapped scenarios was
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larger, indicating an insu�cient reproduction of volatility clustering. Still, the
shape of most of the distributions of the �nal values was found to be the same
as for the simulated scenarios. The distributions were simply more dispersed
and shifted to the right towards the more positive historical returns.

6.1 Discussion

The scenarios simulated using the regime model were most successful at repro-
ducing the steep inclines and declines observed in the real data. The ability to
reproduce realistic crises appeared to be connected with the ability to reproduce
volatility clustering correctly. The bootstrapping procedure could most likely
be optimised by tuning the standard deviation of the normal distribution used
to draw samples.

Furthermore, the bootstrapped scenarios were less capable of taking the initial
situation into account, resulting in median returns that were (too) close to the
historical averages.

In his thesis, Emil Ahlmann Østergaard implemented a bootstrapping procedure
with uniform probability weights centered around the last sample index, also
with a standard deviation of �ve weeks. The resulting scenarios were not very
di�erent from those obtained with normal probability weights.[25]

Østergaard also modelled the data using a regime based approach, but instead
of merging the individual upturns and downturns, he modelled each regime
independently. This lead to the interesting observation that within each regime
the majority of the principal components behaved like random walks and not
ARCH-processes. This implies that the volatility clusters were coinciding with
the regimes.

The scenarios generated by Østergaard using his regime model were not very
di�erent from those generated in the present thesis, at least not when comparing
the distribution of the �nal values and maximum drawdowns. The main di�er-
ence observed was a tendency towards slightly more steep inclines and declines
in Østergaard's scenarios. The reason being that the merging of regimes done
in this thesis causes a smoothing since the overall downturn cannot be as steep
as the steepest downturn observed and vice versa.
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A more thorough quantitative testing would be needed to decide whether the
increased complexity of Østergaard's model resulted in scenarios that actually
performs better than those generated with merged regimes.

6.2 Possibilities for Future Work

The �nding by Østergaard that volatility clusters tend to overlap with the
regime partitioning could be used to develop a bootstrapping procedure based
on regimes. Sampling from one regime at a time should result in correct rep-
resentation of the observed volatility clustering, at least if the overlap is large
enough. A regime based procedure would also allow for the use of the exponen-
tial distribution to simulate the lenght of each regime, which would eliminate
the initialisation di�culties.

Possible extensions of the work also include a quanti�cation of the decision
on the number of regimes and the partitioning of data for instance through
application of likelihood ratio tests. This could entail an extension of the model
to a Markov switching regime model. Inclusion of further asset classes in the
model is also an obvious possibility for future work.

The inclusion of extreme values in the model estimation mainly results in a
larger standard deviation. A study of the distribution of the most extreme
returns could lead to an improved procedure for generating scenarios: if data
was described in terms of a mixed distribution, a possibility could be to sample
most observations from a model estimated from the normally distributed returns
and then a few observations from another model estimated from an extreme
value distribution.

Developing and performing a thorough testing procedure including out-of-the-
sample and maybe live-sample testing of the model would also be a relevant
problem for future work in the light of the intention to apply the generated
scenarios to an asset allocation decision.
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Figure A.1: The standard deviation of the eleven indices estimated recursively as a
function of time using exponential weights (black lines). The weight assigned to the
t'th observation at time T is λt,T = c · 0.95T−t, where t ≤ T and c = 1−0.95

1−0.95T
is a

normalising factor. The red line is a smoothing of the recursively estimated standard
deviation showing the local mean level.
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Figure A.2: Density histograms of the daily values of the eleven indices together
with the theoretical density of a normal distribution with the same mean and variance
as the index data (red lines).
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Figure A.3: Density histograms of the weekly log return values of the eleven indices
together with the theoretical density of a normal distribution with the same mean and
variance as the weekly log return data (red lines).
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Upturn Downturn
Mean Std. deviation Mean Std. deviation

KAXGI 0.0044 0.022 -0.0057 0.036
NDDUE15 0.0037 0.024 -0.0071 0.043
NDDUJN 0.0032 0.027 -0.0067 0.032
NDDUNA 0.0028 0.022 -0.0057 0.036
NDUEEGF 0.0063 0.025 -0.0073 0.042
TPXDDVD 0.0028 0.025 -0.0076 0.035
CSIYHYI 0.0027 0.007 -0.0019 0.014
JPGCCOMP 0.0028 0.010 -0.0005 0.018
NDEAGVT 0.0007 0.005 -0.0015 0.006
NDEAMO 0.0010 0.005 -0.0014 0.007

Table A.1: Estimated mean and standard deviation of the ten log return series during
upturn and downturn respectively.

Total return Yearly return

KAXGI 140% 6.9%
NDDUE15 37% 2.5%
NDDUJN 16% 1.2%
NDDUNA 18% 1.3%
NDUEEGF 331% 11.5%
TPXDDVD -17% -1.5%
CSIYHYI 141% 6.9%
JPGCCOMP 298% 10.9%
NDEAGVT 88% 5.0%
NDEAMO 106% 5.7%

Table A.2: The total return over the period from 1st of January 1999 to 12th of
August 2011 and the corresponding average yearly return assuming continuous com-
pounding.
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KAXGI NDDUE15

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 363 144 -18% 3269 1477 -22%
104 339 242 -7% 2903 2281 -11%
156 340 328 +0% 2766 2908 -5%
208 344 404 +1% 2678 3459 -3%
260 353 477 +3% 2619 3865 -2%

NDDUJN NDDUNA

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 2914 1110 -22% 2594 935 -19%
104 2555 1747 -12% 2344 1465 -10%
156 2406 2228 -6% 2236 1872 -5%
208 2295 2662 -7% 2163 2183 -3%
260 2220 2983 -3% 2113 2450 -2%

NDUEEGF TPXDDVD

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 297 147 -22% 730 301 -25%
104 275 258 -7% 624 455 -15%
156 282 365 +3% 574 559 -8%
208 296 471 +5% 534 641 -7%
260 314 574 +6% 497 699 -7%

CSIYHYI JPGCCOMP

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 344 52 -5% 607 93 +6%
104 344 102 +0% 659 150 +9%
156 359 147 +4% 724 206 +10%
208 376 189 +5% 799 268 +10%
260 397 224 +6% 882 334 +10%

