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Abstract Not all interest points are equally interesting. The
most valuable interest points lead to optimal performance
of the computer vision method in which they are employed.
But a measure of this kind will be dependent on the chosen
vision application. We propose a more general performance
measure based on spatial invariance of interest points un-
der changing acquisition parameters by measuring the spa-
tial recall rate. The scope of this paper is to investigate the
performance of a number of existing well-established inter-
est point detection methods. Automatic performance evalu-
ation of interest points is hard because the true correspon-
dence is generally unknown. We overcome this by provid-
ing an extensive data set with known spatial correspondence.
The data is acquired with a camera mounted on a 6-axis in-
dustrial robot providing very accurate camera positioning.
Furthermore the scene is scanned with a structured light
scanner resulting in precise 3D surface information. In total
60 scenes are depicted ranging from model houses, build-
ing material, fruit and vegetables, fabric, printed media and
more. Each scene is depicted from 119 camera positions and
19 individual LED illuminations are used for each position.
The LED illumination provides the option for artificially re-
lighting the scene from a range of light directions. This data
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set has given us the ability to systematically evaluate the per-
formance of a number of interest point detectors. The high-
lights of the conclusions are that the fixed scale Harris cor-
ner detector performs overall best followed by the Hessian
based detectors and the difference of Gaussian (DoG). The
methods based on scale space features have an overall bet-
ter performance than other methods especially when varying
the distance to the scene, where especially FAST corner de-
tector, Edge Based Regions (EBR) and Intensity Based Re-
gions (IBR) have a poor performance. The performance of
Maximally Stable Extremal Regions (MSER) is moderate.
We observe a relatively large decline in performance with
both changes in viewpoint and light direction. Some of our
observations support previous findings while others contra-
dict these findings.

Keywords Benchmark data set - Interest point detectors -
Performance evaluation - Object recognition - Scene
matching

1 Introduction

The ability to evaluate image similarity is found at the core
of a wide range of computer vision problems, where lo-
cal interest points provide a computational attractive repre-
sentation for similarity measures. This has made methods
for detecting interest points popular in many applications.
The ability to match descriptors obtained from local interest
points is based on the assumption that it is possible to find
common interest points. For this to be useful for geometric
reconstruction and similar applications, corresponding inter-
est points have to be localized precisely on the same scene
element, and the associated region around each interest point
should cover the same part of the scene.
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Fig. 1 Example of data and setup. Two images of the same scene with
(a) one close up, (b) one distant from the side, and (c) the reconstructed
3D points. Illustration (d) of corresponding images with known geo-
metric information including camera positions and 3D scene surface

The range of applications based on matching local im-
age descriptors obtained from interest points includes ob-
ject recognition (Lowe 2004), image retrieval (Nister and
Stewenius 2006; Sivic and Zisserman 2006), and similar.
For these types of applications the precision of the spa-
tial position may appear less important. Often the relative
spatial layout of interest points are used together with a
tolerance for large variations in the corresponding points
relative positions (Sivic et al. 2005). However in applica-
tions for 3D geometry reconstruction from interest points
it is paramount to have a precise point correspondence
(Snavely et al. 2008a, 2008b; Torr and Zisserman 1999;
Furukawa and Ponce 2007).

It is common to distinguish between detecting interest
points and computing the associated descriptor needed in
order to evaluate similarity. This could indicate that the two
steps are independent, see e.g. Mikolajczyk and Schmid
(2005), Mikolajczyk et al. (2005). The question is, however,
if this assumption of independence is reasonable. Interest
points and the associated regions are found from salient im-
age features, and the same image features will be part of
the actual characterization. As a result the two parts are not
completely independent, and the choice of interest point de-
tector being a function of local image structure will influ-
ence the description of the region around the interest point.
This will limit the subspace spanned by the descriptors and
in this way reduce the specificity of the descriptor. We how-
ever, choose to focus on the detection step in order to avoid
a complicated system where it is difficult to separate the ef-
fects of the different parts. An alternative to feature based in-
terest points would be to pick the interest points at random,
but it will be unlikely to obtain precise spatial correspon-
dence between a sparse set of randomly picked points. The
ability to detect corresponding interest points, in a precise
and repeatable manner, is a desirable property for obtaining
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geometric scene structure. In this paper we will investigate
exactly that property.

In general it is however hard to verify if correspondence
exists between interest points, because it requires ground
truth of the geometry of the observed scene.

Early work on correspondence from interest points and
descriptors was based on rotation and scale invariant char-
acterization (Lowe 2004; Schmid and Mohr 1997). Schmid
et al. (2000) evaluated interest point detectors applied only
to planar scenes. Later the interest points have been adapted
to be invariant to affine transformation—an approximation
to perspective distortion—thereby in principle making the
characterization robust to large changes in viewpoint. These
methods have been compared in Mikolajczyk et al. (2005),
but the performance has been evaluated on quite limited
data sets, consisting of eight scenes each containing six im-
ages. Furthermore, changes in viewing conditions are cou-
pled with the scenes in that only two of the scenes are used
for each viewing condition. However, the suggested evalu-
ation criteria have since been used in numerous works to-
gether with this small data set.

The ground truth in the data from Mikolajczyk et al.
(2005) was obtained by semi-manually fitting an image ho-
mography. As a consequence this limits the scene geometry
to planar surfaces or images from a large distance where a
homography is a good approximation. To address this is-
sue Fraundorfer and Bischof (2004, 2005) generated ground
truth by requiring that matched points should be consis-
tent with the camera geometry across three views. In their
study they investigate the same detectors as Mikolajczyk
et al. (2005), but includes also the difference of Gaussian
(DoG), Harris and Hessian detectors. Winder et al. (Hua
et al. 2007; Winder et al. 2009; Winder and Brown 2007;
Brown et al. 2011) studies the design of descriptors us-
ing results from Photo Tourism (Snavely et al. 2008a) as
ground truth. Winder et al. only considers the DoG detec-
tor as implemented in the SIFT descriptor and a multi-scale
Harris corner detector. Both the approaches of Fraundorfer
and Bischof and Winder et al. use point matching to create
ground truth which can be used to evaluate the matching of
interest points. This can be problematic; if errors occur in the
ground truth there can be a bias towards wrong correspon-
dences in the proposed matching. As a result these wrong
correspondences will not be detected.

