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Abstract

The work presented in this thesis covera an adaption of regret minimization as a solution concept for
2-player non-cooperative strategic form games. And in addition an adaption of the regret minimization
(Average regret minimization) proposed by V. Garanko. This solution concept is experimented with
and compared to iterated regret minimization, as proposed by Halpern and Pass in 2009.
This is solved by conducting a series of experiments with the di�erent solution concepts. The experi-
ments proved that average regret minimization has the same time complexity, but �nd the results in a
single iteration. Furthermore the results of average regret minimization compared to those of iterated
regret minimization. The results were very similar. This implied that average regret minimization was
a better solution than iterated regret minimization.

Resumé

Denne afhandling omhandler en ny version af "regret minimization" som er et løsningskoncept til "2-
player non-cooperative strategic form" spil. Den nye version af "regret minimization" (average regret
minimization) er blevet foreslået af V. Garanko. Denne er der blevet udført eksperimenter med og
sammenlignet med "iterated regret minimization", som blev foreslået af Halpern og Pass i 2009.
Dette er løst ved at gennemføre en række eksperimenter med de forskellige løsningskoncepter. Forsø-
gene viste at "average regret minimization" havde samme tidskompleksitet, men skulle kun bruge en
enkelt iteration til at �nde resultaterne. Yderligere blev resultaterne af "average regret minimization"
sammenlignet med "iterated regret minimization". Resultaterne var meget ens. Dette viser at "average
regret minimization" er en bedre løsning end "iterated regret minimization".
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Chapter 1

Introduction

The �eld of game theory was started in the years after the end of the Second World War by John von
Neumann, who also made a great breakthrough in the area of algorithms. In 1944 he wrote "Theory
of Games and Economic Behavior"[7] in collaboration with Oscar Morgenstern, which is considered as
the birthplace of game theory, utility theory and microeconomics. This book described equilibria in
Zero-sum games. His collected works were before his time, but after the internet was introduced on a
more wide scale, the area of game theory �ourished and developed with a thunderous pace due to the
e�ect the Internet had on world economics. This happened in the years after the Cold War in which
he participated as a soldier. Fortunately, the war itself was mostly fought by using game theory to
analyze and optimize the arms race, which entailed that no wide scale con�ict occurred.

The wide �eld of game theory focuses mostly on analysis of human and animal behavior. One of
the most commonly facets which game theory is used for is the method of how an entity chooses the
optimal strategy in order to maximize a pro�t or minimize the cost of an action. The situation can
be literally anything, any situation with any number of actions. The known methods to analyze the
problems are, however, not in any regards infallible. Some situations can be modeled by the known
methods, but do not yield results which re�ect the actions chosen in the real world.

One of the areas of Game Theory concerns de�nition and analysis of solution concepts. The term
Solution Concept covers an idea of how to play a game by setting some premises for choosing and
adopting strategies. A solution concept can lead to multiple strategies for a given game, if more than
one strategy is equally good according to the premises of the solution concept.

One of the key solution concepts in game theory is the Nash Equlibrium which was proposed by John
Forbes Nash, but the concept itself predates his contribution, already in 1838 the Cournot Equilibrium
was introduced, which in general is the same as a pure Nash Equilibrium. It was in Nash's Doctorate
in 1950, that speci�ed the de�nition and properties of equlibria, which de�ned the mixed Nash equi-
librium, and is still today one of the key aspects of game theory. It was because of his doctorate the
concept of equilibria was named after him[5].

The idea behind Nash Equilibrium is to �nd states in a game where no player can get a better
outcome by choosing another strategy if he knows that the opposing player follows this Nash Equlib-
rium. The strategies that this solution concept dictates can both be a pure strategy where a single
action is chosen, or a mixed strategy which is a probability distribution between a set of actions. This

1



2 CHAPTER 1. INTRODUCTION

solution concept has some drawbacks, one of them is the complexity of �nding the strategies. It has
been proven that �nding Nash Equilibria is in the complexity class PPAD. This class in mainly for
problems for which the solutions are hard to �nd, but easy to verify and it is guaranteed that a solution
will always exist [5]. Another problem with Nash Equalibria is that it is not always a good solution
for a problem. This is most obvious in games like the centipede game or Traveler's Dilemma. In these
games the recommended strategy to stop as early as possible or to bid as low as possible. This results
in one of the worst possible rewards. This is because Nash Equilibria only works if all players adopt
this solution concept. For a more speci�c description of these games, refer to section 3.

Since Nash's contributions, many additions and adaption's have been added, but the mixed Nash
Equilibrium is still the backbone of the area of game theory. One of the more recent additions is the
usage of a regret minimizing solution concept instead of Nash Equlibria. The idea of using regret
minimizing dates back to the years after the breakthrough of Von Neumann, where Savage [6] and
Niehans [4] introduced the idea within the area of decision theory. Even though the regret minimization
has been used in many years, it was �rst in the late 80's where regret minimization was applied to game
theory by P. B. Linhart and R. Radner in [3]. One of the more recent adoptions of regret minimization
is the iterated version described by J. Halpern in [2]. This article and its concepts are what most of the
work in this thesis focuses on. The concepts build upon the regret minimizing solution concept which
is then adapted to an iterated version. It is then tested on di�erent games where Nash Equilibria do
not yield any meaningful results. The idea behind regret minimization is to minimize the possible
regret when choosing a strategy. The regret is how much higher a reward a player could have gotten
if he had chosen another strategy when the choice of the opposing players has been revealed.

From the regret minimization an adapted solution concept can be created, the average regret minimiza-
tion. This concept was proposed by V. Goranko. The main idea is, instead of selecting the strategy a
strategy which yields the lowest possible maximal regret, the strategy with the lowest average regret is
selected. This concept will later be analyzed both theoretically and empirically. The main goal of this
thesis, is to examine the results of average regret minimization and how it relates to iterated regret
minimization. This is done in order to see if average regret minimization is a better solution in respect
to complexity and outcomes. What is needed in order to draw any conclusion is explained in chapter 4.

Throughout this thesis di�erent games are mentioned. The players of these games are all referred to
as male in order to simplify the description.

1.1 Applications

Game theory has many applications of a wide variety. Its applications stretch from economy to
philosophy and from arti�cial intelligence to political science. Below is a list of some of the more
widely known applications.

Description and modeling is a use of game theory to describe the behavior of a human population.
This is done by making a model which describes situations where a population or larger assembly
of people must make some kind of choice. These groups are in some studies perceived as trying
to maximize their outcome, and is thereby following the pattern seen in game theory. Several
experiments disproves that this is the case in all games, many games have been proposed, where
humans do not follow a equilibrium.

Prescriptive or normative analysis is used as a tool as to how an entity should behave in a given
situation in order to optimize its outcome. This has also been argued that this is not optimal in
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all situations. An example could be the Prisoner's Dilemma. By following the equilibrium, one
is not getting the best outcome, which could be obtained by cooperating with the other player.

Economics and business is the widest use of game theory in practice. Here it is used for predicting
how to behave in some economic market. It is also used for creating auctions and other mechanics
to optimize the outcome of sales.

Political science is the use of game theory in political decisions; this can both be how to fairly divide
resources or how politicians react in an upcoming election.

Biology is using game theory in many �elds. It can be used to describe evolution by looking into
mutations being a way to maximize an outcome in some situations. Other things, like the sex
ratio of the children born can also be explained by game theory. Lastly the behavior of big
animals to small microbes can also be modeled by using game theory.

Computer science and logic is using game theory in multiple �elds. It is used to optimize the
way distributed computations are being performed in a dynamic environment by using online
algorithms. Another more direct use of game theory is to control autonomous agents.

Philosophy and psychology is also using game theory to describe how the mind reasons in decision
making.

Warfare is a more dire usage of game theory. It can be used to cut the cost in materials or human
life and how to attack the enemy in order to maximize the damage.

Some of the above �elds are overlapping. As an example, the psychological usage of game theory of
describing decision making is in fact what is also done in political science, just on a bigger scale. The
list contains many of the �elds in which game theory can be used, but the list is not complete, since
game theory in some form can be used in nearly every kind of science.

1.2 Reading Guide

This thesis consists of 7 chapters. The �rst is the introduction which you are reading right now. The
following two sections contain the theoretical base for the remaining thesis, where chapter 2 concerns
the more basic theory of game theory and the used terminology. Chapter 3 concerns the more speci�c
games and solution concepts used for the topic of the thesis. Chapter 4 then speci�es what the aim
of the thesis is and how it is handled. Chapter 5 explains how the implementation of the testing tool
for the execution and evaluation of the experiments. The next chapter is the core of the thesis which
contains the experiments and analysis which examines the subject of the thesis. Chapter 7 contains
the �nal conclusion which summarizes all the results of the thesis.
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Chapter 2

Preliminaries

This chapter de�nes the general areas of game theory. These areas consist of some of the basic concepts
and terminologies which are used as the foundation for the further and more speci�c work in within
this thesis. This chapter is divided into three sections, representations, game types and the basics of
solution concepts. The speci�c solution concepts and games used within this thesis will be further
described in chapter 3.

2.1 Game representations

Before the di�erent representations can be discussed, a de�nition of the term game must be covered.
Many di�erent de�nitions of games exist, but most of them share some traits. In [5], the de�nition
of a basic single-move game is de�ned as: "Game theory aims to model situations in which multiple
participants interact or a�ect each other's outcome". This citation can be used as a foundation for a
bottom up analysis of what a game consists of. The key components of a game are: the situation, the
participants and the interactions. The situation can be referred to as the set of all possible strategies,
the participants as the players of the game, and the interactions as the outcome.

The players of a game are de�ned as a set of n entities (1, 2, ..., n − 1, n). A player can be many
things, the most original idea is that it is perceived as human; however, it can also be other types
of autonomous biological entities like animals, insects, bacteria and other microbes. It can even be
more abstract like a collection of entities acting in a coalition. After the computer and the internet
became more common, a new type of entity was introduced, the arti�cial entity, based on a program
or algorithm. The most common occurrence is the autonomous agent which is controlled by arti�cial
intelligence.

The strategies are the set of possible actions for the players. These are de�ned as set Si for each player
i. Each strategy si of a player maps to some kind of action a such as bidding a value bid. The collected
choice of all the players can be represented as a vector of the strategies s = (s1, s2, ..., sn−1, sn). The
collection of all possible strategy vectors is de�ned as S = ×iSi. The strategies de�ne all the possible
actions a given player can undertake in a given situation, which in theoretical situations is a perfect
model; however it can be very hard to model a real life situation, because most often an unlimited
number of strategies are available. An example of this could be the following situation: "Two people
travel down a narrow corridor in which they cannot pass each other, they both have the following

5
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choice, going forward or backward". In the modeled situation, both players can choose between two
strategies, but in a real life situation, both players could perform an unlimited number of di�erent
actions, crawl between the legs of the other player, jump over him, stand still, eat a banana etc. So
in real life, any number of unique strategies can be chosen, and therefore, in order to model a real life
situation, some assumptions must be made in order for relevant strategies to be selected.

The �nal part of a game is the outcome. This is tightly tied to the selected strategies vector, for each
vector there is an outcome de�ned. The outcome can be de�ned in two ways, either as utility or cost.
The utility is positive enforcing and cost is negative enforcing. This leads to two functions which
maps from the strategy vectors to the outcome, ui : S → < and ci : S → < respectively. For each strat-
egy the function ui returns a utility for the player i. Utility and cost are completely interchangeable,
since ui = −ci. The utility could be how much money a player wins from a game, and cost could be
the number of years a player should be imprisoned.

These three components add up to a complete game. A game can be either a single or multiple
iterations of a given situation and even an unknown or in�nite number in some cases. A sample
game could be the Prisoners Dilemma. This is a classic game used as an example showing di�erent
features of game theory. The situation of the game is as follows: Two collaborating criminals have been
arrested and now need to decide whether or not to cooperate with the authorities. The punishment
they each receive is tied to what they tell the police and what the other prisoner says. Each of the
prisoners now have the choice to either keep silent S or confess C to the crime. These choices are their
strategies from which they have to choose. The outcome is codependent on what they choose, if they
both keep silent, they both receive a 2 year sentence. If they both confess they each receive a sentence
of 4 years. If one confesses and the other keeps silent, then the one confessing gets a "discount" on his
sentence and only receives 1 year, but the other receives a full sentence of 5 years.
With all these parts of the game de�ned and it can be represented in a more formal matter. Firstly
the strategic form. This is great for smaller games because it is visually intuitive. It is also easy be
use for representing bigger games with several players, but it becomes less easy to represent visually.
This is because of the structure. It consists of a matrix, where the dimension is the same as the
number of players. Each row of the matrix represents a player and matching strategies. Each element
of the matrix represents an outcome made up of all the strategies which intersects in the element. The
Prisoner's Dilemma can be written in strategic form as seen in �g. 2.1. This visual representation
is also called the payo�/cost matrix. The �rst number in each element is the cost for player one,
which is the row player, and the second number is the cost for player two, the column player.

C S
C 4, 4 1, 5
S 5, 1 2, 2

Figure 2.1: The Prisoners Dilemma in strategic form

Secondly there exists another widely used representation. This is the extensive form. In this repre-
sentation, the game is presented as a graph instead of a matrix. The graph is tree-shaped and basically
works like a game-tree. It has a root in which the state has not changed yet and is before any of the
actions of the players have been executed. From this, a number of edges protrude which equals the
number of strategies player one can choose between. The vertices to which the edges lead are imaginary
states where player one has performed his action and is waiting for player two, but since player two is
unaware of players one's action, then he does not know in which state he is. In most cases this state
does not exist, but is only a part of the representation. From each of the vertices then protrude a
number of edges equal to the number of strategies of player two. In this form a game with multiple
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players can easily be represented. Another level in the tree is simply added for each player, and the
edges from each of these levels must correspond to the number of strategies of the player. The leaf level
of the tree is the end state where all the players have performed their action. All the previous states,
excluding the root, usually do not represent real states of the game, because the chosen strategies of
the players are all executed simultaneously. Therefore, players do not know the strategy of the other
players until after they themselves have chosen one. If the state represents real game states, then the
game type is changed, it is no longer a simultaneous move but a sequential game. An example of the
extensive form can be seen in �g. 2.2.

Figure 2.2: The Prisoners Dilemma represented in extensive form

The two game-representations given above are not the only ways to represent a game, but are con-
sidered to be the two most widely used game-representations. One other example is the Compact
Represented Game. This is usually used when dealing with very big games. An example could be
a game with an in�nite number of players where the utility depends on only a subset of the other
players, then the game can be represented much more compact.

The strategic and extensive form each has advantages and drawbacks. It depends a lot on the type
of game they represents. The strategic representations advantage is in the ability to represent small
games simplistically. The extensive representation on the other hand is better suited for bigger and
more complex games with more than two players.

2.2 Game types

Each of the representations described above can be used to represent several types of games. The
most widely used game is the "simultaneous move single-shot two player game". This can easily be
represented by each as seen with the Prisoner's Dilemma. This simple game can be repeated; in each
iteration of the same game is then played. This can change how the strategies are chosen. As it is the
same game which is played each round, the game can in each iteration easily be represented by the
strategic form, but in order to represent the entire game, the representation needs to be expanded. The
strategic form represents a single shot game, so in order to represent the entire game, the available
strategies need to encompass the choices for all the iterations. Looking at the Prisoner's Dilemma
repeated twice, each player now have 4 strategies to chose from (CC, SS,CS, SC), so the game is now
4 × 4. This results in the game matrix expand exponentially. The size of extensive form games grow
in the same manner due to the tree-shape.
Most games based on real life applications have a �nite size, but some theoretical games can contain an
in�nite number of players, strategies and/or iterations. These games must be represented by another
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structure, and generally be handled di�erently from normal games.

A di�erent type of game is the games with incomplete and/or imperfect information. The two terms
cover two completely di�erent features of a game. When a game has incomplete information, then
it relates to the information that the players have, or more speci�c to the information that the players
do not have. In these games some can be information hidden from the players, so the playesr do not
know the complete structure of the game. This could for instance be the values of outcomes. This
type of game is also called Bayesian games [5].
In a imperfect information game the players are missing precise information about the state of the
game. This is seen in simultaneous move games. The players do not know how the other player acted
before they act themselves and do therefore not know in what state the game is. This is the case in
strategic form games.