NDEAGVT NDEAMO

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 271 14 +8% 301 18 +7%
104 288 23 +6% 320 27 +6%
156 305 31 +6% 340 34 +6%
208 322 38 +6% 361 42 +6%
260 340 46 +6% 383 50 +6%

Table A.3: Median, interquartile range, and return the last 52 weeks for each 52
weeks since 12th of August 2011, where the generated scenarios begin.
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KAXGI NDDUE15

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 348 143 -21% 3883 1603 -8%
104 344 236 -1% 4095 2444 +5%
156 357 330 +4% 4328 3374 +6%
208 376 423 +5% 4666 4323 +8%
260 387 519 +3% 4925 5227 +6%

NDDUJN NDDUNA

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 3600 1020 -4% 3084 1008 -3%
104 3676 1531 +2% 3380 1639 +10%
156 3801 1992 +3% 3719 2272 +10%
208 3925 2414 +3% 4135 3000 +11%
260 4041 2841 +3% 4484 3761 +8%

NDUEEGF TPXDDVD

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 347 127 -9% 837 254 -14%
104 368 208 +6% 772 344 -7%
156 405 305 +10% 726 415 -6%
208 451 420 +11% 688 466 -5%
260 507 563 +10% 645 502 -6%

CSIYHYI JPGCCOMP

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 384 42 +5% 629 47 +10%
104 427 75 +11% 690 86 +10%
156 483 118 +13% 764 137 +11%
208 551 176 +14% 851 202 +11%
260 626 260 +14% 950 281 +12%

NDEAGVT NDEAMO

Weeks Q2 Q3 −Q1 R1Y Q2 Q3 −Q1 R1Y

52 273 33 +8% 300 25 +7%
104 288 49 +5% 314 37 +5%
156 305 64 +6% 331 49 +5%
208 323 78 +6% 351 62 +6%
260 343 94 +6% 371 75 +6%

Table A.4: Median, interquartile range, and return the last 52 weeks for each 52
weeks since 12th of August 2011, where the bootstrapped scenarios begin.



96 Additional Graphs and Tables

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●● ●

0 100 200 300 400 500 600

0
20

0
40

0

KAXGI

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●●● ●● ●

0 100 200 300 400 500 600

0
10

0
30

0

NDDUE15

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●●●●●●

0 50 100 150 200 250 300 350

0
10

0
25

0

NDDUJN

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●

●●●
●●●●● ●

0 100 200 300 400 500

0
10

0
20

0
30

0

NDDUNA

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●● ●● ● ● ●

0 200 400 600 800 1000

0
20

0
50

0

NDUEEGF

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●●●● ●

0 50 100 150 200 250

0
10

0
20

0
30

0

TPXDDVD

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●

100 200 300 400 500

50
10

0
20

0

CSIYHYI

● ●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●

50 100 150 200 250 300 350

50
15

0
25

0

JPGCCOMP

●
●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●

80 100 120 140 160 180 200

10
0

13
0

16
0

NDEAGVT

●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●

80 100 120 140 160 180

11
0

14
0

17
0

NDEAMO

Figure A.4: The �rst 99 quantiles of the distribution of the �nal values of the
scenarios generated using the model as a function of the �rst 99 quantiles of the �nal
values of the bootstrapped scenarios. The red line passes through the �rst and third
quartiles.
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B.1 R-code for Chapter 3

#################################################################

## Filename: DataAnalysis.R Date: 20-01-2012 ##

## Author: Peter Nystrup s082634 ##

## Description: R-code for Chapter 3 ##

#################################################################

#Loading packages

library(tseries)

library(SDMTools)

library(TSA)

#Reading in the data

data<-read.csv2('Data.csv',header=T);

data$Date<-as.Date(data$Date,"%d-%m-%Y")

data$DK00S.N[1:1161]<-NA

data$DK00S.N<-as.numeric(data$DK00S.N)

n=length(data[,1])

##Data Reconstruction##

#Saving original NDUEEGF-data

original_data=data$NDUEEGF[1:520]

#Reconstruction using linear interpolation

data$NDUEEGF[c(F,diff(data$NDUEEGF[1:520])==0,rep(F,n-520))]=NA

sd.dev=sd(diff(na.remove(data$NDUEEGF[1:520])),na.rm=T)/sqrt(22)

set.seed(12356789)

data$NDUEEGF[1:520]=approx(1:n,data$NDUEEGF,1:520)$y+rnorm(520,

sd.dev)

#Plot of the original and the reconstructed data

pdf(file='DataReconstruction.pdf',height=7,width=14)

par(mar=c(2.8,1.5,0.3,0.5),cex=3.3,mgp=c(1.8,0.5,0),cex.main=1)

plot(data$Date[1:520],data$NDUEEGF[1:520],xlab='Year',

type='l',lwd=3,col='red')

lines(data$Date[1:520],original_data,lwd=3)

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2001/1/1"),

"months"),tcl=NA,labels=F)

legend('topleft',legend=c('Original data','Reconstructed data'),

col=1:2,lty=1,lwd=3,x.intersp=0.2,bty='n',seg.len=0.8)

dev.off()
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##Considering Stationarity##

#Plot of index data

pdf(file='Data.pdf',height=6*7,width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 2:12){

rmean=numeric(n)

for (j in 1:n){

rmean[j]=mean(data[1:j,i],na.rm=T)

}

plot(data$Date,data[,i],type='l',lwd=3,main=names(data)[i])

lines(data$Date,rmean,lwd=3,col='red')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"years"),labels=F)

}

dev.off()

#Recursive estimate of SD

pdf(file='SD estimatet recursively 0.95.pdf',height=6*7,

width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:11){

rsd=numeric(n)

for (j in 1:n){

w=0.05/(1-0.95^j)*0.95^((j-1):0)

rsd[j]=wt.sd(data[1:j,i+1],w)

}

plot(data$Date,rsd,type='l',lwd=3,main=names(data)[i+1])

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"years"),labels=F)

panel=panel.smooth(data$Date,rsd,span=1/5,lwd=9,pch='')

}

dev.off()

