
Graph-Theoretical Classification of
the Complexities of Planning

Domains

Søren Bøg
052259

Kongens Lyngby 2012
IMM-MSC-2012-01

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

Automated planning is one of the cornerstones of modern Artificial Intelligence
(AI). As with many of the fields within AI, automated planning is something
we do naturally as humans yet is extremely hard to do computationally, this
seems paradoxical. Therefore there is much interest in determining under what
conditions automated planning is easy. This thesis examines the use of the
state graph of planning problems to define conditions on automated planning.
As a part of this two new cases are presented where planning is easier than full
automated planning and in one of the cases actually tractable.

iv

Resumé

Automatiseret planlægning er en af de fundamentale omr̊ader inden for moderne
kunstig intelligens. Som s̊a mange andre omr̊ader indenfor kunstig intelligens er
automatiseret planlægning b̊ade noget vi, som mennesker, gør meget naturligt
og samtidigt utroligt svært beregningsmæssigt. Der er derfor stor interesse for
at afgøre under hvilke forhold automatiseret planlægning bliver nemt. Denne
rapport klarlægger brugen af et planlægningsproblems tilstandsgraf som basis
for at begrænse automatiseret planlægning. Som en del af dette introduceres
to nye tilfælde, hvor automatiseret planlægning er nemmere end i det generelle
tilfælde. I et af disse tilfælde er automatiseret planlægning endda h̊andterbart.

vi

Preface

This thesis is a part of a masters project completed at the institute for Infor-
matics and Mathematical Modelling, at the Technical University of Denmark,
in accordance with the requirements of obtaining a masters degree in Computer
Science and Engineering. This thesis documents the theoretical work done dur-
ing the project and presents it within the context of other results in the field.

The following theorems, lemmata and corollaries, along with their associated
proofs, have been developed as part of this project: 2.21 2.22 4.8 4.9 5.3 5.4 5.6
5.7 5.8 5.9 5.11 5.14 5.15 5.16 5.17 5.18 .

The following theorems, lemmata and corollaries are known from other litera-
ture, however, the presented proofs have been developed as part of this project:
2.19 2.20 .

Any other theorems, lemmata and/or corollaries, along with any associated
proofs, are from a cited source or constitute a portion of the automated planning
“folklore”.

Kongens Lyngby, January 2012

Søren Bøg

viii

Acknowledgements

Thanks must first and foremost go to my supervisor Thomas Bolander, without
whom my interest in Automated Planning, Artificial Intelligence or even general
Algorithmics might never have been sparked. His great guidance and patience
are a virtue which I have without doubt tested during this project, particularly
when things where not looking good.

Next I must thank my proof-reading and fact-checking team, in no particular or-
der; Martin Holm Jensen, Morten Stöckel, Rasmus Ljungmann Pedersen, Mette
Terp Petersen and Michael Faursby Ahlers. Without whom this thesis would
without doubt contain many more errors and omissions.

I would also like to extend my thanks to, once again; Martin Holm Jensen,
Morten Stöckel and Rasmus Ljungmann Pedersen, for many years of fantastic
study and sparring.

Finally thanks go to the entire team of the DTUsat 2 project, which is way too
big to list here. Without these guys I would have been bored out of my mind
many years ago.

x

Contents

1 Introduction 1

1.1 Background . 2

1.2 Motivation . 2

1.3 Structure of the Report . 3

2 The Complexity of Planning 5

2.1 STRIPS Formalism . 5

2.2 SAS+ Formalism . 10

2.3 Plans . 13

2.4 Computational Problems . 14

3 Syntactic Restrictions 17

3.1 STRIPS Restrictions . 19

3.2 SAS+ Restrictions . 25

xii CONTENTS

3.3 Results on Syntactic Restrictions 28

4 The Causal Graph 31

4.1 Chain Causal Graphs . 32

4.2 Polytree Causal Graphs . 33

4.3 Cheating the Causal Graph . 34

5 The State Graph 37

5.1 Basic Restrictions . 38

5.2 Initial Restrictions . 41

5.3 Ordering Restrictions . 42

5.4 Cheating the State Graph . 44

6 Discussion 47

6.1 Further Work . 49

7 Conclusion 51

Chapter 1

Introduction

Life is what happens to you while you’re busy mak-
ing other plans

- John Lennon

Automated planning is one of the cornerstones of modern Artificial Intelligence
(AI). It enables agents to know how they may affect their environment, in a
rational manner, such that they may achieve some given goal. As with many
central problems in AI, automated planning is extremely hard from a computa-
tional point of view. Even extremely restricted domains are intractable in the
general case. Traditionally domains for automated planning have been restricted
syntactically by limiting the number and/or type of conditions and effects.

These restrictions suffer from two issues; firstly they are easily cheated by do-
mains which do not, at first sight, fulfil the restriction but may be rewritten
such that they do. Also these restrictions are often too strict, such that even
practically “trivial” problems fall outside the restrictions and into more general
categories. This project therefore examines an alternate classification scheme
based upon properties of the state graph instead. This approach is briefly men-
tioned by Bäckström and Jonsson (2011), however, they choose to continue
working within the classical classification scheme. By basing the classification
upon properties of the graph it is expected that the classification will be more
robust against simple changes than pure syntactic classification.

2 Introduction

1.1 Background

Automated planning, as mentioned earlier, is considered one of the cornerstones
of modern AI. To fully appreciate the task of automated planning we should
first understand its relation to AI. As a first approximation one might consider
AI as the scientific pursuit of thinking machines, or agents as they are often
called. However, merely thinking is not enough, it is also necessary to be able
to express these thoughts. Therefore AI is often thought of as the pursuit of
rationally acting agents, as expressed by Russell and Norvig (2003). However,
there is more than one way for an agent to act rationally, and agents are often
classified by the way in which they act or react to the environment. The class
of agents we are interested in here is the class of proactive autonomous agents.
A proactive agent is an agent which does not merely wait for some change in
the environment, but actively seeks to manipulate the environment in order to
achieve some desired goal. An autonomous agent is capable of acting by itself
independent of any external controller, in this sense it is merely set in motion
and then carries out its task on its own. Automated planning is a way to realise
such agents by providing the proactive acting required, and by containing this
system within the agent itself an autonomous agent is achieved.

Automated planning provides the means for agents to be proactive. This is
accomplished by letting the agent perceive the surrounding environment, equip-
ping the agent with a set of actions with which it can change the environment,
and finally a goal which the agent attempts to achieve. Automated planning
then attempts to plan which actions should be used upon the environment and
in which order, so that the environment lives up to the goal of the agent.

1.2 Motivation

As with many other problems in the scope of AI, automated planning is a
hard problem. In fact it is so hard that, theoretically, in many cases it is not
possible to determine in any finite time whether a plan is possible. Despite this
many planning problems are, in practice, easily solved. Attempts to explain
this discrepancy have typically involved analysing different restrictions in the
hopes of proving that certain subsets of automated planning are simpler than
others and, most importantly, simpler than automated planning in general. Such
results have actually been achieved, primarily by Bylander (1994) and Erol et al.
(1995). However, as exposed in Bäckström and Jonsson (2011) these results
are often considered lacklustre as the restrictions necessary to show the desired
result are too restrictive to allow any practically interesting problems. In light of

1.3 Structure of the Report 3

this Bäckström and Jonsson (2011) decided to examine notions such as padded
complexity and limited non-determinism.

Common for all these approaches is the use of syntactic limitations to create the
necessary restrictions. Actually Bäckström and Jonsson (2011) mention another
possibility, namely examining the state graph of the problem. They however,
reject this based on work by Balcázar (1996) which failed to turn up any new
restrictions which were simpler than those already known. The work of Balcázar
(1996) was focused upon the notion of succinct representation, meaning that
some information about the problem is thrown away at this point. This project
therefore aims to examine the state graph of planning domains in order to find
either completely new restrictions or refinements of previously known ones.

1.3 Structure of the Report

This report is structured in such a way that chapter 2 first introduces the two
planning formalisms used and their associated notation. Chapter 3 then covers
a set of known results regarding the computational complexity of automated
planning when restricted syntactically, following this chapter 4 looks at similar
results obtained by restricting the causal graph. Chapter 5 then moves on to
examine what can be achieved by restricting the state graph. Finally chapter 6
will examine the broader consequences of the results obtained in the previous
chapters.

All of this material assumes knowledge about at least automated planning,
graphs, directed graphs and computational complexity. The reader should be
familiar with these subjects.

4 Introduction

Chapter 2

The Complexity of Planning

Let your plans be dark and as impenetratable as
night, and when you move, fall like a thunderbolt.

- Sun Tzu

In order to discuss the complexity of automated planning, it is first necessary
to define a planning problem and a planning domain. These two concepts are
interrelated as every planning problem has an associated domain and every plan-
ning domain gives rise to a set of problems. As this report uses two planning
formalisms, it is necessary to define both problems and domains for both for-
malisms. Thereafter the focus will shift to describe the computational problem
which this report will deal with.