Moreels and Perona (2007) evaluated interest point de-
tectors and descriptors in a similar manner to the work of
Fraundorfer and Bischof (2004, 2005) based on pure ge-
ometry by requiring three view geometric consistency with
the epipolar geometry. They used an additional depth con-
straint based on knowledge about the position of their ex-
perimental setup. Hereby they obtained unique correspon-
dence between 500-1000 interest points from each object.
The studied detectors has an overlap with the previously
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mentioned studies, but also including the Forstner detector
(Forstner 1986) and the Kadir-Brady detector (Kadir et al.
2004). Their experiments also include limited changes in il-
lumination in the form of 3 different lighting conditions. The
focus of this study is different from ours in that Moreels and
Perona (2007) consider the problem of object recognition,
whereas we consider the problem of 3D reconstruction. In
object recognition precise localization is not as important as
in 3D reconstruction. Furthermore, a full recognition frame-
work is needed in order to perform their evaluation, mak-
ing it more difficult to separate the effects of different parts
of the system, e.g. separate the effect of a particular choice
for interest point detector from the choice of descriptor. The
limitation of their experiment lies in relatively simple scenes
with mostly single objects resulting in little self-occlusion.
However, self-occlusion occurs very frequently in real world
scenes and typically many interest points are found near oc-
clusion boundaries.

We have compiled a large data set that provides a unique
basis for this study. It consists of 60 scenes of varying object
types, materials, and complexity of surface structures result-
ing in a total of 136,660 images. Figure 1 shows an example
from our data set. The experimental setup consists of a cam-
era mounted on an industrial 6-axis robot-arm, providing ac-
curate and repeatable positioning. The scene is illuminated
by 19 LED light sources. We capture an image with a single
light source turned on, which allows us to do synthetic scene
relighting in a controlled manner with a wide range of illu-
mination scenarios simulating both indoor and outdoor en-
vironments. This is particularly relevant for studying perfor-
mance of applications such as object recognition and image
retrieval as well as computer vision applications in outdoor
environments and under temporally changing lighting con-
ditions. In addition, the scenes have been surface scanned
using structured light, and, together with the camera posi-
tions, these scans supply ground truth for correspondence
evaluation. As a result we can easily find corresponding in-
terest points on the scene surface.

We evaluate ten established interest point detectors on
this data set and provide new insight into the stability
of these detectors with respect to large viewpoint and
scale change as well as changes to the illumination condi-
tions. The chosen detectors are Harris, Harris-Laplace, and
Hessian-Laplace detectors and their two affine extensions—
Harris-Affine and Hessian-Affine (Mikolajczyk and Schmid
2004; Mikolajczyk et al. 2005), Maximally Stable Ex-
tremal Regions (MSER) (Matas et al. 2004), Intensity Based
Regions (IBR) and Edge Based Regions (EBR) (Tuyte-
laars and Van Gool 2004), the Fast corner detector (FAST)
(Trajkovi¢ and Hedley 1998), and the difference of Gaussian
detector (DoG) (Crowley and Parker 1984; Lindeberg 1993;
Lowe 1999, 2004). We recognize that this collection of
detectors might not represent the complete state of the

art and certainly does not cover all categories of ap-
proaches. However, they are all well-established methods
commonly used in the computer vision literature and cor-
responds well with methods chosen in previous compara-
tive studies (Schmid et al. 2000; Mikolajczyk et al. 2005;
Mikolajczyk and Schmid 2005).

All methods investigated in this study are based on some
form of extrema or zero crossing search in functionals of
filter responses, and as such fall into what we could call
the filter based category of detectors. In the interest of
keeping the study focused and provide results compara-
ble with previous comparative studies, we have opted not
to include statistical or learning based approaches such as
likelihood based approaches (Konishi et al. 2003a, 2003b;
Laptev and Lindeberg 2003; Ren and Malik 2002; Ren
et al. 2008), feature learning (Lillholm and Griffin 2008;
Griffin et al. 2009), or outlier detection approaches (Lill-
holm and Pedersen 2004). Neither do we include methods
based on more elaborate differential geometric definitions
such as top points (Johansen et al. 1986, 2000; Nielsen and
Lillholm 2001; Demirci et al. 2009).

1.1 Overview of Studied Detection Methods

The Harris corner detector was originally developed by Har-
ris and Stephens (1988), but we use the scale-adapted Har-
ris detector presented by Mikolajczyk and Schmid (2004).
The Harris corner detector finds extrema in a corner mea-
sure based on the second moment matrix computed at fixed
differentiation and integration scales, and tends to detect
corner-like image structures. The Harris-Laplace (Miko-
lajczyk and Schmid 2004) detector is an extension of
the scale-adapted Harris detector including scale selection
based on extrema search in the Laplacian of Gaussian filter,
an approach originally introduced by Lindeberg (1998b).
The Hessian detector (Mikolajczyk et al. 2005) is based
on extrema search in feature measures constructed from
the Hessian matrix and its Laplacian extension includes the
same scale selection approach of the Harris-Laplace detec-
tor. The Hessian detector tend to find blobs and ridges and
was originally proposed by Lindeberg (1998b, 1998a). The
affine extensions of both the Harris and Hessian detectors
are based on the affine detection algorithm developed by
Mikolajczyk and Schmid (2004), which estimate the affine
shape of the interest point region using the second moment
matrix. The DoG detector (Lowe 1999) is to some extent
similar in spirit to the Hessian detector, because it approx-
imates the Laplacian of Gaussian filter, which can be com-
puted as the trace of the Hessian matrix. DoG tends to find
interest points at isotropic blob structures.

In the EBR detector proposed by Tuytelaars and Van
Gool (2004), both Harris corners and Canny edges (Canny
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1986) are detected at multiple scales. From the Harris cor-
ner an affine region is extracted by tracing edges emanat-
ing from the corner point based on extrema search in a one-
parameter family of functions of intensity moments.

The FAST corner detector proposed by Trajkovi¢ and
Hedley (1998) finds interest points by evaluating which of
three types of image primitives the local image structure be-
longs to. This evaluation is based on intensity differences
at crossing points between circles and lines emanating from
the proposal point. The algorithm only use a limited set of
scales, here represented by the radii of the circles surround-
ing the proposal point. This in effect should make this de-
tector less invariant to scale changes.

MSER (Matas et al. 2004) and IBR (Tuytelaars and Van
Gool 2004) are similar in spirit in that they produce regions
around extremal intensities and both methods are affine in-
variant. IBR starts from points of local intensity extrema and
detects region boundaries by tracing lines out from these
points and finding extrema of a function of intensity dif-
ferences along the lines. MSER detects region boundaries
based on intensity thresholding.

We use the reference implementations provided by Lowe
(2004), Mikolajczyk and Schmid (2005), Mikolajczyk et al.
(2005), and will therefore not give further details of these
methods but instead refer the reader to the papers describing
the methods.