#Defining log return and weekly log return

logr_data=apply(apply(data[-1],2,log),2,diff)

wlogr=apply(apply(data[seq(1,dim(data)[1],5),-1],2,log),2,diff)

wdata=data[seq(1,dim(data)[1],5),]

#Log return plot

pdf(file='Log-return.pdf',height=6*7,width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),
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cex.main=1)

for(i in 1:11){

rmean=numeric(n-1)

for (j in 1:(n-1)){

rmean[j]=mean(logr_data[1:j,i],na.rm=T)

}

plot(data$Date[-1],logr_data[,i],type='l',lwd=3,

main=names(data)[i+1])

lines(data$Date[-1],rmean,lwd=9,col='red')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"years"),labels=F)

}

dev.off()

#Recursive estimate of SD of log returns

pdf(file='SD of log returns estimatet recursively 0.95.pdf',

height=6*7,width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:11){

rsd=numeric(n-1)

for (j in 1:(n-1)){

w=0.05/(1-0.95^(j-1))*0.95^((j-1):0)

rsd[j]=wt.sd(logr_data[1:j,i],w)

}

plot(data$Date[-1],rsd,type='l',lwd=3,main=names(data)[i+1])

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"years"),labels=F)

panel=panel.smooth(data$Date[-1],rsd,span=1/5,lwd=9,pch='')

}

dev.off()

##The Distribution of Data##

#Estimating mean and standard deviation of log returns

apply(logr_data,2,mean,na.rm=T)

apply(logr_data,2,sd,na.rm=T)

#Testing mean values

apply(logr_data,2,t.test)

#Estimating skewness and kurtosis

skew=apply(logr_data,2,skewness,na.rm=T)

round(skew,2)
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kurt=apply(logr_data,2,kurtosis,na.rm=T)

round(kurt,2)

#Calculating Jarque-Bera test statistic

nLIBOR=length(na.omit(logr_data[,11]))

JB=c(rep((n-1),10),nLIBOR)*(skew^2/6+kurt^2/24)

round(JB)

qchisq(0.95,2)

#Shapiro-Wilk test for normality

apply(logr_data,2,shapiro.test)

#Histograms of indices

pdf(file='Hist data.pdf',height=6*7,width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 2:12){

hist(data[,i],main=names(data)[i],freq=F,breaks=50)

xrange=seq(min(hist(data[,i],breaks=50,plot=F)$breaks),

max(hist(data[,i],breaks=50,plot=F)$breaks),length.out=100)

lines(xrange,dnorm(xrange,mean(data[,i],na.rm=T),sd(data[,i],

na.rm=T)),col='red',lwd=9)

}

dev.off()

#Histograms of log returns

pdf(file='Hist log returns.pdf',height=6*7,width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:11){

hist(logr_data[,i],main=names(data)[i+1],freq=F,breaks=50)

xrange=seq(min(hist(logr_data[,i],breaks=50,plot=F)$breaks)/2,

max(hist(logr_data[,i],breaks=50,plot=F)$breaks)/2,

length.out=100)

lines(xrange,dnorm(xrange,mean(logr_data[,i],na.rm=T),

sd(logr_data[,i],na.rm=T)),col='red',lwd=9)

}

dev.off()

#Histograms of weekly log returns

pdf(file='Hist wlog returns.pdf',height=6*7,width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:11){
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hist(wlogr[,i],main=names(data)[i+1],freq=F,breaks=50)

xrange=seq(min(hist(wlogr[,i],breaks=50,plot=F)$breaks)/2,

max(hist(wlogr[,i],breaks=50,plot=F)$breaks)/2,

length.out=100)

lines(xrange,dnorm(xrange,mean(wlogr[,i],na.rm=T),

sd(wlogr[,i],na.rm=T)),col='red',lwd=9)

}

dev.off()

#Estimating robust moments for log returns

quantiles=apply(logr_data,2,quantile,probs=

c(0.025,0.25,0.5,0.75,0.975),na.rm=T)

median=quantiles[3,]

dispersion=quantiles[4,]-quantiles[2,]

rob_skew=apply(quantiles,2,function(x)

(x[4]+x[2]-2*x[3])/(x[4]-x[2]))

rob_kurt=apply(quantiles,2,function(x)

(x[5]-x[1])/(x[4]-x[2])-2.91)

#Estimating robust moments for weekly log returns

quantiles=apply(wlogr,2,quantile,probs=

c(0.025,0.25,0.5,0.75,0.975),na.rm=T)

median=quantiles[3,]

dispersion=quantiles[4,]-quantiles[2,]

rob_skew=apply(quantiles,2,function(x)

(x[4]+x[2]-2*x[3])/(x[4]-x[2]))

rob_kurt=apply(quantiles,2,function(x)

(x[5]-x[1])/(x[4]-x[2])-2.91)

##Correlations##

#ACF daily and weekly log returns

pdf(file='ACF.pdf', height=6*7, width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:11){

daily=acf(logr_data[,i],plot=F,lag.max=10,na.action=na.omit)

weekly=acf(wlogr[,i],plot=F,lag.max=10,na.action=na.omit)

plot(daily$lag-0.08,daily$acf,type='h',lwd=15,col='blue',

xlab='',ylab='',main=names(data)[i+1],ylim=range(weekly$acf,

daily$acf,-0.08,0.08,na.rm=T))

lines(weekly$lag+0.08,weekly$acf,lwd=15,col='red',type='h')

abline(h=qnorm(0.975)/sqrt(daily$n.used),lty='99',col=4,lwd=3)

abline(h=-qnorm(0.975)/sqrt(daily$n.used),lty='99',col=4,lwd=3)

abline(h=qnorm(0.975)/sqrt(weekly$n.used),lty='99',col=2,lwd=3)
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abline(h=-qnorm(0.975)/sqrt(weekly$n.used),lty='99',col=2,lwd=3)

abline(h=0)

}

plot(0,0,type='n',xaxt='n',yaxt='n',bty='n',xlab='',ylab='')

legend('left',legend=c('ACF daily\nlog returns','ACF weekly

log returns'),col=c(4,2),lty=1,lwd=15,bty='n',y.intersp=2)

legend('right',legend=c('95% confidence\ninterval daily ACF',

'95% confidence\ninterval weekly ACF'),col=c('blue','red'),

lty='99',bty='n',y.intersp=2,lwd=3)

dev.off()