All games can have certain features which make them part of a subgroup for which more specialized
algorithms can be used. Two common features are zero sum games and symmetric games. In Zero-
Sum games, the sum of each outcome is 0, hence the name, so that the utility of one player is the cost
of the other: u1 = c2 = −u2 = −c1. The other feature is the symmetric games. In these games, the
strategies of the players are identical. The outcomes for each of the players Is considered symmetric,
hence the name. Given a matrix A for player I, the matrix is the payo� matrix were only his utilities
are present. The matrix B for player two must then be B = AT . An example of a symmetric game is
the Prisoner's Dilemma.

Most of the games investigated until now have contained two players, but games can contain any
number of players greater than one. A game with only one player is no longer a theoretical game
problem. It is far simpler because the player only needs to choose the strategy which yields the
best utility, since by removing the other players, all uncertainty is also removed. When adding more
players, the uncertainty raises and the size of the game, in most cases, increases exponentially. Both
game representations mentioned previously can be used to represent games with multiple players, the
strategic form is just an n-dimensional matrix where n is the number of players. In the extensive form,
the tree's number of levels are n+ 1 because of the root.
The order of the players is in the general case indi�erent, because they are executing their strategies
simultaneously. However, in some games this is not the case, in these games the actions are instead
executed sequentially, which causes the game to change again. The game is still the same for the �rst
player, but since he acts before the other players, they get to react on his action and thereby the game
changes due to the uncertainty of the �rst player is removed. A game where one player chooses an
action before all the other players is called a Stackelberg Game [1].

For the purpose of this thesis an assumption is taken for the games described here, which is that all
players do not communicate and are all acting sel�shly. The games are then called non-cooperative.
If the players cooperate and coordinate their moves, then entirely di�erent solutions must be used.

2.3 Basics of solution concepts

To describe the basics of solution concepts, the Prisoner's Dilemma is used once again. The game is
seen in strategic form in �g. 2.1. A solution concept determines the manner in which the strategy
is chosen. The result of a solution concept can either be a single strategy or a probability distribution
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H T
H 1,−1 −1, 1
T −1, 1 1,−1

Figure 2.3: The Matching Pennies game in strategic form

over multiple strategies si = p1, p2, ...pn where n is the number of possible strategies.

2.3.1 Dominated strategies

The most basic solution concept is elimination of dominated strategies. One strategy can be
dominated by another, if for all possible outcomes the strategy yields a better utility or cost. The
notation of ui(si, s−i) is used to describe this property. si is the strategy chosen by player i, s−i is
the choice of all other players. s′i is all other possible strategies of player i and s′−i likewise for the
other players. In order for a game to dominate all other strategies it must ful�ll the following equation
ui(si, s

′
−i) > ui(s

′
i, s
′
−i). When all utilities of a strategy is higher than another it strongly dominates

it.
A less strict de�nition is when strategies are only weakly dominated. A strategy is weakly domi-
nating other strategies if all the utilities are at least as good. The formal de�nition is ui(si, s

′
−i) ≥

ui(s
′
i, s
′
−i). A strategy will often weakly dominate more strategies than strongly dominate.

An example of strong domination can be seen in the Prisoner's Dilemma. For each of the players, the
strategy of Confess is better than Silent, no matter what the other player chooses. If the opposing
player chooses to confess it is better if the player confesses, since it yields a cost of 4 instead of 5. If
the other player stays silent, then it is still better to confess, since it would yield a cost of 1 instead of
2. So in all situations, it is better to confess. If both players adopt this strategy it will result in a cost
of 4 for both players. This is highly unusual, since the outcome for (S, S) yields a better outcome for
both players. Most games do not have a dominant strategy, and hence a another solution concept is
needed.
A less strict version of using dominated strategies as a mechanism for choosing optimal strategies is
the iterated elimination of dominated strategies. In each iteration strategies get removed if they
are dominated by at least one other strategy. This is repeated until no more strategies can be removed.
It is easily shown, that not all games results in a single strategy for each player. In some games no
strategies are dominated by others. In these situations the elimination of dominated strategies cannot
be used to �nd optimal strategies. A game which displays this could be the Matching Pennies game
which is shown in �g. 2.3.

When iteratively removing strategies the result is only deterministic when removing strongly dominated
strategies. When removing weakly dominated strategies the result can vary depending on which order
the strategies are removed.

2.3.2 Nash Equilibrium

The next solution concept is that of Nash Equilibrium. This is much less strict than dominant
strategies and is able to �nd an optimal strategy in every game. A Nash Equilibrium is de�ned as a
state where none of the players can get a better outcome by diverting from the strategies. The equilib-
rium can either result in a set of pure or mixed strategies. A pure strategy is when a player is certain
to choose a speci�c strategy, while a mixed strategy is when the player has a chance to choose between
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multiple strategies. The Prisoner's Dilemma can be used to display a pure Nash Equilibrium. Each of
the outcomes must be evaluated in order to �nd all Nash Equilibria. Firstly looking at the outcome
(S, S). In this situation, both player can improve their outcome by diverting to the C strategy, and
therefore this outcome cannot be a Nash Equilibrium. Secondly looking at (C, S), it is seen that this
is not a Nash Equilibrium because player 2 can improve his outcome by diverting to C. The same goes
for (S,C) since the Prisoner's Dilemma is a symmetric game, the roles of player 1 and 2 have simply
changed. The last outcome (C,C) is the only Nash Equilibrium. This is because either of the players
would not gain a better outcome by diverting to another strategy.
It is not possible to �nd a Nash Equilibrium in all games by the previously mentioned method. An
example could be the Matching Pennies game. In each outcome, one of the players could improve
his outcome by diverting. To �nd a Nash Equilibrium, the concept of mixed strategies needs to be
introduced. Instead of choosing a speci�c strategy, a player selects multiple strategies and a proba-
bility distribution between them. The idea behind a mixed Nash Equilibrium is the same as the pure
equivalent. No players can obtain a better outcome by diverting from the probability distribution. A
mixed Nash Equilibrium can be seen in the Matching Pennies game. If both players randomly choose
each strategy with a probability of 0.5, then a stable state is obtained. The expected outcome is 0 for
both players, and cannot be improved by diverting, the probability distribution between the strategies
consists of a Mixed Nash Equilibrium.

2.3.3 Other solutions

Many new solution concepts have been introduced through the years. Backward induction and
Subgame-perfect equilibrium should be mentioned as they are some of the more widespread solu-
tion concepts. One of the more interesting, but more uncommon, is the Regret minimization and its
adaption's. This will be analyzed to its full extent in a later chapter. The basic idea behind regret
minimization, is that the best strategy to choose, is the one where the player has the least regret about
his choice.



Chapter 3

The games and the solution concepts

This chapter de�nes the di�erent games treated in this thesis and how the di�erent solution concepts
work, which algorithms they use and their complexities. The di�erent games and solution concepts
which are de�ned in this chapter are all going to be a part of the experiments of this thesis. The
�rst section concerns the games where each of the games used for the experiments are described and
formalized as a strategic form game. The di�erent solution concepts are described and an algorithm
is given for how to implement them. Lastly two sections are given with a solution concept each for
mixed strategies and repeated games.

3.1 The Games

For the experiments in this thesis a range of di�erent games are used. All games are taken from [2].
Each of the games are �rst described as a real world situation, and then formally described as a game
in strategic form.

3.1.1 The Traveler's Dilemma

The setting is as follows. An airline has lost the luggage of two passengers. The airline now o�ers
the passengers compensation for their lost properties. Each of the passengers must give a sealed bid
between 2 and some maximal bid value bidmax. The passenger i who has the lowest bid bidi then gets
paid bidi + p where p is a reward for the passenger who has the lowest bid. The other passenger gets
paid bidi − p where p then is a punishment. If both the passengers have the same bids, they both get
that value without any reward/punishment.
The situation can then be transformed into a game in strategic form. It is trivial to see that the players
are the passengers and their strategies are their bids. Each of the players have bidmax − 2 strategies
named [2, 3, ..., bidmax]. The utilities of the players can easily be de�ned as in equation 3.1. A strategic
form game can then be created from this information.

11
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u(n,m) =

 (n+ p, n− p) for n < m
(n, n) for n = m
(n− p, n+ p) for n > m

(3.1)

3.1.2 The Centipede Game

This game has two players. The game runs for a number of rounds. In every odd round player one
chooses whether or not to continue or end the game. In every even round player two must consider
whether or not to continue. In round number one a stack of money is presented. When a player chooses
to end the game he gets the pile of money and the other player receives the same amount minus some
penalty p. Every round the amount of money increases by some function f(r). The penalty equals
the amount p previous rounds. An important mechanic in this game is; if a player i continues in
some round r then the following round the prize must be less if the other player chooses to stop, ie.
f(r) > f(r+1− p). This is the main problem of the game, every time a player chooses to continue, he
has a slight risk to lose some of the current prize. If this mechanic did not exist, then the game would
be rendered trivial because it would always be better to continue. The only thing which remains to
be de�ned is the function f(r). It has two features to which it must uphold, The �rst is the already
speci�ed f(r) > f(r + 1− p), the second is that the function must always increase.
A formal game can now be created. From [2] two di�erent functions f(r) are de�ned. The �rst is
linear increasing and the other is exponential increasing. The game structure is very easy to de�ne
as a extensive form game, hence the name. The structure looks like a centipede because it has a long
chain of nodes with a "leg" protruding from each node. An example can be seen in �g. 3.1.

Figure 3.1: A Centipede Game represented in extensive form

This game then has to be converted into a strategic form game. The most basic method to do this
is by creating strategies where all possible choices are de�ned. Meaning that each strategy should
encompass information about what the players would do in each round. Both players would in this
case have four di�erent strategies. The game would contain a lot of needless information, because if a
player chooses to stop in some round, it has the same outcome no matter what he does in later rounds.
This leads to each player only needing a single strategy, where he for each round has the option of
stopping the game. Besides this an additional strategy is needed for each player. This is in order to
cover the situation where both players never stop. The centipede as seen in �g. 3.1 is shown as a
strategic form game in table table:centipedestrategic.

Table 3.1: A Centipede Game in strategic form.

2 4 6

1 4,1 4,1 4,1
3 2,5 6,3 6,3
5 2,5 4,7 8,5
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The utilities of the game are dependent on the function f(r). The function is de�ned in two di�erent
ways in the article [2]. The �rst is where the utilities grow exponentially f(r) = 2r. The other is
where they grow linearly f(r) = r. From this it can be seen, that in order to maintain the two features
described earlier additional details are required, if not the following must hold p > 1. For the linear
game this condition can simply be set, allowing no games with p < 2. In the exponential game this is
handled by simply giving the player which stops the earliest an extra bonus of 1.
This information can then be transformed into a strategic game. The utilities can be seen in equation
3.2.

uexponential(n,m) =

{
(n, n− p) for n < m
(m− p,m) for n > m

ulinear(n,m) =

{
(2n + 1, 2n−p) for n < m
(2m−p, 2m + 1) for n > m

(3.2)

3.1.3 The Bertrand competition

In this game, the two players each take the role of a company. Each of these companies have items of
wares for sale. They can each set a price bid for the wares which can be in the range [0, 1, ..., bidmax].
They now each set a price for the wares without knowing what the opponent is bidding. If one of the
players bid lower than the other, then he sells all his wares at the price and the other player sells none.
If they bid the same, they sell half their wares to the price.
This can rather easily be converted into a strategic form game. The strategies are the possible bids.
So each player has bidmax +1 strategies ranging [0, 1, ..., bidmax]. The utilities are found by looking at
whom has the lowest bid or if they have the same. This can be seen in table 3.3.

u(n,m) =


(n · items, 0) for n < m
(n·items

2 , n·items
2 ) for n = m

(0,m · items) for n > m
(3.3)

3.1.4 The Nash Bargaining Game

The Nash Bargaining Game as the following setting where two players try to divide some goods. They
can each ask for any value between 0 and the full amount, but if the sum of their request is bigger
than the number of goods maxsum none of them will receive any. The goods are held by some third
party and the bids are given without knowing what the other player asks. If the sum is less than the
number of goods each of the players receive what he asked for.
This can then be structured into a strategic form game. Each player has maxsum + 1 strategies, one
for each possible bid. The utilities are then simply either 0 or the value of their bid, depending on the
sum of their bids. This is formalized in equation 3.4.

u(n,m) =

{
(n,m) for n+m <= summax

(0, 0) for n+m > summax
(3.4)
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3.2 Solution concepts

This section contains the di�erent solution concepts which will be used for further analysis and ex-
perimentation. First the di�erent concepts are de�ned and then a speci�c algorithm is given for each
concept. The complexity of the algorithm is then analyzed.

3.2.1 Mixed strategies

All the solution concepts in this section share a commonality, they are all mixed strategies. They are
all a special type of solution concepts, since they do not look at the outcome. The results are purely
based on the number of strategies, and some parameter. These solution concepts are created in order
to mimic the behavior of some kind of natural opponents, speci�c for some of the di�erent games
treated in this thesis. For the four games in this thesis three di�erent concepts are needed. Each of
them is de�ned in its own section. None of these solution concepts are based on literature and are all
created and named from how I expect players are playing the game in a real life situation.

Uniform: The solution concept here is based on a player who selects any of the pure strategies
with equal possibility. The name uniform is given to this solution concept because of the probability
distribution being uniform. To create the mixed strategy each of the strategies are simply assigned
the same probability. For a player with n strategies each of the strategies is given a probability 1

n .

Figure 3.2: An example of the probability distribution of the uniform solution concept

Cymbal: The idea behind this solution concept is when preferred strategies are close to some speci�c
strategy, for example, if the player wants his bid to be close to some value in the Traveler's Dilemma.
The name is given by the shape of the probability distribution. An example of the probability dis-
tribution can be seen in �gure 3.3. The probability is linearly increasing until a strategy smax. This
strategy is the parameter for this solution concept. It indicates what strategy the player is most likely
to select. The way the probabilities are distributed is by assigning 1 to the �rst strategy and then
increase the value by 1 for the next strategy. This is then continued for all the strategies until and
including smax. From this strategy onward the value is then decreased by 1. When all strategies have
been assigned a value, the values are normalized in order to represent probabilities. This is done by
dividing each value by the sum of all values.
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This solution concept can be used in di�erent situations, Such as when a player tends to play strate-
gies which are closer to some speci�c strategy. This is applicable in Bertrand Competition and Nash
Bargaining, where playing strategies near the middle seems to be the natural approach. Another ap-
plication is when players should have an increasing chance of playing the strategies. Here smax is set
to the last strategy, which produces a linear increasing probability distribution.

Figure 3.3: An example of the probability distribution for the cymbal solution concept.

Stop with probability p: This solution concept is created speci�cally for the Centipede Game.
It takes into account the willingness of a player to cooperate. The willingness is represented by the
parameter p which is the probability in each round to stop. Since all the games are in strategic form,
the probability to stop in each round must be calculated. The probabilities are assigned by the follow-
ing method. The �rst strategy is always assigned 1− p with the probability to stop. The probability
for the next strategy sn is assigned by multiplying the probability of continuing from all the previous
strategies with the probability for stopping at this strategy pn−1(1− p). This is then continued until
strategy sn. To this strategy the remaining probability is assigned psn = 1−

∑n−1
i=0 psi .

Figure 3.4: An example of the probability distribution for the "Stop with probability p" solution
concept.
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3.2.2 Pure Nash Equilibrium

As previously mentioned Nash Equilibria are de�ned as states where none of the players can get a
better outcome by diverting from their strategies. Many algorithms exist which �nd these equilibria,
but the simplest method is to examine each outcome to see if it is a Nash Equilibrium. To do this,
the outcome is examined from each of the players' perspective, one at a time. If the player knows that
the other player would play the strategy which leads to that outcome, could the player then choose
another strategy which has the same or better utility for him? If this is the case the outcome is not a
Nash Equilibrium. This is repeated from the other players' perspective. When one outcome has been
examined the same examination is repeated for each outcome. The described procedure can be made
into the algorithm as seen below in Algorithm 3.1.

