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Abstract (English)

The aim of this thesis is to generate scenarios of �nancial indices that can
be used in the asset allocation decision process such that risk-return trade-
o� is optimised in accordance with the investment strategy. The statistical
behaviour of the indices is described and both the correlation and dynamic
structure of the weekly log returns are modelled. These models are used to
generate scenarios with a high degree of credibility. Bootstrapping is also used
to generate scenarios.

The result of modelling �nancial indices with PCA and GARCH and afterwards
use this in generating scenario is an applicable method to get trustworthy sce-
narios that can be used in �nancial risk management and asset allocation. These
methods give results with a higher degree of reliability if the scenario horizon
is long-term compared to the bootstrapping that performs acceptable within a
short time frame.

Keywords: Autoregressive conditional heteroscedasticity, Bootstrapping,
Financial statistical modelling, GARCH, Principal component analysis,
Scenario generation, Time series analysis.
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Abstract (Danish)

Målet med denne afhandling er at generere scenarier for �nansielle index, som
kan bruges til at beslutte hvordan aktiver skal fordeles så risiko-afkast forholdet
optimeres, samtidig med at investeringsstrategien er overholdt. De statistiske
egenskaber for dataene er beskrevet og både korrelationer og den dynamiske
struktur er modelleret for ugentlige logaritmiske afkast. Disse modeller bruges
til at generere pålidelige scenarier med. Bootstrapping er også blevet brugt til
at generere scenarier med.

Resultaterne e,r at modellering af �nansielle index med PCA og GARCH mod-
eller, og efterfølgende bruge disse til at generere scenarier er en anvendelig
metoder er giver troværdige resultater der kan bruges til �nansiel risikostyring
som led i fordelingen af aktiver. Disse metoder giver resultater der har større
pålidelighed, når tidshorrisonten for scenarierne er af længere varighed i forhold
til bootstrapping, der præsterer bedre ved kortsigtede scenarier

Nøgleord: Betinget heteroskedasticitet, Bootstrapping, GARCH, Principal
komponent analyse, Scenariegenerering, Statistisk modellering af �nansiel
data, Tidsrækkeanalyse.
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Chapter 1

Introduction

The theory that underlies this thesis is mathematical �nance, particular statis-
tical �nance. Therefore the emphasis is put on the statistical approach, and not
on a speculative approach in the investment process. The general understanding
of an investment is the commitment of an asset into di�erent kinds of �nancial
and non-�nancial products. It might be a bond, stamp collection, or property.
The investor has no speci�c pro�le, it might be a private person, a pension or
hedge fund, or a corporation, but all sharing the same motivating drift: the
opportunity to gain pro�t or hedge. Any investment, be it �nancial assets or
real assets has risk attached. This risk plays an important role in the invest-
ment process and any investor has to take the risk into account when looking
at the potential return. There are three main steps in the decisions part of the
investment process:

• Capital allocation: The investor has to decide his/her exposure to risk.
How much capital should be invested in risky assets and how much in
�risk-free� assets must be answered by considering the expectation for the
risk-return trade-o�. The investment horizon should also be considered.

• Asset allocation: Decide which asset class to invest in. There are many
types of asset classes, but real assets and �nancial assets are the major
classes. Examples of real asset are gas and oil, timber and real estate.
Financial assets are �xed-income assets (bonds), equities (stocks) or cash
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equivalents. Usually the asset classes with an acceptable risk level, time
horizon and best risk-return trade-o� are chosen.

• Security selection: Decide which speci�c securities to invest in. Usually
the composition of securities giving the best risk-return trade-o� is chosen.

This thesis deals with the asset allocation step by inspection scenarios that has
been generated using statistical modelling of di�erent �nancial indices tracking
the three major markets in the �nancial asset class: �xed-income assets, equities
and cash equivalents.

1.1 Scenario generation

A scenario is a description of how a sequence of actions or events might evolve.
Regarding this project, a scenario is the possible future values of a �nancial
index and not a exact prediction. The index value should also be accompanied
by a description of uncertainty in order to be a satisfactory scenario. Scenarios
in this thesis are modelled using time series models that take the properties of
historical data into account.

What characterizes a good scenario? Besides a description of accuracy or un-
certainty, the scenarios should possess correctness and consistency. Correctness
mean that scenarios must obey several empirical characteristics of data. That
might be non-negative index values to satisfy the no arbitrage principle etc.
Correctness is also the tendency in a scenario to act like historical data but also
to explain events that have not been seen before. Scenarios should be consis-
tent, e.g. the cross correlation between indices has to be reasonably constant.
The quality of the generated scenarios should be tested in order to prove the
usefulness of them.

There are several di�erent approaches when generating scenarios. In this thesis
historical data is used, and there are several di�erent methods for generating
scenarios. The Monte Carlo method is widely used, and is also used in this
project together with historical data. The approach often depends on the use of
the scenarios, is often risk management or strategic asset allocation. Portfolio
and risk managers' investment related decisions highly rely on the scenarios, and
their uses have many di�erent applications. E.g. the allocations that performs
the best if the best and worst performing scenarios are identi�ed and used as a
frame of reference. Then the maximum and minimum of the risk-return trade-
o� arefound, assuming the investor is acting rationally. This is also known as
max-min optimization and maximization. The scenarios might also be used
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to �nd the allocation that over all performs the best if the average of all the
scenarios is used or just the average scenario.

The majority of this thesis is concerned wiht data analysis and modelling of
data and the result from this will be used to generate scenarios.

1.2 Problem statement

This thesis is concerned with the second part of the asset allocation decision
only, which is scenario generation to be exact. As outlined in the introduction,
the generated scenarios are of outmost importance to the investment decision
process and the risk management in for instance a pension fund. Generating
su�cient scenarios is therefore a practical problem of high relevance.

The asset classes considered are limited to money market instruments, bonds,
and stocks, with the goal of establishing the correlation between these asset
classes. Inclusion of the other major asset classes remains a possibility for fu-
ture work.

The data available is twelve years and seven months of daily values of eleven
di�erent indices covering the period from 1st of January 1999 to 12th of August
2011. Six of them are stock indices, four are bond indices, and a Danish LIBOR
index, which will serve as the link to the money market. For the LIBOR-index,
the data is only available from 16th of June 2003 and onwards. The indices will
be explored in more detail in the following chapter.

The purpose of the project is to analyse the index data with the aim of gen-
erating scenarios that can form the basis of decisions regarding strategic asset
allocation. A scenario in this sense is the future values of the indices. The time
horizon of the generated scenarios will be �ve years, which is a reasonable hori-
zon for a short term, strategic asset allocation decision. With ten years index
data available, it would not be meaningful to look at a longer horizon than �ve
years. There will be generated a number of scenarios, and the quality of these
scenarios will be tested.

The analysis will proceed according to the following steps:
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1. The raw data is analysed for outliers, distribution, trends, autocorrelation,
and cross-correlation.

2. A time series model is chosen and calibrated to the index series.

3. The model performance is tested on the data.

4. There will be generated scenarios using two or three di�erent methods,
and the quality of the scenarios will be assessed.

The analysis will be conducted using the statistical software R. There will be
no prejudices as to what class of models that will be the better choice. The
approach that will be used is therefore, through thorough data analysis to de-
termine the necessary properties of a time series model that are able to describe
the observed main features of the index data.

Part of the project work has been done in collaboration with Peter Nystrup,
but the model chosen by him in connection with point two on the above list is
di�erent from the model that will be presented in this thesis. As a consequence,
also the work done in connection with point three and four will di�er. Apart
from this subsection presenting the problem statement, the two theses have been
written independently. In the concluding chapter, a comparison to the results
from Peter Nystrup's work [22] will be part of the discussion.

1.3 Thesis overview

In chapter two the indices used in this thesis is presented in order to give the
reader an extensive insight of the dynamics behind the indices. This is followed
by an analysis of raw data in chapter three and an analysis of returns and
log returns in chapter four in order to get as much knowledge about data as
possible. In chapter �ve the data is divided into �nancial regimes. In chapter
six the theory and models used in the later chapters are presented. In chapter
seven the information about the data and log return data is used in order to
�nd models and methods that �t data the best. After the modelling in chapter
six the scenarios are generated in chapter eight with two di�erent approaches.
In chapter nine the scenarios and the method behind them are tested. At last
the two di�erent methods of generating scenarios are discussed, and ideas for
further work are suggested. At the very end the appendix is found, where the
R-scrip for the thesis is placed.



Chapter 2

Description of data

The purpose of this project is to generate scenarios that can be used in the
decision process of allocating assets for investments. The allocation depends
on risk-return trade-o� estimated on the basis of the generated scenarios. This
thesis is concerned with �nancial assets, therefore di�erent indices from the
three main assets class are used, namely �xed-income assets, equities and cash
equivalents. Søren Agergaard Andersen has provided eleven di�erent indices
representing markets from all over the world, though mainly from developed
countries. Data is available from the 1th of January 1999 to the 12th of August
2011, only DK00S/N starts at 16th June 2003. The data consists of daily
(Monday to Friday) index values. If an index is not traded on a given day the
value from the day before is used. These indices are widely used among investors
and managers as benchmark etc. The compositions of the underlying securities
sometimes change in order to keep the index tracking what it is meant to track.
Often there is a set of rules and guidelines for the indices. These rules, guidelines
and composition have been hard to �nd because as the company providing the
indices want to held the information secret and only shares it with costumers.
The indices used in this thesis will be presented below, some with more facts
and information than other, but there is enough knowledge on each index to use
it in the modelling and the scenario generation process [2, 10, 13, 16, 17, 18, 21].
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2.1 Equity indices

KAXGI (OMX Copenhagen Stock Exchange All Share Perform In-
dex, DKK)

This index has base date 31th December 1995 with base 100 . It consists of all
the shares listed on Copenhagen Stock Exchange, and shows a general picture
of the status and changes in the Danish market. It is a total return gross
dividends index (GI) that shows the true performance of the index. A gross
index is characterized by adjusting the index for dividends, and not including
tax credits. A gross index shows a more accurate performance and measure of
the total return because all the dividends are reinvested.

Morgan Stanley Capital International (MSCI) Equity Indices:

In this project four MSCI equity indices are used. They are daily total return net
dividends indices in US Dollar. Net dividends indices are characterized by the
reinvesting of the dividends after deduction of tax credit and withholding taxes.
The tax rate used for international indices is a rate �t for use to non-resident
institutional investors without pro�ting from double taxation treaties. The daily
total return indices reinvest the dividends of the index at closing price the day
the stock goes ex-dividend. All indices are free �oat adjusted which means that
the equities listed in the index are adjusted such that the amount represented
in the index is re�ecting the amount available on the market. The indices are
weighted by market capitalization.

The MSCI indices are often used when construction exchange-traded funds
(ETF) which are securities or some �nancial products tracking an index.

• NDDUE15 (MSCI Daily Total Return Net Europe, USD) measures the
price equity performance of the developed European markets. NDDUE15
consists of the following 16 developed market country indices: Austria,
Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy,
the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the
United Kingdom. It has base day 31th December 1969.

• NDDUJN (MSCI Daily Total Return Net Japan, USD) is designed to
measure the equity performance of the Japanese stocks listed on Tokyo
Stock Exchange, Osaka Stock Exchange, JASDAQ and Nagoya Stock Ex-
change. It has base day 31th December 1987.
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• NDDUNA (MSCI Daily Total Return Net North America, USD) mea-
sures the equity performance of the North American markets. On the 6th
May 2010 the country weightings are 9.2% Canadian equities and 90.8%
equities from USA. The total index market capitalization was $ 11, 674, 798×
106 [19] and the largest (weighted) sectors are information technology
(17.74%), �nancials (17.42%), energy (12.66%), health care (10.96%), con-
sumer staples (10.18%) and industrials (10.13%). Large companies trading
all over the world are widely represented in the index e.g. Microsoft Corp,
Coca-Cola CO, General Electric CO, Goldman Sachs Group and McDon-
ald's Corp. The above composition is changing through time, and can
only be used to give an idea of the index composition in the period that
is studied. It has base day 31th December 1969.

• NDUEEGF (MSCI Daily Total Return Net Emerging Markets, USD)
measures the equity performance of emerging markets. The following 21
emerging market country indices are used in the index: Brazil, Chile,
China, Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Ko-
rea, Malaysia, Mexico, Morocco, Peru, Philippines, Poland, Russia, South
Africa, Taiwan, Thailand, and Turkey. Emerging markets are fast devel-
oping countries that are in a process of industrialization. It has base day
31th December 1987.

NDDUE15, NDDUJN and NDDUNA re�ects together a global performance for
industrialized/developed countries, but they are also usable in studies of di�er-
ences in continental (North America, Europe and Asia (Japan)) performance.

TPXDDVD (Tokyo stock Price IndeX Total Return, JPY)

TPXDDVD is a Japanese stock index representing the total return of the Tokyo
stock Price IndeX (Topix) in JPY. It has base day 1th April 1968. It is directly
comparable to KAXGI when taking the di�erence in currency into account.

2.2 Fixed income indices

CSIYHYI (J.P. Morgan High Yield Bond Index Global, USD)

This index tracks an investment fund called J.P.M. Global High Yield Bond
Fund. The fund consists of a diversi�ed portfolio. Diversi�cation is a way to
manage �nancial risk, where the risk is lower and the return on average is higher
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for the portfolio than for any single bond within the portfolio. The portfolio
consists mainly of bond, unrated securities and some investment grade securities,
where the issuers are corporations and banks from developed countries. The
risk on bonds is often described by rating agencies e.g. Moody's and Standard
& Poor's where the rating depends on credit quality of the corporation, bank
etc. A rating of AAA equals a very low risk and D meaning debt in arrears.
Often government bonds are considered as zero risk bonds rated above AAA.
Investment grade securities are securities rated BBB or higher, and bonds below
that level are known as junk bonds attractive to speculative investors. Some
securities are not rated, which have di�erent reasons. Sometimes the issuers
cannot provide the information needed, or the total securities issued are relative
small. A high yield bond is normally a bond rated below investment grade,
where the investor speculate on a high return and calculate with higher risk.
This index re�ects the more volatile bonds where a higher risk is accepted to
higher returns.

The composition of the portfolio changes but in 2011 the following facts are
gathered. The fund received on the 30th September three starts on the Morn-
ingstar Rating, which ranks the fund in the middle group when ranking funds
after risk and return adjusted for expenditures. At 31th October, 94.7% of the
bond in the fund is rated BBB or less. Corporate bonds account for 95.1%,
the average duration is 4.4 years and the average time to maturity is 6.3 years.
Duration is the change in bond price when the interest rate changes. A large
duration is equal to a large interest rate risk or large change in bond price.
Duration is a bit like the maturity, but takes coupon in to account and is a
weighted measure of the time the bond will pay out. The primary sectors rep-
resented in the fund are communications (18.2%), consumer cyclical (17.8%)
and consumer non-cyclical (17.3%). American bonds and securities have a huge
weight in the fund with 88.5% and UK bonds and securities are weighted 3.1%.
Bonds and securities from non-developed countries have a small weight in the
fund portfolio, Bermuda (0.3%) and Liberia (0.3%). To summarize, this fund
consists mainly of high risk, low rated American corporate bonds. The funds
prediction of the yield to maturity is 4.4%.

JPGCCOMP (J.P. Morgan Emerging Markets Bonds Index Global
Diversi�ed, USD)

This index tracks debt securities issued by 33 emerging markets countries rated
BB+ by Standard & Poor's, e.g. Russia, Brazil and Mexico and was created in
1997. It tracks the total return of USD denominated Eurobonds and sovereign
bonds with an outstanding face value of at least $500 × 106. Eurobonds are
bonds issued in one country, but denominated in another currency, here USD.
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Sovereign bonds are government bond, often from an emerging market country,
issued in a foreign currency. An example of a sovereign bond is the Brady bond,
which is one of the most liquid emerging markets bonds, where the issuer is a
government in a developing country.

This index is a capitalization-weighted index, which means that the individual
bonds are weighted according to their market capitalization. It provides some
indication of expectation to a part of the emerging bond markets, but not the
entire market because of rules on how countries with larger debt stock have
limited weights or are excluded from the index.

NDEAGVT (Nordea Government Bond Index, DKK)

This is a government bond index denominated in DKK.

NDEAMO (Nordea Mortgage Bond Index, DKK)

NDEAMO is an index tracking mortgage bond denominated in DKK. In Novem-
ber 2006 the index had a composition of 63% callable mortgage bonds, 22%
capped �oaters and 15% non-callable mortgage bonds. Callable bonds allow
the issuer of the bond to redeem the bond prior to the maturity date. A �oater
is a bond with a varying coupon rate determined by the short-term interest rate.
If it is capped, the coupon rate has an upper limit. The modi�ed duration is
5.8% per year for the index and it has a convexity of -1.9, which is a measure
of the sensitivity of the duration, to changes in the interest rate. It is very
common that mortgage (callable) bonds have negative convexity, meaning that
the duration decreases when the market yields decrease.

2.3 Money market indices

DK00S.N.Index (London InterBank O�ered Rate, Spot Next, DKK)

This is an interest rate index that tracks the spot/next (S/N) London InterBank
O�ered Rate (LIBOR). The LIBOR is the daily �xed interest rate that banks
use when lending money in the London interbank market. The LIBOR is based
on interbank deposit rates for larger loans with maturities from one day to one
year o�ered by creditworthy banks. Spot/next means that the asset is handed



10 Description of data

over the day after the spot delivery date, which often is two business days after
the day the transaction was made. The day count convention used is actual
number of days divided by 360, and is commonly used in money markets.

It is not possible to invest in the LIBOR, but it might anyway re�ect the expec-
tations to the money market. Data for the DKK LIBOR is only available from
16 June 2003, where the �xing began.



Chapter 3

Analysis of index prices

This chapter deals with analysis of data from a statistical point of view. Before
the process of modelling data, data needs to be examined and analysed. Through
the analysis pattern in data or other important structures might be found. This
knowledge will reduce the number of known usable statistical models, and ease
the process of �nding a model that �ts the data. In this chapter the raw indices
will be inspected, and in the next chapter the log returns are analysed.

In �gure 3.1 the raw data is plotted. The indices have been plotted separately for
the clarity. As it is seen, the indices within the same category have some of the
same pattern. The stock indices seem to be more volatile in short (daily) basis
than the bond indices because of the high �uctuation, but they also seems to
be more sensitive to changes in the market causing a more distinct alternation.
By looking at the stock indices there seem to be di�erent types of periods with
growing and falling prices distinguish by length of period, volatility and slope.
Data starts in an ascending period and ends in the beginning of a decreasing
period. Throughout out the whole period there seems to be three periods with
growing prices and two periods with falling prices. These periods are not that
distinct for the bond indices. Later on, this pattern will be compared to OECD's
dates for �nancial peaks and crisis. As already pointed out, data for the LIBOR
rate index only exists from 16th June 2003. It has a high volatility in short
term and from 2009 until 2011 it takes a massive fall from DKK 675 to DKK 2.
It does not seem to have much correlation with the other indices, but further
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analysis will clarify if that is true.
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Figure 3.1: Index plot of the eleven indices, with time the on �rst axis and
the index value on the second axis.

3.1 Generating data for NDUEEGF

Though it is not possible to see in �gure 3.1, NDUEEGF only has monthly data
from 1 January 1999 to 29 December 2000 where it has base date with base 100.
This causes some troubles in the further analysis and modelling, so daily data
is generated using the know information. This is done by using stepwise linear
interpolation between the monthly data and adding normal distributed noise,
with mean and standard deviation σ. The noise used is normal distributed with
zero mean and standard deviation estimated as:

σ =
SD(x̄)√

22
= 1.6849,
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where 22 is the average number of bank days in a month and x̄ is a vector
with the monthly change in index price for the two years. The generated data
is plotted in �gure 3.2. It is not known for sure that the volatility for new
data is true but it seems reasonable compared to the known values without any
suspicious outliers. There might have been a few outliers, but in the further
modelling process they would have vanished because we are interested in long
term asset allocation and not in single events.
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Original data
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New data

Figure 3.2: The original monthly data for NDUEEGF together with the linear
interpolation and the new data generated by the linear interpola-
tion and normal distributed noise.

3.2 Correlation

Figure 3.1 gives an indication on correlation between the indices, especially it is
easy to see a similarity in the indices' behaviour within an index type. The reac-
tions on one �nancial market can easily spread cross-border because almost all
assets are traded online, and the digitisation has removed these limits. There-
fore the �nancial markets are expected to have high correlations coe�cients.
The correlation between two indices is calculated as [14]:
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1 2 3 4 5 6 7 8 9 10

1 KAXGI

2 NDDUE15 0.95

3 NDDUJN 0.83 0.87

4 NDDUNA 0.93 0.95 0.85

5 NDUEEGF 0.88 0.83 0.56 0.79

6 TPXDDVD 0.56 0.63 0.89 0.62 0.17

7 CSIYHYI 0.66 0.54 0.28 0.60 0.85 -0.14

8JPGCCOMP 0.65 0.52 0.24 0.51 0.88 -0.20 0.96

9 NDEAGVT 0.43 0.26 -0.01 0.23 0.71 -0.42 0.85 0.94

10 NDEAMO 0.44 0.29 0.01 0.26 0.73 -0.40 0.88 0.95 0.99

11 DK00S.N 0.23 0.38 0.46 0.23 -0.04 0.62 -0.49 -0.42 -0.51 -0.54

Table 3.1: Correlations between the indices.

ρX,Y =
E
[
(X −X)(Y − Y )

]
σXσY

where X and Y are the means and σX and σY are the standard deviation on
the indices. The correlations between all the indices are found in table 3.1.
In general, the indices are positively correlated, especially the stock indices are
highly correlated with each other. Only DK00S.N.Index seems to behave a little
independently. Also the correlation between the Danish bond indices and the
Japanese stock index is almost zero.

3.3 Autocorrelation in indices

It would be reasonable to think that the index value today has some dependency
on yesterday's value, because the today's trading price starts at yesterday's
closing price. This dependency is also known as autocorrelation. Generally
speaking autocorrelation is the correlation of a time series with its own past
and future. The autocorrelation of an index is described by the autocorrelation
function (ACF). The coe�cient in ACF, is given by [14]:
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ρXX(t1, t2) =
γXX(t1, t2)√
σ2(t1)σ2(t2)

=
Cov [X(t1), X(t2)]√

σ2(t1)σ2(t2)

=
E [(X(t1)− µ(t1)) (X(t2)− µ(t2))]√

σ2(t1)σ2(t2)
,

where γXX(t1, t2) is the autocovariance function, µ(tj) =
∑j
i=1X1

j is the mean

of the index until time tj and σ
2(tj) is the variance of the process until time tj .

If the process is stationary the coe�cients at lag τ = t1 − t2 simpli�es to:

ρXX(t1, t2) =
γXX(τ)

σ2
X

,

with γXX(τ) = Cov (X(t), X (t+ τ)) and σ2
X being the variance of the process.

The Partial autocorrelation function (PACF) is a measure of the conditional
correlation in time of a time series. At lag τ = 1 the coe�cient in PACF is
equal to the coe�cient ACF [14].

For τ = 2 the coe�cient is given by:

ρXX(τ) =
Cov [Xt, Xt−2|Xt−1]√

σ2 (Xt|Xt−1)σ2 (Xt−2|Xt−1)
,

For τ = 3 the coe�cient is given by:

ρXX(τ) =
Cov [Xt, Xt−3|Xt−1, Xt−2]√

σ2 (Xt|Xt−1, Xt−2)σ2 (Xt−3|Xt−1, Xt−2)

and for τ > 3 the procedure is the same as above just with more conditions.
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Figure 3.3: ACF in data with 95 % con�dence interval (red).

In �gure 3.3 and 3.4 the autocorrelation (ACF) and partial autocorrelation
(PACF) are plotted for each index series together with a 95% con�dence interval.
The interval is calculated by ±1.96/

√
n = ±0.0341, where n is the sample

size and ±1.96 corresponds to the 2.5% and 97.5% quantile in the standard
normal distribution. Using this con�dence interval assumes data following a
multivariate normal distribution. It has not been shown that the series are
normal distributed, but the con�dence interval is still used with this observation
in mind. All the plotted lags in the ACF-plot and lag=1 in PACF-plot are highly
signi�cant. As expected the index value of today depends highly on yesterday's
value. By looking at �gure 3.4 some of the stock indices are also signi�cant at lag
2 and 3. The reason for this can be explained by the volatile behaviour. Stock
markets often have longer periods with smaller volatility, followed by shorter
periods with high volatility, also known as volatility clumping. The reason why
lags larger than 1 for the bond indices are absolutely not signi�cant, is the more
stable behaviour, where volatility clumping is more unusual. The rate index
shows a bit strange tendency in the PACF-plot having signi�cant lags at lag
2, 3, 4, 5, 10 and 15. This might be caused by some special mechanism or
trading behaviour in the market, but there is no reason to deal with that now,
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the di�erent behaviour might vanish in the modelling process.
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Figure 3.4: PACF in data with 95 % con�dence interval (red).

3.4 Normality and stationarity

Modelling data can be done easily if we know the true distribution, mean and
the variance. Looking at the index series on �gure 3.1, it seems hard to use a
direct estimate of the mean and the variance for model that would be acceptable,
because the series do not look stationary.

It would be comfortable if the data follows a normal distribution, because
many statistical test and assumptions are based on data being normal. The
Shapiro�Wilk test [20] tests the null hypothesis that the index values comes
from a normal distribution. The test statistic is

W =

(∑n
i=1 αiX(i)

)2∑n
i=1 (Xi − µ)

,
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where X(i) is the order statistics of the index values, X. µ =
∑n
i=1Xn
n is the

index mean and n is the number of values. αi are constants generated from
means, variances and covariances of order statistics of n independent and iden-
tical distrubuted (i.i.d.) random variables sampled from a normal distribution.
Of course all the series are tested separately using the Shapiro�Wilk test. All
the results give p-value < 2.2× 10−16, and thereby rejecting the null hypothesis
of normality as expected.

Knowing that data is highly autocorrelated, we might expect that data is not
stationary. All the series are tested for stationarity using the Kwiatkowski-
Phillips-Schmidt-Shin test (KPSS-test) [34]. All the tests give p-value < 0.01,
meaning that the null hypothesis of level-stationarity can be rejected and mean
and variance cannot be estimated easily.

Knowing that the indices might be non-stationary, a test for data following a
random walk is relevant. A random walk is a unit root non-stationary process
and is de�ned as:

Xi = Xi−1 + at

where at is a white noise process. The Augmented Dickey�Fuller-test tests if
data has a unit root [33]. The null hypothesis is that data has a unit root,
and testing all the series give large p-values and the null hypothesis cannot be
rejected in any cases. The indices might therefore follow a random walk, so
further analysis is necessary.

Index prices have shown properties that makes the modelling di�cult. Therefore
it is appropriate to transform data, which is the topic for the next chapter.



Chapter 4

Analysis of returns

In the previous chapter the index prices were analysed, but from an investors
perspective the price of an asset or index is not as relevant as the return. The
aim is to gain pro�t or hedge when investing, and the index price is not a directly
measure of how well that is done. Instead the return is a scale-free measure of
the investment. Furthermore the index prices have shown statistical properties
that make the modelling di�cult. It is desirable that the data is stationary
without any autocorrelation and if possible normal distributed. For this reason
the returns of the indices are analysed trying to meet these qualities.