#ACF1 weekly log returns

pdf(file='ACF1 weekly log returns.pdf',height=6*7,width=2*14.8)

par(mfrow=c(6,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:11){

n=length(na.omit(wlogr[,i]))

acf1=numeric(n-26)

acf2=numeric(n-26)

for(j in 26:(n-1)){

acf1[j-25]=acf(wlogr[(j-25):j,i],na.action=na.pass,plot=F)$acf[1]

acf2[j-25]=acf(wlogr[(j-25):j,i]^2,na.action=na.pass,plot=F)$

acf[1]

}

plot(wdata[-(1:ifelse(i==11,260,27)),1],acf1,type='l',lwd=3,

col='blue',main=names(data)[i+1],xlab='',ylab='',

ylim=range(acf1,acf2,qnorm(0.975)/sqrt(26),na.rm=T))

lines(wdata[-(1:ifelse(i==11,260,27)),1],acf2,lwd=3,col='red')

abline(h=qnorm(0.975)/sqrt(26),lty='99',lwd=3)

abline(h=-qnorm(0.975)/sqrt(26),lty='99',lwd=3)

}

plot(0,0,type='n',xaxt='n',yaxt='n',bty='n',xlab='',ylab='')

legend('left',legend=c('ACF(1) weekly\nlog returns',

'ACF(1) squared\nweekly log returns'),col=c(4,2),lty=1,lwd=3,

bty='n',y.intersp=2)

legend('right',legend=c('95% confidence\ninterval'),

lty='99',bty='n',y.intersp=2,lwd=3)

dev.off()

#CCF plot

library('PerformanceAnalytics')

pnl.ccf=function(x,y){

ccf_down=ccf(wlogr[488:(488+25),x],wlogr[488:(488+25),y],plot=F,

lag.max=3)
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ccf_up=ccf(wlogr[540:(540+25),x],wlogr[540:(540+25),y],plot=F,

lag.max=3)

plot(ccf_down$lag-0.15,ccf_down$acf,type='h',lwd=50,col='red',

ylim=c(-0.4,1),xaxt='n',yaxt='n',xlab='',ylab='')

lines(ccf_up$lag+0.15,ccf_up$acf,type='h',lwd=50,col='blue')

abline(h=qnorm(0.975)/sqrt(26),lwd=18,lty='49')

abline(h=-qnorm(0.975)/sqrt(26),lwd=18,lty='49')

abline(h=0)}

pnl.plot=function(x,y){

plot(wlogr[488:(488+25),x],wlogr[488:(488+25),y],xaxt='n',

yaxt='n',xlab='',ylab='',col='red',pch=16)

points(wlogr[540:(540+25),x],wlogr[540:(540+25),y],col=4,pch=16)

abline(lm(wlogr[488:(488+25),y]~wlogr[488:(488+25),x]),col=2,

lwd=18)

abline(lm(wlogr[540:(540+25),y]~wlogr[540:(540+25),x]),col=4,

lwd=18)}

pdf(file='CCF1.pdf',height=120,width=6*14.8)

par(mfrow=c(11,6),mar=rep(0,4),cex=9.9,las=1,

oma=numeric(4),tck=0.05)

textplot(names(data)[2],cex=1.5,mar=numeric(4))

pnl.ccf(2,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

pnl.ccf(3,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

pnl.ccf(4,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

pnl.ccf(5,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

pnl.ccf(6,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

axis(4,c(-0.25,0,0.5),labels=F)

pnl.plot(1,2)

axis(2,seq(-0.2,0.1,0.1),mgp=c(0,-2,0))

textplot(names(data)[3],cex=1.5,mar=numeric(4))

pnl.ccf(3,2)

pnl.ccf(4,2)

pnl.ccf(5,2)
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pnl.ccf(6,2)

axis(4,c(-0.25,0,0.5),labels=F)

pnl.plot(1,3)

axis(2,seq(-0.1,0,0.05),mgp=c(0,-2,0))

pnl.plot(2,3)

textplot(names(data)[4],cex=1.5,mar=numeric(4))

pnl.ccf(4,3)

pnl.ccf(5,3)

pnl.ccf(6,3)

axis(4,c(-0.25,0,0.5),labels=F)

pnl.plot(1,4)

axis(2,seq(-0.15,0.05,0.1),mgp=c(0,-2.5,0))

pnl.plot(2,4)

pnl.plot(3,4)

textplot(names(data)[5],cex=1.5,mar=numeric(4))

pnl.ccf(5,4)

pnl.ccf(6,4)

axis(4,c(-0.25,0,0.5),labels=F)

pnl.plot(1,5)

axis(2,seq(-0.1,0.1,0.1),mgp=c(0,-2,0))

pnl.plot(2,5)

pnl.plot(3,5)

pnl.plot(4,5)

textplot(names(data)[6],cex=1.5,mar=numeric(4))

pnl.ccf(6,5)

axis(4,c(-0.25,0,0.5),labels=F)

pnl.plot(1,6)

axis(2,seq(-0.15,0.05,0.1),mgp=c(0,-2.5,0))

pnl.plot(2,6)

pnl.plot(3,6)

pnl.plot(4,6)

pnl.plot(5,6)

textplot(names(data)[7],cex=1.5,mar=numeric(4))

pnl.plot(1,7)

axis(2,seq(-0.1,0,0.05),mgp=c(0,-2.5,0))

pnl.plot(2,7)

pnl.plot(3,7)

pnl.plot(4,7)

pnl.plot(5,7)

pnl.plot(6,7)

pnl.plot(1,8)

axis(2,seq(-0.05,0.05,0.05),mgp=c(0,-2.5,0))

pnl.plot(2,8)

pnl.plot(3,8)
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pnl.plot(4,8)

pnl.plot(5,8)

pnl.plot(6,8)

pnl.plot(1,9)

axis(2,seq(-0.01,0.02,0.01),mgp=c(0,-2.5,0))

pnl.plot(2,9)

pnl.plot(3,9)

