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Abstract
Traffic guidance is a major problem in the modern society. Traffic should be 
guided through city centers  and other  areas  without  queues  forming on the 
roads.

In this project a traffic guidance system is developed that gathers traffic data 
from the Android-based smartphones of car drivers, and use this to direct them 
away from heavily congested roads.  It  achieves  this,  by combining a  more 
conventional  GPS-based  navigation  app  with  positional  feedback  from  the 
smartphone.

The system consists of a internet based server, which handles the pathfinding 
and traffic control, using the A* algorithm and map data from OpenStreetMap, 
and an android app that guides the user and provide the feedback to the server. 
Also, a dummy client simulator is developed as well as a visualization tool, that 
simplifies testing and demonstrates the system functionality.

We succeeded in  developing  a  system that  can  guide  car  drivers  along the 
fastest routes and re-route if necessary when traffic jams are forming.
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1 Introduction
(Nikolaj and Christian)

Few things are more irritating than being stuck in traffic jams. Each year more 
and more cars drive the roads, and heavy congested roads are the curse of the 
infrastructure. Traffic jams and queues are unpredictable and difficult to avoid 
for  the  car  drivers.  In  this  project,  we will  demonstrate  that  queues can be 
avoided to a large degree, using the smartphones that are becoming ever more 
common these days. 

A GPS receiver is a stable part of most smartphones and so is internet access. 
By tracking the driver's  smartphone,  information can be gathered about  the 
current  speed  on  the  roads,  and  thus  of  the  degree  of  congestion.  The 
smartphone can then be used to guide other drivers around the  queues, thus 
minimizing  impact  of  congestion  to  those.  This  system  requires  no  extra 
hardware in the car and only an internet based server to function – no roadside 
counters, cameras, tracking hardware or anything; just the app, running on the 
drivers smartphone.

In this project we have developed a prototype of this system, and demonstrated 
its capabilities and shortcomings. The system is a horizontal-type prototype, 
covering the entire functionality of the system to an largely equal degree. 

We have used the openly available map data from the OpenStreetMap project, 
which is an open-source, community based effort to map the entire globe and 
make it available to the public. 

1.1 Problem specification
(Nikolaj and Christian)

This project will involve the development of a system for traffic control, which 
gathers traffic data for car drivers. The system should guide the drivers fastest 
from point-A to  point-B  by  avoiding  queues.  The  fastest  route  should  be 
calculated using the A* algorithm. Apart from this calculation, the information 
from the server about  queues must  also be considered.  If  a  heavy queue is 
reported from one of the other units in the system, the routes that leads through 
this queue should possibly be updated to an alternate route.

The following components are expected to be part of the system:

• A program for clients that can communicate with the server to get the 
route from A to B, show the route and the current position, and then 
send information about this route to a server. After this, it should be 
capable  of  receiving  corrections  from  the  server  about  possibly 
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selecting an alternative route. A dedicated application for a smartphone 
will be developed, as well as a “dummy” unit that can simulate a client.

• The server consists of a detailed map and receives information from 
clients  about  client's  positions  and  speeds.  Based  upon  this 
information,  queues  are  identified  and  possibly  routes  are  updated. 
Furthermore,  it  must  be  able  to  receive  information  from  clients, 
reporting about increased travel times on roads.

• A program to visualize the calculations from the server and the units, 
so data can be represented visually, it therefore must show where the 
units  are  on  the  map,  and  the  roads  that  has  queues  on  them.  The 
purpose of the visualization is mainly to test the system's functionality.

1.2 Structure of this report
(Christian)

This report contains a number of sections that together explain our system, and 
the process of making it. In parallel to how we actually did the project work, 
we start by specifying and narrowing the requirements for the system and how 
we  decided  to  work  on  the  project.  We  will  then  describe  and  discuss  the 
central concepts of traffic control and OpenStreetMap, and how we have used 
these during the development.  We will  also thoroughly describe the system, 
how it is constructed and why it is made in the way it is. A section about the 
testing and benchmarking we have done follows, as does a section that contains 
discussions  about  the  finished  system,  as  well  as  future  capabilities  and 
developments.

The appendix contains a full  user's  manual as well  as test  results  and other 
information, not kept inside the main text.

The description of the system is split into the individual components. We have 
chosen to write about the entire process from designing each component to the 
finished implementation in one go. This also largely reflect our working order. 
We  did  not  design  and  plan  everything  first  before  beginning  the 
implementation,  but  made  the  process  in  a  number  of  steps,  each  time 
deepening each component and adding to its completion.

We have made a lot of diagrams for this report. These are not the classic uml-
type of diagrams, often used in software engineering, because these tends to be 
way more detailed and specialized than we need. The diagrams are made with 
much of the symbolism, but not the stricter conventions of the uml, to provide 
an overview instead of a full model.

Not all part of the code is described to an equal degree in this report. We have 
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prioritized the parts that we find most important, and left out most of the trivial 
parts, like listing all variables and getters and setters.

2 Requirements Specification 
(Nikolaj)

2.1 Purpose
Based on the  project  specification,  we will  specify the  project  and make  a 
solution strategy.

The  project  specification  defines  a  traffic  guidance  system,  which  can  be 
implemented in smartphones. The project specification is specified and in this 
section, we will analyze the specification, determine the technical aspects and 
both  functional  and  non-functional  requirements.  This  will  help  us  in  the 
Project planning, because it clear out the parts of the project with highest risk 
of failing. This allows us to set extra time to these tasks, minimizing the risk.

Based on the problem specification we chose to divide the system into 4 parts:

• Server

• Visualization

• Dummy client

• Smartphone Application

The  subdivision  of  the  system gives  a  simple  overview of  the  system and 
what’s  needed  to  be  done.  This  insures  a  more  simple  approach  to  the 
requirements specification.

The  diagram in  Figure  2.1 shows how the four  components  of  our  system 
should  interact;  with  the  server  as  a  central  unit,  keeping  track  of  all 
information  from  clients.  The  clients  should  communicate  with  the  server 
trough Internet  and the  visualization should be implemented directly to  the 

Figure 2.1: Simple overview of the system
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server.

2.1.1 Server
The server should be the central part of the system; the server handles the path-
finding based on the client’s information. The server receives a start and end 
position  from  clients  and  should  calculate  the  fastest  route,  based  on  the 
information.  The calculation should be based on data from other clients on the 
road.  If  a  client  reports  congestion on  a  way,  the  server  should be  able  to 
determine the new transport time on the way. Furthermore it should be able to 
calculate new routes to clients which already has a route but is affected by the 
new congestion. The process of providing a client with a different route than 
the current one should happen without user interaction. This insures the user 
cannot overrule the system if he estimates the current route to be faster than the 
new route  from server.  The  server  will  be  designed  and  implemented  as  a 
prototype. Therefore we had to narrow the project down. Some aspects which 
are not implemented, are scalability to multiple computers and security. Our 
main focus is to develop a fully working server allowing users to obtain a route 
and receive new routes based on other user data. Although the scalability on  a 
single  computer,  is  in  focus.  Therefore  we  will  analyze  and  implement 
algorithms and data-structures allowing as many users to use the system at the 
same time.

The  map  data  the  server  is  supposed  to  calculate  routes  from  is  the 
OpenStreetMap1(OSM).  This  implementation  of  data  from OSM  should  be 
parsed into the server from a XML file to objects in runtime.

The technology used for the server will be Java. Java is preferred because of 
the multiplatform support. Java has some good and common libraries which 
makes the implementation easier. Another pro for Java is that the creators of 
this software has been using Java for many years now and knows it well.

2.1.2 Visualization:
The visualization is used to generate an overview of the data, that the server 
transmits  and  receives.  This  data  is  mainly  represented  by  the  position  of 
clients, and map data. The visualization of this will help us understand what 
happens with the clients. An example could be how the client’s route looks like. 
The  visualization  will  be  implemented  as  a  component  of  the  server.  It  is 
supposed to run on the same computer and the same instance of the server 
implementation. The server and visualization is supposed to share GUI. This 
means that  the information about  clients connected from the server and the 
information about routes, junctions etc. from the visualization can be gathered 

1 http://www.openstreetmap.org/
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in one window.

The data the visualization shows is the map data from OSM with all details, 
ways, addresses and so on. Based on this data we will draw our routes, clients 
and junctions on the map. The data for drawing is information our server has, 
therefore we need an implementation which draws the changes in the data from 
server.  This will  end up with an event based visualization where the server 
informs  the  visualization when data  are  changed and tell  what  needs  to  be 
updated.

2.1.3 Dummy client: 
The dummy client is supposed to work as our test client. The dummy’s purpose 
is  to  simulate  clients,  this  does  not  include  a  Navigation  part  like  on  the 
smartphone. The dummy client should connect on the same way as the actual 
smartphone application, this allows us to test the server the best way when the 
test clients works as the smartphone application. For the testing to be proper we 
need more that one client running – actually several hundred will be preferable 
for testing our server. Therefore it should be possible to connect many clients 
from same  computer,  preferable  a  kind  of  automation,  which  allows  easy 
control of clients.  Controlling the start point and destination are necessary for 
the dummy client, therefore we should be able to manually set in coordinates 
for start location and address for destination.

The dummy client need some kind of simulation, simulating the cars to run 
along the route. Therefore a simulation, which allows us to manipulate with the 
speed  of  clients.  This  way we  can  make  new congestions  and  in  this  way 
simulate congestions.

The dummy client will like the server be developed in Java, but different from 
the Visualization, which will be implemented in the server. The dummy will 
have its own main class.

2.1.4 Smartphone Application
The smartphone application will be developed in Android, on a HTC Desire 
phone.  The  reason  for  the  choice  of  android  platform  is  that  it  can  be 
programmed in Java, which our dummy client also being programmed in. This 
allows us to reuse some of the code.  Furthermore the Android platform seemed 
easier to work with, partly because of Eclipse IDE, which we are familiar with.

The Android application will contain a way to type-in the destination address, 
and receive a route from the server. Then it shall display the route for the user 
and  if  the  user  confirms,  start  the  navigation.  The  communication  between 
server and client should be designed so that the communication happens in the 
background. This also allows the system to send new routes to client without 
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human interaction.

The navigation is supposed to guide the user from start position to destination. 
This will be implemented using arrows that will shows in which direction the 
user should drive. Furthermore the navigation unit will automatically change 
route if a new route from server is received.

2.2 Functional requirements
The functional requirements are the important basic requirements of our system 
being able to meet the project definition. The requirements is seen as a Use-
Case  Diagram  in  Figure  2.2.  The  reason  we  use  use-cases  as  the  basic 
functional requirements is because we have taken a user-centered development 
approach.

2.2.1 Use cases:

The Use cases for the client is as stated above:

• Get Route:

Figure 2.2: Use case diagram
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The User should be able to Request a new route, the client should send 
the request to server and afterwards receive the route and start guiding 
the user to his destination.

• Drive Along route:

After receiving the route the smartphone should guide the user all the 
way to the destination. The guidance should show which way to go 
next and what the name of the street is. 

• Drive Away from route:

The smartphone should be able to guide the user back on track. If the 
user leaves the route the smartphone should view the distance from the 
checkpoint he was supposed to reach.

• Report Congestion

When driving along the route the smartphone should be able to report 
to  the  server  when  congestion  is  found.  The  smartphone  will  not 
calculate the congestion. The phone will send a update to the server 
each time the user reaches a checkpoint.

• Get New Route

When  the  user  drives  along  his  route,  another  user  can  report  a 
congestion, which may effects him, if the congestion is within his path. 
The server should calculate a new fastest route and send it to the client. 
Afterwards the client should guide the user to the destination with the 
new route.

• Exit -> end route

If the user chooses to exit  the program while he is on the route the 
client  should disconnect  and the server  removes the  client  from the 
map.

• Exit -> Vanish

If the system crashes, lack of Internet connection, no GPS signal or so. 
The system should remove clients when they have been inactive for an 
amount of time.

Server Administrator:

• Set Congestion

The server administrator should be able to set congestions directly on 
ways.  
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2.3 Non-functional requirements
These define how the system is supposed to be, rather than how it does things. 

• Speed,  since it  needs  to  support  live  queue-information,  it  needs  to 
respond in near real-time.

• It  needs  to  be  portable,  which  means  that  most  android-based 
smartphones, with network access and GPS, should be able to report 
queues to the server.

• All  the  reporting  from client  to  server  should  happen  without  user 
interaction. Also the new route from server should happen without user 
interaction.

• The android app should be easy to use. No need for user manuals and 
instructions required should be minimal.

• Extendability and portability. The capabilities of the system should be 
easy to expand, or port to other platforms.

3 Project management
(Nikolaj)

This section deals with the project management of our project. We decided to 
make some milestones we could follow:

1. Product that works minimal.

2. Product that are working and fulfill the requirements.

3. Product that fulfills and works optimal.

4. Product and Documentation done.

These milestones are considered as iteration, this means an agile2 development 
method is used. In each milestone we revisit the design and implementation, 
correspond to changes and new requirements for the product. Furthermore we 
have  made  a  Gantt-scheme3 (Figure  3.1),  based  upon  the  time-table  in 
Appendix-2: Timetable which shows how much time we got to each task. As 
said in Section-2: Requirements Specification  we divided the project into four 
parts to give a better overview of the project. 

The Gantt chart is used to present the time schedule of the project. The chart 
normal contains the main components of the project, and the parts that is most 

2 http://agilemanifesto.org/
3 Book: Operations Management, Russel & Taylor Page 364-367
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critical to the project to finish. This chart is based on our requirements and our 
previous experience from software project on DTU. 

The  chart  shows  days  scheduled  to  each  part,  but  when  more  parts  are 
scheduled at the same day,  the work of the day is shared between the various 
tasks.

Our activities are not directly dependent at each other but its easier to develop 
the visualization after the server component has passed the first iteration. We 
chose  to  begin  with  the  server,  this  part  is  the  most  important  part  of  our 
system, and the most time demanding. Therefore we see this component to be 
the part with highest risk of demand more time than scheduled. There is much 
time scheduled to the integration of the components, this is important because 
of our iterative approach. The iterative approach means that even though we 
have developed all the sub-parts of a part, the part cannot be considered done. 
The  part  may  be  revisited  in  a  later  iteration  and  redesigned  making  our 
product smoother.

4 Traffic Control
(Nikolaj)

The traffic control aspect is important to understand how the system is going to 

Figure 3.1: Gantt-Chart: y-axis Activity, x-axis amount of days of activity. 
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be designed. This section will explain the reason for our design choice and how 
we could have done.

When dealing with congestions there is several ways to calculate the queue. We 
chose a time based way, in this way we calculate the expected time between 
two points, this is done with the data from the map, supplying the speed limit 
on the way. The two points coordinates from the map data is used to calculate 
the distance between them. This gives us the expected time to travel on this 
way between two points. The client will report a timestamp each time it reaches 
a  checkpoint  or  a  node,  which  are  the  data  from  our  map.  After  this 
implementation we consulted a traffic engineering student at DTU, he told us 
about  how professionals  observes  queues4.  The other  way is  to  look at  the 
way’s capacity, this means how many cars pr. Hour the way can contain before 
it’s  a  queue.  If  we  take  an  example  of  a  normal  way with  1  lane  in  each 
direction the capacity of the way is approximately 1700 cars pr. Hour. If we had 
decided to implement this method we could have settled with the clients only 
reporting  back  their  position.  This  way our  server  design  had  contained  a 
counter for each way, when a client reported it to be on a checkpoint we could 
look  up  which  way and  set  one  more  client  at  this  way.  The  pros  in  the 
procedure would be the opportunity to caught the queues before they appear, in 
our way one client have to be in a queue before we can tell  the rest of the 
clients that a queue has appeared.  In this we could implement an algorithm 
which calculates a factor of how fast the cars on the road increases, in this way 
we could predict queues before they happens and guide clients around. The 
cons  with this approach would be that every single car should use our system 
if not, queues will appear without our system noticing. In our way  everyone 
need our system, but the more the merrier.

