
Bachelor Thesis

A Traffic Guidance System

By:

Nikolaj Birch – s072777

and

Christian Thomsen – s072836

IMM-B.Eng-2010-80

December 20th 2011

 2

Abstract
Traffic guidance is a major problem in the modern society. Traffic should be
guided through city centers and other areas without queues forming on the
roads.

In this project a traffic guidance system is developed that gathers traffic data
from the Android-based smartphones of car drivers, and use this to direct them
away from heavily congested roads. It achieves this, by combining a more
conventional GPS-based navigation app with positional feedback from the
smartphone.

The system consists of a internet based server, which handles the pathfinding
and traffic control, using the A* algorithm and map data from OpenStreetMap,
and an android app that guides the user and provide the feedback to the server.
Also, a dummy client simulator is developed as well as a visualization tool, that
simplifies testing and demonstrates the system functionality.

We succeeded in developing a system that can guide car drivers along the
fastest routes and re-route if necessary when traffic jams are forming.

 3

Preface
This thesis was made at the Department of Informatics and Mathematical
Modeling at the Technical University of Denmark. It is the joint project of
Nikolaj Birch and Christian Thomsen, supervised by Christian W. Probst.

Because this was a joint project, and the fact that we have designed, written and
tested the code as a team, it is not labeled with author throughout. The main
author of each section of the report is stated at the beginning of that section.

Basic knowledge of software development is required by the reader.

Signature:

Nikolaj Birch (s072777) Christian Thomsen (s072836)

 4

Table of Contents
1 Introduction..6

1.1 Problem specification..6
1.2 Structure of this report..7

2 Requirements Specification ..8
2.1 Purpose..8

2.1.1 Server..9
2.1.2 Visualization:..9
2.1.3 Dummy client: ...10
2.1.4 Smartphone Application...10

2.2 Functional requirements..11
2.2.1 Use cases:..11

2.3 Non-functional requirements..13
3 Project management...13
4 Traffic Control..14
5 OpenStreetMap..16

5.1.1 Map areas used during the project..16
5.1.2 Challenges...17

6 System Design..18
6.1 System Overview..18
6.2 Client server communication..22
6.3 Components of our system..24

6.3.1 Server-side..24
6.3.2 Client-side...39

7 Testing..48
7.1 System test..48

7.1.1 Black-box test...48
7.2 GPS test...50

7.2.1 Performance test...51
7.2.2 Stress test..53

7.3 Use-case test..53
7.4 Path-finding compared to krak.dk...54
7.5 Platform tests...54

8 Discussion..55
8.1 Navigation versus our system...55
8.2 Deficiencies...56

8.2.1 Data...57
8.2.2 Navigation...57

8.3 Future possibilities..58
8.3.1 Improved positioning..58
8.3.2 Reduction of carbon emissions...59
8.3.3 CO2 based navigation...59

 5
8.3.4 Integration of public transportation..62
8.3.5 Driverless cars..63
8.3.6 TMC integration...63

9 Conclusion...64
10 Appendix..66

10.1 Appendix-1: User's manual...66
10.1.1 Server..66
10.1.2 Dummy client...67
10.1.3 Android Application:..69

10.2 Appendix-2: Timetable..70
10.3 Appendix-3: Changes in JmapViewer...71
10.4 Appendix-4: Test results..73

10.4.1 Black-box tests..73
10.4.2 Use-case test results..80
10.4.3 Pathfinding comparison test results..93
10.4.4 GPS-fix test results...96

1 Introduction 6

1 Introduction
(Nikolaj and Christian)

Few things are more irritating than being stuck in traffic jams. Each year more
and more cars drive the roads, and heavy congested roads are the curse of the
infrastructure. Traffic jams and queues are unpredictable and difficult to avoid
for the car drivers. In this project, we will demonstrate that queues can be
avoided to a large degree, using the smartphones that are becoming ever more
common these days.

A GPS receiver is a stable part of most smartphones and so is internet access.
By tracking the driver's smartphone, information can be gathered about the
current speed on the roads, and thus of the degree of congestion. The
smartphone can then be used to guide other drivers around the queues, thus
minimizing impact of congestion to those. This system requires no extra
hardware in the car and only an internet based server to function – no roadside
counters, cameras, tracking hardware or anything; just the app, running on the
drivers smartphone.

In this project we have developed a prototype of this system, and demonstrated
its capabilities and shortcomings. The system is a horizontal-type prototype,
covering the entire functionality of the system to an largely equal degree.

We have used the openly available map data from the OpenStreetMap project,
which is an open-source, community based effort to map the entire globe and
make it available to the public.

1.1 Problem specification
(Nikolaj and Christian)

This project will involve the development of a system for traffic control, which
gathers traffic data for car drivers. The system should guide the drivers fastest
from point-A to point-B by avoiding queues. The fastest route should be
calculated using the A* algorithm. Apart from this calculation, the information
from the server about queues must also be considered. If a heavy queue is
reported from one of the other units in the system, the routes that leads through
this queue should possibly be updated to an alternate route.

The following components are expected to be part of the system:

• A program for clients that can communicate with the server to get the
route from A to B, show the route and the current position, and then
send information about this route to a server. After this, it should be
capable of receiving corrections from the server about possibly

1.1 Problem specification 7
selecting an alternative route. A dedicated application for a smartphone
will be developed, as well as a “dummy” unit that can simulate a client.

• The server consists of a detailed map and receives information from
clients about client's positions and speeds. Based upon this
information, queues are identified and possibly routes are updated.
Furthermore, it must be able to receive information from clients,
reporting about increased travel times on roads.

• A program to visualize the calculations from the server and the units,
so data can be represented visually, it therefore must show where the
units are on the map, and the roads that has queues on them. The
purpose of the visualization is mainly to test the system's functionality.

1.2 Structure of this report
(Christian)

This report contains a number of sections that together explain our system, and
the process of making it. In parallel to how we actually did the project work,
we start by specifying and narrowing the requirements for the system and how
we decided to work on the project. We will then describe and discuss the
central concepts of traffic control and OpenStreetMap, and how we have used
these during the development. We will also thoroughly describe the system,
how it is constructed and why it is made in the way it is. A section about the
testing and benchmarking we have done follows, as does a section that contains
discussions about the finished system, as well as future capabilities and
developments.

The appendix contains a full user's manual as well as test results and other
information, not kept inside the main text.

The description of the system is split into the individual components. We have
chosen to write about the entire process from designing each component to the
finished implementation in one go. This also largely reflect our working order.
We did not design and plan everything first before beginning the
implementation, but made the process in a number of steps, each time
deepening each component and adding to its completion.

We have made a lot of diagrams for this report. These are not the classic uml-
type of diagrams, often used in software engineering, because these tends to be
way more detailed and specialized than we need. The diagrams are made with
much of the symbolism, but not the stricter conventions of the uml, to provide
an overview instead of a full model.

Not all part of the code is described to an equal degree in this report. We have

1.2 Structure of this report 8
prioritized the parts that we find most important, and left out most of the trivial
parts, like listing all variables and getters and setters.

2 Requirements Specification
(Nikolaj)

2.1 Purpose
Based on the project specification, we will specify the project and make a
solution strategy.

The project specification defines a traffic guidance system, which can be
implemented in smartphones. The project specification is specified and in this
section, we will analyze the specification, determine the technical aspects and
both functional and non-functional requirements. This will help us in the
Project planning, because it clear out the parts of the project with highest risk
of failing. This allows us to set extra time to these tasks, minimizing the risk.

Based on the problem specification we chose to divide the system into 4 parts:

• Server

• Visualization

• Dummy client

• Smartphone Application

The subdivision of the system gives a simple overview of the system and
what’s needed to be done. This insures a more simple approach to the
requirements specification.

The diagram in Figure 2.1 shows how the four components of our system
should interact; with the server as a central unit, keeping track of all
information from clients. The clients should communicate with the server
trough Internet and the visualization should be implemented directly to the

Figure 2.1: Simple overview of the system

2.1 Purpose 9
server.

2.1.1 Server
The server should be the central part of the system; the server handles the path-
finding based on the client’s information. The server receives a start and end
position from clients and should calculate the fastest route, based on the
information. The calculation should be based on data from other clients on the
road. If a client reports congestion on a way, the server should be able to
determine the new transport time on the way. Furthermore it should be able to
calculate new routes to clients which already has a route but is affected by the
new congestion. The process of providing a client with a different route than
the current one should happen without user interaction. This insures the user
cannot overrule the system if he estimates the current route to be faster than the
new route from server. The server will be designed and implemented as a
prototype. Therefore we had to narrow the project down. Some aspects which
are not implemented, are scalability to multiple computers and security. Our
main focus is to develop a fully working server allowing users to obtain a route
and receive new routes based on other user data. Although the scalability on a
single computer, is in focus. Therefore we will analyze and implement
algorithms and data-structures allowing as many users to use the system at the
same time.

The map data the server is supposed to calculate routes from is the
OpenStreetMap1(OSM). This implementation of data from OSM should be
parsed into the server from a XML file to objects in runtime.

The technology used for the server will be Java. Java is preferred because of
the multiplatform support. Java has some good and common libraries which
makes the implementation easier. Another pro for Java is that the creators of
this software has been using Java for many years now and knows it well.

2.1.2 Visualization:
The visualization is used to generate an overview of the data, that the server
transmits and receives. This data is mainly represented by the position of
clients, and map data. The visualization of this will help us understand what
happens with the clients. An example could be how the client’s route looks like.
The visualization will be implemented as a component of the server. It is
supposed to run on the same computer and the same instance of the server
implementation. The server and visualization is supposed to share GUI. This
means that the information about clients connected from the server and the
information about routes, junctions etc. from the visualization can be gathered

1 http://www.openstreetmap.org/

2.1 Purpose 10
in one window.

The data the visualization shows is the map data from OSM with all details,
ways, addresses and so on. Based on this data we will draw our routes, clients
and junctions on the map. The data for drawing is information our server has,
therefore we need an implementation which draws the changes in the data from
server. This will end up with an event based visualization where the server
informs the visualization when data are changed and tell what needs to be
updated.

2.1.3 Dummy client:
The dummy client is supposed to work as our test client. The dummy’s purpose
is to simulate clients, this does not include a Navigation part like on the
smartphone. The dummy client should connect on the same way as the actual
smartphone application, this allows us to test the server the best way when the
test clients works as the smartphone application. For the testing to be proper we
need more that one client running – actually several hundred will be preferable
for testing our server. Therefore it should be possible to connect many clients
from same computer, preferable a kind of automation, which allows easy
control of clients. Controlling the start point and destination are necessary for
the dummy client, therefore we should be able to manually set in coordinates
for start location and address for destination.

The dummy client need some kind of simulation, simulating the cars to run
along the route. Therefore a simulation, which allows us to manipulate with the
speed of clients. This way we can make new congestions and in this way
simulate congestions.

The dummy client will like the server be developed in Java, but different from
the Visualization, which will be implemented in the server. The dummy will
have its own main class.

2.1.4 Smartphone Application
The smartphone application will be developed in Android, on a HTC Desire
phone. The reason for the choice of android platform is that it can be
programmed in Java, which our dummy client also being programmed in. This
allows us to reuse some of the code. Furthermore the Android platform seemed
easier to work with, partly because of Eclipse IDE, which we are familiar with.

The Android application will contain a way to type-in the destination address,
and receive a route from the server. Then it shall display the route for the user
and if the user confirms, start the navigation. The communication between
server and client should be designed so that the communication happens in the
background. This also allows the system to send new routes to client without

2.1 Purpose 11
human interaction.

The navigation is supposed to guide the user from start position to destination.
This will be implemented using arrows that will shows in which direction the
user should drive. Furthermore the navigation unit will automatically change
route if a new route from server is received.

2.2 Functional requirements
The functional requirements are the important basic requirements of our system
being able to meet the project definition. The requirements is seen as a Use-
Case Diagram in Figure 2.2. The reason we use use-cases as the basic
functional requirements is because we have taken a user-centered development
approach.

2.2.1 Use cases:

The Use cases for the client is as stated above:

• Get Route:

Figure 2.2: Use case diagram

2.2 Functional requirements 12
The User should be able to Request a new route, the client should send
the request to server and afterwards receive the route and start guiding
the user to his destination.

• Drive Along route:

After receiving the route the smartphone should guide the user all the
way to the destination. The guidance should show which way to go
next and what the name of the street is.

• Drive Away from route:

The smartphone should be able to guide the user back on track. If the
user leaves the route the smartphone should view the distance from the
checkpoint he was supposed to reach.

• Report Congestion

When driving along the route the smartphone should be able to report
to the server when congestion is found. The smartphone will not
calculate the congestion. The phone will send a update to the server
each time the user reaches a checkpoint.

• Get New Route

When the user drives along his route, another user can report a
congestion, which may effects him, if the congestion is within his path.
The server should calculate a new fastest route and send it to the client.
Afterwards the client should guide the user to the destination with the
new route.

• Exit -> end route

If the user chooses to exit the program while he is on the route the
client should disconnect and the server removes the client from the
map.

• Exit -> Vanish

If the system crashes, lack of Internet connection, no GPS signal or so.
The system should remove clients when they have been inactive for an
amount of time.

Server Administrator:

• Set Congestion

The server administrator should be able to set congestions directly on
ways.

2.3 Non-functional requirements 13

2.3 Non-functional requirements
These define how the system is supposed to be, rather than how it does things.

• Speed, since it needs to support live queue-information, it needs to
respond in near real-time.

• It needs to be portable, which means that most android-based
smartphones, with network access and GPS, should be able to report
queues to the server.

• All the reporting from client to server should happen without user
interaction. Also the new route from server should happen without user
interaction.

• The android app should be easy to use. No need for user manuals and
instructions required should be minimal.

• Extendability and portability. The capabilities of the system should be
easy to expand, or port to other platforms.

3 Project management
(Nikolaj)

This section deals with the project management of our project. We decided to
make some milestones we could follow:

1. Product that works minimal.

2. Product that are working and fulfill the requirements.

3. Product that fulfills and works optimal.

4. Product and Documentation done.

These milestones are considered as iteration, this means an agile2 development
method is used. In each milestone we revisit the design and implementation,
correspond to changes and new requirements for the product. Furthermore we
have made a Gantt-scheme3 (Figure 3.1), based upon the time-table in
Appendix-2: Timetable which shows how much time we got to each task. As
said in Section-2: Requirements Specification we divided the project into four
parts to give a better overview of the project.

The Gantt chart is used to present the time schedule of the project. The chart
normal contains the main components of the project, and the parts that is most

2 http://agilemanifesto.org/
3 Book: Operations Management, Russel & Taylor Page 364-367

3 Project management 14
critical to the project to finish. This chart is based on our requirements and our
previous experience from software project on DTU.

The chart shows days scheduled to each part, but when more parts are
scheduled at the same day, the work of the day is shared between the various
tasks.