pnl.plot(4,9)

pnl.plot(5,9)

pnl.plot(6,9)

pnl.plot(1,10)

axis(2,seq(-0.03,0.02,0.01),labels=F)

axis(2,seq(-0.03,0.02,0.02),mgp=c(0,-2.5,0),tick=F)

pnl.plot(2,10)

pnl.plot(3,10)

pnl.plot(4,10)

pnl.plot(5,10)

pnl.plot(6,10)

pnl.plot(1,11)

axis(1,seq(-0.2,0.1,0.05),labels=F)

axis(1,c(-0.15,-0.05,0.05),mgp=c(0,-1.2,0),tick=F)

axis(2,seq(-0.1,0.1,0.05),labels=F)

axis(2,c(0,0.1),mgp=c(0,-1.5,0),tick=F)

pnl.plot(2,11)

axis(1,mgp=c(0,-1.2,0))

pnl.plot(3,11)

axis(1,labels=F)

axis(1,c(-0.1,0),mgp=c(0,-1.2,0),tick=F)

pnl.plot(4,11)

axis(1,labels=F)

axis(1,seq(-0.15,0.1,0.1),mgp=c(0,-1.2,0),tick=F)

pnl.plot(5,11)

axis(1,seq(-0.2,0.1,0.1),mgp=c(0,-1.2,0))

pnl.plot(6,11)

axis(1,seq(-0.15,0.1,0.1),mgp=c(0,-1.2,0))

dev.off()

pdf(file='CCF2.pdf',height=120,width=6*14.8)

par(mfrow=c(11,6),mar=rep(0,4),cex=9.9,las=1,

oma=numeric(4),tck=0.05)

pnl.ccf(7,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

pnl.ccf(8,1)
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axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

pnl.ccf(9,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

pnl.ccf(10,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

pnl.ccf(11,1)

axis(3,seq(-3,3,1),labels=F)

axis(3,c(-2,2),mgp=c(0,-1.2,0),tick=F)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.ccf(7,2)

pnl.ccf(8,2)

pnl.ccf(9,2)

pnl.ccf(10,2)

pnl.ccf(11,2)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.ccf(7,3)

pnl.ccf(8,3)

pnl.ccf(9,3)

pnl.ccf(10,3)

pnl.ccf(11,3)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.ccf(7,4)

pnl.ccf(8,4)

pnl.ccf(9,4)

pnl.ccf(10,4)

pnl.ccf(11,4)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.ccf(7,5)

pnl.ccf(8,5)

pnl.ccf(9,5)

pnl.ccf(10,5)

pnl.ccf(11,5)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.ccf(7,6)

pnl.ccf(8,6)

pnl.ccf(9,6)
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pnl.ccf(10,6)

pnl.ccf(11,6)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

textplot(names(data)[8],cex=1.5,mar=numeric(4))

pnl.ccf(8,7)

pnl.ccf(9,7)

pnl.ccf(10,7)

pnl.ccf(11,7)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.plot(7,8)

axis(2,seq(-0.05,0.05,0.05),labels=F)

textplot(names(data)[9],cex=1.5,mar=numeric(4))

pnl.ccf(9,8)

pnl.ccf(10,8)

pnl.ccf(11,8)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.plot(7,9)

axis(2,seq(-0.01,0.02,0.01),labels=F)

pnl.plot(8,9)

textplot(names(data)[10],cex=1.5,mar=numeric(4))

pnl.ccf(10,9)

pnl.ccf(11,9)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.plot(7,10)

axis(2,seq(-0.03,0.02,0.01),labels=F)

pnl.plot(8,10)

pnl.plot(9,10)

textplot(names(data)[11],cex=1.5,mar=numeric(4))

pnl.ccf(11,10)

axis(4,c(-0.25,0,0.5),labels=c('0.25','','0.50'),mgp=c(0,-2,0))

textplot(' ',mar=numeric(4))

pnl.plot(7,11)

axis(1,seq(-0.1,0,0.025),labels=F)

axis(1,c(-0.05,0),labels=c('-0.05','0'),mgp=c(0,-1.2,0),tick=F)

axis(2,seq(-0.1,0.1,0.05),labels=F)

pnl.plot(8,11)

axis(1,labels=F)

axis(1,seq(-0.1,0.05,0.05),mgp=c(0,-1.2,0),tick=F)

pnl.plot(9,11)

axis(1,labels=F)



B.2 R-code for Chapter 4 109

axis(1,c(-0.005,0.005),labels=c('-0.005','0.005'),mgp=c(0,-1.2,0))

pnl.plot(10,11)

axis(1,labels=F)

axis(1,seq(-0.02,0.02,0.02),labels=c('-0.02','0','0.02'),

mgp=c(0,-1.2,0),tick=F)

textplot(names(data)[12],cex=1.5,mar=numeric(4))

dev.off()

detach("package:PerformanceAnalytics")

##Principal Component Analysis##

pca=prcomp(na.omit(wlogr),scale=T,center=T)

round(summary(pca)$importance,2)

#Eigenvectors

round(pca$rotation[,1:7],2)

#Scree plot with broken stick criterion

brocken_stick=sapply(1:11,function(x)sum(1/(x:11)))

pdf(file='Scree plot all data.pdf',height=7,width=14)

par(mar=c(2.8,2.8,0.1,0.5),cex=3.3,mgp=c(1.8,0.5,0),cex.main=1)

plot(1:11,pca$sdev^2,type='o',lwd=3,xlab='Component number',

ylab='Eigenvalue',pch=16)

lines(1:11,brocken_stick,type='o',pch=17,lwd=3,col='red')

legend('topright',legend=c('Weekly log return data','Random data'),

col=1:2,lty=1,lwd=3,pch=c(16,17),x.intersp=0.5,bty='n')

dev.off()

#Communalities

apply(pca$rotation[,1:4],1,function(x)sum(x^2*pca$sdev[1:4]^2))

-log(prod(pca$sdev[3:11]^2)/(sum(pca$sdev[3:11]^2)/9)^9)