In junctions we have some problems because, you cannot drive through each 
junction with the speed as the speed limit says. Therefore we had to insert some 
delays  when  facing  a  junction.  If  there  are  two  ways  out  from the  users 
position, we added a delay of two seconds, this is based on our own evaluation 
of the time spend in junction in average. are there three or more ways out from 
a node we added a ten seconds delay. As before it is based on assumptions of 
time spend. These delays can give some problems. If its small ways that cross, 
it may not take ten seconds to get past them. But if it’s two big roads crossing 
the time delay  may be bigger than ten seconds.  The map data  from OSM 
supplies us with traffic lights, but because of the OSM is open-source, its not 
always the traffic light is indicated. Therefore its not possible to count on the 
data.  But  if  the  data  was correct,  we  could implement  a  different  delay in 
junctions with traffic lights.

4 http://vejregler.lovportaler.dk/ShowDoc.aspx?docId=vd-20101203131959405-
full&q=kapacitet
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5 OpenStreetMap
(Christian)

Our project uses map data from OpenStreetMap. Openstreetmap is an open-
source mapping project. Adding and editing is a community effort, and as such 
data may come from anywhere. The project was launched in 2004, but only 
took off for real in 2007 with the initial map data collected by volunteers using 
hand held gps systems and manually entering the data. Later, many additional 
sources  were  added and  this  helped  expanding  the  map  greatly,  to  contain 
several  hundreds of  millions of  entries.  The open street  map project  is  still 
however  dependent  on  volunteers,  even  though  they  may  be  using  aerial 
photography  and  satellite  data  in  addition  to  their  own  experience  and 
knowledge of the neighborhood.

The map uses the XML format (eXtensible Markup Language) for  its  data. 
An .osm file containing the xml data can be exported from openstreetmap.org 
for limited areas or downloaded for larger areas at a time from servers that 
extract  the  data  from the  entire  map  on  daily  basis  or  at  other  intervals. 
Alternatively,  data  can  also  be  retrieved  on  a  more  specific  basis,  via  http 
requests.  We opted to work with with a pre-downloaded file,  as this  would 
provide us with the best insight in the possibilities of the data, and the easiest 
debugging,  as  well  as  not  having  to  have  an  open  connection  to  the 
openstreetmap database as a requirement for running our system. 

The openstreetmap data is arranged into the three data primitives: nodes, ways 
and relations. Nodes represent points – road intersections, points along roads, 
addresses, shops etc. Ways are connected nodes; this may be two or more node, 
connected to form a linear feature – power lines, streams, roads, hiking trails 
and so on. Ways can also be bounded features such as parks, lakes, city blocks 
or coastline, in this case the string of nodes loops back on itself and form the 
area. Relations can be groups of nodes or ways and can denote things such as 
routes for bicycles or named motorway systems. Of our interest is mainly the 
ways that depict roads and nodes that depict addresses as well as those that are 
used to define the roads.
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5.1.1 Map areas used during the project
We started out with a small area of the 
“Fuglebakken”  area  of  northern 
Copenhagen.  This  was  chosen 
because  that  area  is  generally  made 
up of  parallel  roads,  and right-angle 
intersections.  This  suggested  that  it 
would  be  relatively  simple  to  work 
with  and  it  proved  to  be  right, 
although many of the challenges of a 
bigger  map  would  also  haunt  this 
small  one.  Later  on  we  moved to  a 
bigger  map,  the  largest  to  export 
directly  as  a  sample  from the  data. 
This  time  we  centered  it  on  the 
familiar area around DTU in Lyngby 
– well  not  exactly centered,  because 
half  of  the  area  would  be  the  big 
Dyrehaven forest to the east of DTU, 
so  the  map  has  northern  Lyngby, 
Brede, Virum and Nærum. This map 
was used throughout the development 
and  testing  phases,  along  side  the 
biggest  practical  map  we  could use: 
one of the Greater Copenhagen area. This was more than half a gigabyte of xml 
data, so we could not read it with standard text-editors as we could the others, 
and it would take several minutes to parse the data each time we would have to 
debug  something.  So  we  used  the  smaller  maps  for  development  and 
debugging, and the big map for running and testing. These maps can be seen 
outlined in Figure 5.1.

5.1.2 Challenges
Because the map is exported from a bigger collection of data, which has been 
cut at straight lines along the north-south and east-west direction, we are left 
with quite a few gremlins in the map. The most obvious is that along the edges, 
we have roads that leads to nowhere: ways that are in the map, but using nodes 
that are not. The exporter apparently does not take this into account, so we had 
to do that when reading and building our graph.

Another issue is that as our ways are directional, and some roads are one-way, 
some  routes  may begin  or  end  at  places  that  are  impossible  to  reach.  An 
example  could  be  a  motorway  at  the  edge  of  the  map.  Motorways  are 

Figure 5.1: Outlines of the three  

different map areas, we have used.
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interpreted as two parallel roads, each of them one-way. Therefore, if you start 
somewhere after the last off-ramp on the out-going side, or have the goal at 
before the first on-ramp on the way in, it will not be possible to reach in our 
graph. Of course, motorway areas are not the most populated areas, and no 
addresses would be directly on the motorways themselves. Thus these scenarios 
are not  very likely to happen under real  conditions,  but  they were at  times 
annoying during testing. Mainly the A* pathfinder were hit, because when it 
tries to reach one of these “black spots” and find that there is no direct route, it 
needs to root through most of the rest of the map to confirm that there is no 
indirect route either. There was not much we could do about this, except maybe 
do an iterative narrowing of the graph to ensure that no dead-ended ways were 
to leave the map, but then again, this would hurt the expandability of the graph, 
and make it harder to connect with a second area of the map, should we need 
that  to  happen.  The issues  would not  harm the integrity or  stability of  our 
system, only the performance, as all that would happen would be a long-lasting 
calculation of the pathfinder that did not come up with a valid route. Therefore 
we chose to leave this in. A good example can be seen if one chooses a location 
near the Öresund bridge in the greater Copenhagen map. This has only two 
roads, and no connections until it gets to Sweden, which is not a part of the 
map.

There is a related issue but this time with entire areas that are unconnected with 
the  rest  of  the  map.  Obvious  examples  would  be  islands  which  are  not 
connected to the mainland by bridges. As our graph does not take into account 
ferry-lines, and some islands may not even have these, starting or ending at 
such places would of course yield no-route results. Other places that are more 
troublesome  are  mainly  linked  with  the  smaller  maps,  we  have  tried.  The 
Fuglebakken map is crossed by a railway line that separates one part of the map 
from the other,  the Brede map has the motorway and these renders smaller 
sections of the graphs unreachable from the rest,  even though they both are 
valid parts of the map, and are actually connected in the real world. 

6 System Design
(Nikolaj and Christian)
This chapter will present the design choices we have made. First we will 
introduce the combined structure of our system, and then go into of 
details it's individual components.

6.1 System Overview
(Nikolaj)

After we specified the requirements of the project we ended up with a design 
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containing a centralized server responsible for all clients seen in Figure 6.1

The server  is  designed to  handle  all  clients,  their  requests  and their  routes. 
Therefore no particular logic is placed in the clients, which ensures the system 
to be scalable when developing new clients for different platforms. The client’s 
uses  a  “socket  connection”  connecting  to  the  server.  With  the  socket 
connection, standardization for the data was necessary. These design choices 
will be discussed in the server-client communication (section  6.2  ). The code 
for the dummy client and the smartphone client have been made as similar as 
possible,  therefore the code can easily be used for both clients.  Besides the 
communication the smartphone client also contains a navigation module. The 
dummy client do not include this since it’s only for testing the server side and 
not the client. More about the client design later in this chapter. 

The server design follows the Model-View-Control architecture, which gives 
the advantages of testing each component individually. The model part is the 
part  containing the  data,  in our  case stored in  lists,  its  also here where  we 
manipulate the data so it fits the requirements of our controller. The view part is 
the server-interface, our interface are combined between the visualization and 
server  interface.  It  contains  a  map  that  provides  information  about  routes, 
clients  and  congestions.  It  also  contains  a  server  GUI  that  supplies  the 

Figure 6.1: 
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information about how many clients connected, shows if they send an update 
etc. The controller part provides the information to the view part, based on the 
data  from the  model  part.  Figure  6.2 shows how our  system are  split  into 
Model-View-Control

The system follows the Model-View-Control architecture, Java Swing is used 
and therefore it is a ’Model-Delegator’-pattern, where the view and controller 
are combined.

The  package  diagram  in  Figure  6.2 shows  how  the  components  are 
implemented. The GUI implements both visualization- and server-GUI. This 
gives  the  Pattern  stated  above.  The  server  package  has  the  Controller  and 
Model parts.

The model part consist the OSM-XML map which are read in to the system. 

Figure 6.2:  Package diagram of our implementation
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The XML data are the rare information we need. Our system reads-in the data 
and manipulate the data, putting them into data-structures. This ensures that the 
data we need is stored separately and ready to use for the controller part. Our 
controller part handles all the clients and based on information from them the 
controller extracts data from model and sends it to the GUI.

The overall design are as mentioned above the result of analyze stated above. 
Another  approach may be to  place more  logic  in  the  clients.  This  way the 
service would be more decentralized, this may have been done by coding an 
application, which requested the map each time, downloading the map data and 
displaying it. Just like the Google Map function works. But this would result in 
a lot of data traffic between the client and server. Another approach could be 
downloading  the  entire  map  to  the  smartphone.  This  would  result  in  fast 
calculation of route, and only check the server for new congestion instead of 
getting the entire map. This way a limited amount of traffic between server and 
client are exchanged. This would cause a large amount of data placed on the 
smartphone and the need of from time to time update this map like we see in 
normal navigation for cars.

In the chosen approach the large amount of data is placed on the server, which 
is  faster  and have more memory than smartphones.  In this  way we use the 
advantage of the fast server to do calculations and contain the large map. The 
traffic  between clients  and  server  are  also  low.  The  only things,  which are 
parsed, are strings and XML. The data is sent from clients when asking for a 
route and when they reach a waypoint. This means that the XML data is only 
sent one time for each route. And the string it sends at each waypoint only 
contains: Prefix, ID and timestamp (more about this in next section). This way 
the Internet traffic is brought to a minimum, and the resources are used in the 
best way.
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Figure 6.3 shows the flow of data in our system. This overview begins with a 
client  requests  a  route  that  is  send  as  a  string  to  the  Multiserver.  The 
Multiserver  splits the String up and creates a new Object:  ServerClient. The 
server client finds the start- and end-nodeID(NodeID is nodes from the OSM 
map. We need to find the closest node the system knows from the user input) 
based on the information from ServerClient.  Then it creates a new object; A* 
that  it  sends the  Start  and  end nodeID ant  then it  calculates  the  route  and 
returns it.  Then the  ServerClient sends  the information as a string in XML 
format.

6.2 Client server communication
(Nikolaj)

The  communication  between  client  and  server  are  as  stated  above  socket 
connection, the technical aspect is discussed in the next section. Although a 
standard for the communication must be stated. There are two aspects of the 
communication, the XML code that returns the route and the three strings that 
are: Route request, Disconnect and Update position. The three strings are the 
communication from client  to  server,  and the  XML are  the  communication 
from server to client.

The composition of the strings is shown below:

The delimiter “%” is used to split up the string. 

Figure 6.3: Sequence Diagram whole system
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Route request:  

prefix (1)%ID%Latitude%longitude%Postcode%City%Way%Housenumber

The prefix indicates which type of message the server receives: “1” is route 
request.  The  ID  is  a  timestamp,  this  ensures  a  unique  ID.  Latitude  and 
longitude are the current  position of the client.  Postcode,  City,  Way,  House 
number are all part of the destination.

Disconnect: 

prefix (2)%ID%Timestamp

The prefix indicates the message to be a disconnect message.  The ID is needed 
for  the  server,  knowing  which  client  disconnects  comes  from.  The  last 
parameter is the timestamp, showing the time for disconnect.

Update Position: 

prefix (3)%ID%Latitude%Longitude%Timestamp

Like before there is a prefix indicates an “Update position”. The latitude and 
longitude are the user’s position; this will always be a coordinate which the 
system knows  as  a  checkpoint.  The  client  calculates  its  distance  from the 
checkpoint each time it gets a GPS fix. If it’s within a certain radius the client 
will  send the  request  “update  route”  with the  check point  coordinates.  The 
Timestamp are used to calculate, if there is any Queue between checkpoints. 

The 3 strings insure the communication between the clients and the server. It’s 
only the clients that send these strings. The only thing the server sends are the 
XML containing the path. In  Table 6.1 an example of the XML structure are 
shown.

Table 6.1: The XML structure of route

<path>
  <id></id>
  <node>
     <wayname> </wayname>
     <lat> </lat>
     <lon> </lon>
     <time></time>
  </node>
</path>

Table 6.1 shows the XML Structure, as mentioned it is the server that sends this 
out when a new route is calculated or a faster way for a client is discovered. 
The “path” element has the ID of the user, in this way the client ensures that it’s 
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a route designed for it. Each node represents each checkpoint on the route. The 
XML can contain any number of nodes, if no path are found it will only contain 
the destination node. A node contains a way name. This is used to display the 
way name, the user is supposed to follow on the smartphone. The lat and lon 
are the coordinate set that represents the checkpoint. This is used to calculate 
the distance from the clients position to the checkpoint, furthermore it is sent 
back to the server in the “Update position” call. The time is the time used int 
total up to this node, the last node contains the total time of the route, this is 
directly passed from the A* algorithm used in the server.

The  XML  structure  could  have  been  a  string  like  our  other  strings  but 
considering the big amount of information a path contains we decided to do it 
this  way.  The  XML are  actually parsed  as  a  string  to  the  smartphone,  but 
instead of splitting the string up with delimiters as we choose in our client’s 
communication with the server. The advantages of XML are a simple robust 
format of our information. Robust because its based on a proven standard and 
can be tested and verified.5 If the path should have been sent in a plain string 
only split by delimiters the string would be unnecessarily confusing and hard to 
implement in new platforms for clients. But in our 3 string methods it would be 
“overkill” to put it into a XML structure, but if we had decided to so. It would 
make  our  system more  scalable  if  new  features  are  implemented  or  more 
information from clients is needed. 

6.3 Components of our system
6.3.1 Server-side
(Christian)

The server-side part of the system consists of a number of components. The 
communications  server  which  handles  networking,  the  map  which  is 
constructed  from  raw  Open  Street  Map  data,  the  A*  pathfinder  and  the 
visualization and graphical user interface.

6.3.1.1 Communication
The communications server handles the network connections and manage the 
clients that are connected to the system. First of all, the server needs to be able 
to accommodate multiple clients. In our implementation, we settled on aiming 
for a few hundred clients at a time; at least the simulated clients. A real-world 
system would have larger capacity,  hundreds of  thousands perhaps,  but  that 
would require a very fast internet infrastructure and dedicated machines, much 
more powerful than our desktop and laptop computers. 

5 http://www.w3schools.com/schema/schema_why.asp
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The  server  therefore  could  be  multithreaded,  each  thread  handling  all 
interactions  with  a  single  client  and  blocking  the  other  threads  when  it  is 
networking. Java however, has a non-blocking input/output API.6 This makes it 
possible to multiplex the networking - to handle multiple connections in turn 
through a single entity.