2 Contributions

The contributions of this paper are:

1. A comprehensive data set for precisely evaluating invari-
ance properties of computer vision methods, especially
with focus on geometry and recognition. The data set is
freely available at our web site. !

2. A method for evaluating interest point detectors together
with an evaluation of the ten most popular interest point
detectors.

3. We evaluate the effect of view point and scale change as
well as change in illumination, including both diffuse and
directed lighting. Our study of the effect of illumination
changes on interest point detectors are more comprehen-
sive than previous studies (Moreels and Perona 2007).

4. Our major conclusions are:

(a) that scale space based interest point detectors show
the best performance—the exception being the fixed
scale Harris corner detector which perform well, ex-
cept not surprisingly in cases of large scale varia-
tions.

Uhttp:/roboimagedata.imm.dtu.dk.
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(b) Large changes in view point angle and directional
lighting has a devastating effect on the performance
of the investigated methods. Especially, it seems that
invariance to changing illumination conditions is an
unsolved problem.

(c) Contrary to previous claims in the literature (Mikola-
jezyk and Schmid 2004; Matas et al. 2004; Mikolaj-
czyk et al. 2005), affine invariance has only little in-
fluence on the performance of interest point detec-
tors, but it should be noted that such a contribution
may occur when also taking interest point descrip-
tors into account as part of the matching procedure.

(d) Some of our results contradicts previous reported
findings (Fraundorfer and Bischof 2004; Mikolaj-
czyk et al. 2005) for some of the studied methods
(see Sect. 6 for details). The main reason being that
our data set is more realistically challenging than the
previously used data sets.

This paper is an extension of our previous work published
in Aanes et al. (2010) including the details of the performed
study as well as on the data set. Specifically, we have added
the difference of Gaussian (DoG) detector to the study of
interest point detectors under variation of view angle and
distance to scene. Furthermore, we have added an analysis
of the variation of the reported recall rate. Besides this we
have also added an extensive study of the performance of the
detectors with respect to varying illumination conditions. As
a consequence we are able to answer several of the open
questions posed in our previous conference paper.

The long-term goal of this study is to highlight successful
approaches for interest point detection as well as identify
potential avenues for future research in this area.

3 Data

The setup for data acquisition is illustrated in Fig. 2, and a
detailed description of the data is available in Aanes et al.
(2009). The entire setup is enclosed in a black box and the
scenes can be up to about half a meter, but the closest im-
ages depict about 25 x 35 cm. Scenes have been selected
to show a large variation in scene type and they contain ele-
ments that are challenging for computer vision methods, like
occlusions and various surface reflectance properties. There
are 60 scenes with varying type of material and reflectance
properties, including model houses, fabric, fruits and vegeta-
bles, printed media, wood branches, building material, and
art objects. Image examples are shown in Fig. 3.

Color images of 1,200 x 1,600 pixels have been ac-
quired, but for computational reasons we use 600 x 800
down-sampled versions in grayscale. The conversion to gray
scale was done by I, = 0.2991g + 0.5871g + 0.1141p,
where I, is the gray scale intensity and I{g ¢, ) is the red,
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green and blue intensity, respectively. We have preprocessed
the images to account for lens distortion by a warp based on
bilinear interpolation. We also removed dark current noise
by acquiring a dark frame with the same camera settings
and subtracting it from the other frames.

Camera Positions For each scene we have acquired im-
ages from a precisely predefined camera path as illustrated
in Fig. 4. This is possible because we employ a camera
mounted industrial robot. The path is chosen relative to a
central image position, which we refer to as the key frame.
Our experiments are conducted with the key frame as a ref-
erence, so we compare all interest points found in other im-
ages to the key frame. An aim has also been to obtain the
best 3D reconstruction of the scene when viewed from the
key frame.

We have chosen a horizontal trajectory, so all positions
are in the same plane, and for the house scenes this simulates
a street view. This is chosen to avoid the robot shadowing
the LEDs that are mounted in the roof. This setup provides
a very accurate positioning of the camera with a standard
deviation of approximately 0.1 mm. This corresponds to a
standard deviation of 0.2-0.3 pixels when the point is back
projected onto the images.

We have chosen 119 positions to have a dense sampling,
which gives the opportunity for accurate evaluation of in-
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Fig. 2 Illustration of data collection setup. The camera (a) is mounted
on a robot arm (b) capturing images of the scene. (¢) LED point light
sources illuminate the scene from 19 individual positions. (d), (e) pho-
tos of the experimental setup

variance properties of a method in relation to camera po-
sitions. In our first interest point evaluation experiment we
have used all 119 positions, but such a dense sampling is in
some cases not necessary. We have consequently chosen a
subset of the positions for the light variation experiment.

Lighting The ability to evaluate detector methods robust-
ness to light changes has been a central element in the design
of our data acquisition setup. We have therefore chosen to
use 19 individually controlled light emitting diodes (LEDs),
which can be combined to provide a highly controlled and
flexible light setting using image based relighting methods
(see e.g. Einarsson et al. 2006; Haeberli 1992). Details and
illustration of the setup is found in Fig. 5 and Table 1. The
scene relighting is done by a linear combination of the di-
rectional illuminated images. We illuminate the scene ac-
cording to a point, which gives us the light direction, and
we use a Gaussian to weight the individual images. Choos-
ing a large Gaussian will give a highly diffuse relighting,
whereas a small Gaussian gives a directional relighting. An
image Ix at position x is estimated by the linear combina-
tion Iy = > i, w;l;, where the weight w; is found by the

%2 ,
&i=X7) and the scalar ¢ is chosen

Gaussian w; = cexp(— o

such that ) /_, w; = 1. o is the parameter controlling the
size of the Gaussian. In our directional relight experiment
we choose o = 20 and we used 19 LEDs (n = 19), and in
our diffuse light experiment we choose to average all LEDs.
It is important to note that the purpose of the relighting setup
is to have controlled and repeatable relighting of the scenes.
We did not strive at modeling a light source at approximate
infinite distance, like the sun. Neither did we account for
the distance of the diodes to the scene where the diodes just
above the scene contribute with more light than the diodes at
the sides. But the repeatability of the setup provides us with
the same illumination for all scenes and simultaneously it
provides a realistic light variation. The relighting has been
done both from right to left and from back to front to illus-
trate the sensitivity of the investigated interest point detec-
tors to changing lighting.