2.1 STRIPS Formalism

The Stanford Research Institute Problem Solver (STRIPS) formalism is the
classical planning formalism, so much that it is also known as classical planning.
In this report a restricted version of the formalism will be used. This restriction
is called propositional STRIPS and disallows the use of variables in operators.
These definitions are a variation of those from Ghallab et al. (2004).

6 The Complexity of Planning

Definition 2.1 A STRIPS planning domain is a two-tuple (P,O) where:

• P is a finite set of state propositions pi.

• O is a finite set of operators o = (b, e) such that:

– b = pre (o) is a set of propositions and negations thereof. These are
the preconditions of o.

– e = post (o) is a set of propositions and negations thereof. These are
the postconditions of o.

– The preconditions b and postconditions e are disjoint:

b ∩ e = ∅

(Ghallab et al., 2004)

For each planning domain there exists a set of states, each of which is defined
as follows:

Definition 2.2 A state s is a set of propositions, representing the propositions
which are true in the state.

s ⊆ P

(Ghallab et al., 2004)

Definition 2.3 The set of all states S is the powerset of the avaiable proposi-
tions.

S = 2P

(Ghallab et al., 2004)

A condition, such as those in the preconditions and postconditions is defined as
follows:

Definition 2.4 A condition g is a set of propositions and negations of propo-
sitions. Such a condition is called satisfiable iff it does not contain both a
proposition and its negation. A condition is satisfied by a state s if no positive
propositions of g are missing in s and no negative propositions of g are in s.

s |= g iff {p|p ∈ P ∧ p ∈ g} ⊆ s ∧ {p|p ∈ P ∧ (¬p) ∈ g} ∩ s = ∅

(Ghallab et al., 2004)

2.1 STRIPS Formalism 7

The applicability and application of an operator may then be defined as:

Definition 2.5 An operator o = (b, e) is applicable in a state s iff the precon-
ditions of o are satisfied in the state s. The application of the operator o in the
state s is then a new state r = o (s) in which the positive propositions of the
postcondition are added and the negative propositions removed.

r = o (s) = (s ∪ {p|p ∈ P ∧ p ∈ g}) \ {p|p ∈ P ∧ (¬p) ∈ g} iff s |= b

(Ghallab et al., 2004)

Using this a STRIPS problem is then defined as:

Definition 2.6 A STRIPS planning problem is a four-tuple (P,O, s0, g) where:

• P,O is a STRIPS planning domain.

• s0 is an initial state.

• g are the goal conditions (i.e. a set of propositions and their negations).

(Ghallab et al., 2004)

Example 2.1 As an example of a STRIPS formalism of a planning problem.
Consider the classical Blocks World problem. It consists of a number of blocks
or boxes, a table and a gripper. A box may either be stacked upon another box,
held in the gripper or stand directly upon the table. Upon each box at most one
other box may be located. A couple of such situations may be seen in figure 2.1.
In order to describe a blocks world instance it is first necessary to introduce the
needed propositions, for n boxes these are:

P =
⋃ ⋃n

i,j=1 {oni,j}⋃n
i=1 {heldi, freei, oni,t}
{empty}

(2.1)

The meaning of these propositions is as follows

• oni,j - This proposition means that box i is placed on top of box j, unless
j is t in which case i is placed on the table.

• heldi - This proposition means that box i is held by the gripper.

• freei - This proposition means that no box is placed upon box i.

8 The Complexity of Planning

1 2

3

(a) The first (initial) state of the world.

1 2

3

(b) A second (resulting) state of the world.

1

2

3

(c) A third (final) state of the
world.

Figure 2.1: Three simple planning states.

2.1 STRIPS Formalism 9

• empty - This proposition means that the gripper is empty.

The set of operators then becomes, for i, j = 1, 2, . . . n:

pickupi,j
Preconditions: freei, oni,j , empty
Postconditions: heldi, freej ,¬freei,¬oni,j ,¬empty

pickupi,t
Preconditions: freei, oni,t, empty
Postconditions: heldi,¬freei,¬oni,t,¬empty

putdowni,j
Preconditions: heldi, freej
Postconditions: empty, freei, oni,j ,¬heldi,¬freej

putdowni,t
Preconditions: heldi
Postconditions: empty, freei,¬heldi

Each of these operators does as follows:

• pickupi,j - This picks up box i from box j or the table if j is t.

• putdowni,j - This places box i on top of box j or the table if j is t.

Using these propositions it is possible to describe the situation in figure 2.1a as
the following state:

s0 = {on3,1, free2, free3, empty} (2.2)

In this state it is possible to apply operator pickup3,1, this results in the state
seen in figure 2.1b. This state may be described by:

s′ = {free1, free2,held3} (2.3)

Finally the goal state in figure 2.1c may be described by:

g = {on1,2, on2,3, empty} (2.4)

Here it is possible to see how many propositions and operators may be necessary
to describe a relatively simple problem.

10 The Complexity of Planning

2.2 SAS+ Formalism

The Extended Simplified Action Structures (SAS+) formalism is in many re-
spects similar to the STRIPS formalism, however, instead of simple true/false
propositions, SAS+ makes use of multi-valued state variables. This introduces a
set of domains from which the values for the state variables are drawn. The fol-
lowing definitions are a slight variation of those of Bäckström and Nebel (1995).

Definition 2.7 A SAS+ planning domain is a three-tuple (V,D,O) where:

• V is a finite set {v1, v2, . . . , vn} of state variables v1, each with an associ-
ated finite domain Di.

• D is the finite set of mutally exclusive finite domains of the variables.
D = {D1, D2, . . . , Dn}

• O is a finite set of operators o = (b, e, f) such that:

– b = pre (o) is a patial mapping of the state variables to their associ-
ated domains. These are the preconditions of o.

– e = post (o) is a patial mapping of the state variables to their asso-
ciated domains. These are the postconditions of o.

– The preconditions b and postconditions e assign distinct values to
shared variables:

∀v ∈ (dom (b) ∩ dom (e)) : b (v) 6= e (v)

(Bäckström and Nebel, 1995)

Some descriptions of the SAS+ formalism include a third type of conditions,
called prevailconditions, these are meant to a second set of preconditions such
that the preconditions contain only variables also in the postcondition and the
prevailconditions do not contain any variables also in the postconditions. The
prevailconditions have been left out here as some definitions already leave them
out, additionally they may trivially be recovered and are only a pain with respect
to the notation in this report.

A state in SAS+ may then be defined as a mapping:

Definition 2.8 A (total) state s is a mapping from each vi to an element of its
associated domain Di. A partial state is a partial mapping, such that it maps
a subset of the elements of V . (Bäckström and Nebel, 1995)

2.2 SAS+ Formalism 11

Definition 2.9 The set of all states S is the set of all total states.

S = D1 ×D2 × . . .×Dn

(Bäckström and Nebel, 1995)

Conditions in SAS+ are based upon partial states:

Definition 2.10 A condition g is a (partial) state. Such a condition is always
satisfiable. A condition is satisfied by a given state s if s and g agree on every
variable in the domain of g:

s |= g iff ∀v ∈ dom (g) : g (v) = s (v)

(Bäckström and Nebel, 1995)

The applicability and application of operators in SAS+ then becomes:

Definition 2.11 An operator o = (b, e, f) is applicable in a state s iff the
preconditions of o are satisfied in the state s. The application of the operator o
in the state s is then a new state r = o (s) with the variables referenced in the
postconditions changed.

r (v) = o (s) (v) =

{
e (v) iff v ∈ dom (e)
s (v) otherwise

iff s |= b

(Bäckström and Nebel, 1995)

Using this we may define a SAS+ problem:

Definition 2.12 A SAS+ planning problem is a five-tuple (V,D,O, s0, g) where:

• V,D,O is a SAS+ planning domain.

• s0 is a total initial state.

• g are the goal conditions.

(Bäckström and Nebel, 1995)

12 The Complexity of Planning

Example 2.2 To exemplify a SAS+ planning instance, the Blocks World prob-
lem will be revisited. Again the situations of figure 2.1 will be used. For n boxes
the needed variables and their domains are i = 1, 2, . . . n:

oni ∈ {none, 1, 2, . . . , n} (2.5)

lowesti ∈ {yes, no} (2.6)

held ∈ {none, 1, 2, . . . , n} (2.7)

(2.8)

The meaning of these state variables is as follows

• oni - The value of this state variable is the box which is placed on top of
box i unless it is none in which case no box is on top of box i.

• lowesti - The value of this state variable indicates whether the box i is
directly on top of the table.

• held - The value of this state variable is the box which is held in the gripper
unless it is none in which case the gripper is empty.