B.2 R-code for Chapter 4

#################################################################

## Filename: Modelling.R Date: 20-01-2012 ##

## Author: Peter Nystrup s082634 ##

## Description: R-code for Chapter 4 ##

#################################################################

##Choosing a Regime Approach##
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#Reading in CLI data

CLI<-read.csv2('OECD.csv',header=T)

CLI$Time<-seq(as.Date('1998-9-1'),as.Date('2011-11-1'),'months')

#Plotting CLI and IIP

pdf(file='CLI plot.pdf',height=7,width=14)

par(mar=c(2.8,1.5,0.3,0.5),cex=3.3,mgp=c(1.8,0.5,0),cex.main=1)

matplot(CLI[,1],CLI[,-1],xaxt='n',type='l',lwd=9,lty=1,

col=c('blue','red'),xlab='Year',ylab='')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2012/1/1"),

"years"))

abline(v=as.Date("1998/11/1"),lwd=3)

abline(v=as.Date("2000/3/1"),lwd=3)

abline(v=as.Date("2001/10/1"),lwd=3)

abline(v=as.Date("2007/6/1"),lwd=3)

abline(v=as.Date("2009/3/1"),lwd=3)

abline(v=as.Date("2011/3/1"),lwd=3)

legend('bottomleft',c('Normalised CLI','Normalised IIP'),lty=1,

bg='white',lwd=9,col=c('blue','red'),x.intersp=0.2,

seg.len=0.8,y.intersp=0.8)

dev.off()

#Index plot

indeks_data=100*apply(data[,-1],2,function(x)x/na.omit(x)[1])

pdf(file='Indeksplot samlet.pdf',height=8,width=14)

par(mar=c(2.8,1.5,0.3,0.5),cex=1.65,mgp=c(1.8,0.5,0),cex.main=1)

matplot(data$Date,indeks_data,xaxt='n',type='l',lwd=3,lty=1,

col=c(1:8,'brown','orange','lightpink'),xlab='Year',ylab='')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2012/1/1"),

"years"))

abline(v=as.Date("1998/11/1"),lwd=2)

abline(v=as.Date("2000/3/1"),lwd=2)

abline(v=as.Date("2001/10/1"),lwd=2)

abline(v=as.Date("2007/6/1"),lwd=2)

abline(v=as.Date("2009/3/1"),lwd=2)

abline(v=as.Date("2011/3/1"),lwd=2)

text(as.Date("1998/11/1"),0,pos=4,offset=0,'M10')

text(as.Date("2000/3/1"),0,pos=4,offset=0,'M2')

text(as.Date("2001/10/1"),0,pos=4,offset=0,'M9')

text(as.Date("2007/6/1"),0,pos=4,offset=0,'M5')

text(as.Date("2009/3/1"),0,pos=4,offset=0,'M2')

text(as.Date("2011/3/1"),0,pos=4,offset=0,'M2')

legend('topleft',names(data)[-1],lty=1,bg='white',lwd=4,

col=c(1:8,'brown','orange','lightpink'),y.intersp=1,ncol=2)
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dev.off()

##Estimating Principal Components##

#Modelling upturn

data_up=wlogr[c(1:(which(wdata[,1]=="2000-03-03")-1),

which(wdata[,1]=="2001-09-28"):

(which(wdata[,1]=="2007-06-01")-1),

which(wdata[,1]=="2009-02-27"):

(which(wdata[,1]=="2011-02-25")-1)),-11]

#Eigenvalues

pca_up=prcomp(data_up,scale=T,center=T)

round(summary(pca_up)$importance,2)

#Eigenvectors

round(pca_up$rotation[,1:7],2)

#Modelling downturn

data_down=wlogr[c(which(wdata[,1]=="2000-03-03"):

(which(wdata[,1]=="2001-09-28")-1),which(wdata[,1]==

"2007-06-01"):(which(wdata[,1]=="2009-02-27")-1),

which(wdata[,1]=="2011-02-25"):dim(wlogr)[1]),-11]

#Eigenvalues

pca_down=prcomp(data_down,scale=T,center=T)

round(summary(pca_down)$importance,2)

#Eigenvectors

round(pca_down$rotation[,1:7],2)

#Communalities

round(apply(pca_up$rotation[,1:3],1,function(x)sum(x^2*

pca_up$sdev[1:3]^2)),2)

round(apply(pca_down$rotation[,1:3],1,function(x)sum(x^2*

pca_down$sdev[1:3]^2)),2)

#Scree plot with broken stick criterion

brocken_stick=sapply(1:10,function(x)sum(1/(x:10)))

pdf(file='Scree plot model.pdf',height=7,width=14)

par(mar=c(2.8,2.8,0.1,0.5),cex=3.3,mgp=c(1.8,0.5,0),cex.main=1)

plot(1:10,pca_down$sdev^2,type='o',xlab='Component number',

ylab='Eigenvalue',pch=16,lwd=3)

lines(1:10,pca_up$sdev^2,type='o',lwd=3,col='blue',pch=15)
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lines(1:10,brocken_stick,type='o',pch=17,lwd=3,col='red')

legend('topright',legend=c('Upturn','Downturn','Random data'),

col=c('blue','black','red'),lty=1,lwd=3,pch=15:17,

x.intersp=0.5,bty='n')

dev.off()

##Estimating Model Parameters##

models_up=list()

models_down=list()

for (i in 1:3){

models_up[[i]]=garch(pca_up$x[,i],order=c(0,1))$coef

models_down[[i]]=garch(pca_down$x[,i],order=c(0,1))$coef

}

##Assessing Model Performance##

#Function that rotates data back to index space from PC space

restore=function(rotated_data,pca,n){

r=na.omit(rotated_data%*%t(pca$rotation[,1:n]))

r=t(apply(r,1,function(x)x*pca$scale))

r=t(apply(r,1,function(x)x+pca$center))

}

#Function that simulates GARCH model and restores data

simulate=function(coefs,nsteps,pca){

simulated_pc=matrix(numeric(nsteps*3),ncol=3)

for (j in 1:3){

simulated_pc[,j]=garch.sim(coefs[[j]],n=nsteps,ntrans=100)

}

restore(simulated_pc,pca,3)

}

#Simulating data

Nweeks=dim(wlogr)[1]