Surface Reconstruction We use structured light to obtain
3D surface geometry of the scenes. Figure 6 shows the setup

Fig. 3 Example images from our data set. The images show a diffuse
relighting obtained by a linear combination of the 18 directional illu-
minated images. From left the scenes are examples of houses, books,

fabric, greens, and beer cans, which have been used in our feature
matching experiment with light variation

@ Springer
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Fig. 4 Camera positions. The camera is placed in 119 positions in
three horizontal arcs and a linear path away from the scene. The central
frame in the nearest arc is the key frame, and the surface reconstruction
is attempted to cover most of this frame. The three arcs are located on
circular paths with radii of 0.5 m, 0.65 m and 0.8 m, which also defines
the range of the linear path. Furthermore, Arcl spans £40°, Arc2 £25°
and Arc3 +20°

for 3D surface reconstruction and an example of the point
set data we obtain. The surface reconstruction is based on a
stereo setup, and we use a binary stripe pattern to find cor-
respondence between images. This method is recommended
as one of the most reliable methods in both Scharstein and
Szeliski (2003) and Salvi et al. (2004). We reconstruct the
scene with a stereo pair from two distances to the scene
to optimally cover the scene seen from the key frame. The
obtained surface point sets contained outliers that were al-
most entirely single points with a large distance to all other
points. They were easily removed by eliminating points with
less than 3 other points within a distance of 1 mm. We ob-
tain a varying number of surface points ranging from around
100,000 to 500,000 points depending on the size of the
scene. The cleaned point sets are used directly in our match-
ing procedure, so we avoid generating a triangular mesh,
which could cause a bias in our performance estimates.

We verified the precision of the structured light recon-
struction using a white spherical object—a bowling ball
painted with white diffusive paint, and we measure the dis-
tance from the center of sphere to the surface. This gave an
estimate of the surface reconstruction in the normal direction
of the sphere. The advantage of a sphere is that it reveals er-
ror in all directions. We repeated the reconstruction of the
sphere 10 times and we moved the projector between each
scan. This gave a standard deviation of the radius estimate of
0.15 mm corresponding to a standard deviation of less than
0.6 pixels.

@ Springer

Fig. 5 (a) light stage setup seen from above and (b) example images
with light from left to right. The layout of the light setup is illustrated
with the red circles showing the positions of the white LEDs. The axis
shown in (a) are in cm to illustrate the actual size of the setup, and
azimuth and elevation angles can be seen in Table 1. The camera is
placed to the left and an image is taken with one diode illuminated at
a time. The crosses indicate relight sampling points from left to right
(blue) and back to front (black). The images are weighted according
to a Gaussian as shown with the green dots around the green cross.
A large Gaussian will give more diffuse lighting whereas a small will
give directional

Table 1 Azimuth (¢) and elevation (0) angles in degrees for all LEDs.
The center of the coordinate system is the surface of the table where
the scenes are placed

LED # 6 é LED # 9 é
1 264° 57° 11 28° 86°
2 277° 57° 12 10° 80°
3 227° 68° 13 6° 74°
4 245° 72° 14 125° 65°
5 270° 73° 15 109° 68°
6 297° 72° 16 89° 69°
7 314° 68° 17 69° 68°
8 174° 74° 18 53° 64°
9 170° 80° 19 97° 56°

10 152° 86°

4 Method

Our goal is to analyze invariance properties of interest points
found in corresponding images. The design of our data set
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Fig. 6 Surface reconstruction is done with the setup shown in (a). We
use a projector (left) to project a stripe pattern onto the scene (right),
and we acquire images from four positions (middle). In (b) two stripe
image examples are shown together with the reconstructed 3D point
set (right)

enables us to answer questions like how do interest point
detectors perform under change in view point? How many
of the interest points are actually relevant? Are the detected
interest points precisely located? Answers to these and re-
lated questions will provide an improved basis for choosing
the appropriate methods for extracting interest points during
computer vision system design. We will now provide the de-
tails of our analysis.

4.1 Evaluation Criteria

Evaluation of the performance of interest point detectors
cannot be based on the associated descriptor, because the
descriptors might not be unique. As a result it is impossible
to tell if a given correspondence between similar looking im-
age regions is correct or a mismatch. Therefore the evalua-
tion has to be done independently of the interest point detec-
tion. Evidence for interest point correspondence is therefore
obtained by fulfilling three criteria. We utilize the geome-
try of both the 3D scene surface and the camera positions to
obtain this independent evaluation basis. Our evaluation cri-
teria, with regard to pixel distances and scale, are based on a
trade-off between as few double matches as possible and not
eliminating points because of small variations in position of
the interest points.

For each point in the key frame there has to be at least one
interest point in the corresponding image fulfilling all three
criteria, for the point to count as having a potential match.
If more than one point fulfill all criteria it still counts as one
potential match.

Epipolar Geometry Consistency with epipolar geometry
is the first evaluation criterion. The camera positions of

2 x scale

0.5 x scale

Fig. 7 Matching criteria for interest points. This figure gives a
schematic illustration of a scene of a house and two images of the
scene from two viewpoints. (a) The consistency with epipolar geome-
try, where corresponding descriptors should be within 2.5 pixels from
the epipolar line. (b) Window of interest with a radius of 5 pixels and
corresponding descriptors should be within this window, which is ap-
proximately 3 mm on the scene surface. Ground truth is obtained from
the surface geometry. (¢) The scale consistency, where corresponding
descriptors are within a scale range factor of 2 from each other

all images in our data set are known with high preci-
sion, which provides a basis for the relationship between
points in one image and associated epipolar lines in another.
This is used for removing false matches for a given inter-
est point. We eliminate points that are further away than
2.5 pixels orthogonal to the epipolar line, as illustrated in
Fig. 7(a).

The distance used for evaluating the epipolar constraint
was computed as the back projection error of the estimated
3D point, corresponding to the match pair and their associ-
ated cameras, based on the Marquardt algorithm. It is noted
that even though this 3D point estimate might be noisy, due
to a very poor depth baseline ratio, this noise is due to unob-
servability and would as such nor have an effect on the back
projection error. This uncertainty of the 3D point estimate
for short baselines is also the reason for excluding the esti-
mate from the evaluation, e.g. as a distance to the structured
light scan. Note also, that the back projection error is equal
to the distance to the epipolar line, because for two cameras
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this is the only source of back projection errors after it has
been minimized.

Surface Geometry 3D surface reconstruction is used in
the second evaluation criterion. Two points are considered
a positive match if their 3D position is close to the scene
surface obtained from the structured light reconstruction.
This is fulfilled if there is a point from the surface re-
construction within a window of 10 pixels around a point,
which corresponds to a box of approximately 6 mm on the
scene surface. The surface reconstruction is not complete,
so points in regions without surface reconstruction are dis-
carded. However, only few points were removed due to this
criterion. The surface geometry constraint is illustrated in
Fig. 7(b).