The set of operators then becomes, for i, j = 1, 2, . . . n:

pickupi,j
Preconditions: oni = none, onj = i,held = none

Postconditions: held = i, onj = none

pickupi,t
Preconditions: oni = none, lowestj = yes,held = none

Postconditions: held = i, lowesti = no

putdowni,j
Preconditions: held = i, onj = none

Postconditions: held = none, oni = none, onj = i

putdowni,t
Preconditions: held = i
Postconditions: held = none, oni = none, lowesti = yes

The function of these operators is the same as those of the STRIPS example.
Using these variables and domains it is possible to describe the situation in
figure 2.1a as the following state:

on1 = 3 on2 = none on3 = none

lowest1 = yes lowest2 = yes lowest3 = no

held = none

(2.9)

2.3 Plans 13

In this state it is possible to apply operator pickup3,1, this results in the state
seen in figure 2.1b. This state may be described by:

on1 = none on2 = none on3 = none

lowest1 = yes lowest2 = yes lowest3 = no

held = 3
(2.10)

Finally the goal state in figure 2.1c may be described by:

on1 = none on2 = 1 on3 = 2
lowest1 = no lowest2 = no lowest3 = yes

held = none

(2.11)

This example shows that it is possible to encode the same problem using fewer
state variables in SAS+ than STRIPS requires propositions.

One may quickly draw the conclusion that STRIPS planning is equivalent to
SAS+ planning with the domains of the variables limited to two values. This
way every proposition in a STRIPS planning domain may be encoded in a SAS+

variable with the domain {True, False}. This may lead to the idea that SAS+

is more expressive than STRIPS. However, it has been shown by Bäckström
(1995) that, in fact, STRIPS and SAS+ have equal expressiveness.

2.3 Plans

Common to both of these formalisms is the concept of a plan:

Definition 2.13 A plan π is a sequence of operators.

π = 〈o1, o2, . . . , om〉

(Folklore)

A complete plan may then be applied to a state:

Definition 2.14 A plan π = 〈o1, o2, . . . , om〉 is applicable in a state s iff the first
operator o1 is applicable in s and the remaining plan 〈o2, . . . , om〉 is applicable
in o1 (s) (the empty plan is always applicable). The result of applying a plan
to a state is a new state r = π (s) being the result of applying each operator in
turn.

r = π (s) = 〈o1, o2, . . . , om〉 (s) =

{
s iff π = 〈〉
〈o2, . . . , om〉 (o1 (s)) otherwise

14 The Complexity of Planning

(Folklore)

Definition 2.15 A plan π solves/satisfies a planning problem Π = (. . . , s0, g)
iff the result of applying the plan in the initial state satisfies the goal:

π |= Π iff π (s0) |= g

(Folklore)

2.4 Computational Problems

Based upon the above definition of a plan we may define two obvious decision
problems for planning:

Definition 2.16 [PlanEx] The plan existence problem asks; given a planning
problem Π, does there exist a plan π such that π solves Π. (Folklore)

Definition 2.17 [PlanLen] The plan length problem (occasionally called the
bounded plan existence problem) asks; given a planning instance Π and a con-
stant k, does there exist a plan π, of length at most k, such that π solves Π.

(Folklore)

These two computational problems are valid for both STRIPS and SAS+ plan-
ning, and are the main decision problems related to planning. They are therefore
the main focus of the remainder of this report, with an emphasis upon the first
problem. An interesting property of these two is the following, by Bäckström
and Nebel (1995):

Theorem 2.18 If there exists some polynomial time computable function f (Π)
which takes a planning instance as input and gives an upper bound on the short-
est plan length, if a plan exists, then PlanEx is polynomial time reducable to
PlanLen.

PlanEx ≤p PlanLen
(Bäckström and Nebel, 1995)

Proof. For a given planning instance Π if there exists a plan, there must exist
a plan of length at most f (Π). Therefore it is possible to reduce PlanEx(Π)
to PlanLen(Π, f (Π)). As f (Π) is polynomial time computable, this is a poly-
nomial time reduction. Q.E.D.

For both STRIPS and SAS+ such a function may trivially be created:

2.4 Computational Problems 15

Theorem 2.19 There exists, for STRIPS planning, a polynomial time com-
putable function upwards bounding the length of the shortest plan.

(Bäckström and Nebel, 1995)

Proof. Take the following function:

f (Π) = ||S|| = 2||P ||

For the first part the function is trivially polynomial time computable. For the
second part, assume the shortest plan Π has length greater than ||S|| then, by
the pigeon hole principle, it must visit some state twice. This implies that the
plan contains a cycle, by removing this cycle it is possible to create a shorter
plan Π′ which is a contradiction. Thus if a shortest plan exists, it must have a
length ||Π|| ≤ ||S|| Q.E.D.

Theorem 2.20 There exists, for SAS+ planning, a polynomial time computable
function upwards bounding the length of the shortest plan.

(Bäckström and Nebel, 1995)

Proof. Take the following function:

f (Π) = ||S|| =
n∏
i=1

||Di||

The rest of the proof is analogous to theorem 2.19. Q.E.D.

The complexity of an algorithm is measured against the size of the input given to
the algorithm. For automated planning the size of the input is traditionally given
in terms of the propositions/state variables and the operators in the problem
domain, as an instance may be encoded in space polynomial in these.

Theorem 2.21 A STRIPS planning problem Π = (P,O, s0, g) may encoded in
O (||P || ||O||) bits. (Original)

Proof. A bitfield representation is used. First each proposition is a assigned
a bit position. A state may then be encoded in ||P || bits by coding a 1 in the
bit position for each proposition in the state. A condition may be encoded in
2 ||P || bits by dividing first coding the propositions in the condition as above,
and then coding the negative propositions. To code the entire planning problem
it is necessary to code the size of P , the size of O, the pre- and postconditions
of the all operators, the initial state and the goal conditions. This requires
dlg (||P ||)e+ dlg (||O||)e+ 2 ||O|| ||P ||+ 3 ||P || bits. Q.E.D.

16 The Complexity of Planning

Theorem 2.22 S SAS+ planning problem Π = (V,D,O, s0, g) may encoded in
O (||V || ||D|| ||O||) bits. (Original)

Proof. Again a bitfield representation is used, however, each state variables
may require more than one bit for representation. For each domain Di let
fi : Di 7→ {0, 1, . . . , ||Di|| − 1} be a bijection. This way the assignment of the
variable vi may be represented using dlg (||Di||)e bits. A state may then be coded
in ||V || dlg (||Di||)e bits. For conditions an additional don’t care/not present
marking is required for those variables which are not present in the domain of
the conditions. Thus a condition is coded in ||V || dlg (||Di||+ 1)e bits. This way
the entire problem instance may be coded in dlg (||V ||)e + ||V || dlg (||Di||)e +
2 ||O|| ||V || dlg (||Di||+ 1)e+ dlg (||Di||)e+ dlg (||Di||+ 1)e Q.E.D.

It should be noted that, as the size of a planning problem is measured only in
terms of the elements of the domain, it is possible to speak of the complexity
of a planning domain. The remainder of the report will therefore focus on the
complexity of planning domains, and not specific planning problems.

Chapter 3

Syntactic Restrictions

Tired minds don’t plan well. Sleep first, plan later.

- Walter Reisch

Several complexity results are known for both the PlanEx (definition 2.16)
and PlanLen (definition 2.17) problems for various restrictions of planning.
This chapter will examine the complexity results which stem from syntactic
restrictions of the basic planning problems. First the most recognised results
for STRIPS planning will be examined. This will be followed by similar results
for SAS+.

Before any of that however, it is useful to know what is meant by a syntactic
restriction. A syntactic restriction is, in essence, a restriction which may be im-
posed directly upon a planning instance and the objects it contains. This means
that it is possible to restrict based upon things such as the predicates/state vari-
ables, operator conditions, the initial state and the goal conditions. It is not
possible to restrict based upon any derived structures, such as the causal and/or
state graphs covered later. In short if some information is not directly available
in the planning instance, it is not possible to create a syntactic restriction based
upon it.

18 Syntactic Restrictions

NLOGSPACE-complete

P

NP-complete

NP-hard

PSPACE-complete

+1
+

+
1

1g0 +
+

1
+1

+
−+

k
1

1
k

+1
2

1
1 +2

2

Figure 3.1: The relationship between the complexities of PlanEx for the various
restrictions of STRIPS planning.
Arrows indicate that the head of the arrow is a generalisation of the restriction
at the tail. Strictly speaking the NP-hard class has no upper bound, however,
it is here shown to lie beneath PSPACE-complete. This is due to the fact that
all of the problems show here are atmost PSPACE-complete.

3.1 STRIPS Restrictions 19

Table 3.1: The complexity of PlanEx for the most common restrictions of
propositional STRIPS.