We chose the non-blocking, multiplexed approach as this would allow us to 
avoid  the  usual  problems  connected  with  multithreading:  deadlocks,  thread 
safety etc., while benefiting from the infrastructure provided by the nio API. 

Apart from managing the networking, our server would also have to keep track 
of all the client's data. Their route, their current positions and speeds, and use 
this data to determine whether roads are congested and how badly congested 
they are, as well as to alert clients about congested roads along their present 
routes, so they can get faster routes if possible.

We have designed our communications server as two classes: a server class 
(MultiServer)  that  manages  connections  and  receives  incoming  data  and  a 
client class (ServerClient) that manages a single client's data and provides the 
sending  of  outgoing  data  to  that  particular  client.  Whenever  a  new  client 
connects and request a route, a new ServerClient object is made and subsequent 
data and communications to this client are handled by that object. Incoming 
data  are  categorized  and  the  appropriate  action  is  taken  by  a  number  of 
processing methods. 

The serverside classes and the structure is outlined in Figure 6.4.

6 java.nio.*

Figure 6.4: The structure of the server and ui
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ServerClient
The  ServerClient  class  is  the  central  data  processing  and  outgoing 
communications object for each connected client. Because of the multiple data 
variables in this, there are a lot of setter and getter methods in this class, we 
will not describe these deeply, but concentrate on the more complex methods.

The first method invoked on a serverclient after the creation will usually be 
makeRoute(). This gets the right ids for the starting and ending nodes from 
the map, and then gets a route from a new Astar pathfinder object. It initializes 
the navigation variables and uses the helper method sendRoute() to build the 
string that is sent to the client and then send it. We chose to send the data as an 
xml-formatted string. This provides (reasonably) human-readable data as text, 
that is also easy to parse back on the client-side on various platforms if this 
should  be  necessary.  The  human-readability  aids  in  debugging  and  later 
expansion of the system by other programmers. The xml string is wrapped in a 
bytebuffer and written to the serverclient's socketchannel.

UpdatePosition() contains  the  bread  and  butter  of  our  traffic  detection 
system. It is invoked from the server, when the client reports that it has reached 
a  new route-point.  It  determines  the  route-nodes  and  way in  question  and 
calculates the time, the client has taken in traveling the road versus the time it 
should have taken according to the routing information. This is then used to 
check if the road is congested or if a queue has formed (the word queue is used 
throughout the code regardless). If the delay is larger than the fixed threshold 
of 110% of the normal  time taken, then the road is seen as congested, and he 
map is updated with this information. The 110% percent was chosen to allow 
minor deviations: stopsigns, pedestrians crossing, cars in front parking and so 
on. If however, the client is faster than the current queue speed on the road, it 
would mean that the congestion has lifted. Either partly, in which case the new 
queue speed is  set  in the map,  or  fully,  in which case the queue is  cleared 
completely. If a queue was detected, the id of that road is returned, so the server 
can check with its other clients if it will affect them.

This is then done by invoking the checkForQueue() method. If this finds a 
queue on its present route, it will reset its navigation variables and make a new 
route.

MultiServer
This contains the multiplexed network server. The server relies on the java.nio 
concept  of  socketchannels  to  provide  the  communication  channels  and  the 
selector  to  monitor  the  channel.  A serversocketchannel  is  opened  and  the 
serversocket  associated with the channel  is  bound to the port  on which the 
server is run. The selector is then registered with the serversocketchannel. Both 
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the  serversocketchannel  and  the  selector  is  created  via  the  static  methods 
open().  This is  used instead of  a conventional  constructor,  and provides a 
platform-specific implementation and promotes the portability of the code.

The server class then progresses to its main run method. This is an infinite loop 
that start  with the selector selecting. This gathers a set of selectionkeys that 
contains info about all the events that has been detected. This set is then cycled 
with the help of an iterator object and the type of event is determined. We only 
need to process incoming connections and incoming data events, so they are 
determined by AND-ing with a static bit-mask from the selectionkey class.

If a connection accept event is detected, the selector is registered to select read-
events from this channel and a report is written to the server console.

If the event is a data read, the data is read into a buffer for processing. The 
socketchannel read operation can return a -1 if something is wrong, in which 
case we close the socket. If it really is a message as it should be, the data is 
interpreted as a string. Because we cannot be sure that a single read-event will 
not contain multiple messages from a client, the string is split at each newline 
character,  and  each  processed  in  turn,  be  sure  we  catch  all  messages.  The 
messages from a client is coded with an integer prefix. 1 means a request for a 
new route, 2 requesting to be disconnected or 3 a position update. Each type of 
message is processed in its own method which splits up and parses the data to 
fit its own needs.

Route requests are normally made as the first message from a client. They may 
be made subsequently if a new route is needed, but this is where we get the first 
exchange of data with a client. The server maintains a list of currently active 
clients, and this is checked to see if the client is already known or whether a 
new connection has been made. Then a new serverclient object is made and 
added to the list. Else, the existing serverclient has its starting position updated 
with  the  new  position.  In  either  case,  the  serverclient's  makeRoute() is 
invoked and the result is reported to the server console.

Disconnect  messages  are  rather  simple:  the  active  clients  list  is  checked to 
confirm that the client is in fact there, and if so, it is removed.

Update  position  events  are  processed similarly.  The  data  string  is  split  and 
parsed, and the serverclient's  updateposition() is invoked. This however, 
returns the id of a road if there has been detected a queue on it, so the server 
can notify other clients about it.

6.3.1.2 Map
The map is  be the main basis  of data for  our system, used for pathfinding, 
locations  queues  and  much  more.  The  xml  syntax  of  the  OpenStreetmap 
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datafile uses a large number of different data types for describing locations, 
roads, relations and others, but the ones of primary concern to us are:

• <node>  which  are  points  in  the  map,  some  without  any  other 
information, and some which contains addresses.

• <way>  with  the  additional  highway-tag  which  connects  strings  of 
nodes into roads.

Our map would consist  of something similar:  a graph containing nodes and 
connected by edges, and addresses that could be the destinations for the users. 
In OpenStreetMap, roads are made from a string of nodes, which can be very 
long for example on a winding road, a large number of nodes will be needed to 
describe the curves of the road. For pathfinding, we are primarily interested in 
intersections between the roads, and roads that run a straight line between to 
road-intersections would be the optimum for the purpose of pathfinding and 
would  have  the  smallest  memory-requirement.  We  could  achieve  this  by 
combining the non-intersection strings of nodes in a way of OpenStreetMap 
into a single edge, and get rid of all the nodes that were no longer needed. This 
simplified map, however would lead to a very rough visualization of the routes 
and  queues  on  a  map.  As  one  of  the  main  goals  in  this  project  was  a 
visualization of what is going on in the traffic at any one time, we decided not 
to use this approach and just accept the increased pathfinding time and memory 
footprint of a less derived graph. Another argument against this sort of graph is 
that  the  routing has  to  be  user  friendly,  it  must  direct  the  user  as  close  as 
possible to their goal. A long road that only connects at its ends, would leave 
the user far from their goal at the end of their route if they wanted to go to an 
address around the middle of the road. It could be argued that a user should be 
able to find its way along a single road, but anyway – we have both seen this 
not being the case..

Instead, we have made the edges of our graph by splitting up the long roads 
into  their  individual  small  sections  between  the  nodes.  The  graph  must  be 
directional because roads may be one-way or roundabouts may only allow the 
drivers to go in a single direction for example. We ended up with a scheme of a 
graph, made up of nodes, each containing a set of ways which has a reference 
to the node on which it ends. This would be the basis for the map data as used 
by our system.  Addresses  in  OpenStreetMap are merely an extension of  a 
primitive node, but with information about the postal address and often other 
informations as well. Thus an address-node located at “Byvej 5”, are usually 
not  on  the  actual  “Byvej”  at  all,  but  often  alongside  it.  The  only  thing 
connecting the two, are the names of the road.

A multi-level map might be the best solution in the long run. We could have 
both the detailed graph with individual small  sections of  a road,  and a less 
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detailed, intersection-to-intersection type of graph. The pathfinding could then 
be  done  along  the  detailed  graph  until  an  intersection  was  reached,  then 
continue along the simplified graph until close to the goal, and finally go back 
to the detailed  graph again to take the final steps towards the goal.

Figure 6.5: OSM-style  

graph: Ways are  

constructed from  

strings of nodes,  

connected in a non-

directional graph

Figure 6.6:  

Intersection-style  
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combined between  

intersection nodes

Figure 6.7:  

Graphbuilder-style  

(note different scale):  

Directional ways are  

between adjacent  

nodes. Arrowheads  

describing a single way.
We made two separate classes for the graph: MapNode and MapWay. Addresses 
would be their own kind, as they would not be connected with the main graph 
as such, but merely provide a location.  MapAddress does this.  All three of 
them also implements Java's Comparable interface7 that allows easy sorting of 
lists of these classes. The  compareTo() method determines which object is 
the highest, when compared to another instance of the same class.

7 http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Comparable.html 
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MapNode
This contains the id-number and location of a point on the map, as well as a list 
of ids of all  the mapways that leads out from this location. The compareTo 
method compares the mapnode's ids.

MapWay 
Contains information and methods of a single section of a road: its speed-limit, 
the id of its starting and ending nodes, possibly the slow speed of a queue, and 
the name of the road it is part of, among others. A variable for a fixed time 
delay is also added, to take account of other slowing factors than speed-limits 
and road queues. This was added after some early trials had shown that we did 
not take into account that cars are slowed down when waiting at a traffic light, 
and that even in Hollywood, drivers to do not always go around corners on two 
wheels, tires screaming. A fixed delay seemed a good way to solve this issue, 
although  some  empirical  trial-and-error  would  be  needed  to  dial  in  on  the 
appropriate size of this delay. CompareTo ranks mapways according to their 
starting nodes, and if they are equal, their ending nodes.

MapAddress 
Has the location of a postal address. 

These classes all contain a range of get-methods for their data and some setters 

Figure 6.8: Structure of the map
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as well. Little would need to be changed after the creation of the nodes in the 
map (few houses move and few roads change names in this world...) but some 
of  the  data  in  a  mapway  would  have  to  be  editable;  the  queue-speed  for 
example, and there are setter-methods for those. The CompareTo ranks these 
according to the name of the road, and then by the road number.

Graphbuilder
This class stores the full map, and contains the infrastructure to handle all this 
data.  The main data  are  kept  in  three  huge arraylists:  nodelist,  waylist  and 
addresslist. There is also a list of the ways on which a queue has been detected. 
All  of  these  gets  built  as  the  data  are  read  from  the  xml-file  from 
openstreetmap,  and  may be  updated  at  run  time.  We  needed to  be  able  to 
randomly  access  these  individual  data  as  our  system uses  them for  many 
purposes,  so  we  chose  ArrayLists  as  the  collection  of  choice.  Arraylist  has 
constant or at least linear run times for most operations. The three data types 
would be referenced by either their indices in the lists, or by their name or the 
id, they have from openstreetmap. Thus we would have a number of access 
methods, taking different parameters to get the data needed. These are outlined 
in Table 6.2.

Table 6.2: Access methods are diverse. This lists the data types, and the  

parameters available to find them, as needed by our system.

Datatype Parameters Notes
MapWay Index General purpose access method

MapWay Id Search by OpenStreetMap Id

MapNode Index General purpose access method

MapNode Address Search for closest node

MapNode Position Search for closest node

MapWay Index General purpose access method

MapWay Ids of start and endnodes Search by OpenStreetMap Ids

MapWay Name Alphabetic search

MapAddress Id Search by OpenStreetMap Id
For  the  general  purpose  access  methods,  we  use  arraylist's  standard  get() 
method, but the others are more complex. 

We need to know the indexes of a mapnode when we add mapways to the 
graph.  A node  in  openstreetmap  has  a  unique  id,  but  we  need  to  add  the 
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mapway  to  the  mapnode  where  it  begins,  and  include  a  reference  to  the 
mapnode on which it ends. To find a mapnode's index in the list when knowing 
its openstreetmap id, we use a binary search. A binary search algorithm is the 
fastest way of finding an item, taking a “divide and conquer” approach that 
runs logarithmic time in the worst case scenario, O(log n) in big-o notation. 
However,  it  requires  the  data  array  to  be  sorted  for  it  to  work.  In  our 
implementation, we have included a flag that indicates if the arraylist has been 
sorted already, or if a sort must be done prior to doing the binary search. When 
adding a new node to the list, the flag nodelistChanged is set to true, and 
when the getMapNodeIndex() is called, it will first check this flag and sort 
the list if it is true. Usually, this will only have to be done once, as the map is 
built  when starting the program, and the order is not changed subsequently. 
Thus we should get the full benefit from this fast search each time, but only 
face a single sorting, and also have a degree of failsafe, as the change flag is 
always checked. Both for sorting and searching, we use the java's Collections 
class,  which  has  static  methods  for  this  purpose  called  “sort”  and 
“binarysearch”, both requires the data to implement the comparable-interface 
which all of our nodes, ways and addresses does. The sort algorithm used is a 
modified mergesort which guarantees n log n performance.

We have to find the index of a mapnode closes to both a location and to an 
address when a client requests a route. The client supplies his own position and 
the address of where he wants to go, and we need to find the nodes that are 
closest to these two, for the pathfinder to make a route. If the location ( latitude 
and longitude) is the input, we made it simple. The list of nodes is iterated, and 
the  distance  of  each  mapnode  is  calculated  and  compared  to  the  smallest 
distance so far. When done, we will have found the node that is closest. The run 
time  performance  for  such  a  search  is  linear  O(n)  and  in  our  case,  the 
performance  is  not  the  best,  as  there  are  a  considerable  number  of  nodes: 
146.000 in the Greater Copenhagen map. It appeared to be the best solution 
when searching our arraylist, but other data-structures may have improved the 
performance.  
Finding the node closest to an address works much the same. In fact we first 
find the addressnode, and then use the location of this as input to the method 
described  above.  The  addressnode  is  found  with  a  binary  search  for  a 
wayname, but because there will be several addresses on each road, and the 
binary search returns as soon as it has found an addressnode with the correct 
name,  we  needed  to  expand  the  search  algorithm.  After  finding  a  valid 
addressnode, it could be any house-number, so we start to count up through the 
addresslist until we find the correct house number, or if we reach the end of the 
road. If this does not result in a match, we count down through the list. House 
numbers in our addressnodes are in fact not numbers, but stored as strings. This 
is  because  they  could  be  a  combination  of  numbers  and  letters  (52A for 



6.3 Components of our system  33
example), some numbers might be missing, and other factors that might make a 
more systematic search difficult to design. Also a road usually has at most a 
couple of dozen house numbers, so this would not be critical to make a highly 
optimized search for house numbers.

When searching for a mapway, given the starting and ending mapnodes, we 
also use a binary search, but because the mapways and mapnodes are cross 
referenced, we can not just sort the list of ways at any time. Instead, we make a 
clone of the waylist and sort this, before searching. As in the other cases a  flag 
is set to indicate when the list was changed, and so eliminates the need to sort 
the list when it is not necessary. But we need the index of the mapway in the 
original, unsorted list, so after finding the correct way, we go back and find its 
index in the waylist.  This search for a  mapway id is  needed when a client 
reports  its  position  and  we  want  to  check  if  there  is  a  queue on the  road. 
Because we have made the clients routes as a series of nodes, but not including 
the ways, connecting these nodes, we needed the ability to “go back” and get 
the ways. This is not in any way optimal, as this search is quite expensive in 
time, and could have been avoided to a large degree by including the ways in 
the handling of routing and communication. 