Absolute Scale A region around each interest point pro-
vides the basis for an image descriptor. The interest points
are detected in a multi-scale approach and the size of this
region is dependent on what scale the interest point is de-
tected. This image region corresponds to an area on the
scene surface and corresponding descriptors should cover
the same scene part. This area correspondence provides the
basis for the third evaluation criterion, which is illustrated in
Fig. 7(c), and the area of this region has to be within an area
factor range of 0.5-2 of each other.

Parameter Choice The motivation behind the parameters
used in our evaluation criteria is as follows: The image dis-
tance used for epipolar geometry is based on allowing for
some inaccuracy in the interest point localization caused by
image noise. 2.5 pixels is a standard setting for epipolar ge-
ometry threshold in a tracking algorithm corresponding to
a variance of pixel position of a little more than 1.5 pixels
(Hartley and Zisserman 2003). The distance used for the sur-
face geometry also accounts for the effects of image noise,
and the interpolation error between structured light points
and the noise on the structured light points themselves. The
latter was quantified by scanning objects of known geom-
etry as described in Sect. 3. The threshold used for abso-
lute scale was based on an expectation of the scale differ-
ence where a descriptor would obtain a similar character-
ization. To empirically validate that the tradeoff between
false negatives and false positive was good and without ap-
parent biases between detector types, we visually inspected
multiple samples of interest point correspondences. In ad-
dition we counted the number of interest points a detector
was matched to, where multiple matches indicated the false
positive rate. Relaxing the thresholds too much would give
many multiple matches, and harsh thresholds would give
very few matches, indicating a high false negative rate. We
found few double matches using the chosen parameter set-
tings.
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5 Experiments

We evaluate the performance of the ten interest point detec-
tors using the recall rate, similar to the one used in Mikolaj-
czyk and Schmid (2005), which is the ratio

Potential Matches
Total Interest Points

Recall =

The potential matches are points from the key frame fulfill-
ing all three correspondence criteria. The total number of
interest points is the number of interest points found in the
key frame, see Fig. 4.

We have chosen the recall rate as a performance measure,
because it measures the proportion of the interest points in
the key frame that has a corresponding interest point in the
compared frame. This measure is to some extent indepen-
dent of the number of interest points detected in the key
frame, because it measures the proportion of points. A very
large number of interest points might give random corre-
spondences, but it will be unlikely that random points ful-
fill all three correspondence criteria. If we were to measure
the actual 3D precision of the interest points, we would first
have to identify corresponding interest points, e.g. by apply-
ing the proposed three criteria, and then measure the dis-
tance of the interest points. Taking the uncertainty of the
surface scan and the camera calibration into account, it is
questionable if this distance measure will be accurate. Fur-
thermore, if interest points are unprecisely found, a propor-
tion will fall outside the correspondence criteria, and conse-
quently the recall rate will to some extent also measure the
precision of the 3D points. Based on this we have found the
recall rate to be a good measure of performance.

Methods for interest point detection should ideally iden-
tify the same scene regions independently of camera posi-
tion and illumination. As a result we have investigated the
recall rate of the interest point detectors relative to variation
in camera position and lighting over the 60 scenes in our data
set. Furthermore, we have varied the input parameters for the
methods to test if the algorithms are sensitive to parameter
variation. First we will look at the detected number of inter-
est points with the recommended parameter settings accord-
ing to Lowe (2004), Matas et al. (2004), Mikolajczyk and
Schmid (2004, 2005), Mikolajczyk et al. (2005), Trajkovi¢
and Hedley (1998), and Tuytelaars and Van Gool (2004).

Number of Interest Points A varying number of interest
points are detected in each data set, but this is highly de-
pendent on the detection algorithm and the depicted scene.
Table 2 and Fig. 8 shows the number of interest points and
the standard deviation relative to the 60 scenes, where in-
terest points have been extracted with the recommended pa-
rameter values. Some variation in number of interest points
is expected, because of scene variation, but there is a note-
worthy difference between the methods.
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Table 2 Average number of interest points detected and the standard
deviation over the 60 scenes

Detector # Interest points Std. interest points
Harris 925 665
Harris Laplace 736 538
Harris Affine 718 524
Hessian Laplace 1045 635
Hessian Affine 839 560
MSER 354 261
EBR 423 614
IBR 250 139
FAST 1539 1644
DoG 2236 1574

Number of points Normal scale
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Fig. 8 Number of points in each scene for the different detector types.
The horizontal axis shows the scene number and the vertical axis shows
the number of points on (a) normal scale and (b) logarithmic scale. The
high count outliers are especially clear in (a) and the low count outliers
can be seen in (b). Note the varying number of interest points for the
FAST corner detector, and for some scenes this detector has very few
interest points, which is especially clear in (b)

Especially the FAST corner detector has some scenes
with nearly 10,000 interest points and other scenes with
close to 0. This is especially undesirable since it appears
that scenes exist for which this algorithm will not work. At
the same time other algorithms detect a reasonable amount
of points for these scenes, indicating that the scenes is not
degenerate, i.e. completely featureless. Also notice that for
a lot of scenes FAST is an outlier to either side of the aver-
age points of all detectors. The DoG detector has a tendency
to detect an above average number of interest points, and
competes with FAST in detecting the most interest points on
some scenes. The EBR also has a large variation, but much
fewer interest points, and in general the IBR detects few in-
terest points. Having few interest points is an undesirable
property because it makes it hard to estimate the image cor-
respondence. But also large fluctuations will result in unpre-
dictable running time during matching, and especially a very
large number of interest points can slow down the matching
procedure. The Harris and Hessian corner detectors gives a
reasonable number and variation of interest points, whereas
MSER has relatively few points, but with a reasonable num-
ber in all scenes.

Recall and Position The recall rate of the interest point
detectors as a function of the camera position is shown in
Fig. 9. Interest point detectors are sensitive to the camera po-
sition, and both changing the view angle and the distance to
the scene will reduce the recall. The question is what shape
we can expect the curves to have.