Restriction Pre Post Goals Complexity

STRIPS PSPACE-complete
STRIPS1 1 PSPACE-complete
STRIPS1 1 PSPACE-complete
STRIPS+2

2 +2 2 PSPACE-complete
STRIPSk1 k 1 NP-hard
STRIPS1

k 1 k NP-hard
STRIPS+1

2 +1 2 NP-hard
STRIPS+

− + − NP-complete
STRIPS+ + NP-complete
STRIPS1

+1 1 +1 NP-complete
STRIPS+

1 + 1 P
STRIPS1g 1 k P
STRIPS0 0 P
STRIPS+

+ + + P
STRIPS+1

+ +1 + NL-complete

3.1 STRIPS Restrictions

The majority of the results regarding the syntactic restriction of STRIPS plan-
ning are those of Bylander (1991), which have been slightly updated by Bylander
(1994) himself, and those of Erol et al. (1995) most of which have been sum-
marised by Ghallab et al. (2004). In general the restrictions limit the number
of preconditions and postconditions of an operator, along with the mode of
the predicates of those conditions. We will note a restriction of STRIPS using
STRIPSδαγβ for a restriction where each operator has at most α (resp. β) precon-
ditions (postconditions) which, optionally, are of mode δ (γ). If a k is present
in place of α (β) then the number of precondition (postconditions) is merely
bounded by a constant. Additionally the g suffix on one of the classes, means
that the number of goal literals is bounded by a constant. Thus a STRIPS+2

1

problem is a restriction where each operator has at most two preconditions, all
of which are positive, and a single postcondition of any mode. Starting with the
PlanEx problem, these may be broken down as in table 3.1, and graphically
in figure 3.1. Here it is possible to see both how they are distributed over the
complexity classes as well as how they generalise each other.

For the PlanLen problem most of the complexities are the same due to theo-

20 Syntactic Restrictions

Table 3.2: The complexity of PlanLen for the most common restrictions of
propositional STRIPS.

Restriction Pre Post Goals Complexity

STRIPS+
1 + 1 NP-complete

STRIPS+1
1 +1 1 NP-complete

STRIPS0 0 NP-complete
STRIPS0

2 0 2 NP-complete
STRIPS0

1 0 1 P
STRIPS0

+3 0 +3 NP-complete
STRIPS0

+2 0 +2 P

P

NP-complete

0
1

0
+2

+1
1

0
2

0
+3

+
1

0

Figure 3.2: The relationship between the complexities of PlanLen for the
various restrictions of STRIPS planning.
Arrows indicate that the head of the arrow is a generalisation of the restriction
at the tail.

3.1 STRIPS Restrictions 21

rem 2.18. However, the PlanLen problem is often harder than PlanEx, the
restrictions in table 3.2 are all in P for PlanEx, but up to NP-complete for
PlanLen.

Traditionally these complexity classes are split into two sets, those which are
subsets of (or equal to) P, which are considered to be the tractable problems,
and those which are (thought to be) strict supersets of P, which are considered
intractable. The subset of problems which fall into the tractable catagory are
the following:

A couple of things that are worth noting in figure 3.1. Firstly it is seen
that the first single restriction to get planning to a lower complexity than
PSPACE-completeness is to allow only positive postconditions. Not only that,
but the only single restriction which is in fact tractable disallows any precondi-
tions. This last indicates that preconditions are quite powerful, as it is necessary
to either completely remove them, or combine them with other restrictions be-
fore planning becomes tractable. However, the general theme is that it necessary
to heavily restrict planning before it even approaches tractability.

1. Plan existence

(a) STRIPS+
1

(b) STRIPS1g

(c) STRIPS0

(d) STRIPS+
+

(e) STRIPS+1
+

2. Plan length

(a) STRIPS0
1

(b) STRIPS0
+2

These seven restrictions represent the points where planning, at least from an
asymptotic point of view, becomes tractable. The majority of these are rather
trivial cases. The only really interesting cases are the STRIPS+

1 case and the
STRIPS1g case, as these include some interesting problems. Therefore it is
interesting to examine what happens to the planning problems in these restric-
tions. The following sections will first review the existence of polynomial time
algorithms for the STRIPS+

1 case and then move on to examine the ways in
which these restrictions may be “cheated”.

22 Syntactic Restrictions

3.1.1 STRIPS+
1

By restricting planning to only positive preconditions and a single postcondition,
it is possible to reduce the complexity of planning to be contained in P. A
polynomial time algorithm for this restriction is given by Bylander (1994). The
basic realisation needed is captured by the following theorem:

Theorem 3.1 There exists a plan which solves a planning instance iff there
exists a plan which solves the same planning instance which first applies all op-
erators with positive postconditions and then applies any operators with negative
postconditions. (Bylander, 1994)

To prove this the following lemma is quite useful:

Lemma 3.2 Given two adjacent operators in a plan it is possible to replace
these operators with at most two operators, such that any operators with positive
postconditions are applied first, followed by those with negative postconditions.

(Bylander, 1994)

Proof. Consider two adjacent operators o1, o2 in a plan. The only way these
may violate lemma 3.2 is if o1 has a single negative postcondition and o2 has a
single positive postcondition. Now consider applying these operators in a state
s, resulting in a state r:

r = o2 (o1 (s))

r =
(
s \ post− (o1)

)
∪ post+ (o2)

If post− (o1) and post+ (o2) are disjoint we may simply apply the operators in
the opposite order:

r =
(
s ∪ post+ (o2)

)
\ post− (o1) assuming post+ (o2) ∩ post− (o1) = ∅

r = o1 (o2 (s))

If the effects are not disjoint they must be equal, as the sets have only a single
member. In this case we may simply drop the first operator:

r = s ∪ post+ (o2) assuming post+ (o2) = post− (o1)

r = o2 (s)

Thus given two adjacent operators o1, o2, either the original order (o1, o2), swap-
ping the order (o2, o1) or dropping the first operator (o2) satisfies lemma 3.2 and
results in the same state. Q.E.D.

3.1 STRIPS Restrictions 23

Proof. The reverse direction of theorem 3.1 is trivial as any plan which first
contains operators with positive postconditions and then any with negative post-
conditions is itself a plan. The forward direction of theorem 3.1 follows from
lemma 3.2. Assume that π is a plan which solves the given planning instance,
then by repeated application of lemma 3.2, it is possible to move all the opera-
tors with positive postconditions to the front of π thus giving a plan new plan
π′ which satisfies theorem 3.1 with the same resulting state as π. Q.E.D.

The result of theorem 3.1 is that it is only necessary to examine those plans
which first apply operators with positive postconditions followed by applying
operators with negative postconditions. Assume that π is such a plan. After
applying the positive part of π to the initial state the planner would have reached
a state smax, before and after which all states traversed will have fewer true
prepositions. The algorithm of Bylander (1994) works by attempting to find
such a state. This can be done in polynomial time.

3.1.2 Cheating the restriction

In order to fully appreciate why these syntactic restrictions are rather crude,
the following will give some examples of constructions in the planning domain
which may cause a given problem to fall outside a given sematic restriction
despite being equivalent (at least with regard to PlanEx and PlanLen) to a
problem within the restriction. The first example given will attempt to cheat
the positive precondition restrictions.

Example 3.1 Consider a planning domain with the following operators:

TurnOn
Preconditions: ¬Backup,Off
Postconditions: ¬Off

TurnOnBackup
Preconditions: Backup,Off
Postconditions: ¬Off

This kind of construction may arise naturally if there is more than one way to
achieve the same effect. In this case there is a normal way to do something
and then there is a backup in case the situation is not normal. It is clear that
the above operators do not contain only positive preconditions due to the pres-
ence of the ¬Backup term, nor is there a way to replace these two operators
to remove this term without making assumptions about the rest of the domain
and/or introducing additional propositions. This means that any planning do-
main with these operators, can at most fall within the STRIPS1 restriction

24 Syntactic Restrictions

which is PSPACE-complete. However, for the PlanEx and PlanLen prob-
lems these may be replaced by a single operator as follows:

TurnOn∗
Preconditions: Off
Postconditions: ¬Off

This single operator clearly only has positive preconditions. This allows placing
the planning domain within the STRIPS+1

1 restriction which is NL-complete,
this is a very significant improvement. Not only that, but it is also obvious that
this new operator is applicable iff one of the original operators is applicable.
Also when it is applied it results in the same state as the original operator
which is applicable in the original state. This implies a one-to-one relationship
between plans with the new operator and plans with the original operators
which preserves the length of the plans. This then implies that a plan of length
k exists with the new operator iff there exists a plan of length k with the original
operators.

While example 3.1 showed one construction which can affect the placement of
a planning problem in the syntactic restriction hierarchy by affecting the mode
of the preconditions, other natural constructions may have unfortunate effects
on the complexity of a planning problem in similar ways.

Example 3.2 Now consider a planning domain with the following single oper-
ator:

TurnOn
Preconditions: ¬On
Postconditions: On

This may seem a very natural thing to do, if the thing is already on, there is no
reason to turn it on again. However, the precondition causes the planning do-
main to fall within the STRIPS1

+1 restriction which is NP-complete. However,
the following operator allows a better classification:

TurnOn′

Preconditions:
Postconditions: On

This single operator has no preconditions. This allows placing the planning
domain within the STRIPS0 restriction which is in P, again a significant im-
provement. The equivalence of these two operators, at least with respect to
PlanEx and PlanLen, is trivial.