Our activities are not directly dependent at each other but its easier to develop
the visualization after the server component has passed the first iteration. We
chose to begin with the server, this part is the most important part of our
system, and the most time demanding. Therefore we see this component to be
the part with highest risk of demand more time than scheduled. There is much
time scheduled to the integration of the components, this is important because
of our iterative approach. The iterative approach means that even though we
have developed all the sub-parts of a part, the part cannot be considered done.
The part may be revisited in a later iteration and redesigned making our
product smoother.

4 Traffic Control
(Nikolaj)

The traffic control aspect is important to understand how the system is going to

Figure 3.1: Gantt-Chart: y-axis Activity, x-axis amount of days of activity.

4 Traffic Control 15
be designed. This section will explain the reason for our design choice and how
we could have done.

When dealing with congestions there is several ways to calculate the queue. We
chose a time based way, in this way we calculate the expected time between
two points, this is done with the data from the map, supplying the speed limit
on the way. The two points coordinates from the map data is used to calculate
the distance between them. This gives us the expected time to travel on this
way between two points. The client will report a timestamp each time it reaches
a checkpoint or a node, which are the data from our map. After this
implementation we consulted a traffic engineering student at DTU, he told us
about how professionals observes queues4. The other way is to look at the
way’s capacity, this means how many cars pr. Hour the way can contain before
it’s a queue. If we take an example of a normal way with 1 lane in each
direction the capacity of the way is approximately 1700 cars pr. Hour. If we had
decided to implement this method we could have settled with the clients only
reporting back their position. This way our server design had contained a
counter for each way, when a client reported it to be on a checkpoint we could
look up which way and set one more client at this way. The pros in the
procedure would be the opportunity to caught the queues before they appear, in
our way one client have to be in a queue before we can tell the rest of the
clients that a queue has appeared. In this we could implement an algorithm
which calculates a factor of how fast the cars on the road increases, in this way
we could predict queues before they happens and guide clients around. The
cons with this approach would be that every single car should use our system
if not, queues will appear without our system noticing. In our way everyone
need our system, but the more the merrier.

In junctions we have some problems because, you cannot drive through each
junction with the speed as the speed limit says. Therefore we had to insert some
delays when facing a junction. If there are two ways out from the users
position, we added a delay of two seconds, this is based on our own evaluation
of the time spend in junction in average. are there three or more ways out from
a node we added a ten seconds delay. As before it is based on assumptions of
time spend. These delays can give some problems. If its small ways that cross,
it may not take ten seconds to get past them. But if it’s two big roads crossing
the time delay may be bigger than ten seconds. The map data from OSM
supplies us with traffic lights, but because of the OSM is open-source, its not
always the traffic light is indicated. Therefore its not possible to count on the
data. But if the data was correct, we could implement a different delay in
junctions with traffic lights.

4 http://vejregler.lovportaler.dk/ShowDoc.aspx?docId=vd-20101203131959405-
full&q=kapacitet

5 OpenStreetMap 16

5 OpenStreetMap
(Christian)

Our project uses map data from OpenStreetMap. Openstreetmap is an open-
source mapping project. Adding and editing is a community effort, and as such
data may come from anywhere. The project was launched in 2004, but only
took off for real in 2007 with the initial map data collected by volunteers using
hand held gps systems and manually entering the data. Later, many additional
sources were added and this helped expanding the map greatly, to contain
several hundreds of millions of entries. The open street map project is still
however dependent on volunteers, even though they may be using aerial
photography and satellite data in addition to their own experience and
knowledge of the neighborhood.

The map uses the XML format (eXtensible Markup Language) for its data.
An .osm file containing the xml data can be exported from openstreetmap.org
for limited areas or downloaded for larger areas at a time from servers that
extract the data from the entire map on daily basis or at other intervals.
Alternatively, data can also be retrieved on a more specific basis, via http
requests. We opted to work with with a pre-downloaded file, as this would
provide us with the best insight in the possibilities of the data, and the easiest
debugging, as well as not having to have an open connection to the
openstreetmap database as a requirement for running our system.

The openstreetmap data is arranged into the three data primitives: nodes, ways
and relations. Nodes represent points – road intersections, points along roads,
addresses, shops etc. Ways are connected nodes; this may be two or more node,
connected to form a linear feature – power lines, streams, roads, hiking trails
and so on. Ways can also be bounded features such as parks, lakes, city blocks
or coastline, in this case the string of nodes loops back on itself and form the
area. Relations can be groups of nodes or ways and can denote things such as
routes for bicycles or named motorway systems. Of our interest is mainly the
ways that depict roads and nodes that depict addresses as well as those that are
used to define the roads.

5 OpenStreetMap 17

5.1.1 Map areas used during the project
We started out with a small area of the
“Fuglebakken” area of northern
Copenhagen. This was chosen
because that area is generally made
up of parallel roads, and right-angle
intersections. This suggested that it
would be relatively simple to work
with and it proved to be right,
although many of the challenges of a
bigger map would also haunt this
small one. Later on we moved to a
bigger map, the largest to export
directly as a sample from the data.
This time we centered it on the
familiar area around DTU in Lyngby
– well not exactly centered, because
half of the area would be the big
Dyrehaven forest to the east of DTU,
so the map has northern Lyngby,
Brede, Virum and Nærum. This map
was used throughout the development
and testing phases, along side the
biggest practical map we could use:
one of the Greater Copenhagen area. This was more than half a gigabyte of xml
data, so we could not read it with standard text-editors as we could the others,
and it would take several minutes to parse the data each time we would have to
debug something. So we used the smaller maps for development and
debugging, and the big map for running and testing. These maps can be seen
outlined in Figure 5.1.

5.1.2 Challenges
Because the map is exported from a bigger collection of data, which has been
cut at straight lines along the north-south and east-west direction, we are left
with quite a few gremlins in the map. The most obvious is that along the edges,
we have roads that leads to nowhere: ways that are in the map, but using nodes
that are not. The exporter apparently does not take this into account, so we had
to do that when reading and building our graph.

Another issue is that as our ways are directional, and some roads are one-way,
some routes may begin or end at places that are impossible to reach. An
example could be a motorway at the edge of the map. Motorways are

Figure 5.1: Outlines of the three

different map areas, we have used.

5 OpenStreetMap 18
interpreted as two parallel roads, each of them one-way. Therefore, if you start
somewhere after the last off-ramp on the out-going side, or have the goal at
before the first on-ramp on the way in, it will not be possible to reach in our
graph. Of course, motorway areas are not the most populated areas, and no
addresses would be directly on the motorways themselves. Thus these scenarios
are not very likely to happen under real conditions, but they were at times
annoying during testing. Mainly the A* pathfinder were hit, because when it
tries to reach one of these “black spots” and find that there is no direct route, it
needs to root through most of the rest of the map to confirm that there is no
indirect route either. There was not much we could do about this, except maybe
do an iterative narrowing of the graph to ensure that no dead-ended ways were
to leave the map, but then again, this would hurt the expandability of the graph,
and make it harder to connect with a second area of the map, should we need
that to happen. The issues would not harm the integrity or stability of our
system, only the performance, as all that would happen would be a long-lasting
calculation of the pathfinder that did not come up with a valid route. Therefore
we chose to leave this in. A good example can be seen if one chooses a location
near the Öresund bridge in the greater Copenhagen map. This has only two
roads, and no connections until it gets to Sweden, which is not a part of the
map.

There is a related issue but this time with entire areas that are unconnected with
the rest of the map. Obvious examples would be islands which are not
connected to the mainland by bridges. As our graph does not take into account
ferry-lines, and some islands may not even have these, starting or ending at
such places would of course yield no-route results. Other places that are more
troublesome are mainly linked with the smaller maps, we have tried. The
Fuglebakken map is crossed by a railway line that separates one part of the map
from the other, the Brede map has the motorway and these renders smaller
sections of the graphs unreachable from the rest, even though they both are
valid parts of the map, and are actually connected in the real world.

6 System Design
(Nikolaj and Christian)
This chapter will present the design choices we have made. First we will
introduce the combined structure of our system, and then go into of
details it's individual components.

6.1 System Overview
(Nikolaj)

After we specified the requirements of the project we ended up with a design

6.1 System Overview 19
containing a centralized server responsible for all clients seen in Figure 6.1

The server is designed to handle all clients, their requests and their routes.
Therefore no particular logic is placed in the clients, which ensures the system
to be scalable when developing new clients for different platforms. The client’s
uses a “socket connection” connecting to the server. With the socket
connection, standardization for the data was necessary. These design choices
will be discussed in the server-client communication (section 6.2). The code
for the dummy client and the smartphone client have been made as similar as
possible, therefore the code can easily be used for both clients. Besides the
communication the smartphone client also contains a navigation module. The
dummy client do not include this since it’s only for testing the server side and
not the client. More about the client design later in this chapter.

The server design follows the Model-View-Control architecture, which gives
the advantages of testing each component individually. The model part is the
part containing the data, in our case stored in lists, its also here where we
manipulate the data so it fits the requirements of our controller. The view part is
the server-interface, our interface are combined between the visualization and
server interface. It contains a map that provides information about routes,
clients and congestions. It also contains a server GUI that supplies the

Figure 6.1:

6.1 System Overview 20
information about how many clients connected, shows if they send an update
etc. The controller part provides the information to the view part, based on the
data from the model part. Figure 6.2 shows how our system are split into
Model-View-Control

The system follows the Model-View-Control architecture, Java Swing is used
and therefore it is a ’Model-Delegator’-pattern, where the view and controller
are combined.

The package diagram in Figure 6.2 shows how the components are
implemented. The GUI implements both visualization- and server-GUI. This
gives the Pattern stated above. The server package has the Controller and
Model parts.

The model part consist the OSM-XML map which are read in to the system.

Figure 6.2: Package diagram of our implementation

6.1 System Overview 21
The XML data are the rare information we need. Our system reads-in the data
and manipulate the data, putting them into data-structures. This ensures that the
data we need is stored separately and ready to use for the controller part. Our
controller part handles all the clients and based on information from them the
controller extracts data from model and sends it to the GUI.

The overall design are as mentioned above the result of analyze stated above.
Another approach may be to place more logic in the clients. This way the
service would be more decentralized, this may have been done by coding an
application, which requested the map each time, downloading the map data and
displaying it. Just like the Google Map function works. But this would result in
a lot of data traffic between the client and server. Another approach could be
downloading the entire map to the smartphone. This would result in fast
calculation of route, and only check the server for new congestion instead of
getting the entire map. This way a limited amount of traffic between server and
client are exchanged. This would cause a large amount of data placed on the
smartphone and the need of from time to time update this map like we see in
normal navigation for cars.

In the chosen approach the large amount of data is placed on the server, which
is faster and have more memory than smartphones. In this way we use the
advantage of the fast server to do calculations and contain the large map. The
traffic between clients and server are also low. The only things, which are
parsed, are strings and XML. The data is sent from clients when asking for a
route and when they reach a waypoint. This means that the XML data is only
sent one time for each route. And the string it sends at each waypoint only
contains: Prefix, ID and timestamp (more about this in next section). This way
the Internet traffic is brought to a minimum, and the resources are used in the
best way.

6.1 System Overview 22

Figure 6.3 shows the flow of data in our system. This overview begins with a
client requests a route that is send as a string to the Multiserver. The
Multiserver splits the String up and creates a new Object: ServerClient. The
server client finds the start- and end-nodeID(NodeID is nodes from the OSM
map. We need to find the closest node the system knows from the user input)
based on the information from ServerClient. Then it creates a new object; A*
that it sends the Start and end nodeID ant then it calculates the route and
returns it. Then the ServerClient sends the information as a string in XML
format.

6.2 Client server communication
(Nikolaj)

The communication between client and server are as stated above socket
connection, the technical aspect is discussed in the next section. Although a
standard for the communication must be stated. There are two aspects of the
communication, the XML code that returns the route and the three strings that
are: Route request, Disconnect and Update position. The three strings are the
communication from client to server, and the XML are the communication
from server to client.

The composition of the strings is shown below:

The delimiter “%” is used to split up the string.

Figure 6.3: Sequence Diagram whole system

6.2 Client server communication 23
Route request:

prefix (1)%ID%Latitude%longitude%Postcode%City%Way%Housenumber

The prefix indicates which type of message the server receives: “1” is route
request. The ID is a timestamp, this ensures a unique ID. Latitude and
longitude are the current position of the client. Postcode, City, Way, House
number are all part of the destination.

Disconnect:

prefix (2)%ID%Timestamp

The prefix indicates the message to be a disconnect message. The ID is needed
for the server, knowing which client disconnects comes from. The last
parameter is the timestamp, showing the time for disconnect.

Update Position:

prefix (3)%ID%Latitude%Longitude%Timestamp

Like before there is a prefix indicates an “Update position”. The latitude and
longitude are the user’s position; this will always be a coordinate which the
system knows as a checkpoint. The client calculates its distance from the
checkpoint each time it gets a GPS fix. If it’s within a certain radius the client
will send the request “update route” with the check point coordinates. The
Timestamp are used to calculate, if there is any Queue between checkpoints.

The 3 strings insure the communication between the clients and the server. It’s
only the clients that send these strings. The only thing the server sends are the
XML containing the path. In Table 6.1 an example of the XML structure are
shown.

Table 6.1: The XML structure of route

<path>
 <id></id>
 <node>
 <wayname> </wayname>
 <lat> </lat>
 <lon> </lon>
 <time></time>
 </node>
</path>

Table 6.1 shows the XML Structure, as mentioned it is the server that sends this
out when a new route is calculated or a faster way for a client is discovered.
The “path” element has the ID of the user, in this way the client ensures that it’s

6.2 Client server communication 24
a route designed for it. Each node represents each checkpoint on the route. The
XML can contain any number of nodes, if no path are found it will only contain
the destination node. A node contains a way name. This is used to display the
way name, the user is supposed to follow on the smartphone. The lat and lon
are the coordinate set that represents the checkpoint. This is used to calculate
the distance from the clients position to the checkpoint, furthermore it is sent
back to the server in the “Update position” call. The time is the time used int
total up to this node, the last node contains the total time of the route, this is
directly passed from the A* algorithm used in the server.

The XML structure could have been a string like our other strings but
considering the big amount of information a path contains we decided to do it
this way. The XML are actually parsed as a string to the smartphone, but
instead of splitting the string up with delimiters as we choose in our client’s
communication with the server. The advantages of XML are a simple robust
format of our information. Robust because its based on a proven standard and
can be tested and verified.5 If the path should have been sent in a plain string
only split by delimiters the string would be unnecessarily confusing and hard to
implement in new platforms for clients. But in our 3 string methods it would be
“overkill” to put it into a XML structure, but if we had decided to so. It would
make our system more scalable if new features are implemented or more
information from clients is needed.

6.3 Components of our system
6.3.1 Server-side
(Christian)

The server-side part of the system consists of a number of components. The
communications server which handles networking, the map which is
constructed from raw Open Street Map data, the A* pathfinder and the
visualization and graphical user interface.