4.1 Calculating returns

There are di�erent kinds of returns [29], and only returns based on the same
period length and calculation method, returns can be compared.

4.1.1 Simple return

First let us consider one-period returns where the period is equal to one day,
but it might as well be an hour, a week etc. The simple net return, Rt from
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yesterday, T = t− 1, to today T = t, is given by :

Rt =
Pt
Pt−1

− 1 =
Pt − Pt−1
Pt−1

. (4.1)

Where Pt−1 and Pt are the (closing) price of yesterday and today. Rt+ 1 is also
known as simple gross return. Now consider a multiple-period return, where for
instance one period still is one day, and we want to know the net return of the
last three days equal to k = 3 periods, then one period gross returns are simply
multiplied :

Rt[k] =
Pt
Pt−k

− 1 (4.2)

=

(
Pt
Pt−1

· Pt
Pt−2

· · · · Pt
Pt−k

)
− 1 (4.3)

= (Rt + 1) (Rt−1 + 1) · · · (Rt−k+1 + 1)− 1 (4.4)

=

k−1∏
i=0

(Rt−i + 1)− 1. (4.5)

4.1.2 Log return

Log return is actually the natural logarithm of the simple gross return:

LogRt = ln(Rt + 1) = ln

(
Pt
Pt−1

)
. (4.6)

The log return is also called continuously compounded return. Log transfor-
mation of returns has di�erent advantages. Extreme values in a set of returns
will be reduced, and �nding a model that �ts the returns is now easier. A
multi-period log return is simply the sum of all the one-period log return:
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LogRt[k] = ln(Rt[k] + 1) (4.7)

= ln [(Rt + 1)(Rt−1 + 1) · · · (Rt−k+1 + 1)] (4.8)

= ln(Rt + 1) + ln(Rt−1 + 1) + · · ·+ ln(Rt−k+1 + 1) (4.9)

=

k−1∑
i=0

LogRt−i. (4.10)

Equation 4.6 is used to transform the data into a log return space. Figure 4.1
is plot of log returns. Log return data seems to be more stationary, but it was
also expected because of the transformation which also is the same as using a
backward di�erence operator on ln-data:

LogRt = ln

(
Pt
Pt−1

)
= ln (Pt)− ln (Pt−1) = ∇ ln(Pt).

Calculating the di�erence removes the autocorrelation at lag = 1, that we al-
ready have seen was highly signi�cant.

It is even clearer that the volatility is not constant, because of the high �uc-
tuation. Again the stock indices have a more �uctuating behaviour than the
bond indices, again indicating higher sensitivity to variation in the market. The
volatility clumping has also been more distinct, especially in the beginning of
crisis starting in 2008 is easy to see. The rate index has a moderate volatility,
but has some enormous outliers ultimo 2010. This is not caused by unrealistic
changes in the index value, but the huge �uctuation is caused by relatively large
daily changes compared to the low level of interest rate, which also can be seen
of �gure 3.1. There are other conspicuous log returns for the other series, and
some of them can be explained. CSIYHYI has an outlier in 2001, and taking in
to account that it mainly consists of American corporate bonds, it might have a
relation to the terror attack 11 September The Japanese NDDUJN and TPXD-
DVD indices haves outliers around 11 March 2011 where an earthquake and
tsunami hit Japan causing a tense and nervous market. The rest of the outliers
will also be kept in the data set, because they are unacceptable extreme, it is
not possible to reject that they are not true values and they might vanish when
modelling. Taking a closer look at NDUEEGF index, the generated data seem
to behave close to the rest of the series, and therefore the generated values are
still accepted.
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Figure 4.1: Plot of log return, where the time is on �rst axis and the log return
on the second axis.

4.2 Autocorrelation in log return indices

After data has been transformed it would be interesting to see if there is any
autocorrelation left. If it is possible to remove some time dependency in data
the modelling process gets simpler.

Figure 4.2a is a plot of the autocorrelation in daily log return data. Comparing
this with �gure 3.3 it is easy to see that many signi�cant lags has been removed
through the transformation. Some has even switched to being negative. Com-
paring �gure 4.2b with partial autocorrelation in daily log return data to �gure
3.4, it is easy to see that the transformation has removed a lot of signi�cance
at lag = 1. But there is still a lot of autocorrelation left in data after transfor-
mation that cannot be ignored, especially CSIYHYI and DK00S.N:Index have
many signi�cant lags of lower order that certainly not can be assumed to be
white noise.
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(a) ACF in daily log return data with 95 % con�dence interval (red).
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(b) PACF in daily log return data with 95 % con�dence interval (red).

Figure 4.2
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A way to deal with autocorrelation in data is to use weekly data instead. Using
weekly data, we might lose some extreme events, but using e.g. data from Friday
every week the variance is kept realistic. If the mean value for the week is used
instead the true variance is reduced resulting in a weak model. The few extreme
events that are not in weekly data would anyway have vanished on the long run
when modelling and generating scenarios. Therefore the use of weekly (Friday)
data is acceptable, and is a technique already widely used in statistical �nance
exactly to get independent data. Using weekly data, the estimate of weekly
volatility is more accurate.

If the Shapiro-Wilk test is applied on the weekly log return indices the result is
that all p-value>0.1, and thereby the null hypothesis of level-stationarity cannot
be rejected. Another way to check if weekly log return indices are stationary
is to estimate their mean recursively. The recursive estimation has been done
using a forgetting factor λ = 0.9 such that the recursive estimate at time t,
becomes a weighting of the previous t − 1 observations. The weighting of the
i'th observation is given by :

W (i) = λ−(i−t),

where i ∈ [1; t]. Afterwards, the weighting is scaled such that
∑t
i=1W (i) = 1.

In practice the e�ective number of previous values used in the estimation is
given by:

neff =
1

1− λ
=

1

1− 0.90
= 10.

In �gure 4.4 the recursive estimate of the mean for each weekly log return
series is plotted. It is clearly seen that the mean has small �uctuations around
zero (except DK00S.N.Index), therefore the weekly log return indices might be
stationary.

This was already expected cf. earlier results and thereby the plots of ACF and
PACF show a more exact picture of what is going on and not disturbed by time
dependency. Stationarity is a nice property when we want to model the data,
because a lot of di�erent models require that the input must be stationary. The
ACF and PACF for weekly log returns are plotted in �gure 4.3a and 4.3b.

As expected even more signi�cant autocorrelation have been removed, now to
an acceptable level. The bond indices except CSIYHYI have only one or two
lags just outside the 95 % con�dence bands in the ACF, which acceptable. The
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(a) ACF in weekly log return data with 95 % con�dence interval (red).
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(b) PACF in weekly log return data with 95 % con�dence interval (red).

Figure 4.3
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stock indices have a few more lags just outside the con�dence bands but this
is still acceptable. CSIYHYI still has some pattern in autocorrelation with
lag = 1, 2 and 3 being very signi�cant and lag 1 signi�cant in the partial auto-
correlation. The other bond and stock indices also have a few signi�cant lags in
PACF, but it is acceptable on a 95 % signi�cance level even though it is a bit
suspiciously that almost all the stock indices have signi�cance lag around lag
=13. There is no trading or market related explanation for this structure and
as long as there only is a few lags of higher order just outside the con�dence
bands then data is accepted as being independent. The ACF and PACF in
DK00S.N.Index now behave more like the other indices but there still seems to
be too much time dependency left.
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Figure 4.4: Recursive estimate of mean of each weekly log return index using
forgetting factor λ = 0.90. Time is on the �rst axis, and mean on
the secondary axis.

The reason for the strange behaviour of CSIYHYI might be that the log trans-
formation is too �e�ective�. Therefore a square root of simple gross return might
be a usable transformation for exactly this index. The ACF and PACF for the
square root simple gross CSIYHYI index is plotted in Appendix A. There is
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only a slightly di�erence compared to the log return data, and therefore the log
return transformation will be used for now.

Now it can be assumed, a little roughly, that weekly log returns are independent,
with the exception of CSIYHYI and DK00S.N.Index. This is an important
feature that is very useful when the indices are modelled in chapter 7.
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4.3 Volatility

The plots of ACF and PACF in daily and weekly log return data has already
shown indications of non-constant variance, also called heteroscedasticity. This
can also be tested if a recursive estimate of the standard deviation is made.
Again a forgetting factor λ = 0.9 is used and the estimates are plotted in 4.5.
As it is clearly seen the standard deviations, for the indices are not constant
despite the smoothing. The conclusion is that weekly log return indices have
heteroscedastic behaviour.
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Figure 4.5: Recursive estimate of the standard deviation of each weekly log
return indices using forgetting factor λ = 0.90. Time is on the
�rst axis and the standard deviation on the secondary axis.

The log return plots of the indices on �gure 4.1 show that the variance evolve
continuously with a few and rare jumps often gathered in a cluster, known as
volatility clumping or clustering. On �gure 4.5 the volatility clumping of the
stock indices tend to be more intense that the bond indices. This volatility
behaviour indicates that it is conditional. E.g. if the market was volatile yester-
day, the market tends to be volatile again today. The variance does not diverge
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to in�nity, but are within a limited set, meaning that the variance is stationary.
Using �gure 3.1 to identify periods with positive or negative price changes and
then comparing with �gure 4.1, it is easy to see that the variance is higher in
periods with falling prices than periods with growing prices.

4.4 Cross correlation in log return indices

From the index plot in �gure 3.1 it seems plausible that all indices are somehow
cross correlated, which also is known from theory and from other analyses. A
boom or a crisis in the world economy will of course a�ect the �nancial markets
somehow. Years ago bonds and stocks were negatively correlated, but in the
recent years the in�ation rate and the interest rate have drop so much that they
are in general positively correlated. Cross correlation is an expression of how
much two stochastic processes are correlated, and can be described by the cross
correlation function (CCF). The CCF can be used to identify lags of one index
that has some determining property on another index at lag 0. The coe�cients
in the CCF of two processes X and Y is de�ned as:

ρXY (t1,t2) =
γXY (t1,t2)√
σ2
X(t1)σ2

Y (t2)

=
Cov [X(t1), Y (t2)]√

σ2
X(t1)σ2

Y (t2)

=
E
[(
X(t1)−X(t1)

) (
Y (t2)− Y (t2)

)]√
σ2
X(t1)σ2

Y (t2)

where γXY (t1,t2) is called the cross covariance, X(t) and Y (t) are the means
and σ2

X(t) and σ2
Y (t) are the variances, all until time t. If the bivariate process

(X(t), Y (t))
T
is stationary the coe�cient at lag τ is de�ned as:

ρXY (τ) =
γXY (τ)√

γXX(0)γXY (0)

=
γXY (τ)

σXσY

where the cross covariance function is:
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γXY (τ) = Cov [X(t), Y (t+ τ)]

= E
[(
X(t)−X(t)

) (
Y (t+ τ)− Y (t+ τ)

)]
.

At lag = 0 the cross-correlation is the correlation.

In �gure 4.6 and 4.7 the cross correlation functions for lags from -4 to 4 is
plotted together with pairs plots. As already stated, the lag=0 is in many
cases signi�cant. Among the bonds the correlation in time has almost vanished
because of the splitting into weekly data. Only a few lags other than zero
are signi�cant. CSIYHYI has signi�cant negative lags to the stock indices and
JPGCCOMP, the reason for this is the autocorrelation left in the log return
of CSIYHYI. The CCF for JPGCCOMP and the stock indices have signi�cant
lags at -2 and 0. NDEAGVT has negative correlation to the stock indices, and
highly correlated to NDEAMO at lag=0. The CCF for DK00S.N.Index and the
other indices have no signi�cant lags at all.

Over all we see that the indices are correlated, but the use of weekly log return
data removes the correlation in time. Otherwise it is often seen that the Eu-
ropean and eastern markets are correlated to the American market with lag =
-1 day because of the time di�erences. The reason why DK00S.N.Index is not
correlated to the other indices can be explained by looking at �gure 3.1. The
index prices rise because of the liquidity crisis, but it is adjusted by the govern-
ment and the central bank, and is for this reason isolated. This is also con�rmed
by looking at the pairs plots where the correlation among the stock indices is
represented as a linear pattern in the paris plot. This CCF plot represents the
cross correlation for the whole data period, but if two di�erent periods, one with
growing prices and one with falling prices were analysed the result would not
necessarily be the same. The correlations might change sign or event not be
represented in some types of periods.
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Figure 4.6: In the lower triangle paris plots are found and above the diagonal
the CCF's are plotted. The blue line marks a 95% con�dence
interval.



4.4 Cross correlation in log return indices 33

−4 −1 4 −4 −1 1 4

−
0.

2
0.

2

−4 −1 1 4

−
0.

2
0.

2
−

0.
2

0.
2

−
0.

2
0.

2

  CSIYHYI

● ●
●●●● ●●●●

●●● ●
●

●●●● ●●●● ● ●● ●● ● ●
●● ●●●● ● ●●● ●● ● ●

●
●●● ● ●

● ●●● ●●● ●● ● ●● ●●●●
●●●●● ●● ●
●● ●● ●● ●●●●●●●●●●
●●●

●●
●●●●● ●

●
●

●●
●

●
●

● ●●●● ●●
●●

●
●

●● ●
●

●●● ●●
●●

●● ●●
●● ●●● ●

● ●

●

●●
● ●● ●

●● ● ●● ●
●● ● ●

●● ●●●●
●● ●●●●●● ●●●● ●●● ●●

●
● ●●

●
●●●

● ●●● ●●●●

● ● ●
●
●

●
● ●●●●●

●
●●●●●● ●●●● ●●

●●
●●
●● ●●

● ●●
● ●●● ●

● ●●
●●● ●●●●●● ●●● ●●●
●

●●●●
●

●●
● ●

●● ●● ●● ●● ●● ●●
●●

●●●● ●●●●●●● ●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●●● ●●●●● ●
●

●
●

●
●

●
●

● ●
●● ●●●● ●●● ● ●● ●●● ●●●●

●
●● ●● ●●● ●● ●●●●● ● ●●●●● ●●●● ●●●●● ●●● ●●●

●● ●●●●● ● ●●●● ●●●● ●● ●●● ●●●●● ●●● ●● ●● ●● ●
● ●●●●● ●●●●● ●●●● ● ●● ● ●

●

●●
●

●● ●●
●

●●●
●

●● ●● ●

●
●● ●●

●● ●
● ●

●●● ●
● ●

●● ●●●● ●
●

● ●●●● ●
●

●●
● ● ●●●● ● ●●
●

●
●

●

●●

●
●

●

●

●

●
●

●●
●

●

●●
●● ●
●●

●

● ●
●

● ●
●

●

●●

●

●●
●●

●
●

●
●

●
● ●

●
●●

●●
●

●
●

●
●● ●

●● ●●●● ● ●●●
●

●
●● ●●

●
●● ● ●● ●● ●● ●

●

●

●

● ●●

●
●●

● ●● ● ●
●

●●● ●● ● ●●●● ● ●
●● ●●● ● ●●●●● ●●● ● ●● ●●●●● ●●●●●● ●●●● ●

● ●●● ●
●

●

JPGCCOMP

−
0.

2
0.

2
● ●
●●●● ●●●●

●●● ●
●

●●●● ●●●● ● ●● ●● ● ●
●● ●●●● ● ●●● ●● ● ●

●
●●● ● ●

● ●●● ●●● ●● ● ●● ●●●●
●●●●● ●● ●
●● ●● ●● ●●●●●●●●●●
●●●

●●
●●●●● ●

●
●

●●
●

●
●

● ●●●● ●●
●●

●
●

●● ●
●

●●● ●●
●●

●● ●●●● ●●● ●
● ●

●

●●
● ●● ●

●● ● ●● ●
●● ● ●

●● ●●●●
●● ●●●●●● ●●●● ●●● ●●

●
● ●●

●
●●●

● ●●● ●●●●

● ● ●
●
●

●
● ●●●●●

●
●●●●●● ●●●● ●●

●●
●●
●● ●●

● ●●
● ●●● ●

● ●●
●●● ●●●●●● ●●● ●●●
●

●●●●
●

●●
● ●

●● ●● ●● ●● ●● ●●
●●

●●●● ●●●●●●● ●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●●● ●●●●● ●
●

●
●

●
●

●
●

● ●
●● ●●●● ●●● ● ●● ●●● ●●●●

●
●● ●● ●●● ●● ●●●●● ● ●●●●● ●●●● ●●●●● ●●● ●●●

●● ●●●●● ● ●●●● ●●●● ●● ●●● ●●●●● ●●● ●● ●● ●● ●
● ●●●●● ●●●●● ●●●● ● ●● ● ●

●

●●
●

●● ●●
●

●●●
●

●● ●● ●

●
●● ●●

●● ●
● ●

●●●
●

● ●
●● ●●●● ●

●
● ●●●● ●

●
●●

● ● ●●●● ● ●●
●

●
●

●

●●

●
●

●

●

●

●
●

●●
●

●

●●
●● ●
●●

●

● ●
●

● ●
●

●

●●

●

●●
●●

●
●

●
●

●
● ●

●
●●

●●
●

●
●

●
●● ●

●● ●●●● ● ●●●
●

●
●● ●●

●
●● ● ●● ●● ●● ●

●

●

●

● ●●

●
●●

● ●● ● ●
●

●●● ●● ● ●●●● ● ●
●● ●●● ● ●●●●● ●●● ● ●● ●●●●● ●●●●●● ●●●● ●

● ●●● ●
●

●
● ●

●

●
●

●
●●

●
●

●●
●

● ●
●

●●●
●
●

●● ●

●

●

●
● ● ●

●
●

●
●

●●
●

●●●
●

●

● ●●●
●● ●

●● ●●● ●● ●
●● ● ●● ●●●

●●●●●
● ●

● ●

●

● ●
●

●● ●●●●●
●

●●●● ●
●●

●● ●
●

●
●
● ●

●
●

●●
●

● ●● ●
●●

●

●●
●●

●●●
●

●●
●

●
● ●

●

●●●●
●

●
●● ●
●● ●●
●

●
●
●

● ●
●

●

●

●
● ●● ●●● ●

●●● ●●●●●● ●● ●●●
● ●●●● ●●

● ●

●

●
●

●
●

●

●●●
● ●●●

●●
●

●
● ● ●●●●

● ● ●●●● ●●●
●● ●● ● ●●●

●
●
●
● ●●●

●
●

●
● ●

●●
●●● ●

●

●
●

●
●● ●●●●

●
● ●●● ●●●

● ●●●●
●

●●
●

●
●

●
●● ●● ●● ●

● ●
●

●

●
●

●●● ●●
●
●

●
●●

●●●●● ●●●●
●

●●●● ●● ●● ●●●● ●●
●● ●●● ● ●

● ●●

●● ●
● ●● ●● ● ●

●● ●●●● ●●● ● ●● ●●● ●●
●●

●●● ●● ●
●● ●● ●●●●● ● ●●●●●

●●●● ●●●●● ●●● ●●●
●● ●●●●● ● ●●●● ●●●● ●● ●●● ●●●●● ●●● ●●

●● ●● ●● ●●● ●●
●●●●● ●●

●
● ● ●● ● ●

●
●●

●
●● ●●● ●●● ●●●

●● ●
●●● ●● ●● ●● ●

●●● ●● ●●● ●●● ●
● ●● ●●●● ● ●● ●● ● ●●●● ● ●●

● ● ●

●

●

●

●

●

●●

●

●
●

●

●●●
●●

●
● ●●●

●
● ●●● ●●

●
●

●

●
●● ●●

●
●●●● ● ●●

●●●●●●
●●●

● ● ●●
●●●● ● ●●● ● ●●● ●●●

●● ● ●● ●● ●● ●
●

●

●
● ●●●

●●● ●● ● ●● ●
●

● ●● ● ●●●● ● ●
●● ●●● ●

●●●●● ●●● ● ●● ●●●●● ●●●●●● ●●●● ●● ●●● ●●
●

NDEAGVT

● ●
● ●●●●●●●

●●●●
●

●●●●●●●●● ●● ●● ●●
●●

●●●● ● ●●● ●● ● ●
●

●●● ● ●
● ●●● ●● ● ●● ● ●● ●●●●

●●●●● ●● ●
●● ●● ●● ●●●●●●● ●● ●

●●●
●●

●●●●●●

●
●

● ●
●

●
●

● ●●●●●●
●●

●
●
●● ●
●

●●● ●●
●●

●●●●●●●●● ●
●●

●

●●
● ●●●

●● ●●● ●
●● ●●

●●● ●●●
●● ●●●●●●●●●● ●●●●●
●
● ●●
●
●●●

● ●●●●●●●

● ●●
●
●
●

●●●●●●
●

●●●●●●
●●●● ●●
●●
●●
●●●●

●●●
●●●●●

● ●●
●●● ●●●●●● ●●● ●●●
●

●●●●
●
●●

● ●
●●●●●●●●●●●●

●●

●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●● ●●●●
●●●●●●●● ●
●
●
●
●
●
●
●
●●
●● ●●●●●●●● ●●●●●●●●●
●

●● ●● ●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●● ●●●
●● ●●●●●●●●●● ●●●● ●● ●●● ●●●●●●●●●●●●●● ●

●●●●●● ●●●●●●●● ●● ●● ●●

●

●●
●
●●●●

●
●●●

●
●●●●●

●
●● ●●

●● ●
● ●

●●●●● ●
●●●●●● ●

●
●●●●● ●

●
● ●

●● ●● ●
●● ●●

●
●

●

●

●●

●
●

●

●

●

●
●

●●
●

●

●●
● ● ●

●●
●

●●
●

●●
●

●

●●

●

●●
●●

●
●
●

●
●
● ●
●

●●
●●

●
●

●
●

●●●
●● ●●●●●●●●

●
●

●● ●●

●
●●●●●●●●●●

●

●

●

●●●

●
●●

●●●● ●
●

●●● ●●●●●●●● ●
●●●● ● ●●●●●●●●● ●●● ●●●● ● ●●●●●● ●●●●●

● ●●● ●
●

●
● ●

●

●
●
●

●●
●
●

●●
●

●●
●
●●●

●
●

●●●

●

●

●
● ●●
●

●

●
●

●●
●

●●●
●

●

● ●●●
●● ●

●● ●●● ●● ●
●● ● ●● ●●●●● ●●●

● ●
● ●

●

● ●
●

●● ●●●●●
●

● ●● ● ●
●●

●● ●
●

●
●
●●
●

●
● ●

●
● ●● ●

●●
●

●●
●●

●●●
●

●●
●

●
● ●

●

●●●●
●

●
●●

●
●● ●●

●
●

●
●

● ●
●

●

●

●
●●● ●●● ●

●●●● ●●●●● ●●●●●
● ●● ●● ●●
● ●

●

●
●

●
●
●

●●●
● ●●●

●●
●

●
● ●●●●●●●●●●●●●●
● ●●●●●●●

●
●

●
●●●

●
●
●

●
●●

●●
●●●●

●

●
●

●
●● ●●●●

●
● ●●● ●●●

●●●●●
●

●●
●

●
●
●
●●●●●●●● ●

●
●

●
●

●●● ●●
●
●

●
●●

●●●●● ●●●●
●
●●●● ●●●● ●●●● ●●●●●●●●●
●●●

●●●
●●●●●●

●
●● ●●●●●●●● ●●●●●●●

●●
●●● ●● ●
●●●● ●●●●●● ●●●●●

●●●● ●●● ●● ●●● ●●●
●● ●●●●● ● ●●●● ●●●● ●● ●●● ●●●●●● ●●●●

●●●● ●●●●●●●
●●●●●●●

●
●● ●● ●●

●
●●

●
●● ●●● ●●● ●●●
●●●

●●● ●● ●● ●● ●
●●●●● ●●●●●●●

● ●●●●●
● ●●● ●● ● ●● ●●● ●●

● ●●

●

●

●

●

●

●●

●

●
●

●

●●●
●●

●
● ●●●

●
●●●●●●
●

●
●

●
●● ●●

●
●●●●● ●●

●●●●●●
●●

●
●●●●

●●●●●●●● ●●●● ●●●
●● ●●● ●●●●●
●

●

●
●●●● ●●●●●● ●●●

●
● ●● ●●●●●●

●
●● ●● ● ●

●●●●●●●● ●●● ●●●● ● ●●●●●● ●●●●●● ●●● ●●
●

●

●

● ●●

●
●●

●
●

●●

●

●

●

●
●●

●
●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●

●●
●

●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●●● ●
●●

●

●
●

●
●

●

●

●
●

●

●●●●●
●● ●●

●

●●●●

●
●●●

●●

●
●●

● ●

●

●
●●

●
●

●●

●
●●●

●●●
●

●
●

●

●●

●●●●
●●
● ●●●

●●

●

●

●

●
●

●●

●

●●
●

●

●

●
●

●

●●
●

●
●●

●
● ●●●●

●
●●

●●●●
●

● ●●

●
●●

●
●●

●

●●
●

●●
●●

●●

●

●
●●●

●

●

●

●●●●

●
●

●●

●

●
●●● ●
●

●
●
●

●
●

●

●●●
●●●●
●

●●
●

●
●

●●

●

●

●

●

●
●●

●

●●●

●●
●

●

●
●

●
●

●

●
●●

●●
●●●

●

●●

●
●

●

●

●
●

●

●●
●

●
●

●

●
●

●●
●●●●●●●

●
●

●●
●

●●●
●
●
●

●●●
●

●
●

●

●

●●
●

●●
●●
●●

●
●
●●
●

●

●
●
●
●

●
●
●
●
●
●

●

●

●

●●
●

●●

●

●
●

●
●

●
●

●

●
●●

●

●●
●●

●
●●
●

●
●●

●
●

●
●

●
●●

●●
●●

●●

●
●●
●●

●●

●
●●

●
●●

●
●●●●
●

●
●

●●
●

●
●

●
●●

●
●

●
●●

●●
●

● ●
●

●
●

●●
●

●

●

●
●

●●
●

●

●●●●

●
●●

●
●

●
●

●

●
●●

●●
●
●●
●
●

●

●●

●

●●
●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●●

●●

●
●

●

●

●

●●●
●

●

●

●
●

●

●

●
● ●

●

●

●

●●

●
●

●

●● ●

●●

●
●

●

●

●

●●

●
●

●

● ●

●

●●

●

●

●
●

●

●●

●●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●●

●●
●
●

●

●●
●

●
●

●

●●

●

●

●
●

●

●●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●●

●●
●
●

●
●

●
●

●●

●

●●

●
●
●

●
●

●

●

●
●

●

●

●

●
●

●●
●
●

●●●
●

●

●

●

●
●● ●

●●●●●

●

●

●●●
●

●

●
●

●

●
●

●

NDEAMO

−
0.

2
0.