The statistics of objects in ensembles of natural scenes
exhibit statistical scale invariance (Srivastava et al. 2003).
This has mainly to do with the fact that objects, or image
structures, appears on all visible scales in the scale-space of
the image. Empirical evidence of this is for instance seen
in that the empirical distribution of area of homogeneous
image segments follows a power law (Alvarez et al. 1999).
A recent study (Gustavsson 2009) also shows that averaged
over ensembles of scenes, this area distribution appears to
be invariant to change of distance to the scene. Related to
this observation, images of natural scenes also include large
featureless areas such as e.g. sky areas in the horizon—this
property is referred to as the “blue-sky effect” (Mumford
and Gidas 2001). Even though our data set consists of in-
door still-life scenes, we expect the scenes to exhibit scale
invariance and as a consequence we expect the above men-
tioned power law behavior to be present in our scenes. Our
scenes also include the “blue-sky effect” mainly because of
the large black background area apparent in most scenes.
Therefore, as a consequence of scale invariance we may de-
duce that as the camera moves away from the scene, small
details, including potential interest points at low scales, will
disappear (become smaller than pixel scale) in large num-
bers and merge into large scale structures. Furthermore, only
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Fig.9 Mean recall rate. The graphs show the recall rate relative to the
paths shown in Fig. 4 with (a) Arc 1, (b) Arc 2, (¢) Arc 3, and (d) Line
Path. The horizontal axis is the angle relative to the scene in (a)—(c)

few new large-scale structures will appear leading to new
potential large scale interest points due to the “blue-sky ef-
fect”. Since the distribution of structure follows a power
law, the consequence is that the number of matched inter-
est points is expected to decrease as the viewing distance in-
creases. This will in turn lead to a decrease of the recall rate.
Hence for well-behaving interest point detectors we expect
the number of interest points to follow a decreasing power
law as a function of viewing distance, which also results in
a decreasing recall rate. Furthermore, we have no reason to
prefer certain view angles; hence we expect at least symme-
try, if not view angle invariance, in the recall rate for well-
behaved detectors when varying the view angle.

The shape of the curves in Fig. 9 are mainly as expected.
The top performers are the Harris corner detector and the

@ Springer

Recall rate
1-

0.9+

= har
harlap
haraff
— heslap
" hesaff
mser
ebr
 ibr
— fast
ol \ ; L L L ) dog
20 -10 0 10 20
Angle (degrees)
(b)
Recall rate
1r
0.9
0.8
0.7
06[".
0.5 ——— har
~— harlap
0.4} haraff
= heslap
0.3 . hesaff
mser
0.2} i
" ibr
o | fast
0 . . . : dog
05 0.55 0.6 0.65 07 0.75 08
(d) Distance (meter)

and distance to the scene in (d). The vertical axis is the recall rate.
Note that the recall rates for the FAST corner detector do not account
for scale change (see text for details)

difference of Gaussian (DoG). Here the Harris corners per-
form slightly better than the DoG detector for moderate
scale changes, but it has a sudden drop in recall rate at a dis-
tance of 0.7 m (Fig. 9(d)). This performance drop is caused
by our scale matching criteria, which accepts a scale change
of a factor two. Since the Harris corners do not incorporate
scale, its performance will drop when the scale change ex-
ceeds this limit, and this is seen very clearly in our experi-
ments.

The Hessian detectors perform overall well, but also the
Harris Affine and Harris Laplace detectors have good per-
formance. The recall rate is also high for the FAST corner
detector, but this detector does not account for scale varia-
tion, so we cannot apply the third matching criterion. This
favors the performance of the FAST detector, but we chose
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to include it in our investigation to illustrate the large vari-
ability in performance. For small viewpoint changes FAST
performs marginally better than other detectors, only beaten
by DoG and Harris. However, the FAST detector exhibits
asymmetries with respect to orientation (especially clear in
Fig. 9(b)). An explanation for this asymmetry might be the
large variation in the number of interest points detected in
the various scenes. As mentioned in Sect. 1, FAST is by
design not scale invariant, which accounts for the drop in
performance seen in Fig. 9(d).

Notice that the ranking of the methods are preserved in
the four graphs of Fig. 9, except for Harris, MSER, and
FAST. Especially in Fig. 9(d), it is seen that these three
methods deteriorates faster than the other methods as the
distance to the scene increases.

Figure 9 shows the mean recall rate with an average taken
over all 60 scenes. In addition to this we analyzed the vari-
ability of the performance by looking at the performance
distribution or probability density functions (PDFs) for all
119 positions. A representative sample is shown in Fig. 10.
From the overlap of these PDFs we can concluded that the
DoG and Harris detectors are significantly better then the
rest, which was also the observation from Fig. 9. We can
furthermore see that the FAST detector at times has similar
performance as the Harris and DoG detectors—especially
for small viewpoint changes, but the performance is highly
varying.

Changing Light In the light variation experiment our aim
has been to reflect realistic light changes both in the direc-
tion of the light source and the diffuseness. In natural scenes
light varies from being diffuse on an overcast day to highly
directional in sunshine. To simulate this we vary the direc-
tion as shown in Figs. 11 and 12, and we have experimented
with two levels of diffuseness—one with low and one with
high degree of directional light. Both experiments show the
same trend, but more pronounced for the high variation, so
we have chosen to show results from that. Varying the light
direction changes the scene surface appearances, which is
seen in Figs. 11(c) and 12(c). It should be noted that we left
out the FAST corner detector in this experiment, because of
the missing scale information and its, in general, unreliable
performance.

Ideally the interest point detection is invariant to change
in light direction, but our experiments show, that this is far
from the case. Our experiments is performed relative to the
key frame (image number 25) illuminated from front, see
the last image in Figs. 11(c) and 12(c). The light change is
moderate, compared to what can be seen in natural scenes,
but the reduction in performance of interest point detectors
is significant. This performance reduction is similar to the
effect of changing camera position, which comes as a sur-
prise, since these variations are common in many natural
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Fig. 10 (a) Probability distribution functions for selected image posi-
tions and (b) their positions on the path. The colors show the detector
types—see Fig. 9. The horizontal axis shows binned recall rates and
the vertical axis show number of scenes. This figure provides more de-
tail in the performance of the image descriptors. Especially note how
broad the distribution of the FAST corner detector that spans the range
from very good to very poor performance

images. The curves have the same trend and their order are
the same as in the experiment with diffuse light, see Fig. 9.
This indicates that the different detectors relative sensitivity
to light change is similar.