Queuehandling
Handling queues is a very important part of our system. To keep track of all 
ways that has a queue on it, we made a list  with references to those ways: 
queueways. When a queue is detected, we must set the mapway's queuespeed 
variable  and  add  a  reference  to  it  in  the  queueways  list.  Similarly,  when 
clearing a queue, the speed must be reset and it must be removed from the list. 
If it is already in the list, only the queuespeed must be changed. SetQueue() 
and  clearQueue() takes  care  of  these  actions.  We also  have  a  bulk  get-
method that returns the entire list, as well as a list of the ids of all the ways in 
the queuelist. These are to be used by the visualization to get a list of all that 
needs to be drawn. The queues would be updated when a client drives down the 
ways, even faster or slower than the current speed, but because a very slow 
queue would lead to all clients being lead around the way by our pathfinder, we 
needed a some way to clear  queues without  a client  reporting.  We added a 
variable to all mapways that functions as a time stamp, being reset every time 
the queue-speed is changed. By comparing this time with the current time, it is 
possible to clear queues that are older than some delay. We have implemented 
this  with a timed task,  that  clears queues that  has  not  been changed in ten 
minutes.  This  ten  minute  timeout  is  a  pure  guess  –  it  would  necessary to 
measure  or  experiment  with this  in  a real-world implementation.  The more 
users in the system, the more likely it  is that some of them would detect a 
queue dissolving, and thus clear the queue before the timeout. So if there is 
only a few users, the timeout delay would need to be bigger, and many users, 
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the timeout can be smaller.

MapLoader
The  graphbuilder  containing  the  map  and  infrastructure  is  built  from 
openstreetmap  data  when  the  multiserver  is  started  by  invoking  the  static 
load() method  in  the  class  MapLoader.  This  will  also  save  a  complete 
graphbuilder object to disk to speed up future loading of the map. It will first 
try to load the graphbuilder object from a file, and if that does not succeed, it 
will read the xml from openstreetmap and save that to disk.

We use Java's objectinputstream8 and objectoutputstream9 to do the reading and 
writing, as this allows us to save and to load the entire object in one go. The 
only requirement is  that  the object  must  be serializable,  and thus all  of  the 
classes used in a graphbuilder must implement java's serializable interface.

OSMRead
(Nikolaj)

The OSMRead class is used to import the XML-file containing the map. We 
use a SAX-parser10 to import the file. The SAX-parser libraries are easy to use 
and effective when dealing with big files. We create a new handler11 and start 
searching the file for strings we know. The search is based on start elements. It 
finds the next element in the text, therefore its not necessary to read the entire 
document into the heap-space. When the first element is called it calls the last 
element, this is used to give us the startelement (example: “Node “and the end 
element “/Node”). Between these elements we search for children, this is done 
by a simple equals statement. This way we get all the information we need and 
when the end-element appears we creates an object,  in this case Node. This 
approach  is  used  when  we  find:  Ways,  Way-Nodes,  Address-Nodes.  Ways 
consists of Way-Nodes. 

The implementation is the one that works best. We began with a DOM parser. 
The problem with this approach was that it needed to read the entire file into 
the Java heap-space. The first couple of tries went well, but when the XML file 
containing the map increased it could not load the. The problem was the heap-
space being filled before it could start processing it. Therefore we implemented 
the other way where it reads 1 line at a time without loading the entire file into 
the program. 

8 http://docs.oracle.com/javase/1.4.2/docs/api/java/io/InputStream.html 
9 http://docs.oracle.com/javase/1.4.2/docs/api/java/io/OutputStream.html 
10 http://docs.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/SAXParser.html
11 http://docs.oracle.com/javase/1.4.2/docs/api/org/xml/sax/helpers/DefaultHandler

.html
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The OSM-read class is used as stated above to extract the information from the 
XML-file. Another important feature of this class is combining the data into 
objects and graph-structure to be read into the graphbuilder. 

Navigation
(Christian)

Navigation is  a utility class,  meant  to calculate distances inside the map.  It 
takes  inputs  of  latitude and longitude pairs,  and uses  these  to  calculate  the 
distance. Alternately it can extract the latitude and longitude from a mapnode 
or  an  algorithmnode  and  use  these,  or  it  can  be  a  couple  of  combinations 
between these. We added the combinations as we needed them. To be fully 
accurate, we would need the great-circle-distances, that is: the distance along 
the  curvature  of  the  earth.  Searching  the  internet,  we  found  a  series  of 
equations that should do just that,  but somehow they were flawed. We then 
made our own distance-calculation. It is based upon the original definition of 
the meter,  which was based upon the distance between the equator and the 
north pole, along a meridian through the city of Paris. This was then divided by 
10 repeatably until a usable length was reached. Later on, the meter has been 
redefined several times, and since 1983, it has been based on the speed of light 
in vacuum. Never the less, the distance between the equator and the north pole 
is about 10 million meters, or 10 thousand kilometers as well as being equal to 
90  degrees  of  latitude.  Assuming  that  the  earth  is  flat  on  the  scale  of  our 
measurements, this makes for an easy conversion of degrees to kilometers in 
the north-south direction. If the earth was a complete sphere, this conversion 
factor would also work for longitude close to the equator, but not at higher (or 
lower) latitudes, because the distances between successive meridians narrows 
in, and becomes zero at the poles. We therefore multiply the longitude with the 
cosine of the latitude.

This calculation is an approximation alright, because the earth can not be both 
round and flat at the same time, and the fact that it is not actually spherical, but 
a so called “geoid”. Never the less, we measured some distances, and found 
only errors  around 1% inside the  area  of  our  map of  Greater  Copenhagen, 
errors would tend to increase with increasing distance. This is fully acceptable, 
and  errors  in  the  length  even  tend  to  cancel  out,  because  we  use  them to 
calculate differences in the length of routes. So as long as the errors are small, 
or at least consistent, we find no need to look for better approximations.

QueueSetter
QueueSetter is a small class, made to make it easy to add further control with 
the queues. Congestion may be detected by our our system, but only after some 
user has driven into it. Other congestion detection systems are already in use 
today,  to help traffic control.  Other external sources could include:  changed 
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speed-limits due to roadside construction, accidents, planned sports events and 
the like. 

Queues can be set from outside by creating an instance of QueueSetter and 
using it to set a queue by wayID or by wayname. We demonstrate this in the 
QueuePopup window that can be opened from the server UI.

6.3.1.3 Path-finding

Algorithms
Finding the fastest path through a map that consists of hundredth of thousands 
– even millions of nodes and edges, and doing so quickly requires an efficient 
algorithm. It is done using the A* algorithm (pronounced “A-star”), which is 
often used in video games and other applications requiring a fast way to do 
routing through a graph of nodes,  connected by edges.  Other options could 
have  been  Djikstra's  algorithm which  always  finds  the  fastest  route,  but  is 
computationally heavy on a large and complex graph, or a greedy best-first-
search type of algorithm which would be very fast to run, but might not find the 
fastest route. 

Djikstra's algorithm works as a broadening search and tries to keep the distance 
to the starting point  (the cost  of  traveling) low, while a best-first  algorithm 
would try to always aim at the lowest distance to the goal, disregarding other 
opportunities. A* is like a combination of these, keeping the cost low, while at 
the same time looking first for the lowest total cost. This saves it from having 
to look at  lots  of  the  irrelevant  ways  that  djikstra  would otherwise have to 
search, keeping the run time and memory footprint low.

A* pathfinding
A*  uses  a  cost  function  and  a  distance-to-goal  function  added  together  to 
determine which nodes to visit next. The cost function called g(x) is the cost 
from the starting node to the current node, in our case where we want to find 
the  fastest  route,  the  cost  is  the  time  taken to  reach the  current  node.  The 
distance-to-goal  function,  h(x),  in A* is  a heuristic “educated guess” of  the 
remaining cost to reach the goal from the current node. The h function must not 
overestimate the cost. Otherwise, the algorithm will tend to be closer to djikstra 
and little  gain would be made.  On the other hand,  the h function must  not 
underestimate the the cost too much, else the algorithm would be too greedy 
and we run the risk of finding a sub-optimal route. A straight-line distance to 
the goal seems to be the most often used h function. In our implementation it is 
a bit more complex; a straight line to the goal will be much faster if going on a 
motorway than if you are driving on a small residential road, and our nodes can 
have several types of roads leading from them. The best guess of the h cost 
function would be the straight-line time to the goal, when driving at somewhere 
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between the slowest and fastest speed limit. If we chose the fastest speed limit, 
the algorithm would “hope” to find a motorway starting at the next node, going 
directly to the goal, and thus any road that brings it closer to the goal would be 
preferred. This wouldn't be good, as actual motorways wouldn't get preferred. 
Almost the opposite is true if the other extreme is chosen: it would have to 
search too many opportunities because of “fear” that the next road might just 
be a bumpy living street.

Our implementation
We have chosen to set the h function to be the straight line time to the goal, 
given the speed limit of the fastest type of road from the current node. So in the 
event  of  an  intersection  of  roads,  the  motorway  would  be  tried  first,  in 
preference  over  the  residential  road,  all  things  else  being  equal.  This  is 
calculated as the distance between the current node and the goal node, divided 
by the speed of the fastest road from this node, taking into regard that the speed 
might be lowered by heavy traffic.

Our A* pathfinder need to create its own partial graph consisting of nodes and 
edges between these. To satisfy the needs of the algorithm and at the same time 
cut down on memory usage, we have made a separate set of classes for these, 
instead of extending the classes of the big map. The are implemented as inner 
classes in the AStar class, and are called AlgorithmNode and AlgorithmWay 
similarly to the MapNode and MapWay classes of the big map, which also acts 
as arguments in the constructors. 

The algorithm works by keeping a list of possible nodes to look at next – the 
“open” list, and a list of nodes that are considered visited – the “closed” list. 
The open list is is kept sorted by implementing it as a priority queue, ordered 
by the cost functions g and h as described above added together. This ensures 
that the most promising node in the path to the end-node is always at the head 
of the queue. In addition, a list of all the nodes that has been constructed is kept 
to keep track of all the nodes that has been made, as they are only constructed 
as they become needed.

At first, the open list contains only the start-node and the closed list is empty, 
because we have not investigated any nodes yet. Then a series of iterations are 
run until the end-node is found, that is: we have a connected set, all the way 
from the start to the end. In each iteration, the head of the open list is removed, 
investigated and added to the closed set. If the closed set contains all the nodes 
that  has  been  investigated,  it  means  that  there  is  no  longer  any  more 
possibilities to investigate,  and we consider a route impossible and exit  the 
path-finding there. To aid the infrastructure in the rest of our system, a “bogus 
route”  is  created,  consisting  of  just  the  start-  and  the  end-nodes.  This  will 
enable  us  to get  some information as well  as prevent  unwanted artifacts  to 
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appear. After these checks, we go trough all the ways out of the current node, 
which was previously at  the head of the open set  queue.  Each one ends in 
another node, and if this node has not been made previously, we create it. If it 
is already in the closed list, it means that it has been investigated, and as such, 
we do not need to do anything further. Else, we calculate the results of the g 
and h functions. If the node is not in the open set (if we have not visited it 
before) it is added there. If it is, but has a higher g-score than the one we just 
calculated, we update the scores, because we have now found a faster way to 
get to that node than previously. Each node also has a reference to the parent 
node, the node through which it was reached. Once the iterations finish, we can 
use these references to travel back  to the start, through what has now become a 
linked list, and  thus we have our route. As the g-score for each node is the time 
taken to  reach  the  node,  we can find the  total  time  to  travel  the  route,  by 
reading the g-score off the end-node.

The result is saved in a separate list of path nodes for retrieval by the system. 
They ways through which the nodes were reached is another thing that we are 
going  to  need  in  the  further  processing,  and  the  path  only  contain  the 
information about the order of nodes. Thus we made a method that returns an 
array with the ids of the ways that leads between the nodes along the path. In 
addition, we have made a route class for use by our ServerClients which is a 
lightweight  data type class,  consisting of and array-list  of  route-nodes, each 
with  just  the  id,  position  and  drive  times,  and  their  associated  getters  and 
setters. 

6.3.1.4 Visualization
To visualize what is going on, and to enable the operator of the server some 
level of control, as well as facilitate the testing of the system, we have made a 
graphical user interface (gui) for the server side of our system. This is made up 
of three major sections: a console-like text output from the server. This displays 
the  status  of  the  server:  who connects,  who disconnects,  do  the  pathfinder 
succeed in finding routes and so on. There is also a list of the queues that are 
currently detected, and allows the user to clear these manually. Buttons also 
enable clearing all queues in one go, and to add new ones.  The third part is a 
large map. This displays data about all the clients, that are currently connected: 
their routes,  including starting and ending points,  and their current position. 
The map also shows all the current queues that are detected. Buttons enable the 
viewer to hide the queues and/or the client information. 

The server console and the queue list are placed in a panel on the left side. The 
console is defined in its own class and consists of a scrollpane with a textarea 
inside it. A write method is made to append the incoming text and set the new 
caret  position  so  the  text  will  appear  to  automatically scroll  down as  new 
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messages arrive and are printed.  A label  below this  displays  the number of 
client that is currently connected. The table of queues is also in its own class 
with a scrollpane, but the contents are different. It is a standard jpanel which is 
updated regularly with a number of  row objects,  each representing a single 
piece of a road, a way, with the relevant information. The name of the road, the 
current  driving  speed  of  the  congested  traffic  and  the  percentage  of  this, 
relative to the normal driving speed. There is also a button on a row that when 
clicked will clear the queue from the global map, and also remove the the row 
from the list. Below the table of queues is a button that clears all the queues on 
the map,  and a button that  opens a pop-up window that  allows the user to 
manually enter a new queue. The pop-up has a number of textfields that allows 
the name of a road and the speed of the queue to be entered. This invokes a 
queuesetter  that  sets  all  ways  of  the  road  to  have  a  queue  of  that  speed. 
Alternatively, the id of a single way may be entered.

On the right side is a map. This was adopted from the OpenStreetmap java 
component  “JMapViewer”.12 This  relies  on  internet  based  rendered  tiles  to 
display  the  map  data.  Various  sources  for  these  tiles  are  included  in  the 
demonstration project, but we decided to choose the one we found was best 
suited to our use. We needed a uncluttered view of all the roads, and not much 
more.  Aerial  photos  are  available  as  well  as  hiking  maps  and much,  much 
more; both paid and free services, but we chose the the Mapnik tilesource as 
looking the most promising.

The full JMapViewer demo project was way too much for our needs, so we 
extracted only the classes we would need, and added a handful of others. The 
class JMapViewer is the central component that constructs the view from the 
tiles and adds some extra features like markers and control buttons, the rest 
being mainly infrastructure.  Also,  this  class  needed a  few some changes  to 
comply with our needs. Therefore we made some changes in JmapViewer.class, 
all of which are clearly marked in the source code. The changes and additions 
are listed in the table in appendix-2.

6.3.2 Client-side
(Nikolaj)

6.3.2.1 Dummyclient
The dummy client  is  used for simulating clients,  instead of having a lot  of 
smartphones we use dummy clients, which can act just like a client, but without 
any actually GPS locations. In this way we don’t need to have clients out on the 
street but instead simulating a user driving along a route, that makes the server 
act in the same way, and a lot of logic can be tested.