2

●●●●●
●●
●
●●●●●●●●●●●●●●●
●
●●●●
●
●●
●●
●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●● ●●●●●●
●
●
●
●

●
●
●
●●
●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●●

●

●●
●
●●●●

●
●●●

●●●●●●
●

●●●●
●●●
●●
●●●●

●●
●●●●●●
●
●●●●●●●
●
●●
●●●●
●●●●●

●
●
●

●

●●

●
●

●

●

●

●
●

●●
●

●

●●
●●●
●●

●

●●
●

●●
●

●

●●

●

●●
●●

●
●
●
●
●

●●
●
●●
●●

●
●

●
●
●●●
●●

●●●●●●●●
●

●●●●●

●
●●●●●●●

●●●

●

●

●

● ●●

●
●●

●●● ●●
●

●●● ●● ●●● ●●●●
●●● ●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●
●●●●●

●
● ●

●●●●

●

●
●
●
●●●●●●
●
●●●●●●●
●●●●●
●

●●
●
●
●
●
●●●●●●●●●●
●

●
●●●●●●●
●
●
●●
●●●●●●●●●
●

●●●●●●●●●●●●●●●
●●●● ●●

●●●

●●●
●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●●●● ●●●●●●●●●●●●●●●●
●● ●●●

●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●●● ●● ●●●●●●
●●●●●●●
●

●●●●●●
●
●●
●
●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●●●●●●●●●
●●●

●

●

●

●

●

●●

●

●
●

●

●●●●●
●
●●●●●
●●●●●●
●●

●

●
●●●●

●
●●●●●●●
●●●●●

●
●●

●
●● ●●

●●●●●●●●●● ●●●●●
●●●●●●●●●●
●

●

●
● ● ●● ●● ●●● ●●● ●

●● ●● ●●● ●●●
●

● ●● ●● ●
●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●
●●
●

●●●

●●●

●
●

●

●●

●

●
●●
●●

●●●

●

●●
●
●

●

●

●
●

●

●●
●
●
●

●

●
●
●●
●●●●
●●●

●
●
●●

●
●●●
●
●

●
●●●
●
●
●
●

●

●●
●

●●
●●

●●

●
●

● ●
●●

●
●
●
●
●

●
●
●
●
●
●

●

●

●●
●

●●

●

●
●
●
●

●
●

●

●
●●
●

●●
●●
●
●●
●

●
●●
●

●
●
●
●
●●
●●
●●
●●

●
●●●●

●●

●
●●

●
●●
●
●●●●
●

●
●

●●
●

●
●

●
●●
●
●
●
●●
●●
●
●●●
●
●
●●

●
●

●

●
●

●●
●
●

●●●
●

●
●●
●

●
●

●

●

●
●●

●●
●
●●

●
●

●

●●
●

●●
●
●

●
●

●●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●●

●●

●●
●

●

●

●●●
●

●

●

●
●

●
●

●
●●

●
●

●

●●

●
●

●

●●●

●●

●
●

●

●

●

●●

●
●

●

●●

●

●●

●

●

●●

●

●●

●●

●

●
●●

●
●
●

●
●
●

●

●

●

●

●

●
●

●● ●

●●

●●
●

●

●

●●
●

●
●

●

●●

●
●

●
●

●

●●

●

●
●
●

●
●

●

●●

●

●

●

●

●
●

●●

●●
●

●
●

●

●
●

●●

●

●●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

●●
●
●

●●●
●
●

●

●

●
● ●●

●●●●●

●

●

●●●
●

●

●
●

●

●
●

● ●●●●●

●

●

●
●●
●

●●●
●●●

●
●●

●●
●
●●●●●●●●
●
●●●●●●●●●●●
●●●

●

●●
●●
●●●●
●●●
●●
●●●
●●●●●●●●●
●
●●●
●●●●
●●●●●●
● ●● ●●●
●
●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●
●●
●●●●●

●●●●●●
●
●●●●●●
●●

●●
●

●●
●●

●
●●

●
●●
●
●●●●
●

●
●●●

●●
●

●
●●
●●
●
●●●●
●●

●●●●
●●● ●

●
●●●●●

●
●●●●
●●●
●

●●
●

●
●●●●●●●●

●●

●

●●
●
●●
●
●● ●

●●
●

●
●

●

●
●

●
●●

●●●

●

●
●●

●●

●●

●
●

●●●
●

●

●●●
●

●
●

●
●
●

●●
●

●

●

●●

●

●●

●

●●

●●

●

●

●
●●

●
●

●●

●

●
●
●

●

●●●●●●●●●

●
●

●
●
●

●●
●
●●●
●

●●
●●●● ●

●●
●

●● ●
●

●●●●●●●●
●●
●
●
●
●●●●
●●

●
●●●●●
●
●

●
● ●

●●
●● ●●● ●

●● ●●●
●

●
●●● ●●●

●
●

●
●

●
●

●●●●
●● ●●
●

●●
●

●
●●

●
●

●●●●●
●

●
●●
●●
●

●
●●
●●●

DK00S.N.Index

Figure 4.7: In the lower triangle paris plots are found and above the diagonal
the CCF's are plotted. The blue line marks a 95% con�dence
interval.
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4.5 Additional descriptive statistics of log return

indices

Skewness and kurtosis are both indicators used to describe the shape of a dis-
tribution. Skewness measures the degree of asymmetry and is the relationship
between the tails of the distribution, and if the skewness is positive the right
tail is longer than the left, and opposite if the skewness is negative. Skewness is
a rescaled third central moment (the mean is the �rst, and the variance is the
second). The Fisher skewness is de�ned as [5]:

ς =
E (X − E [X])

3

Var (X)
3/2

=
1
n

∑n
i=1 (x− x̄)

3(
1
n

∑n
i=1 (x− x̄)

2
)3/2 . (4.11)

The Pearson's skewness is the square of Fisher skewness.

Kurtosis is a measure of the degree of peakedness in the distribution or strictly
speaking, a measure of unimodality (one major peak) versus bimodality (two
major peaks) in the distribution [3]. If the kurtosis is negative the distribution
is said to be platykurtic, which is �at topped for unimodal distributions, and
if positive said to be leptokurtic which for a unimodal distribution is peaked.
Kurtosis is a rescaled fourth central moment and the Fisher (excess) kurtosis is
de�ned as [5]:

κ =
E (X − E [X])

4

Var (X)
2 − 3 =

1
n

∑n
i=1 (x− x̄)

4(
1
n

∑n
i=1 (x− x̄)

2
)2 − 3. (4.12)

Pearson's kurtosis is just the Fisher kurtosis plus three. The excess kurtosis of
a normal distribution is equal to zero.

In table 4.1 descriptive statistics for daily and weekly log return is found. The
estimated mean of both weekly and daily log return is close to zero, but still
positive which indicates an overall positive tendency through the whole period.
Only TPXDDVD and DK00S.N.Index has negative mean. The span of log
return values for DK00S.N.Index is large compared to the others, and therefore
the standard deviation is also larger. In general the standard deviation of weekly
log returns is double in value compared to daily log returns. The indices have
a small negative skewness, and the weekly log return tend to be a little more
left-skewed, except DK00S.N.Index and weekly log return of NDEAGVT having
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positive skewness. DK00S.N.Index gets from being strongly right-skewed to less
right-skewed turning from daily to weekly log returns, and NDEAGVT changes
from left-skewed to right-skewed. All indices are leptokurtic, and there is no
tendency of what happens in kurtosis when data changes form daily to weekly.
JPGCCOMP, CSIYHYI and especially DK00S.N.Index have very large kurtosis
compared to the other indices. The kurtosis of these three indices are reduced
when using weekly data.

Index Size Min. Max. µ̄ σ̄ Skew. Kurt.

Daily log return
KAXGI 3291 -0.1058 0.0820 2.664× 10−4 0.0114 -0.3863 6.4612

NDDUE15 3291 -0.1018 0.1074 9.569× 10−5 0.0142 -0.0760 7.0726

NDDUJN 3291 -0.0951 0.1147 4.414× 10−5 0.0149 -0.1450 3.9572

NDDUNA 3291 -0.0950 0.1043 5.094× 10−5 0.0132 -0.2320 7.6251

NDUEEGF 3291 -0.0996 0.1007 4.500× 10−4 0.0146 -0.3401 5.4146

TPXDDVD 3291 -0.1000 0.1286 −5.670× 10−5 0.0140 -0.3619 6.8168

CSIYHYI 3291 -0.0412 0.0267 2.679× 10−4 0.0027 -2.5366 40.445

JPGCCOMP 3291 -0.5977 0.0404 4.195× 10−4 0.0044 -1.6445 32.961

NDEAGVT 3291 -0.0146 0.0108 1.919× 10−4 0.0029 -0.2785 3.6039

NDEAMO 3291 -0.0213 0.0203 2.195× 10−4 0.0021 -0.3482 13.946

DK00S.N 2129 -1.5041 2.8622 −2.330× 10−4 0.1217 5.5523 170.45

Weekly log return
KAXGI 659 -0.2107 0.1030 1.330× 10−3 0.0273 -1.4432 8.5646

NDDUE15 659 -0.2655 0.1392 4.779× 10−4 0.0312 -1.3347 10.278

NDDUJN 659 -0.1640 0.1102 2.204× 10−4 0.0292 -0.2528 1.8297

NDDUNA 659 -0.2053 0.1201 2.544× 10−4 0.0274 -0.8329 6.7085

NDUEEGF 659 -0.2252 0.1854 2.247× 10−3 0.0327 -0.8276 6.8369

TPXDDVD 659 -0.2202 0.0925 −2.832× 10−4 0.0288 -0.9112 5.1964

CSIYHYI 659 -0.1025 0.0551 1.338× 10−3 0.0100 -2.6222 26.353

JPGCCOMP 659 -0.1298 0.0969 2.095× 10−3 0.0213 -2.7719 35.731

NDEAGVT 659 -0.0183 0.0241 9.586× 10−4 0.0052 0.1286 1.8096

NDEAMO 659 -0.0394 0.0327 1.096× 10−3 0.0055 -0.6926 8.0980

DK00S.N 425 -2.1401 2.6027 −1.211× 10−3 0.2204 1.7671 67.627

Table 4.1: Descriptive statistics of daily and week log return indices consisting
of data size, minimum, maximum, mean, standard deviation Fisher
skewness and Fisher (excess) kurtosis.

In �gure 4.8 density curves of weekly log return indices are plotted together with
an approximated normal curve. The density at given point, x, for the normal
curve is approximated using:
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f(x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
.

In this plot it is possible to see, what already has been deduced, that the indices
have a positive kurtosis and the main part of the indices are negative skewed.
Some of the indices tend to follow a normal distribution more than others. E.g.
NDDUJN and TPXDDVD, both Japanese indices, have density curves that are
close to the normal curves. Looking at DK00S:N:Index it is very obvious that it
behave di�erently, by the high frequency of very many small log returns. From
these di�erent tests, normality in weekly log return indices cannot be proved,
though it might be assumed when modelling data.

Weekly log return
Empirical density
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Figure 4.8: Density plot of weekly log return data (black) and an appertaining
approximated normal curve (red).

To summarize the daily and weekly log return data has some interesting prop-
erties. Outliers are now much easier to identify, and some of them can be
explained directly by external events. Using the log return transformation re-
moves much of the one period dependency, and if weekly data is used the data
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tends to behave almost time independent, but there are still signi�cant lags in
the autocorrelation function that needs to be modelled. Therefore the remaining
auto correlation is accepted. Test results of stationarity shows that it cannot be
rejected that weekly log return indices are stationary. Analysis of the volatility
shows that the log return indices are conditional heteroscedastic, and compar-
ing variance in positive and negative periods shows a di�erence. Plots of the
cross correlation functions shows that the indices are correlated, but not in time.
The stock indices are highly correlated with each other and more or less also to
the bond indices. Using weekly log returns removes the lagged correlation, but
the direct correlation is maintained. It is very clear from the analysis that the
DK00S.N.Index do not behave like the other indices. The reason for this might
be that the rate is to some extent controlled political decisions.
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Chapter 5

Financial regimes

It has been demonstrated that the behaviour of the variance of the indices de-
pends on whether the index prices has a positive trend or negative trend. It
was also discovered that periods or �nancial regimes not only are distinguished
by positive or negative trend, but also by length, volatility and slope. The in-
dices used here are mainly represented by developed countries, and therefore an
indicator for the turning points should re�ect the economic conditions in these
countries. Therefore OECD's turning points total area [25],[24] are used. The
turning points are determined on the basis of OECD Composite Leading Indica-
tors (CLI). CLI are calculated for 29 OECDmember countries 1 , 6 non-members
and 7 country groupings such as Euro area or G7 2. The CLI total area only cov-
ers the 29 OECD member countries with weightings corresponding to economic
size the year before. E.g. in 2009 Denmark was weighted 0.5%, United States
36.38% and Japan 10.61% in the total area, where the weighting is calculated
upon the 2008 gross domestic product (GDP) based on purchasing-power-parity
(PPP) valuation of country GDP, in billions of current international dollar. The
CLI's are indicators build on business cycles and turning points. These are iden-
ti�ed by measuring the deviation from trend series, where Index of Industrial

1Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Ger-
many, Greece, Hungary, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, New
Zealand, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey,
United Kingdom, and United States[23].

2Group of seven major industrialized nations.
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Production (IIE) is an often used trend series because of the availability and
cyclical sensitivity. GDP is also used to identify turning points. The CLI's are
sensitive to exceptions and respond quickly to changes in economic activity.

The turning points within the time span for the data are given in table 5.1.

Date 1999M1 2000M8 2001M12 2008M2 2009M2 2011M3

Event Trough Peak Trough Peak Trough Peak

Table 5.1: OECD's reference turning points, total area. The date of an event
is given by the year and (end) month number.

2000 2002 2004 2006 2008 2010 2012

0
1

2
3

4
5

Normalized index plot

Time [Year]

N
or

m
al

iz
ed

 in
de

x 
va

lu
e

Index
KAXGI
NDDUE15
NDDUJN
NDDUNA
NDUEEGF
TPXDDVD
CSIYHYI
JPGCCOMP
NDEAGVT
NDEAMO
DK00S.N.Index   

82 weeks 70 weeks 322 weeks 52 weeks 108 weeks

Figure 5.1: Normalized index plot with turning points, and numbers of weeks
between them.

In �gure 5.1 the turnings points are illustrated together with normalized index
plots. The turning points do not lay spot on the dates that the indices indicate,
though it is hard to tell because not all the indices are in maximum or minimum
at the same time. Over all they seem to estimate reasonably, also when thinking
a step further and taking the modelling process into account. In this plot it is
again observed that the periods are very di�erent. There is no �xed length of a
period. In the time spans studied here, the three periods with the rising prices
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are 78, 322 and 108 weeks, and the two periods with falling prices are 74 and 52
weeks. The slope and the volatility do also seem to be di�erent. E.g. looking
at the periods with falling prices, the �rst period (mid 2000 - start 2002) does
not have such an intense fall and volatility as the second period (start 2008 -
start 2009). Therefore the modelling of the indices will be done for each �nancial
regime to obtain a model that �ts data the best. Consequently the �rst (January
1999) and last (April 2011- August 2011) data samples will be left out in the
modelling process.



42 Financial regimes



Chapter 6

Theoretical background

Statistical modelling of �nancial data is the main topic in this thesis. In the
previous chapters the indices have been analysed in order to ease the modelling
process and support the models and approach used. Only the theory behind the
models and approaches used in this thesis will be described, and basic statis-
tics will not be explained. Therefore a certain level of academic knowledge is
presumed in order to get full bene�t of the rest of this thesis, though it is still
possible to understand the outline without any prerequisites.

In this chapter a method for modelling the correlation structure of the indices is
presented. Afterwards, the focus turns to the dynamic structure of the indices
and their variance and a suitable time series model will be described.

6.1 Principal Component Analysis

Principal component analysis (PCA) is a method used to reduce the numbers
of variable in data that clearly are correlated in order to simplify further data
modelling. PCA is based on �nding the factors that determine the patterns,
the correlation or covariance, in data. These independent factors, known as
principal components (PC's) are described by a weighted linear combination of
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explanatory variables. The goal is to replace the variable with a fewer numbers
of factors and still describe data without losing to much information of the
variation. The principal components are ordered such that PC describing the
variation in data the best is listed �rst. In this section subject relevant to
a principal component analysis will be outlined together with a �manual� for
deriving PC's. PCA can be done using either the covariance matrix Σ or the
correlation matrix ρ, some of the advantages, disadvantages and di�erences will
be described.

6.1.1 Assumption underlying PCA

PCA is derived on the basis of di�erent geometrical and statistical assumptions
that the data has to ful�l in order to use PCA. Often data sampled from the
real world does not ful�l these assumption completely, but that does not mean
that PCA cannot be used, just that we have to be careful when concluting. The
higher degree of ful�lment, the higher degree of credibility to the conclusions.
If PCA is used to describe patterns in covariance/correlation, where hypothesis
test also can be used, the degree of ful�lment is not supposed to be as high as
if PCA is used in statistical inference. There are three main assumptions [11]:

Multivariate normality
Multivariate normality is hard to prove, but univariate normality of each of
the variables is a good indication. Often data is mean adjusted before PCA is
applied in order to ensure data being centered. Other method, such as log return
is used on data with a more tricky behaviour in order to meet this assumption.
Weakly stationarity is a sub-assumption to univariate normality and implies that
the mean, variance and autocovariances of the indices are invariant in time. Data
has to be weakly stationary, because the covariance matrix and the correlation
matrix are unknown, but the sample covariance matrix and correlation matrix
can be estimated correct if data is weakly stationary. Assuming data is weekly
log return {Xt|t = 1, ...T} the estimates becomes:

Σ̂ ≡ [σ̂i,j ] =
1

T − 1

T∑
t=1

(
X(t)−X

) (
X(t)−X

)T
(6.1)

ρ̂ = D̂−1Σ̂D̂−1 (6.2)

where X = 1
T

∑T
t=1X(t) is the sample mean, and D̂ = diag

{√
σ̂11, ...,

√
σ̂pp
}

is a diagonal matrix of standard deviations of the sample. The higher degree of
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multivariate normality, the higher degree of explanation is achieved in the �rst
principal components and less redundancy is experienced in the later principal
components.

Linearity
PCA assumes that the variables have a linear relationship because the principal
components are derived on a linear combination of eigenvectors of the variance
or covariance matrix and the variables. If the variables possess non-linearity,
here related to ARCH-e�ects, the attempt to describe the variables in a linear
relation is hard. The result is often failure or that PCA does not reduce the
dimension of data signi�cantly.

Independent random observations
In order to describe the true distribution, the observation has to be drawn and
independently. This assumption also ensures that the estimated correlation and
covariance is true. This leads to the question of how outliers should be treated
because independent random sampling includes outliers. True outliers can be
eliminated, but it is important to distinguish between true outliers and extreme
values. Extreme values are important in order to describe the distribution. If
the sample size is large the in�uence of outliers vanishes.

6.1.2 Adequate sample size

In order to PCA to work properly, a minimum adequate numbers of object from
a sample should be available. The sample size depend on the homogeneity in
data, the less inhomogeneity the less the sample size has to be, and therefore
there is only rules of thumb for the sample size. Of course the number of object
should be at least the number of variable. The variance of the sample should
be a good estimate of the true variance of the population, or here the index. In
this thesis more than 3000 daily and 659 weekly index values representing each
indices (2130 and 426 values for DK00S.N.Index), and if PCA is used in regime
separated data, the sample size is still far large enough.

6.1.3 Derivation of principal components

Principal component can be derived either by using the covariance matrix Σ or
the correlation matrix ρ[11, 9]. First the use of Σ is presented.
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Let x be vector of p = 11 variables (indices). The aim is to determinem < p vari-
ables, principal components (PC's), that keep as much information on the covari-
ance between the p variables as possible. The k'th PC, βk = (βk1, βk2, ..., βkp)

T

is a vector of p elements. The k'th PC is determined by linear combination
βTk x, having maximum variance where βkx has to be uncorrelated with the
other k − 1 earlier determined combinations. Roughly said the �rst PC is the
linear description of data that has maximum variance. The second PC is also
a linear description of data with maximum variance under the constraint that
it is orthogonal to the �rst PC. This continues until p'th PC is determined and
all variance in x are explained.

But how is the PC's determined practice? To answer this question the covariance
matrix Σ of x is used because the relationship that maximizes the variance of
βTk x has to be found. The variance is given by:

Var
(
βTk x,

)
= βTk Σβk. (6.3)

This relationship is only possible to maximize if the principal component is
normalized such that it is a unit vector:

βTkβk = 1. (6.4)

The task is to maximize the right side equation 6.3 subject to6.4. Lagrange
multipliers are used for this purpose:

Maximize : βTkΣβk − λ
(
βTkβk − 1

)
.

Di�erentiating with respect to βk

Σβk − λβk = 0

m
(Σ− λI)βk = 0,

where λ now can be seen as an eigenvalue with corresponding eigenvector, βk,
to the covariance matrix. The k'th largest eigenvector determines the k'th PC
because the maximizing reduces to:
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Var
(
βTk x

)
= βTkΣβk

= βTk λβk

= λβTkβk

= λ.

The eigenvalues must be sorted by size with the larges values �rst. Then the
k'th PC is the k'th eigenvector. To summarize, let z be a vector of PC's, then:

z = ATx

where x is a vector of the original variables and A is the orthogonal matrix with
βk in the k'th column, where βk is the k'th ordered eigenvector of Σ.

The condition of independence between the PC's is ful�lled because Σ is sym-
metric and it is an orthonormal linear transformation of x.

If the principal components instead are derived by using the correlation matrix
ρ the principal components are de�ned as:

z = ATx∗

where A consists of ρ's eigenvectors, ordered in accordance with eigenvalue
ordered by size. x∗ is a vector of standardized variables, where the i'th element
is calculated as x∗i = xi√

σii
.

The transformation of x to x∗ is not an orthogonal transformation, and therefor
do the principal components derived by the two methods provide the di�erent
information. Consequently the method using the covariance matrices is pre-
ferred in some cases instead of correlation matrix. When the variables are of
di�erent type the correlation method is preferred, because the element in x∗

is dimensionless and can without any problem be combined to PC scores (the
projections of data with respect to the PC). The covariance method would not
be the right method to use because the variables are not directly comparable. If
the variables belong to the same type and all elements in x has the same unit,
then covariance method is often preferred because the use of x∗ is somewhat
equivalent of making an arbitrary choice of measurement units. This argument
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is only usable when the units are equal, because the covariance of a case where
the variables are of di�erent type, choosing units is an even more arbitrary.

Using the correlation methods makes it more di�cult to compare the PC's
because their coe�cients have been normalized di�erently.

6.1.4 Choosing appropriate number of principal compo-
nents

How many principal components, m, is necessary to describe the variance in
data of p variables properly, is an important question to answer. Many di�erent
methods and appertaining approaches exists. Generally the �rst p PC's with the
highest degree of explanation is used, only in some special cases the last PC's
are of more interest, but it will not be examined here. Two di�erent methods
for determining p [9] is presented here.

Cumulative Percentage of Total Variation
This method, as the name tells, uses the cumulated percentages of each PC's
contribution to the total variance. Before doing PCA, an acceptable level for
the cumulated percentage is set, and then the number of PC's describing at least
that level is used. The level depends of the practical use of the PCA, but often
it is within the range 70% to 90%. This method do not depend on whether the
covariance or correlation matrix is chosen to compute the PC's.

The scree Graph
This method is a graphical method where the variance or eigenvalue of the k'th
PC, lk is plotted against k. This often forms a graph shaped like an arm, at
the point, k, where the �elbow� is, or more mathematically described the points
where graph begins a linear tendency, not necessarily parallel to the �rst axis.
This method is not as subjective as the other method.

6.1.5 Limitation of PCA

PCA has many nice features but it also has some limitations. A few is mentioned
below, and are all in relation to the derivation of the method.

• Correlation is assumed in order to reduce the dimension.
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• The linear combination with the largest variance is assumed to be of most
importance.

• The method is not scale invariant if the covariance matrix is used.

• PCA assumes the �rst two central moments to be time-invariant.

• Only orthogonal rotation of original variables is considered.

In relation to this project and data used it will be a challenge to meet the
assumptions of PCA such that an acceptable level is maintained. The analysis
in the previous chapters has shown heteroscedastic or ARCH e�ect which is a
non-linear behaviour that is unwanted in PCA. In this project the idea of using
PCA is to describe data and reduce the number of variables in order to ease and
simplify the further modelling. For this purpose, as already mentioned, larger
deviations are accepted in relation to the assumptions. In the next section time
series models that takes heteroscedastic behaviour into account will be described
in order to �nd models that can describe the dynamic structure of the volatility
in the indices.

6.2 Non-linear time series models

PCA is not enough modelling of �nancial time series in order to describe the
behaviour. A model should include all the information in the series and thereby
describe the behaviour completely. A model is accepted when the residuals of
the models can be assumed to be noise. For this reason the dynamic behaviour
of the time series and the volatility needs to be modelled as well, where the
aim is to �nd a relationship within the series that only leaves residuals out
that can be accepted as white noise. Some particular behaviour of indices used
in this project has been detected through the data analysis in the previous
chapters. Only models taking this behaviour into account might be applicable,
and only those used to model data in the next chapter will be described here.
It is assumed that weekly log return indices are split into regimes order to have
stationary and independent data. It has been shown that log return indices are
characterized by :

• Heteroscedasticity and volatility clustering

• Data are white noise.

• Positive excess kurtosis and skewness close to zero
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Therefore non-linear parametric discrete time series models taking these char-
acteristic into account can very well be used. The models used in this project
are variants of the autoregressive moving average model (ARMA) and therefore
this will be introduced brie�y.

6.2.1 ARMA (Linear model)

The autoregressive moving average model consists of an auto regressive process
and a moving average process. It is de�ned as [7, 27] :

Xt = α0 + α1Xt−1 + ...+ αpXt−p + β1εt−1...βqεt−q + εt, (6.5)

where {εt} is white noise (i.i.d. and εt ∼ N(0, σ2)), α0 is a constant determing
the level, α and β being parameters of the model, and p and q are the order of the
AR and MA parts respectively. Introducing the autoregressive function α(L) =
1−α1L− ...−αpLp and the moving average function β(L) = 1+β1L− ...−βqLq
the model can be written as:

α(L)Xt = ν + β(L)εt. (6.6)

ARMA models do not require data do be stationary to �t, because they can
both be stationary or non-stationary, which depends on the parameters in the
model. But an ARMA model does not suit �nancial data of the type used here,
because the heteroscedasticity is not taken into account. The following models
that will be presented allows the variance to be conditional and non-constant.

6.2.2 ARCH

The autoregressive conditional heteroscedasticity model (ARCH) has the prop-
erty of modelling variance. Variance in �nancial time series might be uncondi-
tional and constant at some time points in the series, and at other points the
variance might be highly conditional and non-constant. This behaviour can be
modelled with a model of the ARCH family. The idea behind the ARCH model
is to have a mean adjusted return, X, that is uncorrelated in time but depen-
dent, e.g. E [Xt|Ft−1] = 0, where Ft−1 is a set of information at time t− 1. X
is sometimes called a shock. The ARCH model is de�ned as [7]:
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Xt = σtωt (6.7)

σ2
t = α0 + α1X

2
t−1 + ...+ αpX

2
t−p (6.8)

= α0 +

p∑
i=1

αiX
2
t−i, (6.9)

with constraints on the parameters:

α0 > 0

αi ≥ 0 for i ∈ {1; p}
p∑
1

αi < 1.

{ωt} is i.i.d with ωt ∼ N(0, 1), α0 is a constant variance drift, αi is the parameter
in the model of order p. The �rst two constraints ensures positive variances and
the third one ensures that the unconditional variance of Xt is �nite. Volatility
clustering is a behaviour in data and if the ARCH model is inspected closer, it
is discovered that if variance yesterday σ2

t−1 was high, the probability of getting
a high value again today is also high.