Nsim=10000

simulated_logr=array(numeric(Nweeks*10*Nsim),c(Nweeks,10,Nsim))

for (i in 1:Nsim){

simulated_logr[1:61,,i]=simulate(models_up,61,pca_up)

simulated_logr[62:143,,i]=simulate(models_down,82,pca_down)

simulated_logr[144:439,,i]=simulate(models_up,296,pca_up)

simulated_logr[440:530,,i]=simulate(models_down,91,pca_down)

simulated_logr[531:634,,i]=simulate(models_up,104,pca_up)

simulated_logr[635:658,,i]=simulate(models_down,24,pca_down)

}
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simulated_data=exp(apply(simulated_logr,c(2,3),cumsum))

pdf(file='Testing model.pdf',height=5*6.78,width=2*14.8)

par(mfrow=c(5,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:10){

quantiles=t(apply(simulated_data[,i,]*wdata[1,i+1],1,

quantile,probs=c(0.05,0.25,0.5,0.75,0.95)))

matplot(wdata[-1,1],quantiles,type='l',lty=c(3,2,1,2,3),xaxt='n',

lwd=c(3,3,9,3,3),col='black',xlab='',ylab='',

main=names(data)[i+1])

matlines(wdata[-1,1],wdata[-1,i+1],lwd=9,col='red')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2012/1/1"),

"years"))

}

dev.off()

B.3 R-code for Chapter 5

#################################################################

## Filename: ScenarioGeneration.R Date: 20-01-2012 ##

## Author: Peter Nystrup s082634 ##

## Description: R-code for Chapter 5 ##

#################################################################

##The Choise of Regime##

#Estimating historical phase lengths

up=c(21,13,46,27,54,21,42,17,19,19,86,23)

down=c(15,34,18,26,19,36,27,38,15,14,16,14)

mean(up)

median(up)

sd(up)

mean(down)

median(down)

sd(down)

##Generating Scenarios##

#Initialisation

Nweeks=5*52

Nscenario=10000
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simulated_logr=array(numeric(Nweeks*10*Nscenario),

c(Nweeks,10,Nscenario))

lambda_down=1/98

lambda_up=1/140

for (i in 1:Nscenario){

N=0

up_or_dn=0

while (N<Nweeks){

n=round(rexp(1,rate=ifelse(up_or_dn==0,lambda_down,lambda_up)))

n=min(n,Nweeks-N)

if(n!=0){

if (up_or_dn==0){

simulated_logr[(N+1):(N+n),,i]=simulate(models_down,n,pca_down)

}else{

simulated_logr[(N+1):(N+n),,i]=simulate(models_up,n,pca_up)

}}

N=N+n

up_or_dn=ifelse(up_or_dn==0,1,0)

}}

simulated_data=exp(apply(simulated_logr,c(2,3),cumsum))

##Assessing Scenarios##

#Summarizing simulated data

Q2=apply(apply(simulated_data[seq(52,260,52),,],c(1,2),quantile,

probs=0.5),1,function(x)x*wdata[dim(wdata)[1],2:11])

apply(Q2

apply(apply(simulated_data[seq(52,260,52),,],c(1,2),

function(x)(quantile(x,probs=0.75)-quantile(x,probs=0.25))),1,

function(x)x*wdata[dim(wdata)[1],2:11])

#Simulation dates

dates=seq(as.numeric(wdata[length(wdata[,1]),1])+7,

as.numeric(wdata[length(wdata[,1]),1])+52*7*5,7)

dates=sapply(dates,as.Date,origin='1970-1-1',simplify=F)

#Finding maximum drawdown for each index

MDD_location=numeric(10)

for (i in 1:10){

MDD=0

for (j in 1:Nscenario){

peak=0
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for (k in 1:Nweeks){

if (simulated_data[k,i,j] > peak){

peak=simulated_data[k,i,j]

} else {

DD=(peak-simulated_data[k,i,j])/peak

if (DD > MDD){

MDD=DD

MDD_location[i]=j

}}}}}

#Visualising scenarios

pdf(file='Scenarios.pdf',height=5*7,width=2*14.8)

par(mfrow=c(5,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:10){

quantiles=t(apply(simulated_data[,i,]*wdata[dim(wdata)[1],i+1],

1,quantile,probs=c(0.05,0.25,0.5,0.75,0.95)))

stratification=simulated_data[,i,sapply(seq(1,Nscenario,

Nscenario/10),function(x)which(rank(

simulated_data[Nweeks,i,])==x))]*wdata[dim(wdata)[1],i+1]

MDD=simulated_data[,i,MDD_location[i]]*

wdata[length(wdata[,1]),i+1]

matplot(dates,quantiles,lty=c(3,2,1,2,3),lwd=3,xaxt='n',

col='black',type='l',xlab='',ylab='',main=names(data)[i+1],

ylim=range(quantiles,stratification,MDD))

matlines(dates,stratification,lty=1,col='darkgrey',lwd=3)

lines(dates,MDD,col='red',lwd=3)

axis.Date(1,at=seq(as.Date("2012/1/1"),as.Date("2016/1/1"),

"years"))

}

dev.off()

#Distribution of maximum drawdowns

MDD=array(numeric(Nweeks*10*Nscenario),c(Nweeks,10,Nscenario))

for (i in 1:10){

for (j in 1:Nscenario){

peak=0

for (k in 1:Nweeks){

if (simulated_data[k,i,j] > peak){

peak=simulated_data[k,i,j]

} else {

DD=(peak-simulated_data[k,i,j])/peak

if (DD > MDD[k,i,j]){

MDD[k:Nweeks,i,j]=DD
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}}}}}

pdf(file='Maximum drawdown.pdf',height=5*7,width=2*14.8)

par(mfrow=c(5,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:10){

matplot(dates,apply(MDD[,i,],1,max),type='l',lwd=9,lty=1,

col='red',xaxt='n',xlab='',ylab='',main=names(data)[i+1])

matlines(dates,t(apply(MDD[,i,],1,quantile,

probs=c(0.05,0.25,0.5,0.75,0.95))),lty=c(3,2,1,2,3),

lwd=9,col='black')

axis.Date(1,at=seq(as.Date("2012/1/1"),as.Date("2016/1/1"),

"years"))