Algorithm 3.1 An algorithm which �nds all Nash Equlibria
for each outcome (sI , sII) do
for each strategy si of player I do
if u1(si, sII) ≥ u1(sI , sII) then
(sI , sII) is not an equlibrium

end if
end for
for each strategy sj of player II do
if u2(sI , sj) ≥ u2(sI , sII) then
(sI , sII) is not an equlibrium

end if
end for

end for

This algorithm is not very e�cient. It �nds all the equilibria by an exhaustive search where it examines
all the di�erent possible equilibria. This has an impact on the time complexity. For each of the
outcomes, it examines one outcome for each of the strategies of both players. This results in the
following asymptotic time complexity O((n ·m)(n+m)) where n and m and the number of strategies
for the players.

3.2.3 Regret minimizing solution concepts

The concept of regret minimization is directly tied to the name. First the term regret must be de�ned.
Regret is what you could have gained by acting di�erently in a given situation. The idea of using
this concept for game theory was adopted by P. B. Linhart and R. Radner in 1989 in their article
[3]. In the recent years Joseph Y. Halpern and Rafael Pass have adapted this concept by iteration
in their article [2]. Regret minimization removes all the strategies which do not have the minimal
regret. When iterating regret minimization, the game continually gets smaller for each iteration until
no further strategies can be removed.
In the following subsections regret minimization and the iterated version is described. For each of
them an algorithm is given, which is then examined.

Regret minimization

This solution concept utilizes the regret for removing strategies which have regret above the minimum.
The regret is found for each strategy separately and is then compared in order to remove strategies
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which do not have the minimal regret. The game used as an example is the same in the article [2].
The game is the Traveler's Dilemma with a maximal bid of 100 and a penalty of 2. The regret of an
action is how much more the player could have won, if his response to the speci�c strategy of the other
player instead was the strategy which yielded the highest utility. The best response of a player for
this game, is to bid sn one less than the other player or bid the same if he bids the minimal bid. This
gives the best outcome for the player for some bid sm. So for this game the regret is regret(sn, sm) =
u(sm − 1, sm) − u(sn, sm) and in the general case regret(sn, sm) = u(snbest

, sm) − u(sn, sm). From
this the regret of a single strategy can be de�ned. The regret of a strategy is de�ned as the value of
the outcome with the largest regret, which includes the strategy in question. The formal description
is regret(sn) = max(regret(sn, si)si ∈ Sm). From this the regret minimization mechanic can be
formalized. It is de�ned as rmp(Sp) = min(regret(s)s ∈ Sp) where p is the player. The strategy which
is returned is not unique, since more than one strategy can have the minimal regret. This can now be
turned into the algorithm seen in Algorithm 3.2.

Algorithm 3.2 An algorithm which �nds all startegies with minimal regret.
Step 1: Find umax for each strategy of the other player
Step 2: Find maximal regret for each strategy
Step 3: Find strategies with minimal regret

The algorithm consists of three di�erent steps. To �nd the time complexity each of the steps must
be evaluated. To �nd umax all utilities for each of the strategies of the other player are examined in
order to �nd the maximum utility. The entire step then has complexity mn, where m and n are the
number strategies for player II and player I respectively. The next step has the same complexity, for
each of Player I's strategies all utilities are examined by subtracting them from their corresponding
maximal utility. The last step is just �nding the strategies with the minimal regret which can be done
in linear time. This results in the following time complexity: O(mn+mn+ n) = O(mn).

Iterated regret minimization

The modi�cation Joseph Y. Halpern and Rafael Pass discuss in their article [2], is to iteratively remove
strategies which do not have the minimal regret and thereby get a more speci�c result. This is done
by repeatedly calling regret minimization on the game until no more strategies are removed. The
complexity of this is related to the number of iterations used. The minimum number of iterations is
1. This is because when no strategies can be removed, then the algorithm simply terminates. If at
least one strategy is removed, then the minimum increases to 2. When a strategy has been removed,
then the algorithm needs an additional iteration to check whether or not any more strategies can be
removed. If no strategies are removed in that iteration the algorithm terminates. This can only be
continued for a speci�c number of iterations and will always terminate. This is ensured by the �nite
size of the game. In each iteration at least one strategy is removed, so the maximal number of iterations
is the same as the number of strategies n of the player.

3.2.4 Average regret minimization

A proposed adaptation of the regret minimizing solution concept is to minimize the average regret.
The procedure is much like the basic regret minimization, but instead of �nding the maximal regret
for each of the strategies the average is calculated. The di�erence from algorithm 3.2 lies in step 2.
Instead of �nding the single outcome which has the largest regret all the regrets are added together
and divided by the number of strategies. This has no impact on the complexity but will have on the
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resulting strategies.
As with the normal regret minimization, one can iteratively use average regret minimization to remove
strategies. This should also provide more speci�c results. Since the main algorithm is very identical to
regret minimization, and thereby also inherits the complexity and the possible number of iterations.



Chapter 4

Analysis

The purpose of this chapter is to examine and specify the scope of this thesis. This is done to clearly
state the background for the thesis, the motivation behind it, the methods used and the goal of the
thesis.

4.1 Background of the thesis

In 1950 J. F. Nash described Nash Equilibrium as a solution concept which could be applied to any
game. This was because a result always exists either as a pure or a mixed strategy. However, in order
for Nash Equilibrium to be a viable solution concept, all other players are required to be using the
Nash Equilibrium as their solution concept. For other games, like the Centipede game or the Traveler's
Dilemma, Nash Equilibrium does not provide a meaningful result, which re�ects the actions of real
life situations. For these problems other solution concepts have been suggested. One of them is regret
minimization. This solution produces some very di�erent results from the Nash Equilibrium. A resent
modi�cation has been developed by Halpern and Pass in [2]. The solution concept is examined in
the article by applying it to di�erent games and examining the behavior. A variation of this solution
concept has been suggested by V. Goranko, where the average regret is minimized instead of the
maximal regret.

4.2 Motivation

The driving force behind this project is, that no examination of the Average Regret Minimization
solution concept exists. Additionally has regret minimization not yet been implemented and no em-
pirical results exist. Another reason is to clarify if Average Regret minimization is a better solution
than regret minimization based on the maximal regret for each strategy. Performing these analyses
would lead to a greater understanding of the usability of this solution concept in real life situations.
Depending on the results, this approach could indicate how Iterated regret minimization and Average
regret minimization perform compared to Nash Equilibrium.
The results of this analysis would be of interest to people who perform research within this area, but
it is of even more importance to people who are using the theory in di�erent applications, since these
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results are oriented towards the usage in real situations, thereby having impact on the usability of the
di�erent approaches.
My personal interest on the subject of this thesis is based on my background in algorithmic and Ar-
ti�cial Intelligence (AI) courses at the Technical University of Denmark (DTU). Through my work
with di�erent areas in informatics and algorithms, game theory has drawn my attention. The ability
to predict how a person or entity would react in a situation based on a selection of strategies I �nd
very intriguing and fascinating. Early on in my courses at DTU I become acquainted with the �eld
of game theory, but it was �rst later on when working with arti�cial intelligence my real interest for
game theory sparked. In combination with my interests in algorithms, it seemed obvious to write a
thesis about a combination of these two �elds.

4.3 Scope

The scope de�nes the constraints of this project. This will be performed in a hierarchal fashion by
gradually becoming more speci�c. The goal of the scope is to precisely de�ne the subject of this thesis.
The general area is game theory, which can be approached from two angles, a game theoretical and an
algorithmic approach. Both angles will be taken into account, but the main emphasis will be on the
game theoretical analysis.
The main subject of the thesis relates to the analysis and evaluation of how Iterated regret minimization
relates to Average regret minimization. The performance and results will be examined on a set of
strategic form games which is a subset of those treated in [2]. Since these games are in strategic form
they are also considered imperfect information games. The games are also be repeated in order to see
how the di�erent solution concepts perform in this situation.
In order to create a foundation for the terms and de�nitions, a wider survey of the area of game theory
is given prior to the analysis of the more advanced solution concepts. When the terms and de�nitions
are settled, the scope can be narrowed to look at the di�erent regret minimization solution concepts.

4.3.1 Methodology

In order to accomplish the analyses mentioned in the scope, some fundamental work must be carried
out prior to the analyses. First a more wide theoretical analysis of the general area of game theory is
carried out in order to create the foundation of all terms and de�nitions. This analysis contains two
parts: a more general description of the general terms and solution concepts, and a separate, and more
thorough description of the solution concepts. In the second part, algorithms will be de�ned for each
of the solution concepts in order to have a speci�c interpretation for each concept. For the di�erent
Regret minimization solution concepts, no speci�c algorithms have yet been de�ned, meaning that this
is also done in this section along with an analysis of the algorithmic properties. These parts are found
in chapter 2 and 3.

The theoretical analysis will be used as the foundation for an implementation of a testing tool which
is intended as method for the practical testing and analysis. This implementation should encompass
algorithms for all the di�erent solution concepts or a possibility to use another implementation of the
algorithms.
When the implementation is executed, the attention is turned towards the speci�c area of this thesis.
Where a series of analyses are carried out, the di�erent tests are seen in the list bellow and de�ne the
focus of the main area of this thesis.
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Reproduction of test results: Some of the more interesting results in [2] are reproduced in order
to verify them. For some games the parameters will be changed in order further test the behavior
beyond what is explained in the article [2].

Behavior of average regret minimization: Here the same games are tested but with average re-
gret minimization. The results are then compared with the iterated and the normal version.
Furthermore the results are used to compare average regret to maximal regret.

Iterations of the algorithm: The number of times the di�erent algorithms need to be iterated is
tested and compared.

Impact of mixed strategies: Here an experiment is performed in order to determine how many
iterations are needed for the average outcome to come close to the expected outcome.

Solution concepts vs. mixed strategies: Here the performance of the solution concepts is com-
pared up against some mixed strategies which represent real life situations.

Solution concepts vs. solution concepts: Here the di�erent solution concepts play against each
other in order to measure their performance.

When all the di�erent experiments have been executed and evaluated an analysis will be written in
order to draw a conclusion on the subjects presented in this chapter.

4.3.2 Goals

A number of goals can be de�ned in order to determine what must be accomplished, in order to
conclude on the successfulness of this project.

• Establish a wide understanding of the area of game theory.

• Obtain an understanding on how the di�erent solutions concepts work.

• Create an algorithm from the concept of Iterated Regret Minimization and its adaption's.

• Implement a test environment, referred to as the testing tool.

• Reproduce and verify results from [2].

• Test and compare the performance of the solution concepts.

• Evaluate on which solution concept provides the best performance.

• Argue formally for the implications of the results.

The list is not a complete list of everything which is performed within this thesis, only a list of the
things which is considered a requirement for this thesis.
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Chapter 5

Implementation

This chapter contains a description of the implementation of the testing tool. Firstly a description the
included functionality and how the implementation has been performed is given. Three elements have
been given their own sections, the data structure, creating of test data and the algorithms. However,
before the speci�c elements can be described the requirements for the tool are listed, as shown below.

Requirements:

• Use 2-player single move strategic form games.

• Both players must be able to choose from all the di�erent solution concepts.

• Ability to execute the games a �xed number of times.

• Support both pure and mixed strategies.

• Ability to create di�erent games based on their parameters.

• Provide a graphical interface.

• Provide results in an easy and intuitive way.

• Modular implementation which enables an easy way of adding features, more games or solution
concepts.

The above list contains the features which must be included in the test tool, in order for it to support the
chosen experiments. The procedure of the whole implementation is omitted since it is not considered
an important part of this thesis. However, important features are emphasized in the following sections
by detailing their speci�c implementation.

5.1 Implementation environment

The implementation environment consists of a short description of the hardware and software used
during the implementation and running of the testing tool. The hardware consists of a laptop with
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the following speci�cations: Intel Core2 Duo T5800 2.0 GHz, 4 GB ram, Windows 7 Professional
64-bit. The implementation was carried out in JavaSE-1.6 using Eclipse SDK Version: 3.5.2 as the
IDE (integrated development environment). For backup and version control an SVN-Server located
on DTU's GBar was used. To utilize the functionality of SVN TortoiseSVN version 1.6.7 was used.

5.2 The testing tool

The tool was implemented in order to have a common environment for all the experiments. The testing
tool can be divided into two parts, the user interface and the backend mechanics. The user interface
takes care of all inputs and outputs along with error handling. The backend mechanics takes care of
executing the right algorithms, �nding the results of the solution concepts and simulate the execution
of the games.
A class diagram of the entire implementation is seen in �g. 5.1. All the associations are single
associations and one-way.

Figure 5.1: A class diagram of the testing tool.

From the class diagram the structure of the implementation can be seen, which serves at the basis for
the description of the implementation of the testing tool. The application's name is GTTB which is
an abbreviation of Game Theory Test Bench. Each of the classes are described below with focus on
what they are responsible for.

GTTB: This class is the main class which opens a single window in which all the testing occurs.

MainWindow: Is the class which contains all UI elements and is responsible for all input/output.

Loader: Loads a game from a �le speci�ed by MainWindow.
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Result: Data structure for a result of an execution of some game.

TestBench: The class responsible for obtaining strategies from the selected solution concepts and
executing the game.

SFGame2P: The data structure containing a game.

Games: This is a package where all the di�erent classes for constructing games are located.

Algorithms: This package includes all the di�erent algorithms for the di�erent solution concepts.

The most interesting areas consist of the user interface, data structures, the way games get created
(creating test data) and the algorithms which use the di�erent solution concepts. Each of these
components are described individually below.

5.2.1 The User Interface and its functions

The user interface (UI) was implemented using the Java SWING library. The reason for this choice is
that it is easy to use and contains all the required functionality for the implementation. In �gure 5.2
a screenshot of the UI is shown.

Figure 5.2: The user interface for the testing tool.
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The toolbar contains three elements. Firstly the File segment, which contains: Open Game, Load
Game Type, Save Game, Export Gambit File and Exit located.
Open Game loads a game from a �le, the �le format can be found in appendix C. The di�erent lines
of the �le are includeding the following information.

• The �rst line is the number of players.

• The next is U if the values of the outcomes are utilities and C if they are costs.

• The next line is how many strategies the di�erent players have.

• The Two next lines are the names of the strategies of the players.

• Finally comes the outcomes of the games. They are stated as pairs of utilities for each of the
players.

Load Game Type includes a set of submenu's located for each of the game types described in chapter
3. Clicking on one of the menu items causes a popup to appear, where the parameters of the game
can be entered.
Save Results simply saves the results of a game as a .txt �le. Export Gambit File saves the current
games in a format which can be read by the Gambit 1. The �nal menu item is simply to close the
application.
The next item in the toolbar is View: This contains options about what information is shown about
the game and the result. The �rst submenu item is an option for how the results of each iteration
should be shown, the next is and enable/disable of the game matrix. The �nal submenu is whether or
not the probabilities of the di�erent strategies should be shown. The reason for these features being
able to be enabled/disabled is because they can a�ect the runtime, make the testing tool more/less
confusing to use, both of which often happens with using large games.
The �nal item on the toolbar is Help: The Help menu simply contains a menu item that creates a
popup with information about the author and the testing tool.

In the topmost section of the window right below the toolbar information on the name of the game
and the number of strategies of the players is displayed. Below this a text �eld and a button is found.
The text �eld is used to enter the number of iterations of a given game. The button is to play the
current game and execute all the iterations; the button appears when a game has been loaded. In
order to be able to play the game a solution concept must be chosen for each player. The strategies are
chosen from a dropdown list located under the text �eld. In addition to the strategies a valid number
of iterations needs to be selected. Once the play button is pressed an additional tab appears to the
right of the dropdown menus, this tab contains the results of the game.