6.3.1.1 Communication
The communications server handles the network connections and manage the
clients that are connected to the system. First of all, the server needs to be able
to accommodate multiple clients. In our implementation, we settled on aiming
for a few hundred clients at a time; at least the simulated clients. A real-world
system would have larger capacity, hundreds of thousands perhaps, but that
would require a very fast internet infrastructure and dedicated machines, much
more powerful than our desktop and laptop computers.

5 http://www.w3schools.com/schema/schema_why.asp

6.3 Components of our system 25
The server therefore could be multithreaded, each thread handling all
interactions with a single client and blocking the other threads when it is
networking. Java however, has a non-blocking input/output API.6 This makes it
possible to multiplex the networking - to handle multiple connections in turn
through a single entity.

We chose the non-blocking, multiplexed approach as this would allow us to
avoid the usual problems connected with multithreading: deadlocks, thread
safety etc., while benefiting from the infrastructure provided by the nio API.

Apart from managing the networking, our server would also have to keep track
of all the client's data. Their route, their current positions and speeds, and use
this data to determine whether roads are congested and how badly congested
they are, as well as to alert clients about congested roads along their present
routes, so they can get faster routes if possible.

We have designed our communications server as two classes: a server class
(MultiServer) that manages connections and receives incoming data and a
client class (ServerClient) that manages a single client's data and provides the
sending of outgoing data to that particular client. Whenever a new client
connects and request a route, a new ServerClient object is made and subsequent
data and communications to this client are handled by that object. Incoming
data are categorized and the appropriate action is taken by a number of
processing methods.

The serverside classes and the structure is outlined in Figure 6.4.

6 java.nio.*

Figure 6.4: The structure of the server and ui

6.3 Components of our system 26

ServerClient
The ServerClient class is the central data processing and outgoing
communications object for each connected client. Because of the multiple data
variables in this, there are a lot of setter and getter methods in this class, we
will not describe these deeply, but concentrate on the more complex methods.

The first method invoked on a serverclient after the creation will usually be
makeRoute(). This gets the right ids for the starting and ending nodes from
the map, and then gets a route from a new Astar pathfinder object. It initializes
the navigation variables and uses the helper method sendRoute() to build the
string that is sent to the client and then send it. We chose to send the data as an
xml-formatted string. This provides (reasonably) human-readable data as text,
that is also easy to parse back on the client-side on various platforms if this
should be necessary. The human-readability aids in debugging and later
expansion of the system by other programmers. The xml string is wrapped in a
bytebuffer and written to the serverclient's socketchannel.

UpdatePosition() contains the bread and butter of our traffic detection
system. It is invoked from the server, when the client reports that it has reached
a new route-point. It determines the route-nodes and way in question and
calculates the time, the client has taken in traveling the road versus the time it
should have taken according to the routing information. This is then used to
check if the road is congested or if a queue has formed (the word queue is used
throughout the code regardless). If the delay is larger than the fixed threshold
of 110% of the normal time taken, then the road is seen as congested, and he
map is updated with this information. The 110% percent was chosen to allow
minor deviations: stopsigns, pedestrians crossing, cars in front parking and so
on. If however, the client is faster than the current queue speed on the road, it
would mean that the congestion has lifted. Either partly, in which case the new
queue speed is set in the map, or fully, in which case the queue is cleared
completely. If a queue was detected, the id of that road is returned, so the server
can check with its other clients if it will affect them.

This is then done by invoking the checkForQueue() method. If this finds a
queue on its present route, it will reset its navigation variables and make a new
route.

MultiServer
This contains the multiplexed network server. The server relies on the java.nio
concept of socketchannels to provide the communication channels and the
selector to monitor the channel. A serversocketchannel is opened and the
serversocket associated with the channel is bound to the port on which the
server is run. The selector is then registered with the serversocketchannel. Both

6.3 Components of our system 27
the serversocketchannel and the selector is created via the static methods
open(). This is used instead of a conventional constructor, and provides a
platform-specific implementation and promotes the portability of the code.

The server class then progresses to its main run method. This is an infinite loop
that start with the selector selecting. This gathers a set of selectionkeys that
contains info about all the events that has been detected. This set is then cycled
with the help of an iterator object and the type of event is determined. We only
need to process incoming connections and incoming data events, so they are
determined by AND-ing with a static bit-mask from the selectionkey class.

If a connection accept event is detected, the selector is registered to select read-
events from this channel and a report is written to the server console.

If the event is a data read, the data is read into a buffer for processing. The
socketchannel read operation can return a -1 if something is wrong, in which
case we close the socket. If it really is a message as it should be, the data is
interpreted as a string. Because we cannot be sure that a single read-event will
not contain multiple messages from a client, the string is split at each newline
character, and each processed in turn, be sure we catch all messages. The
messages from a client is coded with an integer prefix. 1 means a request for a
new route, 2 requesting to be disconnected or 3 a position update. Each type of
message is processed in its own method which splits up and parses the data to
fit its own needs.

Route requests are normally made as the first message from a client. They may
be made subsequently if a new route is needed, but this is where we get the first
exchange of data with a client. The server maintains a list of currently active
clients, and this is checked to see if the client is already known or whether a
new connection has been made. Then a new serverclient object is made and
added to the list. Else, the existing serverclient has its starting position updated
with the new position. In either case, the serverclient's makeRoute() is
invoked and the result is reported to the server console.

Disconnect messages are rather simple: the active clients list is checked to
confirm that the client is in fact there, and if so, it is removed.

Update position events are processed similarly. The data string is split and
parsed, and the serverclient's updateposition() is invoked. This however,
returns the id of a road if there has been detected a queue on it, so the server
can notify other clients about it.

6.3.1.2 Map
The map is be the main basis of data for our system, used for pathfinding,
locations queues and much more. The xml syntax of the OpenStreetmap

6.3 Components of our system 28
datafile uses a large number of different data types for describing locations,
roads, relations and others, but the ones of primary concern to us are:

• <node> which are points in the map, some without any other
information, and some which contains addresses.

• <way> with the additional highway-tag which connects strings of
nodes into roads.

Our map would consist of something similar: a graph containing nodes and
connected by edges, and addresses that could be the destinations for the users.
In OpenStreetMap, roads are made from a string of nodes, which can be very
long for example on a winding road, a large number of nodes will be needed to
describe the curves of the road. For pathfinding, we are primarily interested in
intersections between the roads, and roads that run a straight line between to
road-intersections would be the optimum for the purpose of pathfinding and
would have the smallest memory-requirement. We could achieve this by
combining the non-intersection strings of nodes in a way of OpenStreetMap
into a single edge, and get rid of all the nodes that were no longer needed. This
simplified map, however would lead to a very rough visualization of the routes
and queues on a map. As one of the main goals in this project was a
visualization of what is going on in the traffic at any one time, we decided not
to use this approach and just accept the increased pathfinding time and memory
footprint of a less derived graph. Another argument against this sort of graph is
that the routing has to be user friendly, it must direct the user as close as
possible to their goal. A long road that only connects at its ends, would leave
the user far from their goal at the end of their route if they wanted to go to an
address around the middle of the road. It could be argued that a user should be
able to find its way along a single road, but anyway – we have both seen this
not being the case..

Instead, we have made the edges of our graph by splitting up the long roads
into their individual small sections between the nodes. The graph must be
directional because roads may be one-way or roundabouts may only allow the
drivers to go in a single direction for example. We ended up with a scheme of a
graph, made up of nodes, each containing a set of ways which has a reference
to the node on which it ends. This would be the basis for the map data as used
by our system. Addresses in OpenStreetMap are merely an extension of a
primitive node, but with information about the postal address and often other
informations as well. Thus an address-node located at “Byvej 5”, are usually
not on the actual “Byvej” at all, but often alongside it. The only thing
connecting the two, are the names of the road.

A multi-level map might be the best solution in the long run. We could have
both the detailed graph with individual small sections of a road, and a less

6.3 Components of our system 29
detailed, intersection-to-intersection type of graph. The pathfinding could then
be done along the detailed graph until an intersection was reached, then
continue along the simplified graph until close to the goal, and finally go back
to the detailed graph again to take the final steps towards the goal.

Figure 6.5: OSM-style

graph: Ways are

constructed from

strings of nodes,

connected in a non-

directional graph

Figure 6.6:

Intersection-style

graph: Ways are

combined between

intersection nodes

Figure 6.7:

Graphbuilder-style

(note different scale):

Directional ways are

between adjacent

nodes. Arrowheads

describing a single way.
We made two separate classes for the graph: MapNode and MapWay. Addresses
would be their own kind, as they would not be connected with the main graph
as such, but merely provide a location. MapAddress does this. All three of
them also implements Java's Comparable interface7 that allows easy sorting of
lists of these classes. The compareTo() method determines which object is
the highest, when compared to another instance of the same class.

7 http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Comparable.html

6.3 Components of our system 30

MapNode
This contains the id-number and location of a point on the map, as well as a list
of ids of all the mapways that leads out from this location. The compareTo
method compares the mapnode's ids.

MapWay
Contains information and methods of a single section of a road: its speed-limit,
the id of its starting and ending nodes, possibly the slow speed of a queue, and
the name of the road it is part of, among others. A variable for a fixed time
delay is also added, to take account of other slowing factors than speed-limits
and road queues. This was added after some early trials had shown that we did
not take into account that cars are slowed down when waiting at a traffic light,
and that even in Hollywood, drivers to do not always go around corners on two
wheels, tires screaming. A fixed delay seemed a good way to solve this issue,
although some empirical trial-and-error would be needed to dial in on the
appropriate size of this delay. CompareTo ranks mapways according to their
starting nodes, and if they are equal, their ending nodes.

MapAddress
Has the location of a postal address.

These classes all contain a range of get-methods for their data and some setters

Figure 6.8: Structure of the map

6.3 Components of our system 31
as well. Little would need to be changed after the creation of the nodes in the
map (few houses move and few roads change names in this world...) but some
of the data in a mapway would have to be editable; the queue-speed for
example, and there are setter-methods for those. The CompareTo ranks these
according to the name of the road, and then by the road number.

Graphbuilder
This class stores the full map, and contains the infrastructure to handle all this
data. The main data are kept in three huge arraylists: nodelist, waylist and
addresslist. There is also a list of the ways on which a queue has been detected.
All of these gets built as the data are read from the xml-file from
openstreetmap, and may be updated at run time. We needed to be able to
randomly access these individual data as our system uses them for many
purposes, so we chose ArrayLists as the collection of choice. Arraylist has
constant or at least linear run times for most operations. The three data types
would be referenced by either their indices in the lists, or by their name or the
id, they have from openstreetmap. Thus we would have a number of access
methods, taking different parameters to get the data needed. These are outlined
in Table 6.2.

Table 6.2: Access methods are diverse. This lists the data types, and the

parameters available to find them, as needed by our system.

Datatype Parameters Notes
MapWay Index General purpose access method

MapWay Id Search by OpenStreetMap Id

MapNode Index General purpose access method

MapNode Address Search for closest node

MapNode Position Search for closest node

MapWay Index General purpose access method

MapWay Ids of start and endnodes Search by OpenStreetMap Ids

MapWay Name Alphabetic search

MapAddress Id Search by OpenStreetMap Id
For the general purpose access methods, we use arraylist's standard get()
method, but the others are more complex.

We need to know the indexes of a mapnode when we add mapways to the
graph. A node in openstreetmap has a unique id, but we need to add the

6.3 Components of our system 32
mapway to the mapnode where it begins, and include a reference to the
mapnode on which it ends. To find a mapnode's index in the list when knowing
its openstreetmap id, we use a binary search. A binary search algorithm is the
fastest way of finding an item, taking a “divide and conquer” approach that
runs logarithmic time in the worst case scenario, O(log n) in big-o notation.
However, it requires the data array to be sorted for it to work. In our
implementation, we have included a flag that indicates if the arraylist has been
sorted already, or if a sort must be done prior to doing the binary search. When
adding a new node to the list, the flag nodelistChanged is set to true, and
when the getMapNodeIndex() is called, it will first check this flag and sort
the list if it is true. Usually, this will only have to be done once, as the map is
built when starting the program, and the order is not changed subsequently.
Thus we should get the full benefit from this fast search each time, but only
face a single sorting, and also have a degree of failsafe, as the change flag is
always checked. Both for sorting and searching, we use the java's Collections
class, which has static methods for this purpose called “sort” and
“binarysearch”, both requires the data to implement the comparable-interface
which all of our nodes, ways and addresses does. The sort algorithm used is a
modified mergesort which guarantees n log n performance.

We have to find the index of a mapnode closes to both a location and to an
address when a client requests a route. The client supplies his own position and
the address of where he wants to go, and we need to find the nodes that are
closest to these two, for the pathfinder to make a route. If the location (latitude
and longitude) is the input, we made it simple. The list of nodes is iterated, and
the distance of each mapnode is calculated and compared to the smallest
distance so far. When done, we will have found the node that is closest. The run
time performance for such a search is linear O(n) and in our case, the
performance is not the best, as there are a considerable number of nodes:
146.000 in the Greater Copenhagen map. It appeared to be the best solution
when searching our arraylist, but other data-structures may have improved the
performance.
Finding the node closest to an address works much the same. In fact we first
find the addressnode, and then use the location of this as input to the method
described above. The addressnode is found with a binary search for a
wayname, but because there will be several addresses on each road, and the
binary search returns as soon as it has found an addressnode with the correct
name, we needed to expand the search algorithm. After finding a valid
addressnode, it could be any house-number, so we start to count up through the
addresslist until we find the correct house number, or if we reach the end of the
road. If this does not result in a match, we count down through the list. House
numbers in our addressnodes are in fact not numbers, but stored as strings. This
is because they could be a combination of numbers and letters (52A for

6.3 Components of our system 33
example), some numbers might be missing, and other factors that might make a
more systematic search difficult to design. Also a road usually has at most a
couple of dozen house numbers, so this would not be critical to make a highly
optimized search for house numbers.

When searching for a mapway, given the starting and ending mapnodes, we
also use a binary search, but because the mapways and mapnodes are cross
referenced, we can not just sort the list of ways at any time. Instead, we make a
clone of the waylist and sort this, before searching. As in the other cases a flag
is set to indicate when the list was changed, and so eliminates the need to sort
the list when it is not necessary. But we need the index of the mapway in the
original, unsorted list, so after finding the correct way, we go back and find its
index in the waylist. This search for a mapway id is needed when a client
reports its position and we want to check if there is a queue on the road.
Because we have made the clients routes as a series of nodes, but not including
the ways, connecting these nodes, we needed the ability to “go back” and get
the ways. This is not in any way optimal, as this search is quite expensive in
time, and could have been avoided to a large degree by including the ways in
the handling of routing and communication.