3.2 SAS+ Restrictions 25

Of course these examples are designed to highlight the point in question and
should not be taken as an indication that all planning domains can be rewritten
to have lower complexity. Such a result would imply P = NP or some other
equally strong, but very unlikely, result. The point of these examples is to
show how minor changes in the planning domain can have a huge effect on the
complexity of automated planning.

3.2 SAS+ Restrictions

The usual SAS+ restrictions are somewhat more involved than the STRIPS
restrictions. The set of restrictions which will be studied in this report are
those of Bäckström and Nebel (1995). These are as follows:

P Post-uniqueness

For each possible state variable assignment, there is at most one op-
erator whose post-condition includes this assignment.

∀vi ∈ V, xi ∈ Di : ||{o ∈ O|post (o) (vi) = xi}|| = 1

S Single-valuedness

For each state variable vi there must exist some value xi ∈ Di such
that for all operators o, if vi appears in the postcondition of o, it must
either not appear in the preconditions of o or appear with the value xi.

∀vi ∈ V : ∃xi ∈ Di : ∀o ∈ O :
(vi ∈ dom (post (o)))⇒ (vi 6∈ dom (pre (o)) ∧ pre (o) (vi) = xi)

U Unariness

Every operator has exactly one postcondition.

∀o ∈ O : ||dom (post (o))|| = 1

B Binariness

The size of the domain associated with each variable is exactly 2.

∀Di ∈ D : ||Di|| = 2

To denote a SAS+ planning instance with some restriction x applied this report
will write SAS+-x. If more than one restriction is applied, the specifications

26 Syntactic Restrictions

Table 3.3: The complexity of the most common restrictions of SAS+.

Restriction Complexity
Plan existence Plan length

SAS+ PSPACE-complete PSPACE-complete
SAS+-P Open NP-hard
SAS+-S PSPACE-complete PSPACE-complete
SAS+-U PSPACE-complete PSPACE-complete
SAS+-B PSPACE-complete PSPACE-complete
SAS+-PS Open NP-hard
SAS+-PU Open NP-hard
SAS+-PB Open NP-hard
SAS+-SU NP-complete NP-complete
SAS+-SB PSPACE-complete PSPACE-complete
SAS+-UB PSPACE-complete PSPACE-complete
SAS+-PSU P P
SAS+-PSB Open NP-hard
SAS+-PUB Open NP-hard
SAS+-SUB NP-complete NP-complete
SAS+-PSUB P P

are simply appended such as SAS+-xy. In this system a SAS+-UB problem is a
SAS+ planning problem restricted to unariness and binariness. Unariness and
binariness are rather natural restrictions whereas post-uniqueness and single-
valuedness seem rather artificial. There is however, some reason behind the
madness. A domain which is post-unique has at most one operator which sets
a given state variable to a given variable. As a minimal example consider a
single light switch connected to a light. There is only one way to turn on the
light, flip the switch into the “on” position. This small domain is post-unique.
Single-valuedness is somewhat related to the positive postcondition restrictions
of STRIPS. However, single-valuedness does not require that operators which
do not mention the variable in their preconditions do not change it to some odd
value.

A systematic study of these restrictions was performed by Bäckström and Nebel
(1995), the results of which are presented in table 3.3 and figure 3.3. Those plan
existence problems which are marked as open are at least NP-hard and at most
PSPACE-complete. Again it is seen that a great number of restrictions must
be made before planning becomes tractable, as the planning domain must be at
least post-unique, single-valued and unary.

3.2 SAS+ Restrictions 27

P

NP-complete

Open (NP-hard)

PSPACE-complete

PSUB

PSU

PSB PUB

SUB

PS PU PB

SU

SB UB

P

S U B

Figure 3.3: The relationship between the complexities of plan existence (plan
length) for the various restrictions of SAS+ planning.
Arrows indicate that the head of the arrow is a generalisation of the restriction
at the tail.

28 Syntactic Restrictions

From this it appears that post-uniqueness is a powerful restriction. Intuitively
this power comes from the fact that, for every possible assignment of a state
variable there is, at most, one operator which may create that assignment. This
allows a “simple” backwards planning approach which allows tractable planning,
when coupled with restrictions that guarantee polynomial length plans.

3.2.1 Cheating the Restriction

As for STRIPS planning, it is easy to devise constructions which cheat the
various restrictions. The first example is similar to example 3.1 for STRIPS.

Example 3.3 Consider a planning domain, which for some vi, vj ∈ V as well
as all xi ∈ Di and some yj ∈ Dj , yj 6= xi contains the following operator:

Trickxi

Preconditions: vi = xi
Postconditions: vj = yj

As in the case of example 3.1, these may be replaced by a single operator while
preserving plan existence and length:

NoTrick
Preconditions:
Postconditions: vj = yj

The original set of operators prevents any problem instance including the op-
erators from being post-unique as more than one operator includes the vj = yj
postcondition. As post-uniqueness is the most powerful restriction, this is un-
fortunate. Additionally if vi = vj these operators also prevents the instance
from being single-valued.

This shows how it is possible to cheat both the post-uniqueness and single-
valuedness restrictions.

3.3 Results on Syntactic Restrictions

The preceding chapter has covered many of the syntactic restrictions which have
been examined from a complexity theoretic point of view. As is rather obvious
these restrictions are very restrictive and hardly allow any real-world problems

3.3 Results on Syntactic Restrictions 29

to be modeled. Even then, though they are severely restricted, very few of the
restrictions actually achieve tractability.

30 Syntactic Restrictions

Chapter 4

The Causal Graph

Plans are only good intentions unless they immedi-
ately degenerate into hard work.

- Peter Drucker

The first graph which will be examined for automated planning is the causal
graph. As the work on causal graphs uses a state variable model, this chapter
will use the SAS+ formalism. The first step is to define the causal graph:

Definition 4.1 For a SAS+ planning domain (V,D,O), the causal graph is the
digraph Gc = (V,A) st. (u, v) ∈ A iff the following conditions hold:

u 6= v

∃o ∈ O : v ∈ dom (post (o)) ∧ u ∈ (dom (post (o)) ∪ dom (pre (o)))

(Helmert, 2004)

The intuition behind the causal graph is this: There exists an arc between two
variables iff a change in the variable at the tail of an arc may cause a change in
the variable at the head of the arc. Causal graphs have originally been studied
as a tool for heuristic search and for the generation of heuristics. However,
some complexity results are known of planning problems with restricted causal
graphs, the simplest of which are chain causal graphs.

32 The Causal Graph

on1

on2

on3

lowest1

lowest2

lowest3

held

Figure 4.1: The causal graph for example 4.1.

Example 4.1 As an example, one might consider the blocks world planning
domain from example 2.2 with 3 blocks. The causal graph for this domain is
seen in figure 4.1.

4.1 Chain Causal Graphs

One class of causal graphs are is the class of chain causal graphs, denoted Cn.
The definition of chain causal graphs is as follows:

Definition 4.2 A planning problem Π is in the class Cn iff the causal graph of
Π is a directed path. (Domshlak and Dinitz, 2001)

Theorem 4.3 All planning problems in the class CN are unary.
(Helmert, 2004)

From the definition of the class, the above corollary is obvious. This means
that the earlier results from the unariness syntactic restriction also apply here.
However, the problem is still not significantly simpler:

Theorem 4.4 PlanEx for instances in the class Cn is NP-hard.
(Giménez and Jonsson, 2008)

This has been shown by Giménez and Jonsson (2008) by way of a reduction
from CNFSat thus showing NP-hardness. This leaves the planning problem

4.2 Polytree Causal Graphs 33

intractable, however, if one further restrict the planning problems, this time by
the size of the variable domains, it is possible achieve a tractable class. Giménez
and Jonsson (2009) define the class Ckn:

Definition 4.5 A planning problem Π is in the class Ckn iff the following two
conditions hold.

Π ∈ Cn
∀vi ∈ V : ||Di|| ≤ k

(Giménez and Jonsson, 2009)

The complexity of planning problems in the class Ckn varies from P to NP-hard
depending on the k parameter, and includes two restrictions of which the com-
plexity is, as yet, unknown.

Theorem 4.6 The complexity of PlanEx for planning problems in the class
Ckn is:

P for k = 2

Open for 3 ≤ k ≤ 4

NP-hard for 5 ≤ k

(Brafman and Domshlak, 2003),(Giménez and Jonsson, 2009)

Brafman and Domshlak (2003) demonstrate a polynomial time algorithm for
planning in the class C2

n, while Giménez and Jonsson (2009) give a reduction
from CNFSat to PlanEx for the class C5

n. This leaves open the complexity of
the two intermediate classes. It is interesting here to note that any problem in
the class C2

n is implicitly both unary and binary, however, it does not require
post-uniqueness or single-valuedness. This means that, although the general
SAS+-UB restriction is PSPACE-complete, the additional information in C2

n

allows it to be in P. This illustrates that the additional information in the
causal graph allows a finer distinction between various restrictions.