5.2.2 Data structures

Throughout the implementation of the testing tool di�erent data structure are used, however, it is the
one used for storing games that is the most interesting. As mentioned earlier, a game consists of three
components, the strategies, the outcomes and the players. The outcomes are de�ned as the result of
a function which maps a strategy of each player to a set of utilities. The data structure which is used
for encompassing all the information is arrays. For each of the players two arrays are given, a two
dimensional array to hold the outcomes of that speci�c player, and an array of strings with the names
of the strategies of the player. The entire data structure is then composed of four arrays, where two of

1Another program for computing nash equilibriam. Can be found at http://www.gambit-project.org
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them are two dimensional. The space complexity is then nm which is the size of the two dimensional
arrays.
During an execution of a game are the results of each iteration is recorded. The data which is recorded
consists of the strategies of each of the players, the speci�c outcome for each iteration, the utility
gained each iteration of each player and the collected utility from all the iterations.

5.2.3 Creating the test data

The di�erent game types each have a class to produce a game representation based on the parameters.
In the experiments four di�erent types of games are used, but the centipede have two variations and is
therefore implemented with an extra parameter to specify which type of games is wanted. For each of
the games the method for creating and name the actions along with the utilities for each of the players
is given. The issues with the creation of the di�erent games are based on how the arrays are indexed.
In Java indexing starts at index 0. The problem is then how to map from the index to the value of
the action. Below the implementation of each game is described.

Traveler's Dilemma: The two parameters for this game are the maximal bid and the penalty. The
only parameter which has in�uence on the actions is the maximal bid. An action is to bid a
speci�c value. The number and actions are all the integers in the range [2, ..., bidmax]. This
results in bidmax − 1 di�erent action named the same as the bid they represents. The action is
identical for both the players.
To accurately map from the indices to the bids is simply by adding 2 to the index. For both the
utility arrays the utilities can then be calculated by using the function in 3.1.

Centipede Game: For the centipede game three parameters are needed. The number of rounds
rounds, the penalty and the type of centipede game. The class which controls this game �rst
creates the strategies since they are the same for both types of games. A strategy in this
representation of a centipede game, is to stop at a certain round. The strategies for the players are
not the same for this game type. The strategies for of player I depends on the number of rounds.
If the rounds are even the strategies range consists of [1, 3, ..., rounds− 1], and [1, 3, ..., rounds]
if the number is odd. For the other player it is the other way around, [2, 4, ..., rounds] for even,
and [2, 4, ..., rounds] − 1 for odd. To map from the indices to the rounds is therefore di�erent
for the two players. For player I it is done by rounds

2 + rounds%2 and rounds
2 for player II. The

strategies are then named by i · 2 + 1 and i · 2 + 2 for player I and II respectively.
The utilities are then found from the actions. For each outcome, the player who has the lowest
strategy is the one to say stop �rst. If the indices are the same, then it is player I who has stopped
�rst. The speci�c utility the players depends on the type of game. For exponential games it is
simply to give the player who stopped �rst 2round + 1 and 2round−p to the other player.

Bertrand Competition: The action in this game is to bid a value for the wares. The player can
bid any amount between [0, 1, ..., bidmax]. Each player has bidmax + 1 strategies. The bid of the
actions are simply the same as the indices in the arrays. The utilities are assigned by looking at
the relation between the bids of the players. The player who bids lowest gets bid ·wares and the
other 0. If they bid the same they are both assigned bid · wares

2 .

Nash Bargaining Game: The strategies for this game are identical to the Bertrand Competition.
They have the same number of strategies and they are named in the same way. The action the
strategies represent are again the bids in the game. The utilities are either the same amount as
the bid or 0 depending on the sum of the bids.
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The class MainWindow makes sure that only valid games are created in accordance to the requirements
described in chapter 3.

5.2.4 The algorithms

From each of the di�erent solution concepts an algorithm has been created. Each of the algorithms are
described in the list below. The description includes how the di�erent algorithms are converted to an
implementation and what is added or removed from the algorithms in order to implement them. Each
of the algorithms receives a game and the player for which it has to �nd a strategy. Two of the classes
also receive another input. The Cymbal class also gets the strategy which should have the highest
probability and the Stop class with probability p gets the probability p.

Mixed strategies: The implementation of these was straight forward. For the uniform version is it
based on the number of strategies. For the two others their extra parameter are what controls
the way the probabilities are assigned.

Nash Equilibrium: This is implemented by looking at each outcome in turn. First a list of all
the di�erent strategies is recorded. For each outcome which is not an Nash Equilibrium the
corresponding strategies will be removed from the list. Lastly the result returned by either
returning null if no Nash Equilibria is located or an array of all the strategies where the probability
is uniformly distributed over all the strategies which is part of an equilibrium.

Regret Minimization: The implementation follows the algorithm very closely. When the minimal
regret of the strategies is found, an array with the same size as the number of strategies is created.
In this the probability is evenly distributed between the strategies with the minimal regret.

Iterated Regret Minimization: To iterate this algorithm the non-iterated version is used in a
slightly modi�ed version. The modi�cation consists of the following: instead of returning a
result, the result is simply recorded in an array and a variable is set to indicate that at least
one strategy has been removed. The procedure is then repeated but the strategies removed in
the previous iterations are no longer used for the calculations. This is repeated until no more
strategies are removed.

Average Regret Minimization: The implementation of this solution concept is almost identical
to Regret Minimization. The only di�erence is that the average regret is computed instead of
the maximal regret for each strategy.

Iterated Average Regret Minimization: This is also uses a modi�ed version of the non-iterated
version of the same solution concept.

5.3 Testing

Testing and validating the implementation was divided into four areas: The UI, the games creating,
the algorithms and the game execution.
The UI contains di�erent features such as open games from �les, saving them and converting to other
�le types. These features were tested by a functional test. This involved running the di�erent feature
and assess if it is the right behavior was observed. If some features did not react as expected, it was
�xed on the run by adding or changing a feature.
The feature where games were created from some parameters were tested by creating di�erent games
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and observe if it was created according to the descriptions in this chapter and in chapter 3.
The algorithms were tested one at a time. The ones based on the solution concepts from the article
[2] were tested with the games from the same article. The results can be seen in table B.1 in the
appendices. The adapted solution concepts were also tested on these games and the behavior was
observed. A more detailed evaluation of the results is given in the next chapter.
The mechanism for running games was tested by running some di�erent games where the results
were known prior to the test run. The utilities were then observed and compared manually to the
outcomes. Each of the iterations were compared the outcomes of the games and the collected outcome
were calculated.
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Chapter 6

Experiments and evaluation

The experiments found within this thesis can be divided into two di�erent sections and each section
can be divided further into subsections. The �rst main section concerns regret minimization. In
this, the solution concept proposed by Halpern and Pass in [2] is tested with in the testing tool. The
second main section concerns average regret minimization, here the two solution concepts are compared
to each other and to the regret minimization described by halpern. After each of the experiments,
an evaluation is given on the results of the given experiments indicated above. The results of the
experiments can be seen in appendix B.

6.1 Experiments with regret minimization

The main objective of this experiment is to con�rm some of the more interesting results from [2].
These are the results from the games de�ned in The Games in chapter 3, which are reproduced. The
�rst objective is to extract and verify the results from Halpern and Pass' article. The results are seen
in the appendices in table B.1. How the games are tested, in order to produce the results, are then
described; followed by the produced results. Finally, the results are evaluated. Each of the games are
handled individually and in turn. The data for each of the experiments can be seen in the appendices
B.1

The Traveler's Dilemma:
The results from the article of the Traveler's Dilemma are de�ned for a game with a speci�c size, but
with varying penalties. For a game of size k = 100, the magnitude of the penalty can be p = [2, ..., 100]
and the article examines the results for p < 50 and for p ≥ 50. For p ≥ 50 both the regret minimizing
solution concepts follow the same strategy as that of the Nash Equilibrium. For p < 50, the suggested
strategy is closely tied to the speci�c size of the penalty. The non-iterated regret minimization suggests
that all strategies [100 − 2p, ..., 100] minimizes the regret. The iterated version strictly suggests that
100− 2p+ 1 minimizes the regret. The article [2] has n error where it uses the Traveler's Dilemma as
an example. At page 10 it states that Iterated Regret Minimization has 100− 2p+ 1 as the strategy
which minimizes the regret for p ≥ 50. This should obviously be for p < 50 instead as mentioned
earlier in the article.
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The experiment is carried out by running a series of games and recording the results. To reproduce
the results, the penalty parameter is changed to check the results for the di�erent solution concepts.
For most of the results in table B.2 found in the appendices, the results from the article holds. It is
easy to check whether or not the limit 100− 2p+1 holds for the games, which is does for results with
p < 49, but when the penalty gets near the limit 50 something happens which the article does not
take into account. For p ≥ 49 the results di�ers from the article. At p = 49 the result of the single
iteration regret minimization is the single strategy 3. The reason for this is because of the minimal
bid of the players. When the penalty is increased, so are the number of strategies which survive the
�rst iteration. When p = 49 strategies should survive, the �rst iteration is [100− 2(49), ..., 100], which
is all the strategies. Instead of removing the strategies before 100 − 2p, which in this game does not
exist, it does what the second iteration does for games with lower penalty and picks a single strategy
instead. The results from the article mentions, that the chosen strategy for games with p ≥ 50 should
be the strategy with the minimal bid. This is not the case; instead it is the second smallest bid. If the
minimal bid was 0, then the suggested strategies would be [2, ..., 100].

Table 6.1: The Traveler's Dilemma with a max bid 10 and a penalty of 5.

TD(10,5) 2 3 4 5 6 7 8 9 10

2 2,2 7,-3 7,-3 7,-3 7,-3 7,-3 7,-3 7,-3 7,-3
3 -3,7 3,3 8,-2 8,-2 8,-2 8,-2 8,-2 8,-2 8,-2
4 -3,7 -2,8 4,4 9,-1 9,-1 9,-1 9,-1 9,-1 9,-1
5 -3,7 -2,8 -1,9 5,5 10,0 10,0 10,0 10,0 10,0
6 -3,7 -2,8 -1,9 0,10 6,6 11,1 11,1 11,1 11,1
7 -3,7 -2,8 -1,9 0,10 1,11 7,7 12,2 12,2 12,2
8 -3,7 -2,8 -1,9 0,10 1,11 2,12 8,8 13,3 13,3
9 -3,7 -2,8 -1,9 0,10 1,11 2,12 3,13 9,9 14,4
10 -3,7 -2,8 -1,9 0,10 1,11 2,12 3,13 4,14 10,10

In table 6.1 the Traveler's dilemma with a maximal bid of 10 and a punishment of 5 is shown. From
this game it can be seen, why the strategy with the second lowest bid, which has the minimal regret.
For the strategies 2 and 3 the action of the opponent which maximizes the regret is if he bids the
maximum amount. For all the other strategies, it is the action of bidding just one less than player
I which maximizes the regret. Strategy 2 will always have a higher regret than strategy 3 when the
opponent chooses the maximal bid. This leads to strategy 3 always being chosen over the �rst. This
behavior continues until the penalty approaches the size of the game. At p = bidmax − 3 the behavior
changes once again, here 2 and 3 initially have the same regret and in the next iteration 2 has the lowest
regret and is therefore the only strategy which survives both iterations. With any higher penalty, the
only strategy which survives a single iteration is 2.
The behavior of the solution concepts can be described more formally by making an expression for the
regret for each set of strategies. For this there exists three situations, both players can bid the same,
the �rst player can bid lower than the other player, or the �rst player can bid higher than the other.
From chapter 3 section "The Games" we have the regret for each of these situations. It can be written
as a simple function as seen in equation 6.1.

regret1(n,m) =

 (m− 1 + p)− (n+ p) for n < m
(m− 1 + p)− n for n = m
m− 1 + p− (m− p) for n > m

(6.1)

From equation 6.1 a new expression can be created, which tells the maximal regret for each of the
possible strategies for player I. To do this, the situations which maximize the regret must be uncov-
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ered. It is easily seen, that the situation which maximizes the regret, is m = bidmax for n < m. The
other situations do not depend on the answers. From this the expression in equation 6.2 can be created.

regret1(n) = max(bidmax − n− 1, p− 1, 2p− 1) (6.2)

Since p−1 < 2p−1 for p >= 0 the second expression is never the maximum and is therefore not taken
into account. The �rst part of the expression is descending and the third part is a constant. The limit
for where the strategies survive is described by when the two expressions are of equal size. This results
in a limit of limitminreget = bidmax − n − 1 = 2p − 1 → n = bidmax − 2p. This then proves why the
single iteration returns the proposed result.

Table 6.2: The Traveler's Dilemma with a max bid 10 and a penalty of 3.

TD(10,3) 2 3 4 5 6 7 8 9 10

2 2,2 5,-1 5,-1 5,-1 5,-1 5,-1 5,-1 5,-1 5,-1
3 -1,5 3,3 6,0 6,0 6,0 6,0 6,0 6,0 6,0
4 -1,5 0,6 4,4 7,1 7,1 7,1 7,1 7,1 7,1
5 -1,5 0,6 1,7 5,5 8,2 8,2 8,2 8,2 8,2
6 -1,5 0,6 1,7 2,8 6,6 9,3 9,3 9,3 9,3
7 -1,5 0,6 1,7 2,8 3,9 7,7 10,4 10,4 10,4
8 -1,5 0,6 1,7 2,8 3,9 4,10 8,8 11,5 11,5
9 -1,5 0,6 1,7 2,8 3,9 4,10 5,11 9,9 12,6
10 -1,5 0,6 1,7 2,8 3,9 4,10 5,11 6,12 10,10

The next iteration has some di�erent premises. When looking at the game in table 6.2, it can be seen
that the maximal regret changes when removing the colored strategies. The maximal regret for the new
two smallest strategies is now when the opponent bids the maximal bid. A new expression for maximal
regret can then be de�ned as seen in equation 6.3. Minimizing this expression leads to a minimum of
exactly max− 2p+ 1. This then proves why this is the result of iterated regret minimization.

regret1(n,m) =

{
bidmax − 1− n for n ≤ max− 2p+ 1
2p− 1 for n > max− 2p+ 1

(6.3)

When the penalty is high, then the results change. The easiest way to explain this behavior is by
looking at what happens in the second iteration for games with a low penalty. When p ≥ bidmax

2 − 1
then the structure of the games change so that it looks like a game where only strategies which has
survived the �rst iteration is present. It has already been proved what the result of regret minimization
is on a game of this type, so it is apparent why the result is minbid + 1.
When the penalty approaches the maximal bid, the results change again. The result of the regret
minimization becomes the lowest strategy possible. This is because, for all the other strategies, the
action of the opponent which maximizes the regret for player one is to bid 3. For bid 2 the action
is instead to bid the maximal value. This pattern continues for all penalties larger than the limit
p ≥ bidmax

2 − 1.

Changing maximal bid a�ects the outcome, however, this is tied to the penalty. When p < bidmax

then increasing the bidmax does not change the behavior of the algorithm. The results have the same
number of strategies; they just get pushed forward by an equal amount as the change in the maximal
bid. When decreasing the maximal bid the result gets moved backward in a similar manner. It changes
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when bidmax < p
2 − 1 which is the same ratio when changing the penalty.

Summary: Two di�erences from the article [2] were found. The �rst was the limit of what the penalty
is when the outcome pattern changes. Instead of p ≥ bidmax

2 is it for p ≥ bidmax

2 −1. The other di�erence
is the suggested strategy for games with a high penalty. Instead of assuming the minimal mid is the
second lowest bid. Proofs were given for each of the di�erences. Furthermore the di�erences with other
parameters for the game were tested. The games were with a high penalty p ≥ bidmax − 3. At this
limit, the result of the iterated version changed to the strategy for the minimal bid. The non-iterated
version returned both the strategies for the minimal bid and the second to minimal bid.

The Centipede Game:
The next results examined are that of the two versions of the centipede game. The two types of the
game have di�erent results from the regret minimizing solution concepts, while the Nash Equilibrium
remains unchanged, namely stop at the �rst possible round. The simplest results are for the exponen-
tial version. Here, that action that minimizes the regret is the same for both solution concepts, namely
to stop at the last possible round. The linear version of the centipede game is more interesting. The
results of the iterated version vary depending on whether or not the number of rounds and the penalty
is even or odd. The result of the non-iterated version is the same no matter what the values are of
the parameters. The result is [k − p + 1, k − p + 3, ..., k − 1]. When both parameters are odd, then
iterating make no di�erence and therefore produce the same results. On the other hand, when both the
parameters are even, then iterating produces a single unique result k−p+1 which minimizes the regret.