The properties of an ARCH(p) process is now studied closer. The unconditional
mean Xt is:

E(Xt) = E [E(Xt|Ft−1)] = E [σt(E(ωt)] = 0,

The unconditional variance of Xt is:
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Var(Xt) = E
[
σ2
t

]
= E(X2

t )

= E
[
E(X2

t |Ft−1)
]

= E
[
α0 + α1X

2
t−1 + ...+ αpX

2
t−p
]

= α0 + α1E
[
X2
t−1
]

+ ...+ αpE
[
X2
t−p
]

= α0 + α1E
[
σ2
t−1
]
E
[
ω2
t−1
]

+ ...+ αpE
[
σ2
t−p
]
E
[
ω2
t−p
]

= α0 + α1E
[
σ2
t−1
]

+ ...+ αpE
[
σ2
t−p
]

E
[
σ2
t

]
(1− α1...− αp) = α0

Var(Xt) = E
[
σ2
t

]
=

α0

1− α1...− αp
. (6.10)

Above is has been used that E
(
ω2
)

= Var
(
ω2
)

= 1 and because Xt is stationary,

and E(Xt) = 0 ⇒ E
(
σ2
t

)
= E

(
σ2
t−1
)
because σt and ωt are independent. σt

depends on ωt−1,...,ωt−p and ωt is drawn at time t. From equation 6.10 it is
concluded that the unconditional expectation of σ2

t is the same for all t, and∑p
1 αi < 1 must be ful�lled in order to have positive unconditional �nite variance

and if the conditional mean is stationary then the ARCH model is covariance
stationary. ARCH (and GARCH) processes must have positive autocorrelation.
In an ARCH process with negative autocorrelation, a shock might be su�ciently
large to cause the conditional variance to be negative which is undesirable.

If Var(Xt|Ft−1) = σ2
t and Xt/σt is i.i.d. the ARCH is said to be strong. If only

Var(Xt|Ft−1) = σ2
t the ARCH is said to be semi-strong.

Higher order moment of Xt is now studied. First the element of the skewness
is investigated:

E
(
X3
t

)
= E

[
E
(
X3
t |Ft−1

)]
= E

[
σ3
t (E(ω3

t )
]

= 0.

Therefore the skewness of an ARCH process is zero and this result is actually
true for all odd moments of Xt. The kurtosis is:
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κ =
E
(
X4
t

)
E (X2

t )
2 (6.11)

=
E
[
E
(
X4
t |Ft−1

)]
E [E (σ2

tω
2
t |Ft−1)]

2

=
E
[
σ4
tE
(
ω4
t |Ft−1

)]
E [σ2

tE (ω2
t |Ft−1)]

2

=
E
[
3σ4

t

]
E [σ2

t ]
2

=
3E
[
σ4
t

]
E [σ2

t ]
2

> 3

where it is used E
[
ω4
t

]
= 3, because ωt ∼ N(0, 1) is from a normal distribution.

The last step is true because V ar
[
σ2
t

]
= E

[
σ4
t

]
− E

[
σ2
t

]2 ≥ 0. The kurtosis of
an ARCH process is larger than three and therefore leptokurtic ,meaning that
is has higher kurtosis than a normal distribution.

ARCH models can be estimates using ordinary least squares, but often maxi-
mum likelihood estimation with the least squares estimates as initial value is
preferred. Regarding this project, the estimation is done in R, which uses max-
imum likelihood methods [30].

6.2.3 GARCH

The generalized ARCH (GARCH) is an extension of the ARCH model with an
autoregressive conditional volatility part. It is de�ned as [7, 27]:

Xt = σtωt (6.12)

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j . (6.13)

with the constraints:
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α0 > 0
max(p,q)∑

1

αi + βi < 1

αi, βi is further more constrained such that σ2
t is uniform positive for all t.{ωt}

is i.i.d with ωt ∼ N(0, 1), α0 is a constant underlying variance, αi and βi are
the parameter in the model of order p and q.

The second constraint ensures the unconditional variance of Xt is �nite, though
the conditional variance σ2

t evolves over timer. If p = q = 1 then σ2
t is uni-

form positive if αi, βi ≥ 0 for i > 0 and the �rst condition is ful�lled. If
Var(Xt|Ft−1) = σ2

t and Xt/σt is i.i.d. the GARCH is said to be strong. If only
Var(Xt|Ft−1) = σ2

t the GARCH is said to be semi-strong.

The properties of a GARCH(p, q) process is very similar to an ARCH(p) process.
From the de�nition of the GARCH model it is seen that it features the volatility
clumping as the ARCH model. The unconditional mean of Xt is:

E(Xt) = E [E(Xt|Ft−1)] = E [σt(E(ωt)] = 0,

The unconditional variance of Xt can be calculated as in 6.10 and therefore the
derivation is omitted and only the result is presented:

Var(Xt) = E
[
σ2
t

]
=

α0

1−
∑p
i=1 αi +

∑q
j=1 βi

=
α0

1−
∑max(p,q)
i=1 αi + βi

.

By this it is clear that the constraints to 6.13 ensures the GARCH process to
be stationary. As for the ARCH process the skewness of a GARCH process is
zero by the same reasons. The calculation of the kurtosis follows the same steps
as in 6.11 and the result remains κ > 3.

Again GARCH models is determined by maximum likelihood estimates, which
in R is found by a build-in Quasi-Newton optimizer [30].

GARCH models can be used to forecast by letting tγ be the forecast origin, then
one-step forecasting can be obtained as:
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σ2
tγ+1 = σ2

tγ (1) = α0 +

p∑
i=1

αiX
2
tγ+1−i +

q∑
j=1

βjσ
2
tγ+1−j , (6.14)

and a multiple `-step forecast as:

σ2
tγ+` = σ2

tγ (`) = α0 +

p∑
i=1

αiX
2
tγ+`−i +

q∑
j=1

βjσ
2
tγ+`−j . (6.15)

It can be shown for e.g. GARCH(1,1) that ` → ∞ then σ2
tγ (`) → α0

1−α1−β1
=

Var(X). This means that if GARCH model and the forecast horizon goes to
in�nity the variance of the model converges to the unconditional variance of
X. Consequently it is α1 + β1 that determine how fast the variance forecast
converges to Var(X).

6.2.4 Limitation of ARCH and GARCH

Both ARCH and GARCH models have volatility de�ned by the size of the shock,
Xt, but not whether it is positive or negative caused by the squaring of shocks in
the model de�nition. In real world this is often not true, and the leverage e�ect
is often observed. The leverage e�ect is the fact that the volatility increases
more after negative news than after positive news.

ARCH an GARCH models tends to overestimate the volatility if large shocks
are isolated, because they take this into account in the following points.

The e�ect of these limitations in relation to this project will be evaluated in
chapter 10.
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Chapter 7

Modelling of data

In the recent chapters eleven stock indices have been analysed. Now it is time
to make use of these result in order to model the data by using the methods
described in chapter 6. For this purpose R is a strong tool and is therefore used
widely to solve and calculate problems that else would have taken far too much
time in practice. The �rst task is to reduce the dimension of data by using
PCA. Afterward data will be �tted with GARCH models in order to describe
the reduced data space quantitatively in a mathematical sense.

The data that will be used here is weekly log returns because they have shown
the best characteristics that �ts the underlying assumptions in the model. For
three reasons the DK00S/N will be left out from the modelling. First of all, the
index shows a behaviour that is signi�cantly di�erent from the other indices.
It is de�nitely not normal distributed, and that is a behaviour that should be
ful�lled to a certain extent. If PCA is done with DK00S.N.Index despite the
high degree of non-normality it would be represented by its own PC, because of
the low correlation to the other indices. Secondly, it has not been possible to
get index values before June 2003, consequently this index does not contain as
much historical data as the other indices, which is a desirable property for the
simulation part. Thirdly, it is presumably not possible to invest in the index
directly, though it in some sense represents the money market. The ten indices
left will be split into the regimes, de�ned in chapter 5. Each regime will be
modelled individually in order to meet the problems concerned with modelling
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the asymmetry in the variance, e.g. the asymmetric reaction to positive and
negative shocks.

7.1 PCA

The purpose of PCA in this project is mainly to describe data and thereby reduce
the number of variables, therefore the meeting of the assumptions underlying
PCA is not of high importance. The assumption of multivariate normality
and independent random observations can roughly be accepted. Concerning
the linearity of the variables, non-linear (ARCH) e�ects have been observed in
data. This assumption cannot be met, but with that in mind a PCA will be
performed. The R-function prcomp from the stats-package is used to �nd the
principal components, and the method built on the correlation matrix is used
because of the di�erence in variance in the indices. Data are also mean adjusted,
though the mean is close to zero, just to ensure symmetry.

7.1.1 Period 1 1999M1 - 2000M8

This is a period with growing prices. In table 7.1 the principal components of
period is listed together with standard deviation, proportion of variance and
cumulative proportion of variance.

The eigenvectors in the �rst principal component are almost equally large, and
therefore an almost equally weighted linear combination of all the indices. PC1
shows the general tendency in the market. In the PC2 the Japanese stock indices
and the Danish bond indices have the highest weightings. This component shows
that they drag in di�erent ways. This is already known from the correlations in
table 3.1. PC3 is mainly weighted by the stocks from Europe and USA and the
Danish bonds.

76% of the total variance in data can be described by the �rst four PC's. In
�gure 7.1 is a scree plot for the PCA in period 1. Using this to determine the
appropriate numbers of PC, the �elbow� is at k = 4. So using the four �rst PC's
seems reasonable.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

KAXGI 0.32 0.03 -0.25 0.56 0.30 -0.44 0.47 -0.14 -0.05 0.04

NDDUE15 0.36 -0.06 -0.47 -0.21 -0.09 -0.06 -0.02 0.77 -0.01 0.02

NDDUJN 0.23 -0.54 0.34 -0.21 0.18 -0.09 0.08 0.02 -0.56 -0.38

NDDUNA 0.34 -0.04 -0.53 -0.17 -0.16 -0.09 -0.45 -0.56 -0.11 -0.13

NDUEEGF 0.16 -0.35 0.14 0.50 -0.76 0.09 -0.03 0.05 0.04 -0.01

TPXDDVD 0.28 -0.57 0.16 -0.14 0.26 -0.04 -0.10 -0.09 0.56 0.44

CSIYHYI 0.33 0.14 0.10 0.45 0.40 0.55 -0.42 0.12 -0.08 -0.07

JPGCCOMP 0.38 0.13 -0.05 -0.26 -0.13 0.58 0.60 -0.22 0.02 0.04

NDEAGVT 0.35 0.38 0.37 -0.12 -0.16 -0.25 -0.14 0.002 -0.38 0.58

NDEAMO 0.37 0.34 0.37 -0.11 -0.08 -0.27 -0.05 0.032 0.46 -0.55

SD 1.89 1.38 1.10 0.94 0.87 0.80 0.65 0.61 0.39 0.31

PoV 0.36 0.19 0.12 0.09 0.08 0.06 0.04 0.04 0.02 0.00

CP 0.36 0.55 0.67 0.76 0.83 0.90 0.94 0.98 1.00 1.00

Table 7.1: Principal components for period 1 each with Standard deviation
(SD), Proportion of Variance (PoV) and Cumulative Proportion
(CP).
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Figure 7.1: Scree plot of PCA in period 1.
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7.1.2 Period 2 2000M9 - 2001M12

Period 2 is a period de�ned as an overall downturn, but as seen earlier, the bond
indices actually do not decrease. The can be seen by the �rst principal compo-
nents. PC1 is primary weighted by the stocks and PC2 is primary weighted by
bonds, so PC1 is a stock component and PC2 is a bond component. Using four
principal components 81% of the total variance is described.

PC1 PC2 PC3 PC4

KAXGI -0.43 0.01 -0.02 0.30

NDDUE15 -0.40 -0.16 -0.12 0.19

NDDUJN -0.30 -0.16 0.55 -0.22

NDDUNA -0.42 0.05 -0.06 0.38

NDUEEGF -0.39 0.12 -0.23 -0.33

TPXDDVD -0.33 -0.10 0.54 -0.24

CSIYHYI -0.29 0.09 -0.35 0.20

JPGCCOMP -0.18 -0.23 -0.46 -0.66

NDEAGVT 0.14 -0.63 -0.07 0.22

NDEAMO 0.01 -0.68 -0.04 0.06

SD 1.98 1.33 1.26 0.90

PoV 0.39 0.18 0.16 0.08

CP 0.39 0.57 0.73 0.81

Table 7.2: First four principal components for period 2 and Standard deviation
(SD), Proportion of Variance (PoV) and Cumulative Proportion
(CP) for each.

7.1.3 Period 3 2002M1 - 2008M2

The third period is a very long period with positive trend. Again PC1 is a stock
component and PC2 is a bond component and the �rst four PC explains 84%
of the variance.
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PC1 PC2 PC3 PC4

KAXGI -0.35 0.01 0.19 -0.24

NDDUE15 -0.40 -0.01 0.22 -0.38

NDDUJN -0.35 -0.10 -0.6 0.07

NDDUNA -0.37 0.05 0.26 -0.38

NDUEEGF -0.40 -0.08 0.00 0.00

TPXDDVD -0.36 -0.01 -0.56 0.09

CSIYHYI -0.26 -0.30 0.27 0.53

JPGCCOMP -0.18 -0.47 0.27 0.39

NDEAGVT 0.21 -0.57 -0.11 -0.27

NDEAMO 0.16 -0.59 -0.11 -0.36

SD 2.14 1.41 1.01 0.87

PoV 0.46 0.20 0.10 0.08

CP 0.46 0.66 0.76 0.84

Table 7.3: First four principal components for period 3 and Standard deviation
(SD), Proportion of Variance (PoV) and Cumulative Proportion
(CP) for each.
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7.1.4 Period 4 2008M3 - 2009M2

The fourth period is the latest �nancial crisis. The stock indices have experi-
enced massive falls, and even JPGCCOMP and CSIYHYI have also fallen. This
is also re�ected in the �rst principal component as a crisis component. The
two Danish bond indices have not been a�ected by the crisis as much, and it is
possible to see in PC1 where they are weighted almost zero. On the contrary
the second PC shows their behaviour through the crisis, where they are heavily
weighted. The two �rst PC's explain 82% of the variation in data, but for ease
in the later modelling four PC's is used. PC4 is a CSIYHYI component, by its
high weighting.

PC1 PC2 PC3 PC4

KAXGI 0.37 -0.11 0.18 0.11

NDDUE15 0.37 -0.09 0.16 -0.15

NDDUJN 0.33 -0.03 -0.65 -0.38

NDDUNA 0.35 -0.10 0.19 -0.05

NDUEEGF 0.37 -0.02 0.32 -0.12

TPXDDVD 0.36 -0.04 -0.27 -0.28

CSIYHYI 0.30 -0.04 -0.41 0.83

JPGCCOMP 0.34 0.18 0.35 0.15

NDEAGVT 0.01 0.70 -0.13 -0.08

NDEAMO 0.13 0.67 0.07 0.03

SD 2.54 1.33 0.70 0.68

PoV 0.65 0.18 0.05 0.05

CP 0.65 0.82 0.87 0.92

Table 7.4: First four principal components for period 4 and Standard deviation
(SD), Proportion of Variance (PoV) and Cumulative Proportion
(CP) for each.

7.1.5 Period 5 2009M3 - 2011M3

Period 5 is a kind of reaction on the big losses in period 4. Therefore the PC1
consists of all the indices almost equally weighted, where the Danish bonds
points in the opposite direction. 88% of the volatility in data is explained by
the �rst four principal components.
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PC1 PC2 PC3 PC4

KAXGI 0.34 -0.04 0.13 -0.58

NDDUE15 0.38 -0.06 0.17 0.20

NDDUJN 0.26 0.34 -0.57 0.05

NDDUNA 0.37 -0.08 0.11 0.30

NDUEEGF 0.38 0.07 0.11 0.40

TPXDDVD 0.31 0.19 -0.55 0.03

CSIYHYI 0.34 0.17 0.13 -0.57

JPGCCOMP 0.30 0.25 0.47 0.10

NDEAGVT -0.23 0.59 0.04 -0.10

NDEAMO -0.18 0.62 0.25 0.15

SD 2.37 1.25 1.04 0.72

PoV 0.56 0.16 0.11 0.05

CP 0.56 0.72 0.83 0.88

Table 7.5: First four principal components for period 5 and Standard deviation
(SD), Proportion of Variance (PoV) and Cumulative Proportion
(CP) for each.

7.1.6 Communalities

Communality hij of index i in one regime is calculated as the sum of squared
weighting aij in the PC's used [1]:

hij =

k∑
j=1

a2ij

Communality is a measure of the how much variance in the index can be ex-
plained by the k component model. Using the R function prcomp the weight-
ing cannot be accessed directly, but multiplying the PC value (or eigenvector
element) uij with the standard deviation (or square root eigenvalue) λj the
weightings are found:

hi =

k∑
j=1

u2ijλj
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Period 1 2 3 4 5

KAXGI 0.71 0.79 0.66 0.92 0.84

NDDUE15 0.77 0.73 0.89 0.93 0.86

NDDUJN 0.91 0.90 0.94 0.98 0.93

NDDUNA 0.77 0.81 0.80 0.85 0.86

NDUEEGF 0.56 0.79 0.77 0.92 0.92

TPXDDVD 0.88 0.95 0.93 0.93 0.94

CSIYHYI 0.61 0.57 0.78 1.00 0.87

JPGCCOMP 0.60 0.90 0.77 0.86 0.85

NDEAGVT 0.88 0.81 0.93 0.87 0.86

NDEAMO 0.89 0.83 0.92 0.90 0.87

Table 7.6: Communalities for each index in each period using four principal
components.

The communalities for each period are found in table 7.6. In general a lot of
the variance in each index can be explained by the four PC's. The lack of
explanation in CSIYHYI in the �rst periods might very well be explained by
the signi�cant lags in the autocorrelation. In period four CSIYHYI has it �own�
component, resulting in a communality on 1, by which all variance are explained.
In �gure 7.2 NDDUJN and CSIYHYI has been reconstructed using four principal
components. These two indices are chosen because they are representing indices
with highest and lowest communalities. Both indices shows a nice behaviour
close the original data and that CSIYHYI �ts the original data completely in
the fourth period because of the high communality in that very period. From
the communalities and the plot it is concluded that four principal component is
enough to describe data reasonable.
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Figure 7.2: Reconstruction of NDDUJN and CSIYHYI when using four prin-
cipal components.

7.1.7 Outline of PCA

If the PC's for the periods are compared, it can be concluded that they are very
di�erent and change over time. This is also expected, as it has already been
concluded that there are di�erent volatilities depending on the trend. There
are also di�erent types of periods with growing prices and falling prices. In the
periods with falling prices the two periods modelled here show a bit of the same
behaviour. This can be seen by the similarities in the PC's of period 2 and 4.

It is anticipated that the behaviour in the PC scores has the same behaviour
of the data. In �gure 7.3 a QQ plot of the PC scores from the PC's in period
1 related to each index are found. The PC scores do not look normal, but
since it was a little rough assumption to data, a better result would not have
been expected after transforming data. It will not be appropriate to make any
more statistical tests on the PCA, because weekly log return did not meet the
assumption on PCA totally. Thereby, statistical tests might not present the
accurate picture and they would be useless.

It was shown that using four PC's is enough to explain at least 76 % of the
total variance, in some periods even more. 76 % and high communalities is an
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acceptable level and therefore it will be the �rst four PC's representing each
regime that is modelled with GARCH or ARCH models in the next section. As
this is a description of data, it is acceptable to use this information in further
modelling despite lack of ful�lling the assumptions.

QQ plot of
PC scores
in period 1 0 20 40 60 80

−
6

0
4

KAXGI

0 20 40 60 80

−
3

0
3

NDDUE15

0 20 40 60 80

−
3

0
3

NDDUJN

0 20 40 60 80

−
2

0
2

NDDUNA

0 20 40 60 80

−
2

0
2

NDUEEGF

0 20 40 60 80

−
1

1

TPXDDVD

0 20 40 60 80−
1.

5
0.

5

CSIYHYI

0 20 40 60 80

−
1.

5
0.

5
JPGCCOMP

0 20 40 60 80

−
0.

5
1.

0 NDEAGVT

0 20 40 60 80

−
0.

5
1.

0 NDEAMO

Figure 7.3: QQ plot of the PC scores in period 1.

7.2 GARCH

GARCH models are used to model the dynamic structure in the �new data�, data
in PCA space, derived using four principal components. They will be named
PCA data. Actually it is the PCA data that should ful�l the requirements of
using GARCH, but if the log return indices do not ful�l the requirement, neither
will PCA data, and therefore we are satis�ed with the analysis of weekly log
return indices. The PCA data is mean adjusted from the PCA transformation,
and it is assumed that there are no signi�cant lags in log return indices on
�gure 4.3a. Also weekly log returns are assumed to be independent, and it was
shown that the skewness is almost zero and the kurtosis is larger than 3, just as
expected for a GARCH process. The volatility clustering has not been tested,



7.2 GARCH 67

only observed on plots. If the clustering is not represented signi�cantly in data
it will not be signi�cant in the model, so tests for clustering are not necessary.
Because the models are built on PC-data, they do not represent a single index,
but some general tendencies and aspects in the �nancial market. E.g. some of
the models based on the �rst PC-data are models for the overall stock market
and overall the bond market. The indices' behaviour can then be estimated
upon their dependency on the behaviour of general market, that is turning from
PCA space to data space.

To estimate the parameters and order of each PCA data series the R-function
garch from the tseries-packace is used. It has some tests build-in that will
be explained brie�y. The Jarque Bera test [32] tests the residuals for normality,
with:

H0 :

{
ςFisher = 0

κExcess = 0
.

The test statistics is:

JB =
n

6

(
ς2 +

1

4
κ2
)
,

where n is the number of observations. If the residuals are normal distributed
the test statistics follows a χ2(2) distribution.

The Box-Ljung test [35] tests the squared residuals for the null hypothesis that
they are independently distributed (random data), with the test statistics:

Q = n(n+ 2)

h∑
i=1

ρ̂2i
n− i

,

where n is the number of observations and h is the number of lags being tested
in the autocorrelation with parameterρ̂i. If the squared residuals are random,
the test statistics follows a χ2(k) distribution.

When modelling data with GARCH models it is desirable that the residuals
are Gaussian white noise, therefore accepting H0 in the Jarque Bera test and
the Box-Ljung test (large p-value), it cannot be rejected that the residuals are
Gaussian white noise.

To see which model order �ts the best, the summery output of di�erent order
combinations are studied. It is an iterative process when determining the model



68 Modelling of data

order, therefore the modelling of the �rst period of the �rst PCA data series is
studied closer to show the considerations. First a model of order (p, q) = (0, 1)
is modelled. The summary from R is:

> summary(gp1[[1]])

Call:

garch(x = data_pca[, 1], order = c(0, 1))

Model:

GARCH(0,1)

Residuals:

Min 1Q Median 3Q Max

-3.32511 -0.58060 0.04404 0.70820 2.34910

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

a0 3.408e+00 5.583e-01 6.104 1.04e-09 ***

a1 3.722e-14 1.570e-01 0.000 1

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostic Tests:

Jarque Bera Test

data: Residuals

X-squared = 2.0539, df = 2, p-value = 0.3581

Box-Ljung test

data: Squared.Residuals

X-squared = 0.1639, df = 1, p-value = 0.6856
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The summary contains info on the residuals, the coe�cients and the p-values
from Jarque Bera test and Box-Ljung test. The a0 (α0 in 6.13) is signi�cant but
a1 is not, but its size is close to zero so it will be ignored. The Jarque Bera test
fails to reject H0 but the null hypothesis of the squared residual being random
cannot be rejected in the Box-Ljung test. The constraints in 6.13 are obeyed.
Another model might perform better, therefore a (1, 1) model is tested. The
R-summary is:

> summary(gp1[[1]])

Call:

garch(x = data_pca[, 1], order = c(1, 1))

Model:

GARCH(1,1)

Residuals:

Min 1Q Median 3Q Max

-3.3142 -0.5787 0.0439 0.7059 2.3414

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

a0 3.229e+00 2.640e+02 0.012 0.990

a1 3.115e-14 1.620e-01 0.000 1.000

b1 5.883e-02 7.696e+01 0.001 0.999

Diagnostic Tests:

Jarque Bera Test

data: Residuals

X-squared = 2.0539, df = 2, p-value = 0.3581

Box-Ljung test

data: Squared.Residuals

X-squared = 0.1639, df = 1, p-value = 0.6856

None of the coe�cient are now signi�cant, and therefore this model is useless.
The (0, 2) is tried instead:
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> summary(gp1[[1]])

Call:

garch(x = data_pca[, 1], order = c(0, 2))

Model:

GARCH(0,2)

Residuals:

Min 1Q Median 3Q Max

-3.2058 -0.6091 0.0479 0.6971 2.4004

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

a0 3.230e+00 9.670e-01 3.341 0.000836 ***

a1 3.618e-14 1.594e-01 0.000 1.000000

a2 5.830e-02 1.530e-01 0.381 0.703122

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Diagnostic Tests:

Jarque Bera Test

data: Residuals

X-squared = 1.4659, df = 2, p-value = 0.4805

Box-Ljung test

data: Squared.Residuals

X-squared = 0.2078, df = 1, p-value = 0.6485

Of course these result are close to the (0,1) model. There is still only one
signi�cant parameter, and the residuals do not behave any better, therefore the
(0,1) model is preferred. Sometimes testing for higher order suddenly gives a
nice result. These tests for higher order have also been done in this project, but
it has no interest to the reader unless an appropriate model is found, therefore
useless models are not presented.
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In table 7.7 all the estimated GARCH parameters together with p-values, Box-
Ljung, Jarque Bera test results are found.

Period PC-data α0 p-value α1 p-value J-B B-L

1 1 3.408 1.0e-09 3.7e-14 1 0.358 0.69

1 2 1.712 1.8e-04 0.088 0.698 0.616 0.96

1 3 1.210 2.7e-13 0.004 0.972 0.108 0.99

1 4 0.842 5.8e-10 8.8e-15 1 0.410 0.37

2 1 2.638 3.0e-04 0.331 0.041 0.203 0.81

2 2 1.499 7.7e-08 0.076 0.571 0.050 0.66

2 3 1.506 3.6e-12 2.8e-15 1 0.132 0.33

2 4 0.390 0.008 0.646 0.044 0.261 0.71

3 1 4.336 <2e-16 0.055 0.27 2.9e-06 0.78

3 2 1.842 <2e-16 0.074 0.136 4.6e-07 0.90

3 3 0.865 <2e-16 0.162 0.082 0.230 0.75

3 4 0.679 <2e-16 0.098 0.182 <2e-16 0.78

4 1 1.728 0.002 1.080 0.002 0.019 0.31

4 2 1.564 7.3e-04 0.108 0.692 0.598 0.90

4 3 0.302 2.1e-04 0.334 0.214 0.088 0.55

4 4 0.440 6.1e-05 0.012 0.96 0.025 0.99

5 1 3.139 2.2e-06 0.494 0.048 4.5e-10 0.46

5 2 1.508 3.8e-06 0.041 0.772 0.698 0.97

5 3 1.037 1.5e-08 0.034 0.759 0.561 0.96

5 4 0.446 <2e-16 0.022 0.689 1.2e-12 0.49

Table 7.7: Estimates of model parameters of the best GARCH �t, with p-value
for each parameter and test results of the Jarque Bera test and the
Box-Ljung test.

In table 7.7 it appears that the constraints of ARCH models are not met in
period 4 PC-data 1, where α1 > 1. I order to have �nite variance, another
model needs to be found. It turns out that the model with the lowest order that
meets all constraints is an ARCH(3). The model parameter is found in table
7.8.