4.2 Polytree Causal Graphs

Another class of causal graphs are those whose underlying undirected graph is
acyclic. These are called polytree causal graphs. This class was first defined by

34 The Causal Graph

Brafman and Domshlak (2003) however, the definition here is due to Giménez
and Jonsson (2009):

Definition 4.7 Let the underlying undirected graph U (G) = U ((V,A)) =
(V,E), of a digraph g, be defined as follows:

E =
{

(u, v) ∈ V 2
∣∣{(u, v) , (v, u)} ∩A 6= ∅

}
(Giménez and Jonsson, 2009)

Definition 4.8 A planning problem is in the class P1 iff the undirected graph
underlying the causal graph is acyclic. (Original)

In fact the class Cn is a subset of P.

Theorem 4.9 Every planning problem in Cn is also in P. (Original)

Proof. Consider a chain causal graph G i.e. a directed path. The undirected
graph underlying this causal graph is merely a simple path and therefore acyclic.
The implies that any problem in Cn is also in P. Q.E.D.

Brafman and Domshlak (2003) have again shown a polynomial time algorithm
for PlanEx for the case where the problem is binary and additionally the inde-
gree is bounded. The NP-hardness result of Giménez and Jonsson (2009) triv-
ially carries over. Additionally Giménez and Jonsson (2008) show that PlanEx
is NP-complete for unbounded indegree.

4.3 Cheating the Causal Graph

Cheating the restrictions based on the causal graph, is a bit more difficult than
for the simple syntactic restrictions of chapter 3. The example here is somewhat
contrived and is based on the idea that the value of one variable can be inferred
from another.

Example 4.2 Consider a SAS+ planning domain with two variables:

State ∈ {Off, On}
FullState ∈ {Off, Low, High}

1This should not be confused with the complexity class P.

4.3 Cheating the Causal Graph 35

on1

on2

on3

lowest1

lowest2

lowest3

held

Figure 4.2: The causal graph for example 4.2.

Now in this case it is desired to maintain the following invariant:

State =

{
Off iff FullState = Off

On otherwise

In order to enforce this invariant it is necessary to change the value of State every
time FullState is changed to or from Off. This implies that they both occur
in the postcondition of the same operator, thus creating a cycle in the causal
graph between these two variables. This prevents the problem from having a
polytree causal graph. [TODO: Check this out!]

It is however, possible to remove the State variable from the domain. Every
operator which contains State = Off as a precondition is replaced by one which
has FullState = Off instead, and every which contains State = On as a precon-
dition is replaced by two operators, one which has FullState = Low and one with
FullState = High.

This shows that, while harder, it is still possible to cheat the restrictions based
upon the causal graph.

36 The Causal Graph

Chapter 5

The State Graph

Adventure is just bad planning.

- Roald Amundsen

Chapter 3 examined the effect of syntactic restriction on the complexity of
automated planning. It was shown that, apart from often being very restrictive,
these restrictions can easily be cheated by constructions in the planning domain.
Chapter 4 then went on to demonstrate some of the power of using the causal
graph in order to restrict automated planning. These restrictions were somewhat
harder to cheat than pure syntactic restrictions. This leads to the final graph
which will be examined in the report, the state graph:

Definition 5.1 For some planning domain with states S and operators O, the
state graph is a digraph Gs = (V,A), such that:

V = S

A =
{

(u, v) ∈ V 2| : u 6= v ∧ ∃o ∈ O : v = o (u)
}

(Folklore)

38 The State Graph

∅Backup

Off
Backup

Off

(a) The state graph for the
original operators of exam-
ple 5.1.

∅Backup

Off
Backup

Off

(b) The state graph for the
new operator of example
5.1.

Figure 5.1: The state graphs for example 5.1.

The definition applies to both STRIPS and SAS+ formalisms. This chapter will
proceed by first motivating the use of the state graph as a structure to express
restrictions upon automated planning. It will then move on to grab some of
the low hanging fruit in this setting before moving on to show a more involved
result.

Example 5.1 Consider the planning problem consisting of the first the two
original operators from example 3.1 and then the single new operator, along
with the predicates {Backup,Off}. The state graphs for these are shown in
figure 5.1. These are seen to be identical, this indicates that it should not be
possible for a restriction, based upon the state graph, to distinguish between
these two. This example illustrates that, using the state graph, it may be
harder to cheat the restrictions compared to syntactic and causal graph based
restrictions.

5.1 Basic Restrictions

The first restrictions which will be examined are simple graph theoretical re-
strictions which attempt to limit the number of nodes a search procedure must
visit.

Property 5.2 Planning a planning problem; if there exists a plan, then there
exists a plan of polynomially (in the size of the planning problem) bounded length.

5.1 Basic Restrictions 39

Using just this single property, it is possible to reduce the complexity of both
PlanLen and PlanEx:

Theorem 5.3 PlanLen, for planning domains which satisfy property 5.2, is
NP-complete. (Original)

Proof. By property 5.2, if there exists a path then there exists a path of poly-
nomial length. This path can then be found nondeterministically in polynomial
time. Thus the problem is in NP.

To show that plan existence for this restriction is NP-hard we perform a polyno-
mial many-one reduction from 3-CNFSat to PlanLen in a STRIPS planning
domain which satisfies the above properties. Consider a 3-CNFSat instance
with clauses C1, . . . , Cm and variables x1, . . . , xn. For each clause Ci a predi-
cate SATi is created to represent that clause Ci has been satisfied. For each
variable two predicates Ti and Fi are created to represent that variable xi has
been assigned true or false respectively. For each variable xi in the clause Cj
one of the following operators is generated. The first operator is generated if xi
appears non-negated in Cj , representing that Cj is satisfied by making xi true.
Otherwise the second is generated, representing that Cj is satisfied by making
xi false.

assignTi,j
Preconditions: ¬Fi,¬SATj
Postconditions: SATj ,Ti

assignFi,j
Preconditions: ¬Ti,¬SATj
Postconditions: SATj ,Fi

The initial state s0 is then the empty state, the goal condition is {SAT1, . . . ,SATm}
and the plan length bound is nm. This construction creates m+ 2n predicates
and 3m operators, whereby it can be performed in polynomial time. The short-
est path possible in this domain is of length at most nm. Assume that the
shortest path has a length greater than nm then by the pigeonhole principle
some operator must appear twice in the plan. The second application of this
operator cannot have any effect on the state, as there are no negative postcon-
ditions in the domain. Thus a shorter plan can be created by leaving out the
second application of the operator. This is a contradiction, thus there cannot
exist a shortest plan of length greater than nm which is also polynomial, thus
satisfying property 5.2.

40 The State Graph

If the original 3-CNFSat instance accepts then there exists an assignment of
true/false values to the variables x1, . . . , xn. It is then possible to construct a
plan from these assignments. If true (resp. false) is assigned to xi then for every
clause Cj in which xi appears non-negated (negated) the operator assignTi,j
(assignFi,j) is added to the plan, if Cj has not already had an operator added
to the plan. This plan is valid as only one of the operators is used for each
variable xi thus only one of the predicates Ti, Fi becomes true. This generates
a plan of length m as only a single operator is applied for each clause, this
trivially satisfies the nm bound. Also for each clause Cj exactly one assignTi,j
or assignFi,j operator must be in the plan, thus each SATj predicates must
be satisfied. Therefore if the original 3-CNFSat instance accepts then the
constructed PlanLen instance accepts.

Any satisfying plan for the constructed plan existence problem must for each
variable xi use only assignTi,j or assignFi,j operators as the preconditions
and effects ensure that these are mutually exclusive. Also there must be at
least assignTi,j or assignFi,j operator for each Cj in order to satisfy the goal
description. Therefore a satisfying assignment can be constructed from the final
state sg. If Ti (Fi) is in sg then true (false) is assigned to xi. If, for some
xi neither Ti nor Fi appear in sg then it is assigned true or false arbitrarily
as all clauses have satisfied without using the variable. Thus if the PlanLen
problem accepts then the original 3-CNFSat instance accepts. Thus this is a
valid many-one reduction.

By the combination of the problem being both in NP and NP-hard, the PlanLen
problem is NP-complete under property 5.2. Q.E.D.

Corollary 5.4 PlanEx, for planning domains which satisfy property 5.2, is
NP-complete. (Original)

This first property is one of the most essential in this chapter as almost every
restriction from hereon relies on the fact that having plans of polynomially
bounded length makes the problem at most NP-complete. The next property
which will be examined is the following:

Property 5.5 Given a state graph G = (S,E). Every breadth first tree has
polynomially bounded width.