12 http://wiki.openstreetmap.org/wiki/JMapViewer 
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The “dummy client” (later referred to as client) needs to connect to the server 
using same procedure as a smartphone, which are trough “socket connection” 
in this way we can have multiple clients running on different computers. In our 
implementation we aimed for around 200 clients running at the same time for 
properly testing the server.  Each client  must  be individually controlled;  this 
means that the communication between client and server must be the same as 
with the Smartphone. Therefore the same procedure with client sending text 
strings and receives XML string is implemented.  The simulation of a client 
driving must also be simulated properly using the “update route” call. Because 
of the lack of GPS unit, the client will simulate the route jumping from node to 
node in its path, being able to simulate traffic jams.      

We chose to design the client as close to the real smartphone client as possible 
allowing  reusing  some  of  the  code  only  needed  to  change  few  elements. 
Therefore  are  there  two parts  of  this  client;  the  actual  client  and the  client 
handler.

The client needs to request a route, receive the route and process each step of 
the path, sending an “update position”. Using real time simulation, meaning 
that we will be able to set the time it’s supposed to use between nodes.

The client handler handles the dummy clients that are created, and provides a 
UI for setting start position of the client and destination. The handler keeps 
track of all clients created; this gives us the opportunity to create many clients 
in one instance of the program. The handler also controls the simulation of the 
clients, supplying the user with a list of active clients and the opportunity to 
change simulation time.



6.3 Components of our system  41

The GUI is used for creating new clients; in this term a new client is a new 
instance of the class DummyClient. The GUI has the AutoGenerate class which 
supplies the user with auto generated values based on the graph builder’s map. 
This way it’s easy to make a new client well knowing that the data it’s based on 
data that exists in the map. The GUI then creates a DummyClient which has the 
data about start point, ID, destination. The DummyClient is inserted into a list 
in the Clienthandler.

The Clienthandler stores the list of clients, and contains the implementation of 
handling multiple clients. The list of clients is used by the GUI class to update 
each  client,  For  example  by disconnecting  it.  The  communication  between 
client and server happens directly; therefore the client goes into a state where it 
waits for input from the server. When a client gets a message from the server it 
receives the XML string and calls  the XML parser  class which handles the 
XML file and splits it up in DummyNodes which it puts into the client's route 
list.  The  route  list  is  the  list  containing  the  path  of  the  current  route.  The 
DummyNode contains: ID, Latitude, Longitude, Time and Way. As explained 
in the communication section this I the information we need for displaying the 
route on smartphones. In our dummy client it is not necessary to have the way 

Figure 6.9: Overall design of the dummy client. 
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name.  But  if  the  client  should  be  extended  to  actually  navigate,  it  is 
implemented and ready to use.

The simulation of the client driving along the route are mainly handled in the 
ClientHandler,  There are two possible ways to simulate the steps,  either by 
setting a fixed time between each checkpoints, or just a run-method, which uses 
the  time  it  is  supposed  to  use  between checkpoints  and  simulate  real  time 
driving. The Clienthandler goes through the list with clients and calls a method 
inside  the  class,  which  updates  the  position  of  the  client.  It’s  all  based  on 
timestamps,  which  it  sends  back  to  the  server  with  the  Updateposition 
method. Both simulation methods is based on the speed of the client, the speed 
can be set in the GUI where the user specify how much percentage of time you 
want the client to drive with. If a client sticks to the speed limitations it drives 
with 100%, if it drives half as fast as the limit it is set to 200%. This way of 
simulating gives a good simulation, which are very close to real driving. This 
way to  simulate  is  the  best  implementation  in  our  opinion,  first  we  had  a 
simulation, which was based on steps. When a client had to move from one 
node to another while crossing an intersection, we had to wait until we believed 
enough time was spent at that junction, for it to be passed. Another problem 
was driving in a queue. We didn’t know how long time it should take driving 
on a way with a queue. Therefore the other way was implemented allowing us 
to do our simulation much smoother.

The design of the client was also redone. In the start, a single client was made. 
Doing that, required a lot of instances of the program be running at the same 
time. Therefore the ClientHandler was implemented and GUI extended with the 
DummyTable containing a list of Clients with the ability to change speed for 
each client.  This extension allows us to test  the system very well,  and was 
necessary  for  our  project.  Furthermore  the  implementation  of  the 
communication  between  server  and  client  has  been  changed.  The  first 
implementation  involved  a  basic  socket  implementation  where  the 
ClientHandler was listening on a predefined port, and then it extracted the ID 
of the XML string and found which client it should pass the XML to. This 
implementation was problematic  when multiple  replies from the server was 
received, it was not able to read the buffer before the buffer was full and started 
replacing messages. Therefore a new solution was implemented, this time using 
channels  in  the  port.  Each DummyClient  has its  own channel  assigned and 
when  the  server  wants  to  communicate  with  the  client  it  sends  the  string 
directly to the client. In this way the ClientHandler don’t have to keep track of 
all incoming messages. And the problem with the buffer is almost non-existing. 
Theoretical the same problem could occur again but it would require a lot of 
messages to one single client are send at the same time. This is highly unlikely 
cause a lot of junctions should occur at the same time within the client’s path.  
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6.3.2.2 Smartphone client
The Android client got the same basic functionality as the dummy client. The 
client needs to be able to write in an address, get a route from the server and, 
navigate the user to the destination. In the overview of the system we talked 
about our design choices regarding the more simplified clients and the more 
heavy server duties.

The Android client is therefore designed as simple as possible, this means that 
not much logic are used, the most this client actually does is the navigation 
part, where the other steps are exchanging data with the server and presenting 
them to the user. The navigation part is showing which direction you should go, 
way name and the distance to the checkpoint (This can either be a junction or 
just the row turning). Each new GPS fix will trigger the calculation of distance 
to next checkpoint.

Figure 6.10 shows the flow in our system from a user perspective. The user 
types  in  the  destination,  the  client  sends  the  data  to  the  server.  The  server 
replies with a route, the client displays the route and allows the user to evaluate 
the route and then confirm it. The Navigation starts and when it receives the 
first GPS fix the first direction appears. Each new GPS fix the distance to next 
checkpoint is  calculated, and if it’s  within 8 meters,  the client  will  send an 
“update  position”  with  the  new  position,  and  then  the  distance  to  next 
checkpoint is calculated and updated on the view. 

This process is based on our overall architecture decisions, it should be a very 
light weighted application, and on this prototype state, no fancy features are 
implemented  

Figure 6.10: State diagram
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Figure  6.11 shows  the  technical  aspect  of  the  flow in  getting  a  route  and 
navigating  to  the  destination.  The  SmartClient is  the  heart  in  the  android 
system; it holds the object for the data, e.g. destination address, ID, Route. This 
information are all stored in this object and therefore all the Activities; Menu, 
Confirmation and Navigation must get the data from it. The receiveData() 
is called from the Menu activity triggers the smartClient to read the buffer until 
a message from the server occurs then it parse the XML file and fills the route 
list  with  SmartNodes13. Afterward  the  call  it  starts  the  next  activity: 
Confirmation. The Confirmation gets the list of SmartNodes and displays them 
to the user. This allows the user to verify the route before he begins the tour. If 
this is accepted he starts the navigation which is explained in Figure 6.12

13 Explained in the Class overview in Figure 6.13

Figure 6.11: Sequence Diagram of getting a new route
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The Locationchanged()14 method is a Event which gives us the opportunity 
to obtain the latest Latitude and Longitude from the GPS. The method provides 
us with the functionality to decide how often the method should be called and 
how  many  meters  the  client  should  have  moved  before  it  counts  as  a 
Locationschanged(). We decided to make the client as sensitive as possible 
because of the importance of GPS data. The distance check is calculated in 
meters, this may give some errors, The GPS unit has indicated to be unstable 
when it comes to specific locations, although the buffer with 8 meters near the 
checkpoint should allow the Navigation to discover the checkpoint. When the 
distance is under 8 meters the Navigation calls the method getTurn() The get 
turn is used to determine which direction the user should go next. For that we 
need some vector calculations to determine this.  It’s not enough to now the 
coordinates of the next checkpoint, it is also necessary to know which way the 
user came from. We observe the ways as two unit vectors; this gives us the 
ability to calculate the cross product and hereby derive the direction.

14 http://developer.android.com/reference/android/location/LocationManager.html

Figure 6.12: Flow chart of the navigation method.
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When the direction is  calculated,  the Navigation activity changes the arrow 
picture  according  to  the  return  value  of  getTurn().  The  text  field  which 
shows the distance to checkpoint and way name are also updated. Then the 
sendUpdate() is called and sends the new position to the server. 

In  Figure 6.11 the Navigation calls the  receiveData() this is the last thing 
that happens in the locationChanged() this gives an event based listening 
for new routes. This is necessary because of the server design, the server sends 
out a new route without any interaction if it finds a faster route that the current. 

The application on the smartphone is based on activities; Activity15 classes are 
an  android  class,  which  can  interact  with  the  user.  This  is  done  with  the 
setContentView(View) method  that  allows  to  change  the  layout  of  the 
window.  The layout  is  designed in  a XML file which is  referred to by the 
method.

The Menu activity contains the main method, it’s from here the program starts. 
The menu activity also contains the first view, where the user is presented to 
layout where the destination should be entered. The Clients ID is obtained from 
the  Data  class.  Afterwards  a  SmartClient  object  is  created  containing  the 
information about the client. When the address is send to the server, and the 
client have received the data (shown on  Figure 6.11). The route is set in the 
SmartClient’s the incoming message from the server is first parsed through the 
XML Parser and afterwards divided into SmartNodes. The Menu activity now 
starts  a new activity;  Confirmation.  The confirmation class’s  only job is  to 
show which ways the route is going through. This ensures that the user can 

15 http://developer.android.com/reference/android/app/Activity.html

Figure 6.13: The classes of the Android Application
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verify that it is indeed the right address (if he has been there before or knows 
which direction to go). If he confirms the third and last activity: Navigation is 
started. The Navigation activity contains the Navigation feature as explained in 
Figure 6.12. Navigation also makes a new Smartclient just like Confirmation. 
This is necessary because of our data is stored in this object. The data are in the 
two cases  the need for our route data,  stored in a list  of  smartNodes.  This 
means that the SmartClient got static on all the variables allowing us to reach 
the data even though we create a new object. This is not a good design solution. 
The implementation should be revisited if we had some more time, it works 
because we only got one set of data in the client, and when the destination is 
reached we clear the static variables. If we had time for one more iteration we 
had passed the object between the activities. This could have been done with 
bundles and intents;  this  is  a  easy approach when dealing with simple data 
types, but when dealing with objects and list of objects it’s much more difficult 
and time demanding. Another way to do it would be to only have one activity 
and then use the method changing the layout for each click. This would result 
in much smoother design containing a main class as a controller and a view and 
then the SmartClient as a model containing the data. The problem with this 
approach is a big controller class; the Navigation activity is easier to manage 
when it has its own activity. If we had 1 more iteration we would have kept to 
the  plan.  But  extended the  implementation  with  the  data  from SmartClient 
passed through activities.

The  design  of  our  receiveData() method  which  is  event  based  on  the 
LocationChanged().  A better  way to  implement  it  would  be  a  Service16 
running in the background. A service is a way to tell the main class new things, 
which is exactly what we want to do, by running a service in a new thread. This 
service should listen on the incoming messages to the program, and when it 
receives  a  message  it  tells  the  Navigation  activity  right  away.  This  would 
optimize the performance on the client. It is important to show the new route 
fast,  cause of  the  risk of  driving by a  way where  you should have turned. 
Another problem in our implementation is the ID, the ID is generated based on 
a  timestamp  which  is  most  likely  to  be  unique  but  not  100%.  Another 
implementation  would  be  with  the  smartphone  IMEI  number  using 
TelephonyManager17 The manager is a class that provides the developer with 
information about the device hardware and software.

The  confirmation-activity’s  functionality  is  not  fully  implemented;  in  the 

16 http://developer.android.com/reference/android/app/Service.html

17 http://developer.android.com/reference/android/telephony/TelephonyManager.ht
ml



6.3 Components of our system  48
prototype the confirmation only gives the user a view of ways on the route. If 
more time were added a Google Maps implementation would have been made. 
Such an implementation views the route on the map before the user accepts the 
route. The same implementation could have been done within the navigation 
method. Instead of showing only arrows it could show the map at the same 
time. This would present the user for a more transparent navigation.

7 Testing
7.1 System test
7.1.1 Black-box test
(Christian)

Testing the system turned out to be rather difficult  when using a real-world 
roadmap. Unless you live in an American-style city in which the roads are laid 
out as a rectangular grid, it is nearly impossible to judge whether one route is 
shorter or faster than another route.

Black-box testing requires that the output can be predictable for a certain input, 
to evaluate whether the test returns the expected result. We cannot tell if the test 
was success or a fail if we do not know what to expect. To alleviate this, we 
have constructed a very simple map which we can use when testing the system. 
It was written by hand using the syntax of the OpenStreetMap xml files. This 
allowed the test  to be conducted without  changing anything apart  from that 
map. It consists of three roads in the east-west orientation and three roads in the 
north-south orientation. The roads are laid out in a 3 by 3 grid which is 200 
meters square, and is positioned within the area of DTU to provide a familiar 
setting. The roads are named “Avej”, “Bvej”, and so on, and each of the east-
west roads has three addresses. These are offset slightly from the roads, as they 
would be in a real map. Because the test map does not reflect the real world 
data, the underlying map are displayed in the user interface, with our additional 
info on top, and this might be a bit confusing. Please refer to figure Figure 7.1 
for a visual representation of the test map. 
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Tests were designed to try out the various capabilities of our system: routing, 
detection  of  queues,  re-routing  of  clients,  removal  and  updating  of  known 
queues. Clients were added using our dummy client generator.  

1. This  tests  the  most  basic  functionality  of  our  system:  a  client 
requesting a new route from its current position to an address. 

2. This  tests  what  happen  if  the  client  requests  a  route  to  its  current 
position. 

3. Tests whether the pathfinder avoids a congested road and takes another 
route. This is exactly the same as in test 1, but a queue is added on the 
route that was found during that test, suggesting that the fastest route is 
now different from the one found during test 1. 

4. Same as in test 3, but with a new queue on the route found there. The 

Figure 7.1: The map used in the black-box test. Roads are outlined, the  

mapnodes are blue dots and circles with numbers indicate the addresses.
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fastest route now, should be through the central 4-way intersection.

5. Tests if a client get re-routed around a queue, if this is added after the 
client starts driving.

6. Tests that a queue is reported and added to the graph, when a client 
move slowly along a road.

7. Tests that when a client passes a road which has a known queue, but at 
normal speed, the queue should be cleared.

8. Tests that when a client drives down a road which has a known queue, 
but at a speed different from the queue, but slower than the speed limit, 
the queue should be updated to the new speed.

The test results proved that in general the system works as it was planned, but 
the  textual  reports  from the  server  when no  route  is  found could  be  more 
precise. All test results are summarized in Appendix-4: Test results

7.2 GPS test
(Nikolaj)

This test is made to test the GPS unit in the smartphones. This test is performed 
with a HTC Desire, with our Navidroid application that is redesigned to count 
how many GPS-fixes it receives in 5 minutes.

A GPS-fix  is  when  the  locationChanged() method  is  called,  when  the 
method is called, it tries to get the fix of the location, it will not end before a fix 
is received. Its developed to send a location changed each second(assuming the 
GPS fix was available) and a change in the location in a meter. The one meter 
should be all the time because of the uncertainty of the GPS unit. Three test 
cases is examined: indoor, outside on a road in central Copenhagen and outdoor 
on a open field.