Period PC-data α0 p-value α1 p-value

4 1 5.268 0.0448 7.636e-01 0.0423

α2 p-value α3 p-value J-B B-L

4.804e-02 0.8028 9.993e-15 1 6.623e-05 0.1228

Table 7.8: Model parameters and test statistics for PC-data 1 in period 4.
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As it is seen, it turns out that all the best �ts are ARCH models of order 1,
except the one mention above. Actually a lot of the models should be
ARCH(0) models, because α1 is not signi�cant. ARCH(0) processes are
Gaussian white noise processes because:

Xt = σtωt (7.1)

σ2
t = α0, (7.2)

or

Xt = α2
0ωt (7.3)

Despite that those models with insigni�cant α1, the size of α1 is relatively small
and therefore they are still modelled as ARCH(1) processes. Some of the models
have residuals that are not normal distributed, though all squared residuals are
independently distributed. The use of weekly data seems resonable to obtain
independent residuals, but having non-normal residuals is almost a matter of
course when input data are non-normal with outliers. The test for normality
easily fails if only a few residual are outliers, and therefore this will be ignored.

An ARCH(1):

Xt = σtωt (7.4)

σ2
t = α0 + α1X

2
t−1, (7.5)

can be represented as an AR(1) process for X2
t :

σ2
t = α0 + α1X

2
t−1

σ2
t +X2

t − σ2
t = α0 + α1X

2
t−1 +X2

t − σ2
t

X2
t = α0 + α1X

2
t−1 +X2

t − σ2
t

X2
t = α0 + α1X

2
t−1 + σ2

t

(
ω2
t − 1

)
X2
t = α0 + α1X

2
t−1 + vt,
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where vt = X2
t − σ2

t is the surprise in volatility. ωt is i.i.d with E(ω2
t ) =

1, therefore vt is a white noise process with E(vt) = 0. `-step forecasting in
ARCH(1) is by [27]:

Xt+` = σt+`ωt+` (7.6)

σ2
t+` = α`1X

2
t +

`−1∑
i=0

α0α
i
1. (7.7)

This will be useful when generating scenarios, though it is a function in R that
is used to simulate data.

It is actually quite surprising that none of the models are GARCH models,
and in some cases not even ARCH models, despite the fact stated in the data
analysis chapter where a test for data being white noise could not be rejected.
In chapter 8 the models from table 7.7 and 7.8 will be used to generate scenarios.
Scenarios, based on other methods, will be generated in order to evaluate the
use of non-signi�cant models. The subjective choice of models will be discussed
in chapter 10, and the model will be tested in chapter 9.
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Chapter 8

Scenario generation

In the recent chapters data has been analysed, transformed and at last modelled
into four models in each of the �ve regimes. Now it is time to use these models
to generate scenarios. The scenarios should not be predictions of the future
index values, but represent a wide range of possible future index values. The
approach to generate scenarios might be very subjective, but in order to get
good scenarios di�erent thing and aspect should be considered at �rst, such
as the use of the scenarios and which characteristics in data are necessary in
order to get realistic scenarios, and afterward build in to the algorithm for the
generation.

The purpose of generating scenarios in this project is to have scenarios that can
be used in the investment process, more speci�ed in the asset allocation pro-
cess where optimization and risk management are key factors. For this reason,
not only �realistic� scenarios are a must but also extreme events are a desirable
quality. Scenarios should be constructed such that they can be tested for cor-
rectness and accuracy. There might be patterns and characteristics in data that
are unique or special for exactly that class of data. In this project, volatility
clustering, trend, decreasing volatility when prices rise and increasing volatility
when prices fall and correlation to other asset classes have been observed. It
is also important that the scenarios take basic economic assumptions into ac-
count, such as no arbitrage principle etc. Two di�erent approaches have been
used to generate scenarios. The �rst presented in this chapter is based on data
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in principal component space modelled with ARCH models. The other method
is a simple bootstrap.

8.1 Scenario generation using ARCH models

The regime divided ARCH models on principal component are chosen in order to
keep as much of the characteristics in data as possible. ARCH models are used
in order to keep the behaviour in the indies e.g. trend and volatility clustering,
however some models did not have this quality after splitting data into regimes.
PCA ensure the correlation between the indices, and reduces the number of
models to be made. Splitting data into regimes ensures the di�erent behaviour
between up and down periods.

8.1.1 Approach for scenario generation

The approach used here generates scenarios of tendencies in the market, and
then these are translated into speci�c indices values based upon its reaction to
these tendencies, cf. the use of principal component data. The data modelled
ends 25 March 2011, but data is available until 12 August 2011, without any
intermediate turning points. Therefore the simulations are assumed to start
at 13 August 2011 in a period with falling prices. The idea in this approach
is �rst to choose a regime randomly, however still make use of the fact that
after a downswing, a regime with growing prices will come. The length of a
regime depends on which regime is chosen, because it is Erlang distributed with
mean equal to the regime length sampled. The use of the Erlang distribution is
carefully selected because it is said to be memory less:

P (T > τ + t|T > τ) = P (T > t) ∀ τ, t ≥ 0.

This means that e.g. the �rst scenario is not a�ected by the downswing already
has lasted for twenty weeks, the probability of waiting another twenty weeks is
the same. This also ensures diversity in the scenarios because they will all have
di�erent regime lengths even if the same regime is drawn. Now a regime and a
length, τ , are sampled, thereby the ARCH model is known and therefore the R
function garch.sim from the TSA-package is used to simulate/forecast the model
τ time steps ahead in accordance with equation 7.7. A part of a scenario is now
generated, but the sampling of regime types and waiting times keeps going on
until the scenario length exceed 5years= 260weeks. After the scenario has been
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generated the same procedure is repeated until a desired amount of scenarios
is generated. Because simulated values are in PCA space the data need to be
turned back in to �rst log return, and afterward into data space. The scenario
approach in pseudo code:

N = numbers of scenarios
for n in 1 to N {
regime type = up
scenario length = 0
Step 1:

if regime type = up {
Chose either regime number 2 or 4 randomly
Set regime type = down
Chose period length:
τ ∼ Erlang (k = Period length (regime number), λ = 1)
}else{
Chose either regime number 1, 3 or 5 randomly
Set regime type = up
Chose period length:
τ ∼ Erlang (k = Period length (regime number), λ = 1)
}

Step 2:
for 1 to numbers of series in PCA space {
Simulation = forecast using garch.sim τ time steps ahead
}

Step 3:
Scenario length = Scenario length + τ
if Scenario length < 5 years {
Go to step 1
}else{

Step 4:
Transform data from PCA space to log return space
Transform data from log return space to index space

}
}

After scenarios have been generated, analytic methods are used to �nd scenarios
with interesting behaviour. Maximum drawdown (MDD) is widely used in risk
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management. Taking one series at the time, drawdown at time, tτ , is a mea-
sure form a historical maximum to a historical minimum within a time interval
[tτ−1, tτ ]. In this project the interval is one week. Therefore drawn down is only
measured at time points where index prices are falling. Maximum drawdown at
time, tτ , is the largest drawdown in the interval [t0, tτ ]. It can be used as an
estimate of the maximal volatility in the index, if such parameters should be es-
timated. Normally relative drawdowns are of interest, and the drawdowns given
in this thesis are mainly the percentage change from the peak to the trough.
The scenario containing the largest drawdown among all the indices can be used
as a �worst case� scenario in the risk-return appraisal for the index, even though
is not certain that it is the scenario ending at the lowest index price.

8.1.2 Scenarios

On the following pages the generated scenarios are found in �gure 8.1, 8.2,
8.3 and 8.4. For each index, 1000 scenarios have been generated, such that
the sampled regimes and lengths are parallel for all indices. Twenty scenarios
are plotted with 5%, 25%, 50% (median), 75% and 95% quantiles. The scenario
containing the largest maximal drawdown among all the scenarios is highlighted
in red. Some scenarios take very extreme values, and for this reason, the medians
are used instead of the mean to give a true picture of the �general� scenario.
Single events cannot explain the �wavy� behaviour of the quantiles. This is
caused by a large amount of scenarios with high volatility. It is clearly to see that
all the simulations start in a regime where prices are falling, but is the lengths
of the regime are di�erent. Some scenarios hit a turning point fast, others waits
for a longer time. Looking at the 50% quantile for the stock indices there seems
to be a similar behaviour. There is a trough is around 2012 M10, and then a
peak around 2014 M8 and then again a trough at 2015 M12. These observations
might be used cautiously as estimate of turning points, which corresponds to
regime length of 83, 95 and 70 weeks. The lengths of the �negative� regimes are
a little longer than the ones in historical data, and the length of the �positive�
regime seems very reasonable. This is an interesting feature that the model
might be able to estimate turning points, though lac of historic knowledge of
regime lengths make this very uncertain. In general both the stock indices and
the bond indices seems to be highly correlated also across asset classes. This
feature is also expected as it is represented in principal components. cf. PC1 is
the market component, sometimes the stock component and PC2 is somtimes
the bond component. The impact of the long third positive period in historical
data is observable in many scenarios with positive trend and small volatility,
though the regime here seems to be much shorter.

The stock indices have higher volatility than the bond indices, and therefore also
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a wider span on the quantiles. Despite majority of random walk models, the
ARCH(1) components still have in�uence on the scenarios since it is possible to
detect volatility clustering in some scenarios. The largest MDD scenario seems
to be the same for all the indices except NDEAGVT. This scenario might be
characterized as having a regime known as a bear market which is a market
changing form high positive atmosphere to overall negativity. For the stock
indices this scenario gets close to zero, but the bonds are not that badly hit.
In chapter 9 the scenarios are studied more closely by considering validity and
usefulness.
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Figure 8.1: Scenarios for KAXGI, NDDUE15 and NDDUJN generated using
PCA and GARCH models.
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Figure 8.2: Scenarios for NDDUNA, NDUEEGF and TPXDDVD generated
using PCA and GARCH models.
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Figure 8.3: Scenarios for CSIYHYI, JPGCCOMP and NDEAGVT generated
using PCA and GARCH models.
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Figure 8.4: Scenario for NDEAMO generated using PCA and GARCHmodels.

8.1.3 Analysis of scenarios

One of the factors in risk management is the risk-return ratio. In �gure 8.5 the
normalized median of each index is plotted. In this plot the correlation in the
indices is very clear, especially within an asset class. The stock indices are highly
correlated and the corporate bond and the high yield bond have some of the same
patterns. The Danish bonds are highly correlated, and have almost identical
behaviour in the �rst regime. This is naturally caused by the homogeneity of the
weighting in the principal components in falling regimes. This plot can be used
to compare the indices and determine which one has the highest potential return
at a given time among all the indices. Overall, the JPGCCOMP index performs
the best, and in general the bond indices have the highest relative return after
�ve years. Depending on the investing strategy, it might be an idea to invest
in NDEAMO until 2013 and then switch to JPGCCOMP in order to get the
highest return throughout the whole period. This plot only gives information
about the return, and does not give any idea about the risk attached to the
index. For this reason it would be interesting to look at the distribution of the
end values of the indices, in order to get an idea of the risk.
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Figure 8.5: Normalized 50% quantile scenario for each index.

Figure 8.6 shows histograms of the end values for each index, together with
markings of 5%, 50% and 95% quantiles. A 50% quantile at zero corresponds
to a zero return on the median. The end value distributions look similar with
in an asset class. The stock indices are positively skewed with a higher de-
gree of deviation, because they are having some extreme scenarios with very
high return. Again it is stated that the bonds indices have the highest return,
some of the stock indices even have a lot scenarios with negative 5-year returns.
This plot together with table 8.1 is a nice tool for risk-return valuation for
5-year investments. In the table the standard deviation on the 5-year return
is given together with the median return. As an example of the risk-return
considerations, the JPGCCOMP can be used. It has the highest median re-
turn at 63.1% change over 5 years corresponding to an annual e�ective rate on
5
√

1 + 0.631 − 1 = 0.103 = 10.3%. But the standard deviation of the relative
changes is σ̂ = 0.671, which is the highest among the bond indices. Whether
the investor should choose to accept this higher risk in order to get a higher
return depends on the overall strategy. It is unusual, is that some of the in-
dices with high standard deviation on the 5-year relative return, have a negative
median return. The extreme scenarios, the fact that the simulation starts in a
bearish market and that the simulation horizon only is �ve years lead to this
unfavourable risk return relationship. If the horizon was longer, the overall pos-
itive trend in historical data would probably have a�ected results, such that
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Figure 8.6: Histogram of the relative end values for the series.

the risk on the stock indices still would have been higher, but the return would
have exceeded the return on bond indices. But this behaviour is anyway still
desirable and most likely because of the market situation at the starting point.

Index KAXGI NDDUE15 NDDUJN NDDUNA NDUEEGF

Median 0.085 -0.191 -0.359 -0.174 0.103

σ̂ 1.090 1.314 0.565 0.803 1.948

Index TPXDDVD CSIYHYI JPGCCOMP NDEAGVT NDEAMO

Median -0.357 0.239 0.631 0.275 0.344

σ̂ 0.680 0.475 0.671 0.119 0.152

Table 8.1: Median 5-year relative return and the standard deviation of relative
returns for all the scenarios.

Figure 8.7 shows a plot of the normalized scenarios containing the largest max-
imum drawdown. This can be used in risk management as well , an in this
case it is clear that the Danish bonds do not experience such extreme maximum
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drawdowns as the other indices, actually the �ve year return on the scenarios
for these indices are slightly negative, where the loses on the other scenarios are
considerably large. It is also clear that it is the same �market� scenario that
holds the largest maximum drawdown for all the indices except for NDEAGVT.
This means that the indices have a high correlation in bear market as they are
supposed to.
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Figure 8.7: Normalized scenario with MDD for all the indices.

A plot of the drawdown and maximum drawdown from simulation start t0 until
tτ might give a clue of how fast the maximum drawdown occur. In �gure 8.8
it is seen that it occurs as early as stated above. The plot can also be used to
estimate when a crisis at least would occur. For instance, let a crisis be de�ned
as a 40% drawdown, then the median states when there is 50% chance that a
crisis already has occurred. On the other way around, the chance that a crisis
will hit before a given date, can also be stated looking at the quantiles. For
example there is 50% chance that a crisis (or actually a drawdown equals to
40% cf. the crises de�nition) on the Copenhagen Stock Exchange (KAXGI) has
occurred in 2014. At the same time it is more than 95% certain that there will
not be a drawdown larger than 8% in NDEAGVT and 15% in NDEAMO. It is
very certain (∼ 95%) that the stock indices will experience a drawdown larger
than 15% within the �ve-year period, but it is very uncertain that the bond
indices will experience drawdowns at that size. This is fully consistent with the
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earlier statements and the exceptions for the asset classes.
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Figure 8.8: Plot of quantiles based on the drawdown for time t0 until time
tτ for each scenario. The red line represents MDD for all the
scenarios until time tτ which is the same as the 100% quantile.

8.2 Scenario generation via bootstrapping

Bootstrapping is a method where returns are generated by sampling among
historical (weekly) log returns. This way of generating scenarios is quite easy
and simpler than the method above. Modelling of data is not needed, and the
sampling ensures that the sizes of the returns are true, but this is not enough
to ensure nice scenarios. An analysis of data is very useful in order to identify
characteristics in data. As stated earlier the scenarios should represent some
of these characteristics in order to be reasonable. Therefore a well-considered
approach for bootstrapping is needed in order to sample such that the majority
of the characteristics will be represented in the scenarios.
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8.2.1 Approach for scenario generation

Bootstrapping among weekly log returns, makes it a straightforward procedure
to translate the sampled values into continuous (actually discrete in time) time
series for each index. The idea behind this bootstrap is to keep it simple. The
approach for this bootstrapping is to sample from the whole period and not
within regimes only. The sampling should start at the point where data ends,
13 August 2011. In order to make regime patterns, the sampling should not
cover the whole period uniformly, but instead sample returns at time t close
to returns sampled at time t − 1. Di�erent distributions can be used for this,
and this approach uses a uniform distribution. The mean of the distribution
is the week sampled from at time t − 1, and the standard deviation is set to
approximately 5 weeks. This is a very arbitrary and subjective choice, and it
will of course a�ect the result. The bootstrapping has been tested with di�erent
standard deviations, and 5 weeks seems reasonable. The R function ruinf is
used to generate random numbers from the continuous uniform distribution,
but because the indices are discrete in time, the generated values need to be
round o�. The function input is the minimum α, and maximum β of possible
outcomes, so the input needs to be estimated using the relationship between α,
β and σ. Assuming discrete uniform distribution, the following is valid [36]:

X ∼ U(α, β)

µ̂(X) =
1

2
(α+ β)

σ2 =
(β − α+ 1)2 − 1

12

In order to have µ̂(X) = 0 ⇒ −α = β and σ = 5 ⇒ −α = β =
√
52·12+1−1

2 =
8.175. Using these limits and a round-o� of the result from runif in R, gives
σ̂ = 4.73. Using −α = β = 8.65 instead, gives σ̂ = 4.99. As this is a subjective
chosen constant, the precision does not matter that much. In this bootstrapping
1000 scenarios are generated and the scenario length is 260 weeks = 5 years.
The bootstrapping in pseudo code is:
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Set time ti = tend, where tend is the last week in data set.
N = numbers of scenarios
Simulation length = I
for n in 1 to N {

for i in 1 to I {
Set t = tend + 1
while t > tend or t ≤ 0 {

Draw an integer t from X ∼ U(α, β) s.t.σ̂(X) = 5 and
µ̂ = ti

}
Set ti = t
Log return Scenario (I,N)=log return data(ti)
}

Scenario(I,N)= exp ( cummulated sum of Log return Scenario (I,N)) ·
data(tend)
}

8.2.2 Scenarios

The scenarios from bootstrapping are found in �gure 8.9, 8.10, 8.11 and 8.12.
All the scenarios start with a negative trend as stated. Slowly some scenarios
start to sample from earlier data, e.g. the positive regime number �ve, and as
a consequence the median tends to �atten out, and for some indices, especially
the bond indices, the trend turns positive. The quantiles are pretty smooth, and
only a few scenarios take unrealistic large values. The stock indices are of course
more volatile than the bond indices, and it is possible to identify scenarios with
more extreme behaviours. The volatility clumping is not represented as much
as desired, but the indices still seem to be highly correlated, especially within
asset classes. It is not possible to identify turning points, but it possible to see
regimes within a scenario, because of the uniform sampling. If the standard
deviation on the sampling was larger the regimes within a scenario would have
been shorter resulting in even more �at curves. It would have taken longer time
to get out of a regime if the standard deviation was smaller and that would
have resulted in very long negative periods to start with and maybe followed by
a positive period. Among the 1000 scenarios this bootstrapping method never
samples from the �rst half of data, therefore there is a majority of positive data,
but because of the sampling method and length of the scenario, the median is
not in�uenced by that. If the period was longer, all the median scenarios would
have been positive.
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Figure 8.9: Scenarios for KAXGI, NDDUE15 and NDDUJN generated using
bootstrap method.
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Figure 8.10: Scenarios for NDDUNA, NDUEGF and TPXDDVD generated
using bootstrap method.
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Figure 8.11: Scenarios for CSIYHYI, JPGCCOMP and NDEAGVT generated
using bootstrap method.
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Figure 8.12: Scenario for NDEAMO generated using bootstrap method. 20
Scenarios have been plotted together with quantiles for 1000 sce-
narios and the scenario containing the largest MDD.
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8.2.3 Analysis of scenarios

Figure 8.13 is histograms of relative changes in 5-year scenarios for each index.
All the histograms are more or less positive skewed and all the indices have
positive median scenario return except KAXGI and TPXDDVD. The standard
deviation on the end values and the 5-year mean return are given in table 8.2.
The standard deviations on the end values are largest for the stock indices and
smallest for the Danish bonds. The NDDUE15 index performs the best with a
5-year return on 65.1%, the same as a 10.5 % annual rate. Again the searching
for a high return results in a high risk. Again the asset allocation depends on
what risk the investor is willing to accept.
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Figure 8.13: Histogram of the relative end values for the series.
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Index KAXGI NDDUE15 NDDUJN NDDUNA NDUEEGF

Median -0.134 0.160 0.059 0.433 0.250
σ̂ 1.192 1.357 0.630 1.117 1.974

Index TPXDDVD CSIYHYI JPGCCOMP NDEAGVT NDEAMO

Median -0.351 0.651 0.610 0.343 0.312
σ̂ 0.441 0.778 0.443 0.278 0.194

Table 8.2: Median 5-year relative return and the standard deviation of relative
returns for all the scenarios.

Looking at the normalized scenarios with maximum drawdown in �gure 8.14, it
is seen that the maximum drawdown occur di�erently. Again the bond indices
perform the best among the maximum drawdown scenarios.
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Figure 8.14: Normalized scenario with MDD for all the indices.

Figure 8.15 shows the drawdown and maximum drawdown from simulation start
t0 until tτ . Now it takes way more time before the maximum drawdown occurs,
and the possibility of getting a drawdown larger than 40% in the 5-year period
is also smaller. This is caused by the uniform sampling method that needs
quite a few iterations before it starts to sample form regime 4 where the largest
drawdowns occur. It is not even certain that it will ever sample from periods
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with large drawdowns.
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Figure 8.15: Plot of quantiles based on the drawdown for time t0 until time
tτ for each scenario. The red line represents MDD for all the
scenarios until time tτ which is the same as the 100% quantile.

8.3 Comparing Scenario generation methods

Both methods give end distributions that seem reasonable, compared to the
historical data. The standard deviations on the two methods are very similar
and in general the bond indices have lower standard deviation than for the stock
indices. This pattern is also represented in the scenarios through the period.
The bootstrapping method gives more positive 5-year median return, and it
is caused by only few scenarios having long negative periods. The shape of
the scenarios are more smooth using bootstrapping, and volatility clustering
is to a certain extent represented in both methods. Looking at the quantile
scenarios, especially for the stock indices the ARCH methods have more non-
linear quantiles. This is a result of the regime separation, and a similar pattern
cannot be observed in the quantiles using bootstrapping, but on a single scenario
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level, periods with positive and negative trend is observable, indicating regimes.
Only very extreme scenarios occur in the ARCH method, and the reason for
this is obviously caused by the fact thatbootstrapping only samples among real
size returns. For the same reason the size of the drawdowns is larger using
ARCH methods. The sampling method in bootstrapping determines the later
occurrence of the relative smaller maximum drawdown.

In the next chapter the scenarios are tested and the performance of the models
is analysed.
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Chapter 9

Testing scenarios

A scenario is as mentioned before, not predictions of true index values, but a
possible outcome used to estimate the risk. Therefore the quality of scenarios
are not a measure of how well the scenarios approximate the true value, but
rather how close the distribution of uncertainty is to the true one. To get a
picture of the quality of the scenarios accuracy, correctness and consistency are
studied [26]. These are all quantities, that to some extent can be measured, but
also require a degree of subjectivity.

9.1 Moment matching

First moment matching is considered. Moment matching is a measure of how
many statistical properties are represented in the distribution of the scenarios
compared to the true historical distribution.

9.1.1 Accuracy

Accuracy is a concerned with comparison of the �rst four moments: mean,
standard deviation, skewness, kurtosis. In table 9.1 the relative annual return
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Annual relative return [%]
Data GARCH Bootstrapping

KAXGI 7.20 1.65 -2.84
NDDUE15 2.53 -4.15 3.01
NDDUJN 1.16 -8.50 1.15
NDDUNA 1.34 -3.76 7.46
NDUEEGF 12.46 1.99 4.56
TPXDDVD -1.47 -8.46 -8.28
CSIYHYI 7.24 4.37 10.55

JPGCCOMP 11.57 10.3 9.99
NDEAGVT 5.14 4.98 6.08
NDEAMO 5.90 6.09 5.58

Table 9.1: Annual relative return for the 12.6-year data period and 5-year
simulation medians.

for each index is given for data and for median scenarios. The return is calculated
for the whole data or simulation period. None of the methods have the same
returns, but they are not incorrect. Both methods start in negative period, and
therefore underestimate the returns, in particular the GARCH method. For
this reason the annual return across regimes are not comparable between the
simulations and the historical data, though the bond returns are performing the
best for both methods, because the bonds do not experience signi�cant losses in
the �rst part of the scenarios. In general the higher volatility on the index the
larger deviation on the annual return. Comparing the two methods, it is clear
that the bootstrapping generates scenarios with a more positive trend, except
for KAXGI.

It is also di�cult to compare the higher order moments. The median scenario
is useless because it does not behave like a real scenario. The only way is to
study a single scenario at the time, but as this project focuses on the preface
in scenario generation this extensive study will be left over to further research.
Other test is more applicable, because they test the modelling in the preface
more directly.

9.1.2 Consistency

When generating scenarios for more than one variable, the internal dependency
should be maintained, e.g. the correlation matrix should be the same for data
and scenarios. The GARCH method is built on keeping the correlation in the
scenarios by the use of PCA, and that the returns for the indices are gener-
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ated parallel, such that the added noise are the same for all the indices. The
numbers of principal components and the cumulated proportion directly explain
the correlation in the simulated indices. I �gure 8.5 and 8.7 it is clear that the
indices are highly correlated, and as stated for the historical data correlations
are strongest within an asset class.

The correlation is also maintained in the bootstrapping, because the sampling
of returns for all the indices is done parallel. For this reason no correlation is
lost.

9.1.3 Correctness

Correctness is concerned with the properties known from historical data or the-
ory. Both models do not allow negative index values. Regimes are represented
in both methods, but the turning points in the bootstrapping are di�erently
from scenario to scenario, where the GARCH scenarios have a overall tendency
on where the turning points occur. Both methods shows volatility clustering,
but the bootstrapping has a higher propensity to generate more smooth curves
where the small jumps have vanished. When separating the model into regimes
in the GARCH modelling, a lot of the volatility clustering have �disappeared�,
and therefore not represented in the model, though the use of insigni�cant pa-
rameters might anyway give some volatility clustering, but the correctness of
these is hard to evaluate. The behaviour of the volatility in di�erent types of
period is kept. in both methods, such that the volatility is smaller in positive
periods than in negative periods.

Extreme events are also a part of the correctness, because it is shows that the
model not is a direct reconstruction of historical data in the future. The GARCH
method generates some quite extreme scenarios, but also more realistic �high-
volatility-scenarios� which is not observed in data. The bootstrapping method
shows the same feature to some degree.

9.2 Stability of scenarios

The stability of the scenarios will not be tested here, but only discussed brie�y
as this is more interesting when optimizing scenarios. Stability of scenarios deals
with stability in the sample and out of the sample.

In the sample stability for both of the method depends of the random numbers
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drawn. For the GARCH model a random number is drawn, in order to decide
which regime to simulate from, the length and the noise on this simulation.
Running enough simulation the quantile scenarios become stable, but some of
the extreme events might change, and therefore also the maximum drawdown
might change. Random numbers are also drawn when generating scenarios via
bootstrapping. It is very unlikely that two scenarios will be identical, but if
enough scenarios are generated the quantiles will remain the same. As this
model does not generate such extreme scenarios as the GARCH method their
change and change in maximum drawdown might not be as large.

The fact that both methods involve a degree of randomness just ensures diversity
among the scenarios, which is a desirable feature.

Out of the sample stability is not considered here as it deals with stability of
sampling from the �true� / benchmark distribution.