Queuehandling
Handling queues is a very important part of our system. To keep track of all
ways that has a queue on it, we made a list with references to those ways:
queueways. When a queue is detected, we must set the mapway's queuespeed
variable and add a reference to it in the queueways list. Similarly, when
clearing a queue, the speed must be reset and it must be removed from the list.
If it is already in the list, only the queuespeed must be changed. SetQueue()
and clearQueue() takes care of these actions. We also have a bulk get-
method that returns the entire list, as well as a list of the ids of all the ways in
the queuelist. These are to be used by the visualization to get a list of all that
needs to be drawn. The queues would be updated when a client drives down the
ways, even faster or slower than the current speed, but because a very slow
queue would lead to all clients being lead around the way by our pathfinder, we
needed a some way to clear queues without a client reporting. We added a
variable to all mapways that functions as a time stamp, being reset every time
the queue-speed is changed. By comparing this time with the current time, it is
possible to clear queues that are older than some delay. We have implemented
this with a timed task, that clears queues that has not been changed in ten
minutes. This ten minute timeout is a pure guess – it would necessary to
measure or experiment with this in a real-world implementation. The more
users in the system, the more likely it is that some of them would detect a
queue dissolving, and thus clear the queue before the timeout. So if there is
only a few users, the timeout delay would need to be bigger, and many users,

6.3 Components of our system 34
the timeout can be smaller.

MapLoader
The graphbuilder containing the map and infrastructure is built from
openstreetmap data when the multiserver is started by invoking the static
load() method in the class MapLoader. This will also save a complete
graphbuilder object to disk to speed up future loading of the map. It will first
try to load the graphbuilder object from a file, and if that does not succeed, it
will read the xml from openstreetmap and save that to disk.

We use Java's objectinputstream8 and objectoutputstream9 to do the reading and
writing, as this allows us to save and to load the entire object in one go. The
only requirement is that the object must be serializable, and thus all of the
classes used in a graphbuilder must implement java's serializable interface.

OSMRead
(Nikolaj)

The OSMRead class is used to import the XML-file containing the map. We
use a SAX-parser10 to import the file. The SAX-parser libraries are easy to use
and effective when dealing with big files. We create a new handler11 and start
searching the file for strings we know. The search is based on start elements. It
finds the next element in the text, therefore its not necessary to read the entire
document into the heap-space. When the first element is called it calls the last
element, this is used to give us the startelement (example: “Node “and the end
element “/Node”). Between these elements we search for children, this is done
by a simple equals statement. This way we get all the information we need and
when the end-element appears we creates an object, in this case Node. This
approach is used when we find: Ways, Way-Nodes, Address-Nodes. Ways
consists of Way-Nodes.

The implementation is the one that works best. We began with a DOM parser.
The problem with this approach was that it needed to read the entire file into
the Java heap-space. The first couple of tries went well, but when the XML file
containing the map increased it could not load the. The problem was the heap-
space being filled before it could start processing it. Therefore we implemented
the other way where it reads 1 line at a time without loading the entire file into
the program.

8 http://docs.oracle.com/javase/1.4.2/docs/api/java/io/InputStream.html
9 http://docs.oracle.com/javase/1.4.2/docs/api/java/io/OutputStream.html
10 http://docs.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/SAXParser.html
11 http://docs.oracle.com/javase/1.4.2/docs/api/org/xml/sax/helpers/DefaultHandler

.html

6.3 Components of our system 35
The OSM-read class is used as stated above to extract the information from the
XML-file. Another important feature of this class is combining the data into
objects and graph-structure to be read into the graphbuilder.

Navigation
(Christian)

Navigation is a utility class, meant to calculate distances inside the map. It
takes inputs of latitude and longitude pairs, and uses these to calculate the
distance. Alternately it can extract the latitude and longitude from a mapnode
or an algorithmnode and use these, or it can be a couple of combinations
between these. We added the combinations as we needed them. To be fully
accurate, we would need the great-circle-distances, that is: the distance along
the curvature of the earth. Searching the internet, we found a series of
equations that should do just that, but somehow they were flawed. We then
made our own distance-calculation. It is based upon the original definition of
the meter, which was based upon the distance between the equator and the
north pole, along a meridian through the city of Paris. This was then divided by
10 repeatably until a usable length was reached. Later on, the meter has been
redefined several times, and since 1983, it has been based on the speed of light
in vacuum. Never the less, the distance between the equator and the north pole
is about 10 million meters, or 10 thousand kilometers as well as being equal to
90 degrees of latitude. Assuming that the earth is flat on the scale of our
measurements, this makes for an easy conversion of degrees to kilometers in
the north-south direction. If the earth was a complete sphere, this conversion
factor would also work for longitude close to the equator, but not at higher (or
lower) latitudes, because the distances between successive meridians narrows
in, and becomes zero at the poles. We therefore multiply the longitude with the
cosine of the latitude.

This calculation is an approximation alright, because the earth can not be both
round and flat at the same time, and the fact that it is not actually spherical, but
a so called “geoid”. Never the less, we measured some distances, and found
only errors around 1% inside the area of our map of Greater Copenhagen,
errors would tend to increase with increasing distance. This is fully acceptable,
and errors in the length even tend to cancel out, because we use them to
calculate differences in the length of routes. So as long as the errors are small,
or at least consistent, we find no need to look for better approximations.

QueueSetter
QueueSetter is a small class, made to make it easy to add further control with
the queues. Congestion may be detected by our our system, but only after some
user has driven into it. Other congestion detection systems are already in use
today, to help traffic control. Other external sources could include: changed

6.3 Components of our system 36
speed-limits due to roadside construction, accidents, planned sports events and
the like.

Queues can be set from outside by creating an instance of QueueSetter and
using it to set a queue by wayID or by wayname. We demonstrate this in the
QueuePopup window that can be opened from the server UI.

6.3.1.3 Path-finding

Algorithms
Finding the fastest path through a map that consists of hundredth of thousands
– even millions of nodes and edges, and doing so quickly requires an efficient
algorithm. It is done using the A* algorithm (pronounced “A-star”), which is
often used in video games and other applications requiring a fast way to do
routing through a graph of nodes, connected by edges. Other options could
have been Djikstra's algorithm which always finds the fastest route, but is
computationally heavy on a large and complex graph, or a greedy best-first-
search type of algorithm which would be very fast to run, but might not find the
fastest route.

Djikstra's algorithm works as a broadening search and tries to keep the distance
to the starting point (the cost of traveling) low, while a best-first algorithm
would try to always aim at the lowest distance to the goal, disregarding other
opportunities. A* is like a combination of these, keeping the cost low, while at
the same time looking first for the lowest total cost. This saves it from having
to look at lots of the irrelevant ways that djikstra would otherwise have to
search, keeping the run time and memory footprint low.

A* pathfinding
A* uses a cost function and a distance-to-goal function added together to
determine which nodes to visit next. The cost function called g(x) is the cost
from the starting node to the current node, in our case where we want to find
the fastest route, the cost is the time taken to reach the current node. The
distance-to-goal function, h(x), in A* is a heuristic “educated guess” of the
remaining cost to reach the goal from the current node. The h function must not
overestimate the cost. Otherwise, the algorithm will tend to be closer to djikstra
and little gain would be made. On the other hand, the h function must not
underestimate the the cost too much, else the algorithm would be too greedy
and we run the risk of finding a sub-optimal route. A straight-line distance to
the goal seems to be the most often used h function. In our implementation it is
a bit more complex; a straight line to the goal will be much faster if going on a
motorway than if you are driving on a small residential road, and our nodes can
have several types of roads leading from them. The best guess of the h cost
function would be the straight-line time to the goal, when driving at somewhere

6.3 Components of our system 37
between the slowest and fastest speed limit. If we chose the fastest speed limit,
the algorithm would “hope” to find a motorway starting at the next node, going
directly to the goal, and thus any road that brings it closer to the goal would be
preferred. This wouldn't be good, as actual motorways wouldn't get preferred.
Almost the opposite is true if the other extreme is chosen: it would have to
search too many opportunities because of “fear” that the next road might just
be a bumpy living street.

Our implementation
We have chosen to set the h function to be the straight line time to the goal,
given the speed limit of the fastest type of road from the current node. So in the
event of an intersection of roads, the motorway would be tried first, in
preference over the residential road, all things else being equal. This is
calculated as the distance between the current node and the goal node, divided
by the speed of the fastest road from this node, taking into regard that the speed
might be lowered by heavy traffic.

Our A* pathfinder need to create its own partial graph consisting of nodes and
edges between these. To satisfy the needs of the algorithm and at the same time
cut down on memory usage, we have made a separate set of classes for these,
instead of extending the classes of the big map. The are implemented as inner
classes in the AStar class, and are called AlgorithmNode and AlgorithmWay
similarly to the MapNode and MapWay classes of the big map, which also acts
as arguments in the constructors.

The algorithm works by keeping a list of possible nodes to look at next – the
“open” list, and a list of nodes that are considered visited – the “closed” list.
The open list is is kept sorted by implementing it as a priority queue, ordered
by the cost functions g and h as described above added together. This ensures
that the most promising node in the path to the end-node is always at the head
of the queue. In addition, a list of all the nodes that has been constructed is kept
to keep track of all the nodes that has been made, as they are only constructed
as they become needed.

At first, the open list contains only the start-node and the closed list is empty,
because we have not investigated any nodes yet. Then a series of iterations are
run until the end-node is found, that is: we have a connected set, all the way
from the start to the end. In each iteration, the head of the open list is removed,
investigated and added to the closed set. If the closed set contains all the nodes
that has been investigated, it means that there is no longer any more
possibilities to investigate, and we consider a route impossible and exit the
path-finding there. To aid the infrastructure in the rest of our system, a “bogus
route” is created, consisting of just the start- and the end-nodes. This will
enable us to get some information as well as prevent unwanted artifacts to

6.3 Components of our system 38
appear. After these checks, we go trough all the ways out of the current node,
which was previously at the head of the open set queue. Each one ends in
another node, and if this node has not been made previously, we create it. If it
is already in the closed list, it means that it has been investigated, and as such,
we do not need to do anything further. Else, we calculate the results of the g
and h functions. If the node is not in the open set (if we have not visited it
before) it is added there. If it is, but has a higher g-score than the one we just
calculated, we update the scores, because we have now found a faster way to
get to that node than previously. Each node also has a reference to the parent
node, the node through which it was reached. Once the iterations finish, we can
use these references to travel back to the start, through what has now become a
linked list, and thus we have our route. As the g-score for each node is the time
taken to reach the node, we can find the total time to travel the route, by
reading the g-score off the end-node.

The result is saved in a separate list of path nodes for retrieval by the system.
They ways through which the nodes were reached is another thing that we are
going to need in the further processing, and the path only contain the
information about the order of nodes. Thus we made a method that returns an
array with the ids of the ways that leads between the nodes along the path. In
addition, we have made a route class for use by our ServerClients which is a
lightweight data type class, consisting of and array-list of route-nodes, each
with just the id, position and drive times, and their associated getters and
setters.

6.3.1.4 Visualization
To visualize what is going on, and to enable the operator of the server some
level of control, as well as facilitate the testing of the system, we have made a
graphical user interface (gui) for the server side of our system. This is made up
of three major sections: a console-like text output from the server. This displays
the status of the server: who connects, who disconnects, do the pathfinder
succeed in finding routes and so on. There is also a list of the queues that are
currently detected, and allows the user to clear these manually. Buttons also
enable clearing all queues in one go, and to add new ones. The third part is a
large map. This displays data about all the clients, that are currently connected:
their routes, including starting and ending points, and their current position.
The map also shows all the current queues that are detected. Buttons enable the
viewer to hide the queues and/or the client information.

The server console and the queue list are placed in a panel on the left side. The
console is defined in its own class and consists of a scrollpane with a textarea
inside it. A write method is made to append the incoming text and set the new
caret position so the text will appear to automatically scroll down as new

6.3 Components of our system 39
messages arrive and are printed. A label below this displays the number of
client that is currently connected. The table of queues is also in its own class
with a scrollpane, but the contents are different. It is a standard jpanel which is
updated regularly with a number of row objects, each representing a single
piece of a road, a way, with the relevant information. The name of the road, the
current driving speed of the congested traffic and the percentage of this,
relative to the normal driving speed. There is also a button on a row that when
clicked will clear the queue from the global map, and also remove the the row
from the list. Below the table of queues is a button that clears all the queues on
the map, and a button that opens a pop-up window that allows the user to
manually enter a new queue. The pop-up has a number of textfields that allows
the name of a road and the speed of the queue to be entered. This invokes a
queuesetter that sets all ways of the road to have a queue of that speed.
Alternatively, the id of a single way may be entered.

On the right side is a map. This was adopted from the OpenStreetmap java
component “JMapViewer”.12 This relies on internet based rendered tiles to
display the map data. Various sources for these tiles are included in the
demonstration project, but we decided to choose the one we found was best
suited to our use. We needed a uncluttered view of all the roads, and not much
more. Aerial photos are available as well as hiking maps and much, much
more; both paid and free services, but we chose the the Mapnik tilesource as
looking the most promising.

The full JMapViewer demo project was way too much for our needs, so we
extracted only the classes we would need, and added a handful of others. The
class JMapViewer is the central component that constructs the view from the
tiles and adds some extra features like markers and control buttons, the rest
being mainly infrastructure. Also, this class needed a few some changes to
comply with our needs. Therefore we made some changes in JmapViewer.class,
all of which are clearly marked in the source code. The changes and additions
are listed in the table in appendix-2.

6.3.2 Client-side
(Nikolaj)

6.3.2.1 Dummyclient
The dummy client is used for simulating clients, instead of having a lot of
smartphones we use dummy clients, which can act just like a client, but without
any actually GPS locations. In this way we don’t need to have clients out on the
street but instead simulating a user driving along a route, that makes the server
act in the same way, and a lot of logic can be tested.

12 http://wiki.openstreetmap.org/wiki/JMapViewer

6.3 Components of our system 40
The “dummy client” (later referred to as client) needs to connect to the server
using same procedure as a smartphone, which are trough “socket connection”
in this way we can have multiple clients running on different computers. In our
implementation we aimed for around 200 clients running at the same time for
properly testing the server. Each client must be individually controlled; this
means that the communication between client and server must be the same as
with the Smartphone. Therefore the same procedure with client sending text
strings and receives XML string is implemented. The simulation of a client
driving must also be simulated properly using the “update route” call. Because
of the lack of GPS unit, the client will simulate the route jumping from node to
node in its path, being able to simulate traffic jams.

We chose to design the client as close to the real smartphone client as possible
allowing reusing some of the code only needed to change few elements.
Therefore are there two parts of this client; the actual client and the client
handler.

The client needs to request a route, receive the route and process each step of
the path, sending an “update position”. Using real time simulation, meaning
that we will be able to set the time it’s supposed to use between nodes.

The client handler handles the dummy clients that are created, and provides a
UI for setting start position of the client and destination. The handler keeps
track of all clients created; this gives us the opportunity to create many clients
in one instance of the program. The handler also controls the simulation of the
clients, supplying the user with a list of active clients and the opportunity to
change simulation time.