Table 7.1: GPS test results – see also  GPS-fix test results in Appendix-4: Test

results 

Place Fixes Until first fix Seconds per fix

Indoor 16 193 seconds 18 seconds

Small road in Copenhagen 91 86 seconds 15 seconds

Outdoor on a open field 151 11 seconds 1 seconds

This test shows that the GPS unit in a smartphone is not perfect to use. On a 
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open field it would receive a update each second when driving, this would be 
okay to use in a car driving. Inside Copenhagen where tall buildings interrupts 
the satellite signal it is only a single fix each 15 seconds. If you are driving on 
small  roads  15  seconds  could be okay,  this  test  is  performed standing  still 
outside. Therefore the factor when driving and being inside a car may affect the 
result more. When used indoor its very hard for it to get a signal, which was 
expected because of the need of clear sight to the sky.

The test shows that the GPS unit in a smartphone still need a bit improvement 
to  be  very  good  as  a  car  GPS.  Unfortunately  no  data  from  normal  car 
navigation was available. Therefore these assumptions are based on our own 
experience,  including  using  a  GPS-tracker  app,  while  being  passenger  in  a 
car18.   But in smaller cities and on open road the Smartphone works just as 
good as a normal car navigation.

7.2.1 Performance test
(Christian)

This test was made to see the temporal performance of the system: how fast can 
it provide a route to a user and can it do so consistently? We made this test with 
the  big  greater  Copenhagen  map,  and  added  dummy  clients  with  the 
randomized functionality. 50 timed samples were made, and the time to return a 
route was logged. This is the time between hitting the submit button and the 
client receiving the route. No distinction was made between those returns that 
yielded a valid route, and those that returned a no-route-found message; the 
timing  was  the  critical  factor  in  this  test.  Also,  the  straight-line  distance 
between the starting position and the goal was calculated and recorded to see if 
there could be any correlation between these, which could be used as a basis 
for  predicting  when a  route  should be  ready for  the  client.  The results  are 
outlined in figures 7.2 and 7.3. Note that two outlying values of 408 and 410 
seconds are not included in the figures, as that would make the details of the 
figures hard to make out.

18 http://www.sportstracklive.com/ 
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Figure 7.2: Histogram, showing the  

time distribution of route returns

Figure 7.3: The time plotted against  

the straight-line distance 
From the histogram it is clear to see that almost all the measurements are below 
2 seconds, with the median being 0.8 seconds. This is very satisfactory. Any 
user should have enough patience to wait 2 seconds. There are a few outliers: 3 
and 6 seconds. These may be routes that are especially difficult to calculate, 
and the A* algorithm struggles to reach the goal, and never the less, are still 
acceptable. The two outlying values of 208 and 210 seconds are not. Neither of 
the cases return a valid route,  and it  appears that  they had a goal  that  was 
located in one of the “black spots” in the map (See section  5.1.2 for details). 
The nearly identical times for these outliers, indicates that the pathfinder has 
had to travel the same a similar amount of the graph without finding a valid 
route, probably nearly the entire graph. This is done despite them being totally 
different: different starting and goal locations, and different distances of 11 and 
51 kilometers.

An additional test was made by auto-generating 100 dummy-clients in one go. 
This took 1342 seconds, or 13.42 seconds per client. This is not acceptable, but 
looking closer at the results, revealed that 3 out of the 100 routings were the 
full-graph traversals as explained above. Subtracting these (409 seconds each) 
and calculating the average or the remaining 97 clients yields a values of 1.19 
seconds per client on average. Much better, but we still need to be able to avoid 
those full-map traversals for the system to be really feasible. This may be done 
with a simple time-out function, so if a routing takes more than for example 10 
seconds,  the  result  could  be  assumed  to  be  a  no-route-found,  and  the 
pathfinding could be stopped. A better solution would be to tidy up the map 
data to ensure that there are no “black spots” or unconnected areas, making 
sure that no areas are left unconnected, and that all nodes and ways match up, 
which they do not do in the raw data from OpenStreetMap.
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7.2.2 Stress test
(Christian)

This was to test how many clients, the system could handle at any one time. 
This is of course a matter of machine capability. More ram, faster processor, 
better internet will enable the system to handle more clients. This difference in 
performance has  been very noticeable  between the  computers  that  we have 
used during the project. The laptops that has been the main workstations during 
development,  start  to  slow  down  when  adding  as  little  as  100-200  clients 
simultaneously,  but  they can both handle  the  simulation with ease.  A more 
capable stationary PC was able to keep up until 750 clients because of its better 
processor  and ram figures.  As with the  laptops,  it  is  the  actual  addition of 
clients and pathfinding that is the heavy part. Simulating and visualizing is not 
the limiting factor.  If the system is to be used in a real setting, a dedicated 
server would help a lot and allow many more clients to use it. To expand the 
capability even further, several servers could be used, with some sort of load-
sharing scheme that would have to be implemented.

7.3 Use-case test
(Nikolaj)

The use-case tests are conducted because of the importance of testing the most 
important functional requirements. These are based directly on the use cases 
developed  in  the  requirements  section.  The  actual  tests  can  be  found  in 
Appendix-4: Test results (section 10.4.2) and in this sub-section we will discuss 
our results and show them if important.

Description of Use-case tests 

1. The Find Route test is when a user want to get the route from A to B. 
The test failed one place when no internet connection are available, the 
try/catch statement does not catch the exception that is thrown. This 
results in a Crash of the application when a route is requested and there 
is no internet coverage.

2. The Drive along Route test is when the user drives along the route. All 
of the tests is passed.

3. Drive away from route  test  is when the users drives away from the 
route,  then  the  application  will  not  show  the  user  back  to  the 
checkpoint but keep showing the next checkpoint. All tests is passed.

4. Report congestion test is when a car drives slower than the speed limit 
the server should set a congestion on the way the user is located. All of 
these tests are passed.
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5. Get  new  route  tests  is  when  the  user  drives  along  the  route  and 

congestion  appears  on  a  way  in  its  route.  Then  the  server  should 
calculate a new route and send it to the user. This test is passed.

6. Exit → end route  test is when the user shuts down the application or 
the route ends, then the application should send a disconnect  to the 
server and the server should remove the client from server. This test is 
passed.

7. Exit  → client  vanish test  is  when the  application loses  the  Internet 
connection or battery power, then it should send a disconnect to the 
server.  This  test  is  partial  failed,  because of  the  android design the 
application  closes  before  disconnect  is  send.  But  a  feature  on  the 
server, which removes the inactive clients, is implemented. Therefore 
the client doesn’t have to send disconnect.

7.4 Path-finding compared to krak.dk
(Nikolaj)

This test is a test of the difference between our product and a professional route 
description “krak.dk”. The test scenario will be a short distance, and a long one. 
The short one is look at the route and see if they take the same ways. And the 
long to see if the calculated time matches.

As seen in  Pathfinding comparison test results (section  10.4.3  ), path finding 
comparison the short routes are identical and with the same time to travel. The 
long route is almost same time only 4 minutes apart. They choose 2 different 
ways, both ways are possible and we were not able to see why there is a small 
deviation, it can be because of junction calculations, or speed – limits.

7.5 Platform tests
(Christian)

The goal here was to try the smartphone client program on as many different 
Android phones as we could get our hands on. We had two HTC Desires, we 
borrowed from DTU, Christian has the same model. In addition to this, friends 
and relatives with android phones were asked to help. The smartphone model, 
the installed version of Android and whether our app worked or not, as  well as 
comments are presented in Table 8.1.
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Table 7.2: Platform test results

Smartphone Android version Works Comments
HTC Desire 2.2 Yes

HTC Desire HD 2.3.5 Yes Arrow  graphics  does 
not show

Sony Xperia X10 mini 2.1 No Does not even install

HTC Sensation XL 2.3.5 Yes
The  reason  that  the  app  does  not  install  on  the  Sony Xperia  X10  Mini  is 
probably that  the  android  version  is  below the  one  specified  in  the  source 
manifest file. This specifies which android api-level the app uses and ensures 
that it complies with the minimum capabilities of the handset. We may have 
been able to lower this level, but during the development phase, we had only 
access to HTC Desire phones, which has Android 2.2 and we could not have 
been sure that the app would be able to run on any lower api-levels without 
further testing. To make the app run on this phone may be as easy as changing 
the line in the manifest that specifies api-level to be “7”, the one that represents 
Android 2.1.

The HTC Desire HD shows the direction arrows as the generic Android-logo 
icon. This handset (as the name implies) has a high-resolution screen, and the 
arrow graphics were made to fit a medium resolution screen. Providing a set of 
arrow graphics with a higher resolution should fix this easily.

8 Discussion
8.1 Navigation versus our system
(Nikolaj)

This sub-section will compare our type of navigation to the known professional 
navigation, which are used in cars.

The specification of a “normal” Navigation unit compared to our product is:  

We used the most sold GPS unit in 2009/20101920 The Garmin nuvi 265WT21

19 http://gpstracklog.com/2010/12/best-selling-gps-for-november-2010.html
20 http://reviews.cnet.com/8301-13746_7-10411699-48.html
21 https://buy.garmin.com/shop/shop.do?pID=13430&ra=true
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Table 8.1: Select specifications for the Garmin navigator compared our  

system.

Feature Normal Navigation Unit Our Project
Internet No Yes

FM Receiver Yes No

Display size 4.3” 3.7”

Preloaded street map Yes No

CO2 based route Yes Yes

The table above shows some selected specifications of the two products, its 
chosen based on giving an overview of the difference between these Navigation 
methods.  The  lack  of  internet  in  the  Garmin  compared  to  our  system  is 
compensated with the preloaded map and FM receiver, our product uses the 
internet to communicate with the map data, while the Garmin has loaded the 
map in internal memory. The Garmin unit has the advantages of not depending 
on  a  available  internet  connection.  Our  product  also  needs  the  Internet  for 
receiving the TMC in XML-structure while the Garmin receives it through the 
FM-receiver. The Garmin screen is a bit bigger, this is the biggest advantage 
compared to our product.  On a smartphone it  sometimes can be hard to see 
where you should make the turn because of the smaller screen. This could be 
compensated  with  an  integration,  with  voice  telling  the  user  where  to  go. 
Android has the text-to-speech functionality that could be used.22

Another  big  problem  would  be  that  our  product  is  dependent  on  internet 
connection.  But  the  fact  that  Internet  gets  more  common,  and that  most  of 
Denmark is covered with 3G, compensates for the lack of a map downloaded to 
the internal memory. Our advantage of not having the map preloaded makes 
changes to the map, easier to update. If a new road is built, we can just update 
the centralized server, meanwhile each Garmin unit needs to be connected to a 
computer, allowing the Garmin unit to update the map.

8.2 Deficiencies
(Nikolaj)

This sub-section will discuss the deficiencies of our project, this analyze will 
be  based  on our  requirements  specification,  and  what  deficiencies  we  have 

22 http://developer.android.com/reference/android/speech/tts/TextToSpeech.html 
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encountered.

8.2.1 Data
The implementation of our project is dependent on data. Data in this case is the 
information our system receives from clients, therefore we need a minimum of 
users of the system before it is usable. The way we implemented the traffic 
control, is the way you have to go, if we do not want to spend a lot of money 
on hardware, which can count cars at each way. In our implementation we do 
not need any hardware besides the servers. Therefore it is also important that 
the  clients  actually  drive  the  route  the  navigation  tells  them.  If  they drive 
without the application turned on, the other users of the system cannot count on 
the data the system supplies. If we should give 100% information about how 
much time it takes to drive on each way, we could do two things. Make the 
smartphone to update the position each time its changed, in this way we know 
where all smartphones with the application installed are. This may give some 
moral  and  ethical  problems  because  of  surveillance  of  each  user.  Another 
approach could be installing hardware at all roads; this hardware could either 
count cars per hour or measure the speed of each car and send the data to the 
server.  This  way  we  rule  out  the  user  errors  of  forgetting  to  turn  on  the 
application,  and  start  navigation  even  for  short  rides.  The  cons  with  this 
approach would be the price and time it takes to set all  the hardware up to 
count  cars.  This  is  an expensive solution compared to  the  smartphone way 
where all data is supplied by the smartphone.

8.2.2 Navigation
Our navigation design may encounter some problem. The implementation only 
contains the navigation with arrows, way names and distance to the turn. Other 
GPS units show a map zoomed in to the position of the user. This way it’s 
clearer  to  the  user  which  way they  should  turn.  Our  implementation  with 
arrows works and gives the user the opportunity to follow the route, but it lacks 
on the user-experience. If we had some more time we would have improved the 
navigation  with  a  drawn  route  on  the  already implemented  Google  Maps, 
which has an API for drawing.  Our navigation unit is not capable to lead the 
user back to the last checkpoint if he is lost. Our solution will keep showing the 
wayname of the checkpoint and the distance to it. This way the user can see if 
he moves further away from the checkpoint or closer. But there is no arrows or 
an automatic recalculation of the route. If the user is lost he must start a new 
route, afterwards the server will send a new route to the user. Starting from his 
current position. An optimal implementation would keep track if the user is on 
the route, if he disappears from the route, the navigation should send a request 
to the server asking for a new route from the new position.
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The map data we get from the OSM has some failures. We do not verify the 
quality of the data we get, but read it in to the system. A type of insurance that 
the data we get from the map actually works would be preferable. We have 
encountered  some  problems  with  the  routes,  because  of  the  ways  are  not 
connected. This happens when we read the map into the system. Some ways are 
not  connected  but  the  data  is  still  in  the  system.  Therefore  the  algorithm 
sometimes  has  a  long response  time.  A solution  to  this  could be  when the 
reading of the XML file, we make a path from each node, and if no nodes are 
able to connect then we remove the node from the data. This way the algorithm 
would always find a route. But it would take much longer time to read in the 
map if all these connections should be verified. 

The data structure of our graphs could be improved. Right now the data lies in 
lists. If the data were put into some more high performance structures as trees, 
the performance would be better. Our solution is to all the data we got in graphs 
are sorted, this way we know exactly where the data is based and can make 
insertion  and  withdrawal  fast.  This  is  implemented  with  binary  search  as 
explained in section Graphbuilder on page 31.

8.3 Future possibilities
(Christian)

8.3.1 Improved positioning
One of our headaches was the GPS receivers in smartphones. The GPS signal is 
notoriously  difficult  to  receive  inside  buildings,  or  in  cities,  where  tall 
buildings blocks the view to the sky, and flat facades causes radio signals to 
bounce around, introducing errors and loss of positioning service. The lack of 
reception inside buildings, should not be an issue to our system, as we do not 
expect  the  users  to  be  requiring directions  for  the  parking spot  inside their 
garages. Loss of reception can also be an issue inside tunnels, however, and 
that could be an issue. As the network service is probably also lacking inside 
tunnels, these would be double trouble. In open country, at least as open as a 
suburban areas, with only 1- or 2-story buildings, we have found no problems 
at all: first fixes arrive in seconds, and the resolution and precision has proven 
better than 10 meters in our tests.

In the very near future, new and promising ways of positioning are coming into 
use by the public. The European Union is developing its own satellite-based 
system, called Galileo. This is to have full control over the availability of the 
system. GPS is controlled by the United States Air Force, and as such, it can be 
turned off or encrypted at any time, the USA wants to limit the availability. The 
EU  wanted  better  control,  and  also  better  accuracy,  so  started  the  Galileo 
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project which is very similar in structure to the GPS-system once it becomes 
active (planned for 2014-2019). China is developing a similar system also. All 
these systems, will improve the availability of a positioning system greatly. At 
least  in times of calm and peace,  the operators are planning to have signal 
available to public use that can have precision to within meter scale. A handset, 
or navigation aid in a car, that took into account all these systems, would have a 
much better chance of getting a valid fix, even among the tall buildings of a 
city. This is because the satellites are much more densely spaced in the sky, and 
a receiver on the ground would need a much smaller part of the sky visible to 
pick up the needed number of satellite signals.