Lighting variation occurs in many applications based
on interest point detection including examples like object
recognition and image retrieval (Nister and Stewenius 2006;
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Fig. 11 Mean recall rate relative to change in light direction from back
to front for seven camera positions averaged over all 60 scenes. The
graphs (a) show the performance of the different detector types, with
the average recall rate at the vertical axis and the light direction at the
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horizontal axis. The camera positions are shown in (b). An example of
images from position 25 is shown in (¢). The light changes gradually
from back to front, with the first row being images 1-5 and bottom row
images 6-10
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Fig. 12 Mean recall rate relative to change in light direction from
right to left for seven camera positions averaged over all 60 scenes.
The graphs (a) show the performance of the different detector types,
with the average recall rate at the vertical axis and the light direction
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at the horizontal axis. The camera positions are shown in (b). An ex-
ample of images from position 25 is shown in (c). The light changes
gradually from right to left with the first row being images 1-5 and
bottom row images 6-10
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Table 3 The average correlation of the recall rate by changing the
threshold parameter from 0.107 —9.31 x the recommended parameter
settings

Detector Recall rate correlation
Harris —0.0198
Harris Laplace —0.0286
Harris Affine —0.0275
Hessian Laplace —0.2149
Hessian Affine —0.1656

Sivic and Zisserman 2006). Our results show that the inves-
tigated interest point detectors are far from invariant to light
changes, and this indicates that future research should focus
on how to handle light variation to obtain more robust com-
puter vision methods. The performance drop is relatively
smaller when the scene is seen from the side. This might
indicate that some feature are both robust to light and posi-
tion variation, but the light variation is also smaller when the
scene is viewed from the side.

Changing Model Parameters In the above experiments the
recommended parameter settings were used. These corre-
spond to standard settings of the downloaded software. To
investigate the effect of these settings, we conducted the
experiments with changing camera position using differ-
ent cornerness and blob setting. This experiment is only
conducted for the Harris and Hessian type detectors, be-
cause they are only governed by one threshold parame-
ter. The parameter was varied on a logarithmic scale from
0.107 — 9.31 x the recommended parameter settings. This
is done in 21 steps by a multiplicative factor of 1.25.

From these experiments we observe that the recall rate of
the Harris type detectors are unaffected by a change in the
cornerness parameters and that the Hessian type detectors
are only moderately affected. This happens despite these pa-
rameters drastically affect the number of interest points ex-
tracted. Our observations are quantisized in Table 3, which
shows the correlation between the recall rate and the param-
eter setting. This implies that our results are relatively insen-
sitive to the choice of parameter setting.

Complementarity of Interest Points Different interest
points can complement each other by covering different
parts of a scene. When two types of interest points comple-
ment each other it can be an advantage to apply both, which
for example is used in Furukawa and Ponce (2007). We have
made an investigation of how the ten interest points in this
study complement each other by measuring their combined
coverage of the scene. Our measure of complementarity is
based on the surface reconstruction from the structured light
scan and the 3D positions of the interest points. The 3D
positions are found by projecting the interest point to the
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surface scan. We limit the complementarity measure to the
key frame, see Fig. 4.

The complementarity of two sets of interest points, X and
Y, is measured by computing the distance from each point
in the structured light scan, S, to the nearest point in set X,
set Y, and the union of X and Y. The average of these three
distance distributions are then calculated by

1 .
Dx=;ij1n||Xj,Si||2,

i=1

1 n
D, = - ;m"m 1Y%, Sill2,

n
D —lZmin min || X, Si{l2, min || Y, S| @)
xy = AR R

i=1

where n is the number of points in the structured light scan
and §;, X; and Y} denote individual points in the three point
sets. We choose the following complementarity measure

2 Dy
SR @)

Dx_i_D)”

NI

comp(X,Y) =

where the mean distances are divided by the square root of
the number of interest points, n, and n,. This is done to
adjust for the varying number of interest points from each
detector. We chose the square root because it is proportional
to the distance between nodes in a 2D grid with n, points.
Despite the fact that we are on a 2D manifold in a 3D space,
we found it to be a good approximation. The average re-
sult of comparing the ten interest point detectors over the 60
scenes is shown in Fig. 13.

The motivation behind (2) is that we want a combination
of interest points that represents a scene as well as possi-
ble. This is here represented as the distance from the 3D
points obtained from the surface scans to the 3D positions
of the interest points. If two sets of interest points comple-
ment each other well, the average distance from the struc-
tured light scan to the combined set of interest points should
be reduced significantly by combining the two sets of inter-
est points, which in essence is what (2) measures. The main
result from this study is that the MSER, EBR and IBR detec-
tors provide similar interest points but complement all other
interest point detectors well, see Fig. 13.

6 Discussion
Our data set has enabled us to investigate interest point cor-

respondence independently of descriptors for very complex,
non-planar scenes. The key element that we investigate is,
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Fig. 13 The complementarity of the interest point detectors. The score
is computed as described by (2) and averaged over all 60 scenes. Dark
values imply that the two sets of interest points cover different parts of
the scene and this way complement each other

if there for a given interest point is a potential matching in-
terest point in a corresponding image. Our investigation is
based on the same implementations as in the extensive study
of interest points by Mikolajczyk et al. (2005). The novelty
of our investigation is the complexity of the data set, both
with regard to number of scenes, possibility of scene relight-
ing and ground truth of geometric surface structure, which
has led to nontrivial conclusions about the performance of
interest point detectors.

The first investigation is concerned with the number of
interest points provided by the algorithms. Most of the al-
gorithms provide a reasonable number of interest points that
varies with the depicted scene. This is expected because the
number of interest points should be proportional to the num-
ber of features in the image. The FAST corner detector is
highly unstable in terms of the number of interest points
when we compare to the other interest point detectors. The
detected number of interest points range from close to 0 to
around 10,000, where most other interest point detectors are
more consistent in the amount of interest points. The be-
havior of the FAST detector is very undesirable, because
it makes this method unreliable for solving the correspon-
dence problem. The correspondence estimate will be un-
certain, especially in scenes with almost no interest points.
A very large number of points can give higher certainty in
solving the correspondence problem, but will slow down the
matching. The EBR and IBR algorithms shows a relatively
unstable behavior, but with few interest points. The best per-
formance is achieved with the Harris and Hessian corner and
blob detectors. MSER is also reasonably stable, but with few
interest points. The DoG has very good performance, but
with a large number of interest points.

Secondly, we have investigated the recall rate relative to
the camera position, which provides very interesting results.
We expect the recall rate to decrease when we change the
camera position by increasing the angle or the distance to the
scene. This is also what we observe for most interest point
detectors. But the FAST corner detector does not show a de-
crease in performance with an increase in angle at the two
distant arcs, see Fig. 9(b) and (c). This behavior is differ-
ent than the other detectors. This is probably due to the high
variation in number of interest points detected by FAST. The
Harris corner detector performs very well for small-scale
changes, but has a large drop in performance when scale
exceeds a threshold. The reason is that this detector does not
adapt to scale change and the threshold is a consequence of
our scale matching criterion, as mentioned in Sect. 5. Inter-
est points based on the FAST detector do not include scale,
so the reported performance is not directly comparative to
the other detectors. We have chosen to include this descrip-
tor to illustrate its unreliable performance despite its advan-
tage of not fulfilling the scale matching criteria. Overall the
Harris corner detector and the DoG blob detector perform
slightly better than the Hessian blob detector. This group
of detectors is based on scale space features. Their perfor-
mance is superior to MSER, but this detector does however
perform reasonably well. IBR and EBR show poor perfor-
mance. In general, our results do not provide a clear answer
to which type of image structure (blobs or corners) is most
optimal. In order to answer this question, we need to ensure
that the detectors for the different type of image structure is
as close in implementation details (e.g. choice of parameter
settings and scale selection methods) as possible in order to
provide comparable results. However, we were not able to
achieve this with the current obtained implementations.