6.3 Components of our system 41

The GUI is used for creating new clients; in this term a new client is a new
instance of the class DummyClient. The GUI has the AutoGenerate class which
supplies the user with auto generated values based on the graph builder’s map.
This way it’s easy to make a new client well knowing that the data it’s based on
data that exists in the map. The GUI then creates a DummyClient which has the
data about start point, ID, destination. The DummyClient is inserted into a list
in the Clienthandler.

The Clienthandler stores the list of clients, and contains the implementation of
handling multiple clients. The list of clients is used by the GUI class to update
each client, For example by disconnecting it. The communication between
client and server happens directly; therefore the client goes into a state where it
waits for input from the server. When a client gets a message from the server it
receives the XML string and calls the XML parser class which handles the
XML file and splits it up in DummyNodes which it puts into the client's route
list. The route list is the list containing the path of the current route. The
DummyNode contains: ID, Latitude, Longitude, Time and Way. As explained
in the communication section this I the information we need for displaying the
route on smartphones. In our dummy client it is not necessary to have the way

Figure 6.9: Overall design of the dummy client.

6.3 Components of our system 42
name. But if the client should be extended to actually navigate, it is
implemented and ready to use.

The simulation of the client driving along the route are mainly handled in the
ClientHandler, There are two possible ways to simulate the steps, either by
setting a fixed time between each checkpoints, or just a run-method, which uses
the time it is supposed to use between checkpoints and simulate real time
driving. The Clienthandler goes through the list with clients and calls a method
inside the class, which updates the position of the client. It’s all based on
timestamps, which it sends back to the server with the Updateposition
method. Both simulation methods is based on the speed of the client, the speed
can be set in the GUI where the user specify how much percentage of time you
want the client to drive with. If a client sticks to the speed limitations it drives
with 100%, if it drives half as fast as the limit it is set to 200%. This way of
simulating gives a good simulation, which are very close to real driving. This
way to simulate is the best implementation in our opinion, first we had a
simulation, which was based on steps. When a client had to move from one
node to another while crossing an intersection, we had to wait until we believed
enough time was spent at that junction, for it to be passed. Another problem
was driving in a queue. We didn’t know how long time it should take driving
on a way with a queue. Therefore the other way was implemented allowing us
to do our simulation much smoother.

The design of the client was also redone. In the start, a single client was made.
Doing that, required a lot of instances of the program be running at the same
time. Therefore the ClientHandler was implemented and GUI extended with the
DummyTable containing a list of Clients with the ability to change speed for
each client. This extension allows us to test the system very well, and was
necessary for our project. Furthermore the implementation of the
communication between server and client has been changed. The first
implementation involved a basic socket implementation where the
ClientHandler was listening on a predefined port, and then it extracted the ID
of the XML string and found which client it should pass the XML to. This
implementation was problematic when multiple replies from the server was
received, it was not able to read the buffer before the buffer was full and started
replacing messages. Therefore a new solution was implemented, this time using
channels in the port. Each DummyClient has its own channel assigned and
when the server wants to communicate with the client it sends the string
directly to the client. In this way the ClientHandler don’t have to keep track of
all incoming messages. And the problem with the buffer is almost non-existing.
Theoretical the same problem could occur again but it would require a lot of
messages to one single client are send at the same time. This is highly unlikely
cause a lot of junctions should occur at the same time within the client’s path.

6.3 Components of our system 43

6.3.2.2 Smartphone client
The Android client got the same basic functionality as the dummy client. The
client needs to be able to write in an address, get a route from the server and,
navigate the user to the destination. In the overview of the system we talked
about our design choices regarding the more simplified clients and the more
heavy server duties.

The Android client is therefore designed as simple as possible, this means that
not much logic are used, the most this client actually does is the navigation
part, where the other steps are exchanging data with the server and presenting
them to the user. The navigation part is showing which direction you should go,
way name and the distance to the checkpoint (This can either be a junction or
just the row turning). Each new GPS fix will trigger the calculation of distance
to next checkpoint.

Figure 6.10 shows the flow in our system from a user perspective. The user
types in the destination, the client sends the data to the server. The server
replies with a route, the client displays the route and allows the user to evaluate
the route and then confirm it. The Navigation starts and when it receives the
first GPS fix the first direction appears. Each new GPS fix the distance to next
checkpoint is calculated, and if it’s within 8 meters, the client will send an
“update position” with the new position, and then the distance to next
checkpoint is calculated and updated on the view.

This process is based on our overall architecture decisions, it should be a very
light weighted application, and on this prototype state, no fancy features are
implemented

Figure 6.10: State diagram

6.3 Components of our system 44

Figure 6.11 shows the technical aspect of the flow in getting a route and
navigating to the destination. The SmartClient is the heart in the android
system; it holds the object for the data, e.g. destination address, ID, Route. This
information are all stored in this object and therefore all the Activities; Menu,
Confirmation and Navigation must get the data from it. The receiveData()
is called from the Menu activity triggers the smartClient to read the buffer until
a message from the server occurs then it parse the XML file and fills the route
list with SmartNodes13. Afterward the call it starts the next activity:
Confirmation. The Confirmation gets the list of SmartNodes and displays them
to the user. This allows the user to verify the route before he begins the tour. If
this is accepted he starts the navigation which is explained in Figure 6.12

13 Explained in the Class overview in Figure 6.13

Figure 6.11: Sequence Diagram of getting a new route

6.3 Components of our system 45

The Locationchanged()14 method is a Event which gives us the opportunity
to obtain the latest Latitude and Longitude from the GPS. The method provides
us with the functionality to decide how often the method should be called and
how many meters the client should have moved before it counts as a
Locationschanged(). We decided to make the client as sensitive as possible
because of the importance of GPS data. The distance check is calculated in
meters, this may give some errors, The GPS unit has indicated to be unstable
when it comes to specific locations, although the buffer with 8 meters near the
checkpoint should allow the Navigation to discover the checkpoint. When the
distance is under 8 meters the Navigation calls the method getTurn() The get
turn is used to determine which direction the user should go next. For that we
need some vector calculations to determine this. It’s not enough to now the
coordinates of the next checkpoint, it is also necessary to know which way the
user came from. We observe the ways as two unit vectors; this gives us the
ability to calculate the cross product and hereby derive the direction.

14 http://developer.android.com/reference/android/location/LocationManager.html

Figure 6.12: Flow chart of the navigation method.

6.3 Components of our system 46
When the direction is calculated, the Navigation activity changes the arrow
picture according to the return value of getTurn(). The text field which
shows the distance to checkpoint and way name are also updated. Then the
sendUpdate() is called and sends the new position to the server.

In Figure 6.11 the Navigation calls the receiveData() this is the last thing
that happens in the locationChanged() this gives an event based listening
for new routes. This is necessary because of the server design, the server sends
out a new route without any interaction if it finds a faster route that the current.

The application on the smartphone is based on activities; Activity15 classes are
an android class, which can interact with the user. This is done with the
setContentView(View) method that allows to change the layout of the
window. The layout is designed in a XML file which is referred to by the
method.

The Menu activity contains the main method, it’s from here the program starts.
The menu activity also contains the first view, where the user is presented to
layout where the destination should be entered. The Clients ID is obtained from
the Data class. Afterwards a SmartClient object is created containing the
information about the client. When the address is send to the server, and the
client have received the data (shown on Figure 6.11). The route is set in the
SmartClient’s the incoming message from the server is first parsed through the
XML Parser and afterwards divided into SmartNodes. The Menu activity now
starts a new activity; Confirmation. The confirmation class’s only job is to
show which ways the route is going through. This ensures that the user can

15 http://developer.android.com/reference/android/app/Activity.html

Figure 6.13: The classes of the Android Application

6.3 Components of our system 47
verify that it is indeed the right address (if he has been there before or knows
which direction to go). If he confirms the third and last activity: Navigation is
started. The Navigation activity contains the Navigation feature as explained in
Figure 6.12. Navigation also makes a new Smartclient just like Confirmation.
This is necessary because of our data is stored in this object. The data are in the
two cases the need for our route data, stored in a list of smartNodes. This
means that the SmartClient got static on all the variables allowing us to reach
the data even though we create a new object. This is not a good design solution.
The implementation should be revisited if we had some more time, it works
because we only got one set of data in the client, and when the destination is
reached we clear the static variables. If we had time for one more iteration we
had passed the object between the activities. This could have been done with
bundles and intents; this is a easy approach when dealing with simple data
types, but when dealing with objects and list of objects it’s much more difficult
and time demanding. Another way to do it would be to only have one activity
and then use the method changing the layout for each click. This would result
in much smoother design containing a main class as a controller and a view and
then the SmartClient as a model containing the data. The problem with this
approach is a big controller class; the Navigation activity is easier to manage
when it has its own activity. If we had 1 more iteration we would have kept to
the plan. But extended the implementation with the data from SmartClient
passed through activities.

The design of our receiveData() method which is event based on the
LocationChanged(). A better way to implement it would be a Service16
running in the background. A service is a way to tell the main class new things,
which is exactly what we want to do, by running a service in a new thread. This
service should listen on the incoming messages to the program, and when it
receives a message it tells the Navigation activity right away. This would
optimize the performance on the client. It is important to show the new route
fast, cause of the risk of driving by a way where you should have turned.
Another problem in our implementation is the ID, the ID is generated based on
a timestamp which is most likely to be unique but not 100%. Another
implementation would be with the smartphone IMEI number using
TelephonyManager17 The manager is a class that provides the developer with
information about the device hardware and software.

The confirmation-activity’s functionality is not fully implemented; in the

16 http://developer.android.com/reference/android/app/Service.html

17 http://developer.android.com/reference/android/telephony/TelephonyManager.ht
ml

6.3 Components of our system 48
prototype the confirmation only gives the user a view of ways on the route. If
more time were added a Google Maps implementation would have been made.
Such an implementation views the route on the map before the user accepts the
route. The same implementation could have been done within the navigation
method. Instead of showing only arrows it could show the map at the same
time. This would present the user for a more transparent navigation.

7 Testing
7.1 System test
7.1.1 Black-box test
(Christian)

Testing the system turned out to be rather difficult when using a real-world
roadmap. Unless you live in an American-style city in which the roads are laid
out as a rectangular grid, it is nearly impossible to judge whether one route is
shorter or faster than another route.

Black-box testing requires that the output can be predictable for a certain input,
to evaluate whether the test returns the expected result. We cannot tell if the test
was success or a fail if we do not know what to expect. To alleviate this, we
have constructed a very simple map which we can use when testing the system.
It was written by hand using the syntax of the OpenStreetMap xml files. This
allowed the test to be conducted without changing anything apart from that
map. It consists of three roads in the east-west orientation and three roads in the
north-south orientation. The roads are laid out in a 3 by 3 grid which is 200
meters square, and is positioned within the area of DTU to provide a familiar
setting. The roads are named “Avej”, “Bvej”, and so on, and each of the east-
west roads has three addresses. These are offset slightly from the roads, as they
would be in a real map. Because the test map does not reflect the real world
data, the underlying map are displayed in the user interface, with our additional
info on top, and this might be a bit confusing. Please refer to figure Figure 7.1
for a visual representation of the test map.

7.1 System test 49

Tests were designed to try out the various capabilities of our system: routing,
detection of queues, re-routing of clients, removal and updating of known
queues. Clients were added using our dummy client generator.

1. This tests the most basic functionality of our system: a client
requesting a new route from its current position to an address.

2. This tests what happen if the client requests a route to its current
position.

3. Tests whether the pathfinder avoids a congested road and takes another
route. This is exactly the same as in test 1, but a queue is added on the
route that was found during that test, suggesting that the fastest route is
now different from the one found during test 1.

4. Same as in test 3, but with a new queue on the route found there. The

Figure 7.1: The map used in the black-box test. Roads are outlined, the

mapnodes are blue dots and circles with numbers indicate the addresses.

7.1 System test 50
fastest route now, should be through the central 4-way intersection.

5. Tests if a client get re-routed around a queue, if this is added after the
client starts driving.

6. Tests that a queue is reported and added to the graph, when a client
move slowly along a road.

7. Tests that when a client passes a road which has a known queue, but at
normal speed, the queue should be cleared.

8. Tests that when a client drives down a road which has a known queue,
but at a speed different from the queue, but slower than the speed limit,
the queue should be updated to the new speed.

The test results proved that in general the system works as it was planned, but
the textual reports from the server when no route is found could be more
precise. All test results are summarized in Appendix-4: Test results

7.2 GPS test
(Nikolaj)

This test is made to test the GPS unit in the smartphones. This test is performed
with a HTC Desire, with our Navidroid application that is redesigned to count
how many GPS-fixes it receives in 5 minutes.

A GPS-fix is when the locationChanged() method is called, when the
method is called, it tries to get the fix of the location, it will not end before a fix
is received. Its developed to send a location changed each second(assuming the
GPS fix was available) and a change in the location in a meter. The one meter
should be all the time because of the uncertainty of the GPS unit. Three test
cases is examined: indoor, outside on a road in central Copenhagen and outdoor
on a open field.

Table 7.1: GPS test results – see also GPS-fix test results in Appendix-4: Test

results

Place Fixes Until first fix Seconds per fix

Indoor 16 193 seconds 18 seconds

Small road in Copenhagen 91 86 seconds 15 seconds

Outdoor on a open field 151 11 seconds 1 seconds

This test shows that the GPS unit in a smartphone is not perfect to use. On a

7.2 GPS test 51
open field it would receive a update each second when driving, this would be
okay to use in a car driving. Inside Copenhagen where tall buildings interrupts
the satellite signal it is only a single fix each 15 seconds. If you are driving on
small roads 15 seconds could be okay, this test is performed standing still
outside. Therefore the factor when driving and being inside a car may affect the
result more. When used indoor its very hard for it to get a signal, which was
expected because of the need of clear sight to the sky.

The test shows that the GPS unit in a smartphone still need a bit improvement
to be very good as a car GPS. Unfortunately no data from normal car
navigation was available. Therefore these assumptions are based on our own
experience, including using a GPS-tracker app, while being passenger in a
car18. But in smaller cities and on open road the Smartphone works just as
good as a normal car navigation.

7.2.1 Performance test
(Christian)

This test was made to see the temporal performance of the system: how fast can
it provide a route to a user and can it do so consistently? We made this test with
the big greater Copenhagen map, and added dummy clients with the
randomized functionality. 50 timed samples were made, and the time to return a
route was logged. This is the time between hitting the submit button and the
client receiving the route. No distinction was made between those returns that
yielded a valid route, and those that returned a no-route-found message; the
timing was the critical factor in this test. Also, the straight-line distance
between the starting position and the goal was calculated and recorded to see if
there could be any correlation between these, which could be used as a basis
for predicting when a route should be ready for the client. The results are
outlined in figures 7.2 and 7.3. Note that two outlying values of 408 and 410
seconds are not included in the figures, as that would make the details of the
figures hard to make out.