}

dev.off()

pdf(file='Distributions of final values.pdf',height=5*7,

width=2*14.8)

par(mfrow=c(5,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:10){

xlim=quantile(simulated_data[Nweeks,i,]*100,probs=c(0,0.99))

breaks=c(seq(xlim[1],xlim[2],length.out=50),

max(simulated_data[Nweeks,i,]*100))

hist(simulated_data[Nweeks,i,]*100,freq=F,

main=names(data)[i+1],breaks=breaks,xlim=xlim)

abline(v=quantile(simulated_data[Nweeks,i,]*100,probs=c(0.05,

0.25,0.5,0.75,0.95)),col='blue',lwd=9,lty=c(3,2,1,2,3))

}

dev.off()

##Bootstrapping##

bootstrapped_logr=array(numeric(Nweeks*10*Nscenario),

c(Nweeks,10,Nscenario))

for (i in 1:Nscenario){

tid=numeric(Nweeks)

tid[1]=sample(1:658,1,prob=dnorm(1:658,658,5))

for (j in 2:Nweeks){

tid[j]=sample(1:658,1,prob=dnorm(1:658,tid[j-1],5))

}

bootstrapped_logr[,,i]=wlogr[tid,-11]

}

bootstrapped_data=exp(apply(bootstrapped_logr,c(2,3),cumsum))
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##Bootstrapping Performance##

#Summarizing bootstrapped data

Q2=apply(apply(bootstrapped_data[seq(52,Nweeks,52),,],c(1,2),

quantile,probs=0.5),1,function(x)x*wdata[dim(wdata)[1],2:11])

apply(apply(bootstrapped_data[seq(52,Nweeks,52),,],c(1,2),

function(x)(quantile(x,probs=0.75)-quantile(x,probs=0.25))),1,

function(x)x*wdata[dim(wdata)[1],2:11])

#Finding maximum drawdown

MDD_location=numeric(10)

for (i in 1:10){

MDD=0

for (j in 1:Nscenario){

peak=0

for (k in 1:Nweeks){

if (bootstrapped_data[k,i,j] > peak){

peak=bootstrapped_data[k,i,j]

} else {

DD=(peak-bootstrapped_data[k,i,j])/peak

if (DD > MDD){

MDD=DD

MDD_location[i]=j

}}}}}

#Visualising bootstrapped scenarios

pdf(file='Bootstrapped scenarios.pdf',height=5*7,width=2*14.8)

par(mfrow=c(5,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:10){

quantiles=t(apply(bootstrapped_data[,i,]*wdata[dim(wdata)[1],

i+1],1,quantile,probs=c(0.05,0.25,0.5,0.75,0.95)))

stratification=bootstrapped_data[,i,sapply(seq(1,Nscenario,

Nscenario/10),function(x)which(rank(

bootstrapped_data[Nweeks,i,])==x))]*wdata[dim(wdata)[1],i+1]

MDD=bootstrapped_data[,i,MDD_location[i]]*

wdata[length(wdata[,1]),i+1]

matplot(dates,quantiles,lty=c(3,2,1,2,3),lwd=3,xaxt='n',

col='black',type='l',xlab='',ylab='',main=names(data)[i+1],

ylim=range(quantiles,stratification,MDD))

matlines(dates,stratification,lty=1,col='darkgrey',lwd=3)

lines(dates,MDD,col='red',lwd=3)

axis.Date(1,at=seq(as.Date("2012/1/1"),as.Date("2016/1/1"),

"years"))
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}

dev.off()

#Distribution of maximum drawdowns

MDD=array(numeric(Nweeks*10*Nscenario),c(Nweeks,10,Nscenario))

for (i in 1:10){

for (j in 1:Nscenario){

peak=0

for (k in 1:Nweeks){

if (bootstrapped_data[k,i,j] > peak){

peak=bootstrapped_data[k,i,j]

} else {

DD=(peak-bootstrapped_data[k,i,j])/peak

if (DD > MDD[k,i,j]){

MDD[k:Nweeks,i,j]=DD

}}}}}

pdf(file='Maximum drawdown boot.pdf',height=5*7,width=2*14.8)

par(mfrow=c(5,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:10){

matplot(dates,apply(MDD[,i,],1,max),type='l',lwd=9,lty=1,

col='red',xaxt='n',xlab='',ylab='',main=names(data)[i+1])

matlines(dates,t(apply(MDD[,i,],1,quantile,

probs=c(0.05,0.25,0.5,0.75,0.95))),lty=c(3,2,1,2,3),

lwd=9,col='black')

axis.Date(1,at=seq(as.Date("2012/1/1"),as.Date("2016/1/1"),

"years"))

}

dev.off()

pdf(file='Distributions of final values boot.pdf',height=5*7,

width=2*14.8)

par(mfrow=c(5,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:10){

xlim=quantile(bootstrapped_data[Nweeks,i,]*100,probs=c(0,0.99))

breaks=c(seq(xlim[1],xlim[2],length.out=50),

max(bootstrapped_data[Nweeks,i,]*100))

hist(bootstrapped_data[Nweeks,i,]*100,freq=F,

main=names(data)[i+1],breaks=breaks,xlim=xlim)

abline(v=quantile(bootstrapped_data[Nweeks,i,]*100,probs=

c(0.05,0.25,0.5,0.75,0.95)),col='blue',lwd=9,lty=c(3,2,1,2,3))

}
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dev.off()

pdf(file='QQ final values.pdf',height=5*7,width=2*14.8)

par(mfrow=c(5,2),mar=c(1.5,1.5,2,1),cex=3.3,mgp=c(3,0.5,0),

cex.main=1)

for(i in 1:10){

quantiles_sim=quantile(simulated_data[Nweeks,i,]*100,

probs=(1:990)/1000)

quantiles_boot=quantile(bootstrapped_data[Nweeks,i,]*100,

probs=(1:990)/1000)

plot(quantiles_boot,quantiles_sim,main=names(data)[i+1],

xlab='',ylab='')

abline(lm(quantiles_sim[c(250,750)]~quantiles_boot[c(250,750)]),

lwd=9,col='red')

}

dev.off()
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