The exponential centipede game is by far the less interesting. The Nash Equilibrium states that the
only possible strategy is to stop at the �rst possible round. The results also support this empirically.
The reason why this happens can be seen by looking at the dominated strategies. Starting at the last
strategy for player I, this is dominated by the second last strategy which is in turn dominated by the
third last. This continues until only the �rst strategy remains. A dominated strategy can never be a
part of a Nash Equilibrium, and therefore is the only Nash Equilibrium to stop the game at the �rst
possible round.
The results for Regret Minimization do in most cases follow those of the article. Some variations can
be seen both with the number of possible strategies for the single iterations version, but also with the
�nal result of the iterated version in some cases. First the result of the regret minimization where it
�nds more than one strategy is examined. It only occurs when p = 1 and the number of rounds is odd.
When this is the situation the solution concept �nds two strategies which have the same regret. The
strategies represent the action of stopping in the two last possible rounds. By looking at the game in
table 6.3 and observing the structure of the two last strategies for player I, it can easily be seen why
this behavior occurs. The maximal regret for both strategies is 59, and therefore, the only di�erence
between the two strategies does not a�ect the outcome until the next iteration. In the next iteration is
it easy to see, that it is the second last strategy which has the minimum regret because weakly domi-
nates the other strategy. The same structure is evident with size game with an odd number of rounds.
If the number of rounds are even, then the strategy of player I is removed, and thereby one strategy
has the minimal regret, and it is therefore simple why this behavior does not appear for games with an
even number of rounds. From the game it can also be seen why this behavior only appears with games
with p = 1. With p > 1 the second last strategy does no longer have as low a regret as the last and
thereby the situation with more strategies with the minimal regret no longer exists. When changing
the punishment to higher values, nothing changes in relation to the results of the solution concepts.
Even with very high numbers, where the punishment is a 0 utility, the solution concepts are una�ected.
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Table 6.3: The Exponential Centipede Game with k = 9 rounds and a penalty of 1.

EC(9,1) 2 4 6 8

1 5,2 5,2 5,2 5,2
3 4,9 17,8 17,8 17,8
5 4,9 16,33 65,32 65,32
7 4,9 16,33 64,129 257,128
9 4,9 16,33 64,129 256,513

The game seen in table 6.3 can also be used to explain the behavior where the result of regret mini-
mization is the strategy with the second highest bid of the game. It can be seen in table B.3 within the
appendices, that this behavior only occurs in games with an odd number of rounds. The behavior can
be traced back to why the previous behavior only occurred with games with an odd number of rounds.
In these situations, the choosing the last strategy means cooperation until the end of the game, if the
number of rounds are odd, then the other player's last possible moment to not cooperate is in the
second last round (round 8 in the example). This results in a situation where player II always is the
one to defect �rst when player I is playing the last strategy and therefore he can always get a better
outcome by choosing the previous strategy, this results in the last strategy being dominated by the
previous strategy and is therefore never chosen. This is in fact the same result as the article shows,
the di�erence lies in the implementation of the game in the implementation.
From the above analysis it is observed why the last or second to last strategy is always the solution for
regret minimization. Defecting later always has a possibility of getting a higher outcome. For player I,
defecting at round r = 1 will always have a possibility to get a better outcome, the result can also be
worse, but this is not taken into account in regret minimization. The later one stops, the higher are
the possible outcomes, and therefore the lower the regret. The only deviation is with the last strategy
for a game with an odd number of rounds as explained earlier. The regret of a given strategy can
rather easily be found by de�ning a function. The single event which induces the maximal regret for
each strategy is when the opponent chooses the latest round possible to stop. In this situation, the
maximal regret is given in equation 6.4.

maxregret1(n) =

 (2k−2 + 1)− (2n + 1) for k odd and n 6= k
(2k−2 + 1)− (2n−2) for k odd and n = k
(2k−1 + 1)− (2n + 1) for k even

(6.4)

From equation 6.4 it can easily be seen, that in order to minimize the regret, the strategies with
n = k − 2 are preferred for games with an odd number of rounds, and the strategies with n = k − 1
for games with an even number of rounds.

Summary: In the case of p = 1, the single iteration version of the regret minimization had a devia-
tion from the results in the article. It found an additional strategy in its results. It was only for the
non-iterated version and was only a single more strategy, so the loss of precision was kept small. The
biggest impact is in the iterations which will be discussed in a later experiment.

The linear centipede game has some other results than the exponential version. The Nash Equilibrium
remains unchanged. For every game it is still the �rst possible round one should defect while adopting
this solution concept. For most other games, both the regret minimization solution concepts tend to
follow the results of the article. There are a few games where the results in table B.4 deviate from
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the results in the article. The �rst are where games with p = 2 have a di�erent number of results
depending on the number of rounds being even or odd. This relates directly to some of the results for
the exponential version of the game. The same argument applies to this deviation as for why regret
minimization �nds two di�erent strategies with minimal regret in exponential centipede games with an
odd number of rounds. The article does not examine all the di�erent types of centipede games. The
article describes what happens when either both the punishment and the number of rounds are even
or if they both are odd. From the results in table B.4 it can be seen what the behavior is when both
the parameters are not either odd or even. When the number of rounds is odd and the punishment
even, then the results are the same as for games where both parameters are even. When the number of
rounds is even and the punishment odd, then the results follow those of games where both parameters
are odd. From this a more precisely de�nition, of when the iterated solution concept does not yield a
more speci�c result, can be made. The behavior is not tied to the punishment, but only the number
of rounds. This behavior can be explained by looking at the game in table 6.4. From this table the
pattern of the game is apparent. For this game, the strategies [7, ..., 13] are the result of both the
iterated and the non-iterated version of the regret minimization solution concept. The maximal regret
for all of these strategies is 4. The regret can be found without using the strategies [1, ..., 5] and thereby
removing these strategies does not yield a di�erent result.

Table 6.4: The Linear Centipede Game with k = 13 rounds and a penalty of 5.

LCG(13,5) 2 4 6 8 10 12

1 7,2 7,2 7,2 7,2 7,2 7,2
3 3,8 9,4 9,4 9,4 9,4 9,4
5 3,8 5,10 11,6 11,6 11,6 11,6
7 3,8 5,10 7,12 13,8 13,8 13,8
9 3,8 5,10 7,12 9,14 15,10 15,10
11 3,8 5,10 7,12 9,14 11,16 17,12
13 3,8 5,10 7,12 9,14 11,16 13,18

The regret can also be described in a more formal matter. To do this, �rst an expression for the
regret in any given outcome must be created. There exists two di�erent outcomes, either player I stops
earlier or after player II. When the opponent stops later, then the regret is what he could have won
if he stopped just before the opponent which yields a regret of (m− 1)− n, If on the other hand, the
opponent stops earlier than player I, then his regret is (m− 1)− (m− p). This can be contracted into
the regret formula seen in equation 6.5.

regret1(n,m) =

{
(m− 1)− n for m ≥ n
(m− 1)− (m− p) = p− 1 for m < n

(6.5)

For each strategy, there exists two schemes which the opposing player can play in order to maximize
the regret of the �rst player. These schemes can be either to play the last possible strategy or to play
the action precisely one lower than the �rst player. The last possible round the opposing player can
stop depends on whether or not the number of rounds is even, it can be either k for even numbered
games and k − 1 for odd. With the two schemes in mind a formula for the maximal regret for each
strategy can be devised. This is done by looking at which strategy m would maximize the regret for
each strategy n. For the �rst situation, the larger m is, the larger the regret. The next expression does
not depend on the strategies but remains the same. This can then be contracted into the expression
seen in equation 6.6 which de�nes the maximal regret for each possible n.

maxregret1(n) =

{
max((k − 1)− n− 1, p− 1) for odd k
max(k − n− 1, p− 1) for even k

(6.6)
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From this it can then be analyzed, that for low n the regret depends on the number of rounds, but at
some limit, the regret changes to the constant p− 1. It can then be seen, that all the strategies at this
limit and from there on have the same minimal regret. The limit is where the max changes to p− 1.
This is k − p+ 1 and k − p depends on the number of rounds.
From the expressions k− p+1 and k− p can it then be analyzed how regret minimization reacts when
changing the two parameters since all strategies n >= k − p or n >= k − p + 1 have minimal regret.
From this it can then be seen, that by changing the number of rounds, the number of strategies is
una�ected, but when changing the punishment the number of strategies that survive the �rst iteration
of regret minimization is increased for every 2 added to the punishment. When a new iteration is run,
then the results vary depending on the punishment. The formal explanation for this, is that, when
the punishment is odd, the strategies removed in the �rst iteration do not have any in�uence on the
maximal regret for each of the possible strategies, and therefore do not change the outcome by running
more iterations. When the punishment is even, then iterating changes the result. Looking at the game
in table 6.5, the behavior can be explained.

Table 6.5: The Linear Centipede Game with k = 13 rounds and a penalty of 6.

LCG(13,6) 2 4 6 8 10 12

1 8,2 8,2 8,2 8,2 8,2 8,2
3 3,9 10,4 10,4 10,4 10,4 10,4
5 3,9 5,11 12,6 12,6 12,6 12,6
7 3,9 5,11 7,13 14,8 14,8 14,8
9 3,9 5,11 7,13 9,15 16,10 16,10
11 3,9 5,11 7,13 9,15 11,17 18,12
13 3,9 5,11 7,13 9,15 11,17 13,19

The game in table 6.5 has the same result for at single iteration of regret minimization as the game in
6.4, but iterating further does produce a di�erent result in the game with an even penalty. This can be
seen by looking at the maximal regret for each of the strategies for player I. Initially the maximal regret
for strategies [7, .., 13] are all 5, but when the strategies [1, .., 5] are removed, the regret of strategy 7
is now 4 while the regret for the other strategies remains unchanged. This is because the regret of
strategy 7 depends on strategy 1 in to �rst iteration. This is the same for other games with an even
penalty. The regret of the lowest strategy which survives the �rst iteration always depends on strategy
1.
The article does not explain what happens when p ≥ k. Looking at what happens when p approaches
n this is easy explained, the number of strategies which survive the �rst iteration become greater and
greater until all of the strategies should survive. The game where all the games should have survived,
as a drastically changed outcome. When this happens, the result of regret minimization is the same
as the Nash Equilibrium, namely to stop at the �rst possible round. This can be attributed to the
structure of the game. When p ≥ k, then when the opponent stops at the �rst possible round, the
action maximizes the regret. This is because the punishment is at least as much as the amount a
player can win by continuing to the end. This is also supported by the empirical evidence from the
results in table B.3 in the appendices.

Summary: In the linear centipede game, the only deviation from the article was that the result of
the solution concepts was not tied to both the parameters, but only whether the penalty was even or
odd. When the penalty was odd, iterating would not produce a more precise result, so for games with
a high penalty were the results are a lot less precise. It will be seen in a later experiment what impact
this has on the expected utilities.

The Bertrand Competition:
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The result of the Bertrand competition is for a speci�c game where the maximal bid is 200$ and the
number of wares for sale are a 100 pieces. There are two Nash Equilibrium in this game 0 and 1.
Regret minimization suggests a very di�erent approach. A single iteration exposes 100 and 101 as the
two strategies which minimize the regret and another iteration singles out 100 as the best strategy.
To reproduce the results and verify empirically, a single game is being played and the result is recorded.
Since the article only refers to the game with a speci�c set of parameters it is a very quick to test.
First the strategies suggested by the Nash Equilibria are examined. From the test results it is seen,
that not only 0 and 1 are included in the Nash Equilibria, but also 2. This can rather simply be tested
by looking at the game in strategic form. Since the game table is rather big (201x201) it is not possible
to show it in its complete form, but in table 6.6 a small section is seen. From this is it easy to see that
(2, 2) is a weak Nash Equilibrium. Turning the attention towards the other solution concept it is seen
that the experimental results follow the results from the article perfectly.

Table 6.6: Small section from the Bertrand Competition Game from the article.

BC(200,100) 0 1 2 3 ... 201

0 0,0 0,0 0,0 0,0 ... 0,0
1 0,0 50,50 100,0 100,0 ... 100.0
2 0,0 0,100 100,100 200,0 ... 200,0
3 0,0 0,100 0,200 150,150
...

...
...

...
201 0,0 0,100 0,200

The next results in appendix B.5 are used for examining the behavior of the solution concepts when
changing the value of the parameters. When changing the number of items for sale, nothing is changed
with the results of the algorithms. This is not that surprising seeing that the only impact the number of
items is a factor which the outcomes are multiplied. For all noitems > 0 the results remain unchanged.
0 is not examined since it will result in a games with 0 utility for all outcomes.
Changing the maximal bid only changes the result of the single iteration version of regret minimization.
When the maximal bid is an odd number, the result is found in the �rst iteration. The reason can be
explained by looking at the maximal regret for a game with parameters maxbid > 2 and noitems > 0.
n is the bid of the �rst player and m is the bid of the other. For m > 1 the best response for the �rst
player is to always bid m − 1. For m = 1 the best response is to bid 1 as well. A special case is for
m = 2 where bidding 2 and 1 yields the same result. This can be seen from table 6.6. The regret can
be de�ned four di�erent ways depending on the value of n and m. This can be seen in equation 6.7.

regret1(n,m) =



(m− 1− n)noitems for m > n
(n2 − 1)noitems for m = n > 1
(m− 1)noitems for m < n
0 for m = n = 0, 1
noitems

2 for m = 1, n = 0
0 for 0 = m < n

(6.7)

Equation 6.7 can then be contracted into a more simple equation which de�nes the maximal regret
for player I. This can be done by looking at which value of m gives the highest regret for each n. The
two things which can cause the most regret, is either when the opponent bids the maximal amount or
when he bids one less than you. When he bids maximum, the regret is (maxbid − 1 − n)noitems and
when he bids one less it is ((n − 1) − 1)noitems. This leads to the function for �nding the maximal
regret as seen in equation 6.8.



6.1. EXPERIMENTS WITH REGRET MINIMIZATION 39

maxregret1(n) = max((maxbid − 1− n)noitems, (n− 2)noitems) (6.8)

It can now be analyzed which strategy gives the minimal regret for a given game. Looking at a game
with a maximal bid of 200 and considering not only integers as possible strategies leads to 100.5 as
the unique value of the bid which minimizes the regret. The two integer values which minimize the
regret for this game is 100 and 101. For a game with an odd number for the maximal bid, for example
199, the minimal regret is an integer number, and therefore the solution concept �nds it in a single
iteration when using games with an odd number for the maximal bid.
The value of the bid that minimizes the regret has a constant ratio in relation to the size of the maximal
bid. This can be seen empirically from the test results, and can be found by minimizing the function.
The minimum is where the two regrets are the same, which then can be used to �nd the relation to
the size of the maximal bid.

(maxbid − 1− n)noitems = (n− 2)noitems → fracmaxbid + 12 = n (6.9)

It is easily seen, that the strategies proposed by the regret minimization can lead to a better out-
come than that of the Nash Equilibria. Following the Nash Equilibrium, the maximal utility is
max(u0(NE)) = 2noitems where the strategies from regret minimization have a possibility tomax(u0(RM)) =
maxbid

2 noitems.

Summary: The only di�erence from the analysis to the article was the results of the Nash Equilib-
rium. This was because the Nash Equilibrium used in the implementation was using weak equilibria
as well. All other results followed those of the article. By changing the maximal bid a new behavior
was observed. When the value was odd a single iteration of regret minimization gave the �nal result
containing only a single strategy.