18 http://www.sportstracklive.com/

7.2 GPS test 52

Figure 7.2: Histogram, showing the

time distribution of route returns

Figure 7.3: The time plotted against

the straight-line distance
From the histogram it is clear to see that almost all the measurements are below
2 seconds, with the median being 0.8 seconds. This is very satisfactory. Any
user should have enough patience to wait 2 seconds. There are a few outliers: 3
and 6 seconds. These may be routes that are especially difficult to calculate,
and the A* algorithm struggles to reach the goal, and never the less, are still
acceptable. The two outlying values of 208 and 210 seconds are not. Neither of
the cases return a valid route, and it appears that they had a goal that was
located in one of the “black spots” in the map (See section 5.1.2 for details).
The nearly identical times for these outliers, indicates that the pathfinder has
had to travel the same a similar amount of the graph without finding a valid
route, probably nearly the entire graph. This is done despite them being totally
different: different starting and goal locations, and different distances of 11 and
51 kilometers.

An additional test was made by auto-generating 100 dummy-clients in one go.
This took 1342 seconds, or 13.42 seconds per client. This is not acceptable, but
looking closer at the results, revealed that 3 out of the 100 routings were the
full-graph traversals as explained above. Subtracting these (409 seconds each)
and calculating the average or the remaining 97 clients yields a values of 1.19
seconds per client on average. Much better, but we still need to be able to avoid
those full-map traversals for the system to be really feasible. This may be done
with a simple time-out function, so if a routing takes more than for example 10
seconds, the result could be assumed to be a no-route-found, and the
pathfinding could be stopped. A better solution would be to tidy up the map
data to ensure that there are no “black spots” or unconnected areas, making
sure that no areas are left unconnected, and that all nodes and ways match up,
which they do not do in the raw data from OpenStreetMap.

7.2 GPS test 53

7.2.2 Stress test
(Christian)

This was to test how many clients, the system could handle at any one time.
This is of course a matter of machine capability. More ram, faster processor,
better internet will enable the system to handle more clients. This difference in
performance has been very noticeable between the computers that we have
used during the project. The laptops that has been the main workstations during
development, start to slow down when adding as little as 100-200 clients
simultaneously, but they can both handle the simulation with ease. A more
capable stationary PC was able to keep up until 750 clients because of its better
processor and ram figures. As with the laptops, it is the actual addition of
clients and pathfinding that is the heavy part. Simulating and visualizing is not
the limiting factor. If the system is to be used in a real setting, a dedicated
server would help a lot and allow many more clients to use it. To expand the
capability even further, several servers could be used, with some sort of load-
sharing scheme that would have to be implemented.

7.3 Use-case test
(Nikolaj)

The use-case tests are conducted because of the importance of testing the most
important functional requirements. These are based directly on the use cases
developed in the requirements section. The actual tests can be found in
Appendix-4: Test results (section 10.4.2) and in this sub-section we will discuss
our results and show them if important.

Description of Use-case tests

1. The Find Route test is when a user want to get the route from A to B.
The test failed one place when no internet connection are available, the
try/catch statement does not catch the exception that is thrown. This
results in a Crash of the application when a route is requested and there
is no internet coverage.

2. The Drive along Route test is when the user drives along the route. All
of the tests is passed.

3. Drive away from route test is when the users drives away from the
route, then the application will not show the user back to the
checkpoint but keep showing the next checkpoint. All tests is passed.

4. Report congestion test is when a car drives slower than the speed limit
the server should set a congestion on the way the user is located. All of
these tests are passed.

7.3 Use-case test 54
5. Get new route tests is when the user drives along the route and

congestion appears on a way in its route. Then the server should
calculate a new route and send it to the user. This test is passed.

6. Exit → end route test is when the user shuts down the application or
the route ends, then the application should send a disconnect to the
server and the server should remove the client from server. This test is
passed.

7. Exit → client vanish test is when the application loses the Internet
connection or battery power, then it should send a disconnect to the
server. This test is partial failed, because of the android design the
application closes before disconnect is send. But a feature on the
server, which removes the inactive clients, is implemented. Therefore
the client doesn’t have to send disconnect.

7.4 Path-finding compared to krak.dk
(Nikolaj)

This test is a test of the difference between our product and a professional route
description “krak.dk”. The test scenario will be a short distance, and a long one.
The short one is look at the route and see if they take the same ways. And the
long to see if the calculated time matches.

As seen in Pathfinding comparison test results (section 10.4.3), path finding
comparison the short routes are identical and with the same time to travel. The
long route is almost same time only 4 minutes apart. They choose 2 different
ways, both ways are possible and we were not able to see why there is a small
deviation, it can be because of junction calculations, or speed – limits.

7.5 Platform tests
(Christian)

The goal here was to try the smartphone client program on as many different
Android phones as we could get our hands on. We had two HTC Desires, we
borrowed from DTU, Christian has the same model. In addition to this, friends
and relatives with android phones were asked to help. The smartphone model,
the installed version of Android and whether our app worked or not, as well as
comments are presented in Table 8.1.

7.5 Platform tests 55

Table 7.2: Platform test results

Smartphone Android version Works Comments
HTC Desire 2.2 Yes

HTC Desire HD 2.3.5 Yes Arrow graphics does
not show

Sony Xperia X10 mini 2.1 No Does not even install

HTC Sensation XL 2.3.5 Yes
The reason that the app does not install on the Sony Xperia X10 Mini is
probably that the android version is below the one specified in the source
manifest file. This specifies which android api-level the app uses and ensures
that it complies with the minimum capabilities of the handset. We may have
been able to lower this level, but during the development phase, we had only
access to HTC Desire phones, which has Android 2.2 and we could not have
been sure that the app would be able to run on any lower api-levels without
further testing. To make the app run on this phone may be as easy as changing
the line in the manifest that specifies api-level to be “7”, the one that represents
Android 2.1.

The HTC Desire HD shows the direction arrows as the generic Android-logo
icon. This handset (as the name implies) has a high-resolution screen, and the
arrow graphics were made to fit a medium resolution screen. Providing a set of
arrow graphics with a higher resolution should fix this easily.

8 Discussion
8.1 Navigation versus our system
(Nikolaj)

This sub-section will compare our type of navigation to the known professional
navigation, which are used in cars.

The specification of a “normal” Navigation unit compared to our product is:

We used the most sold GPS unit in 2009/20101920 The Garmin nuvi 265WT21

19 http://gpstracklog.com/2010/12/best-selling-gps-for-november-2010.html
20 http://reviews.cnet.com/8301-13746_7-10411699-48.html
21 https://buy.garmin.com/shop/shop.do?pID=13430&ra=true

8.1 Navigation versus our system 56

Table 8.1: Select specifications for the Garmin navigator compared our

system.

Feature Normal Navigation Unit Our Project
Internet No Yes

FM Receiver Yes No

Display size 4.3” 3.7”

Preloaded street map Yes No

CO2 based route Yes Yes

The table above shows some selected specifications of the two products, its
chosen based on giving an overview of the difference between these Navigation
methods. The lack of internet in the Garmin compared to our system is
compensated with the preloaded map and FM receiver, our product uses the
internet to communicate with the map data, while the Garmin has loaded the
map in internal memory. The Garmin unit has the advantages of not depending
on a available internet connection. Our product also needs the Internet for
receiving the TMC in XML-structure while the Garmin receives it through the
FM-receiver. The Garmin screen is a bit bigger, this is the biggest advantage
compared to our product. On a smartphone it sometimes can be hard to see
where you should make the turn because of the smaller screen. This could be
compensated with an integration, with voice telling the user where to go.
Android has the text-to-speech functionality that could be used.22

Another big problem would be that our product is dependent on internet
connection. But the fact that Internet gets more common, and that most of
Denmark is covered with 3G, compensates for the lack of a map downloaded to
the internal memory. Our advantage of not having the map preloaded makes
changes to the map, easier to update. If a new road is built, we can just update
the centralized server, meanwhile each Garmin unit needs to be connected to a
computer, allowing the Garmin unit to update the map.

8.2 Deficiencies
(Nikolaj)

This sub-section will discuss the deficiencies of our project, this analyze will
be based on our requirements specification, and what deficiencies we have

22 http://developer.android.com/reference/android/speech/tts/TextToSpeech.html

8.2 Deficiencies 57
encountered.

8.2.1 Data
The implementation of our project is dependent on data. Data in this case is the
information our system receives from clients, therefore we need a minimum of
users of the system before it is usable. The way we implemented the traffic
control, is the way you have to go, if we do not want to spend a lot of money
on hardware, which can count cars at each way. In our implementation we do
not need any hardware besides the servers. Therefore it is also important that
the clients actually drive the route the navigation tells them. If they drive
without the application turned on, the other users of the system cannot count on
the data the system supplies. If we should give 100% information about how
much time it takes to drive on each way, we could do two things. Make the
smartphone to update the position each time its changed, in this way we know
where all smartphones with the application installed are. This may give some
moral and ethical problems because of surveillance of each user. Another
approach could be installing hardware at all roads; this hardware could either
count cars per hour or measure the speed of each car and send the data to the
server. This way we rule out the user errors of forgetting to turn on the
application, and start navigation even for short rides. The cons with this
approach would be the price and time it takes to set all the hardware up to
count cars. This is an expensive solution compared to the smartphone way
where all data is supplied by the smartphone.

8.2.2 Navigation
Our navigation design may encounter some problem. The implementation only
contains the navigation with arrows, way names and distance to the turn. Other
GPS units show a map zoomed in to the position of the user. This way it’s
clearer to the user which way they should turn. Our implementation with
arrows works and gives the user the opportunity to follow the route, but it lacks
on the user-experience. If we had some more time we would have improved the
navigation with a drawn route on the already implemented Google Maps,
which has an API for drawing. Our navigation unit is not capable to lead the
user back to the last checkpoint if he is lost. Our solution will keep showing the
wayname of the checkpoint and the distance to it. This way the user can see if
he moves further away from the checkpoint or closer. But there is no arrows or
an automatic recalculation of the route. If the user is lost he must start a new
route, afterwards the server will send a new route to the user. Starting from his
current position. An optimal implementation would keep track if the user is on
the route, if he disappears from the route, the navigation should send a request
to the server asking for a new route from the new position.

8.2 Deficiencies 58
The map data we get from the OSM has some failures. We do not verify the
quality of the data we get, but read it in to the system. A type of insurance that
the data we get from the map actually works would be preferable. We have
encountered some problems with the routes, because of the ways are not
connected. This happens when we read the map into the system. Some ways are
not connected but the data is still in the system. Therefore the algorithm
sometimes has a long response time. A solution to this could be when the
reading of the XML file, we make a path from each node, and if no nodes are
able to connect then we remove the node from the data. This way the algorithm
would always find a route. But it would take much longer time to read in the
map if all these connections should be verified.

The data structure of our graphs could be improved. Right now the data lies in
lists. If the data were put into some more high performance structures as trees,
the performance would be better. Our solution is to all the data we got in graphs
are sorted, this way we know exactly where the data is based and can make
insertion and withdrawal fast. This is implemented with binary search as
explained in section Graphbuilder on page 31.

8.3 Future possibilities
(Christian)

8.3.1 Improved positioning
One of our headaches was the GPS receivers in smartphones. The GPS signal is
notoriously difficult to receive inside buildings, or in cities, where tall
buildings blocks the view to the sky, and flat facades causes radio signals to
bounce around, introducing errors and loss of positioning service. The lack of
reception inside buildings, should not be an issue to our system, as we do not
expect the users to be requiring directions for the parking spot inside their
garages. Loss of reception can also be an issue inside tunnels, however, and
that could be an issue. As the network service is probably also lacking inside
tunnels, these would be double trouble. In open country, at least as open as a
suburban areas, with only 1- or 2-story buildings, we have found no problems
at all: first fixes arrive in seconds, and the resolution and precision has proven
better than 10 meters in our tests.

In the very near future, new and promising ways of positioning are coming into
use by the public. The European Union is developing its own satellite-based
system, called Galileo. This is to have full control over the availability of the
system. GPS is controlled by the United States Air Force, and as such, it can be
turned off or encrypted at any time, the USA wants to limit the availability. The
EU wanted better control, and also better accuracy, so started the Galileo

8.3 Future possibilities 59
project which is very similar in structure to the GPS-system once it becomes
active (planned for 2014-2019). China is developing a similar system also. All
these systems, will improve the availability of a positioning system greatly. At
least in times of calm and peace, the operators are planning to have signal
available to public use that can have precision to within meter scale. A handset,
or navigation aid in a car, that took into account all these systems, would have a
much better chance of getting a valid fix, even among the tall buildings of a
city. This is because the satellites are much more densely spaced in the sky, and
a receiver on the ground would need a much smaller part of the sky visible to
pick up the needed number of satellite signals.

Hybrid positioning systems are an emerging concept that could provide better
positioning in urban areas.23 These uses combinations of different technologies
such as nearby wifi hotspots, mobile cell points and others to provide a
positioning that can argument or replace the GPS-based systems.

8.3.2 Reduction of carbon emissions
The environment could get a lot of benefit from our system. Traffic is one of
the largest contributors to CO2-emissions (86% in Copenhagen in summer,
39% in winter24) Anything that can decrease the emissions from traffic may be
an important factor in the present and future. Our system can not make sure to
reduce the time it takes to drive and thus the amount of CO2 emitted, but it can
optimize the time. There is a lot of talk about carbon efficiency and A, B, C
rated cars, Blue Motions and so on and so on, but a car that is stuck in a traffic
jam drives 0 km per liter regardless, however advanced its technology may be
(as long as its engine is running). Apart from total traffic jams, even a medium
congested road will increase CO2 emissions by the cars: start and stop and ever-
changing velocities is much worse than cars driving at a constant velocity.25 So
a traffic management system that can avoid congested roads will help the
environment. Our system does this and more: we both counteract traffic
congestion, and decrease the time a driving trip takes, even if there is no
congestion. All else being equal, a quick trip emits less CO2 than a long lasting
one.

8.3.3 CO2 based navigation
An interesting addition to our system could be to be able to generate the routes

23 Google Maps for Mobile or openBmap.org for example
24 Towards a spatial CO2 budget of a metropolitan region based on textural image

classification and flux measurements: Remote Sensing of Environment (October
2003), 87 (2-3), pg. 283-294 Henrik Soegaard; Lasse Møller-Jensen

25 A lorry union website claims 3 times more:
http://www.iru.org/en_policy_co2_response_flowingtraffic

8.3 Future possibilities 60
that causes the least CO2 to be emitted during a trip: CO2-based pathfinding.
Technically, it would be extremely simple to change our pathfinder from
finding the fastest route to finding the cleanest route. At the present, the A*
pathfinder uses a cost value to find its way. This cost function is the time it
takes to travel a way, based on either the speed-limit, or the slowed-down
congested speed, deduced from the gps fixes and timestamps reported by the
clients. This cost function could be changed to be the amount of CO2 emitted
while traveling a way, and the pathfinder would find the cleanest route – voilá.
CO2-navigation!