9.3 Back testing

Back testing is especially relevant for the GARCH model, as it is a measure of
how well the PCA and GARCH modelling approximate historical data. The
aim of using these methods is to describe the behaviour of the indices mathe-
matically. In �gure 9.1 the real-values (black line) are plotted together with the
median (blue line), 5%, 25% , 75% and 95% quantiles of 1000 �reconstructions�.
The reconstructions are made such that values for each regimes are simulated
separately with the true length of the regimes. That the reconstructions have
sharp changes at the turnings points, just shows that the models for the regimes
are di�erently as they should be. Mostly the true data is within the 25% and
75% quantiles, showing that the model is an acceptable approximation of his-
torical data, especially considering sudden changes at certain time points only
will occur in some scenarios and therefore not shown in the median.

The fact that the model performs well on the historical data it is generated from
is not necessarily a quality mark for the scenarios. This is just an assumption
on what happened in the past might happen in the future. This assumption
is a uncertainty and error to the scenario generator. Therefor the sampling
among regimes and their length makes the in�uence on this potential error
less important, because scenarios will probably not become reconstructions of
historical data when the generator has built-in randomness.

Back testing the bootstrapping method is not relevant because it weights the
latest return highest, and almost no weights to the earliest data. This model
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Figure 9.1: Back testing using the PCA and GARCH model. The blue line is
the 50% quantile, the dashed line is the 25% and 75% quantiles
and the dotted line is the 5% and 95% quantile of 1000 �recon-
structions� of data, the black line.
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also assumes what happened in the past will happen in the future, especially
that what happened last week might very well happen again this week. This
assumption does not seem unreasonable, but in order to get scenarios with
behaviours not observed before, this might be a risk to the scenario generator.
Adding randomness to the sampling eliminate some of this error.

9.4 Outline of scenario testing

Individual scenarios have not been tested quantitatively, instead a general ex-
pression, the quantiles, of all the scenarios have been tested. Both methods
seem to have reasonable trend, and the volatility seem to have a realistic size,
despite some very extreme events occurring in some GARCH scenarios. Volatil-
ity clustering can also be found, maybe not as much in historical data, but still
enough to observe high volatility and low volatility periods in some scenarios.
Overall regime-pattern can be seen in the GARCH scenarios, and on a single-
scenarios-level also found in the bootstrapping. The scenarios seem to have an
acceptable degree of correctness and consistency. The correlation between the
indices is maintained in the scenarios and both models generate scenarios that
are in sample stable, though some extreme events occur. Testing the GARCH
model on the historical data shows that the model describes the behaviour at an
acceptable level. Therefore the quality of the scenarios for both methods seem
acceptable, though there are pros and cons on both methods. Testing scenarios
once at the time is recommended if scenarios should be used in an optimization
process.



Chapter 10

Discussion

Data has been analysed and characteristic as, non-normality, high correlation
between indices, autocorrelation and conditional heteroscedastic behaviour are
observed. In order to �nd a suitable time series model some of these charac-
teristics have been removed by transforming data. The Danish LIBOR index
has shown way di�erent behaviour, and is for this reason leaved out from the
dataset. Principal components have been used to reduce the data-space from
being 10-dimensional to 4-dimensional. Random walk and ARCH(1) models
(within the GARCH(p, q) family) were shown to be the most appropriate mod-
els for the 4-dimensional regime-divided data. Scenarios have been generated
using a regime changing generator built on the ARCH models. These scenarios
seem to behave acceptable with some of the same characteristics as observed in
data. Using this scenario generator, economic turning points can be estimated,
though they must be treated carefully. Scenarios have also been generated using
bootstrapping with a uniform distributed sampler. These scenarios also seem
to have a �ne quality, though less volatility clustering is represented.

The characteristics of the data are not surprising and expected from similar
studies[27]. It is natural that both autocorrelation and cross correlation are
found in the indices. The volatility clustering is mostly known from �high-risk�
indices, and for this reason it is easiest to observe in the stock indices. The
positive correlation between stock and bond indices was also expected because
of the low in�ation and interest rate they are not seen as alternative investment
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opportunities. The Danish LIBOR index behaves di�erently, and that is the
reason why it is left out from the data, because the PCA is a preferred method
to reduce the dimension of the data space. LIBOR data was not available
for the whole period, and therefore would have resulted in scenarios built on
other terms. The LIBOR index could have been modelled separately, but again
this would have given scenarios with other conditions. Nor is it possible to
invest in the LIBOR directly, and therefore it is acceptable to leave it out from
data. The use of weekly log return has the great feature that it makes the data
independent, such that the modelling is done more easily. Of course some daily
variance vanishes, but as scenarios are 5 years, this small variance is trivial. In
order to get as realistic variance as possible Friday sample is used to represent
the week sample.

That data behaves di�erently within periods is also observed. In order to repro-
duce a likely behaviour in the scenarios the data is spitted in to regimes using
OECD CLI turning points. The CLI turning points is a representation of the
economics changes and not �nancial changes. This might be a little error not to
use the �nancial turning points because they are often occurring a few month
earlier. This might have changed the size of the parameters in the ARCH model
and maybe also the model order. The reason why a lot of the models should
have been random walks with a drift, is probably caused by the splitting into
regimes. Within a regime the volatility is fairly constant, and because of the
length of the regime the conditional heteroscedasticity is not statistical signi�-
cant in many of the ARCH models. But the variance is still conditional, because
it depends on which regime is sampled.

Knowing that the indices are highly correlated, the use of PCA is obvious. Using
four PC's explain around 80% of the variation within all the indices. The data
derived from the PC's is used in scenarios and not precise predictions of index
values, therefore it is reasonable that not all of the variation is explained. PCA
is only used to describe the relation of indices, and therefore it is acceptable that
not all the requirements for the use of PCA are met. From the communalities
in table 7.6, the CSIYHYI had the lowest communalities overall, but looking at
the back testing of the index in 9.1, the model for CSIYHYI actually perform
nicely within the quantile of reconstructions. There are signi�cant lags of au-
tocorrelation left in the weekly log return of CSIYHYI, and that might disturb
the PCA. It does not seem to be any strange behaviour in the back testing, so
the scenarios might be as good as for the other indices.

It is a bit surprising that it turns out, that a lot of the series from the PC's
can be describes as random walks with drift. The conditional heteroscedastic
behaviour has been observed, but modelling regimes separately the volatility
clustering becomes statistically insigni�cant. This results in a use of ARCH(1)
parameter that, from a statistical point of view, cannot be justi�ed, but their
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relative weightings are small and it does not have any considerable in�uence to
the result. The models where both parameters, α0 and α1 are signi�cant are
often the models derived from the �rst PC's for a regime. The reason for this
is that the �rst PC's have the highest variance, and therefore the conditional
heteroscedastic behaviour is more distinct. The choice of model has been a
rather subjective process, but statistical test of the residuals has been used
in order choose a proper model. The residuals in the GARCH model should
ideally be normally distributed. After testing the residuals for normality for
some models, the residuals are proved not to be normal. This might indicate
that the models used do not catch all the patterns in data. Known from the
data analysis, a few outliers are represented, and they might very well cause the
result of the test. Only a few non-normal residuals are enough to makes the test
fail.

The di�erent behaviour of the variance in negative and positive period has, as
already mentioned, vanished to some extent. A limitation in an ARCH model
is that it does not count for the sign if the index change /shock, for this reason
EGARCH models might have been used if data was not divided into regimes.
ARCH models also over estimates the variance if a large index change occurs
in non-volatile periods. The model de�nition is also the reason why some very
extreme occur, because when the model gets a high variance, the next variance
is also likely to be large. However this have only limited in�uence in this project
because of the small α1 parameters.

The choice of the period lengths only depends on the observed data. It might
have been an idea to use other estimates of the regime lengths. For instance
the length of the regimes before 1999 could have been taking into account. It is
obvious that the third regime has a very large positive on the trend of the sce-
narios because of its length. Using other regime lengths could have resulted in
more equal period lengths. On the other hand, the variance of data in a period
might quite well be described by the length of the period. Again the question
of how much the simulations should re�ect the historical data is brought up.
For short-period simulations a high degree of the scenarios should be able to
detect in recent history. If the scenarios are longer they should cover a larger
amount of unobserved events. The use of historical data in both scenario gener-
ation techniques ensures a realistic variance, but will not generate new events.
To ensure new events, randomness is �added� to both methods. The GARCH
model samples among the periods and afterwards among their length. The
bootstrapping samples uniformly around �yesterdays� return. The use of his-
torical data should also be limited, because a lot have changed in the �nical
market through recent decades. It is for this reason quite unlikely some pattern
will show up again and it might be more likely that new events occur. The
combination of historical data and methods that takes new events into account
is nicely represented in the GARCH method when generating 5-year scenarios.
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The bootstrapping is more applicable when the scenarios are shorter. It has
the disadvantage of generating scenarios with too short �true� length of the neg-
ative periods and therefore it over performs when the time horizon gets too long.

This project is done in collaboration with Peter Nystrup. He has generated
scenarios based on slightly di�erent methods [22]. He has chosen to paste all
the positive and negative regimes into two regimes. This result in more signi�-
cant ARCH(1) parameters, implying conditional heteroscedasticity is modelled.
Pasting the scenarios together also has a disadvantage, because the model repre-
sents a smoothing of the periods. Therefore the scenarios are also more smooth,
though extreme events and scenarios also occur. The trend of the medians in the
bond indices are positive in both models but the trend in the median scenario
in Peter's stock indices are negative where those in this thesis depends on the
index. The distribution of the end values are quite equal for the bond indices,
with equal variation. The distribution of the end values in the stock indices are
more positive skewed in Peter's model, caused by more �loss scenarios� than the
end values using the model in this thesis. Peter's bootstrapping method uses a
normal distribution as sampling parameter instead of a uniform. The scenarios
are very equal and the distributions as well and therefore it is hard to tell which
method preform the best.

To summarize all generation techniques generate realistic scenarios, the GARCH
method seem to generate more realistic scenarios with the �right� behaviour, but
it is also this method that generates a couple very extreme events, however this
does not matter because in risk management extreme events are used as a tool
in the optimization process. Adjusting and improvement of the GARCH and
bootstrapping model are discussed in chapter 12.



Chapter 11

Conclusion

Eleven indices representing three asset classes have been analysed from a sta-
tistical point of view. A few outliers have been identi�ed, and a few errors
in data set have been corrected, but the rest of the outliers are unchanges.
At �rst index values are studied, and characteristic such as autocorrelation,
non-constant volatility and high correlation are observed. Especially correla-
tions within an asset class are high. It is concluded that the index values are
non-normal distributed, and an Augmented Dickey Fuller-test states that the
index values might follow a random walk. Afterwards log return index values
are analysed, and because they still have autocorrelation, weekly log return is
used in order to get independent data. Despite a few signi�cant lags in CSIY-
HYI, signi�cant autocorrelation has been removed. The standard deviation on
the weekly log returns are reconstructed recursively, and it is again stated that
there is conditional heteroscedastic behaviour in the indices. A plot of the cross
correlations shows that weekly log return indices are correlated, and some in-
dices are cross correlated, especially CSIYHYI has many signi�cant lags to the
stock indices and JPGCCOMP. The Danish bond indices are highly correlated
with each other, but not as much with the other indices. The Danish LIBOR
index, DK00S.N.Index, has no signi�cant correlation to the other indices, and
is therefore left out in the modelling and scenario generation. Weekly log return
indices are weakly negative skewed, the excess kurtosis is positive and it can-
not be rejected that they are stationary. Normality cannot be proved, but it is
assumed in the further modelling. In the data analysis it is observed that the
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behaviour of the volatility depends on the trend in the index prices. Therefore
data is spitted into regimes de�ned by OECD CLI turning points. Each regime
is transformed using PCA, and it is shown that using four principal components
explains at least 76% of the total variance and in some regimes even more. A
reconstruction of data using four principal components shows that there is a
minor loss, and for this reason four principal components is used in the further
modelling, where GARCH models are used to model the data derived from the
principal components, that is the dynamic behavior of the variance. It turns
out that the ARCH(1) models and random walks with a drift are the best �t
for data. This is a bit surprising because conditional heteroscedasticy is not
represented in a random walk, but on the other hand, a test stated that it could
not be rejected that data follows a random walk. ARCH(1) models, and in
one single case ARCH(3) models are used to model principal component data.
Often the parameters controlling the conditional heteroscedastic behaviour, in
the models that should have been random walks from a statistical point of view,
are so small it that might vanish when scenarios are generated. The model is
tested on the real data, at it performs well, often the residuals are accepted as
independent and normal distributed. Scenarios are generated where the type
of regime is picked at random, and its length is sampled from an Erlang dis-
tribution with mean equal the period length picked. This procedure continues
until the duration of the scenario is at least 5 years. This method generates
scenarios that behave acceptable, both volatility clustering, autocorrelation and
cross correlation is represented together with extreme events. The scenarios
generated with this method show an overall pattern that gives indication on
economic turning points.

Bootstrapping is also used to generate scenarios. These scenarios also behave
reasonable, but the method performs better if the scenarios have a shorter time
horizon.

The GARCH method generates scenarios with a higher degree of diversity, but
it is not a negative quality in this case. Both methods generate scenarios that
state the risk on the asset reasonably, and because of that the scenarios can be
used in risk management which is a part of the asset allocation process. The
GARCH method should be preferred when generating scenarios with a longer
time horizon.
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Further Research

The subject of modelling �nancial indices is very comprehensive. Many other
models might be used to model the indices, and many other techniques for
generation scenarios exist. Through this project ideas have arisen, and a few
have also been tried out and thrown away again. Some of the more interesting
untested ideas will be presented in this chapter as suggestions for further re-
search. There are two main suggestions, one concerning the modelling and one
concerning test and use of scenarios.

It would be interesting to place the turning points more subjectively in order
to see the changes in the model and the scenarios. This could also be used in a
more profound stability test of the scenarios. As there are only �ve regimes in
the data set the length of the regimes might not be representative, and therefor
historical period lengths might be implemented. It would also be interesting
to see if the GARCH model is estimated on weekly log return data will have
signi�cant ARCH parameters. The modelling of data can be done with other
time series models, e.g. other variation of the GARCH model. Assuming condi-
tional heteroscedasticity, models like EGARCH, GJR-GARCH and TGARCH
could be tested. These models allow volatility shocks to reach di�erently on
positive and negative input, and there are no restrictions in the parameters on
the EGARCH. The models might be applied directly on single indices or to PCA
data, and maybe leaving the subdivision of regimes out.
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Concerning the bootstrapping it would have been interesting to implement the
regime part from the GARCH model, where a regime is chosen randomly, and
afterwards the length. This might remove the tendency of overestimation, and
sampling to much among the same values. Volatility clustering might also very
well be represented in such scenarios.

The scenarios could also be studied more carefully, in order to optimise and
�nish the asset allocation step with recommendations on allocation within this
two asset classes. For this purpose scenarios should be tested closely, e.g. by
changing parameter in the GARCH model or analysing some of the scenarios
one at the time. This could be a whole project in itself.

Other asset classes could also be implement such that the asset allocation be-
comes more comprehensive and versatile.
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Figure A.1: ACF and PACF in weekly square root simple gross return of
CSIYHYI.
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Appendix B

R-script for analysis af data in chapter 3 and 4

##################################################################

## Filename: Analysis of data.R Date: 20-01-2012 ##

## Author: Emil Ahlmann Østergaard s082632 ##

## Description: R-script for chapter 3+4+5 in B.Sc. thesis: ##

## "Scenario gerneration for financial market indices" ##

##################################################################

setwd("C:/Users/Emil/Documents/Skole/Bachelorprojekt")

library('fGarch')

library('tseries')

library('TSA')

library('chron')

library('fields')

library('gplots')

library('SDMTools')

#Reading in data

data<-read.csv2('Data endelig version.csv',header=T)

data<-data[,1:12]
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data$Date<-as.Date(data$Date,"%d-%m-%Y")

data$DK00S.N.Index[1:1161]<-NA

data$DK00S.N.Index<-as.numeric(data$DK00S.N.Index)

attach(data)

#Plot of data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/data_single_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(2,2.2,2,1.5),mgp=c(3,1,0),cex.axis=1.6,

cex.main=1.8)

textplot('Indexsplot')

for(i in 2:11){

plot(Date,data[,i],type='l',lwd=2,main=names(data)[i],)

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),"years")

,labels=F)

}

plot(Date,data[,12],type='l',lwd=2,main=names(data)[12])

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),"years")

,labels=F)

dev.off()

#Generating data for NDUEEGF

#end_month is where a month ends.

original.data.NDUEEGF=data$NDUEEGF

set.seed(200)

end_month=c(1,21,41,64,86,107,129,151,173,195,216,238,261,

282,303,326,346,369,391,412,435,456,478,500,521)

b=approx(x=end_month,y=data$NDUEEGF[end_month],n=521)

data$NDUEEGF[1:520]=b$y[1:520]+rnorm(520,mean=0,

sd=sd(diff(data$NDUEEGF[end_month-1]))/(sqrt(22)))

#plot of new data for NDUEEGF

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/new_data_NDUEEGF.pdf",width=8,height=5)

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,cex.lab=1.6,

cex.main=1.8,lwd=2)

plot(Date[1:521],original.data.NDUEEGF[1:521],type='l',

main='NDUEEGF',xlab='Time [Year]',ylab='Index value')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"months"),labels=F)

lines(Date[1:520],data$NDUEEGF[1:520],col='blue')

lines(Date[1:521],b$y,col='red',lwd=2)

legend('topleft',legend=c('Original data','Linear interpolation',

'New data'),col=c('black','red','blue'),bty='n',cex=1.4,
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lwd=c(2,2,2))

dev.off()

#KPSS-test for stationarity in data

index.number=2

kpss.test(data[,index.number])

#Augmented Dickey-Fuller test for unit root

adf.test(na.omit(data[,index.number]))

#Shapiro-Wilk test for normal distributed data

shapiro.test(data[,index.number])

#Plot of autocorrelation in data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/ACF_data_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('ACF',valign="top",cex=5)

for(i in 2:12){

acf(na.omit(data[,i]),main='',lag.max=15,ylim=c(0,1),ci.col='red')

mtext(names(data)[i],3,line=0.2)

}

dev.off()

#Plot of partial autocorrelation in data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/PACF_data_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('PACF',valign="top",cex=5)

for(i in 2:12){

pacf(na.omit(data[,i]),main='',lag.max=15,ylim=c(0,0.3),

ci.col='red')

mtext(names(data)[i],3,line=0.2)

}

dev.off()

#Log return data

logr_data<-apply(log(data[,2:12]),2,diff)

logr_data<-rbind(c(rep(0,10),0),logr_data)

# Mean of index in log return space

index_number=1 #number in 1:11



118

#Plot of log return data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/log_return_data_single_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(2,2.2,2,1.5),mgp=c(3,1,0),cex.axis=1.6,

cex.main=1.8)

textplot('logR indexsplot')

for(i in 1:11){

plot(Date,logr_data[,i],type='l',lwd=1,main=names(data)[i+1],)

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),"years"),

labels=F)

}

dev.off()

#Plot of autocorrelation in log return data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/ACF_log_return_data_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('ACF',valign="top",cex=5)

for(i in 1:11){

acf(na.omit(logr_data[2:3291,i]),main='',ci.col='red')

mtext(names(data)[i+1],3,line=0.2)

}

dev.off()

#Plot of partial autocorrelation in log return data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/PACF_log_return_data_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('PACF',valign="top",cex=5)

for(i in 1:11){

pacf(na.omit(logr_data[2:3291,i]),main='',ci.col='red')

mtext(names(data)[i+1],3,line=0.2)

}

dev.off()

#Weekly (friday) sample

data_week=data[seq(1,length(data[,1]),5),]

#Weekly (friday) log return sample

logr_data_week=apply(log(data_week[,2:12]),2,diff)

logr_data_week=rbind(c(rep(0,10),NA),logr_data_week)
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#Recursive estimation of mean weekly log return data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/recursiv_estimat_of_MEAN_week_logR_data.pdf",width=8,

height=6)

par(mfrow=c(4,3),mar=c(2,3,1.5,1.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.main=1.8, cex.lab =1.6,lwd=2)

n=length(logr_data_week[,1])

textplot("Recursiv estimation\nof mean in weekly log

\nreturn with \nlambda=0.90",valign="top")

for (i in 1:10){

rvar=numeric(n)

for (j in 1:n){

w=0.90^((j-1):0)

rvar[j]=wt.mean(logr_data_week[1:j,i],w)

}

plot(data_week[,1],rvar,type='l',lwd=2,main=names(data)[i+1],

xlab='',ylab='')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"years"),labels=F)

}

for (j in 1:length(logr_data_week[,11])){

w=0.90^((j-1):0)

rvar[j]=wt.mean(logr_data_week[1:j,11],w)

}

plot(data_week[,1],rvar,type='l',lwd=2,main=names(data)[12]

,xlab='',ylab='')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1")

,"years"),labels=F)

dev.off()

#Plot of autocorrelation in weekly log return data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/ACF_log_return_weekly_data_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('ACF',valign="top",cex=5)

for(i in 1:11){

acf(na.omit(logr_data_week[2:659,i]),main='',ci.col='red')

mtext(names(data)[i+1],3,line=0.2)

}

dev.off()



120

#Plot of partial autocorrelation in weekly log return data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/PACF_log_return_weekly_data_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('PACF',valign="top",cex=5)

for(i in 1:11){

pacf(na.omit(logr_data_week[2:659,i]),main='',ci.col='red')

mtext(names(data)[i+1],3,line=0.2)

}

dev.off()

#Weekly (friday) log return (index 2:7 and 9:12)

#and sqrt return (index 8) sample

transformed_data_week=array(logr_data_week,c(659,11))

transformed_data_week[1,7]=1

for (i in 1:(length(data_week[,8])-1)){

transformed_data_week[i+1,7]=sqrt(data_week[i+1,8]/data_week[i,8])

}

#Plot of ACF and PACF in weekly transformed CSIYHYI data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/ACF_and_PACF_transformed_return_weekly_CSIYHYI_plot.pdf",

width=8,height=6)

par(mfrow=c(2,1),mar=c(3.3,3.5,3.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

acf(na.omit(transformed_data_week[2:659,7]),

main='Transformed CSIYHYI',ci.col='red')

pacf(na.omit(transformed_data_week[2:659,7]),

main='Transformed CSIYHYI',ci.col='red')

dev.off()

# Recursive estimation of SD in weekly log return data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/recursiv_estimat_of_SD_week_logR_data.pdf",width=8,

height=6)

par(mfrow=c(4,3),mar=c(2,3,1.5,1.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

n=length(logr_data_week[,1])

textplot("Recursiv estimation\nof SD in weekly log

\nreturn with \nlambda=0.90",valign="top")

for (i in 1:10){

rvar=numeric(n)

for (j in 1:n){
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w=0.90^((j-1):0)

rvar[j]=wt.sd(logr_data_week[1:j,i],w)

}

plot(data_week[,1],rvar,type='l',lwd=2,main=names(data)[i+1],

xlab='',ylab='')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"years"),labels=F)

}

for (j in 1:length(logr_data_week[,11])){

w=0.90^((j-1):0)

rvar[j]=wt.sd(logr_data_week[1:j,11],w)

}

plot(data_week[,1],rvar,type='l',lwd=2,main=names(data)[12],

xlab='',ylab='')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"years"),labels=F)

dev.off()

########

lagmax=4

#CCF & pairsplot in weekly log return

lagmax=4

yl=0.2

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/CCF_logR-weekly_data.pdf",width=8,height=8)

par(mfrow=c(11,6),mar=c(0,2,2,0),mgp=c(3,0.6,0),cex.axis=1.4,

cex.main=1, cex.lab=1.3,lwd=1)

par(mar=c(0,0.2,1.7,0))

textplot(names(data[2]),valign="center",cex=1.7)

par(mar=c(0,0.2,1.7,0))

ccf(logr_data_week[,1],logr_data_week[,2],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

axis(3, at = c(-lagmax,-1,0,1,lagmax), labels = TRUE, tick = TRUE,)

par(mar=c(0,0.2,1.7,0))

ccf(logr_data_week[,1],logr_data_week[,3],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,1.7,0))

ccf(logr_data_week[,1],logr_data_week[,4],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,1.7,0))

axis(3, at = c(-lagmax,-1,0,1,lagmax), labels = TRUE, tick = TRUE,)

ccf(logr_data_week[,1],logr_data_week[,5],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,1.7,2))
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ccf(logr_data_week[,1],logr_data_week[,6],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

axis(3, at = c(-lagmax,-1,0,1,lagmax), labels = TRUE, tick = TRUE,)

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,2],logr_data_week[,1],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

textplot(names(data[3]),valign='top',cex=1.6)

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,2],logr_data_week[,3],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,2],logr_data_week[,4],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,2],logr_data_week[,5],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,2))

ccf(logr_data_week[,2],logr_data_week[,6],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

axis(4, at = c(-yl,yl), labels = c(-yl,yl), tick = TRUE,)

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,3],logr_data_week[,1],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,3],logr_data_week[,2],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

textplot(names(data[4]),valign='top',cex=1.6)

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,3],logr_data_week[,4],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,3],logr_data_week[,5],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,2))

ccf(logr_data_week[,3],logr_data_week[,6],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,4],logr_data_week[,1],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,4],logr_data_week[,2],xlab='',ylab='',main='',

xaxt='n',yaxt='n')
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par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,4],logr_data_week[,3],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

textplot(names(data[5]),valign='top',cex=1.6)

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,4],logr_data_week[,5],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,2))

ccf(logr_data_week[,4],logr_data_week[,6],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

axis(4, at = c(-yl,0,yl), labels = TRUE, tick = TRUE,)

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,5],logr_data_week[,1],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,5],logr_data_week[,2],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,5],logr_data_week[,3],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,5],logr_data_week[,4],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

textplot(names(data[6]),valign='top',cex=1.6)

par(mar=c(0,0.2,0.2,2))

ccf(logr_data_week[,5],logr_data_week[,6],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,6],logr_data_week[,1],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,6],logr_data_week[,2],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,6],logr_data_week[,3],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,6],logr_data_week[,4],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,6],logr_data_week[,5],xlab='',ylab='',main='',

xaxt='n',yaxt='n')
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par(mar=c(0,0.2,0.2,2))

textplot(names(data[7]),valign='top',cex=1.6)