We have made an extensive scene lighting experiment in
which we change the light direction. The recall rate is dras-
tically affected by changing light, and the drop in perfor-
mance is similar to the performance drop seen while chang-
ing camera position. The reflected light changes with in-
coming light direction resulting in a relatively large appear-
ance change of the images. This effect is especially pro-
nounced in specular surfaces and surfaces with local geo-
metric variation, and less pronounced in diffuse and smooth
surfaces. Looking at the images, the effect of relighting ap-
pears moderate, and much less than what is seen in an out-
door scene during the day. Therefore, the drastic reduction
in performance comes as a surprise, and clearly shows that
you should not expect too much of this group of methods
when applied under conditions with large light variations.
The ranking of the performance is similar to the experiment
with diffuse conditions, showing that scale space corner and
blob detectors and their approximations (Harris, Hessian
and DoG) outperform the other methods. Especially EBR
and IBR perform poorly.

@ Springer



Int J Comput Vis

We have investigated the recall rate in relation to chang-
ing parameters in the methods in order to see if some param-
eter settings are more favorable than others. Only the five
Harris and Hessian interest point detectors listed in Table 3
were chosen for this investigation because they have one pa-
rameter that can be changed in a comparable way. The pa-
rameter is related to the strength of the interest points, and
increasing the parameter allows lower contrast features to be
included as interest points. We found the recall rate to be al-
most independent of the parameter settings—especially for
the Harris corners, see Table 3. The Hessian blob detector
showed a small decrease in recall rate when decreasing the
feature strength of the interest point. The choice of parame-
ters was also investigated in Mikolajczyk et al. (2005) where
they found a stronger relation between the parameter set-
tings and their repeatability measure, which is similar to our
recall rate. Their investigation showed that choosing strong
interest points would favor the repeatability, and similarly
the clutter in a large number of interest points would give
a high repeatability. Our investigation contradicts their ob-
servation within the broad span of parameters from 0.1-9.3
x the recommended parameter setting. The most important
effect of changing parameters is the change in the number
of detected interest points.

The complementarity study shows that different descrip-
tor types cover different parts of the scene. Especially
MSER, EBR and IBR detectors provide similar interest
points but complement all other interest point detectors well
(see Fig. 13). Since MSER outperforms the two other de-
tectors in the other evaluations, MSER looks like the best
choice of a complementary detector to the high perform-
ing Harris and Hessian detectors. It is also noticed that the
Laplace and affine versions of the Harris and Hessian detec-
tors are very alike, which is expected because the methods
are almost identical. It is a little surprising that the basic Har-
ris corner detector is not as similar to its Laplacian and affine
counterparts as we would expect. An explanation might be
that features detected at higher scales do not exist at the
scale where the basic Harris corner detector operates. The
spatial localization of the high scale interest points might
also have changed due to the movement of feature points in
scale space.

Overall, the simple Harris corner detector performs very
well, but is not invariant to scale change. The Harris corners
are closely followed by the DoG detector and outperformed
by DoG when considering large-scale changes. Similar to
the study in Mikolajczyk et al. (2005) we also observe an
overall good performance of the variations of Harris and
Hessian detectors. The difference in affine and non-affine
is small, which is also expected when only looking at the
interest points. The only difference is the local affine adap-
tion, which can cause a scale variation, but the other two
matching criteria are the same. We have not seen as good a
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performance of the MSER detector as reported in that study
and by Fraundorfer and Bischof (2004). The non-planer and
generally more challenging scenes in our study might cause
this. MSERs performance problem on non-planar scenes,
have previously been reported by Fraundorfer and Bischof
(2005), but only based on one scene. Our results make it
clear that this holds for complex scenes in general.

Viewed from a pure interest point detection perspective,
detectors based on scale space features perform better than
the other detector types, and especially better than the EBR,
IBR and FAST. It is important to note, that this study only
concerns interest points, which is just one element of solv-
ing the correspondence problem. The success of a system
will depend on the interest point descriptor and the match-
ing procedure as well. But the insights brought by this study
show a clear performance difference and indicate what the
effect of the interest point detector will be in a final system.

In some aspects, the conclusions of our study contradicts
previous performance studies, e.g. for viewpoint change in
Mikolajczyk et al. (2005), and underline the need for large
data sets to firmly conclude on the performance, when evalu-
ating new methods experimentally. The loss in performance
is relatively large under light and viewpoint change, which
should be considered when applying these methods. It is
questionable how much gain there will be in suggesting new
and improved interest point detectors, because image prop-
erties change when viewpoint and light change—in some
scenes more than others. As a consequence perfect invari-
ance cannot be obtained, and the accounted problems should
be dealt with using other means.

7 Conclusion

The contribution of this paper is an investigation of ten es-
tablished interest point detectors, which provide new in-
sight to the stability of these detectors with respect to large
changes in viewpoint, scale, and lighting. The investigation
is based on a data set of 60 scenes with precise ground truth
of camera position and scene surface, acquired with an in-
dustrial robot arm. Furthermore, a controlled light setting
has enabled us to perform precisely controlled relighting
experiments. Our conclusions are based on pure geometric
constraints, and do not consider the discriminative proper-
ties of the underlying image structure. Based on this we
conclude that interest points based on scale space features
have the highest performance; these are the Harris corner
detectors, the Hessian blobs and the difference of Gaussian
(DoG), which is an approximation of the scale space Laplace
operator. Especially for small-scale changes the simple Har-
ris detector performs very well, and for scale adaptation the
DoG detector is good. Maximally Stable Extremal Regions
(MSER) did not show as good a performance as previously
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reported, but especially the EBR and IBR are very poor in
performance. Also the FAST corner was somewhat unreli-
able in performance.

In this study we have observed a relatively large decline
in performance with change in viewpoint and lighting. This
is important to account for when interest points are used for
methods in natural scenes with large variation in lighting.
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