Hybrid positioning systems are an emerging concept that could provide better 
positioning in urban areas.23 These uses combinations of different technologies 
such  as  nearby  wifi  hotspots,  mobile  cell  points  and  others  to  provide  a 
positioning that can argument or replace the GPS-based systems.

8.3.2 Reduction of carbon emissions
The environment could get a lot of benefit from our system. Traffic is one of 
the  largest  contributors  to  CO2-emissions  (86% in  Copenhagen in  summer, 
39% in winter24)  Anything that can decrease the emissions from traffic may be 
an important factor in the present and future. Our system can not make sure to 
reduce the time it takes to drive and thus the amount of CO2 emitted, but it can 
optimize the time. There is a lot of talk about carbon efficiency and A, B, C 
rated cars, Blue Motions and so on and so on, but a car that is stuck in a traffic 
jam drives 0 km per liter regardless, however advanced its technology may be 
(as long as its engine is running). Apart from total traffic jams, even a medium 
congested road will increase CO2 emissions by the cars: start and stop and ever-
changing velocities is much worse than cars driving at a constant velocity.25 So 
a  traffic  management  system that  can  avoid  congested  roads  will  help  the 
environment.  Our  system  does  this  and  more:  we  both  counteract  traffic 
congestion,  and  decrease  the  time  a  driving  trip  takes,  even  if  there  is  no 
congestion. All else being equal, a quick trip emits less CO2 than a long lasting 
one.

8.3.3 CO2 based navigation
An interesting addition to our system could be to be able to generate the routes 

23 Google Maps for Mobile or openBmap.org for example
24 Towards a spatial CO2 budget of a metropolitan region based on textural image 

classification and flux measurements: Remote Sensing of Environment (October 
2003), 87 (2-3), pg. 283-294 Henrik Soegaard; Lasse Møller-Jensen

25 A lorry union website claims 3 times more: 
http://www.iru.org/en_policy_co2_response_flowingtraffic
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that causes the least CO2 to be emitted during a trip: CO2-based pathfinding. 
Technically,  it  would  be  extremely  simple  to  change  our  pathfinder  from 
finding the fastest route to finding the cleanest route. At the present, the A* 
pathfinder uses a cost value to find its way. This cost function is the time it 
takes  to  travel  a  way,  based  on  either  the  speed-limit,  or  the  slowed-down 
congested speed, deduced from the gps fixes and timestamps reported by the 
clients. This cost function could be changed to be the amount of CO2 emitted 
while traveling a way, and the pathfinder would find the cleanest route – voilá. 
CO2-navigation!

But it is not so simple unfortunately. The barrier here is data: how can we tell 
how  much  CO2 is  going  to  be  emitted?  Different  motors  have  different 
emission levels and efficiencies, and even the same motor in a different car, or 
at  a  different  speed or  different  gear  will  change  the  emissions.  Perhaps it 
would be possible to split the cost function in two: one part focusing on the 
actual vehicle, and one part focusing on external factors. 

External factors first. These is the factors that are equal to all vehicles. 

• The speed of a way: high speed causes more aerodynamic drag, but 
decreases traveling time.

• The surface of the road: rough roads causes more resistance, but slick 
ice is also bad for the emission levels.

• The type of road: speed-bumps, and frequent twists are worse than a 
straight road.

• Incline: driving uphill needs more power than going downhill.
• etc

Internal factors are those that differ from vehicle to vehicle.

• Engine efficiency: this also depends upon the speed of the car.
• Tires: worn winter tires with too little pressure in a hot summer can be 

a significant drawback
• Car  aerodynamics:  Most  motor  vehicles  are  very  dirty  from  an 

aerodynamic  point  of  view,  and  there  can  be  a  lot  of  differences 
between vehicles.

• Driver: The driving style of an individual can have a big part.
• etc

All these factors and many others have a bigger or smaller effect on the CO2 
emissions, a vehicle may produce. Our system could perhaps be changed to 
receive some vehicle data from each client, when receiving a request for a new 
route and then combine these with other data, stored in its map to calculate a 
cost-value  for  the  ways,  and  thus  come  up  with  a  cleanest  route  for  that 
particular vehicle. We have included a CO2 cost for roads in our system, but we 
do not use it for other purposes than calculating the approximate emissions on 
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each route. 

8.3.3.1 Implementation of CO2 data in our system
The  values  are  based  on  the  quite  sparse  data  we  have  been  able  to  get. 
Although there is a lot of information on the fuel economy and therefore the 
CO2 emissions  by  cars  in  general,  these  are  meant  as  comparison  values 
between cars, so a buyer can choose a car by the fuel economy. The values are 
typically a measurement of a fixed, benchmark situation, that is supposed to be 
representative  of  a  normal,  mixed,  driving  profile  with  accelerations 
decelerations and different speeds. What we would like instead, is data on how 
different driving speeds affect the emissions. These would then be used for the 
different types of roads in our map. Apparently, the car manufacturers keeps 
these  values  for  themselves,  and  only  publishes  the  results  of  required 
benchmark(s). Manufacturers are even rumored to design their cars to perform 
well  in  the  benchmarks,  instead  of  normal  day  use,  and  this  may  be  the 
incitement to keep their data safely tucked away. 

After some investigation on the internet, and asking a Volkswagen car dealer 
for data that was better suited, we had to give up and take a different approach. 
We found that the the car in most widespread use in Denmark is the VW Golf, 
though the specific model is not detailed. We were able to find slightly more 
detailed data about  this,  than most  other cars26.  The European standard fuel 
economy test is using the so called New European Driving Cycle, which is a 
combination of an urban drive cycle and an extra urban drive cycle. These are 
supposed to represent a typical driving profile inside a city and outside a city 
respectively.  During  these  cycles,  the  emissions  are  collected  and  analyzed 
afterwards for the result. VW also specified the partial fuel economy during 
each separate part of the test. This allowed us to calculate the emissions during 
these  driving situations.  The  data  and  results  are  listed in  Error:  Reference
source not found. Although meager, we would now have at least some data...

Table 8.2: CO2 emissions calculated from the fuel consumptions as detailed  

in the data for the VW Golf 1.4

Drive cycle Fuel consumption CO2 emission Relative emission
Urban 8.5 L/100km 197 g/km 1.32

Extra-urban 5.1 L/100km 118 g/km 0.79

Combined 6.4 L/100km 149 g/km 1
We have entered the relative CO2 figures into our map, guesstimating which 
road types could be considered “urban” or “extra-urban”. Seeing that the VW 

26 http://www.car-emissions.com/cars/view/38130 
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Golf could be considered an average car, we have chosen this approach to make 
the external factors as explained above. By counting up this relative CO2 cost, 
and multiplying with the combined-cycle CO2 emission figure,  we can then 
calculate the total emission of a route. Assuming that other cars have the same 
relative factors, we can multiply with their combined value (which is available 
for all cars in the EU) and get their CO2 emissions. We admit that that there is 
quite some approximations and assumptions involved in this approach, but at 
least it shows that it is possible to implement a CO2 based navigation system.

8.3.4 Integration of public transportation
An  important  factor  in  the  transportation  infrastructure  is  the  public 
transportation forms like trains and buses. OpenStreetMap has provisions for 
including data  relating to  public  transportation,  such as  bus  stops  and train 
stations, and even include some routes in its data. There are proposals up for 
more deep integration of public transportation into the map. This proposal does 
not cover timetables, and timetables would be critical to the integration into our 
system. It would not be of any benefit for a user to know that there is a train 
route, he can take to avoid a traffic jam, if the train departs in 9 hours from 
now. 

In Denmark we already have a service that covers public transportation routing 
and timing very well. “www.rejseplanen.dk” is a cooperative effort by the main 
transportation companies to maintain an up-to-date route-finding service at all 
times. This, however, does not have any provisions for private cars on the main 
road network. What we would need is a merger of these.

There are some snags inherent to coupling personal and public transportation. 
People driving a car will do so when they want. People taking a train will have 
to do so when they can. A user who wants to go from point-a to point-b may be 
able to do so in his car all the way, or there might be a possibility to take a bus 
or a train for part of the route. Our pathfinder could then guide the user to a 
train or bus stop. But it would have to do so in time to park the car, walk to the 
ramp and maybe buy the ticket before it leaves. Another issue is parking spots, 
the user would have to be guided,  not  to the station itself,  but  to a nearby 
parking facility,  and one with a free spot too. If the user cannot find a free 
parking spot, the detour would be wasted – time-wise anyway.

The way a user would normally use our system would be when he enters his 
car and wants to navigate around congested roads to a goal. This would mean 
that  to provide a route that  includes public transport,  we would have to be 
tightly timed, as there would be only a very short window of time to take a 
train or bus, before the effort would be wasted anyway. There would also have 
to  be  an  amount  of  luck,  in  that  there  must  be  parking  available  within 
reasonable time and distance. These challenges would make it very difficult to 
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make a usable coupling between the public grid and the private cars, which 
could consistently provide fast and efficient routes to the users.

8.3.5 Driverless cars
The ultimate level of traffic control would be to take the man out of the loop. 
Studies have shown that the main cause of traffic jams may be human factors.27 
Accidents and driver errors are also almost entirely a human affair. It is also 
apparent that even people who do use a satellite navigation system to find their 
way takes a wrong turn now and then. The user does not always follow the 
directions of the navigation aid, unwillingly or on purpose. A guidance system 
that provides a good and consistent route will with time make the user more 
confident about following the directions and thus make them more likely to use 
our system as it was meant to be used: following the directions blindly to avoid 
the congestion, even though it may not be apparent that it is the best solution in 
all cases.

These human decisions are nearly impossible to control – and whether they 
should even be tried to be controlled is very much an question of ethics. We 
have already made a system that  would be a nice thing to have for a “Big 
Brother” - giving “him” total control does not seem right to us. We want to 
make something that can advise the users, not decide for them, even though 
those decisions may prove wrong, people should still have the right to do the 
wrong thing... 

Driverless cars are no longer a thing of science-fiction, although they are still a 
thing of science, and not ready for everyday use. But we are getting there.

8.3.6 TMC integration
(Nikolaj)

Traffic  Message  Channel  (TMC)  is  a  service  delivering  traffic  and  travel 
information to drivers.  Normally transmitted to the user using the FM-RDS 
system, allowing users to get the information with their radio. This service is 
used by radio  stations  to  transmit  traffic  information to  drivers  and by the 
navigation companies to update speed limits on ways. This way the user of the 
navigation can avoid traffic incidents and roadwork. The navigators which uses 
this also got a FM receiver implemented to receive the TMC, due the lack of 
Internet connection. In some countries the TMC is also brought to the users in a 
XML-structure.  This  allows  devices  with  no  FM-receiver  but  a  internet 
connection  to  receive  the  data.  Trafikken.dk  brings  this  to  the  users  in 
Denmark.  This  service  is  unfortunately not  free,  and therefore  we have not 

27 http://ing.dk/artikel/86162-stop-and-go-paa-motorvejen-det-er-kun-bilisternes-
skyld
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been able to implement it in our system. We have created the class QueueSetter 
which can set  queues on ways.  With this  implementation we only need the 
XML  parser  and  interpreter  to  implement  this  feature.  The  TMC 
implementation will  allow the users to avoid these zones if there is a faster 
way. Without it, at least one client must drive though the zone with roadwork in 
order to report of the zone with a lower speed limit. The TMC also transmits 
about  car  accidents  that  an  implementation  also  would  prevent  cars  from 
choosing this way. Especially roadblocks are something we want to avoid. If 
the client’s checkpoint is on the other side of the roadblock and the client just 
holds still, the server will not know about the queue before the roadblock is 
gone and it reaches the checkpoint. This may result in many other clients also 
being guided though this way with a roadblock.

9 Conclusion
(Nikolaj and Christian)

This thesis presented a prototype of a traffic guidance system. We have not 
been able to find similar project that uses the smartphone infrastructure to gain 
traffic information and do traffic control based on these data. Smartphones are 
sold as  never  before  supplying  us  with a cheap and effective  infrastructure 
without the need of purchasing expensive hardware. 

The system contains: Android smartphone application, Server, Dummy Client 
and Visualization. It was necessary to narrow down the scope of the project, 
because  of  the  primary  goal,  which  was  a  working  implementation  of  the 
system.  With  the  server  as  the  central  unit  and  smartphone  application  to 
present the data to the user. The dummy client and visualization is developed 
mainly for testing. To meet the project scope a horizontal prototype has been 
developed.

The  test-results  indicates  that  we  have  successfully implemented  the  traffic 
guidance  system.  The  data-structures,  algorithms  and  communication  gives 
good scalability and, if enough users driving with the application running, the 
system could navigate users around congestions.

The scale of the system is the main challenge. A certain number of users are 
required to get sufficient data, if data about congested roads is not present, our 
system will be like a normal navigation system. Another problem is the ethical 
problem in our way to control clients. We always have control over where a 
client is located. This can be traced to a unique smartphone, in this way we are 
in possession of sensitive data.

We have shown the scalability of  the system and future possibilities of  the 
system.  The  integration  with  public  transport  could  minimize  the  traffic 
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otherwise heavily congested arterial roads. This extension could also reduce the 
CO2 emission from transport. Another feature partly implemented is the CO2 

based pathfinding, allowing the user to choose the most CO2 economic route. 
All these, as well as future integration with TMC, makes for a promising future 
for this type of system. 
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10 Appendix
10.1 Appendix-1: User's manual
10.1.1 Server
(Christian)

The server-side does not need any involvement from the user to run as such, 
but the graphical user interface provides overviews of the status and the ability 
to enter data for demonstration purposes or for testing.

The user interface consists of three main parts: 

1. A console that the server writes to.

2. The list of queues or congested ways.

3. The map

The server console shows the incoming messages from all clients, prefixed by 
their id, which is basically a timestamp. dummy clients have their timestamps 
subtracted by 20 years, so it is easy to see whether a message comes from a real 
or a dummy.

The map allows the user to visualize the current clients, their routes and the 
queues that are currently detected. In the top left corner, there are buttons to 
control  the view. The “Zoom to fit”  changes the zoom level  of  the map to 

Figure 10.1: 
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include  all  markers,  “Cars  &  routes”  toggles  the  markers  on  and  off,  and 
“Traffic  jams”  toggles  the  congestion  markers  on  and  off.  There  is  also  a 
legend that shows the color scale of how much a queue slows the traffic.

The map can be zoomed using the mouse-wheel and moved by dragging the 
mouse while pressing the right mouse button. 

Clients are shown at their last known position with a car-shaped icon with  a 
color, specific to this client. The client's route is a line of that same color, with 
the starting location marked by a green dot and the goal marked with a red dot.

The Queuelist shows all the ways on which the traffic runs slower than normal. 
The list shows the way's name, the current speed and the relative slow-down as 
a percentage of the speed limit. There is also a button that clears the queue on 
this way, and resets the speed to normal. Below the list is a button that resets all 
the queues, and one that opens a pop-up window that allows the user to enter a 
new queue. This is shown in Figure 10.2.

To make a new queue, enter the name of the road and the speed of the queue (in 
kilometers per hour) in the top row and click the “Add queue”. This will set a 
queue on all ways that has that name. If you happen to know the ID of a way, a 
queue can be entered on a  single way,  using the  lower row.  The ID is  the 
internal index as used by our graph.

10.1.2 Dummy client
The  dummy  client  allows  the  user  to  add  clients  to  the  system  for 
demonstration and testing purposes. The user interface has two tabs. The first 
for adding new clients, the second for managing and simulating these.