By ensuring both properties 5.2 and 5.5 it is possible to perform automated
planning in polynomial time:

Theorem 5.6 PlanLen, for planning domains which satisfy properties 5.2 and
5.5, is in P. (Original)

5.2 Initial Restrictions 41

Proof. By property 5.2 it is only necessary to look for plans of a length up
to some polynomial of the input size, let this polynomial be p (x). To find
the shortest plan, one simply performs a breadth first search, which terminates
once the depth of the search has reached p (x). By property 5.5 this search has
polynomially bounded width, let this polynomial be q (x). The search therefore
at most examines p (x) q (x) states, which is itself a polynomial. As breath
first search is linear in the number of states visited, this algorithm works in
polynomial time. Once the shortest path (if any) is found, this is compared to
the bound given. Q.E.D.

Corollary 5.7 PlanEx, for planning domains which satisfy properties 5.2 and
5.5, is in P. (Original)

This restriction is a simple, if non-intuitive, way to realise polynomial time
planning in a restriction based upon the state graph. Next some of the easier
results about state graph restrictions will be shown.

5.2 Initial Restrictions

Consider the class of planning problems in which the state graphs consists of
disjoint directed paths of, at most, polynomial length.

Theorem 5.8 PlanEx and PlanLen for planning problems whose state graph
is the union of disjoint directed paths of, at most, polynomial length is in P.

(Original)

Proof. Due to the polynomial length bound property 5.2 holds. Additionally,
as each component of the graph is a directed path, all possible trees in the graph
must be paths. This includes the breath first trees which then have width 1.
This means that property 5.5 holds. Therefore the results of theorem 5.6 and
corollary 5.7 hold. Q.E.D.

This is very much a toy example, as the only planning domains for which this
holds are those where there, in each state, is at most one operator to choose, and
there are never any cycles or exponentially long plans. However, it is possible to
expand upon this. Consider a state graph which is the union of disjoint graphs,
each of which is of polynomially bounded size.

Theorem 5.9 PlanEx and PlanLen for planning problems whose state graph
is the union of disjoint subgraphs, each of, at most, polynomial size is in P.

(Original)

42 The State Graph

Proof. As each disjoint subgraph is of polynomial size, the shortest path
between any two connected vertices must also be of polynomial length, thus
property 5.2 holds. Additionally, as each component of the graph is of polyno-
mial size, all possible trees in the graph are also of polynomial size and therefore,
at most, polynomial width. This again includes the breath first trees, thus prop-
erty 5.5 holds. Again the results of theorem 5.6 and corollary 5.7 therefore hold.
Q.E.D.

This gives a somewhat wider restriction while remaining in P. One example
of planning instances which fall within this restriction are those with very few
fluents, in fact only logarithmically few fluents. A fluent is any STRIPS propo-
sition which occurs in the postconditions of an operator.

Definition 5.10 A proposition p is called a fluent if it occurs in the postcon-
ditions of an operator:

p is a fluent⇔ ∃o ∈ O : p ∈ post (o) ∧ ¬p ∈ post (o) (5.1)

(Ghallab et al., 2004)

This is due to every non-fluent splitting the state graph into two disjoint sub-
graphs. This means that with only logarithmically few fluents, the state graph
becomes a union of exponentially many disjoint subgraphs. As the vertices of
these subgraphs differ only in the fluents, the subgraphs must be of polynomial
size.

5.3 Ordering Restrictions

For the second set of restrictions it is necessary to introduce a total preordering
� ⊆ S2 over the states of the planning domain. This preordering induces a
equivalence relation � ⊆ S2 defined as follows:

a � b ∧ b � a⇔ a � b

Theorem 5.11 � is an equivalence relation. (Original)

Proof. For � to be an equivalence relation it must be reflexive, symmetric
and transitive. It is trivially reflexive (resp. transitive) by the reflexivity (resp.
transitivity) of �. It is symmetric by the commutability of conjunction. Q.E.D.

5.3 Ordering Restrictions 43

Such an equivalence relation naturally gives raise to a set of equivalence classes.
These are part of the restriction defined by the following two properties.

Property 5.12 Given a state graph Sg = (S,A) and a total preordering �. It
must be the case that:

(u, v) ∈ A⇒ u � v ⇔ ¬ (u � v)

Property 5.13 Given a total preordering �, it induces only polynomially many
equivalence classes.

One natural preorder, for STRIPS, which satisfies property 5.13 is the ordering
of the size of the states.

Lemma 5.14 Property 5.13 is satisfied by the total preorder:

a � b⇔ ||a|| ≤ ||b|| for (a, b) ∈ S2

(Original)

Proof. First to prove that � actually is a total preorder it must be transitive
and total. Both of these follow from the transitivity and totality of ≤. The size
of a state s is bounded by the number of predicates in the problem domain:

0 ≤ ||s|| ≤ ||P || (5.2)

From this it follows that there are only ||P || + 1 possible sizes for a state, and
thus that many possible equivalence relations. Q.E.D.

Corollary 5.15 Property 5.13 is satisfied by the total preorder:

a � b⇔ ||a|| ≥ ||b|| for (a, b) ∈ S2

(Original)

With these properties 5.12 and 5.13 it is possible to define another restriction
of planning:

Theorem 5.16 PlanLen for planning problems whose state graph satisfies
property 5.12 using a total preorder which also satisfies 5.13 is NP-complete.

(Original)

44 The State Graph

Proof. To show PlanLen is in NP property 5.12 is used. This ensures that
it is only possible to transition to states which precede the current state in
the total order, by property 5.13 there are only polynomially many of these.
Therefore property 5.2 is satisfied and the result of theorem 5.3 applies.

To then show that PlanLen is also NP-complete the construction from theorem
5.3 is reused and shown to satisfy properties 5.12 and 5.13. The total order used
is the one from corollary 5.15 which has been shown to satisfy 5.13. To show
that property 5.12 is satisfied, it should be noted that the postconditions of all
operators are positive. Thus whenever an operator is applied the state grows in
size, thus satisfying property 5.12. Q.E.D.

Corollary 5.17 PlanEx for planning problems whose state graph satisfies prop-
erty 5.12 using a total preorder which also satisfies 5.13 is NP-complete.

(Original)

Unlike the restriction of theorem 5.8 this restriction includes some of the re-
strictions from chapter 3, in this case the STRIPS+ restriction (and, of course,
any restrictions which are specialisations thereof).

Theorem 5.18 The state graph of any STRIPS+ problem satisfies property
5.12 using a total preorder which also satisfies 5.13. (Original)

Proof. Again the preorder used is that of corollary 5.15, it is therefore only
necessary to show that property 5.12 holds. As the domain, by definition, only
has positive postconditions, any transition is from a smaller state to a larger
state. Therefore property 5.12 holds. Q.E.D.

5.4 Cheating the State Graph

The example require for cheating the state graph restrictions is the most in-
volved example in this report. Essentially the state graph contains all informa-
tion about the planning problem, therefore any change is visible in the state
graph. However, the above restrictions are defined in such a way that they
are independent of the actual operators which are applied and the contents of
the states in which they are applied. This eliminates the possibility of simply
splitting such as in examples 3.2, 3.1 and 3.3, or introducing redundant vari-
ables such as example 4.2. In order to cheat the state graph it is necessary to
introduce redundant edges into the state graph which cause it to fall outside
the above categories, such as a cycle. However, introducing a new edge means

5.4 Cheating the State Graph 45

that new transitions are available in the state graph, which means that entirely
new states are reachable or old states are reachable in fewer steps. The follow-
ing is one example of how such edges may be introduced, it is however, highly
contrived.

Example 5.2 Consider a STRIPS planning domain with a special predicate x
which is known a priori to never appear in the initial state or goal condition.
In addition to this the following two operators exist and are the only place x is
referenced:

TurnOn
Preconditions:
Postconditions: x

TurnOff
Preconditions:
Postconditions: ¬x

These two operators introduce a lot of cycles. This prevents at least the re-
striction of theorem 5.16 from working as no preorder can satisfy property 5.12.
However, it is obvious that x, along with the two operators may simply be
dropped from the domain as they serve no function.

46 The State Graph

Chapter 6

Discussion

A goal without a plan is just a wish.

- Antoine de Saint-Exupery

The previous chapters have shown that it is possible to create restrictions which
limit the computational complexity of automated planning. It has also been
shown how these restrictions may be cheated by constructions which cause a
planning domain to fall outside any restrictions despite the existence of equiv-
alent domains within a restriction. It has indirectly been postulated that such
cheats are easiest to run into in the simple syntactic restrictions, while causal
graph restrictions are harder to cheat and state graph restrictions are the hard-
est to cheat. This is exemplified by the example cheats becoming progressively
more contrived and restrictive as the chapters have unfolded.