Nash Bargaining Game:
The results for Nash Bargaining Game are rather simple, since it only has a single parameter, and for
the results of the article, this parameter is bmax = [99, 100]. All the di�erent strategies are included
in the Nash Equilibrium. For a game with bmax = 100, the non-iterated regret minimization produces
two possible strategies, 50 and 51. Another iteration removes 51 so that 50 is the only strategy which
minimizes the regret. For a game with bmax = 99, the game �nds 50 as the only strategy with minimal
regret, and thereby iteration gives no further information.
To reproduce the results from the article, the solution concepts must be used on games with a max-
imum bid which can be both even and odd. From the test results in table B.5 in appendix B.1 is it
seen, that all the tests �t into the results from the article, so no deviation has been discovered.
The behavior of the solution concepts can be explained in the same way it was explained for the
Bertrand Competition, but �rst the Nash Equilibria will be found. Looking at a small game with the
maximal bid of 4 is it very easy to �nd all Nash Equilibria. The game can be seen in table 6.7. The Nash
Equilibria is easily identi�ed as all outcomes in the diagonal composed of [(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)].
For bigger or smaller games the same structure is held, and therefore can all strategies can be justi�able
by using this solution concept.

Regret minimization gets a completely di�erent result. Here the same arguments as for Bertrand
Competition apply. So for games with an odd number as the maximal bid, the regret minimization
�nds a single strategy in the �rst iteration. The regret of an outcome can be found by looking at
equation 6.10.
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Table 6.7: A Nash Bargaining game with a max bid of 4.

NB(4) 0 1 2 3 4
0 0,0 0,1 0,2 0,3 0,4
1 1,0 1,1 1,2 1,3 0,0
2 2,0 2,1 2,2 0,0 0,0
3 3,0 3,1 0,0 0,0 0,0
4 4,0 0,0 0,0 0,0 0,0

regret1(n,m) =

{
bidmax −m− n for m+ n <= bidmax

bidmax −m for m+ n > bidmax
(6.10)

From this it can be seen, that there are two situations which can maximize the regret, where either
the opponent bids the minimal bid, or he bids so that the sum is exactly one higher than the limit.
The regret in these situations can be seen in 6.11.

maxregret1(n) = (bidmax − n, n− 1) (6.11)

From this it can be seen that the regret is at its minimum when the two parts of the function are the
same, which leads to a minimum at nregretmin = ( bidmax+1

2 ). From this it can be seen, that when the
maximal bid is an odd number, then a single integer has the minimal regret, and two minima exists
when the maximal bid is even. The next iteration will then have to choose between the two strategies,
and the lowest then has the minimal regret.

Summary: For this game no deviations were observed. The results of the experiments were exactly
the same as in the article of Halpern and Pass [2]. No further experiments were conducted that were
not covered by the article.

6.2 Experiments with average regret minimization

The adapted solution concept is now tested. The analysis is divided into two sections. The �rst is how
the iterated behave in comparison with the non-iterated version. Followed by an analysis on how the
concept relates to the two regret minimization solution concepts.

6.2.1 Comparison of average regret minimization, the iterated version and

iterated regret minimization

Looking to the empirical evidence in the tables in section B.2 of the appendices, it is quickly observed,
that for no game in the experiments does iteration of average regret minimization yield any di�erent
results than that of the non-iterated version. All the results of the experiments give either one or
two strategies which have the optimal average regret. The games where iteration could bring a more
speci�c result are those which have a result of two strategies. An example of this behavior could be
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the Traveler's Dilemma. In this game, all valid games with p < bidmax

2 − 1 have a result consisting of
two strategies.

Table 6.8: A Traveler's Dilemma with a max bid of 8 and a penalty of 2.

TD(8,2) 2 3 4 5 6 7 8
2 2,2 4,0 4,0 4,0 4,0 4,0 4,0
3 0,4 3,3 5,1 5,1 5,1 5,1 5,1
4 0,4 1,5 4,4 6,2 6,2 6,2 6,2
5 0,4 1,5 2,6 5,5 7,3 7,3 7,3
6 0,4 1,5 2,6 3,7 6,6 8,4 8,4
7 0,4 1,5 2,6 3,7 4,8 7,7 9,5
8 0,4 1,5 2,6 3,7 4,8 5,9 8,8

In table 6.8 a small Traveler's Dilemma is given. For this game, average regret minimization �nds
strategy 4 and 5 to be optimal for player I. In the �rst iteration both of these strategies have the
same average regret of 12

7 which also turns out to be the minimum. The same happens in the second
iteration were both have an average regret of 3

2 . There seems to be some connection between the
average regret in the �rst and the second iteration since iteration does not remove any more strategies
in any situation. Looking closer at the game a pattern emerges, there is a relation between the sum
of the utilities of a strategy and the average regret. The di�erence between two strategies' collected
regret and their utility sum is the same. This can be seen in table 6.9 where the game is represented,
as well as the sum of utilities and the collected regret.

Table 6.9: TD(8,2) with the collected regret and sum of utilites.

TD(8,2) 2 3 4 5 6 7 8 Sum of utilities Collected regret
2 2,2 4,0 4,0 4,0 4,0 4,0 4,0 26 15
3 0,4 3,3 5,1 5,1 5,1 5,1 5,1 28 13
4 0,4 1,5 4,4 6,2 6,2 6,2 6,2 29 12
5 0,4 1,5 2,6 5,5 7,3 7,3 7,3 29 12
6 0,4 1,5 2,6 3,7 6,6 8,4 8,4 28 13
7 0,4 1,5 2,6 3,7 4,8 7,7 9,5 26 15
8 0,4 1,5 2,6 3,7 4,8 5,9 8,8 23 18

If this is true, then the result of average regret minimization can be found much easier than the algo-
rithm described in section 3. Two di�erent theorems are needed in order to prove that the correlation
is true. A more formal de�nition of these correlations is given in Theorem 6.2.2 and 6.2.1.

Theorem 6.2.1. usum(s1) = usum(s2) if and only if regretaverage(s1) = regretaverage(s2)

Theorem 6.2.2. Given a set of strategies [s1, ..., sn] with di�erent utilities, for these the following
holds:
usum(s1) < ... < usum(sn) if and only if regretaverage(s1) > ... > regretaverage(sn)

First 6.2.1 is proved. The theorem states, that if two strategies have the same utility sum, it implies
that they also have the same average regret, and that the same average regret implies they also have
the same utility sum. To prove this, a generic game is needed. For this game, player I has n strategies
which is named S = [s1, ..., sn]. For two strategies s1, s2 ∈ S we know usum(s1) =

∑m
i=1 u(n, i) and

regretaverage(si) =
∑m

i=1 u(nmax, i) − u(n, i) where nmax indicates an imaginary strategy where for
which holds u(nmax,m) = max(u(i,m)) where i ∈ [1, .., n]. The connection can then be proven as seen
bellow.
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Proof.
regretaverage(s1) = regretaverage(s2)⇔∑m

i=1 u(nmax, i)− u(s1, i) =
∑m

i=1 u(nmax, i)− u(s2, i)⇔∑m
i=1 u(nmax, i)−

∑m
i=1 u(s1, i) =

∑m
i=1 u(nmax, i)−

∑m
i=1 u(s2, i)⇔∑m

i=1 u(s1, i) =
∑m

i=1 u(s2, i)⇔
usum(s1) = usum(s2)

The proof for the other theorem is of the same nature as proof 6.2.1 and is therefore omitted. The
two theorems can then be used to explain why it does not make sense to iterate the average regret
minimization. This is because strategies of equal sum will have the same regret relating to any other
strategy. After the �rst iteration nmax changes and so does the regret, but since the utility sum is
unchanged, so is the relation between the two strategies' average regret. From the observations of
the relation between the average regret and the sum, the behavior in the di�erent games can be ex-
plained. An expression can be de�ned, which tells which strategies have the smallest average regret.
If usum(n) = max(usum(ni), ni = 2, ..., bidmax) then n has the minimal average regret. Since the
expression can have more than one solution n is necessarily unique. This expression can be applied to
any game in strategic form in order to �nd the strategies with minimal average regret. An algorithm
which uses this to �nd the minimal average regret will have the same time complexity O(nm), since it
still has to examine all outcomes.

Comparison between average regret and iterated regret minimization

In the next experiment the results will be compared to those of the basic regret minimization, with
single and multiple iterations. In the tables in section B.2 of the appendices, the results of the experi-
ment are described. In the tables the results of average regret minimization are given along with the
iterated version. Since the results of the iterated version are the same for all the games, these results
of the iterated version are not discussed any further. It is seen that for all the games, they have similar
results as to those of regret minimization.

Travelers's Dilemma: For this game, the results are more precise than the non-iterated version of
regret minimization, but they are a little less precise than the results of the iterated version. It can
be seen, that the results are closely tied to those of iterated regret minimization, it only has a single
strategy more in the result.

Exponential Centipede Game: Here the results are very similar. The results of the iterated version
are identical to those of the average version. Only a little di�erence is seen with the non-iterated ver-
sion, where it �nds two strategies, the average regret minimizations instead �nds the speci�c strategy
which iterated regret minimizations �nds.

Linear Centipede Game: This is the game for which the results contain the most di�erences from
those of the two regret minimization solution concepts. It can be seen, that the results are still very
similar to those of iterated regret minimization. In the all cases it is at least as precise as the iterated
regret minimization, and in the cases where it returns more than two strategies, average regret mini-
mization returns a more precise result consisting of only two strategies. The implications of this result
will be examined further in a later experiment where the expected utilities are examined.
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Bertrand Competition: For most games, the results are identical to those of the iterated regret
minimization. Only in the special case where p = 1 and the maximal bid is odd the results only match
that of the non-iterated version. This leads to a more precise result than the non-iterated version in
almost every Bertrand Competition.

Nash Bargaining Game: Here average minimization produce the same results as the non-iterated
version of regret minimization. The results of the iterated version are slightly more precise, because it
removes one more strategy.

Evaluation

In the following list the most important conclusions are mentioned. The conclusions are drawn from
the analysis and experiments of this section.

• From the analysis it can be seen, that due to a constant connection between the average regret
and the sum of the utilities of a strategy, it is possible to �nd the strategies with a minimal
average regret by using a simpli�ed algorithm. The new algorithm is easier to implement, but
keeps the same complexity as the algorithm described in chapter 5.

• Due to the connection between the strategies, with the minimal average regret, iterations do not
make sense for the average regret minimization solution concept. From this it can be concluded,
that average regret minimization does only need a single iteration to obtain a result which is
only a little less precise in some cases.

• Average regret minimization produces results very similar to those of iterated regret minimization.
Only in a few cases does it produce results which contain more strategies and thereby loses some
precision. The implication of the di�erences in the result will be analyzed in a later experiment.

6.2.2 Iterations of the algorithms

It was seen in the previous section, that average regret minimization only needs a single iteration to �nd
the optimal result. The experiments of this section are made in order to evaluate how many di�erences
there is in the iterations of the di�erent solution concepts. This is because regret minimization and
average regret minimization have the same time complexity.
By browsing through the results in appendix B.3, it can be seen, that iterated regret minimization
uses a maximum of 3 iterations for the games examined. From the algorithm, it is known that the
last iteration is used to check whether or not any more strategies can be removed. This means, that
only two iterations are used for removing strategies. This leads to the question: "If average regret
minimizations produce results of similar quality, then how much better is the computation?". To
answer this, it must �rst be examined whether or not a game exists where iterated regret minimization
iterates more than 3 times. A modi�ed version of the game in table 6.8 can be used to verify this. In
table 6.10 the modi�ed version of the game is seen. The modi�cation is marked in bold and italic font.
This little modi�cation causes the iterated regret minimization to have an additional iteration. The
modi�cation is simple to raise the utility by one. The maximal regret for each strategy is also seen
for each of the iterations in the table. For each of the utilities the strategies consist of an additional
iteration can be added. This leads to the maximal number of iterations being identical to the number
of strategies of either player who has the lowest number of strategies. It implies that iterated regret
minimization uses up to a linear number of iterations.
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Table 6.10: A modi�ed Traveler's Dilemma with a max bid of 8 and a penalty of 2.

TD(8,2) 2 3 4 5 6 7 8 i1 i2 i3
2 2,2 4,0 4,0 4,0 4,0 4,0 4,0 5
3 0,4 3,3 5,1 5,1 5,1 5,1 5,1 4
4 0,4 1,5 4,4 6,2 6,2 6,2 7,2 3 2 1
5 0,4 1,5 2,6 5,5 7,3 7,3 7,3 3 2 2
6 0,4 1,5 2,6 3,7 6,6 8,4 8,4 3 3
7 0,4 1,5 2,6 3,7 4,8 7,7 9,5 3 3
8 0,4 1,5 2,6 3,7 4,8 5,9 8,8 3 3

From the results of this experiment and the results of the �rst experiment, it can now be analyzed
how much computation time can be spared by using average regret minimization instead of iterated
regret minimization. The way the algorithm works, it implies that the fewer strategies it removes
each iteration, the more time it has to examine each of the remaining utilities. The following list
encompasses each of the games and the number of strategies examined.

Traveler's Dilemma: With this game it is seen, that regret minimization removes bidmax−2−2p in
the �rst iteration. In the next iteration, it removes all but one strategy. This results in the total
number of strategies examined being bidmax +2p. From this it is easy to see that the higher the
punishment the more strategies are examined more than once. Since average regret minimization
only examines each strategy once, there is an improvement of 2p. This is only true for games
where iterated regret minimization have 3 iterations.

Exponential centipede game: For this game there is very little improvement to be gotten from
switching to average regret minimization. This is because the iterated regret minimization in
most cases �nds the result in a single iteration. The few cases where it does take an additional
iteration, it is only to remove a single strategy. So the number of strategies that average regret
minimization examines less are only 1.

Linear centipede game: The number of strategies that iterated regret minimization examines de-
pends on the parameters of the game. The larger the punishment is the less strategies are
removed in the �rst iteration. From the �rst experiment we know that the strategies removed in
the �rst iteration can be either those who represent rounds lower than k− p or k− p+1 where k
is the number of rounds. In the case where p is an odd number, no more strategies are removed
in the next iteration. Average regret minimization does in this case remove more strategies. It
removes all but two strategies. The implications of the di�erent results are examined in a later
experiment. The other case is when p is even. In this case are all but one strategy is removed
in the second iteration. This leads to the total number of strategies examined k+p

2 + 1. The +1
strategy is from the last iteration where it veri�es that no more strategies can be removed.

Bertrand competition: The number of examined strategies depends on the maximal bid. If it is
odd, then all but one strategy is removed in a single iteration, which leads to the same number
of strategies examined by both iterated and average regret minimization. When the maximal
bid is even, then iterated regret minimization removes one strategy less in the �rst iteration. In
the second iteration it then removes a single iteration more. This leads to some situations where
average regret minimization will examine a single strategy less than iterated regret minimization.

Nash bargaining game: The di�erence between the two solution concepts is the same for the Nash
Bargaining Game as for Bertrand Completion. If the maximal sum is even, then average regret
minimization saves the examination of a single strategy. When the maximal sum is odd they
examine the same number of strategies.
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For all of the di�erent games, iterated regret minimization iterates at least one more time than average
regret minimization. This is because of the �nal iteration being performed in order to con�rm that no
more strategies can be removed. The number of strategies examined in this iteration is easily found
by simply looking at the number of strategies in the result. The only game where the result of iterated
regret minimization is not just a single strategy is in the linear centipede game. In the case where
the result is k−p

2 strategies, the last iteration examines the k−p
2 -strategies in the last iteration without

removing any. For all the other games, the last iteration only examines the single remaining strategy.

Evaluation

From this experiment and analysis it can be seen, that Average Regret Minimization uses less iterations
than Iterated Regret minimization, but for the games used in this thesis the di�erences are not that
great because iterated regret minimization only iterates a maximum of 3 times. It is seen that games
exist for which iterated regret minimization iterates more than 3 times, so for these games there are
more improvement to be found. In order to �nally conclude, that average regret minimization is at
least as good as iterated regret minimization, a comparison of the expected outcome of the di�erent
strategies they produce is required. This analysis is performed in a later experiment.