To make a new client, enter the latitude and longitude coordinates (in degrees) 
and  the  destination  address,  and  click  the  “submit”  button.  Alternately  the 
button labeled “autofill” can be clicked to provide a random starting position 
and destination address, generated from the map data. The location is within 

Figure 10.2: pop-up window for  

entering new queues.
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the area covered by the map, but it may be far from populated areas. Below 
these controls, a panel labeled “multiple clients” allows the user to enter any 
number of random clients at once. Enter the number of clients to be added and 
click “ok”. This functions much like the autofill above, but allows the addition 
of dozens or hundreds of clients with one click.

The  tab  called  “Active  clients”  shows  a  list  of  the  clients  that  has  been 
generated. Each is represented as a single line with a rectangle of the same 
color as that client has in the server gui. This provides for easy identification of 
the client. Also shown is the client's id, and how fast that client is driving. This 
is the percentage of time taken to drive down a way,  relative to the time it 
would take, driving at the speed-limit of that road. To change this, enter the 
new value in the text box and click “change”.

Below this, the time can be simulated. This will simulate the clients driving 
along their assigned routes. To use these controls, enter the number of seconds 
to simulate, and click the “seconds” button to advance time a fixed amount of 
time. By clicking the “run” button, the time will advance continuously until it 
is clicked once more.

Figure 10.3: The two tabs of the Dummyclient gui.
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10.1.3 Android Application:
(Nikolaj)

Installing the software:

You need a eclipse environment to build and install the Android Application 
”Navidroid”.  Also  see  “android  developers”28 for  information  on  installing 
without Eclipse.

• Import the project from the zip file.

• Choose Android API 8

• Plug in your android based device and run as Android application

• The program is now installed.

Using the program:

• Open the Navidroid application

• Type in destination address

• It’s important to wait  until  the GPS signal has a fix. This is shown 
when the GPS logo at the top of the screen stops flashing.

• The ways your road is build on will now be shown on the confirmation 
page. Press confirm if it looks right.

• The “Navigation” screen is shown. It will tell you to wait until it got 
the right GPS fix

• The  navigation  starts  navigate,  and  you  can  follow the  arrows  and 
distance with the name of the street you are supposed to turn at.

• The application will tell you when you are arrived to the destination.

28 http://developer.android.com/guide/developing/building/building-
cmdline.html#RunningOnDevice 
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10.2 Appendix-2: Timetable
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10.3 Appendix-3: Changes in JmapViewer
Method Description
JMapViewer Constructor.  Added  initialization  of 

variables

InitializeZoomSlider Made  the  zoom  controls.  Removed 
the  addition of  most  of  the controls, 
added  buttons  to  show/hide  the 
markers, routes and queues. Added the 
queue color scale legend.

paintComponent

paintPath New: Paints a single MapPath

updatePathsAndMarkers

updateQueues New: 

setMapQueuesVisible New:  Set  the  boolean  variable  and 
repaint

setMapQueueList New: Set the entire list of queues and 
repaint

getMapQueueList New: Get the list

addMapQueue New: Add one queue and repaint

removeMapQueue New: Remove one queue and repaint

removeAllMapQueues New:  Clear  the  entire  list  of  queues 
and repaint

setServer New:  Sets  the  server  from which  to 
get the data about clients and queues

Table 10.1: Changes made to JMapViewer.java
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Class name Description 
MapMarkerCar Implementation  of  the  mapmarker  interface, 

paints a polygon the shape of a car

MapPath Interface for displaying lines between a series of 
points on the map

MapPathRoute Paints a colored path with a basic 3-point wide 
stroke

MapPathQueue Paints a wide path with the color defined by a 
slowdown variable.

ScaleLegend Paints  a  rectangle  filled  with  a  green/red 
gradient and labels

Table 10.2 Overview of the classes added:

Figure 10.4: Screenshot of the JMapViewer demo from OpenStreetMap.org
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10.4 Appendix-4: Test results
10.4.1 Black-box tests

Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
1

Scenario Basic routing

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions none

Expected outcome System finds the fastest route

Result Success. The center intersection is avoided because of 
the delay associated with 4-way intersections.

Screenshot
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Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
2

Scenario Basic routing

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Avej 3

Other preconditions None

Expected outcome System doesn't find a valid route, because the starting 
and destination nodes are the same.

Result Partial  success.  The  server  doesn't  find  a  route,  but 
reports “No route possible” - a better report would be 
preferred.

Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
3

Scenario Basic routing, congested roads

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions Heavy congestion on Fvej

Expected outcome System finds the fastest route

Result Success.  The  congested  Fvej  is  avoided  and  center 
intersection is avoided as well

Screenshot
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Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
4

Scenario Basic routing, congested roads

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions Heavy congestion on Dvej and Fvej

Expected outcome System finds the fastest route

Result Success. The congested roads are avoided despite the 
intersection delay in the center

Screenshot
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Test Name
Tester
OS
Test no.

Black-box - routing
Christian
Windows Vista SP2
5

Scenario Re-routing, congested roads

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions After the user has started driving, a traffic jam is set at 
Cvej

Expected outcome System finds the fastest route as in Test-1, but re-routes 
the client when the queue is added.

Result Success. The tests starts as describes in Test-1. The new 
queue  is  inserted  and  as  the  client  reaches  the  next 
waypoint,  a  new route  is  made,  diverting  him away 
from the jammed road.

Screenshot
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Test Name
Tester
OS
Test no.

Blackbox - queues
Christian
Windows Vista SP2
6

Scenario Detection of queues

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions After the user has reached the Bvej/Fvej intersection, 
his speed is lowered to 10kph

Expected outcome Upon reaching the next route-point, a queue should be 
reported

Result Partial  success.  The  new queue is  reported not  upon 
reaching the next route-point but the next one over. 

Screenshot



10.4 Appendix-4: Test results  78

Test Name
Tester
OS
Test no.

Blackbox - queues
Christian
Windows Vista SP2
7

Scenario Removal of queues

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions This setup is the same as after Test-6: a 10kph speed 
queue at Cvej, but the client doesn't get re-routed, and 
continues.

Expected outcome When passing the queue, the client should report that 
the queue has gone, and it will be removed.

Result Success.  The  queue  is  removed  when  the  client  has 
passed.
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Test Name
Tester
OS
Test no.

Blackbox - queues
Christian
Windows Vista SP2
8

Scenario Updating of queues

Starting location 55.7832, 12.5215 (near Avej 3)

Destination Cvej 1

Other preconditions This setup is the same as after Test-6: a 10kph speed 
queue at Cvej, but the client doesn't get re-routed, and 
continues, but at 40kph, instead of 50kph.

Expected outcome When passing the queue, the client should report that 
the queue has sped  up, and it will be updated to the 
new speed of 40kph.

Result Success.  The  queue  is  changed  when  the  client  has 
passed.  The list  in  the  server  UI  is  updated,  and the 
color in the map is changed to a more green one.

Screenshot
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10.4.2 Use-case test results
Test Name
Tester
OS
Test no.

Use-Case test: Find Route
Nikolaj
Mac OS X Lion
1

Precondition The  user  wants  to  get  a  route  from current 
position to an Address. 

Post condition

Main path (M) 1: User type in the destination Address
2: The phone sends the information to server
3: Server processes the data and find the route
4: Smartphone receives the route

Alternative path1 (A1) No internet on Smartphone then, the unit will 
not be able to send data .

Alternative path2 (A2) No GPS signal, the Smartphone will not send 
the correct start location

Alternative path3 (A3) No path found,  If  there  is  no possible  path 
between  start  and  end  the  Server  should 
return an empty XML path.

Extra Same setup on the dummy client 

Table 10.3: 
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Test path Expected
M The Smartphone should receive the calculated route 

from server and start navigates to the destination.

Same with dummy client

A1 The smartphone will not be able to get pass the first 
page in the application.

The Dummy will not send any Data.

A2 The server will receive start Latitude =0.0 and start 
Longitude =0.0 because the GPS will  not  set  the 
variables.

The dummy are not dependent on GPS as it  auto 
generates coordinates. 

A3 The  Smartphone  will  receive  a  path  which  only 
contains the start path and destination

Same with dummy client

Screenshots

Map  Overview  with 
route:
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dummy client

Confirmation  page  on 
Smartphone.  A Listview 
of the path. 

Table 10.4: 
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Test Name
Tester
OS
Test no.

Use-Case test: Drive along route
Nikolaj
Mac OS X Lion
2

Precondition The  user  has  received  a  route,  and 
reached the first checkpoint. 

Post condition

Main path (M) 1: User moves towards the checkpoint
2: When the user is within 10 meters 
radius  of  the  point,  the  smartphone 
will  send  an  update.  Including 
coordinates, ID and timestamp.
3:   The server receives the update and 
sets the clients new position.  

Alternative path1 (A1) No internet  on Smartphone then,  the 
unit will not be able to send data.

Alternative path2 (A2) No GPS signal,  the Smartphone will 
not send the correct current location.

Alternative path3 (A3) The  user  never  reaches  the  start 
checkpoint.

Table 10.5: 
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Test path Expected
M The Smartphone will send data to the 

server with new position

Same with dummy client

A1 The  smartphone  will  not  be  able  to 
send data to the server

Same with dummy client

A2 The server will  receive Latitude =0.0 
and Longitude =0.0 because the GPS 
will not set the variables.

The dummy are not dependent on GPS 
as it auto generates coordinates.

A3 The  phone  can  not  guide  the  user 
before he enters the first checkpoint

The dummy are not dependent on GPS 
and  therefore  it  always  reaches  the 
first checkpoint.

Screenshots

Before first checkpoint is reached.

First checkpoint reached
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Second checkpoint reached

Client  receives  a  route,  and sends 
two updates to the server

1991-11-17  14:59:40.807  connected, 
new route found
1991-11-17  14:59:40.807  update 
position
1991-11-17  14:59:40.807  update 
position

Table 10.6: 

Test Name
Tester
OS
Test no.

Use-Case  test:  Drive  away  from 
route
Nikolaj
Mac OS X Lion
3

Precondition The  user  has  received  a  route,  and 
drives away from the route

Post condition

Main path (M) 1: User driven away from route
2: Smartphone shows the checkpoint.

Extra Same setup on the dummy client 

Table 10.7: 
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Test path Expected
M The smartphone don’t know where the 

user  is.  But  keeps  showing  the 
checkpoint he is supposed to go to.

The dummy client doesn’t navigate 

Screenshots

Table 10.8: 

Test Name
Tester
OS
Test no.

Use-Case test: Report congestion
Nikolaj
Mac OS X Lion
4

Precondition The  user  has  received  a  route,  and 
drives on the route.

Post condition

Main path (M) 1: User drives on a way
2: User drives to a checkpoint
3: Smartphone reports how long time 
since the last checkpoint.
4: Server calculates the time spend on 
way,  and  checks  if  its  slower  than 
normal.
5: If it’s slower the server will  set a 
congestion on the way.

Alternative path1 (A1) The user never reaches the checkpoint

Extra Same setup on the dummy client 

Table 10.9: 
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Test path Expected Result
M The smartphone should send the 

update  to  server,  the  server 
calculates  a  delay  on  the  way, 
and set a congestion

Same with dummy client

Pass

Pass

A1 The smartphone never sends an 
update  and  therefore  no 
congestion will be placed.

The Dummy always reaches the 
checkpoints.

Pass

Screenshots

Car Driving normal 
speed
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The user has reached 
the next checkpoint 
and driven to slow, 
therefore congestion 
is sat.(The orange/red 
line)

Table 10.10: 

Test Name
Tester
OS
Test no.

Use-Case test: Get new route
Nikolaj
Mac OS X Lion
5

Precondition The user has received a route,  and drives on the 
route. And a congestion occur on a way in the users 
path

Post condition

Main path (M) 1: User drives on a route.
2: Congestion occurs on route.
3: Server calculates new route to user, and send it.
4:Smartphone navigates the new path.

Extra Same setup on the dummy client 

Table 10.11: 
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Test path Expected Result
M The  smartphone  receives  a 

new route from the server. And 
now  navigates  from  the  new 
information.

Pass

Same with Dummy Client Pass

Screenshots
Route before congestion

Green  car  is  making 
Congestion  and  therefore 
Purple car  now got  a new 
route.

Table 10.12
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Test Name
Tester
OS
Test no.

Use-Case test: Exit → end route
Nikolaj
Mac OS X Lion
6

Precondition The  user  has  received  a  route,  and  reaches  the 
destination on route.

Post condition

Main path (M) 1: User drives on a route.
2: User reaches the destination

Extra Same setup on the Dummy client 

Table 10.13
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Test path Expected Result
M The smartphone  sends  the 

last position and the server 
removes  the  client’s  path 
from the map.

Pass

Same with Dummy Client Pass

Screenshots
Before destination

After destination reached.

1991-11-20  21:19:39.873 
connected, new route found

1991-11-20 21:19:39.873

Disconnect  at  2011-11-20 
21:20:41.466

Table 10.14
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Test Name
Tester
OS
Test no.

Use-Case test: Exit → Client vanish
Nikolaj
Mac OS X Lion
7

Precondition The user has received a route, and drives on 
the route. But disappears.

Post condition

Main path (M) 1: User drives on a route.
2: User disappears from route
(No internet connection, No more battery)

Alternative path1 (A1) The client  stops the  Application running on 
the smartphone.

Extra Same setup on the Dummy client 

Table 10.15

Test path Expected Result
M The client will be removed 

from  the  server  after  an 
amount of time

Fail

Same with Dummy Client Fail

A1 The application will send a 
disconnect to the server. 

Same with Dummy Client

Pass

Screenshots

Table 10.16
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10.4.3 Pathfinding comparison test results
Test Name
Tester
OS
Test no.

System test – Path finding comparison
Nikolaj
Mac OS X Lion
8

Purpose Determine  how  the  Pathfinding  algorithm 
works  compared  to  a  professional  service. 
(krak.dk)

Post condition

Main path (M) Enter the same start position and destination 
and compare the route suggestions. 
Start:  Kollegiebakken  9,  2800  Kongens 
Lyngby
Stop: Solsikkemarken 34, 2830 Virum

Alternative path1 (A1) Start:  Kollegiebakken  9,  2800  Kongens 
Lyngby
Stop: Gymnasievej 21, 4600 Køge

Table 10.17
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Test path Expected Result
M Same route:

Krak: Estimated traveling time: 
5 minutes

Our system Estimated traveling time: 
5,34 minutes

A1 Different route:

Krak: Estimated traveling time: 
37 minutes

Our system Estimated traveling time: 
33.87 minutes

Screenshots
Krak : 
Kollegiebakken-
Solsikkemarken.

Our system:
Kollegiebakken-
Solsikkemarken.
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Krak: 
Kollegiebakken- 
Gymnasievej.

Our system:
Kollegiebakken– 
Gymnasievej.

Table 10.18
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10.4.4 GPS-fix test results
Test Name
Tester
OS
Test no.

System test – GPS-fix
Nikolaj
Mac OS X Lion
7

Purpose Determine  how  well  the  GPS  works  in 
smartphones

Post condition

Main path (M) 1. New Route
2. The application runs for 5 minutes
3. Counts each new fix of GPS (location 

changed)

Table 10.19

Test path Location Result
M Indoor 16 fixes, 

3.22 minutes until first fix.
Equivalent to one fix each 18 
seconds.

M Copenhagen (Julius Bloms 
Gade)

91 fixes, 
1.44 minutes until first fix.

Equivalent to one fix each 15 
seconds.

M Outdoor on open field 
(Søndre marken, 
Frederiksberg)

151 fixes, 
0.19 minutes until first fix.
Equivalent to one fix each 
second.

Table 10.20
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