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,7],logr_data_week[,1],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,7],logr_data_week[,2],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,7],logr_data_week[,3],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,7],logr_data_week[,4],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,7],logr_data_week[,5],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,2))

plot(logr_data_week[,7],logr_data_week[,6],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,8],logr_data_week[,1],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,8],logr_data_week[,2],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,8],logr_data_week[,3],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,8],logr_data_week[,4],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,8],logr_data_week[,5],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,2))

plot(logr_data_week[,8],logr_data_week[,6],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,9],logr_data_week[,1],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,9],logr_data_week[,2],xlab='',ylab='',main='',

xaxt='n',yaxt='n')
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par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,9],logr_data_week[,3],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,9],logr_data_week[,4],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,9],logr_data_week[,5],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,2))

plot(logr_data_week[,9],logr_data_week[,6],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,10],logr_data_week[,1],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,10],logr_data_week[,2],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,10],logr_data_week[,3],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,10],logr_data_week[,4],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,10],logr_data_week[,5],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,2))

plot(logr_data_week[,10],logr_data_week[,6],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0.2,2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,1],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,2],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,3],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,4],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,5],xlab='',ylab='',main='',
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xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,2))

plot(logr_data_week[,10],logr_data_week[,6],xlab='',ylab='',main='',

xaxt='n',yaxt='n')

dev.off()

lagmax=4

#CCF in logR and weekly logR

lagmax=4

yl=0.2

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/CCF_logR-weekly_data_2.pdf",width=8,height=8)

par(mfrow=c(11,6),mar=c(0,2,2,0),mgp=c(3,0.6,0),cex.axis=1.4,

cex.main=1, cex.lab=1.3,lwd=1)

par(mar=c(0,2,1.7,0))

ccf(logr_data_week[,1],logr_data_week[,7],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,1.7,0))

axis(3, at = c(-lagmax,-1,0,1,lagmax), labels = TRUE, tick = TRUE,)

ccf(logr_data_week[,1],logr_data_week[,8],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,1.7,0))

ccf(logr_data_week[,1],logr_data_week[,9],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,1.7,0))

axis(3, at = c(-lagmax,-1,0,1,lagmax), labels = TRUE, tick = TRUE,)

ccf(logr_data_week[,1],logr_data_week[,10],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,1.7,0))

ccf(logr_data_week[,1],na.omit(logr_data_week[,11]),lag.max=lagmax,

xlab='',ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,1.7,0))

axis(4, at = c(-yl,yl), labels = c(-yl,yl), tick = TRUE,)

axis(3, at = c(-lagmax,-1,0,1,lagmax), labels = TRUE, tick = TRUE,)

textplot('')

par(mar=c(0,2,0.2,0))

ccf(logr_data_week[,2],logr_data_week[,7],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,2],logr_data_week[,8],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,2],logr_data_week[,9],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))
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par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,2],logr_data_week[,10],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,2],na.omit(logr_data_week[,11]),

lag.max=lagmax,xlab='',ylab='',main='',xaxt='n',yaxt='n',

ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

textplot('')

par(mar=c(0,2,0.2,0))

ccf(logr_data_week[,3],logr_data_week[,7],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,3],logr_data_week[,8],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,3],logr_data_week[,9],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,3],logr_data_week[,10],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,3],na.omit(logr_data_week[,11]),lag.max=lagmax,

xlab='',ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

axis(4, at = c(-yl,yl), labels = c(-yl,yl), tick = TRUE,)

par(mar=c(0,0.2,0.2,0))

textplot('')

par(mar=c(0,2,0.2,0))

ccf(logr_data_week[,4],logr_data_week[,7],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,4],logr_data_week[,8],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,4],logr_data_week[,9],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,4],logr_data_week[,10],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,4],na.omit(logr_data_week[,11]),

lag.max=lagmax,xlab='',ylab='',main='',xaxt='n',yaxt='n',

ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))
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textplot('')

par(mar=c(0,2,0.2,0))

ccf(logr_data_week[,5],logr_data_week[,7],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,5],logr_data_week[,8],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,5],logr_data_week[,9],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,5],logr_data_week[,10],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,5],na.omit(logr_data_week[,11]),

lag.max=lagmax,xlab='',ylab='',main='',xaxt='n',yaxt='n',

ylim=c(-yl,yl))

axis(4, at = c(-yl,yl), labels = c(-yl,yl), tick = TRUE,)

par(mar=c(0,0.2,0.2,0))

textplot('')

par(mar=c(0,2,0.2,0))

ccf(logr_data_week[,6],logr_data_week[,7],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,6],logr_data_week[,8],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,6],logr_data_week[,9],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,6],logr_data_week[,10],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,6],na.omit(logr_data_week[,11]),

lag.max=lagmax,xlab='',ylab='',main='',xaxt='n',yaxt='n',

ylim=c(-yl,yl))

axis(4, at = c(-yl,yl), labels = c(-yl,yl), tick = TRUE,)

par(mar=c(0,0.2,0.2,0))

textplot('')

par(mar=c(0,2,0.2,0))

textplot(" CSIYHYI",halign="center",cex=1.7)

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,7],logr_data_week[,8],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))
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par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,7],logr_data_week[,9],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,7],logr_data_week[,10],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,7],na.omit(logr_data_week[,11]),

lag.max=lagmax,xlab='',ylab='',main='',xaxt='n',yaxt='n',

ylim=c(-yl,yl))

textplot('')

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,9],logr_data_week[,7],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

textplot(names(data[9]),valign="center",cex=1.7)

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,8],logr_data_week[,9],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,8],logr_data_week[,10],lag.max=lagmax,xlab='',

ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,8],na.omit(logr_data_week[,11]),

lag.max=lagmax,xlab='',ylab='',main='',xaxt='n',yaxt='n',

ylim=c(-yl,yl))

axis(4, at = c(-yl,yl), labels = c(-yl,yl), tick = TRUE,)

textplot('')

par(mar=c(0,2,0.2,0))

plot(logr_data_week[,9],logr_data_week[,7],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,9],logr_data_week[,8],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

textplot(names(data[10]),valign="center",cex=1.7)

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,9],logr_data_week[,10],lag.max=lagmax,

xlab='',ylab='',main='',xaxt='n',yaxt='n',ylim=c(-yl,yl))

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,9],na.omit(logr_data_week[,11]),

lag.max=lagmax,xlab='',ylab='',main='',xaxt='n',yaxt='n',

ylim=c(-yl,yl))

textplot('')
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par(mar=c(0,2,0.2,0))

plot(logr_data_week[,10],logr_data_week[,7],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,10],logr_data_week[,8],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

plot(logr_data_week[,10],logr_data_week[,9],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0,0.2,0.2,0))

textplot(names(data[11]),valign="center",cex=1.7)

par(mar=c(0,0.2,0.2,0))

ccf(logr_data_week[,10],na.omit(logr_data_week[,11]),

lag.max=lagmax,xlab='',ylab='',main='',xaxt='n',yaxt='n',

ylim=c(-yl,yl))

axis(4, at = c(-yl,yl), labels = c(-yl,yl), tick = TRUE,)

textplot('')

par(mar=c(0.2,2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,7],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,8],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,9],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,0))

plot(logr_data_week[,11],logr_data_week[,10],xlab='',ylab='',

main='',xaxt='n',yaxt='n')

par(mar=c(0.2,0.2,0.2,0))

textplot(names(data[12]),valign="center",cex=1.5)

textplot('')

dev.off()

##############

#log R daily data info

index_number=11 #number in 1:11

length(na.omit(logr_data[,index_number]))

min(na.omit(logr_data[,index_number]))

max(na.omit(logr_data[,index_number]))

mean(na.omit(logr_data[,index_number]))

sd(na.omit(logr_data[,index_number]))

skewness(na.omit(logr_data[,index_number]))

kurtosis(na.omit(logr_data[,index_number]))
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#log R weekly data info

index_number=11 #number in 1:11

length(na.omit(logr_data_week[,index_number]))

min(na.omit(logr_data_week[,index_number]))

max(na.omit(logr_data_week[,index_number]))

mean(na.omit(logr_data_week[,index_number]))

sd(na.omit(logr_data_week[,index_number]))

skewness(na.omit(logr_data_week[,index_number]))

kurtosis(na.omit(logr_data_week[,index_number]))

jarque.bera.test(na.omit(logr_data_week[,index_number]))

#function for normal approximation

f<-function(x){exp(-x^2/2)/sqrt(2*pi)}

#Density plot weekly log R data

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/density_plot_week_data.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('')

legend('top',legend=c('Empirical density',

'Normal density'),title='Weekly log return',lty=1,lwd=c(3,3),

col=c('black','red'),bty='n',cex=1.5,seg.len=1,y.intersp=0.7)

for(index_number in 1:11){

plot(density(na.omit(logr_data_week[,index_number])),xlab='',

lwd=2,main='')

mtext(names(data)[index_number+1],3,line=0.2)

lines(c(min(na.omit(logr_data_week[,index_number]))+

(max(na.omit(logr_data_week[,index_number]))-

min(na.omit(logr_data_week[,index_number])))*(1:100)/100),

f((c(min(na.omit(logr_data_week[,index_number]))+

(max(na.omit(logr_data_week[,index_number]))-

min(na.omit(logr_data_week[,index_number])))

*(1:100)/100))/sd(na.omit(logr_data_week[,index_number])))/

sd(na.omit(logr_data_week[,index_number])),

type="l",lwd=2,col='red',xlab='Residuals')

}

dev.off()

#KPSS-test for stationarity in weekly log return data.

index.number=1 #(1:11)

kpss.test(logr_data_week[,index.number])
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#Normalized index-plot with turning points

MY.colors=c("black","red","green3","blue","cyan","magenta",

"yellow","gray","indianred2","brown","darkgreen")

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/Normalized_data_plot_with_turning_points_.pdf",width=11,

height=7)

par(mar=c(4.3,4.3,2,1.5),mgp=c(3,1,0),cex.axis=1.6, cex.main=1.8,

cex.lab=1.6)

plot(Date,data[,12]/data[1162,12],type='l',

main='Normalized index plot',col=MY.colors[11],ylim=c(0,5.5),

lwd=2,ylab='Normalized index value',xlab='Time [Year]')

axis.Date(1,at=seq(as.Date("1999/1/1"),as.Date("2011/1/1"),

"years"),labels=F)

for(i in 2:11){

lines(Date,data[,i]/data[1,i],lwd=2,main=names(data)[i],

col=MY.colors[i-1])

}

lines(c(Date[21],Date[21]),c(-0.22,2.8),lwd=2)

lines(c(Date[435],Date[435]),c(-0.22,2.8),lwd=2)

lines(c(Date[782],Date[782]),c(-0.22,2.8),lwd=2)

lines(c(Date[2391],Date[2391]),c(-0.22,6),lwd=2)

lines(c(Date[2651],Date[2651]),c(-0.22,6),lwd=2)

lines(c(Date[3195],Date[3195]),c(-0.22,6),lwd=2)

legend('topleft',legend=c(names(data[2:11]),"DK00S.N.Index "),

title='Index',lty=1,lwd=c(3,3),col=MY.colors,cex=1.5,seg.len=1,

y.intersp=0.7)

mtext('82 weeks\n',side=1,at=c(Date[200],1))

mtext('70 weeks\n',side=1,at=c(Date[600],1))

mtext('322 weeks\n',side=1,at=c(Date[1600],1))

mtext('52 weeks\n',side=1,at=c(Date[2522],1))

mtext('108 weeks\n',side=1,at=c(Date[2950],1))

dev.off()



Appendix C

R-script for PCA and GARCH modelling and sce-

nario generation

##################################################################

## Filename: Modeling and Scenario generation.R ##

## Date: 20-01-2012 ##

## Author: Emil Ahlmann Østergaard s082632 ##

## Description: R-script for chapter 7+8 in B.Sc. thesis: ##

## "Scenario gerneration for financial market indices" ##

##################################################################

setwd("C:/Users/Emil/Documents/Skole/Bachelorprojekt")

library('fGarch')

library('tseries')

library('TSA')

library('chron')

library('fields')

library('gplots')

library('SDMTools')

#Reading in data
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data<-read.csv2('Data endelig version.csv',header=T)

data<-data[,1:12]

data$Date<-as.Date(data$Date,"%d-%m-%Y")

data$DK00S.N.Index[1:1161]<-NA

data$DK00S.N.Index<-as.numeric(data$DK00S.N.Index)

attach(data)

#Generating data for NDUEEGF

#end_month is where a month ends.

original.data.NDUEEGF=data$NDUEEGF

set.seed(200)

end_month=c(1,21,41,64,86,107,129,151,173,195,216,238,261,282,303,

326,346,369,391,412,435,456,478,500,521)

b=approx(x=end_month,y=data$NDUEEGF[end_month],n=521)

data$NDUEEGF[1:520]=b$y[1:520]+rnorm(520,mean=0,

sd=sd(diff(data$NDUEEGF[end_month-1]))/(sqrt(22)))

#Log return data

logr_data<-apply(log(data[,2:11]),2,diff)

logr_data<-rbind(c(rep(0,10)),logr_data)

#Weekly (friday) sample

data_week=data[seq(1,length(data[,1]),5),]

#Weekly (friday) log return sample

logr_data_week=apply(log(data_week[,2:11]),2,diff)

logr_data_week=rbind(c(rep(0,10)),logr_data_week)

#Function to get data back in log return

#Arguments: PCA, data in PCA space and number of PC's

restore=function(rotated_data,pca,n){

r=na.omit(rotated_data[,1:n]%*%t(pca$rotation[,1:n]))

r=t(apply(r,1,function(x)x*pca$scale))

r=t(apply(r,1,function(x)x+pca$center))

return(r)}

#Period 1 (up) 1999M1-2000M8

period1=logr_data_week[6:87,]

pca_period1=prcomp(period1,scale=T,center=T)

data_pca=predict(pca_period1)

gp1=list()

n_pc=4

gp1[[1]]=garch(data_pca[,1],order=c(0,1))

gp1[[2]]=garch(data_pca[,2],order=c(0,1))
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gp1[[3]]=garch(data_pca[,3],order=c(0,1))

gp1[[4]]=garch(data_pca[,4],order=c(0,1))

#Scree plot of period 1

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/scree_plot_period1.pdf",width=8,height=5)

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,cex.lab=1.6,

cex.main=1.8,lwd=2)

screeplot(pca_period1,type='l',main = 'Scree plot period 1')

mtext('PC',1,line=1.5,cex=1.6)

dev.off()

#Period 2 (down) 2000M9-2001M12

period2=logr_data_week[88:157,]

pca_period2=prcomp(period2,scale=T,center=T)

data_pca=predict(pca_period2)

gp2=list()

gp2[[1]]=garch(data_pca[,1],order=c(0,1))

gp2[[2]]=garch(data_pca[,2],order=c(0,1))

gp2[[3]]=garch(data_pca[,3],order=c(0,1))

gp2[[4]]=garch(data_pca[,4],order=c(0,1))

#Period 3 (up) 2002M1-2008M2

period3=logr_data_week[158:479,]

pca_period3=prcomp(period3,scale=T,center=T)

data_pca=predict(pca_period3)

gp3=list()

gp3[[1]]=garch(data_pca[,1],order=c(0,1))

gp3[[2]]=garch(data_pca[,2],order=c(0,1))

gp3[[3]]=garch(data_pca[,3],order=c(0,1))

gp3[[4]]=garch(data_pca[,4],order=c(0,1))

#Period 4 (down) 2008M3-2009M2

period4=logr_data_week[480:531,]

pca_period4=prcomp(period4,scale=T,center=T)

data_pca=predict(pca_period4)

gp4=list()

gp4[[1]]=garch(data_pca[,1],order=c(0,3))

gp4[[2]]=garch(data_pca[,2],order=c(0,1))

gp4[[3]]=garch(data_pca[,3],order=c(0,1))

gp4[[4]]=garch(data_pca[,4],order=c(0,1))

#Period 5 (up) 2009M3-2011M3

period5=logr_data_week[532:639,]
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pca_period5=prcomp(period5,scale=T,center=T)

data_pca=predict(pca_period5)

gp5=list()

gp5[[1]]=garch(data_pca[,1],order=c(0,1))

gp5[[2]]=garch(data_pca[,2],order=c(0,1))

gp5[[3]]=garch(data_pca[,3],order=c(0,1))

gp5[[4]]=garch(data_pca[,4],order=c(0,1))

#QQ PCA-scores plot

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/qq_scores_pc1.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('QQ plot of\nPC scores\nin period 1')

for(i in 1:10){

qqplot(c(1:82),pca_period1$x[,i],type='l',xlab='',lwd=2,main='',

ylab='')

mtext(names(data)[i+1],3,line=0.2)

}

dev.off()

#Calculation of communalities

pc=pca_period5 #choose period

A=matrix(data = NA, nrow = 10, ncol = 4)

for (i in 1:10){

for (j in 1:4){

A[i,j]=pc$sd[j]*pc$rotation[i,j]

}}

B=matrix(data = 0, nrow = 10, ncol = 1)

for (i in 1:10){

B[i,]=round(sum(na.omit(A[i,]^2)),digits=2)

}

##################################################################

#Reconstruction of da data using n_pc PC

#OBS! Variables and Constant has similar names in the simulation.

n_sim=1000

data_sim_pca=array(numeric(n_pc*length(data_week[1,])),

c(length(data_week[,1]),n_pc))

data_sim_logr=array(numeric(10*length(data_week[1,])),

c(length(data_week[,1]),10))

data_sim=array(numeric(10*length(data_week[1,])*n_sim),

c(length(data_week[,1]),10,n_sim))

n_pc=4
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set.seed(200)

for (k in 1:n_sim) {

data_pca=predict(pca_period1)

pca=pca_period1

period_length=length(period1[,1])

data_rek_logr1=restore(data_pca,pca=pca,n=n_pc) #restore

data_rek1=exp(apply(data_rek_logr1,2,cumsum))

model=gp1

for (i in 1:n_pc){

data_sim_pca[6:87,i]=t(garch.sim(model[[i]]$coef,

n=period_length))

}

data_sim_logr[6:87,]=restore(data_sim_pca[6:87,],pca=pca,n=n_pc)

data_pca=predict(pca_period2)

pca=pca_period2

period_length=length(period2[,1])

data_rek_logr2=restore(data_pca,pca=pca,n=n_pc) #restore

data_rek2=exp(apply(data_rek_logr2,2,cumsum))

model=gp2

for (i in 1:n_pc){

data_sim_pca[88:157,i]=t(garch.sim(model[[i]]$coef,

n=period_length))

}

data_sim_logr[88:157,]=restore(data_sim_pca[88:157,],

pca=pca,n=n_pc) #restore

data_pca=predict(pca_period3)

pca=pca_period3

period_length=length(period3[,1])

data_rek_logr3=restore(data_pca,pca=pca,n=n_pc) #restore

data_rek3=exp(apply(data_rek_logr3,2,cumsum))

model=gp3

for (i in 1:n_pc){

data_sim_pca[158:479,i]=t(garch.sim(model[[i]]$coef,

n=period_length))

}

data_sim_logr[158:479,]=restore(data_sim_pca[158:479,],

pca=pca,n=n_pc) #restore

data_pca=predict(pca_period4)

pca=pca_period4

period_length=length(period4[,1])

data_rek_logr4=restore(data_pca,pca=pca,n=n_pc) #restore

data_rek4=exp(apply(data_rek_logr4,2,cumsum))

model=gp4

for (i in 1:n_pc){
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data_sim_pca[480:531,i]=

t(garch.sim(model[[i]]$coef,n=period_length))

}

data_sim_logr[480:531,]=restore(data_sim_pca[480:531,],

pca=pca,n=n_pc) #restore

data_pca=predict(pca_period5)

pca=pca_period5

period_length=length(period5[,1])

data_rek_logr5=restore(data_pca,pca=pca,n=n_pc) #restore

data_rek5=exp(apply(data_rek_logr5,2,cumsum))

model=gp5

for (i in 1:n_pc){

data_sim_pca[532:639,i]=t(garch.sim(model[[i]]$coef,

n=period_length))

}

data_sim_logr[532:639,]=restore(data_sim_pca[532:639,],

pca=pca,n=n_pc) #restore

data_sim[,,k]=exp(apply(data_sim_logr,2,cumsum))

}

mean_data_sim=apply(data_sim[,,1:n_sim],c(1,2),mean)

quantile_data_sim=apply(data_sim[,,1:n_sim],c(1,2),quantile,

probs = c(0.05,0.25,0.5,0.75,0.95))

#Plot of PCA reconstruction

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/PCA_reconstruction.pdf",width=8,height=5)

par(mfrow=c(2,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

plot(data_week[6:639,1],data_week[6:639,4],type='l',

main=names(data)[4],xlab='Time [Year]',ylab='Index value',

ylim=c(2000,8500))

lines(data_week[6:87,1],data_rek1[,3]*data_week[5,4],col='red')

lines(data_week[87:157,1],c(1,data_rek2[,3])*data_week[87,4],

col='red')

lines(data_week[157:479,1],c(1,data_rek3[,3])*data_week[157,4],

col='red')

lines(data_week[479:531,1],c(1,data_rek4[,3])*data_week[479,4],

col='red')

lines(data_week[531:639,1],c(1,data_rek5[,3])*data_week[531,4],

col='red')

legend('topleft',legend=c('Original data','Reconstruction'),

col=c('black','red'),bty='n',cex=1.4,

lwd=c(2,2,2))

plot(data_week[6:639,1],data_week[6:639,8],type='l',
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main=names(data)[8],xlab='Time [Year]',ylab='Index value')

lines(data_week[6:87,1],data_rek1[,7]*data_week[5,8],

col='red')

lines(data_week[87:157,1],c(1,data_rek2[,7])*data_week[87,8],

col='red')

lines(data_week[157:479,1],c(1,data_rek3[,7])*data_week[157,8],

col='red')

lines(data_week[479:531,1],c(1,data_rek4[,7])*data_week[479,8],

col='red')

lines(data_week[531:639,1],c(1,data_rek5[,7])*data_week[531,8],

col='red')

legend('topleft',legend=c('Original data','Reconstruction'),

col=c('black','red'),bty='n',cex=1.4,

lwd=c(2,2,2))

dev.off()

#Plot of simulated garch models/backtesting

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_BACKTEST_SIM_nolegend.pdf",width=8,height=10)

par(mfrow=c(5,2),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

for (index.number in 2:11){

plot(data_week[6:639,1],data_week[6:639,index.number],type='l',

main=names(data)[index.number],xlab='Time [Year]',ylab='Index value',

ylim=c(min(data_sim[6:639,index.number-1,1:20]*

data_week[5,index.number]),

max(quantile_data_sim[5,6:639,index.number-1]*

data_week[5,index.number])),xlim=c(Date[21],Date[3200]))

lines(data_week[6:639,1],quantile_data_sim[3,6:639,index.number-1]*

data_week[5,index.number],lwd=2,col='blue') # mean

lines(data_week[6:639,1],quantile_data_sim[2,6:639,index.number-1]*

data_week[5,index.number],lwd=2,lty=2,col='blue') #25% quantile

lines(data_week[6:639,1],quantile_data_sim[4,6:639,index.number-1]*

data_week[5,index.number],lwd=2,lty=2,col='blue') #75% quantile

lines(data_week[6:639,1],quantile_data_sim[1,6:639,index.number-1]*

data_week[5,index.number],lwd=2,lty=3,col='blue') #5% quantile

lines(data_week[6:639,1],quantile_data_sim[5,6:639,index.number-1]*

data_week[5,index.number],lwd=2,lty=3,col='blue') #95% quantile

lines(data_week[6:639,1],data_week[6:639,index.number],lwd=2,

col='black')

lines(c(Date[21],Date[21]),c(0,1.25*max(quantile_data_sim[5,6:639,

index.number-1]*data_week[5,index.number])),lwd=1,col='gray')

lines(c(Date[435],Date[435]),c(0,max(quantile_data_sim[5,6:639,

index.number-1]*data_week[5,index.number])),lwd=1,col='gray')
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lines(c(Date[782],Date[782]),c(0,max(quantile_data_sim[5,6:639,

index.number-1]*data_week[5,index.number])),lwd=1,col='gray')

lines(c(Date[2391],Date[2391]),c(0,max(quantile_data_sim[5,6:639,

index.number-1]*data_week[5,index.number])),lwd=1,col='gray')

lines(c(Date[2651],Date[2651]),c(0,max(quantile_data_sim[5,6:639,

index.number-1]*data_week[5,index.number])),lwd=1,col='gray')

lines(c(Date[3195],Date[3195]),c(0,max(quantile_data_sim[5,6:639,

index.number-1]*data_week[5,index.number])),lwd=1,col='gray')

#legend('top',legend=c('Data','50 % quantile','5 % and 95 %

quantile','25 % and 75 % quantile'),bty='n',col=c('black','blue',

'blue','blue'),lty=c(1,1,3,2),cex=0.8,lwd=c(1,1,1,1))

}

dev.off()

##################################################################

#Simulation

n_sim=1000

set.seed(400)

simulation=array(0,c(700,10,n_sim))

for (j in 1:10) {

simulation[1,j,]=data_week[659,j+1]

}

for (k in 1:n_sim) {

week=1

type=1 #1=down , 2=up

while (week < 261) {

if (type==1) {

too.short.period = 1

#while (too.short.period ==1){

#too.short.period = 0

regime=sample(c(2,4),size =1)

type=2

if (regime==2) {

regime_length=round(rgamma(1,

length(period2[,1])))

model=gp2

pca=pca_period2

} else {

regime_length=round(rgamma(1,
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length(period4[,1])))

model=gp4

pca=pca_period4

}

#if (week==1) { #Adjust length of the

first period

regime_length_test=regime_length-

(length(logr_data_week[,1])-640)

#if (regime_length_test<0){

#too.short.period = 1

#}

#}

#}

} else {

regime=sample(c(1,3,5),size =1)

type=1

if (regime==1) {

regime_length=round(rgamma(1,

length(period1[,1])))

model=gp1

pca=pca_period1

} else if (regime==3){

regime_length=round(rgamma(1,

length(period3[,1])))

model=gp3

pca=pca_period3

} else {

regime_length=round(rgamma(1,

length(period5[,1])))

model=gp5

pca=pca_period5

}

}

data_sim_pca=array(numeric(n_pc*regime_length),

c(regime_length,n_pc))

for (i in 1:n_pc){

data_sim_pca[,i]=t(garch.sim(model[[i]]$coef,

n=regime_length))

}

data_sim_logr=restore(data_sim_pca,pca=pca,n=n_pc) #restore

data_sim_logr=array(data_sim_logr,c(regime_length,10))

data_sim=exp(apply(data_sim_logr,2,cumsum)) #data org. space

for (i in 1:10){

simulation[(week+1):(week+regime_length),i,k]=
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matrix(data_sim[,i],ncol = 1)*simulation[week,i,k]

}

week=week+regime_length

}

}

mean_data_sim=apply(simulation[2:261,,1:n_sim],c(1,2),mean)

quantile_data_sim=apply(simulation[2:261,,1:n_sim],c(1,2),

quantile,probs = c(0.05,0.25,0.5,0.75,0.95))

quantile_data_sim_test=apply(simulation[2:261,,1:350],c(1,2),

quantile,probs = c(0.05,0.25,0.5,0.75,0.95))

##

#Draw down

DD=array(0,c(n_sim,261,10))

MDD=DD

MDD_simulation_number=array(0,c(10,1))

for (k in 1:10){ # 1: number of indices

for (j in 1:n_sim){

peak = 0

for (i in 2:261){

if (simulation[i,k,j] > peak) {

peak = simulation[i,k,j]

} else {

DD[j,i,k] = 100.0 * (peak - simulation[i,k,j])

/ peak #Relative DD in %

# DD[j,i,k] = peak - simulation[i,k,j] #Abs. DD

}

if (DD[j,i,k] > MDD[j,i,k]){

MDD[j,i:261,k] = DD[j,i,k] #set Maximum DD

}

}

}

MDD_simulation_number[k,]=which(max(MDD[,261,k])==MDD[,261,k])

#Scenario with MDD

}

#################

#Plot of Scenario index 1:3

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_scenarios_1_3.pdf",width=8,height=12)

par(mfrow=c(3,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

for (index_number in 1:3){

screen( index_number )



143

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0))

plot(simulation[2:261,index_number,1],type='n',ylim=c(0,1.1*max(

quantile_data_sim[5,,index_number])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

#plot(simulation[2:261,index_number,1],type='n',ylim=c(min(

simulation[2:261,index_number,

MDD_simulation_number[index_number,]]),max(

simulation[2:261,index_number,MDD_simulation_number[index_number,]