6.2.3 Impact of mixed strategies

Here it will be examined how many times a game must be executed in order to make the average
outcome of the games re�ect the expected outcome. This experiment is performed in order to see
how many times the games need to be repeated in the upcoming experiments. The game which is
used is the Traveler's Dilemma with a maximal bid of 100 and a punishment of 2. Player I uses
a completely uniform random strategy and player II always uses the highest possible strategy. The
number of times the game is repeated increases logarithmically in the form of [1, 10, 100, ..., 100000].
Each of these experiments are repeated and the maximum and minimum average utility is recorded.
They are repeated until no new minima or maxima is encountered in ten consecutive experiments. In
�gure 6.1 the maximal deviation can be seen when increasing the number of iterations the number of
iterations.

Figure 6.1: Deviation from the mean.
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From this experiment it can be concluded, that in order to get under a 0.5% deviation from the
expected outcome the average must be measured over 100000 iterations. This result can then be used
for the next experiments where the di�erent solution concepts are tested against either other or against
some random strategies.

6.2.4 Performance versus mixed strategies

Here each of the solution concepts play against a player which plays di�erent mixed strategies. This
experiment is conducted in order to have some empirical evidence for the expected utility of the dif-
ferent solution concepts when playing against a real life opponent. All the experiments have been
completed using the average over 100000 iterations. When the result of a solution concept contains
more than one strategy, a mixed strategy id played which uniformly randomizes between the strategies
suggested by the solution concept.

Before the experiment can be evaluated, an analysis of how to compare two di�erent outcomes is
needed. The problem itself is rather simple: "How to determine if one outcome is better than an-
other?". In order to compare outcomes some formalities are need. The two outcomes are called a
and b. Each of them consist of two utilities (ua1, ua2) and (ub1, ub2). The notation a > b de�nes
that outcome a is strictly better than outcome b. This is when both utilities are higher in one of the
outcomes than the other. All the games tested in this thesis are non-cooperative games. Therefore the
outcomes do not need to be strictly better, the only requirement is (ua1 > ub1) in order for a to be a
better outcome for player I.
Another way a player can think is to try and minimize the outcome of the opponent. In these cases
the player is indi�erent to his own outcomes. Instead of remodeling the algorithms the outcomes can
be changed. To simulate this behavior the utilities of player I can be set to the opposite of player II,
i.e. ua1′ = −ua2. This is the same as happens in zero-sum games.
A third way a player can think to optimize the sum of the utilities of the players. Simulating this
behavioris done med remodeling the utilities by ua1′ = ua1 + ua2.

The results of this experiment can now be evaluated. The results are seen in the appendices in section
B.5. The results can be divided into two subgroups, one where the solution concepts compete against
an opponent which plays mixed strategies. In the �rst the probability is uniformly distributed between
all pure strategies, and in the other the probabilities are higher for some of the strategies which have
a possibility of giving a better utility.

Uniform mixed strategy

When the di�erent solution concepts are played out against a completely uniform random opponent,
the results vary depending on the game. The results are seen in table B.14 of the appendices.

Traveler's Dilemma:
Looking at the result for the two Traveler's Dilemma it can be seen, that using one of the three regret
minimizing solution concepts provide a much better outcome for both players. The outcome of iterated
regret minimization is the best with a very small margin over average regret minimization. Looking
at the average utility of the opponent an unexpected behavior is observed. In the case where player I
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adopts a regret minimizing strategy the random player will get a better expected utility. From table
B.15 it can be seen, that it is still better to use one of the solution concepts when the opponent plays
the mixed strategy. So when playing Traveler's Dilemma against a uniform random opponent the best
solution concept is either iterated regret minimization or average regret minimization. When taking
the algorithm into consideration average regret minimization is the better choice due to the fewer
iterations used.

Exponential centipede game:
The results for the exponential centipede game are not very interesting. For these games the proposed
strategy from each of the solution concepts are very similar, which is also expressed by the average
utilities. This is because of the strategies being identical or very similar for each of the solution
concepts. Because of this, the recommended solution concept is not based on the result, but on the
algorithm. regret minimization and average regret minimization share the same number of iterations
and are therefore recommended for this game.

Linear centipede game:
The linear centipede game provides some more interesting results. For games with even penalty, the
result is the same for all the regret minimizing solution concepts, and playing random uniform yields a
worse average utility. When encountering games with an odd penalty it is better to use average regret
minimization. This is because of the di�erence in the strategies proposed by the two solution concepts.
The higher the penalty, the higher the di�erence, therefore for a high penalty the best solution concept
is average regret minimization. It improves the average utility by 12.5% but the utility of the opponent
decreases with 59.1%. But the average utility is still a better solution as long as it increases for player I.

Bertrand Competition:
The results of the Bertrand Competition lean towards iterated regret minimization and average regret
minimization. These solution concepts produce the same strategies and therefore also very similar ex-
pected utilities. Using regret minimization has a lower expected utility, but is very small. Playing one
of the solution concepts in all cases provides a better expected utility than playing random. Because
average regret minimization uses less iterations it is preferred from iterated regret minimization.

Nash Bargaining Game:
The results of Nash Bargaining Game are very trivial. All the solution concepts produce equally good
average utilities. And therefore regret minimization or average regret minimization are the suggested
solution concepts. Using a random strategy only provides worse utility and is therefore not recom-
mended.

Non-Uniform Mixed strategy:

Now the opponent is no longer playing a uniform random mixed strategy. Instead it adopts a mixed
strategy where strategies which can give a higher utility have a higher probability. Each of the follow-
ing paragraphs describes the random strategy for a type of game and the results of the experiments.
The results are seen in the same sections as for random uniform.
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Traveler's Dilemma:
For the Traveler's Dilemma, the utilities increase the higher you bid, it is therefore natural to adopt a
strategy where higher bids have higher probability. To simulate this behavior the cymbal algorithm is
utilized. The parameter is the number of strategies of the opposing players. Changing to the weighted
random strategy increases the average utility in all cases. The magnitude of the increase depends on
the parameters of the game and what solution concepts are used. The average utility is higher for
both players. The average utility is still highest for the opponent in all cases. For TD(100, 2) the
increase in the utility is the same for all solution concepts and players. When increasing the penalty
the expected increase in utilities changes. For TD(100, 20) the increase is much bigger for player I
than the opponent. Player II only has the largest increase in the expected utility when player I plays
regret minimization. When player I plays iterated regret minimization or average regret minimization
he only increases his average utility by 1.5.

The centipede games:
The centipede game employs a di�erent random strategy. It is the random strategy where there is a
probability p for stopping each round. A single game is selected for each type of centipede game. For
both types of games the result is indi�erent to the choice of solution concept. It is seen, that for low p
player II gets a better average utility than players I. This is because player I always plays a strategy
where he stops later. When p is low the opponent has a high probability of stopping earlier than player
I resulting in a better outcome. The outcome is better for both players when the opponent has a high
probability p for continuing. This is because of the game mechanic, which ensures that the utilities
are increasing along with the number of rounds.

The Bertrand Competition:
The Bertrand Competition uses the cymbal algorithm as well, where the parameter is bidmax

2 . When
the opponent uses this strategy none of the expected utilities of player I are a�ected. The only change
is that the opponent has a large increase in his expected utilities. This is because it still has the same
probability for player II to bid higher and lower than player I, therefore his expected outcome is not
a�ected. When player II bids less then player one, there is a higher possibility that he bids close to
Player I which yields a better outcome.

The Nash Bargaining Game:
The Nash Bargaining Game uses the same random strategy as the Bertrand Competition with param-
eter summax

2 . This has the same e�ect as for the Bertrand Competition. Player I's expected utilities
remain una�ected while the opponent increases his outcomes. The reason for this is the same behavior
for the Bertrand Competition.

Evaluation

It can be seen, that in all cases average regret minimization has at least as good expected utility as
iterated regret minimization. When playing against a mixed strategy it is in no case better to play
mixed yourself. In all cases this yields a worse average outcome and can therefore not be recommended.
This experiment also proves, that when playing the games used throughout this thesis against a random
opponent, average regret minimization is the preferred solution concept because it has at least as good
an outcome as iterated regret minimization and uses less iterations to solve the games.
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6.2.5 Solution concepts versus solution concepts

Here the performance of each of the solution concepts is measured when they are playing against other
solution concepts in the di�erent games. The reason for this experiment is to evaluate the performance
of each of the solution concepts against the other solution concepts. Comparing the result of each of
the games it is seen, that average regret minimization's average utility is in most cases at least as
good as the others. The few situations where the average utilities of average regret minimization are
worse than the opponents is mostly when competing against NE. Here the player which plays NE
gets a better utility in all other games than the Nash Bargaining Game. This is because the Nash
Equilibria for these games selects a strategy where one of the lowest bids are selected or to stop in the
�rst rounds. The other strategies tend to select higher bid or to stop later. It is therefore natural that
bidding low would yield a higher average utility than the opponent. If the player tries to minimize the
outcome of the other player this strategy is the right choice, but if the player tries to optimize his own
utility, then it is better to select another solution concept. The reason why NE does not have a higher
outcome than the opponent in the Nash Bargaining Game, is because the Nash Equilibrium selects
any possible strategy. This results in a uniformly distributed random strategy which in the cases yield
a utility of 0. In the case where he bids less, the outcomes are uniformly distributed between all the
di�erent possibilities, where the other player always gets the maximum of these.
A game for which average regret minimization does not perform as well as the other solution con-
cepts is the Nash Bargaining Game. Here it actually has a worse expected utility than iterated regret
minimization. This is because the solution concepts �nd two di�erent strategies which are optimal
and iterated regret minimization only �nds one. For summax = 100 the two strategies are 50 and 51.
iterated regret minimization only has 50 as the strategy. Half the time average regret minimization
will choose 51 which results in an utility of 0 for both players. This is also seen in the results, where
the average utility is half of the utility of iterated regret minimization. Regret minimization produces
the same strategies as average regret minimization and therefore has the same average utilities.

It can then be seen, when playing against the other solution concepts, that for all games, except Nash
Bargaining, average regret minimization is recommended. For the Nash Bargaining game it is instead
iterated regret minimization.
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Chapter 7

Conclusion

Throughout this thesis many subjects have been touched. First the more general areas of game theory
have been described in order to establish a foundation for the experiments, the games and solution
concepts used. On that background, the games and solution concepts were described and algorithms
were created for each of the solution concepts. The algorithms were then implemented along with the
games in a testing tool which was used for all the experiments.
Two di�erent goals were set for the experiments: To verify the results from [2] by producing empirical
and theoretical results, and to determine the relation between iterated regret minimization as de�ned
by Halpern and Pass in [2] and average regret minimization by V. Goranko. The results of the veri-
�cation was that all games in general followed the results of [2]. However, most of the games had a
slight variation with some of the results. A summary of the variations can be seen in the list bellow.
Moreover a formal argument was given for the behavior of each of the solution concepts of the di�erent
games.

Traveler's Dilemma: The limit of the penalty when the outcome pattern changes. This is the
suggested strategy for games with a high penalty.

Exponential Centipede Game: In the case of p = 1, the single iteration version of the regret
minimization had a deviation from the results in the article.

Linear Centipede Game: The only deviation from the article was that the result of the solution
concepts was not tied to both the parameters.

Bertrand Competition: The only di�erence from the analysis to the article was the result of the
Nash Equilibrium.

Nash Bargaining Game: For this game no deviations was observed.

For average regret minimization a range of experiments was performed in order to clarify, if average
regret minimization could be a better solution concept compared to iterated regret minimization. The
di�erent experiments are given in the list below.

• Relation between iterated and non-iterated average regret minimization.
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• Relation between average regret minimization and the original regret minimization solution con-
cept.

• Compared iterations and results of average regret minimization and the original regret minimiza-
tion solution concept.

• Compared expected utility of the di�erent solution concepts against di�erent mixed strategies.

• Compared expected utility of the di�erent solution concepts against each other.

From these experiments it can then be concluded, that it does not make sense to iterate over average
regret minimization, since it produces the same results as the non-iterated version in all cases.
Within the experiments were a better algorithm for average regret minimization created. It had the
same time complexity but were much simpler than the one described in chapter 3.
For all the games used throughout this thesis average regret minimization produces results very sim-
ilar or better than those of iterated regret minimization. So it can be concluded, that average regret
minimization is an optimization of iterated regret minimization, because regretminimization and av-
erage regret minimization have the same time complexity. However, for the games in this thesis the
advantages of average regret minimization were very small, because in these games iterated regret
minimization is used at most in 3 iterations. A game was presented were more iterations were used by
iterated regret minimization, and it was proven that games exists where several iterations are used.

The goals stated in section 4 were all ful�lled.
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Appendix A

Abbreviations

Table A.1: Abbreviations of the algorithms

Solution concept Abbreviation

Nash equilibrium NE
Regret Minimazation RM

Iterated Regret Minimazation IRM
Average Regret Minimazation ARM

Iterated Average IARM

Table A.2: Abbreviations of the games

Solution concept Abbreviation Parameters

Traveler's Dilemma TD(mv, p) mv = Max Value, p = Punishment
Exponential Centipede Game ECG(r,p) r = Rounds, p = Punishment

Linear Centipede Game LCG(r,p) r = Rounds, p = Punishment
Bertrand Competition BC(mb,i) mb = Maximal Bid, i = number of Items

Nash Bargaining NB(mv) mv = Maximal Value
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Appendix B

Test results

B.1 Test - Reproduction of results

B.1.1 Results from article

Table B.1: The results from [2] of the games.

Game NE RM IRM

TD(100, p < 50) 2 [100-2p,100] 100-2p+1
TD(100, p ≥ 50) 2 −||− −||−

ECG(k, p) 1 k −||−
LCP(k,p), k and p even 1 [k-p+1,k-p+3,. . . ,k-1] k-p+1
LCP(k,p), k and p odd 1 [k-p+1,k-p+3,. . . ,k-1] −||−

BC(200,100) [0,1] [100,101] 100
NB(100) [0,...,100] [50,51] 50
NB(99) [0,...,99] 50 −||−
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B.1.2 Traveler's Dilemma

Table B.2: TD test results
Game NE RM IRM

TD(100,2) 2 [96,...,100] 97
TD(101,2) 2 [97,...,101] 98
TD(50,2) 2 [46,...,50] 47
TD(51,2) 2 [47,...,51] 48
TD(150,2) 2 [146,...,150] 147
TD(151,2) 2 [147,...,151] 148
TD(101,3) 2 [95,...,101] 96
TD(100,1) [2,...,100] [98,...,100] [98,...,100]
TD(100,3) 2 [94,...,100] 95
TD(100,4) 2 [92,...,100] 93
TD(100,5) 2 [90,...,100] 91
TD(100,20) 2 [60,...,100] 61
TD(100,30) 2 [40,...,100] 41
TD(100,48) 2 [4,...,100] 5
TD(100,49) 2 3 3
TD(100,50) 2 3 3
TD(100,51) 2 3 3
TD(100,96) 2 3 3
TD(100,97) 2 [2,3] 2
TD(100,98) 2 2 2
TD(100,100) 2 2 2
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B.1.3 Exponential centipede game

Table B.3: ECG test results
Game NE RM IRM

ECG(10,1) 1 9 9
ECG(15,1) 1 [13,...,15] 13
ECG(20,1) 1 19 19
ECG(25,1) 1 [23,...,25] 23
ECG(30,1) 1 29 29
ECG(30,2) 1 29 29
ECG(25,2) 1 23 23
ECG(30,3) 1 29 29
ECG(25,3) 1 23 23
ECG(30,6) 1 29 29
ECG(25,6) 1 23 23
ECG(30,7) 1 29 29
ECG(25,7) 1 23 23
ECG(30,30) 1 29 29
ECG(25,30) 1 23 23
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B.1.4 Linear centipede game