But it is not so simple unfortunately. The barrier here is data: how can we tell
how much CO2 is going to be emitted? Different motors have different
emission levels and efficiencies, and even the same motor in a different car, or
at a different speed or different gear will change the emissions. Perhaps it
would be possible to split the cost function in two: one part focusing on the
actual vehicle, and one part focusing on external factors.

External factors first. These is the factors that are equal to all vehicles.

• The speed of a way: high speed causes more aerodynamic drag, but
decreases traveling time.

• The surface of the road: rough roads causes more resistance, but slick
ice is also bad for the emission levels.

• The type of road: speed-bumps, and frequent twists are worse than a
straight road.

• Incline: driving uphill needs more power than going downhill.
• etc

Internal factors are those that differ from vehicle to vehicle.

• Engine efficiency: this also depends upon the speed of the car.
• Tires: worn winter tires with too little pressure in a hot summer can be

a significant drawback
• Car aerodynamics: Most motor vehicles are very dirty from an

aerodynamic point of view, and there can be a lot of differences
between vehicles.

• Driver: The driving style of an individual can have a big part.
• etc

All these factors and many others have a bigger or smaller effect on the CO2
emissions, a vehicle may produce. Our system could perhaps be changed to
receive some vehicle data from each client, when receiving a request for a new
route and then combine these with other data, stored in its map to calculate a
cost-value for the ways, and thus come up with a cleanest route for that
particular vehicle. We have included a CO2 cost for roads in our system, but we
do not use it for other purposes than calculating the approximate emissions on

8.3 Future possibilities 61
each route.

8.3.3.1 Implementation of CO2 data in our system
The values are based on the quite sparse data we have been able to get.
Although there is a lot of information on the fuel economy and therefore the
CO2 emissions by cars in general, these are meant as comparison values
between cars, so a buyer can choose a car by the fuel economy. The values are
typically a measurement of a fixed, benchmark situation, that is supposed to be
representative of a normal, mixed, driving profile with accelerations
decelerations and different speeds. What we would like instead, is data on how
different driving speeds affect the emissions. These would then be used for the
different types of roads in our map. Apparently, the car manufacturers keeps
these values for themselves, and only publishes the results of required
benchmark(s). Manufacturers are even rumored to design their cars to perform
well in the benchmarks, instead of normal day use, and this may be the
incitement to keep their data safely tucked away.

After some investigation on the internet, and asking a Volkswagen car dealer
for data that was better suited, we had to give up and take a different approach.
We found that the the car in most widespread use in Denmark is the VW Golf,
though the specific model is not detailed. We were able to find slightly more
detailed data about this, than most other cars26. The European standard fuel
economy test is using the so called New European Driving Cycle, which is a
combination of an urban drive cycle and an extra urban drive cycle. These are
supposed to represent a typical driving profile inside a city and outside a city
respectively. During these cycles, the emissions are collected and analyzed
afterwards for the result. VW also specified the partial fuel economy during
each separate part of the test. This allowed us to calculate the emissions during
these driving situations. The data and results are listed in Error: Reference
source not found. Although meager, we would now have at least some data...

Table 8.2: CO2 emissions calculated from the fuel consumptions as detailed

in the data for the VW Golf 1.4

Drive cycle Fuel consumption CO2 emission Relative emission
Urban 8.5 L/100km 197 g/km 1.32

Extra-urban 5.1 L/100km 118 g/km 0.79

Combined 6.4 L/100km 149 g/km 1
We have entered the relative CO2 figures into our map, guesstimating which
road types could be considered “urban” or “extra-urban”. Seeing that the VW

26 http://www.car-emissions.com/cars/view/38130

8.3 Future possibilities 62
Golf could be considered an average car, we have chosen this approach to make
the external factors as explained above. By counting up this relative CO2 cost,
and multiplying with the combined-cycle CO2 emission figure, we can then
calculate the total emission of a route. Assuming that other cars have the same
relative factors, we can multiply with their combined value (which is available
for all cars in the EU) and get their CO2 emissions. We admit that that there is
quite some approximations and assumptions involved in this approach, but at
least it shows that it is possible to implement a CO2 based navigation system.

8.3.4 Integration of public transportation
An important factor in the transportation infrastructure is the public
transportation forms like trains and buses. OpenStreetMap has provisions for
including data relating to public transportation, such as bus stops and train
stations, and even include some routes in its data. There are proposals up for
more deep integration of public transportation into the map. This proposal does
not cover timetables, and timetables would be critical to the integration into our
system. It would not be of any benefit for a user to know that there is a train
route, he can take to avoid a traffic jam, if the train departs in 9 hours from
now.

In Denmark we already have a service that covers public transportation routing
and timing very well. “www.rejseplanen.dk” is a cooperative effort by the main
transportation companies to maintain an up-to-date route-finding service at all
times. This, however, does not have any provisions for private cars on the main
road network. What we would need is a merger of these.

There are some snags inherent to coupling personal and public transportation.
People driving a car will do so when they want. People taking a train will have
to do so when they can. A user who wants to go from point-a to point-b may be
able to do so in his car all the way, or there might be a possibility to take a bus
or a train for part of the route. Our pathfinder could then guide the user to a
train or bus stop. But it would have to do so in time to park the car, walk to the
ramp and maybe buy the ticket before it leaves. Another issue is parking spots,
the user would have to be guided, not to the station itself, but to a nearby
parking facility, and one with a free spot too. If the user cannot find a free
parking spot, the detour would be wasted – time-wise anyway.

The way a user would normally use our system would be when he enters his
car and wants to navigate around congested roads to a goal. This would mean
that to provide a route that includes public transport, we would have to be
tightly timed, as there would be only a very short window of time to take a
train or bus, before the effort would be wasted anyway. There would also have
to be an amount of luck, in that there must be parking available within
reasonable time and distance. These challenges would make it very difficult to

8.3 Future possibilities 63
make a usable coupling between the public grid and the private cars, which
could consistently provide fast and efficient routes to the users.

8.3.5 Driverless cars
The ultimate level of traffic control would be to take the man out of the loop.
Studies have shown that the main cause of traffic jams may be human factors.27
Accidents and driver errors are also almost entirely a human affair. It is also
apparent that even people who do use a satellite navigation system to find their
way takes a wrong turn now and then. The user does not always follow the
directions of the navigation aid, unwillingly or on purpose. A guidance system
that provides a good and consistent route will with time make the user more
confident about following the directions and thus make them more likely to use
our system as it was meant to be used: following the directions blindly to avoid
the congestion, even though it may not be apparent that it is the best solution in
all cases.

These human decisions are nearly impossible to control – and whether they
should even be tried to be controlled is very much an question of ethics. We
have already made a system that would be a nice thing to have for a “Big
Brother” - giving “him” total control does not seem right to us. We want to
make something that can advise the users, not decide for them, even though
those decisions may prove wrong, people should still have the right to do the
wrong thing...

Driverless cars are no longer a thing of science-fiction, although they are still a
thing of science, and not ready for everyday use. But we are getting there.

8.3.6 TMC integration
(Nikolaj)

Traffic Message Channel (TMC) is a service delivering traffic and travel
information to drivers. Normally transmitted to the user using the FM-RDS
system, allowing users to get the information with their radio. This service is
used by radio stations to transmit traffic information to drivers and by the
navigation companies to update speed limits on ways. This way the user of the
navigation can avoid traffic incidents and roadwork. The navigators which uses
this also got a FM receiver implemented to receive the TMC, due the lack of
Internet connection. In some countries the TMC is also brought to the users in a
XML-structure. This allows devices with no FM-receiver but a internet
connection to receive the data. Trafikken.dk brings this to the users in
Denmark. This service is unfortunately not free, and therefore we have not

27 http://ing.dk/artikel/86162-stop-and-go-paa-motorvejen-det-er-kun-bilisternes-
skyld

8.3 Future possibilities 64
been able to implement it in our system. We have created the class QueueSetter
which can set queues on ways. With this implementation we only need the
XML parser and interpreter to implement this feature. The TMC
implementation will allow the users to avoid these zones if there is a faster
way. Without it, at least one client must drive though the zone with roadwork in
order to report of the zone with a lower speed limit. The TMC also transmits
about car accidents that an implementation also would prevent cars from
choosing this way. Especially roadblocks are something we want to avoid. If
the client’s checkpoint is on the other side of the roadblock and the client just
holds still, the server will not know about the queue before the roadblock is
gone and it reaches the checkpoint. This may result in many other clients also
being guided though this way with a roadblock.

9 Conclusion
(Nikolaj and Christian)

This thesis presented a prototype of a traffic guidance system. We have not
been able to find similar project that uses the smartphone infrastructure to gain
traffic information and do traffic control based on these data. Smartphones are
sold as never before supplying us with a cheap and effective infrastructure
without the need of purchasing expensive hardware.

The system contains: Android smartphone application, Server, Dummy Client
and Visualization. It was necessary to narrow down the scope of the project,
because of the primary goal, which was a working implementation of the
system. With the server as the central unit and smartphone application to
present the data to the user. The dummy client and visualization is developed
mainly for testing. To meet the project scope a horizontal prototype has been
developed.

The test-results indicates that we have successfully implemented the traffic
guidance system. The data-structures, algorithms and communication gives
good scalability and, if enough users driving with the application running, the
system could navigate users around congestions.

The scale of the system is the main challenge. A certain number of users are
required to get sufficient data, if data about congested roads is not present, our
system will be like a normal navigation system. Another problem is the ethical
problem in our way to control clients. We always have control over where a
client is located. This can be traced to a unique smartphone, in this way we are
in possession of sensitive data.

We have shown the scalability of the system and future possibilities of the
system. The integration with public transport could minimize the traffic

9 Conclusion 65
otherwise heavily congested arterial roads. This extension could also reduce the
CO2 emission from transport. Another feature partly implemented is the CO2

based pathfinding, allowing the user to choose the most CO2 economic route.
All these, as well as future integration with TMC, makes for a promising future
for this type of system.

10 Appendix 66

10 Appendix
10.1 Appendix-1: User's manual
10.1.1 Server
(Christian)

The server-side does not need any involvement from the user to run as such,
but the graphical user interface provides overviews of the status and the ability
to enter data for demonstration purposes or for testing.

The user interface consists of three main parts:

1. A console that the server writes to.

2. The list of queues or congested ways.

3. The map

The server console shows the incoming messages from all clients, prefixed by
their id, which is basically a timestamp. dummy clients have their timestamps
subtracted by 20 years, so it is easy to see whether a message comes from a real
or a dummy.

The map allows the user to visualize the current clients, their routes and the
queues that are currently detected. In the top left corner, there are buttons to
control the view. The “Zoom to fit” changes the zoom level of the map to

Figure 10.1:

10.1 Appendix-1: User's manual 67
include all markers, “Cars & routes” toggles the markers on and off, and
“Traffic jams” toggles the congestion markers on and off. There is also a
legend that shows the color scale of how much a queue slows the traffic.

The map can be zoomed using the mouse-wheel and moved by dragging the
mouse while pressing the right mouse button.

Clients are shown at their last known position with a car-shaped icon with a
color, specific to this client. The client's route is a line of that same color, with
the starting location marked by a green dot and the goal marked with a red dot.

The Queuelist shows all the ways on which the traffic runs slower than normal.
The list shows the way's name, the current speed and the relative slow-down as
a percentage of the speed limit. There is also a button that clears the queue on
this way, and resets the speed to normal. Below the list is a button that resets all
the queues, and one that opens a pop-up window that allows the user to enter a
new queue. This is shown in Figure 10.2.

To make a new queue, enter the name of the road and the speed of the queue (in
kilometers per hour) in the top row and click the “Add queue”. This will set a
queue on all ways that has that name. If you happen to know the ID of a way, a
queue can be entered on a single way, using the lower row. The ID is the
internal index as used by our graph.

10.1.2 Dummy client
The dummy client allows the user to add clients to the system for
demonstration and testing purposes. The user interface has two tabs. The first
for adding new clients, the second for managing and simulating these.

To make a new client, enter the latitude and longitude coordinates (in degrees)
and the destination address, and click the “submit” button. Alternately the
button labeled “autofill” can be clicked to provide a random starting position
and destination address, generated from the map data. The location is within

Figure 10.2: pop-up window for

entering new queues.

10.1 Appendix-1: User's manual 68
the area covered by the map, but it may be far from populated areas. Below
these controls, a panel labeled “multiple clients” allows the user to enter any
number of random clients at once. Enter the number of clients to be added and
click “ok”. This functions much like the autofill above, but allows the addition
of dozens or hundreds of clients with one click.

The tab called “Active clients” shows a list of the clients that has been
generated. Each is represented as a single line with a rectangle of the same
color as that client has in the server gui. This provides for easy identification of
the client. Also shown is the client's id, and how fast that client is driving. This
is the percentage of time taken to drive down a way, relative to the time it
would take, driving at the speed-limit of that road. To change this, enter the
new value in the text box and click “change”.

Below this, the time can be simulated. This will simulate the clients driving
along their assigned routes. To use these controls, enter the number of seconds
to simulate, and click the “seconds” button to advance time a fixed amount of
time. By clicking the “run” button, the time will advance continuously until it
is clicked once more.

Figure 10.3: The two tabs of the Dummyclient gui.

10.1 Appendix-1: User's manual 69

10.1.3 Android Application:
(Nikolaj)

Installing the software:

You need a eclipse environment to build and install the Android Application
”Navidroid”. Also see “android developers”28 for information on installing
without Eclipse.

• Import the project from the zip file.

• Choose Android API 8

• Plug in your android based device and run as Android application

• The program is now installed.

Using the program:

• Open the Navidroid application

• Type in destination address

• It’s important to wait until the GPS signal has a fix. This is shown
when the GPS logo at the top of the screen stops flashing.

• The ways your road is build on will now be shown on the confirmation
page. Press confirm if it looks right.

• The “Navigation” screen is shown. It will tell you to wait until it got
the right GPS fix

• The navigation starts navigate, and you can follow the arrows and
distance with the name of the street you are supposed to turn at.

• The application will tell you when you are arrived to the destination.