])),xlab='Time [Year]',ylab='Index value',main=names(

data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,MDD_simulation_number[

index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2,col='blue') # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50% quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25% quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75% quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) #5% quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95% quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25% and 75% quantile'),col=c('red','gray',

'black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),lwd=

c(2,2,2))

}

dev.off()

#Plot of Scenario index 4:6

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_scenarios_4_6.pdf",width=8,height=12)

par(mfrow=c(3,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

for (index_number in 4:6){

screen( index_number )

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0))

plot(simulation[2:261,index_number,1],type='n',ylim=c(0,1.2*max(

quantile_data_sim[5,,index_number])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

#plot(simulation[2:261,index_number,1],type='n',ylim=c(min(

simulation[2:261,index_number,MDD_simulation_number[index_number,]

]),max(simulation[2:261,index_number,
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MDD_simulation_number[index_number,]])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,MDD_simulation_number[

index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2,col='blue') # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50% quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25% quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75% quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) # 5% quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95% quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25% and 75% quantile'),col=c('red','gray',

'black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

}

dev.off()

#Plot of Scenario index 7:9

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_scenarios_7_9.pdf",width=8,height=12)

par(mfrow=c(3,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

for (index_number in 7:8){

screen( index_number )

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0))

plot(simulation[2:261,index_number,1],type='n',ylim=c(0,1.1*

max(quantile_data_sim[5,,index_number])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

#plot(simulation[2:261,index_number,1],type='n',ylim=c(min(

simulation[2:261,index_number,MDD_simulation_number[index_number,]

]),max(simulation[2:261,index_number,MDD_simulation_number[

index_number,]])),xlab='Time [Year]',ylab='Index value',

main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}
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lines(simulation[2:261,index_number,

MDD_simulation_number[index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2,col='blue') # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50% quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25% quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75% quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) # 5% quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95% quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25% and 75% quantile'),col=c('red','gray',

'black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

}

index_number=9

plot(simulation[2:261,index_number,1],type='n',ylim=c(0.95*

min(simulation[2:261,index_number,]),1.05*max(quantile_data_sim[5,

,index_number])),xlab='Time [Year]',ylab='Index value',

main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,MDD_simulation_number[

index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2,col='blue') # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50% quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25% quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75% quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) # 5% quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95% quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25% and 75% quantile'),col=c('red','gray',

'black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

dev.off()

#Plot of Scenario index 10

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_scenarios_10.pdf",width=8,height=12)

par(mfrow=c(3,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

index_number=10

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0))
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plot(simulation[2:261,index_number,1],type='n',ylim=c(0.95*min(

simulation[2:261,index_number,]),1.05*max(quantile_data_sim[

5,,index_number])),xlab='Time [Year]',ylab='Index value',

main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,MDD_simulation_number[

index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2,col='blue') # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50% quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25% quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75% quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) # 5% quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95% quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25% and 75% quantile'),col=c('red','gray',

'black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

dev.off()

############################

#Plot of normalized mean scenario

MY.colors=c("black","red","green3","blue","cyan","magenta",

"yellow","gray","indianred2","brown","darkgreen")

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/Normalized_50_quantile_scenarios.pdf",width=11,height=7)

par(mar=c(4.3,4.3,2,1.5),mgp=c(3,1,0),cex.axis=1.6, cex.main=1.8)

plot(quantile_data_sim[3,,1]/quantile_data_sim[3,1,1],type='l',

ylab='Normalized index value',main='Normalized 50% quantile

scenarios',col=MY.colors[1],ylim=c(0.6,1.7),lwd=2,xaxt='n',

xlab='Time [Year]',cex.lab=1.6)

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for(index_number in 1:10){

lines(quantile_data_sim[3,,index_number]/quantile_data_sim[3,1,

index_number],lwd=2,col=MY.colors[index_number])

}

legend('topleft',legend=c(names(data[2:11])),title='Index',

lty=1,lwd=c(3,3),col=MY.colors,cex=1.5,seg.len=1,y.intersp=0.7)

dev.off()



147

#Plot of normalized Maximum drawdown scenario

MY.colors=c("black","red","green3","blue","cyan","magenta",

"yellow","gray","indianred2","brown","darkgreen")

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/Normalized_MDD_scenarios.pdf",width=11,height=7)

par(mar=c(4.3,4.3,2,1.5),mgp=c(3,1,0),cex.axis=1.6, cex.main=1.8,

cex.lab=1.6)

plot(simulation[2:261,1,MDD_simulation_number[1,]]/simulation[2,1,

MDD_simulation_number[1,]],ylab='Normalized index value',

xlab='Time [Year]',type='l',main='Normalized MDD scenarios',

col=MY.colors[1],ylim=c(0,2.2),lwd=2,xaxt='n')

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for(index_number in 1:10){

lines(simulation[2:261,index_number,MDD_simulation_number[

index_number,]]/simulation[2,index_number,MDD_simulation_number[

index_number,]],lwd=2,col=MY.colors[index_number])

}

legend('topright',legend=c(names(data[2:11])),title='Index',

lty=1,lwd=c(3,3),col=MY.colors,cex=1.5,seg.len=1,y.intersp=0.7)

dev.off()

#End values

end_values=array(0,c(n_sim,10))

for (index_number in 1:10){

end_values[,index_number]=simulation[261,index_number,]

}

#Histogram of endvalues

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/HIST_end_values.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,2,0.6),mgp=c(2,0.8,0),cex.axis=1.6,

cex.main=1.8,cex.axis=1.2, cex.lab =1.6,lwd=2)

textplot('Histogram of\nsimulation\nendvalues',valign='top')

for (index_number in 1:10){

options(scipen=5)

Mean=mean(end_values[,index_number])

B=quantile(end_values[,index_number], probs = c(0.05,0.95,0.50))

C=max(end_values[,index_number])-min(end_values[,index_number])

hist(end_values[,index_number],breaks=C*30/(B[2]-B[1]),prob=TRUE,

xlim=c(B[1],B[2]),main='',xlab='Endvalue',yaxt='n')

options(scipen=-2)

yticks = round(range(hist(end_values[,index_number],breaks=C*30/

(B[2]-B[1]),plot=F)$density),digits=5)

axis(2, at=yticks, labels=c(yticks))
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A=density(end_values[,index_number],n=10000)

lines(A,lwd=2,col='blue')

lines(c(B[3],B[3]),c(1/7*max(A$y),0),col='red',lwd=5)

lines(c(B[2],B[2]),c(1/7*max(A$y),0),col='green',lwd=5)

lines(c(B[1],B[1]),c(1/7*max(A$y),0),col='green',lwd=5)

mtext(names(data)[index_number+1],3,line=0.2)

}

par(mar=c(0,0,0,0))

textplot('')

legend('top',legend=c('Density','5% & 95% quantile',

'50% quantile'),col=c('blue','green','red'),bty='n',pt.cex=1.5,

lwd=c(2,2,2),cex=1.6)

dev.off()

options(scipen=5)

#Relative changes in 5 year simulation

relative_changes=array(0,c(n_sim,10))

for (index_number in 1:10){

relative_changes[,index_number]=(simulation[261,index_number,]-

data_week[659,index_number+1])/data_week[659,index_number+1]

}

#SD on endvalues

sd(relative_changes)

#Histogram relative changes in scenarios

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/HIST_relative_end_values.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('Histogram of rela-\ntive changes in\n5 year simulations'

,valign='top')

for (index_number in 1:10){

Mean=mean(relative_changes[,index_number])

B=quantile(relative_changes[,index_number], probs = c(0.05,0.95,

0.50))

C=max(relative_changes[,index_number])-min(relative_changes[,

index_number])

hist(relative_changes[,index_number],breaks=C*30/(B[2]-B[1]),

xlim=c(B[1],B[2]),prob=TRUE,main='',xlab='')

A=density(relative_changes[,index_number],n=10000)

lines(A,lwd=2,col='blue')

lines(c(B[3],B[3]),c(1/7*max(A$y),0),col='red',lwd=5)
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lines(c(B[1],B[1]),c(1/7*max(A$y),0),col='green',lwd=5)

lines(c(B[2],B[2]),c(1/7*max(A$y),0),col='green',lwd=5)

mtext(names(data)[index_number+1],3,line=0.2)

}

par(mar=c(0,0,0,0))

textplot('')

legend('top',legend=c('Density','5% & 95% quantile','50% quantile'

),col=c('blue','green','red'),bty='n',pt.cex=1.5,

lwd=c(2,2,2),cex=1.6)

dev.off()

#Drawdown at time t

MaxDD=array(0,c(261,10))

quantile_DD_sim=array(0,c(5,261,10))

for (index_number in 1:10){

for (i in 1:261){

MaxDD[i,index_number]=max(DD[,1:i,index_number])

quantile_DD_sim[,i,index_number]=quantile(MDD[,i,index_number],

probs = c(0.05,0.25,0.5,0.75,0.95))

}

}

# MaxDD and drawdown(1:t)-plot

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/MaxDD_plot.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('Drawdown from\nsimulation-start \nuntil time t')

for(index_number in 1:10){

plot(MaxDD[,index_number],type='l',lwd=2,main='',ylab='DD(t) [%]',

xlab='Time, t [Year]',col='red',xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

lines(quantile_DD_sim[3,,index_number],lwd=2,lty=1) #50% quantile

lines(quantile_DD_sim[2,,index_number],lwd=2,lty=2) #25% quantile

lines(quantile_DD_sim[4,,index_number],lwd=2,lty=2) #75% quantile

lines(quantile_DD_sim[1,,index_number],lwd=2,lty=3) #5% quantile

lines(quantile_DD_sim[5,,index_number],lwd=2,lty=3) #95% quantile

mtext(names(data)[index_number+1],3,line=0.2)

}

par(mar=c(0,0,0,0))

textplot('')

legend('top',legend=c('MDD(1:t)','50% quantile', '5% & 95%

quantile','25 % & 75 % quantile'),col=c('red','black','black',
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'black'),bty='n',pt.cex=1.5,lwd=c(2,2,2,2),lty=c(1,1,3,2),cex=1.6)

dev.off()

##################################################################

# #

# TESTING SCENARIOS #

# #

##################################################################

relative_return=array(0,c(3,10))

length_of_data=(data[3291,1]-data[1,1])/365.242199 # in years

#Relative return data

for (index_number in 1:10){

relative_return[1,index_number]=(1+(data[3291,index_number+1]-

data[1,index_number+1])/data[1,index_number+1])^(1/as.numeric(

length_of_data))-1

relative_return[2,index_number]=(1+(quantile_data_sim[3,260,

index_number]-quantile_data_sim[3,1,index_number])/

quantile_data_sim[3,1,index_number])^(1/5)-1

relative_return[3,index_number]=(1+(quantile_data_sim[3,260,

index_number]-data_week[659,index_number+1])/data_week[659,

index_number+1])^(1/5)-1

}

plot(data[,6])



Appendix D

R-script for scenario generation using bootstrap-

ping

##################################################################

## Filename: Scenario_generation_bootstrapping.R ##

## Date: 20-01-2012 ##

## Author: Emil Ahlmann Østergaard s082632 ##

## Description: R-script for chapter 8 in B.Sc. thesis: ##

## "Scenario gerneration for financial market indices" ## ##

##################################################################

setwd("C:/Users/Emil/Documents/Skole/Bachelorprojekt")

library('fGarch')

library('tseries')

library('TSA')

library('chron')

library('fields')

library('gplots')

library('SDMTools')

#Reading in data
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data<-read.csv2('Data endelig version.csv',header=T)

data<-data[,1:12]

data$Date<-as.Date(data$Date,"%d-%m-%Y")

data$DK00S.N.Index[1:1161]<-NA

data$DK00S.N.Index<-as.numeric(data$DK00S.N.Index)

attach(data)

#Generating data for NDUEEGF

#end_month is where a month ends.

original.data.NDUEEGF=data$NDUEEGF

set.seed(200)

end_month=c(1,21,41,64,86,107,129,151,173,195,216,238,261,282,303,

326,346,369,391,412,435,456,478,500,521)

b=approx(x=end_month,y=data$NDUEEGF[end_month],n=521)

data$NDUEEGF[1:520]=b$y[1:520]+rnorm(520,mean=0,

sd=sd(diff(data$NDUEEGF[end_month-1]))/(sqrt(22)))

#Log return data

logr_data<-apply(log(data[,2:11]),2,diff)

logr_data<-rbind(c(rep(0,10)),logr_data)

#Weekly (friday) sample

data_week=data[seq(1,length(data[,1]),5),]

#Weekly (friday) log return sample

logr_data_week=apply(log(data_week[,2:11]),2,diff)

logr_data_week=rbind(c(rep(0,10)),logr_data_week)

logr_data_week_use=array(logr_data_week[6:659,],c(length(6:659),

10))

#################

# Bootstrapping #

#################

SD_week=5 #SD on weekjump

min_max=(sqrt(SD_week^2*12+1)-1)/2 #min/max in centered uniform

#dist. with SD=SD_week

n_sim=1000

set.seed(400)

simulation=array(0,c(261,10,n_sim))

data_sim=array(0,c(261,10,n_sim))

data_sim_logr=array(0,c(261,10,n_sim))

tarray=array(0,c(261,10,n_sim))

data_sim_logr[1,,1:n_sim]=logr_data_week_use[654,]
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for (j in 1:n_sim){

for (i in 2:261){

t=1000

while (t>654 || t<1){

t=round(runif(1,min=-min_max+which(data_sim_logr[i-1,

1,j]==logr_data_week_use[,1]),max= min_max+which(

data_sim_logr[i-1,1,j]==logr_data_week_use[,1])))

}

tarray[i,,j]=t

data_sim_logr[i,,j]=logr_data_week_use[t,]

}

}

data_sim[,,]=exp(apply(data_sim_logr[,,],c(2,3),cumsum))#sim. data

for (index_number in 1:10){

simulation[,index_number,]=data_week[659,index_number+1]*

data_sim[,index_number,]

}

mean_data_sim=apply(simulation[2:261,,1:n_sim],c(1,2),mean)

quantile_data_sim=apply(simulation[2:261,,1:n_sim],c(1,2),quantile,

probs = c(0.05,0.25,0.5,0.75,0.95))

#Draw down

DD=array(0,c(n_sim,261,10))

MDD=DD

MDD_simulation_number=array(0,c(10,1))

for (k in 1:10){ # 1: number of indices

for (j in 1:n_sim){

peak = 0

for (i in 2:261){

if (simulation[i,k,j] > peak) {

peak = simulation[i,k,j]

} else {

DD[j,i,k] = 100.0 * (peak - simulation[i,k,j]) /

peak #Relative DD in %

# DD[j,i,k] = peak - simulation[i,k,j]#Absolute DD

}

if (DD[j,i,k] > MDD[j,i,k]){

MDD[j,i:261,k] = DD[j,i,k] #set Maximum DD

}

}

}

MDD_simulation_number[k,]=which(max(MDD[,261,k])==MDD[,261,k])
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#Scenario with MDD

}

#Plot af Scenarier index 1:3

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_scenarios_1_3_BOOTSTRAP.pdf",width=8,height=12)

par(mfrow=c(3,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

for (index_number in 1:3){

screen( index_number )

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0))

plot(simulation[2:261,index_number,1],type='n',ylim=c(0,1.1*

max(quantile_data_sim[5,,index_number])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

#plot(simulation[2:261,index_number,1],type='n',

ylim=c(min(simulation[2:261,index_number,

MDD_simulation_number[index_number,]]),

max(simulation[2:261,index_number,

MDD_simulation_number[index_number,]])),

xlab='Time [Year]',ylab='Index value',

main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 1:20){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,

MDD_simulation_number[index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2) # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50%quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25%quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75%quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) #5%quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95%quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25 % and 75 % quantile'),col=c('red',

'gray','black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

}

dev.off()

#Plot af Scenarier index 4:6

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_scenarios_4_6_Bootstrap.pdf",width=8,height=12)
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par(mfrow=c(3,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

for (index_number in 4:6){

screen( index_number )

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0))

plot(simulation[2:261,index_number,1],type='n',ylim=c(0,

1.2*max(quantile_data_sim[5,,index_number])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

#plot(simulation[2:261,index_number,1],type='n',

ylim=c(min(simulation[2:261,index_number,

MDD_simulation_number[index_number,]]),

max(simulation[2:261,index_number,

MDD_simulation_number[index_number,]])),

xlab='Time [Year]',ylab='Index value',

main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,

MDD_simulation_number[index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2) # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50%quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25%quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75%quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) #5%quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95%quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25 % and 75 % quantile'),col=c('red',

'gray','black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

}

dev.off()

#Plot af Scenarier index 7:9

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_scenarios_7_9_Bootstrap.pdf",width=8,height=12)

par(mfrow=c(3,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),

cex.axis=1.6,cex.lab=1.6,cex.main=1.8,lwd=2)

for (index_number in 7:8){

screen( index_number )

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0))

plot(simulation[2:261,index_number,1],type='n',ylim=c(0,
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1.1*max(quantile_data_sim[5,,index_number])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

#plot(simulation[2:261,index_number,1],type='n',

ylim=c(min(simulation[2:261,index_number,

MDD_simulation_number[index_number,]]),

max(simulation[2:261,index_number,

MDD_simulation_number[index_number,]])),

xlab='Time [Year]',ylab='Index value',

main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,

MDD_simulation_number[index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2) # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50% quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25%quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75%quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) #5%quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95%quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25 % and 75 % quantile'),col=c('red',

'gray','black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

}

index_number=9

plot(simulation[2:261,index_number,1],type='n',

ylim=c(0.95*min(simulation[2:261,index_number,]),

1.05*max(quantile_data_sim[5,,index_number])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,

MDD_simulation_number[index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2) # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50%quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25%quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75%quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) #5%quantile
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lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95%quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25 % and 75 % quantile'),col=c('red',

'gray','black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

dev.off()

#Plot af Scenarier index 10

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/GARCH_scenarios_10_Bootstrap.pdf",width=8,height=12)

par(mfrow=c(3,1),mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0),cex.axis=1.6,

cex.lab=1.6,cex.main=1.8,lwd=2)

index_number=10

par(mar=c(3.1,3.1,2,0.5),mgp=c(2,0.8,0))

plot(simulation[2:261,index_number,1],type='n',

ylim=c(0.95*min(simulation[2:261,index_number,]),

1.05*max(quantile_data_sim[5,,index_number])),xlab='Time [Year]',

ylab='Index value',main=names(data[index_number+1]),xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for (j in 51:70){

lines(simulation[2:261,index_number,j],col='gray',lwd=1)

}

lines(simulation[2:261,index_number,

MDD_simulation_number[index_number,]],col='red',lwd=1)

#lines(mean_data_sim[,index_number],lwd=2) # mean

lines(quantile_data_sim[3,,index_number],lwd=2) #50%quantile

lines(quantile_data_sim[2,,index_number],lwd=2,lty=2) #25%quantile

lines(quantile_data_sim[4,,index_number],lwd=2,lty=2) #75%quantile

lines(quantile_data_sim[1,,index_number],lwd=2,lty=3) #5%quantile

lines(quantile_data_sim[5,,index_number],lwd=2,lty=3) #95%quantile

legend('topleft',legend=c('MDD','20 scenarios','50% quantile',

'5% and 95% quantile','25 % and 75 % quantile'),col=c('red',

'gray','black','black','black'),bty='n',cex=1.4,lty=c(1,1,1,3,2),

lwd=c(2,2,2))

dev.off()

#Plot of normalized 50% quantile scenario

MY.colors=c("black","red","green3","blue","cyan","magenta",

"yellow","gray","indianred2","brown","darkgreen")

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/Normalized_50_quantile_scenarios_Bootstrap.pdf",width=11,

height=7)

par(mar=c(4.3,4.3,2,1.5),mgp=c(3,1,0),cex.axis=1.6, cex.main=1.8)



158

plot(quantile_data_sim[3,,1]/quantile_data_sim[3,1,1],type='l',

ylab='Normalized index value',

main='Normalized 50% quantile scenarios',col=MY.colors[1],

ylim=c(0.7,1.7),lwd=2,xaxt='n',xlab='Time [Year]',cex.lab=1.6)

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for(index_number in 1:10){

lines(quantile_data_sim[3,,index_number]/quantile_data_sim[3,1,

index_number],lwd=2,col=MY.colors[index_number])

}

legend('topleft',legend=c(names(data[2:11])),title='Index',lty=1,

lwd=c(3,3),col=MY.colors,cex=1.5,seg.len=1,y.intersp=0.7)

dev.off()

#Plot of normalized Maximum drawdown scenario

MY.colors=c("black","red","green3","blue","cyan","magenta",

"yellow","gray","indianred2","brown","darkgreen")

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/Normalized_MDD_scenarios_Bootstrap.pdf",width=11,height=7)

par(mar=c(4.3,4.3,2,1.5),mgp=c(3,1,0),cex.axis=1.6, cex.main=1.8,

cex.lab=1.6)

plot(simulation[2:261,1,MDD_simulation_number[1,]]/simulation[2,1,

MDD_simulation_number[1,]],ylab='Normalized index value',

xlab='Time [Year]',type='l',main='Normalized MDD scenarios',

col=MY.colors[1],ylim=c(0,3.1),lwd=2,xaxt='n')

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

for(index_number in 1:10){

lines(simulation[2:261,index_number,

MDD_simulation_number[index_number,]]/simulation[2,index_number,

MDD_simulation_number[index_number,]],

lwd=2,col=MY.colors[index_number])

}

legend('topleft',legend=c(names(data[2:11])),title='Index',

lty=1,lwd=c(3,3),col=MY.colors,cex=1.5,seg.len=1,y.intersp=0.7)

dev.off()

#End values

end_values=array(0,c(n_sim,10))

for (index_number in 1:10){

end_values[,index_number]=simulation[261,index_number,]

}

#Histogram of endvalues

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/
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figures/HIST_end_values_Bootstrap.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,2,0.6),mgp=c(2,0.8,0),cex.axis=1.6,

cex.main=1.8,cex.axis=1.2, cex.lab =1.6,lwd=2)

textplot('Histogram of\nsimulation\nendvalues',valign='top')

for (index_number in 1:10){

options(scipen=5)

#Mean=mean(end_values[,index_number])

B=quantile(end_values[,index_number], probs = c(0.05,0.95,0.50))

C=max(end_values[,index_number])-min(end_values[,index_number])

hist(end_values[,index_number],breaks=C*30/(B[2]-B[1]),prob=TRUE,

xlim=c(B[1],B[2]),main='',xlab='Endvalue',yaxt='n',

ylim=c(0,1.1*range(hist(end_values[,index_number],

breaks=C*30/(B[2]-B[1]),plot=F)$density)[2]))

options(scipen=-2)

yticks = round(range(hist(end_values[,index_number],

breaks=C*30/(B[2]-B[1]),plot=F)$density),digits=5)

axis(2, at=yticks, labels=c(yticks))

A=density(end_values[,index_number],n=10000)

lines(A,lwd=2,col='blue')

lines(c(B[3],B[3]),c(1/7*max(A$y),0),col='red',lwd=5)

lines(c(B[1],B[1]),c(1/7*max(A$y),0),col='green',lwd=5)

lines(c(B[2],B[2]),c(1/7*max(A$y),0),col='green',lwd=5)

mtext(names(data)[index_number+1],3,line=0.2)

}

par(mar=c(0,0,0,0))

textplot('')

legend('top',legend=c('Density','5% & 95% quantile',

'50% quantile'),col=c('blue','green','red'),bty='n',pt.cex=1.5,

lwd=c(2,2,2),cex=1.6)

dev.off()

options(scipen=5)

#Relative changes in 5 year simulation

relative_changes=array(0,c(n_sim,10))

for (index_number in 1:10){

relative_changes[,index_number]=(simulation[261,index_number,]-

data_week[659,index_number+1])/data_week[659,index_number+1]

}

#SD on endvalues

sd(relative_changes)
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#Histogram relative changes in scenarios

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/HIST_relative_end_values_Bootstrap.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),

cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('Histogram of rela-\ntive changes in\n5 year simulations',

valign='top')

for (index_number in 1:10){

#Mean=mean(relative_changes[,index_number])

A[index_number]=quantile(relative_changes[,index_number],

probs = c(0.50))

C=max(relative_changes[,index_number])-

min(relative_changes[,index_number])

hist(relative_changes[,index_number],breaks=C*30/(B[2]-B[1]),

xlim=c(B[1],B[2]),prob=TRUE,main='',xlab='')

A=density(relative_changes[,index_number],n=10000)

lines(A,lwd=2,col='blue')

lines(c(B[3],B[3]),c(1/7*max(A$y),0),col='red',lwd=5)

lines(c(B[1],B[1]),c(1/7*max(A$y),0),col='green',lwd=5)

lines(c(B[2],B[2]),c(1/7*max(A$y),0),col='green',lwd=5)

mtext(names(data)[index_number+1],3,line=0.2)

}

par(mar=c(0,0,0,0))

textplot('')

legend('top',legend=c('Density','5% & 95% quantile',

'50% quantile'),col=c('blue','green','red'),bty='n',pt.cex=1.5,

lwd=c(2,2,2),cex=1.6)

dev.off()

##Drawdown at time t

MaxDD=array(0,c(261,10))

quantile_DD_sim=array(0,c(5,261,10))

for (index_number in 1:10){

for (i in 1:261){

MaxDD[i,index_number]=max(DD[,1:i,index_number])

quantile_DD_sim[,i,index_number]=quantile(MDD[,i,index_number],

probs = c(0.05,0.25,0.5,0.75,0.95))

}

}

# MaxDD and drawdown(1:t)-plot

pdf(file="C:/Users/Emil/Documents/Skole/Bachelorprojekt/Project/

figures/MaxDD_plot_Bootstrap.pdf",width=8,height=6)

par(mfrow=c(4,3),mar=c(3.3,3.5,1.5,0.5),mgp=c(2,0.8,0),
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cex.axis=1.6, cex.main=1.8, cex.lab =1.6,lwd=2)

textplot('Drawdown from\nsimulation-start \nuntil time t')

for(index_number in 1:10){

plot(MaxDD[,index_number],type='l',lwd=2,main='',

ylab='DD(t) [%]',xlab='Time, t [Year]',col='red',xaxt='n')

axis(1,(21+c(0:4)*52),labels=rep('',5))

axis(1,(21+c(0:4)*52),labels=c('2012','2013','2014','2015','2016'))

lines(quantile_DD_sim[3,,index_number],lwd=2,lty=1) #50%quantile

lines(quantile_DD_sim[2,,index_number],lwd=2,lty=2) #25%quantile

lines(quantile_DD_sim[4,,index_number],lwd=2,lty=2) #75%quantile

lines(quantile_DD_sim[1,,index_number],lwd=2,lty=3) #5%quantile

lines(quantile_DD_sim[5,,index_number],lwd=2,lty=3) #95%quantile

mtext(names(data)[index_number+1],3,line=0.2)

}

par(mar=c(0,0,0,0))

textplot('')

legend('top',legend=c('MDD(1:t)','50% quantile',

'5 % & 95 % quantile','25 % & 75 % quantile'),

col=c('red','black','black','black'),bty='n',pt.cex=1.5,lwd=c(2,2,2,2),

lty=c(1,1,3,2),cex=1.6)

dev.off()
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