Table B.4: LCG test results
Game NE RM IRM

LCG(10,2) 1 9 9
LCG(11,2) 1 [9,11] 9
LCG(20,2) 1 19 19
LCG(21,2) 1 [19,21] 19
LCG(30,2) 1 29 29
LCG(31,2) 1 [29,31] 29
LCG(10,3) 1 [7,9] [7,9]
LCG(11,3) 1 [7,...,11] [7,...,11]
LCG(20,3) 1 [17,19] [17,19]
LCG(21,3) 1 [17,...,21] [17,...,21]
LCG(30,3) 1 [27,29] [27,29]
LCG(31,3) 1 [27,...,31] [27,...,31]
LCG(30,10) 1 [21,...,29] 21
LCG(30,20) 1 [11,...,29] 11
LCG(30,25) 1 [5,...,29] [5,...,29]
LCG(30,26) 1 [5,...,29] 5
LCG(30,27) 1 [3,...,29] [3,...,29]
LCG(30,28) 1 [3,...,29] 3
LCG(30,29) 1 [1,...,29] [1,...,29]
LCG(30,30) 1 1 1
LCG(30,31) 1 1 1
LCG(30,100) 1 1 1
LCG(30,101) 1 1 1
LCG(31,20) 1 [11,...,31] 11
LCG(31,25) 1 [5,...,31] [5,...,31]
LCG(31,26) 1 [5,...,31] 5
LCG(31,27) 1 [3,...,31] [3,...,31]
LCG(31,28) 1 [3,...,31] 3
LCG(31,29) 1 [1,...,31] [1,...,31]
LCG(31,30) 1 1 1
LCG(31,31) 1 1 1
LCG(31,100) 1 1 1
LCG(31,101) 1 1 1
LCG(30,1) [1,...,29] 29 29
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B.1.5 Bertrand competition

Table B.5: BC test results
Bertrand competition NE RM IRM

BC(200,100) [0,...,2] [100,101] 100
BC(100,100) [0,...,2] [50,51] 50
BC(300,100) [0,...,2] [150,151] 150
BC(199,100) [0,...,2] 100 100
BC(201,100) [0,...,2] 101 101
BC(200,75) [0,...,2] [100,101] 100
BC(200,50) [0,...,2] [100,101] 100
BC(200,2) [0,...,2] [100,101] 100
BC(199,75) [0,...,2] 100 100
BC(201,75) [0,...,2] 101 101
BC(200,1) [0,...,2] 100 100
BC(201,1) [0,...,2] [100,101] 100

B.1.6 Nash Bargaining Game

Table B.6: NB test results
Nash Bargaining NE RM IRM

NB(50) [0,...,50] [25,26] 25
NB(100) [0,...,100] [50,51] 50
NB(99) [0,...,99] 50 50
NB(101) [0,...,101] 51 51
NB(200) [0,...,200] [100,101] 100
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B.2 Test - Average regret minimization

B.2.1 Traveler's Dilemma

Table B.7: TD test results for ARM and IARM
Game ARM IARM

TD(100,2) [96,97] −||−
TD(101,2) [97,98] −||−
TD(150,2) [146,147] −||−
TD(101,3) [95,96] −||−
TD(100,1) [98,99] −||−
TD(100,3) [94,95] −||−
TD(100,4) [92,93] −||−
TD(100,5) [90,91] −||−
TD(100,20) [60,61] −||−
TD(100,30) [40,41] −||−
TD(100,48) [4,5] −||−
TD(100,49) 2,3 −||−
TD(100,50) 2 −||−
TD(100,51) 2 −||−
TD(100,96) 2 −||−
TD(100,97) 2 −||−
TD(100,98) 2 −||−
TD(100,100) 2 −||−
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B.2.2 Exponential centipede game

Table B.8: ECG test results for ARM and IARM
Game ARM IARM

ECG(10,1) 9 −||−
ECG(15,1) 13 −||−
ECG(20,1) 19 −||−
ECG(25,1) 23 −||−
ECG(30,1) 29 −||−
ECG(30,2) 29 −||−
ECG(25,2) 23 −||−
ECG(30,3) 29 −||−
ECG(25,3) 23 −||−
ECG(30,6) 29 −||−
ECG(25,6) 23 −||−
ECG(30,7) 29 −||−
ECG(25,7) 23 −||−
ECG(30,30) 29 −||−
ECG(25,30) 23 −||−
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B.2.3 Linear centipede game

Table B.9: LCG test results
Game ARM IARM

LCG(10,2) 9 −||−
LCG(11,2) 9 −||−
LCG(20,2) 19 −||−
LCG(21,2) 19 −||−
LCG(30,2) 29 −||−
LCG(31,2) 29 −||−
LCG(10,3) [7,9] −||−
LCG(11,3) [7,9] −||−
LCG(20,3) [17,19] −||−
LCG(21,3) [17,19] −||−
LCG(30,3) [27,29] −||−
LCG(31,3) [27,29] −||−
LCG(30,10) 21 −||−
LCG(30,20) 11 −||−
LCG(30,25) [5,7] −||−
LCG(30,26) 5 −||−
LCG(30,27) [3,5] −||−
LCG(30,28) 3 −||−
LCG(30,29) [1,3] −||−
LCG(30,30) 1 −||−
LCG(30,31) 1 −||−
LCG(30,100) 1 −||−
LCG(30,101) 1 −||−
LCG(31,28) 3 −||−
LCG(31,29) [1,3] −||−
LCG(31,30) 1 −||−
LCG(31,31) 1 −||−
LCG(31,100) 1 −||−
LCG(31,101) 1 −||−
LCG(30,1) 29 −||−
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B.2.4 Bertrand competition

Table B.10: BC test results for ARM and IARM
Bertrand competition ARM IARM

BC(200,100) 100 −||−
BC(100,100) 50 −||−
BC(300,100) 150 −||−
BC(199,100) 100 −||−
BC(201,100) 101 −||−
BC(200,75) 100 −||−
BC(200,50) 100 −||−
BC(200,2) 100 −||−
BC(199,75) 100 −||−
BC(201,75) 101 −||−
BC(200,1) 100 −||−
BC(201,1) [100,101] −||−

B.2.5 Nash Bargaining Game

Table B.11: NB test results for ARM and IARM
Nash Bargaining ARM IARM

NB(50) [25,26] −||−
NB(100) [50,51] −||−
NB(101) 51 −||−
NB(200) [100,101] −||−
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B.3 Test - Iterations of the algorithms

Table B.12: The results and iterations used by IRM and corresponding results for ARM

Game Iterations IRM ARM

TD(100,2) 3 97 [96,97]
TD(100,20) 3 61 [60,61]
TD(100,49) 2 3 2
ECG(25,1) 3 23 23
ECG(30,1) 2 29 29
ECG(30,6) 2 29 29
ECG(25,6) 2 23 23
LCG(20,2) 2 19 19
LCG(21,2) 3 19 19
LCG(30,20) 3 11 11
LCG(30,25) 2 [5,...,29] [5,7]
BC(200,100) 3 100 100
BC(199,100) 2 100 100
NB(100) 3 50 [50,51]
NB(101) 2 51 51
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B.4 Test - Randomness impact

Table B.13: The deviasion from the expected collected utility when increasing the number of iterations

1 10 100 1000 10000 100000

Minimum average utility 4 33.0 47.95 50.79 52.53 52.77
Maximum average utility 101 73.9 56.97 54.81 53.42 53.19
Expected average utility 52.98 52.98 52.98 52.98 52.98 52.98
Maximum deviasion 100% 39.49% 9.49% 4.13% 0.85% 0.40%

Figure B.1: Deviation from the mean.
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B.5 Test - Versus random opponent

Table B.14: The average outcome when playing against an uniformly random opponent.

Game NE RM IRM ARM

TD(100,2) 3.98, 0.02 48.84, 52.64 49.13, 52.85 49.08, 52.76
TD(100,20) 21.80,−17.80 36.54, 59.84 39.14, 47.09 38.98, 46.74
ECG(15,1) 5.00, 2.00 3101.87, 4460.26 3110.54, 2726.98 3130.25, 2728.10
ECG(25,1) 5.00, 2.00 18.56 · 105, 26.53 · 105 18.65 · 105, 16.25 · 105 18.68 · 105, 16.28 · 105
ECG(30,1) 5.00, 2.00 95.22 · 106, 83.24 · 106 94.88 · 106, 82.46 · 106 95.43 · 106, 83.31 · 106
ECG(30,6) 5.00, 0.00 73.23 · 106, 48.57 · 106 72.24 · 106, 48.83 · 106 72.44 · 106, 48.84 · 106
ECG(25,6) 5.00, 0.00 13.96 · 105, 95.10 · 104 14.03 · 105, 95.19 · 104 14.03 · 105, 94.72 · 104
LCG(20,2) 4.00, 2.00 12.09, 13.70 12.08, 13.68 12.09, 13.69
LCG(21,2) 4.00, 2.00 12.03, 13.83 12.10, 13.70 12.11, 13.71
LCG(31,10) 12.00, 2.00 18.00, 24.70 18.68, 21.99 18.62, 21.98
LCG(30,20) 22.00, 2.00 21.80, 27.11 23.70, 16.98 23.62, 17.03
LCG(30,25) 27.00, 2.00 24.48, 26.13 24.37, 26.20 27.42, 10.71
BC(200,100) 99.72, 41.65 4978.97, 2518.41 4990.70, 2482.28 4994.65, 2482.97
NB(100) 16.74, 17.22 25.32, 12.37 25.23, 12.60 25.29, 12.42

Table B.15: The average outcome when playing two uniform random players againg each other.

Game Random uniform vs Random Uniform

TD(100,2) 34.39, 34.39
TD(100,20) 34.41, 34.34
ECG(25,1) 38.52 · 104, 48.72 · 104
ECG(30,1) 10.62 · 106, 8.49 · 106
ECG(30,6) 82.59 · 105, 44.39 · 105
ECG(25,6) 19.74 · 104, 39.64 · 104
LCG(20,2) 9.24, 9.04
LCG(21,2) 9.49, 9.49
LCG(30,20) 22.12, 20.81
LCG(30,25) 24.75, 23.22
BC(200,100) 3336.95, 3305.92
NB(100) 16.81, 16.83
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Table B.16: The average outcome when playing against an random opponent which tends to play high
bids.

Game NE RM IRM ARM

TD(100,2) 4.00, 0.00 65.31, 68.91 65.41, 68.86 65.52, 68.90
TD(100,20) 22.00,−18.00 56.69, 67.94 59.16, 48.30 59.09, 47.74

Table B.17: The average outcome when playing against an random opponent who tends to play
strategies in the middle.

Game NE RM IRM ARM

BC(200,100) 99.98, 0.019 4953.04, 3383.75 5015.56, 3311.31 4993.35, 3322.82
NB(100) 14.63, 21.28 25.33, 16.55 25.45, 17.01 25.06, 16.40

B.6 Test - Strategies versus strategies

The average outcome when playing the di�erent solution concepts against each other.
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Table B.18: The average outcome of ECG(15,1) with di�erent chances p to continue.

Game NE RM IRM ARM

p = 0.99 5.0, 2.0 15473.07, 19326.48 15487.42, 7823.98 15468.73, 7814.143
p = 0.75 5.0, 2.0 3261.49, 4360.39 3304.89, 2202.40 3288.75, 2198.84
p = 0.50 5.0, 2.0 368.51, 550.78 384.61, 378.64 380.75, 377.79
p = 0.25 5.0, 2.0 22.43, 43.15 20.15, 37.62 21.58, 39.00
p = 0.10 5.0, 2.0 5.93, 12.86 6.09, 13.18 6.04, 13.08

Table B.19: The average outcome of LCG(31,10) with di�erent chances p to continue.

Game NE RM IRM ARM

p = 0.99 12.0, 2.0 32.71, 27.93 30.04, 21.99 30.09, 21.99
p = 0.75 12.0, 2.0 9.06, 18.49 9.17, 18.05 9.19, 18.06
p = 0.50 12.0, 2.0 5.01, 15.01 5.01, 14.99 5.00, 14.98
p = 0.25 12.0, 2.0 3.67, 13.67 3.66, 13.66 3.67, 13.67
p = 0.10 12.0, 2.0 3.22, 13.22 3.22, 13.22 3.22, 13.22

Table B.20: TD(100,2)

TD(100,20) NE RM IRM ARM

NE 2, 2 22.00,−18.00 22.00,−18.00 22.00,−18.00
RM −18.00, 22.00 73.21, 73.10 42.46, 79.49 41.46, 79.52
IRM −18.00, 22.00 79.49, 42.46 61.00, 61.00 50.52, 70.48
ARM −18.00, 22.00 79.54, 41.43 70.50, 50.50 60.30, 60.20

Table B.21: ECG(25,1)

ECG(25,1) NE RM IRM ARM

NE 5.0, 2.0 5.0, 2.0 5.0, 2.0 5.0, 2.0
RM 4.0, 9.0 16.78 · 106, 20.98 · 106 16.78 · 106, 20.99 · 106 16.78 · 106, 20.98 · 106
IRM 4.0, 9.0 16.78 · 106, 83.89 · 105 16.78 · 106, 83.89 · 105 16.78 · 106, 83.89 · 105
ARM 4.0, 9.0 16.78 · 106, 83.89 · 105 16.78 · 106, 83.89 · 105 16.78 · 106, 83.89 · 105

Table B.22: ECG(30,1)

ECG(30,1) NE RM IRM ARM

NE 5.0, 2.0 5.0, 2.0 5.0, 2.0 5.0, 2.0
RM 4.0, 9.0 66.97 · 107, 53.69 · 107 26.84 · 107, 53.69 · 107 26.84 · 107, 53.69 · 107
IRM 4.0, 9.0 67.22 · 107, 53.69 · 107 26.84 · 107, 53.69 · 107 26.84 · 107, 53.69 · 107
ARM 4.0, 9.0 67.15 · 107, 53.69 · 107 26.84 · 107, 53.69 · 107 26.84 · 107, 53.69 · 107

Table B.23: LCG(21,2)

LCG(21,2) NE RM IRM ARM

NE 4.0, 2.0 4.0, 2.0 4.0, 2.0 4.0, 2.0
RM 3.0, 5.0 21.50, 21.50 21.50, 21.50 21.50, 21.50
IRM 3.0, 5.0 22.0, 20.0 22.0, 20.0 22.0, 20.0
ARM 3.0, 5.0 22.0, 20.0 22.0, 20.0 22.0, 20.0
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Table B.24: LCG(30,20)

LCG(30,20) NE RM IRM ARM

NE 22.0, 2.0 22.0, 2.0 22.0, 2.0 22.0, 2.0
RM 3.0, 23.0 27.50, 27.50 11.0, 31.0 11.0, 31.0
IRM 3.0, 23.0 30.07, 13.75 11.0, 31.0 11.0, 31.0
ARM 3.0, 23.0 30.09, 13.72 11.0, 31.0 11.0, 31.0

Table B.25: LCG(30,25)

LCG(30,25) NE RM IRM ARM

NE 27.0, 2.0 27.0, 2.0 27.0, 2.0 27.0, 2.0
RM 3.0, 28.0 25.96, 26.11 26.00, 26.00 6.90, 30.04
IRM 3.0, 28.0 25.92, 26.04 26.07, 26.00 6.93, 30.00
ARM 3.0, 28.0 29.13, 9.51 29.14, 9.51 12.00, 24.50

Table B.26: BC(200,100)

BC(200,100) NE RM IRM ARM

NE 27.92, 27.63 100.1, 0.0 100.08, 0.0 100.116, 0.0
RM 0.0, 99.94 5025.05, 4996.19 2503.64, 7486.58 2503.99, 7486.22
IRM 0.0, 100.11 7489.21, 2500.99 4994.15, 4994.15 4994.15, 4994.15
ARM 0.0, 99.77 7497.34, 2492.86 4994.15, 4994.15 4994.15, 4994.15

Table B.27: NB(100)

NB(100) NE RM IRM ARM

NE 16.85, 16.91 12.34, 25.62 12.36, 25.41 12.23, 25.47
RM 25.48, 12.24 12.52, 12.52 24.97, 24.97 12.46, 12.46
IRM 25.60, 12.53 25.05, 25.05 50.0, 50.0 24.95, 24.95
ARM 25.56, 12.25 12.59, 12.59 24.95, 24.95 12.55, 12.55
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Appendix C

File format sample �le

1 2
2 U
3 2 2
4 S C
5 S C
6 4,4 1,5
7 5,1 2,2
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