28 http://developer.android.com/guide/developing/building/building-
cmdline.html#RunningOnDevice

10.2 Appendix-2: Timetable 70

10.2 Appendix-2: Timetable

10.3 Appendix-3: Changes in JmapViewer 71

10.3 Appendix-3: Changes in JmapViewer
Method Description
JMapViewer Constructor. Added initialization of

variables

InitializeZoomSlider Made the zoom controls. Removed
the addition of most of the controls,
added buttons to show/hide the
markers, routes and queues. Added the
queue color scale legend.

paintComponent

paintPath New: Paints a single MapPath

updatePathsAndMarkers

updateQueues New:

setMapQueuesVisible New: Set the boolean variable and
repaint

setMapQueueList New: Set the entire list of queues and
repaint

getMapQueueList New: Get the list

addMapQueue New: Add one queue and repaint

removeMapQueue New: Remove one queue and repaint

removeAllMapQueues New: Clear the entire list of queues
and repaint

setServer New: Sets the server from which to
get the data about clients and queues

Table 10.1: Changes made to JMapViewer.java

10.3 Appendix-3: Changes in JmapViewer 72

Class name Description
MapMarkerCar Implementation of the mapmarker interface,

paints a polygon the shape of a car

MapPath Interface for displaying lines between a series of
points on the map

MapPathRoute Paints a colored path with a basic 3-point wide
stroke

MapPathQueue Paints a wide path with the color defined by a
slowdown variable.

ScaleLegend Paints a rectangle filled with a green/red
gradient and labels

Table 10.2 Overview of the classes added:

Figure 10.4: Screenshot of the JMapViewer demo from OpenStreetMap.org

10.4 Appendix-4: Test results 73

10.4 Appendix-4: Test results
10.4.1 Black-box tests

Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
1

Scenario Basic routing

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions none

Expected outcome System finds the fastest route

Result Success. The center intersection is avoided because of
the delay associated with 4-way intersections.

Screenshot

10.4 Appendix-4: Test results 74

Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
2

Scenario Basic routing

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Avej 3

Other preconditions None

Expected outcome System doesn't find a valid route, because the starting
and destination nodes are the same.

Result Partial success. The server doesn't find a route, but
reports “No route possible” - a better report would be
preferred.

Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
3

Scenario Basic routing, congested roads

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions Heavy congestion on Fvej

Expected outcome System finds the fastest route

Result Success. The congested Fvej is avoided and center
intersection is avoided as well

Screenshot

10.4 Appendix-4: Test results 75

Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
4

Scenario Basic routing, congested roads

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions Heavy congestion on Dvej and Fvej

Expected outcome System finds the fastest route

Result Success. The congested roads are avoided despite the
intersection delay in the center

Screenshot

10.4 Appendix-4: Test results 76

Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
5

Scenario Re-routing, congested roads

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions After the user has started driving, a traffic jam is set at
Cvej

Expected outcome System finds the fastest route as in Test-1, but re-routes
the client when the queue is added.

Result Success. The tests starts as describes in Test-1. The new
queue is inserted and as the client reaches the next
waypoint, a new route is made, diverting him away
from the jammed road.

Screenshot

10.4 Appendix-4: Test results 77

Test Name
Tester
OS
Test no.

Blackbox - queues
Christian
Windows Vista SP2
6

Scenario Detection of queues

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions After the user has reached the Bvej/Fvej intersection,
his speed is lowered to 10kph

Expected outcome Upon reaching the next route-point, a queue should be
reported

Result Partial success. The new queue is reported not upon
reaching the next route-point but the next one over.

Screenshot

10.4 Appendix-4: Test results 78

Test Name
Tester
OS
Test no.

Blackbox - queues
Christian
Windows Vista SP2
7

Scenario Removal of queues

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions This setup is the same as after Test-6: a 10kph speed
queue at Cvej, but the client doesn't get re-routed, and
continues.

Expected outcome When passing the queue, the client should report that
the queue has gone, and it will be removed.

Result Success. The queue is removed when the client has
passed.

10.4 Appendix-4: Test results 79

Test Name
Tester
OS
Test no.

Blackbox - queues
Christian
Windows Vista SP2
8

Scenario Updating of queues

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions This setup is the same as after Test-6: a 10kph speed
queue at Cvej, but the client doesn't get re-routed, and
continues, but at 40kph, instead of 50kph.

Expected outcome When passing the queue, the client should report that
the queue has sped up, and it will be updated to the
new speed of 40kph.

Result Success. The queue is changed when the client has
passed. The list in the server UI is updated, and the
color in the map is changed to a more green one.

Screenshot

10.4 Appendix-4: Test results 80

10.4.2 Use-case test results
Test Name
Tester
OS
Test no.

Use-Case test: Find Route
Nikolaj
Mac OS X Lion
1

Precondition The user wants to get a route from current
position to an Address.

Post condition

Main path (M) 1: User type in the destination Address
2: The phone sends the information to server
3: Server processes the data and find the route
4: Smartphone receives the route

Alternative path1 (A1) No internet on Smartphone then, the unit will
not be able to send data .

Alternative path2 (A2) No GPS signal, the Smartphone will not send
the correct start location

Alternative path3 (A3) No path found, If there is no possible path
between start and end the Server should
return an empty XML path.

Extra Same setup on the dummy client

Table 10.3:

10.4 Appendix-4: Test results 81

Test path Expected
M The Smartphone should receive the calculated route

from server and start navigates to the destination.

Same with dummy client

A1 The smartphone will not be able to get pass the first
page in the application.

The Dummy will not send any Data.

A2 The server will receive start Latitude =0.0 and start
Longitude =0.0 because the GPS will not set the
variables.

The dummy are not dependent on GPS as it auto
generates coordinates.

A3 The Smartphone will receive a path which only
contains the start path and destination

Same with dummy client

Screenshots

Map Overview with
route:

10.4 Appendix-4: Test results 82

dummy client

Confirmation page on
Smartphone. A Listview
of the path.

Table 10.4:

10.4 Appendix-4: Test results 83

Test Name
Tester
OS
Test no.

Use-Case test: Drive along route
Nikolaj
Mac OS X Lion
2

Precondition The user has received a route, and
reached the first checkpoint.

Post condition

Main path (M) 1: User moves towards the checkpoint
2: When the user is within 10 meters
radius of the point, the smartphone
will send an update. Including
coordinates, ID and timestamp.
3: The server receives the update and
sets the clients new position.

Alternative path1 (A1) No internet on Smartphone then, the
unit will not be able to send data.

Alternative path2 (A2) No GPS signal, the Smartphone will
not send the correct current location.

Alternative path3 (A3) The user never reaches the start
checkpoint.

Table 10.5:

10.4 Appendix-4: Test results 84

Test path Expected
M The Smartphone will send data to the

server with new position

Same with dummy client

A1 The smartphone will not be able to
send data to the server

Same with dummy client

A2 The server will receive Latitude =0.0
and Longitude =0.0 because the GPS
will not set the variables.

The dummy are not dependent on GPS
as it auto generates coordinates.

A3 The phone can not guide the user
before he enters the first checkpoint

The dummy are not dependent on GPS
and therefore it always reaches the
first checkpoint.

Screenshots

Before first checkpoint is reached.

First checkpoint reached

10.4 Appendix-4: Test results 85

Second checkpoint reached

Client receives a route, and sends
two updates to the server

1991-11-17 14:59:40.807 connected,
new route found
1991-11-17 14:59:40.807 update
position
1991-11-17 14:59:40.807 update
position

Table 10.6:

Test Name
Tester
OS
Test no.

Use-Case test: Drive away from
route
Nikolaj
Mac OS X Lion
3

Precondition The user has received a route, and
drives away from the route

Post condition

Main path (M) 1: User driven away from route
2: Smartphone shows the checkpoint.

Extra Same setup on the dummy client

Table 10.7:

10.4 Appendix-4: Test results 86

Test path Expected
M The smartphone don’t know where the

user is. But keeps showing the
checkpoint he is supposed to go to.

The dummy client doesn’t navigate

Screenshots

Table 10.8:

Test Name
Tester
OS
Test no.

Use-Case test: Report congestion
Nikolaj
Mac OS X Lion
4

Precondition The user has received a route, and
drives on the route.

Post condition

Main path (M) 1: User drives on a way
2: User drives to a checkpoint
3: Smartphone reports how long time
since the last checkpoint.
4: Server calculates the time spend on
way, and checks if its slower than
normal.
5: If it’s slower the server will set a
congestion on the way.

Alternative path1 (A1) The user never reaches the checkpoint

Extra Same setup on the dummy client

Table 10.9:

10.4 Appendix-4: Test results 87

Test path Expected Result
M The smartphone should send the

update to server, the server
calculates a delay on the way,
and set a congestion

Same with dummy client

Pass

Pass

A1 The smartphone never sends an
update and therefore no
congestion will be placed.

The Dummy always reaches the
checkpoints.

Pass

Screenshots

Car Driving normal
speed

10.4 Appendix-4: Test results 88

The user has reached
the next checkpoint
and driven to slow,
therefore congestion
is sat.(The orange/red
line)

Table 10.10:

Test Name
Tester
OS
Test no.

Use-Case test: Get new route
Nikolaj
Mac OS X Lion
5

Precondition The user has received a route, and drives on the
route. And a congestion occur on a way in the users
path

Post condition

Main path (M) 1: User drives on a route.
2: Congestion occurs on route.
3: Server calculates new route to user, and send it.
4:Smartphone navigates the new path.

Extra Same setup on the dummy client

Table 10.11:

10.4 Appendix-4: Test results 89

Test path Expected Result
M The smartphone receives a

new route from the server. And
now navigates from the new
information.

Pass

Same with Dummy Client Pass

Screenshots
Route before congestion

Green car is making
Congestion and therefore
Purple car now got a new
route.

Table 10.12

10.4 Appendix-4: Test results 90

Test Name
Tester
OS
Test no.

Use-Case test: Exit → end route
Nikolaj
Mac OS X Lion
6

Precondition The user has received a route, and reaches the
destination on route.

Post condition

Main path (M) 1: User drives on a route.
2: User reaches the destination

Extra Same setup on the Dummy client

Table 10.13

10.4 Appendix-4: Test results 91

Test path Expected Result
M The smartphone sends the

last position and the server
removes the client’s path
from the map.

Pass

Same with Dummy Client Pass

Screenshots
Before destination

After destination reached.

1991-11-20 21:19:39.873
connected, new route found

1991-11-20 21:19:39.873

Disconnect at 2011-11-20
21:20:41.466

Table 10.14

10.4 Appendix-4: Test results 92

Test Name
Tester
OS
Test no.

Use-Case test: Exit → Client vanish
Nikolaj
Mac OS X Lion
7

Precondition The user has received a route, and drives on
the route. But disappears.

Post condition

Main path (M) 1: User drives on a route.
2: User disappears from route
(No internet connection, No more battery)

Alternative path1 (A1) The client stops the Application running on
the smartphone.

Extra Same setup on the Dummy client

Table 10.15

Test path Expected Result
M The client will be removed

from the server after an
amount of time

Fail

Same with Dummy Client Fail

A1 The application will send a
disconnect to the server.

Same with Dummy Client

Pass

Screenshots

Table 10.16

10.4 Appendix-4: Test results 93

10.4.3 Pathfinding comparison test results
Test Name
Tester
OS
Test no.

System test – Path finding comparison
Nikolaj
Mac OS X Lion
8

Purpose Determine how the Pathfinding algorithm
works compared to a professional service.
(krak.dk)

Post condition

Main path (M) Enter the same start position and destination
and compare the route suggestions.
Start: Kollegiebakken 9, 2800 Kongens
Lyngby
Stop: Solsikkemarken 34, 2830 Virum

Alternative path1 (A1) Start: Kollegiebakken 9, 2800 Kongens
Lyngby
Stop: Gymnasievej 21, 4600 Køge

Table 10.17

10.4 Appendix-4: Test results 94

Test path Expected Result
M Same route:

Krak: Estimated traveling time:
5 minutes

Our system Estimated traveling time:
5,34 minutes

A1 Different route:

Krak: Estimated traveling time:
37 minutes

Our system Estimated traveling time:
33.87 minutes

Screenshots
Krak :
Kollegiebakken-
Solsikkemarken.

Our system:
Kollegiebakken-
Solsikkemarken.

10.4 Appendix-4: Test results 95

Krak:
Kollegiebakken-
Gymnasievej.

Our system:
Kollegiebakken–
Gymnasievej.

Table 10.18

10.4 Appendix-4: Test results 96

10.4.4 GPS-fix test results
Test Name
Tester
OS
Test no.

System test – GPS-fix
Nikolaj
Mac OS X Lion
7

Purpose Determine how well the GPS works in
smartphones

Post condition

Main path (M) 1. New Route
2. The application runs for 5 minutes
3. Counts each new fix of GPS (location

changed)

Table 10.19

Test path Location Result
M Indoor 16 fixes,

3.22 minutes until first fix.
Equivalent to one fix each 18
seconds.

M Copenhagen (Julius Bloms
Gade)

91 fixes,
1.44 minutes until first fix.

Equivalent to one fix each 15
seconds.

M Outdoor on open field
(Søndre marken,
Frederiksberg)

151 fixes,
0.19 minutes until first fix.
Equivalent to one fix each
second.

Table 10.20

	1 Introduction
	1.1 Problem specification
	1.2 Structure of this report

	2 Requirements Specification
	2.1 Purpose
	2.1.1 Server
	2.1.2 Visualization:
	2.1.3 Dummy client:
	2.1.4 Smartphone Application

	2.2 Functional requirements
	2.2.1 Use cases:

	2.3 Non-functional requirements

	3 Project management
	4 Traffic Control
	5 OpenStreetMap
	5.1.1 Map areas used during the project
	5.1.2 Challenges

	6 System Design
	6.1 System Overview
	6.2 Client server communication
	6.3 Components of our system
	6.3.1 Server-side
	6.3.1.1 Communication
	ServerClient
	MultiServer

	6.3.1.2 Map
	MapNode
	MapWay
	MapAddress
	Graphbuilder
	Queuehandling
	MapLoader
	OSMRead
	Navigation
	QueueSetter

	6.3.1.3 Path-finding
	Algorithms
	A* pathfinding
	Our implementation

	6.3.1.4 Visualization

	6.3.2 Client-side
	6.3.2.1 Dummyclient
	6.3.2.2 Smartphone client

	7 Testing
	7.1 System test
	7.1.1 Black-box test

	7.2 GPS test
	7.2.1 Performance test
	7.2.2 Stress test

	7.3 Use-case test
	7.4 Path-finding compared to krak.dk
	7.5 Platform tests

	8 Discussion
	8.1 Navigation versus our system
	8.2 Deficiencies
	8.2.1 Data
	8.2.2 Navigation

	8.3 Future possibilities
	8.3.1 Improved positioning
	8.3.2 Reduction of carbon emissions
	8.3.3 CO2 based navigation
	8.3.3.1 Implementation of CO2 data in our system

	8.3.4 Integration of public transportation
	8.3.5 Driverless cars
	8.3.6 TMC integration

	9 Conclusion
	10 Appendix
	10.1 Appendix-1: User's manual
	10.1.1 Server
	10.1.2 Dummy client
	10.1.3 Android Application:

	10.2 Appendix-2: Timetable
	10.3 Appendix-3: Changes in JmapViewer
	10.4 Appendix-4: Test results
	10.4.1 Black-box tests
	10.4.2 Use-case test results
	10.4.3 Pathfinding comparison test results
	10.4.4 GPS-fix test results