What has not been discussed is the ease with which a planning domain may be
either determined and/or engineered to fulfil a certain restriction. Determining
whether a given domain falls within some restriction is important for determin-
ing which planning algorithm should be used to solve a given instance. However,
equally important, is being able to engineer a problem domain to fall within a
given restriction. As especially seen for syntactic restrictions (chapter 3) the
membership of a restriction may critically depend on how certain aspects of the
domain are modelled. If tractable planning is desired, which it essentially always
is, it is necessary to formulate the domain within one of the restrictions. This
is greatly simplified by having restrictions which are intuitively understandable.

48 Discussion

Of course once the planning domain is known, most planning problems, includ-
ing PlanEx and PlanLen, become constant time computable (Ghallab et al.,
2004) simply by looking up the initial state and goal state in a (exponentially
big) lookup table. Of course as such a lookup table is exponential in size, it is
often not realistic to do so.

The previous chapters do give some indication as to the difficulty of developing
an intuitive idea of the problems included in a given restriction. The first of these
are found in the text surrounding the actual restrictions. Here it is clear that
for some restrictions it is significantly easier to describe what kind of planning
domains fall within a given restriction. In fact for syntactic restrictions this is
practically self-evident, where, in the other extreme, the intuitive descriptions
for the state graph restrictions are rather abstract. The other hint comes from
the ease with which the cheating examples are constructed. The more construed
these examples are, the harder, in general, it is to engineer a planning domain to
fulfil the restriction. Both of these indicators point to the state graph restrictions
being the hardest to work with, syntactic restrictions the easiest, and causal
graph restrictions lying somewhere in between.

Another aspect which has not been discussed in the preceding chapters, is the
use of these restrictions in heuristic planning. Both the original Heuristic Search
Planner (HSP) (Bonet and Geffner, 2001) and the slightly later Fast Forward
(FF) (Hoffmann and Nebel, 2001) planning systems rely on solving, or partially
solving, a simplified version of the original problem to heuristically guide the
search for a proper solution. In fact the causal graph was used by Helmert
(2004) to develop a planning heuristic later used in the Fast Downward (FD)
planning system (Helmert, 2006) based upon the FF planning system. The
concept of these systems is to derive a heuristic for planning automatically
by taking the original planning domain and the removing features such that
the resulting domain is tractable. This process is called relaxing. A common
approach to relaxing a problem is to drop any negative postconditions from
STRIPS domains, this means that the resulting domain is in the STRIPS+

which, though not quite tractable, is at least easier than unrestricted planning.
It has not been examined whether the state graph restrictions herein, or found
subsequently, may be used in a similar manner. However, it is conjectured here
that this will be hampered by the state graph being exponential in size making
it hard to computationally verify that the required restrictions are satisfied. Of
course it may be possible to express restrictions based on attributes of the state
graph which may be computed efficiently on a succinct representation of the
state graph. This is in general beyond the scope of the project.

6.1 Further Work 49

6.1 Further Work

From this point several interesting avenues of future research present themselves.
Two of the obvious ones have been pointed out already above. The first is to
find more restrictions based upon the state graph and the other is to determine
whether some of these state graph restrictions may be used to guide a heuristic
search.

Another area which may be studied are the so called Interaction Networks intro-
duced recently by Chen and Giménez (2010). These networks are closely related
to the causal graphs but carry some additional information. Already it is known
that some problems which cannot be classified as tractable using causal graphs
may be classified as tractable using interaction networks (Chen and Giménez,
2010) in particular STRIPS planning without preconditions. Here again it may
be worthwhile to find additional restrictions and, given the success of the FD
planning system and its causal graph based heuristic, examine whether it is
possible to create a more accurate heuristic using the interaction network.

50 Discussion

Chapter 7

Conclusion

He who fails to plan, plans to fail.

- Proverb

This project set out with the goal of expanding both the set of currently known
restrictions of automated planning and the ways in which such restrictions are
found. It was decided to do this by examining the state graph of planning do-
mains. This had the advantage of the results being applicable to a large range
of planning problems despite differences in formalism, as most formalisms have
a natural mapping to a state graph. Not only this, but the resulting restric-
tions seem to be more robust against trivial changes to the problem domain’s
formulation.

The actual results consist of two abstract but not particularly useful properties
which achieve NP-complete and P complexities. These two properties are then
used to show two more concrete properties which also lead to restrictions with
NP-complete and P complexities.

Thus it has been shown that not only is it possible to define restrictions of au-
tomated planning based upon the state graph, but that such restrictions have
advantages compared to simple syntactic restrictions and causal graph restric-
tions.

52 Conclusion

List of Figures

2.1 Three simple planning states. 8

3.1 The relationship between the complexities of PlanEx for the
various restrictions of STRIPS planning. 18

3.2 The relationship between the complexities of PlanLen for the
various restrictions of STRIPS planning. 20

3.3 The relationship between the complexities of plan existence (plan
length) for the various restrictions of SAS+ planning. 27

4.1 The causal graph for example 4.1. 32

4.2 The causal graph for example 4.2. 35

5.1 The state graphs for example 5.1. 38

54 LIST OF FIGURES

List of Tables

3.1 The complexity of PlanEx for the most common restrictions of
propositional STRIPS. 19

3.2 The complexity of PlanLen for the most common restrictions
of propositional STRIPS. 20

3.3 The complexity of the most common restrictions of SAS+. 26

56 LIST OF TABLES

Bibliography

Christer Bäckström. Expressive equivalence of planning formalisms. Artif. In-
tell., 76(1-2):17–34, 1995.

Christer Bäckström and Peter Jonsson. All PSPACE-Complete Planning Prob-
lems Are Equal but Some Are More Equal than Others. In Daniel Borrajo,
Maxim Likhachev, and Carlos Linares López, editors, SOCS. AAAI Press,
2011.

Christer Bäckström and Bernhard Nebel. Complexity Results for SAS+ Plan-
ning. Computational Intelligence, 11:625–656, 1995.

José L. Balcázar. The Complexity of Searching Implicit Graphs. Artif. Intell.,
86(1):171–188, 1996.

Blai Bonet and Hector Geffner. Planning as heuristic search. Artif. Intell., 129
(1-2):5–33, 2001.

Ronen I. Brafman and Carmel Domshlak. Structure and Complexity in Planning
with Unary Operators. J. Artif. Intell. Res. (JAIR), 18:315–349, 2003.

Tom Bylander. Complexity results for planning. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, volume 1, pages 274–
279, 1991.

Tom Bylander. The Computational Complexity of Propositional STRIPS Plan-
ning. Artif. Intell., 69(1-2):165–204, 1994.

Hubie Chen and Omer Giménez. Causal graphs and structurally restricted
planning. J. Comput. Syst. Sci., 76(7):579–592, November 2010. ISSN 0022-
0000.

58 BIBLIOGRAPHY

Carmel Domshlak and Yefim Dinitz. Multi-agent off-line coordination: Struc-
ture and complexity. In Proceedings of the 6th European Conference on Plan-
ning, pages 277–288, 2001.

Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, Decidability
and Undecidability Results for Domain-Independent Planning. Artif. Intell.,
76(1-2):75–88, 1995.

Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: Theory
and Practice. Morgan Kaufmann, Amsterdam, 2004. ISBN 978-1-55860-856-
6.

Omer Giménez and Anders Jonsson. The complexity of planning problems with
simple causal graphs. J. Artif. Intell. Res. (JAIR), 31(1):319–351, February
2008. ISSN 1076-9757.

Omer Giménez and Anders Jonsson. Planning over Chain Causal Graphs for
Variables with Domains of Size 5 Is NP-Hard. J. Artif. Intell. Res. (JAIR),
34:675–706, 2009.

Malte Helmert. A Planning Heuristic Based on Causal Graph Analysis. In
Shlomo Zilberstein, Jana Koehler, and Sven Koenig, editors, ICAPS, pages
161–170. AAAI, 2004. ISBN 1-57735-200-9.

Malte Helmert. The Fast Downward Planning System. J. Artif. Intell. Res.
(JAIR), 26:191–246, 2006.

Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan
Generation Through Heuristic Search. J. Artif. Intell. Res. (JAIR), 14:253–
302, 2001.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: a modern approach.
Prentice Hall, 2nd international edition edition, 2003. ISBN 9788129700414.

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Structure of the Report

	2 The Complexity of Planning
	2.1 STRIPS Formalism
	2.2 SAS+ Formalism
	2.3 Plans
	2.4 Computational Problems

	3 Syntactic Restrictions
	3.1 STRIPS Restrictions
	3.2 SAS+ Restrictions
	3.3 Results on Syntactic Restrictions

	4 The Causal Graph
	4.1 Chain Causal Graphs
	4.2 Polytree Causal Graphs
	4.3 Cheating the Causal Graph

	5 The State Graph
	5.1 Basic Restrictions
	5.2 Initial Restrictions
	5.3 Ordering Restrictions
	5.4 Cheating the State Graph

	6 Discussion
	6.1 Further Work

	7 Conclusion

